WorldWideScience

Sample records for metal working fluids

  1. Metal working fluid exposure and diseases in Switzerland.

    Science.gov (United States)

    Koller, Michael F; Pletscher, Claudia; Scholz, Stefan M; Schneuwly, Philippe

    2016-07-01

    Exposure to metal working fluids (MWF) is common in machining processes worldwide and may lead to diseases of the skin and the respiratory tract. The aim of the study was to investigate exposure and diseases due to MWF in Switzerland between 2004 and 2013. We performed descriptive statistics including determination of median and 90th percentile values of MWF concentrations listed in a database of Suva. Moreover, we clustered MWF-induced occupational diseases listed in a database from the Swiss Central Office for Statistics in Accident Insurance, and performed linear regression over time to investigate temporal course of the illnesses. The 90th percentile for MWF air concentration was 8.1 mg (aerosol + vapor)/m 3 and 0.9 mg aerosol/m 3 (inhalable fraction). One thousand two hundred and eighty skin diseases and 96 respiratory diseases were observed. This is the first investigation describing exposure to and diseases due to MWF in Switzerland over a timeframe of 10 years. In general, working conditions in the companies of this investigation were acceptable. Most measured MWF concentrations were below both the Swiss and most international occupational exposure limits of 2014. The percentage of workers declared unfit for work was 17% compared to the average of other occupational diseases (12%).

  2. Hypersensitivity pneumonitis due to metal working fluids: Sporadic or under reported?

    Science.gov (United States)

    Gupta, Amit; Rosenman, Kenneth D

    2006-06-01

    Occupational exposure to metal working fluids (MWF) is common with over 1.2 million workers in the United States involved in machine finishing, machine tooling, and other metalworking operations. MWF is a known cause of hypersensitivity pneumonitis (HP). Recent reports of outbreaks of hypersensitivity HP secondary to exposure to MWF are reported. Cases were identified through the Occupational Disease surveillance system in the State of Michigan and from referrals for evaluation to the Division of Occupational and Environmental Medicine at Michigan State University (MSU). Each patient underwent a clinical examination including an occupational history, lung function studies, radiographic imaging, and in some cases lung biopsies. Following the diagnosis of definite HP, an industrial hygiene investigation was carried out, which included a plant walk-through, and review of the "Injury and Illness" log. Air monitoring and microbial sampling results were reviewed. As part of Michigan's mandatory surveillance system for occupational illnesses, seven cases of suspected HP were identified in 2003-2004 from three facilities manufacturing automobile parts in Michigan. Each plant used semi-synthetic MWFs, and conducted a MWF management program including biocide additions. Two facilities had recently changed the MWF before the cases arose. Growth of mycobacteria was found in these two MWFs. Breathing zone samples for particulates of two employees in plant A (two cases) ranged from 0.48 to 0.56 mg/m3. In plant B (four cases), two employees' sampling results ranged from 0.10 to 0.14 mg/m3. No air sampling data were available from plant C. Hypersensitivity pneumonitis due to exposure to MWFs is under-recognized by health care providers, and current surveillance systems are inadequate to provide a true estimate of its occurrence. HP arose from environments with exposures well below the Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) for MWF, and

  3. Interim LCA comparison of metal working fluids with and without Chlorinated paraffins

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Christensen, Frans Møller

    2002-01-01

    The present report constitutes deliverable D 19 and D 23 of the OMNIITOX project and is the life cycle assessment part of the ECB case study (work package 5). The objectives of the case study have been to deliver empirical knowledge for the feasibility study carried out as part of WP5 and to deli......The present report constitutes deliverable D 19 and D 23 of the OMNIITOX project and is the life cycle assessment part of the ECB case study (work package 5). The objectives of the case study have been to deliver empirical knowledge for the feasibility study carried out as part of WP5...... and to deliver data and inspiration to other work packages (WP 7, 8 and 9). Specifically for this part of the case study (life cycle assessment part), the aims have been to apply LCA for comparing the use of different alternative substances in a specific application and to make a basis for comparison with the EU...... risk assessment approach for assessing the same substances. In the other part of the case study (Deliverable 9; Christensen & Olsen, 2002), the results of the Risk Assessments are summarised. In the original problem definition focus were on the use of SCCP and as an alternative MCCP in metal working...

  4. Photosynthetic and Ultrastructure Parameters of Maize Plants are Affected During the Phyto-Rhizoremediation Process of Degraded Metal Working Fluids.

    Science.gov (United States)

    Grijalbo, Lucía; Gutierrez Mañero, Francisco Javier; Fernandez-Pascual, Mercedes; Lucas, Jose Antonio

    2015-01-01

    A phyto-rhizoremediation system using corn and esparto fiber as rooting support to remediate degraded metal working fluids (dMWFs) has been developed in the present study. In order to improve the process, plants were inoculated at the root level with bacteria either individually, and with a consortium of strains. All strains used were able to grow with MWFs. The results show that this system significantly lowers the Chemical Oxygen Demand below legal limits within 5 days. However, results were only improved with the bacterial consortium. Despite the effectiveness of the phyto-rhizoremediation process, plants are damaged at the photosynthetic level according to the photosynthetic parameters measured, as well as at the ultrastructure of the vascular cylinder and the Bundle Sheath Cells. Interestingly, the bacterial inoculation protects against this damage. Therefore, it seems that that the inoculation with bacteria can protect the plants against these harmful effects.

  5. Birch's Law for fluid metals

    International Nuclear Information System (INIS)

    Shaner, J.W.; Hixson, R.S.; Winkler, M.A.; Boness, D.A.; Brown, J.M.

    1987-01-01

    By comparing acoustic velocities in fluid metals over a very wide range of densities we have established Birch's Law as an approximate representation over the entire liquid range. For a given liquid metal the acoustic velocity is close to linear in density, with a slope determined by the atomic weight. The measurements include isobaric expansion to less than half normal density, ultrasonics on molten metals at 1 atmosphere, and shock melted metals to greater than twice normal density

  6. Hazards of organic working fluids

    International Nuclear Information System (INIS)

    Silberstein, S.

    1977-08-01

    We present several brief reviews on working fluids proposed for use in organic Rankine and bi-phase bottoming cycles. There are several general problems with many organic working fluids: flammability, toxicity, and a tendency to leak through seals. Besides, two of the proposed working fluids are to be used at temperatures above the manufacturer's maximum recommended temperature, and one is to be used in a way different from its customary usage. It may, in some cases, be more profitable to first seek alternative working fluids before committing large amounts of time and money to research projects on unsafe working fluids

  7. Hazards of organic working fluids

    Energy Technology Data Exchange (ETDEWEB)

    Silberstein, S

    1977-08-01

    We present several brief reviews on working fluids proposed for use in organic Rankine and bi-phase bottoming cycles. There are several general problems with many organic working fluids: flammability, toxicity, and a tendency to leak through seals. Besides, two of the proposed working fluids are to be used at temperatures above the manufacturer's maximum recommended temperature, and one is to be used in a way different from its customary usage. It may, in some cases, be more profitable to first seek alternative working fluids before committing large amounts of time and money to research projects on unsafe working fluids.

  8. Advanced working fluids: Thermodynamic properties

    Science.gov (United States)

    Lee, Lloyd L.; Gering, Kevin L.

    1990-10-01

    Electrolytes are used as working fluids in gas fired heat pump chiller engine cycles. To find out which molecular parameters of the electrolytes impact on cycle performance, a molecular theory is developed for calculating solution properties, enthalpies, vapor-liquid equilibria, and engine cycle performance. Aqueous and ammoniac single and mixed salt solutions in single and multisolvent systems are investigated. An accurate correlation is developed to evaluate properties for concentrated electrolyte solutions. Sensitivity analysis is used to determine the impact of molecular parameters on the thermodynamic properties and cycle performance. The preferred electrolytes are of 1-1 valence type, small ion size, high molecular weight, and in strongly colligative cosolvent. The operating windows are determined for a number of absorption fluids of industrial importance.

  9. Liquid-metal MHD energy conversion. Status report, March 1976--September 1977. [Coal combustion products are mixed with liquid copper and act as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M; Dunn, P F; Pierson, E S; Dauzvardis, P V; Pollack, I

    1979-05-01

    A new open-cycle coal-fired liquid-metal MHD concept has been developed, in which the combustion products are mixed directly with liquid copper and the mixture is then passed through the MHD generator. This concept yields a system with an efficiency comparable to that of open-cycle plasma MHD at combustor temperatures as much as 1000 K lower and MHD generator temperatures more than 1000 K lower than is the case for open-cycle plasma MHD. Significantly, the liquid-metal system uses components that are close to or within present-day technology, and it appears that readily available containment materials are compatible with the fluids. The first commercial system studies for the liquid-metal Rankine-cycle concept show that it yields a higher conversion efficiency than conventional steam cycles for lower-temperature heat sources, such as a liquid-metal fast-breeder reactor, a light-water reactor, or solar collectors without any potential for hazardous reactions betweeen liquid metals (e.g., sodium) and water. Fabrication of the high-temperature liquid-metal MHD facility has been completed, and shakedown runs have been performed, using a substitute mixer-generator test section. Data obtained in this test section agreed well with existing single-phase and newly-developed two-phase correlations for the pressure gradient.

  10. Evaluation of some heavy metals concentration in body fluids of metal workers in Kano metropolis, Nigeria

    OpenAIRE

    Sani, Ali; Abdullahi, Ibrahim Lawal

    2017-01-01

    Metal workers in urban Kano constitute a major workforce with a considerable population. The present work was aimed at obtaining baseline data on the extent of metal ion concentration in body fluids (urine and blood) of sampled population in the area. The investigation involves interaction with sampled population as well as blood and urine sample collection for heavy metals analysis. The health problems associated with the practice identified by respondents include: metal fume fever; eye and ...

  11. Stirling engine with air working fluid

    Science.gov (United States)

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  12. Metal working and dislocation structures

    DEFF Research Database (Denmark)

    Hansen, Niels

    2007-01-01

    Microstructural observations are presented for different metals deformed from low to high strain by both traditional and new metal working processes. It is shown that deformation induced dislocation structures can be interpreted and analyzed within a common framework of grain subdivision on a finer...... and finer scale down to the nanometer dimension, which can be reached at ultrahigh strains. It is demonstrated that classical materials science and engineering principles apply from the largest to the smallest structural scale but also that new and unexpected structures and properties characterize metals...

  13. Anomalously metal-rich fluids form hydrothermal ore deposits.

    Science.gov (United States)

    Wilkinson, Jamie J; Stoffell, Barry; Wilkinson, Clara C; Jeffries, Teresa E; Appold, Martin S

    2009-02-06

    Hydrothermal ore deposits form when metals, often as sulfides, precipitate in abundance from aqueous solutions in Earth's crust. Much of our knowledge of the fluids involved comes from studies of fluid inclusions trapped in silicates or carbonates that are believed to represent aliquots of the same solutions that precipitated the ores. We used laser ablation inductively coupled plasma mass spectrometry to test this paradigm by analysis of fluid inclusions in sphalerite from two contrasting zinc-lead ore systems. Metal contents in these inclusions are up to two orders of magnitude greater than those in quartz-hosted inclusions and are much higher than previously thought, suggesting that ore formation is linked to influx of anomalously metal-rich fluids into systems dominated by barren fluids for much of their life.

  14. [Exposure to vegetal esters based metal cutting fluids: health effects].

    Science.gov (United States)

    Riva, M M; Bellini, M; Leghissa, P; Gambini, D; Mosconi, G

    2012-01-01

    The aim of our research is to study respiratory and dermatologic diseases (irritative and allergic) in a cohort of workers exposed to vegetal esters based metal cutting fluids of the latest generation. A cohort of 81 workers (mean age 34.5 years, seniority 17.4 years), with mean exposure to vegetal esters based metal cutting fluids of 2.8 years, has been subjected to clinical evaluations. The investigation did not reveal any disease or disorder of the respiratory system, any folluculitis or any allergic contact dermatitis caused by sensitization to vegetal esters based metal cutting fluids. On the contrary we documented 5 cases of irritant contact dermatitis, even if favored by an improper use of protection devices. According to early results, the introduction of vegetal esters based metal cutting fluids seems to reduce the risk to the worker's health. A longitudinal surveillance is still needed to confirm that even in the medium and long-term sensitizations will not occur.

  15. Metal Working and Welding Operations.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by metal workers and welders. Addressed in the six individual units of the course are the following topics: weldable metals and their alloys, arc welding, gas welding,…

  16. Metal organic frameworks for removal of compounds from a fluid

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-03

    Embodiments provide a method of compound removal from a fluid. The method includes contacting one or more metal organic framework (MOF) compositions with a fluid and sorbing one or more compounds, such as CO2, H2S and condensable hydrocarbons. One or more of CO2, H2S and condensable hydrocarbons can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF.

  17. Use of organic working fluids in Rankine engines

    Energy Technology Data Exchange (ETDEWEB)

    Curran, H M

    1979-09-01

    A compilation is presented of state-of-the-art data on the use of organic working fluids in operational Rankine cycle engines. Particular attention is given to the determination of the maximum temperatures used for various working fluids in operational Rankine cycle engines and identification of thermal instability and chemical reaction problems related to these temperatures. Information is included on the characteristics and selection of working fluids; the behavior of lubricating oils in contact with working fluids; operational experience; and recommended organic fluids R and D. (LCL)

  18. Evaluation of some heavy metals concentration in body fluids of metal workers in Kano metropolis, Nigeria

    Directory of Open Access Journals (Sweden)

    Ali Sani

    Full Text Available Metal workers in urban Kano constitute a major workforce with a considerable population. The present work was aimed at obtaining baseline data on the extent of metal ion concentration in body fluids (urine and blood of sampled population in the area. The investigation involves interaction with sampled population as well as blood and urine sample collection for heavy metals analysis. The health problems associated with the practice identified by respondents include: metal fume fever; eye and skin irritation; dizziness and respiratory problems; lack of or inadequate protective devices during activity were also reported. Laboratory investigation of urine samples by Atomic absorption spectrophotometry indicated higher concentrations for Manganese (Mn, Lead (Pb and Nickel (Ni; in blood samples, there were higher concentrations of Manganese (Mn, Lead (Pb, Chromium (Cr and Nickel (Ni. Metal workers of urban Kano are at risk because of the concentration of Mn and Pb in particular. There is the need to monitor occupational activities that are responsible for pollution and with serious health risk. Keywords: Heavy metals, Welders, Biomonitoring, Blood, Urine

  19. A new method used to evaluate organic working fluids

    International Nuclear Information System (INIS)

    Zhang, Xinxin; He, Maogang; Wang, Jingfu

    2014-01-01

    In this paper, we propose a method named “Weight Classification-Hasse Dominance” to evaluate organic working fluids. This new method combines the advantages of both the method of weight determination and the Hasse Diagram Technique (HDT). It can be used to evaluate the thermodynamic performance, environmental protection indicator, and safety requirement of organic working fluid simultaneously. This evaluation method can offer good reference for working fluid selection. Using this method, the organic working fluids which have been phased out and will be phased out by the Montreal Protocol including CFCs (chlorofluorocarbons), HCFCs (hydrochlorofluorocarbons), and HFCs (hydrofluorocarbons) were evaluated. Moreover, HCs (hydrocarbons) can be considered as a completely different kind of organic working fluid from CFCs, HCFCs, and HFCs according to the comparison based on this new evaluation method. - Highlights: • We propose a new method used to evaluate organic working fluids. • This evaluation method can offer good reference for working fluid selection. • CFC, HCFC, and HFC working fluids were evaluated using this evaluation method. • HC can be considered as a totally different working fluid from CFC, HCFC, and HFC

  20. Evaluation of some heavy metals concentration in body fluids of metal workers in Kano metropolis, Nigeria.

    Science.gov (United States)

    Sani, Ali; Abdullahi, Ibrahim Lawal

    2017-01-01

    Metal workers in urban Kano constitute a major workforce with a considerable population. The present work was aimed at obtaining baseline data on the extent of metal ion concentration in body fluids (urine and blood) of sampled population in the area. The investigation involves interaction with sampled population as well as blood and urine sample collection for heavy metals analysis. The health problems associated with the practice identified by respondents include: metal fume fever; eye and skin irritation; dizziness and respiratory problems; lack of or inadequate protective devices during activity were also reported. Laboratory investigation of urine samples by Atomic absorption spectrophotometry indicated higher concentrations for Manganese (Mn), Lead (Pb) and Nickel (Ni); in blood samples, there were higher concentrations of Manganese (Mn), Lead (Pb), Chromium (Cr) and Nickel (Ni). Metal workers of urban Kano are at risk because of the concentration of Mn and Pb in particular. There is the need to monitor occupational activities that are responsible for pollution and with serious health risk.

  1. Supercritical Fluid Extraction of Metal Chelate: A Review.

    Science.gov (United States)

    Ding, Xin; Liu, Qinli; Hou, Xiongpo; Fang, Tao

    2017-03-04

    Supercritical fluid extraction (SFE), as a new green extraction technology, has been used in extracting various metal species. The solubilities of chelating agents and corresponding metal chelates are the key factors which influence the efficiency of SFE. Other main properties of them such as stability and selectivity are also reviewed. The extraction mechanisms of mainly used chelating agents are explained by typical examples in this paper. This is the important aspect of SFE of metal ions. Moreover, the extraction efficiencies of metal species also depend on other factors such as temperature, pressure, extraction time and matrix effect. The two main complexation methods namely in-situ and on-line chelating SFE are described in detail. As an efficient chelating agent, tributyl phosphate-nitric acid (TBP-HNO 3 ) complex attracts much attention. The SFE of metal ions, lanthanides and actinides as well as organometallic compounds are also summarized. With the proper selection of ligands, high efficient extraction of metal species can be obtained. As an efficient sample analysis method, supercritical fluid chromatography (SFC) is introduced in this paper. Recently, the extraction method combining ionic liquids (ILs) with supercritical fluid has been becoming a novel technology for treating metal ions. The kinetics related to SFE of metal species is discussed with some specific examples.

  2. Working fluid selection for organic Rankine cycles - Impact of uncertainty of fluid properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Andreasen, Jesper Graa; Liu, Wei

    2016-01-01

    of processmodels and constraints 2) selection of property models, i.e. Penge Robinson equation of state 3)screening of 1965 possible working fluid candidates including identification of optimal process parametersbased on Monte Carlo sampling 4) propagating uncertainty of fluid parameters to the ORC netpower output......This study presents a generic methodology to select working fluids for ORC (Organic Rankine Cycles)taking into account property uncertainties of the working fluids. A Monte Carlo procedure is described as a tool to propagate the influence of the input uncertainty of the fluid parameters on the ORC....... The net power outputs of all the feasible working fluids were ranked including their uncertainties. The method could propagate and quantify the input property uncertainty of the fluidproperty parameters to the ORC model, giving an additional dimension to the fluid selection process. In the given analysis...

  3. Thermo-fluid behaviour of periodic cellular metals

    CERN Document Server

    Lu, Tian Jian; Wen, Ting

    2013-01-01

    Thermo-Fluid Behaviour of Periodic Cellular Metals introduces the study of coupled thermo-fluid behaviour of cellular metals with periodic structure in response to thermal loads, which is an interdisciplinary research area that requires a concurrent-engineering approach.  The book, for the first time, systematically adopts experimental, numerical, and analytical approaches, presents the fluid flow and heat transfer in periodic cellular metals under forced convection conditions, aiming to establish structure-property relationships for tailoring material structures to achieve properties and performance levels that are customized for defined multifunctional applications. The book, as a textbook and reference book, is intended for both academic and industrial people, including graduate students, researchers and engineers. Dr. Tian Jian Lu is a professor at the School of Aerospace, Xi’an Jiaotong University, Xi’an, China. Dr. Feng Xu is a professor at the Key Laboratory of Biomedical Information Engineering o...

  4. Working Memory and Fluid Intelligence in Young Children

    Science.gov (United States)

    Engel de Abreu, Pascale M. J.; Conway, Andrew R. A.; Gathercole, Susan E.

    2010-01-01

    The present study investigates how working memory and fluid intelligence are related in young children and how these links develop over time. The major aim is to determine which aspect of the working memory system--short-term storage or cognitive control--drives the relationship with fluid intelligence. A sample of 119 children was followed from…

  5. Performance analysis of organic Rankine cycles using different working fluids

    Directory of Open Access Journals (Sweden)

    Zhu Qidi

    2015-01-01

    Full Text Available Low-grade heat from renewable or waste energy sources can be effectively recovered to generate power by an organic Rankine cycle (ORC in which the working fluid has an important impact on its performance. The thermodynamic processes of ORCs using different types of organic fluids were analyzed in this paper. The relationships between the ORC’s performance parameters (including evaporation pressure, condensing pressure, outlet temperature of hot fluid, net power, thermal efficiency, exergy efficiency, total cycle irreversible loss, and total heat-recovery efficiency and the critical temperatures of organic fluids were established based on the property of the hot fluid through the evaporator in a specific working condition, and then were verified at varied evaporation temperatures and inlet temperatures of the hot fluid. Here we find that the performance parameters vary monotonically with the critical temperatures of organic fluids. The values of the performance parameters of the ORC using wet fluids are distributed more dispersedly with the critical temperatures, compared with those of using dry/isentropic fluids. The inlet temperature of the hot fluid affects the relative distribution of the exergy efficiency, whereas the evaporation temperature only has an impact on the performance parameters using wet fluid.

  6. Electromagnetic, heat and fluid flow phenomena in levitated metal droplets both under earthbound and microgravity conditions

    Science.gov (United States)

    Szekely, Julian

    1988-01-01

    The purpose is to develop an improved understanding of the electromagnetic, heat, and fluid flow phenomena in electromagnetically levitated metal droplets, both under earthbound and microgravity conditions. The main motivation for doing this work, together with the past accomplishments, and the plans for future research are discussed.

  7. Geochemical Signature of Magmatic-Hydrothermal Fluids Exsolved from the Beauvoir Rare-Metal Granite (Massif Central, France: Insights from LA-ICPMS Analysis of Primary Fluid Inclusions

    Directory of Open Access Journals (Sweden)

    Matthieu Harlaux

    2017-01-01

    Full Text Available The Beauvoir granite (Massif Central, France represents an exceptional case in the European Variscan belt of a peraluminous rare-metal granite crosscutting an early W stockwork. The latter was strongly overprinted by rare-metal magmatic-hydrothermal fluids derived from the Beauvoir granite, resulting in a massive topazification of the quartz-ferberite vein system. This work presents a complete study of primary fluid inclusions hosted in quartz and topaz from the Beauvoir granite and the metasomatized stockwork, in order to characterize the geochemical composition of the magmatic fluids exsolved during the crystallization of this evolved rare-metal peraluminous granite. Microthermometric and Raman spectrometry data show that the earliest fluid (L1 is of high temperature (500 to >600°C, high salinity (17–28 wt.% NaCl eq, and Li-rich (Te100 m and interaction with external fluids.

  8. Compression in Working Memory and Its Relationship With Fluid Intelligence.

    Science.gov (United States)

    Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien

    2018-03-10

    Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between working-memory capacity and fluid intelligence because both depend on the optimization of storage capacity. Compressibility of memoranda was estimated using an algorithmic complexity metric. The results showed that compressibility can be used to predict working-memory performance and that fluid intelligence is well predicted by the ability to compress information. We conclude that the ability to compress information in working memory is the reason why both manipulation and retention of information are linked to intelligence. This result offers a new concept of intelligence based on the idea that compression and intelligence are equivalent problems. © 2018 Cognitive Science Society, Inc.

  9. Fluid Mechanics Of Molten Metal Droplets In Additive Manufacturing

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Šonský, Jiří

    2016-01-01

    Roč. 4, č. 4 (2016), s. 403-412 ISSN 2046-0546 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : additive manufacturing * droplets * molten metal Subject RIV: BK - Fluid Dynamics http://www.witpress.com/elibrary/cmem-volumes/4/4/1545

  10. Insulator-metal transition of fluid molecular hydrogen

    International Nuclear Information System (INIS)

    Ross, M.

    1996-01-01

    Dynamically compressed fluid hydrogen shows evidence for metallization at the relatively low pressure of 140 GPa (1.4 Mbar) while experiments on solid hydrogen made in a diamond-anvil cell have failed to detect any evidence for gap closure up to a pressure of 230 GPa (2.3 Mbar). Two possible mechanisms for metal- liclike resistivity are put forward. The first is that as a consequence of the large thermal disorder in the fluid (kT∼0.2 endash 0.3 eV) short-range molecular interactions lead to band tailing that extends the band edge into the gap, resulting in closure at a lower pressure than in the solid. The second mechanism argues that molecular dissociation creates H atoms that behave similar to n-type donors in a heavily doped semiconductor and undergo a nonmetal-metal Mott-type transition. copyright 1996 The American Physical Society

  11. Theoretical aspects concerning working fluids in hydraulic systems

    Directory of Open Access Journals (Sweden)

    Tița Irina

    2017-01-01

    Full Text Available Among the properties of working fluid, viscosity is the most important as it regards especially to pumps. In order to study the behavior of hydrostatic transmission it is important to create a reliable research instrument for dynamic simulation. Our research expertise being in SimHydraulics consequently this instrument is the suitable block diagram. The purpose of this paper is to present the possible ways to customize the properties of the working fluid in the block diagram.

  12. Metal chelate process to remove pollutants from fluids

    Science.gov (United States)

    Chang, Shih-Ger T.

    1994-01-01

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO.sub.x and optionally SO.sub.2 from a fluid using a metal ion (Fe.sup.2+) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC' is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution.

  13. Compare Cooling Effect of Different Working Fluid in Thermosyphon

    Directory of Open Access Journals (Sweden)

    Hrabovský P.

    2015-01-01

    Full Text Available This work examines cooling effect of various working fluids types, which are used in thermosyphon at cooling electrical component, it’s connected to power supply. Measurement is realized at various heat output, which maximal value is limited with maximal operating value of electrical component.

  14. New era for CO2 as a working fluid

    International Nuclear Information System (INIS)

    Stene, Joern

    2000-01-01

    During the past decade there has been extensive international activity to find acceptable alternatives to ozone-depleting CFC and HCFC substances that have been widely used as working fluids in refrigerating and heat pump plants. At present, the so-called natural working fluids constitute the most environmentally friendly alternative, and they include first of all ammonia, hydrocarbons and carbon dioxide (CO2). NTNU and SINTEF Energy Research, Norway, have been pioneers in the development of refrigerating and heat pump systems that use CO2 as a working fluid. The favourable technical and environmental properties of CO2 as well as the promising results have now led to considerable international interest in CO2 technology for refrigerating and heat pump applications. Two examples are international licensing for Norwegian CO2 technology and co-operation with Indonesia on CO2 for refrigeration

  15. Ab initio work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    We have used a recently developed self-consistent Green’s-function technique based on tight-binding linear-muffin-tin-orbital theory to calculate the work function for the close-packed surfaces of 37 elemental metals. The results agree with the limited experimental data obtained from single...... crystals to within 15%, and they explain the smooth behavior of the polycrystalline data as a function of atomic number....

  16. Alternate working fluids for solar air conditioning applications

    Science.gov (United States)

    Evans, R. D.; Beck, J. K.

    1978-01-01

    An experimental investigation of sixteen different refrigerant-absorbent fluid pairs has been carried out in order to determine their suitability as the working fluid in a solar-powered absorption cycle air conditioner. The criteria used in the initial selection of a refrigerant-absorbent pair included: high affinity (large negative deviation from Raoult's Law), high solubility, low specific heat, low viscosity, stability, corrosive properties, safety, and cost. For practical solar considerations of a fluid pair, refrigerants were selected with low boiling points whereas absorbent fluids were selected with a boiling point considerably above that of the refrigerant. Additional restrictions are determined by the operating temperatures of the absorber and the generator; these temperatures were specified as 100 F (39 C) and 170 F (77 C). Data are presented for a few selected pressures at the specified absorber and generator temperatures.

  17. On the matter of synovial fluid lubrication: implications for Metal-on-Metal hip tribology.

    Science.gov (United States)

    Myant, Connor; Cann, Philippa

    2014-06-01

    Artificial articular joints present an interesting, and difficult, tribological problem. These bearing contacts undergo complex transient loading and multi axes kinematic cycles, over extremely long periods of time (>10 years). Despite extensive research, wear of the bearing surfaces, particularly metal-metal hips, remains a major problem. Comparatively little is known about the prevailing lubrication mechanism in artificial joints which is a serious gap in our knowledge as this determines film formation and hence wear. In this paper we review the accepted lubrication models for artificial hips and present a new concept to explain film formation with synovial fluid. This model, recently proposed by the authors, suggests that interfacial film formation is determined by rheological changes local to the contact and is driven by aggregation of synovial fluid proteins. The implications of this new mechanism for the tribological performance of new implant designs and the effect of patient synovial fluid properties are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Investigation of a working fluid for cryogenic energy storage systems

    Science.gov (United States)

    Wojcieszak, P.; Poliński, J.; Chorowski, M.

    2017-12-01

    Cryogenic energy storage (CES) systems are promising alternatives to existing electrical energy storage technologies such as a pumped hydroelectric storage (PHS) or compressed air energy storage (CAES). In CES systems, excess electrical energy is used to liquefy a cryogenic fluid. The liquid can be stored in large cryogenic tanks for a long time. When a demand for the electricity is high, the liquid cryogen is pumped to high pressure and then warmed in a heat exchanger using ambient temperature or an available waste heat source. The vaporized cryogen is then used to drive a turbine and generate the electricity. Most research on cryogenic energy storage focuses on liquid air energy storage, as atmospheric air is widely available and therefore it does not limit a location of the energy storage plant. Nevertheless, CES with other gases as the working fluids can exhibit a higher efficiency. In this research a performance analysis of simple CES systems with several working fluids was performed.

  19. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Ahmad [United Technologies Research Center, East Hartford, CT (United States)

    2013-01-29

    United Technologies Research Center (UTRC), in collaboration with the Georgia Institute of Technology and the National Institute of Standards and Technology will evaluate and develop fundamental and component level models, conduct experiments and generate data to support the use of mixed or enhanced working fluids for geothermal power generation applications.

  20. A sealed turbo-alternator using any working-fluid

    International Nuclear Information System (INIS)

    Chollet, Maurice.

    1973-01-01

    The invention relates to a sealed turbo-alternator operating with a working fluid other than water. The turbo-alternator and the feed and lubricating pumps thereof are housed in a sealed casing. The latter constitutes, with the heat pump and the heat sink, a sealed enclosure containing the working and lubricating fluid. The alternator, which comprises neither collector nor brushes, is dipped in the working fluid vapor. Electric energy leaves the sealed enclosure through insulating sealed passager. In view of the absence of leakage it is possible to select (e.g. among freons) a working fluid well suited to the temperature differential between the heat source and the heat sink, and, accordingly to use temperature drops which could be too small in the case of steam. The various applications are as follows: recovery of calories at the exhaust of diesels and of gas turbines or in the cooling water of diesels; equipment of isotopic generators; recovery of calories from factory waste thrown into rivers (anti-pollution effect in view of the lowering of water temperature); non-polluting engine for special electrical vehicles [fr

  1. Working Memory Capacity and Fluid Intelligence: Maintenance and Disengagement.

    Science.gov (United States)

    Shipstead, Zach; Harrison, Tyler L; Engle, Randall W

    2016-11-01

    Working memory capacity and fluid intelligence have been demonstrated to be strongly correlated traits. Typically, high working memory capacity is believed to facilitate reasoning through accurate maintenance of relevant information. In this article, we present a proposal reframing this issue, such that tests of working memory capacity and fluid intelligence are seen as measuring complementary processes that facilitate complex cognition. Respectively, these are the ability to maintain access to critical information and the ability to disengage from or block outdated information. In the realm of problem solving, high working memory capacity allows a person to represent and maintain a problem accurately and stably, so that hypothesis testing can be conducted. However, as hypotheses are disproven or become untenable, disengaging from outdated problem solving attempts becomes important so that new hypotheses can be generated and tested. From this perspective, the strong correlation between working memory capacity and fluid intelligence is due not to one ability having a causal influence on the other but to separate attention-demanding mental functions that can be contrary to one another but are organized around top-down processing goals. © The Author(s) 2016.

  2. Extraction of metals using supercritical fluid and chelate forming ligand

    International Nuclear Information System (INIS)

    Wai, C.M.; Laintz, K.E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated β-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated β-diketone and a trialkyl phosphate, or a fluorinated β-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated β-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs

  3. Stirling engines using working fluids with strong real gas effects

    International Nuclear Information System (INIS)

    Invernizzi, Costante M.

    2010-01-01

    Real gas effects typical of the critical region of working fluids are a powerful tool to increase the energy performances of Stirling cycles, mainly at low top temperatures. To carry out the compression near the critical region the working fluids must have a critical temperature near environmental conditions and the use of organic working substances (pure or in suitable mixtures) as a matter of fact begins compulsory. The moderate thermal stability of the organic working fluids limits the maximum temperatures to 300-400 deg. C and as a consequence, the achievable cycles efficiencies result rather low. Carbon dioxide, with a critical temperature of 31 deg. C, is, among the traditionally inorganic gases, an exception and is considered here in comparison with organic substances. But the good thermodynamics of the cycles allows, in the considered cases, conversion efficiencies of about 20%, with good specific powers. The good energy performance of real gas Stirling cycles is obtained at the cost of high maximum cycle pressure, in the range of at least 100-300 bar. These high pressures nevertheless have large positive effects on the heat power transferred per unit of pumping mechanical power, and the low top temperatures have a positive influence on the material problems for the hottest engine parts.

  4. Numerical Analysis of Thermohydrodynamics Interfacing Supercritical Fluid and Liquid Metal

    International Nuclear Information System (INIS)

    Jung, Jong H.; Suh, Kune Y.; Jung, Wi S.

    2008-01-01

    A shell-and-tube heat exchanger is the most common type of heat exchanger in nuclear power plants as well as oil refineries and other large chemical processes, and is suited for higher-pressure applications. This type of heat exchanger comprises a vessel with a bundle of tubes inside. One fluid runs through the tubes, and another fluid flows over the tubes through the shell to transport heat in-between. The tube bundle contains such varying tubes as plain, longitudinally finned, and so forth. Heat exchangers may be divided into a shell-and-tube, double pipe, flat plate, helical coil or printed-circuit type according to geometry. The shell-and-tube heat exchanger is commonly adopted in a variety of power conversion systems. Tubular Exchanger Manufacturers Association (TEMA) categorized the shell-and-tube heat exchanger into a floating head, fixed tube sheet, Utube and kettle type. Maximization of the heat exchanger effectiveness tends to reduce the waste of energy, whereby increasing the efficiency of the nuclear power conversion system. A great deal of attempts has been made to improve efficiency of the heat exchanger by increasing the heat transfer surface area exposed to the working fluids and reducing the difference in temperature between the primary and secondary fluids. Limitations, though, exist to achievable tube densities based on manufacturing constraints and cooling requirements

  5. Dust as a Working Fluid for Heat Transfer Project

    Science.gov (United States)

    Mantovani, James G.

    2015-01-01

    The project known as "Dust as a Working Fluid" demonstrates the feasibility of a dust-based system for transferring heat radiatively into space for those space applications requiring higher efficiency, lower mass, and the need to operate in extreme vacuum and thermal environments - including operating in low or zero gravity conditions in which the dust can be conveyed much more easily than on Earth.

  6. Work function of elemental metals and its face dependence ...

    African Journals Online (AJOL)

    The calculated work functions for the flat surface of the metals were in perfect agreement with experimental values for metals in the low-density limit and the agreement with experimental values decreased towards the high-density limit. The calculated work functions for the body centred cubic metals were in good agreement ...

  7. Miniature magnetic fluid seal working in liquid environments

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Yoshinori, E-mail: ymitamura@par.odn.ne.jp [Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814 (Japan); Durst, Christopher A., E-mail: chris@procyrion.com [Procyrion, Inc., Houston, TX 77027 (United States)

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4×Ø2×1) sandwiched between two pole pieces (Ø4×Ø1.1×0.5). A shield (Ø4×Ø1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump. - Highlights: • A miniature magnetic fluid seal working in a liquid environment was developed. • The seal can be installed on Ø1 mm shaft and can seal against 370 mmHg at 40000 rpm. • The magnetic fluid seal will be useful for a catheter blood pump.

  8. Metallothionein Induction in the Coelomic Fluid of the Earthworm Lumbricus terrestris following Heavy Metal Exposure: A Short Report

    Directory of Open Access Journals (Sweden)

    A. Calisi

    2014-01-01

    Full Text Available Earthworms are useful bioindicator organisms for soil biomonitoring. Recently the use of pollution biomarkers in earthworms has been increasingly investigated for soil monitoring and assessment. Earthworm coelomic fluid is particularly interesting from a toxicological perspective, because it is responsible for pollutant disposition and tissue distribution to the whole organism. The aim of the present work was to study the effect of heavy metal exposure on metallothionein (Mt induction in the coelomic fluid of Lumbricus terrestris in view of future use as sensitive biomarker suitable for application to metal polluted soil monitoring and assessment. L. terrestris coelomic fluid showed a detectable Mt concentration of about 4.0±0.6 μg/mL (mean ± SEM, n=10 in basal physiological condition. When the animals were exposed to CuSO4 or CdCl2 or to a mixture of the two metals in OECD soils for 72 h, the Mt specific concentration significantly (P<0.001 increased. The Mt response in the coelomic fluid perfectly reflected the commonly used Mt response in the whole organism when the two responses were compared on the same specimens. These findings indicate the suitability of Mt determination in L. terrestris coelomic fluid as a sensitive biomarker for application to metal polluted soil monitoring and assessment.

  9. 30 CFR 56.16013 - Working with molten metal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Working with molten metal. 56.16013 Section 56.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Materials Storage...

  10. 30 CFR 57.16013 - Working with molten metal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Working with molten metal. 57.16013 Section 57.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Materials...

  11. Performance of diffusion absorption refrigeration cycle with organic working fluids

    Energy Technology Data Exchange (ETDEWEB)

    Zohar, A.; Jelinek, M.; Levy, A.; Borde, I. [Pearlstone Center for Aeronautical Engineering Studies, Mechanical Engineering Department, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2009-09-15

    A diffusion absorption refrigeration (DAR) cycle is driven by heat and utilizes a binary solution of refrigerant and absorbent as working fluid, together with an auxiliary inert gas. Commercial DAR systems operate with ammonia-water solution and hydrogen or helium as the inert gas. In this work, the performance of a simplified DAR system working with an organic absorbent (DMAC - dimethylacetamide) and five different refrigerants and helium as inert gas was examined numerically, with the aim of lowering the generator temperature and system pressure along with a non-toxic refrigerant The refrigerants were: chlorodifluoromethane (R22), difluoromethane (R32), 2-chloro-1,1,1,2-tetrafluoroethane (R124), pentafluoroethane (R125) and 1,1,1,2-tetrafluoroethane (R134a). The results were compared with the performance of the same system working with ammonia-water and helium. Similar behavior was found for all systems, regarding the coefficient of performance (COP) and rich and poor solution concentrations as functions of generator temperature. It was found that typical generator temperature with the new substances was 150 C, yet lower COPs, higher evaporator temperatures and lower condensation temperature of about 40 C governed these systems. (author)

  12. Fluid intake, hydration, work physiology of wildfire fighters working in the heat over consecutive days.

    Science.gov (United States)

    Raines, Jenni; Snow, Rodney; Nichols, David; Aisbett, Brad

    2015-06-01

    (i) To evaluate firefighters' pre- and post-shift hydration status across two shifts of wildfire suppression work in hot weather conditions. (ii) To document firefighters' fluid intake during and between two shifts of wildfire suppression work. (iii) To compare firefighters' heart rate, activity, rating of perceived exertion (RPE), and core temperature across the two consecutive shifts of wildfire suppression work. Across two consecutive days, 12 salaried firefighters' hydration status was measured immediately pre- and post-shift. Hydration status was also measured 2h post-shift. RPE was also measured immediately post-shift on each day. Work activity, heart rate, and core temperature were logged continuously during each shift. Ten firefighters also manually recorded their food and fluid intake before, during, and after both fireground shifts. Firefighters were not euhydrated at all measurement points on Day one (292±1 mOsm l(-1)) and euhydrated across these same time points on Day two (289±0.5 mOsm l(-1)). Fluid consumption following firefighters' shift on Day one (1792±1134ml) trended (P = 0.08) higher than Day two (1108±1142ml). Daily total fluid intake was not different (P = 0.27), averaging 6443±1941ml across both days. Core temperature and the time spent ≥ 70%HRmax were both elevated on Day one (when firefighters were not euhydrated). Firefighters' work activity profile was not different between both days of work. There was no difference in firefighters' pre- to post-shift hydration within each shift, suggesting ad libitum drinking was at least sufficient to maintain pre-shift hydration status, even in hot conditions. Firefighters' relative hypohydration on Day one (despite a slightly lower ambient temperature) may have been associated with elevations in core temperature, more time in the higher heart rate zones, and 'post-shift' RPE. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  13. Particulate metal bioaccessibility in physiological fluids and cell culture media: Toxicological perspectives.

    Science.gov (United States)

    Leclercq, Bérénice; Alleman, Laurent Yves; Perdrix, Esperanza; Riffault, Véronique; Happillon, Mélanie; Strecker, Alain; Lo-Guidice, Jean-Marc; Garçon, Guillaume; Coddeville, Patrice

    2017-07-01

    According to the literature, tiny amounts of transition metals in airborne fine particles (PM 2.5 ) may induce proinflammatory cell response through reactive oxygen species production. The solubility of particle-bound metals in physiological fluids, i.e. the metal bioaccessibility is driven by factors such as the solution chemical composition, the contact time with the particles, and the solid-to-liquid phase ratio (S/L). In this work, PM 2.5 -bound metal bioaccessibility was assessed in various physiological-like solutions including cell culture media in order to evidence the potential impact on normal human bronchial epithelial cells (NHBE) when studying the cytotoxicity and inflammatory responses of PM 2.5 towards the target bronchial compartment. Different fluids (H 2 O, PBS, LHC-9 culture medium, Gamble and human respiratory mucus collected from COPD patients), various S/L conditions (from 1/6000 to 1/100,000) and exposure times (6, 24 and 72h) were tested on urban PM 2.5 samples. In addition, metals' total, soluble and insoluble fractions from PM 2.5 in LHC-9 were deposited on NHBE cells (BEAS-2B) to measure their cytotoxicity and inflammatory potential (i.e., G6PDH activity, secretion of IL-6 and IL-8). The bioaccessibility is solution-dependent. A higher salinity or organic content may increase or inhibit the bioaccessibiliy according to the element, as observed in the complex mucus matrix. Decreasing the S/L ratio also affect the bioaccessibility depending on the solution tested while the exposure time appears less critical. The LHC-9 culture medium appears to be a good physiological proxy as it induces metal bioaccessibilities close to the mucus values and is little affected by S/L ratios or exposure time. Only the insoluble fraction can be linked to the PM 2.5 -induced cytotoxicity. By contrast, both soluble and insoluble fractions can be related to the secretion of cytokines. The metal bioaccessibility in LHC-9 of the total, soluble, and insoluble

  14. Bulk-plasmon contribution to the work function of metals

    International Nuclear Information System (INIS)

    Gutierrez, F A; DIaz-Valdes, J; Jouin, H

    2007-01-01

    By consideration of the Koopmans theorem expression for the work function of a metal, we find that the total height of the surface barrier potential equals the value of the bulk-plasmon energy of pure metals. As a consequence a simple formula for the work function is obtained which shows better agreement with the experimental data than the most complete existent theories

  15. Coal-fired open-cycle liquid-metal magnetohydrodynamic topping cycle for retrofit of steam power plants. [Two-phase working fluid composed of coal combustion products and liquid copper

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, E. S.; Herman, H.; Petrick, M.; Boom, R. W.; Carlson, L.; Cohen, D.; Dubey, G.; Grammel, S. J.; Schreiner, F.; Snyder, B. K.; Zinneman, T.

    1980-12-01

    The application of the new, coal-fired open-cycle liquid-metal MHD (OC-LMMHD) energy-conversion system to the retrofit of an existing, oil- or gas-fired conventional steam power plant is evaluated. The criteria used to evaluate the retrofit are the new plant efficiency and the cost benefit relative to other options, i.e., continuing to burn oil, a conventional retrofit to burn coal (if possible), and an over-the-fence gasifier for boilers that cannot burn coal directly. The OC-LMMHD cycle and the existing steam plant used in the study are discussed, and a detailed description of the retrofit plant is presented. The latter includes plant drawings, description of the coupling of the OC-LMMHD topping cycle and the steam boiler, drawings and descriptions of the major components in the retrofit plant, and costs. The unique capability of the OC-LMMHD cycle to control the pollutants normally associated with burning coal is discussed. The net plant output powers and efficiencies are calculated, with allowances for the required auxiliary powers and component inefficiencies, and a plant lifetime economic analysis performed by an architect/engineer. The efficiency and cost results are compared with the values for the other options.

  16. Metallic muscles and beyond : nanofoams at work

    NARCIS (Netherlands)

    Detsi, Eric; Tolbert, Sarah H.; Punzhin, S.; De Hosson, Jeff Th. M.

    In this contribution for the Golden Jubilee issue commemorating the 50th anniversary of the Journal of Materials Science, we will discuss the challenges and opportunities of nanoporous metals and their composites as novel energy conversion materials. In particular, we will concentrate on

  17. Continuous transfer of liquid metal droplets across a fluid-fluid interface within an integrated microfluidic chip.

    Science.gov (United States)

    Gol, Berrak; Tovar-Lopez, Francisco J; Kurdzinski, Michael E; Tang, Shi-Yang; Petersen, Phred; Mitchell, Arnan; Khoshmanesh, Khashayar

    2015-06-07

    Micro scale liquid metal droplets have been hailed as the potential key building blocks of future micro-electro-mechanical systems (MEMS). However, most of the current liquid metal enabled systems involve millimeter scale droplets, which are manually injected onto the desired locations of the microchip. Despite its simplicity, this method is impractical for patterning large arrays or complex systems based on micro scale droplets. Here, we present a microfluidic chip, which integrates continuous generation of micro scale galinstan droplets in glycerol, and the hydrodynamic transfer of these droplets into sodium hydroxide (NaOH) solution. Observation via high-speed imaging along with computational fluid dynamics (CFD) analysis are utilised to comprehend the lateral migration of droplets from the glycerol to NaOH fluid. This platform is simple, can be readily integrated into other microfluidic systems, and creates flexibility by separating the continuous phase for droplet generation from the eventual target carrier fluid within a monolithic chip.

  18. pH and metal concentration of synovial fluid of osteoarthritic joints and joints with metal replacements.

    Science.gov (United States)

    Milošev, Ingrid; Levašič, Vesna; Vidmar, Janja; Kovač, Simon; Trebše, Rihard

    2017-11-01

    Due to degradation and metal dissolution during articulation of metal joint replacements the chemical periprosthetic environment may change. The aim was to establish whether metal replacements cause the local changes in pH and elevated metal concentrations. pH was measured on samples from 167 patients: native hip and knee osteoarthritic joints, joints with hip and knee replacements revised for aseptic or septic reasons. pH of synovial fluid and periprosthetic tissue was measured perioperatively using a microelectrode and pH indicator papers for removed metal components. Metal concentrations were measured in 21 samples using inductively coupled plasma mass spectrometry. The mean pH value of synovial fluid at native osteoarthritic joints (n = 101) was 7.78 ± 0.38. The mean pH value of synovial fluid at revision aseptic operation (n = 58) was 7.60 ± 0.31, with statistically significant difference (p = 0.002) compared to native osteoarthritic joints. The mean pH value of synovial fluid at revision septic operation (n = 8) was 7.55 ± 0.25, with statistically significant difference (p = 0.038) compared to native osteoarthritic joints. Measurements in tissue and at stems were not reliable. In the majority of samples taken at revision increased levels of cobalt and chromium were measured. A small but statistically significant difference was observed in the pH of synovial fluid between natural joints with degenerative diseases and joints treated with metal replacements. Based on the increased metal levels we expected the value of pH to be lower, but the influence of metal ions is counteracted by the buffering capacity of human body. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2507-2515, 2017. © 2016 Wiley Periodicals, Inc.

  19. Orientation dependence of the work function for metal nanocrystals

    Science.gov (United States)

    Gao, Lingyuan; Souto-Casares, Jaime; Chelikowsky, James R.; Demkov, Alexander A.

    2017-12-01

    Work function values measured at different surfaces of a metal are usually different. This raises an interesting question: What is the work function of a nano-size crystal, where differently oriented facets can be adjacent? Work functions of metallic nanocrystals are also of significant practical interest, especially in catalytic applications. Using real space pseudopotentials constructed within density functional theory, we compute the local work function of large aluminum and gold nanocrystals. We investigate how the local work function follows the change of the surface plane orientation around multifaceted nanocrystals, and we establish the importance of the orbital character near the Fermi level in determining work function differences between facets.

  20. Selective chelation-supercritical fluid extraction of metal ions from waste materials

    International Nuclear Information System (INIS)

    Wai, C.N.; Laintz, K.E.; Yonker, C.R.

    1993-01-01

    The removal of toxic organics, metals, and radioisotopes from solids or liquids is a major concern in the treatment of industrial and nuclear wastes. For this reason, developing methods for selective separation of toxic metals and radioactive materials from solutions of complex matrix is an important problem in environmental research. Recent developments indicate supercritical fluids are good solvents for organic compounds. Many gases become supercritical fluids under moderate temperatures and pressures. For example, the critical temperature and pressure of carbon dioxide are 31 degrees C and 73 atm, respectively. The high diffusivity, low viscosity, and T-P dependence of solvent strength are some attractive properties of supercritical fluid extraction (SFE). Since CO 2 offers the additional benefits of stability and non-toxicity, the SFE technique avoids generation of organic liquid waste and exposure of personnel to toxic solvents. While direct extraction of metal ions by supercritical fluids is highly inefficient, these ions when complexed with organic ligands become quite soluble in supercritical fluids. Specific ligands can be used to achieve selective extraction of metal ions in this process. After SFE, the fluid phase can be depressurized for precipitation of the metal chelates and recycled. The ligand can also be regenerated for repeated use. The success of this selective chelation-supercritical fluid extraction (SC-SFE) process depends on a number of factors including the efficiencies of the selective chelating agents, solubilities of metal chelates in supercritical fluids, rate of extraction, ease of regeneration of the ligands, etc. In this report, the authors present recent results on the studies of the solubilities of metal chelates in supercritical CO 2 , experimental ions from aqueous solution, and the development of selective chelating agents (ionizable crown ethers) for the extraction of lanthanides and actinides

  1. Neutron radiographic detection limits of fluids in metal pipes

    International Nuclear Information System (INIS)

    Winn, W.G.

    1976-01-01

    Routine maintenance of process pipes at the Savannah River Plant has indicated that undesirable fluids can build up in the various gas lines. Thermal neutron radiography has been used to image thin films of various fluids in thick-walled high-pressure process pipes. A 3.5 x 10 6 n/(cm 2 -sec) thermal neutron beam and standard transfer imaging techniques were used to provide radiographs of the fluid-bearing pipes. In addition, a computer graphics procedure was developed that simulated the neutron radiographs; this method permitted examination of some fluid-pipe configurations not studied experimentally. Actual pipe dimensions ranged in OD from 1 / 4 to 9 / 16 in. with OD/ID = 3. Many common industrial fluids such as H 2 O, oils, and CCl 4 may be detected in thick-walled process pipes, even when distributed in thin (3 to 10 mil) fluid films. By contrast, fluids with a low thermal neutron cross section (D 2 O and T 2 O) can be detected only for much thicker films

  2. Thermo-economic evaluation of ORCs for various working fluids

    International Nuclear Information System (INIS)

    Garg, Pardeep; Orosz, Matthew S.; Kumar, Pramod

    2016-01-01

    An inclusive component-level technical and economic assessment procedure for the general design and operating strategy of Organic Rankine Cycles (ORC) for use across major application categories (waste heat recovery, solar thermal, geothermal) and sub-MW scales can be an important tool for leveraging the cost-effective deployment of low and medium temperature power cycles. Previous analyses and design approaches tended to focus on thermodynamic efficiency rather than financial performance. To bridge this gap, a general thermo-economic optimization of sub 500 kWe ORCs is developed using a 7-dimensional design space with minimum investment cost per unit of nameplate electricity production as an objective function. Parameters used include working fluid, heat source temperature, pinch in condenser, boiler (HEX) and regenerator, expander inlet pressure and air cooled condenser area. Optimized power block configurations are presented for the application of ORCs with waste or “free” heat sources and solar heat input for power scales of 5, 50 and 500 kWe to facilitate rapid selection of design parameters across a wide range of thermal regimes. While R152a yields the lowest cost ORCs in the case of the former, isopentane is found to be more cost effective in the latter case for heat source temperatures between 125 and 275 °C.

  3. Magmatic Hydrothermal Fluids: Experimental Constraints on the Role of Magmatic Sulfide Crystallization and Other Early Magmatic Processes in Moderating the Metal Content of Ore-Forming Fluids

    Science.gov (United States)

    Piccoli, P. M.; Candela, P. A.

    2006-05-01

    It has been recognized for some time that sulfide phases, although common in intermediate-felsic volcanic rocks, are not as common in their plutonic equivalents. That sulfide crystallization, or the lack thereof, is important in the protracted magmatic history of porphyry Cu and related systems is supported by the work of e.g., Rowins (2000). Candela and Holland (1986) suggested that sulfide crystallization could moderate the ore metal concentrations in porphyry environments. Experiments show clearly that Au and Cu can partition into Cl-bearing vapor and brine. This effect can be enhanced by S (Simon, this session). However, in some instances enhances this effect. That is, the partitioning of Au and Cu into vapor+brine is highly efficient (e.g. Simon et al. 2003; Frank et al 2003). This suggests that if sulfides do not sequester ore metals early during the history of a magma body from the melt, they will partition strongly into the volatile phases. Whether volatile release occurs in the porphyry ore environment, or at deeper levels upon magma rise, is a yet unsolved question. Little is known about deep release of volatiles (during magma transport at lower- to mid-crustal levels). Saturation of melts with a CO2-bearing fluid could happen at levels much deeper than those typical of ore formation. CO2 is released preferentially, so a high CO2 concentration in fluids in the porphyry ore environment argues against deep fluid release. Of course, this depends upon the specific processes of crystallization and fluid release, which may be complex. Our experiments on sulfides have concentrated on pyrrhotite and Iss. Our partitioning data for Po/melt exhibit wide variations from metal to metal: Cu (2600); Co (170); Au (140); Ni (100); Bi, Zn and Mn (2). These results suggest that crystallization of Po can contribute to variable ore metal ratios (e.g. Cu/Au). Other sulfides behave differently. If a melt is Iss (Cpy) saturated, then Cu will be buffered at a high value, and Au

  4. Generation of cross section data of heat pipe working fluids for compact nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Slewinski, Anderson; Ribeiro, Guilherme B. [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil); Caldeira, Alexandre D., E-mail: anderson_sle@live.com, E-mail: alexdc@ieav.cta.br, E-mail: gbribeiro@ieav.cta.br [Instituto de Estudos Avançados (IEAv), São José dos Campos, SP (Brazil). Divisão de Energia Nuclear

    2017-07-01

    For compact nuclear power plants, such as the nuclear space propulsion proposed by the TERRA project, aspects like mass, size and efficiency are essential drivers that must be managed during the project development. Moreover, for high temperature reactors, the use of liquid metal heat pipes as the heat removal mechanism provides some important advantages as simplicity and reliability. Considering these aforementioned aspects, this paper aims the development of the procedure necessary to calculate the microscopic absorption cross section data of several liquid metal to be used as working fluids with heat pipes; which will be later compared with the given data from JEF Report ⧣14. The information necessary to calculate the cross section data will be obtained from the latest ENDF library version. The NJOY system will be employed with the following modules: RECONR, BROADR, UNRESR and GROUPR, using the same specifications used to calculate the cross section data encountered in the JEF Report ⧣14. This methodology allows a comparison with published values, verifying the procedure developed to calculate the microscopic absorption cross section for selected isotopes using the TERRA reactor spectrum. Liquid metals isotopes of Sodium (Na), Lithium (Li), Thallium (TI) and Mercury (Hg) are part of this study. (author)

  5. Miniature magnetic fluid seal working in liquid environments

    Science.gov (United States)

    Mitamura, Yoshinori; Durst, Christopher A.

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4×Ø2×1) sandwiched between two pole pieces (Ø4×Ø1.1×0.5). A shield (Ø4×Ø1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump.

  6. Reduced work function of graphene by metal adatoms

    Energy Technology Data Exchange (ETDEWEB)

    Legesse, Merid; Mellouhi, Fedwa El; Bentria, El Tayeb; Madjet, Mohamed E. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); Fisher, Timothy S. [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States); Kais, Sabre [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); Department of Chemistry and Physics, Purdue University, West Lafayette, IN 46323 (United States); College of Science and Engineering, Hamad Bin Khalifa University, Doha (Qatar); Alharbi, Fahhad H., E-mail: falharbi@qf.org.qa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); College of Science and Engineering, Hamad Bin Khalifa University, Doha (Qatar)

    2017-02-01

    Highlights: • Using DFT, the maximum reduction of graphene workfunction is investigated. This is important for many applications. • The calculations show that the adatoms prefer to relax at hollow sites. • The transfer of electrons from the adatoms to graphene shifts up the Fermi level. So, graphene becomes metallic. • For those dopants that have been used experimentally, the calculations agree with the experimental data. • We found that 8% doping by Cs reduces the work function to 2.05 eV. - Abstract: In this paper, the work function of graphene doped by different metal adatoms and at different concentrations is investigated. Density functional theory is used to maximize the reduction of the work function. In general, the work function drops significantly before reaching saturation. For example in the case of Cs doping, the work function saturates at 2.05 eV with a modest 8% doping. The adsorption of different concentrations on metal adatoms on graphene is also studied. Our calculations show that the adatoms prefer to relax at hollow sites. The transfer of electron from metallic dopants to the graphene for all the studied systems shifts the Fermi energy levels above the Dirac-point and the doped graphenes become metallic. The value of Fermi energy shifts depends on the type of metallic dopants and its concentrations. A detail analysis of the electronic structure in terms of band structure and density of states, absorption energy, and charge transfer for each adatom-graphene system is presented.

  7. On the unit rupture work of metals and alloys

    International Nuclear Information System (INIS)

    Verkhoturov, A.D.; Kovalenko, V.S.; Dyatel, V.P.

    1980-01-01

    Studied is the effect of the nature of the treated material treatment regimes on their unit rupture work at laser treatment in the regime of quasistationary evaporation. It is shown that the unit rupture work changes its values depending on the treatment regimes, coincidences between experimental and calculation values of unit rupture work are not being observed, especially for refractory metals of the 6th group and for solid alloys. Established are optimum regimes for determination of stable values of unit rupture work

  8. Influence of vegetable based cutting fluids on cutting force and vibration signature during milling of aluminium metal matrix composites

    Directory of Open Access Journals (Sweden)

    S. Shankar

    2017-03-01

    Full Text Available Due to the environmental and health issues, there is an enormous requirement for developing the novel cutting fluids (CFs. The vegetable based cutting fluid (VBCFs doesn’t affect the environment, diminish the harmful effects to the operator and also enhance the machining performances such as surface roughness, tool life, minimum vibration and cutting forces. In this work, the performances of four different VBCFs like palm, coconut, sunflower, soya bean oils, and a commercial type of CFs were considered to analyze the influence of cutting fluids while measuring the cutting force and vibration signatures during milling of 7075–T6 hybrid aluminium metal matrix composite with carbide insert tool. The experiments were conducted in CNC L-MILL 55 vertical machining center, with milling tool dynamometer to measure the cutting force and a tri-axial accelerometer to measure the vibration signals. The flow rate of the VBCFs were maintained at a constant rate and the results were compared with a commercial cutting fluid. The obtained result shows that palm oil suits better than the other vegetable based cutting fluids in terms of minimum cutting force requirement and minimum vibration. Also, the experimental result shows that the cutting fluid was one of the important parameter needs to be considered which influences the cutting force and vibration signals.

  9. Project report: Experimental planning and verification of working fluids (WP 5)

    DEFF Research Database (Denmark)

    Babi, Deenesh Kavi

    Computer-aided molecular design (CAMD) helps in the reduction of experiments for the selection/design of optimal working fluids. In reducing the number of experiments, solutions obtain by trial and error is replaced by solutions that are based on mixture-process properties. In generating optimal...... fluids and their properties and the development of a design of experiments method for verifying the optimal working fluids generated from CAMD...

  10. Non-conventional working fluids for thermal power generation: A review

    OpenAIRE

    Mondejar, Maria; Thern, Marcus

    2014-01-01

    New technology requirements derived from the exploitation of novel energy resources, and the needs for improvement of the energy efficiency of current power generation systems are pushing the industry towards the search of alternative working fluids. The great challenge for these non-conventional fluids is to provide satisfactory performances and fill the existing lack of media for some innovative energy applications. In this review a number of emerging working fluids for thermal power genera...

  11. Mathematical modeling of impact of two metal plates using two-fluid approach

    Science.gov (United States)

    Utkin, P. S.; Fortova, S. V.

    2018-01-01

    The paper is devoted to the development of the two-fluid mathematical model and the computational algorithm for the modeling of two metal plates impact. In one-dimensional case the governing system of equations comprises seven equations: three conservation laws for each fluid and transfer equation for the volume fraction of one of the fluids. Both fluids are considered to be compressible and equilibrium on velocities. Pressures equilibrium is used as fluids interface condition. The system has hyperbolic type but could not be written in the conservative form because of nozzling terms in the right-hand side of the equations. The algorithm is based on the Harten–Lax–van Leer numerical flux function. The robust computation in the presence of the interface boundary is carried out due to the special pressure relaxation procedure. The problem is solved using stiffened gas equations of state for each fluid. The parameters in the equations of state are calibrated using the results of computations using wide-range equations of state for the metals. In simulations of metal plates impact we get two shocks after the initial impact that propagate to the free surfaces of the samples. The characteristics of shock waves are close (maximum relative error in characteristics of shocks is not greater than 7%) to the data from the wide-range equations of states computations.

  12. Implications for metal and volatile cycles from the pH of subduction zone fluids

    Science.gov (United States)

    Galvez, Matthieu E.; Connolly, James A. D.; Manning, Craig E.

    2016-11-01

    The chemistry of aqueous fluids controls the transport and exchange—the cycles—of metals and volatile elements on Earth. Subduction zones, where oceanic plates sink into the Earth’s interior, are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science. Here we report thermodynamic predictions of fluid-rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth’s atmosphere-ocean system and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years7.

  13. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen [SIMBOL Materials

    2014-04-30

    Executive Summary Simbol Materials studied various methods of extracting valuable minerals from geothermal brines in the Imperial Valley of California, focusing on the extraction of lithium, manganese, zinc and potassium. New methods were explored for managing the potential impact of silica fouling on mineral extraction equipment, and for converting silica management by-products into commercial products.` Studies at the laboratory and bench scale focused on manganese, zinc and potassium extraction and the conversion of silica management by-products into valuable commercial products. The processes for extracting lithium and producing lithium carbonate and lithium hydroxide products were developed at the laboratory scale and scaled up to pilot-scale. Several sorbents designed to extract lithium as lithium chloride from geothermal brine were developed at the laboratory scale and subsequently scaled-up for testing in the lithium extraction pilot plant. Lithium The results of the lithium studies generated the confidence for Simbol to scale its process to commercial operation. The key steps of the process were demonstrated during its development at pilot scale: 1. Silica management. 2. Lithium extraction. 3. Purification. 4. Concentration. 5. Conversion into lithium hydroxide and lithium carbonate products. Results show that greater than 95% of the lithium can be extracted from geothermal brine as lithium chloride, and that the chemical yield in converting lithium chloride to lithium hydroxide and lithium carbonate products is greater than 90%. The product purity produced from the process is consistent with battery grade lithium carbonate and lithium hydroxide. Manganese and zinc Processes for the extraction of zinc and manganese from geothermal brine were developed. It was shown that they could be converted into zinc metal and electrolytic manganese dioxide after purification. These processes were evaluated for their economic potential, and at the present time Simbol

  14. Review of liquid metal heat pipe work at Los Alamos

    International Nuclear Information System (INIS)

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs

  15. Metalworking and machining fluids

    Science.gov (United States)

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  16. Material compatibility of ORC working fluids with polymers

    OpenAIRE

    Eyerer, S.; Eyerer, P.; Eicheldinger, M.; Sax, S.; Wieland, C.; Spliethoff, H.

    2017-01-01

    In this study, the material compatibility of refrigerants focusing on hydrofluoroolefines (HFO) with typical polymers in ORC plants and refrigeration units is analyzed with consistent testing conditions and a complete uncertainty analysis of the results. One state of-the-art refrigerant, namely R245fa, as well as the low-GWP fluids R1233zd-E and R1234yf are taken into account. The investigated polymers are ethylene-propylene-diene rubber (EPDM), fluoric rubber (FKM) and polytetrafluoroethylen...

  17. High Temperature Heat Pump Integration using Zeotropic Working Fluids for Spray Drying Facilities

    DEFF Research Database (Denmark)

    Zühlsdorf, Benjamin; Bühler, Fabian; Mancini, Roberta

    2017-01-01

    and show a large potential to reuse the excess heat from exhaust gases. This study analyses a heat pump application with an improved integration by choosing the working fluid as a mixture in such a way, that the temperature glide during evaporation and condensation matches the temperature glide of the heat...... source and sink best possibly. Therefore, a set of six common working fluids is defined and the possible binary mixtures of these fluids are analyzed. The performance of the fluids is evaluated based on the energetic performance (COP) and the economic potential (NPV). The results show...

  18. Influence of water on the work function of certain metals

    Science.gov (United States)

    MUSUMECI, FRANCESCO; POLLACK, GERALD H.

    2012-01-01

    Experiments were carried out to explore the effect of light on Au, Pt and Cu surfaces immersed in water, in order to study the changes of work function arising from the interaction between the metallic surfaces and water. The results show an action of liquid water about three times larger than that of low-temperature ice. Theoretical calculations, present in literature, have predicted values much lower than those we measured. The substantial changes in work function measured here appear to arise from the complex structure of water in the vicinity of the metal surface. PMID:22639466

  19. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  20. Fluid displacive resin embedding of laminated sediments: preserving trace metals for high-resolution paleoclimate investigations

    NARCIS (Netherlands)

    Jilbert, T.; Lange, G.J. de; Reichart, G.-J.

    2008-01-01

    For the high-resolution study of trace metal profiles in laminated anoxic sediments, a specially adapted method of resin embedding has been developed. Fluid displacement is the preferred means of sediment dehydration, offering optimum structural preservation and facilitating desalination. Exchanges

  1. Determination of the bioaccessible fraction of metals in urban aerosol using simulated lung fluids

    Czech Academy of Sciences Publication Activity Database

    Coufalík, Pavel; Mikuška, Pavel; Matoušek, Tomáš; Večeřa, Zbyněk

    2016-01-01

    Roč. 140, SEP (2016), s. 469-475 ISSN 1352-2310 R&D Projects: GA ČR(CZ) GA14-25558S; GA ČR(CZ) GA13-01438S Institutional support: RVO:68081715 Keywords : metal * aerosol * simulated lung fluid Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.629, year: 2016

  2. Review on metal speciation analysis in cerebrospinal fluid-current methods and results: a review.

    Science.gov (United States)

    Michalke, Bernhard; Nischwitz, Volker

    2010-12-03

    The large number of patients suffering from neurodegenerative diseases like Alzheimer's disease and Parkinson's disease motivates many research groups worldwide to investigate pathogenic factors and molecular mechanisms of these diseases. Recent studies and reviews indicate that metals are involved in these neurodegenerative processes in case their homeostasis in the brain is disturbed. Important is that the focus of these recent studies is on essential metals like Fe, Cu, Zn and Mn, but not on the well-known neurotoxic metals like Hg and Pb. Key issues for understanding metal induced neurotoxic effects are the transport processes across the neural barriers, the metal binding forms (species) and their interactions with neuronal structures. Total metal concentrations in cerebrospinal fluid were published in several studies for controls and patients, but the amount of reliable data sets is not yet sufficient for clear definition of normal and elevated levels. The need for more detailed information on metal species in CSF is highlighted in this review. However, studies on element speciation analysis, that means identification and quantification of the various binding forms of metals in cerebrospinal fluid, are rare. The major reasons therefore are difficulties in accessing cerebrospinal fluid samples, the non-covalent nature of many metal species of interest and their rather low concentrations. In spite of this, several applications demonstrate the potential of hyphenated techniques as additional diagnostic tools for cerebrospinal fluid analysis. This review shows the importance of trace element analysis and more specifically of element speciation in cerebrospinal fluid for an improved understanding of pathologic mechanisms promoting neuro-degeneration. Respective analytical techniques are also highlighted. Additionally, biochemical assays for selected high molecular mass metal species are summarized and critically discussed. Moreover additional potential techniques

  3. Terahertz artificial material based on integrated metal-rod-array for phase sensitive fluid detection.

    Science.gov (United States)

    You, Borwen; Chen, Ching-Yu; Yu, Chin-Ping; Liu, Tze-An; Hattori, Toshiaki; Lu, Ja-Yu

    2017-04-17

    A terahertz artificial material composed of metal rod array is experimentally investigated on its transmission spectral property and successfully incorporated into microfluidics as a miniaturized terahertz waveguide with an extended optical-path-length for label-free fluidic sensing. Theoretical and experimental characterizations of terahertz transmission spectra show that the wave guidance along the metal rod array originates from the resonance of transverse-electric-polarized waves within the metal rod slits. The extended optical path length along three layers of metal-rod-array enables terahertz waves sufficiently overlapping the fluid molecules embedded among the rods, leading to strongly enhanced phase change by approximately one order of magnitude compared with the blank metal-parallel-plate waveguide. Based on the enhanced phase sensitivity, three kinds of colorless liquid analytes, namely, acetone, methanol, and ethanol, with different dipole moments are identified in situ using the metal-rod-array-based microfluidic sensor. The detection limit in molecular amounts of a liquid analyte is experimentally demonstrated to be less than 0.1 mmol, corresponding to 2.7 μmol/mm2. The phase sensitive terahertz metal-rod-array-based sensor potentially has good adaptability in lab-chip technology for various practical applications, such as industrial toxic fluid detection and medical breath inspection.

  4. Prospects of the use of nanofluids as working fluids for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Mondejar, Maria E.; Andreasen, Jesper G.; Regidor, Maria

    2017-01-01

    The search of novel working fluids for organic Rankine cycle power systems is driven by the recent regulations imposing additional phase-out schedules for substances with adverse environmental characteristics. Recently, nanofluids (i.e. colloidal suspensions of nanoparticles in fluids) have been...... suggested as potential working fluids for organic Rankine cycle power systems due to their enhanced thermal properties, potentially giving advantages with respect to the design of the components and the cycle performance. Nevertheless, a number of challenges concerning the use of nanofluids must...... the prospects of using nanofluids as working fluids for organic Rankine cycle power systems. As a preliminary study, nanofluids consisting of a homogenous and stable mixture of different nanoparticles types and a selected organic fluid are simulated on a case study organic Rankine cycle unit for waste heat...

  5. Strain engineering the work function in monolayer metal dichalcogenides

    International Nuclear Information System (INIS)

    Lanzillo, Nicholas A; Simbeck, Adam J; Nayak, Saroj K

    2015-01-01

    We use first-principles density functional theory to investigate the effect of both tensile and compressive strain on the work functions of various metal dichalcogenide monolayers. We find that for all six species considered, including MoS 2 , WS 2 , SnS 2 , VS 2 , MoSe 2 and MoTe 2 , that compressive strain of up to 10% decreases the work function continuously by as much as 1.0 eV. Large enough tensile strain is also found to decrease the work function, although in some cases we observe an increase in the work function for intermediate values of tensile strain. This work function modulation is attributed to a weakening of the chalcogenide-metal bonds and an increase in total energy of each system as a function of strain. Values of strain which bring the metal atoms closer together lead to an increase in electrostatic potential energy, which in turn results in an increase in the vacuum potential level. The net effect on the work function can be explained in terms of the balance between the increases in the vacuum potential levels and Fermi energy. (paper)

  6. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing--systematic review of clinical and epidemiological studies.

    Directory of Open Access Journals (Sweden)

    Albrecht Hartmann

    Full Text Available INTRODUCTION: The use of metal-on-metal (MoM total hip arthroplasty (THA increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. OBJECTIVE: To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. METHODS: Systematic review of clinical trials (RCTs and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor, patient characteristics as well as study quality characteristics (secondary explanatory factors. RESULTS: Overall, 104 studies (11 RCTs, 93 epidemiological studies totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L. Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. DISCUSSION: Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed "time out" for stemmed large-head MoM-THA and recommend a restricted

  7. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    Science.gov (United States)

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip

  8. Recommended values of clean metal surface work functions

    International Nuclear Information System (INIS)

    Derry, Gregory N.; Kern, Megan E.; Worth, Eli H.

    2015-01-01

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  9. The development of working memory capacity and fluid intelligence in children

    OpenAIRE

    Engel de Abreu, Pascale; Gathercole, S; Conway, A

    2010-01-01

    A longitudinal study was conducted to investigate the relationship between working memory capacity and fluid intelligence and how this relationship develops in early childhood. The major aim was to determine which aspect of the working memory system – short-term storage or executive attention – drives the relationship with fluid intelligence. A sample of 119 children was followed from kindergarten to second grade and completed multiple assessments of short-term memory, wor...

  10. What's so special about working memory? An examination of the relationships among working memory, secondary memory, and fluid intelligence.

    Science.gov (United States)

    Mogle, Jacqueline A; Lovett, Benjamin J; Stawski, Robert S; Sliwinski, Martin J

    2008-11-01

    Working memory capacity (WMC) has received attention across many areas of psychology, in part because of its relationship with intelligence. The mechanism underlying the relationship is unknown, but the nature of typical WMC tasks has led to two hypothesized mechanisms: secondary-memory processes (e.g., search and retrieval) and the maintenance of information in the face of distraction. In the present study, participants (N= 383) completed a battery of cognitive tasks assessing processing speed, primary memory, working memory, secondary memory, and fluid intelligence. Secondary memory was the strongest predictor of fluid intelligence and added unique predictive value in models that accounted for working memory. In contrast, after accounting for the variance in fluid intelligence associated with the secondary-memory construct, the working memory construct did not significantly predict variability in fluid intelligence. Therefore, the secondary-memory requirements shared by many memory tasks may be responsible for the relationship between WMC and fluid intelligence, making the relationship less unique than is often supposed.

  11. Wear forms of heterogeneous electro-rheological fluids working in a hydraulic clutch system

    Science.gov (United States)

    Ziabska, E.; Duchowski, J.; Olszak, A.; Osowski, K.; Kesy, A.; Kesy, Z.; Choi, S. B.

    2017-09-01

    The paper presents experimental results concerning the wear of heterogeneous electro-rheological (ER) fluids operating as working fluids in a complex clutch system consisting of a hydrodynamic clutch and a cylinder viscous clutch. The change of electric field intensity in the clutches results in change of sheer stress values in working fluids what causes the change of transmitted torque. This work shows that the most important factors affecting the wear of the ER fluid are the electric field of high intensity, the accompanying electrical breakdown, and the high temperature of the silicone oil. In addition, the water from the humid air absorbed mainly by hygroscopic particles influences a significant impact on the wear of the working fluid. Various forms of wear particles of the fluid depending on the prevailing conditions such as working mode are observed from the microscopic aspects. It is observed that the particles are flattened, rolled out or smashed into smaller fragments, partially melted, wrinkled and glued or caked. In addition, it is identified that the partial destruction of silicone oil is occurred due to the damage of the hydrocarbon chains, as evidenced by the decrease in its viscosity and the presence of the particle matter newly containing silicon.

  12. Fluid mechanics of additive manufacturing of metal objects by accretion of droplets – a survey

    Directory of Open Access Journals (Sweden)

    Tesař Václav

    2016-01-01

    Full Text Available Paper presents a survey of principles of additive manufacturing of metal objects by accretion of molten metal droplets, focusing on fluid-mechanical problems that deserve being investigated. The main problem is slowness of manufacturing due to necessarily small size of added droplets. Increase of droplet repetition rate calls for basic research of the phenomena that take place inside and around the droplets: ballistics of their flight, internal flowfield with heat and mass transfer, oscillation of surfaces, and the ways to elimination of satellite droplets.

  13. Analysis of heat recovery of diesel engine using intermediate working fluid

    Science.gov (United States)

    Jin, Lei; Zhang, Jiang; Tan, Gangfeng; Liu, Huaming

    2017-07-01

    The organic Rankine cycle (ORC) is an effective way to recovery the engine exhaust heat. The thermal stability of the evaporation system is significant for the stable operation of the ORC system. In this paper, the performance of the designed evaporation system which combines with the intermediate fluid for recovering the exhaust waste heat from a diesel engine is evaluated. The thermal characteristics of the target diesel engine exhaust gas are evaluated based on the experimental data firstly. Then, the mathematical model of the evaporation system is built based on the geometrical parameters and the specific working conditions of ORC. Finally, the heat transfer characteristics of the evaporation system are estimated corresponding to three typical operating conditions of the diesel engine. The result shows that the exhaust temperature at the evaporator outlet increases slightly with the engine speed and load. In the evaporator, the heat transfer coefficient of the Rankine working fluid is slightly larger than the intermediate fluid. However, the heat transfer coefficient of the intermediate fluid in the heat exchanger is larger than the exhaust side. The heat transfer areas of the evaporator in both the two-phase zone and the preheated zone change slightly along with the engine working condition while the heat transfer areas of the overheated zone has changed obviously. The maximum heat transfer rate occurs in the preheating zone while the minimum value occurs in the overheating zone. In addition, the Rankine working fluid temperature at the evaporator outlet is not sensitively affected by the torque and speed of the engine and the organic fluid flow is relatively stable. It is concluded that the intermediate fluid could effectively reduce the physical changes of Rankine working fluid in the evaporator outlet due to changes in engine operating conditions.

  14. Criteria for selection of working fluid in low-temperature ORC

    Directory of Open Access Journals (Sweden)

    Mikielewicz Dariusz

    2016-09-01

    Full Text Available The economics of an ORC system is strictly linked to thermodynamic properties of the working fluid. A bad choice of working fluid could lead to a less efficient and expensive plant/generation unit. Some selection criteria have been put forward by various authors, incorporating thermodynamic properties, provided in literature but these do not have a general character. In the paper a simple analysis has been carried out which resulted in development of thermodynamic criteria for selection of an appropriate working fluid for subcritical and supercritical cycles. The postulated criteria are expressed in terms of non-dimensional numbers, which are characteristic for different fluids. The efficiency of the cycle is in a close relation to these numbers. The criteria are suitable for initial fluid selection. Such criteria should be used with other ones related to environmental impact, economy, system size, etc. Examples of such criteria have been also presented which may be helpful in rating of heat exchangers, which takes into account both heat transfer and flow resistance of the working fluid.

  15. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Kærn, Martin Ryhl; Pierobon, Leonardo

    2016-01-01

    For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers...... to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low......, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important...

  16. Performance of V-type Stirling-cycle refrigerator for different working fluids

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Yusuf; Ataer, Omer Ercan [Erciyes University, Engineering Faculty, Mechanical Engineering Department, Melikgazi, 38 039 Kayseri (Turkey)

    2010-01-15

    The thermodynamic analysis of a V-type Stirling-cycle Refrigerator (VSR) is performed for air, hydrogen and helium as the working fluid and the performance of the VSR is investigated. The V-type Stirling-cycle refrigerator consists of expansion and compression spaces, cooler, heater and regenerator, and it is assumed that the control volumes are subjected to a periodic mass flow. The basic equations of the VSR are derived for per unit crank angle, so time does not appear in the equations. A computer program is prepared in FORTRAN, and the basic equations are solved iteratively. The mass, temperature and density of working fluid in each control volume are calculated for different charge pressures, engine speeds, and for fixed heater and cooler surface temperatures. The work, instantaneous pressure and the COP of the VSR are calculated. The results are obtained for different working fluids, and given by diagrams. (author)

  17. Potential of organic Rankine cycle technology in India: Working fluid selection and feasibility study

    International Nuclear Information System (INIS)

    Sarkar, Jahar; Bhattacharyya, Souvik

    2015-01-01

    India has great potential to employ the ORC (organic Rankine cycle) technology for conversion of low temperature waste heat and renewable energy. In this study, available waste heat and relevant renewable heat sources in India are reviewed and suitable working fluids for ORC have been selected based on operational, environmental and safety criteria. A feasibility study and comparison of selected fluids for ORC is also presented for Indian climates along with discussions on component, operation and cost related aspects. A comprehensive review on available heat sources and sinks shows that India has plenty of waste heat and renewable energy sources for electricity generation by means of ORC; however, condenser operation may be challenging due to wide ambient temperature variation. Appropriate performance comparison among selected working fluids shows that ammonia is the best fluid in terms of net power generation and compactness of turbo-machineries, whereas n-Pentane is the best fluid in terms of thermal efficiency and heat exchanger compactness. Both are recommended as working fluids for ORC installations in India. The study reveals that there is a great opportunity to employ this technology in India provided we have to overcome some challenges related to component selection, finance and maintenance. - Highlights: • Available waste heat and renewable heat energies, and sinks in India are reviewed. • Suitable working fluids are selected by operational, environmental and safety criteria. • A feasibility study and comparison of selected fluids are presented for Indian climates. • Ammonia and n-Pentane are recommended for ORC installation in India. • Challenges related to plant component, operation and cost are discussed.

  18. The role of carbon dioxide in the transport and fractionation of metals by geological fluids

    Science.gov (United States)

    Kokh, Maria A.; Akinfiev, Nikolay N.; Pokrovski, Gleb S.; Salvi, Stefano; Guillaume, Damien

    2017-01-01

    Although carbon dioxide is one of the major components of crustal fluids responsible for ore deposit formation, its effect on transport and precipitation of metals remains unknown, due to a lack of direct experimental data and physical-chemical models for CO2-rich fluids. To fill this gap, we combined laboratory experiments and thermodynamic modeling to systematically quantify the role played by CO2 for the solubility of economically important metals such as Fe, Cu, Zn, Au, Mo, Pt, Sn under hydrothermal conditions. Solubility measurements of common ore minerals of these metals (FeS2, CuFeS2, ZnS, Au, MoS2, PtS, SnO2) were performed, using a flexible-cell reactor equipped with a rapid sampling device, in a single-phase fluid (CO2-H2O-KCl) at 350-450 °C and 600-750 bar, buffered with iron sulfide and oxide and alkali-aluminosilicate mineral assemblages. In addition, another type of experiments was conducted to measure gold solubility in more sulfur-rich supercritical CO2-H2O-S-NaOH fluids at 450 °C and 700 bar using a batch reactor that allows fluid quenching. Our results show that the solubilities of Si, Au, Mo, Pt and Cu either decrease (within 1 log unit) with CO2 contents in the fluid increasing from 0 to 50 wt%. These data were interpreted using a simple model that does not require any new adjustable parameters, and is based on the dielectric constant of the H2O-CO2 solvent and on the Born solvation parameter for the dominant metal-bearing species in an aqueous fluid. Our predictions using this model suggest that in a supercritical CO2-H2O-S-salt fluid typical of metamorphic Au deposits, in equilibrium with pyrite and chalcopyrite, the Cu/Fe ratio decreases by up to 2 orders of magnitude with an increase of CO2 content from 0 to 70 wt%. This effect is due to the decrease of the fluid dielectric constant in the presence of CO2, which favors the stability of neutral species (FeCl20) compared to charged ones (CuCl2-). Our results explain the Fe enrichment and Cu

  19. Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Concentrating solar power plant with organic Rankine cycle. • Thermo-economic analysis of solar organic Rankine cycle. • Performance evaluation for different working fluids. • Comparison diagram to select appropriate working fluid. - Graphical Abstract: Display Omitted - Abstract: Organic Rankine cycle (ORC), powered by line-focusing concentrating solar collectors (parabolic trough collector and linear Fresnel reflector), is a promising option for modular scale. ORC based power block, with dry working fluids, offers higher design and part-load efficiencies compared to steam Rankine cycle (SRC) in small-medium scale, with temperature sources up to 400 °C. However, the cost of ORC power block is higher compared to the SRC power block. Similarly, parabolic trough collector (PTC) system has higher optical efficiency and higher cost compared to linear Fresnel reflector (LFR) system. The thermodynamic efficiencies and power block costs also vary with working fluids of the Rankine cycle. In this paper, thermo-economic comparisons of organic Rankine and steam Rankine cycles powered by line-focusing concentrating solar collectors are reported. A simple selection methodology, based on thermo-economic analysis, and a comparison diagram for working fluids of power generating cycles are also proposed. Concentrating solar power plants with any collector technology and any power generating cycle can be compared using the proposed methodology.

  20. Experimental observation of proton-induced shocks and magneto-fluid- dynamics in liquid metal

    CERN Document Server

    Fabich, A

    2003-01-01

    A liquid metal target is one of the options for the pion production target of a nu-factory. The interaction between a liquid metal and a proton beam were observed with static mercury as well as with a free mercury jet and up to 4 multiplied by 10**1**2 protons/bunch. The experimental method for investigating the magneto-fluid-dynamic effects of a high-velocity liquid metal in a high magnetic field magnet has been validated by recording the behaviour of a 15 m/s mercury burst entering the gradient of a 13 T solenoid at GHMFL Grenoble. The paper includes the description of the optical read-out system as well as numerical results of the mercury drop velocities.

  1. Metal transports and enrichments in iron depositions hosted in basaltic rocks. II: Metal rich fluids and Fe origin

    Science.gov (United States)

    Zhang, Ronghua; Zhang, Xuetong; Hu, Shumin

    2015-12-01

    This study focuses on revealing the mechanism of metal transport, enrichment and Fe origin of iron deposition during water basalt interactions occurred in basaltic rocks. Observations of the iron deposits (anhydrite-magnetite-pyroxene type deposits) hosted in K-rich basaltic rocks in the Mesozoic volcanic area of the Middle-Lower Yangtze River valley, China, indicate that the mechanism of metal transport and enrichment for those deposits are significant objective to scientists, and the Fe origin problem is not well resolved. Here the metal transport, enrichment and iron origin have been investigated in high temperature experiments of water basaltic interactions. These deposits were accompanying a wide zone with metal alteration. The effects of hydrothermal alteration on major rock-forming element concentrations in basaltic rock were investigated by systematically comparing the chemical compositions of altered rocks with those of fresh rocks. In the deposits, these metals are distributed throughout altered rocks that exhibit vertical zoning from the deeper to the shallow. Then, combined with the investigations of the metal-alterations, we performed kinetic experiments of water-basaltic rock interactions using flow-through reactors in open systems at temperatures from 20 °C to 550 °C, 23-34 MPa. Release rates for the rock-forming elements from the rocks have been measured. Experiments provide the release rates for various elements at a large temperature range, and indicate that the dissolution rates (release rates) for various elements vary with temperature. Si, Al, and K have high release rates at temperatures from 300 °C to 500 °C; the maximum release rates (RMX) for Si are reached at temperatures from 300 °C to 400 °C. The RMXs for Ca, Mg, and Fe are at low temperatures from 20 °C to 300 °C. Results demonstrate that Fe is not released from 400 °C to 550 °C, and indicate that when deep circling fluids passed through basaltic rocks, Fe was not mobile, and

  2. Property Uncertainty Analysis and Methods for Optimal Working Fluids of Thermodynamic Cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome

    There is an increasing interest in recovering industrial waste heat at low tempera-tures (70-250◦C). Thermodynamic cycles, such as heat pumps or organic Rankine cycles, can recover this heat and transfer it to other process streams or convert it into electricity. The working fluid, circulating...... in the context of an industrial organic Rankine cycle, used for the recovery of waste heat from an engine of a marine container ship. The study illustrates that the model structure is vital for the uncertainties of equations of state and suggests that uncertainty becomes a criterion (along with e.g. goodness......-of-fit or ease of use) for the selection of an equation of state for a specific application. Furthermore, two studies on the identification of suitable working fluids for thermodynamic cycles are presented. The first one selects and assesses working fluid candidates for an organic Rankine cycle system to recover...

  3. Analysis of thermal cycles and working fluids for power generation in space

    International Nuclear Information System (INIS)

    Tarlecki, Jason; Lior, Noam; Zhang Na

    2007-01-01

    Production of power in space for terrestrial use is of great interest in view of the rapidly rising power demand and its environmental impacts. Space also offers a very low temperature, making it a perfect heat sink for power plants, thus offering much higher efficiencies. This paper focuses on the evaluation and analysis of thermal Brayton, Ericsson and Rankine power cycles operating at space conditions on several appropriate working fluids. Under the examined conditions, the thermal efficiency of Brayton cycles reaches 63%, Ericsson 74%, and Rankine 85%. These efficiencies are significantly higher than those for the computed or real terrestrial cycles: by up to 45% for the Brayton, and 17% for the Ericsson; remarkably 44% for the Rankine cycle even when compared with the best terrestrial combined cycles. From the considered working fluids, the diatomic gases (N 2 and H 2 ) produce somewhat better efficiencies than the monatomic ones in the Brayton and Rankine cycles. The Rankine cycles require radiator areas that are larger by up to two orders of magnitude than those required for the Brayton and Ericsson cycles. The results of the analysis of the sensitivity of the cycle performance parameters to major parameters such as turbine inlet temperature and pressure ratio are presented, equations or examining the effects of fluid properties on the radiator area and pressure drop were developed, and the effects of the working fluid properties on cycle efficiency and on the power production per unit radiator area were explored to allow decisions on the optimal choice of working fluids

  4. Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2015-12-01

    Full Text Available This paper presents a model to evaluate the performance of a solar-powered organic Rankine cycle (ORC. The system was evaluated in Jackson, MS, using five dry organic working fluids, R218, R227ea, R236ea, R236fa, and RC318. The purpose of this study is to investigate how hourly temperature change affects the electricity production and exergy destruction rates of the solar ORC, and to determine the effect of the working fluid on the proposed system. The system was also evaluated in Tucson, AZ, to investigate the effect of average hourly outdoor temperatures on its performance. The potential of the system to reduce primary energy consumption and carbon dioxide emissions is also investigated. A parametric analysis to determine how temperature and pressure of the organic working fluid, the solar collector area, and the turbine efficiency affect the electricity production is performed. Results show that the ORC produces the most electricity during the middle of the day, when the temperatures are the highest and when the solar collectors have the highest efficiency. Also, R-236ea is the working fluid that shows the best performance of the evaluated fluids. An economic analysis was performed to determine the capital cost available for the proposed system.

  5. Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses

    Directory of Open Access Journals (Sweden)

    Kamyar Darvish

    2015-11-01

    Full Text Available The thermodynamic performance of a regenerative organic Rankine cycle that utilizes low temperature heat sources to facilitate the selection of proper organic working fluids is simulated. Thermodynamic models are used to investigate thermodynamic parameters such as output power, and energy efficiency of the ORC (Organic Rankine Cycle. In addition, the cost rate of electricity is examined with exergo-economic analysis. Nine working fluids are considered as part of the investigation to assess which yields the highest output power and exergy efficiency, within system constraints. Exergy efficiency and cost rate of electricity are used as objective functions for system optimization, and each fluid is assessed in terms of the optimal operating condition. The degree of superheat and the pressure ratio are independent variables in the optimization. R134a and iso-butane are found to exhibit the highest energy and exergy efficiencies, while they have output powers in between the systems using other working fluids. For a source temperature was equal to 120 °C, the exergy efficiencies for the systems using R134a and iso-butane are observed to be 19.6% and 20.3%, respectively. The largest exergy destructions occur in the boiler and the expander. The electricity cost rates for the system vary from 0.08 USD/kWh to 0.12 USD/kWh, depending on the fuel input cost, for the system using R134a as a working fluid.

  6. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol.

    Directory of Open Access Journals (Sweden)

    Monique Williams

    Full Text Available Electronic cigarettes (EC deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol.We tested the hypothesis that EC aerosol contains metals derived from various components in EC.Cartomizer contents and aerosols were analyzed using light and electron microscopy, cytotoxicity testing, x-ray microanalysis, particle counting, and inductively coupled plasma optical emission spectrometry.The filament, a nickel-chromium wire, was coupled to a thicker copper wire coated with silver. The silver coating was sometimes missing. Four tin solder joints attached the wires to each other and coupled the copper/silver wire to the air tube and mouthpiece. All cartomizers had evidence of use before packaging (burn spots on the fibers and electrophoretic movement of fluid in the fibers. Fibers in two cartomizers had green deposits that contained copper. Centrifugation of the fibers produced large pellets containing tin. Tin particles and tin whiskers were identified in cartridge fluid and outer fibers. Cartomizer fluid with tin particles was cytotoxic in assays using human pulmonary fibroblasts. The aerosol contained particles >1 µm comprised of tin, silver, iron, nickel, aluminum, and silicate and nanoparticles (<100 nm of tin, chromium and nickel. The concentrations of nine of eleven elements in EC aerosol were higher than or equal to the corresponding concentrations in conventional cigarette smoke. Many of the elements identified in EC aerosol are known to cause respiratory distress and disease.The presence of metal and silicate particles in cartomizer aerosol demonstrates the need for improved quality control in EC design and manufacture and studies on how EC aerosol impacts the health of users and bystanders.

  7. Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle

    International Nuclear Information System (INIS)

    Zeyghami, Mehdi

    2015-01-01

    Performance of the combined flash-binary geothermal power cycle for geofluid temperatures between 150 and 250 °C is studied. A thermodynamic model is developed, and the suitable binary working fluids for different geofluid temperatures are identified from a list of thirty working fluid candidates, consisting environmental friendly refrigerants and hydrocarbons. The overall system exergy destruction and Vapor Expansion Ratio across the binary cycle turbine are selected as key performance indicators. The results show that for low-temperature heat sources using refrigerants as binary working fluids result in higher overall cycle efficiency and for medium and high-temperature resources, hydrocarbons are more suitable. For combined flash-binary cycle, secondary working fluids; R-152a, Butane and Cis-butane show the best performances at geofluid temperatures 150, 200 and 250 °C respectively. The overall second law efficiency is calculated as high as 0.48, 0.55 and 0.58 for geofluid temperatures equal 150, 200 and 250 °C respectively. The flash separator pressure found to has important effects on cycle operation and performance. Separator pressure dictates the work production share of steam and binary parts of the system. And there is an optimal separator pressure at which overall exergy destruction of the cycle achieves its minimum value. - Highlights: • Performance of the combined flash-binary geothermal cycle is investigated. • Thirty different fluids are screened to find the most suitable ORC working fluid. • Optimum cycle operation conditions presented for geofluids between 150 °C and 250 °C. • Refrigerants are more suitable for the ORC at geothermal sources temperature ≤200 °C. • Hydrocarbons are more suitable for the ORC at geothermal sources temperature >200 °C

  8. Analysis of the Influence of the Use of Cutting Fluid in Hybrid Processes of Machining and Laser Metal Deposition (LMD

    Directory of Open Access Journals (Sweden)

    Magdalena Cortina

    2018-02-01

    Full Text Available Hybrid manufacturing processes that combine additive and machining operations are gaining relevance in modern industry thanks to the capability of building complex parts with minimal material and, many times, with process time reduction. Besides, as the additive and subtractive operations are carried out in the same machine, without moving the part, dead times are reduced and higher accuracies are achieved. However, it is not clear whether the direct material deposition after the machining operation is possible or intermediate cleaning stages are required because of the possible presence of residual cutting fluids. Therefore, different Laser Metal Deposition (LMD tests are performed on a part impregnated with cutting fluid, both directly and after the removal of the coolant by techniques such as laser vaporizing and air blasting. The present work studies the influence of the cutting fluid in the LMD process and the quality of the resulting part. Resulting porosity is evaluated and it is concluded that if the part surface is not properly clean after the machining operation, deficient clad quality can be obtained in the subsequent laser additive operation.

  9. Orogenic gold: Common or evolving fluid and metal sources through time

    Science.gov (United States)

    Goldfarb, Richard J.; Groves, David I.

    2015-09-01

    Orogenic gold deposits of all ages, from Paleoarchean to Tertiary, show consistency in chemical composition. They are the products of aqueous-carbonic fluids, with typically 5-20 mol% CO2, although unmixing during extreme pressure fluctuation can lead to entrapment of much more CO2-rich fluid inclusions in some cases. Ore fluids are typically characterized by significant concentrations of CH4 and/or N2, common estimates of 0.01-0.36 mol% H2S, a near-neutral pH of 5.5, and salinities of 3-7 wt.% NaCl equiv., with Na > K > > Ca,Mg. This fluid composition consistency favors an ore fluid produced from a single source area and rules out mixing of fluids from multiple sources as significant in orogenic gold formation. Nevertheless, there are broad ranges in more robust fluid-inclusion trapping temperatures and pressures between deposits that support a model where this specific fluid may deposit ore over a broad window of upper to middle crustal depths. Much of the reported isotopic and noble gas data is inconsistent between deposits, leading to the common equivocal interpretations from studies that have attempted to define fluid and metal source areas for various orogenic gold provinces. Fluid stable isotope values are commonly characterized by the following ranges: (1) δ18O for Precambrian ores of + 6 to + 11‰ and for Phanerozoic ores of + 7 to + 13‰; (2) δD and δ34S values that are extremely variable; (3) δ13C values that range from - 11 to - 2‰; and (4) δ15N of + 10 to + 24‰ for the Neoarchean, + 6.5 to + 12‰ for the Paleoproterozoic, and + 1.5 to + 10‰ for the Phanerozoic. Secular variations in large-scale Earth processes appear to best explain some of the broad ranges in the O, S, and N data. Fluid:rock interaction, particularly in ore trap areas, may cause important local shifts in the O, S, and C ratios. The extreme variations in δD mainly reflect measurements of hydrogen isotopes by bulk extraction of waters from numerous fluid inclusion

  10. Chemical Processing for Sol-Gel Derived Metal Oxide Thin Films using Supercritical Carbon Dioxide Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Y; Narishige, S; Fujioka, K; Uchida, H; Koda, S, E-mail: uchidah@sophia.ac.jp [Sophia University, Department of Materials and Life Sciences, Tokyo 102-8554 (Japan)

    2011-10-29

    Chemical processing using supercritical carbon dioxide fluid (scCO{sub 2}) was demonstrated for lowering processing temperature of sol-gel-derived metal oxide thin films. The film processing was performed in a hot-wall closed vessel filled with scCO{sub 2} fluid. Precursor films of titanium dioxide (TiO{sub 2}) on soda-glass substrates prepared by sol-gel coating using Ti-alkoxide solution were converted to crystalline TiO{sub 2} (anatase) films successfully by the scCO{sub 2} treatment at a fluid pressure of 15 MPa and a substrate temperature of 300deg. C whereas no crystallization was occurred by conventional heat treatment at 400 deg. C. XPS analysis indicated that the interface reaction related to Si element was suppressed successfully by scCO{sub 2} treatment at 300 deg. C. These results suggest that the sol-gel synthesis using scCO{sub 2} fluid would be a cadidate for low-temperature processing of crystalline oxide films, which is more preferable than conventional techniques based on the heat treatment.

  11. Comparative investigation of working fluids for an organic Rankine cycle with geothermal water

    Directory of Open Access Journals (Sweden)

    Liu Yan-Na

    2015-06-01

    Full Text Available In this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.

  12. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    Science.gov (United States)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  13. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    Directory of Open Access Journals (Sweden)

    Jesper G. Andreasen

    2016-04-01

    Full Text Available For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low-temperature heat at 90 ∘ C to produce electrical power at around 500 kW. The primary outcomes of the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a (0.65/0.35 mole . The results indicate that R32/R134a is the best of these fluids, with 3.4 % higher net power than R32 at the same total cost of 1200 k$.

  14. Small-Scale Metal Tanks for High Pressure Storage of Fluids

    Science.gov (United States)

    London, Adam (Inventor)

    2016-01-01

    Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.

  15. Transfer effects after working memory training lead to improved fluid intelligence

    OpenAIRE

    Onken, Johanna

    2013-01-01

    Fluid intelligence describes the ability to think abstract, to adapt to new situations and to solve unknown problems. It is important for learning as well as for academic and professional success. Working memory is characterized as a cognitive system, that saves information over a short period of time in spite of possible distractions. More- over, working memory is able to assess the relevance of information while requirements change. Effective implicit training is able to increase the workin...

  16. Generation of Hydroxyl Radicals from Dissolved Transition Metals in Surrogate Lung Fluid Solutions.

    Science.gov (United States)

    Vidrio, Edgar; Jung, Heejung; Anastasio, Cort

    2008-01-01

    Epidemiological research has linked exposure to atmospheric particulate matter (PM) to several adverse health effects, including cardiovascular and pulmonary morbidity and mortality. Despite these links, the mechanisms by which PM causes adverse health effects are poorly understood. The generation of hydroxyl radical (.OH) and other reactive oxygen species (ROS) through transition metal-mediated pathways is one of the main hypotheses for PM toxicity. In order to better understand the ability of particulate transition metals to produce ROS, we have quantified the amounts of .OH produced from dissolved iron and copper in a cell-free, surrogate lung fluid (SLF). We also examined how two important biological molecules, citrate and ascorbate, affect the generation of .OH by these metals. We have found that Fe(II) and Fe(III) produce little .OH in the absence of ascorbate and citrate, but that they efficiently make .OH in the presence of ascorbate and this is further enhanced when citrate is also added. In the presence of ascorbate, with or without citrate, the oxidation state of iron makes little difference on the amount of .OH formed after 24 hours. In the case of Cu(II), the production of .OH is greatly enhanced in the presence of ascorbate, but is inhibited by the addition of citrate. The mechanism for this effect is unclear, but appears to involve formation of a citrate-copper complex that is apparently less reactive than free, aquated copper in either the generation of HOOH or in the Fenton-like reaction of copper with HOOH to make .OH. By quantifying the amount of .OH that Fe and Cu can produce in surrogate lung fluid, we have provided a first step into being able to predict the amounts of .OH that can be produced in the human lung from exposure to PM containing known amounts of transition metals.

  17. Multiphase numerical analysis of heat pipe with different working fluids for solar applications

    Science.gov (United States)

    Aswath, S.; Netaji Naidu, V. H.; Padmanathan, P.; Raja Sekhar, Y.

    2017-11-01

    Energy crisis is a prognosis predicted in many cases with the indiscriminate encroachment of conventional energy sources for applications on a massive scale. This prediction, further emboldened by the marked surge in global average temperatures, attributed to climate change and global warming, the necessity to conserve the environment and explore alternate sources of energy is at an all-time high. Despite being among the lead candidates for such sources, solar energy is utilized far from its vast potential possibilities due to predominant economic constraints. Even while there is a growing need for solar panels at more affordable rates, the other options to harness better out of sun’s energy is to optimize and improvise existing technology. One such technology is the heat pipe used in Evacuated Tube Collectors (ETC). The applications of heat pipe have been gaining momentum in various fields since its inception and substantial volumes of research have explored optimizing and improving the technology which is proving effective in heat recovery and heat transfer better than conventional systems. This paper carries out a computational analysis on a comparative simulation between two working fluids within heat pipe of same geometry. It further endeavors to study the multiphase transitions within the heat pipe. The work is carried out using ANSYS Fluent with inputs taken from solar data for the location of Vellore, Tamil Nadu. A wickless, gravity-assisted heat pipe (GAHP) is taken for the simulation. Water and ammonia are used as the working fluids for comparative multiphase analysis to arrive at the difference in heat transfer at the condenser section. It is demonstrated that a heat pipe ETC with ammonia as working fluid showed higher heat exchange (temperature difference) as against that of water as working fluid. The multiphase model taken aided in study of phase transitions within both cases and supported the result of ammonia as fluid being a better candidate.

  18. A potential spatial working memory training task to improve both episodic memory and fluid intelligence.

    Science.gov (United States)

    Rudebeck, Sarah R; Bor, Daniel; Ormond, Angharad; O'Reilly, Jill X; Lee, Andy C H

    2012-01-01

    One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants' episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single

  19. A potential spatial working memory training task to improve both episodic memory and fluid intelligence.

    Directory of Open Access Journals (Sweden)

    Sarah R Rudebeck

    Full Text Available One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity presented simultaneously (i.e. a dual n-back paradigm. Participants' episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores, we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice

  20. Comparative Study of Heavy Metals in Dried and Fluid Milk in Peshawar by Atomic Absorption Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Ghosia Lutfullah

    2014-01-01

    Full Text Available Various essential and toxic heavy metals (Ca, Mg, Cu, Zn, Fe, Mn, Pb, Cd, Cr, and Ni contents in various types of dried (infant formula and powdered and fluid (fresh and processed cow milk were assessed by atomic absorption spectrophotometry. The milk samples were collected from local markets of different parts of Peshawar city, Pakistan. Heavy metal concentrations varied significantly depending upon the type of milk. The heavy metal concentrations in most of the samples were within normal and permissible ranges. It was observed that the samples contained considerable amounts of calcium, while magnesium levels were well above the required levels. The results also revealed that copper levels were slightly lower than the permissible limits. The concentration of zinc in dried milk samples was greater than the values for the liquid milk types. Infant milk formulae had higher iron levels as compared to other milk samples because of the added constituents. Significant differences were observed in the mean values of manganese and cadmium in different types of milk. The toxic metals were within the acceptable limits and did not show significant levels leading to toxicity.

  1. Major- and minor-metal composition of three distinct solid material fractions associated with Juan de Fuca hydrothermal fluids (northeast Pacific), and calculation of dilution fluid samples

    Science.gov (United States)

    Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.

    1988-01-01

    Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.

  2. Numerical Study on Heat Transfer Performance of PCHE With Supercritical CO2 as Working Fluid

    International Nuclear Information System (INIS)

    Jeon, Sang Woo; Ngo, Ich-long; Byon, Chan

    2016-01-01

    The printed circuit heat exchanger (PCHE) is regarded as a promising candidate for advanced heat exchangers for the next-generation supercritical CO 2 power generation owing to its high compactness and rigid structure. In this study, an innovative type of PCHE, in which the channel sizes for the heat source fluid and heat sink fluid are different, is considered for analysis. The thermal performance of the PCHE, with supercritical CO 2 as the working fluid, is numerically analyzed. The results have shown that the thermal performance of the PCHE decreases monotonically when the channel size of either the heat source channel or the heat sink channel, because of the decreased flow velocity. On the other hand, the thermal performance of the PCHE is found to be almost independent of the spacing between the channels. In addition, it was found that the channel cross sectional shape has little effect on the thermal performance when the hydraulic diameter of the channel remains constant.

  3. Working Fluid Stability in Large-Scale Organic Rankine Cycle-Units Using Siloxanes—Long-Term Experiences and Fluid Recycling

    Directory of Open Access Journals (Sweden)

    Tobias G. Erhart

    2016-05-01

    Full Text Available The results in this work show the influence of long-term operation on the decomposition of working fluids in eight different organic rankine cycle (ORC power plants (both heat-led and electricity-led in a range of 900 kW el to 2 MW el . All case study plants are using octamethyltrisiloxane (MDM as a working fluid; the facilities are between six to 12 years old. Detailed analyses, including the fluid distribution throughout the cycle, are conducted on one system. All presented fluid samples are analyzed via head space gas chromatography mass spectrometry (HS-GC-MS. Besides the siloxane composition, the influence of contaminants, such as mineral oil-based lubricants (and their components, is examined. In most cases, the original working fluid degrades to fractions of siloxanes with a lower boiling point (low boilers and fractions with a higher boiling point (high boilers. As a consequence of the analyses, a new fluid recycling and management system was designed and tested in one case study plant (Case Study #8. Pre-post comparisons of fluid samples prove the effectiveness of the applied methods. The results show that the recovery of used working fluid offers an alternative to the purchase of fresh fluid, since operating costs can be significantly reduced. For large facilities, the prices for new fluid range from € 15 per liter (in 2006 to € 22 per liter (in 2013, which is a large reinvestment, especially in light of filling volumes of 4000 liters to 7000 liters per unit. Using the aforementioned method, a price of € 8 per liter of recovered MDM can be achieved.

  4. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    Science.gov (United States)

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-11-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of "self-rewetting fluids", i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59-61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20-100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  5. Determination of metal ions released by stainless steel arch bar into bio-fluids

    Directory of Open Access Journals (Sweden)

    Lori A. Joseph

    2009-04-01

    Full Text Available The amounts of cobalt, iron, manganese, nickel and chromium ions released from new and reused stainless steel arch bar used for maxillomandibular fixation was determined in Hank’s solutions of different hydrogen and chloride ions concentrations, whole blood serum and phosphate buffered saline (PBS in vitro, over a six-week immersion time at 37 oC, by atomic absorption spectrophotometry. The corrosion levels of the wires due to effects of media and incubation times in the bio-fluids were compared by Duncan’s two-way ANOVA (P less than 0.05. Pearson’s correlation was used in establishing relationship in the amounts of metal ions released by new and reused arch bars. The study indicated that the reused wires released more ions than new ones at all time points. The variation of pH and chloride ions of the bio-fluids had a significant effect on the amount of Ni, Mn and Cr ions released. Ageing prior use of arch bars significantly increased Ni ions released into the bio-fluids.

  6. Heat transfer and fluid flow analysis of self-healing in metallic materials

    Science.gov (United States)

    Martínez Lucci, J.; Amano, R. S.; Rohatgi, P. K.

    2017-03-01

    This paper explores imparting self-healing characteristics to metal matrices similar to what are observed in biological systems and are being developed for polymeric materials. To impart self-healing properties to metal matrices, a liquid healing method was investigated; the met hod consists of a container filled with low melting alloy acting as a healing agent, embedded into a high melting metal matrix. When the matrix is cracked; self-healing is achieved by melting the healing agent allowing the liquid metal to flow into the crack. Upon cooling, solidification of the healing agent occurs and seals the crack. The objective of this research is to investigate the fluid flow and heat transfer to impart self-healing property to metal matrices. In this study, a dimensionless healing factor, which may help predict the possibility of healing is proposed. The healing factor is defined as the ratio of the viscous forces and the contact area of liquid metal and solid which prevent flow, and volume expansion, density, and velocity of the liquid metal, gravity, crack size and orientation which promote flow. The factor incorporates the parameters that control self-healing mechanism. It was observed that for lower values of the healing factor, the liquid flows, and for higher values of healing factor, the liquid remains in the container and healing does not occur. To validate and identify the critical range of the healing factor, experiments and simulations were performed for selected combinations of healing agents and metal matrices. The simulations were performed for three-dimensional models and a commercial software 3D Ansys-Fluent was used. Three experimental methods of synthesis of self-healing composites were used. The first method consisted of creating a hole in the matrices, and liquid healing agent was poured into the hole. The second method consisted of micro tubes containing the healing agent, and the third method consisted of incorporating micro balloons containing

  7. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    International Nuclear Information System (INIS)

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-01-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of “self-rewetting fluids”, i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59–61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20–100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  8. A Latent Variable Analysis of Working Memory Capacity, Short-Term Memory Capacity, Processing Speed, and General Fluid Intelligence.

    Science.gov (United States)

    Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.

    2002-01-01

    Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…

  9. Choice of optimal working fluid for binary power plants at extremely low temperature brine

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2016-12-01

    The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.

  10. Open Loop Heat Pipe Radiator Having a Free-Piston for Wiping Condensed Working Fluid

    Science.gov (United States)

    Weinstein, Leonard M. (Inventor)

    2015-01-01

    An open loop heat pipe radiator comprises a radiator tube and a free-piston. The radiator tube has a first end, a second end, and a tube wall, and the tube wall has an inner surface and an outer surface. The free-piston is enclosed within the radiator tube and is capable of movement within the radiator tube between the first and second ends. The free-piston defines a first space between the free-piston, the first end, and the tube wall, and further defines a second space between the free-piston, the second end, and the tube wall. A gaseous-state working fluid, which was evaporated to remove waste heat, alternately enters the first and second spaces, and the free-piston wipes condensed working fluid from the inner surface of the tube wall as the free-piston alternately moves between the first and second ends. The condensed working fluid is then pumped back to the heat source.

  11. Performance Study of Solar Heat Pipe with Different Working Fluids and Fill Ratios

    Science.gov (United States)

    Harikrishnan, S. S.; Kotebavi, Vinod

    2016-09-01

    This paper elaborates on the testing of solar heat pipes using different working fluids, fill ratios and tilt angles. Methanol, Acetone and water are used as working fluids, with fill ratios 25%, 50%, 75% and 100%. Experiments were carried out at 600 and 350 inclinations. Heat pipe condenser section is placed inside a water basin containing 200ml of water. The evaporator section is exposed to sunlight where the working fluid gets heated and it becomes vapour and moves towards the condenser section. In the condenser section the heat is given to the water in the basin and the vapour becomes liquid and comes back to the evaporator section due to gravitational force. Two modes of experiments are carried out: 1) using a parabolic collector and 2) using heat pipe with evacuated tubes. On comparative study, optimum fill ratio is been found to be 25% in every case and acetone exhibited slightly more efficiency than methanol and water. As far as the heat pipe orientation is concerned, 600 inclination of the heat pipe showed better performance than 350

  12. Metal-based particles in human amniotic fluids of fetuses with normal karyotype and congenital malformation--a pilot study.

    Science.gov (United States)

    Barošová, H; Dvořáčková, J; Motyka, O; Kutláková, K Mamulová; Peikertová, P; Rak, J; Bielniková, H; Kukutschová, J

    2015-05-01

    This study explores the inorganic composition of amniotic fluid in healthy human fetuses and fetuses with congenital malformation with a special attention to presence of metal-based solid particles. Amniotic fluid originates from maternal blood and provides fetus mechanical protection and nutrients. In spite of this crucial role, the environmental impact on the composition of amniotic fluid remains poorly studied. The samples of human amniotic fluids were obtained by amniocentesis, including both healthy pregnancies and those with congenital malformations. The samples were analysed using several techniques, including Raman microspectroscopy, scanning electron microscopy with energy-dispersed spectrometry (SEM-EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. Several metal-based particles containing barium, titanium, iron, and other elements were detected by SEM-EDS and Raman microspectroscopy. XRD analysis detected only sodium chloride as the main component of all amniotic fluid samples. Infrared spectroscopy detected protein-like organic components. Majority of particles were in form of agglomerates up to tens of micrometres in size, consisting of mainly submicron particles. By statistical analysis (multiple correspondence analysis), it was observed that groups of healthy and diagnosed fetuses form two separate groups and therefore, qualitative differences in chemical composition may have distinct biological impact. Overall, our results suggest that metal-based nanosized pollutants penetrate into the amniotic fluid and may affect human fetuses.

  13. Effect of metals on Candida albicans growth in the presence of chemical chelators and human abscess fluid.

    Science.gov (United States)

    Sohnle, P G; Hahn, B L; Karmarkar, R

    2001-04-01

    Calprotectin is a calcium- and zinc-binding protein that is present in abscess fluid supernatants and appears to inhibit microbial growth through competition for zinc. In the present study, growth inhibition by chemical chelators was compared with that produced by human abscess fluid to determine whether other chelators, perhaps with different metal specificities, would have the same or different patterns of metal reversibility as abscess fluid. Zinc was found to be more potent than the other metals tested in reversing C. albicans growth inhibition by human abscess fluid and three chemical chelators, even though in some cases the stability constants of certain of these chelators were higher for other metals. For example, in the presence of the chelator diethylenetriaminopentaacetic acid, zinc stimulated Candida growth at a 10-fold lower concentration than did iron, even though this chelator has a stability constant for iron that is almost 10(10) higher than that for zinc. These results suggest that the zinc specificity of calprotectin's C. albicans growth inhibition can best be explained by the marked sensitivity of this organism to zinc deprivation rather than by selective binding of this metal by the protein.

  14. Corrosion study of resorbable Ca60Mg15Zn25 bulk metallic glasses in physiological fluids

    Directory of Open Access Journals (Sweden)

    Rafał Babilas

    2017-10-01

    Full Text Available The corrosion activity of amorphous plates of Ca60Mg15Zn25 alloy was investigated. The biocompatible elements were selected for the alloy composition. The electrochemical corrosion and immersion tests were carried out in a multi-electrolyte fluid and Ringer's solution. Better corrosion behavior was observed for the samples tested in a multi-electrolyte fluid despite the active dissolution of Ca and Mg in Ringer's solution. The experimental results indicated that reducing concentration of NaCl from 8.6 g/dm3 for Ringer's solution to 5.75 g/dm3 caused the decrease of the corrosion rate. The volume of the hydrogen evolved after 480 min in Ringer's solution (40.1 ml/cm2 was higher in comparison with that obtained in a multi-electrolyte fluid (24.4 ml/cm2. The values of open-circuit potential (EOCP for the Ca60Mg15Zn25 glass after 1 h incubation in Ringer's solution and a multi-electrolyte fluid were determined to be −1553 and −1536 mV vs. a saturated calomel electrode (SCE. The electrochemical measurements indicated a shift of the corrosion current density (jcorr from 1062 μA/cm2 for the sample tested in Ringer's solution to 788 μA/cm2 for the specimen immersed in a multi-electrolyte fluid. The corrosion products analysis was conducted by using the X-ray photoelectron spectroscopy (XPS. The corrosion products were identified to be CaCO3, Mg(OH2, CaO, MgO and ZnO. The mechanism of corrosion process was proposed and described based on the microscopic observations. The X-ray diffraction and Fourier transform infrared spectroscopy (FTIR also indicated that Ca(OH2, CaCO3, Zn(OH2 and Ca(Zn(OH32·2H2O mainly formed on the surface of the studied alloy. Keywords: Ca-based metallic glasses, X-ray photoelectron spectroscopy, FTIR spectroscopy, X-ray diffraction, Corrosion resistance, Hydrogen evaluation

  15. Carbon-supported base metal nanoparticles : Cellulose at work

    NARCIS (Netherlands)

    Hoekstra, Jacco; Versluijs-Helder, Marjan; Vlietstra, Edward J.; Geus, John W.; Jenneskens, Leonardus W.

    2015-01-01

    Pyrolysis of base metal salt loaded microcrystalline cellulose spheres gives a facile access to carbon-supported base metal nanoparticles, which have been characterized with temperature-dependent XRD, SEM, TEM, ICP-MS and elemental analysis. The role of cellulose is multifaceted: 1) it facilitates a

  16. Electro-Optic Effects in Colloidal Dispersion of Metal Nano-Rods in Dielectric Fluid

    Directory of Open Access Journals (Sweden)

    Oleg D. Lavrentovich

    2011-02-01

    Full Text Available In modern transformation optics, one explores metamaterials with properties that vary from point to point in space and time, suitable for application in devices such as an “optical invisibility cloak” and an “optical black hole”. We propose an approach to construct spatially varying and switchable metamaterials that are based on colloidal dispersions of metal nano-rods (NRs in dielectric fluids, in which dielectrophoretic forces, originating in the electric field gradients, create spatially varying configurations of aligned NRs. The electric field controls orientation and concentration of NRs and thus modulates the optical properties of the medium. Using gold (Au NRs dispersed in toluene, we demonstrate electrically induced change in refractive index on the order of 0.1.

  17. Laser ablation-ICP-AES for the determination of metals in fluid inclusions: An application to the study of magmatic ore fluids

    Science.gov (United States)

    Wilkinson, J. J.; Rankin, A. H.; Mulshaw, S. C.; Nolan, J.; Ramsey, M. H.

    1994-02-01

    The laser ablation-ICP-AES (L-ICP-AES) technique is an effective method for the multielement analysis of individual fluid inclusions. Recent tests on synthetic fluid inclusions and improvements in data processing suggest that the method is valid for the analysis of a range of alkali-, alkali-earth, and transition metals in single, large inclusions (> 30 μm) of moderate to high salinity (>20 wt% NaCl equiv.). The system, involving a small, perspex ablation chamber, a 1 J ruby laser focussed through an optical microscope, and a conventional ICP-AES instrument is discussed and applied to natural fluid inclusions in quartz from two contrasting types of magmatic-hydrothermal mineralization. Samples were selected from the San Pedro Cu-Au porphyry system, New Mexico, USA, and the Sn-W-Cu-mineralized Dartmoor granite of southwest England. Variable salinity, high temperature fluid inclusions in hydrothermal quartz from both environments display similarly high concentrations and ratios of Na, K, Ca, and Fe. The ore metals Cu, Zn, and Mn (but not Sn, Mo, W) were detected in inclusions from both environments. The estimated combined concentrations of up to 3 wt% show that these three elements are major components of these fluids. A method has been devised to estimate the confidence intervals of the measured concentration ratios. The confidence intervals obtained show that the analytical uncertainty for an inclusion is much less than the natural geochemical variation between inclusions so that geologically useful information can be obtained. A trend of increasing salinity with decreasing Na and K and increasing Ca and Fe contents is observed in inclusions from San Pedro, consistent with the continuous evolution of a magmatic aqueous phase exsolved from a low pressure melt during crystallization. In contrast, the combined compositional and microthermometric data for samples from Lee Moor, Dartmoor, suggest that a magmatic aqueous phase evolved from Fe-K-rich to Na

  18. STRATEGI KONVERSI ENERGI DI PT. LION METAL WORKS Tbk.

    Directory of Open Access Journals (Sweden)

    Daud Sudradjad

    2011-08-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} PT Lion Metal Works is a company producing office equipment, racking system, building material, security and fireproof safe, and cold forming. The production activity has high dependence on the usage of diesel, which influences the quality of the product and the cost of total business. The price fluctuation is one of the reasons for the company to convert the usage of diesel to some energy alternatives. Gas is the best alternative to replace diesel due to some advantages such as price, installation cost, distribution issue, calorie level, and environmental issue. There are some resistances from internal organization emerge in the implementation of the conversion. The alternatives strategy has been explored to reduce the resistances considering the goal of the organization, the actors (department in the company, and the type of resistance using analytical hierarchy process method. The priority strategy is establishing a new division for handling the conversion program and installing the gas facility gradually.

  19. Multi-objective optimization of organic Rankine cycle power plants using pure and mixed working fluids

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    -objectiveoptimization of the net power output and the component costs for organic Rankine cycle power plantsusing low-temperature heat at 90 C to produce electrical power at around 500 kW. The primary outcomesof the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a(0.65/0.35mole......For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermalphase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cyclepower plants enables a minimization of the mean temperature difference of the heat exchangers whenthe...... minimum pinch point temperature difference is kept fixed. A low mean temperature differencemeans low heat transfer irreversibilities, which is beneficial for cycle performance, but it also results inlarger heat transfer surface areas. Moreover, the two-phase heat transfer coefficients for zeotropic...

  20. Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle

    International Nuclear Information System (INIS)

    Eller, Tim; Heberle, Florian; Brüggemann, Dieter

    2017-01-01

    The organic Rankine cycle (ORC) and the Kalina cycle (KC) are potential thermodynamic concepts for decentralized power generation from industrial waste heat at a temperature level below 500 °C. The aim of this work is to investigate in detail novel zeotropic mixtures as working fluid for the KC and compare to sub- and supercritical ORC based on second law efficiency. Heat source temperature is varied between 200 °C and 400 °C. The results show that second law efficiency of KC can be increased by applying alcohol/alcohol mixtures as working fluid instead of ammonia/water mixtures; especially for heat source temperatures above 250 °C. Efficiency increase is in the range of 16% and 75%. Despite this efficiency improvements, ORC with zeotropic mixtures in sub- and supercritical operation mode proves to be superior to KC in the examined temperature range. Second law efficiency is up to 13% higher than for KC. A maximum second law efficiency of 59.2% is obtained for supercritical ORC with benzene/toluene 36/64 at 400 °C heat source temperature. The higher level of efficiency and the lower complexity of ORC in comparison to KC indicate that ORC with zeotropic mixtures offers the greater potential for waste heat recovery. - Highlights: • Kalina Cycle with novel alcohol mixtures as working fluid is investigated. • Results are compared to ammonia/water-Kalina Cycle and ORC. • Second law efficiency of Kalina Cycle can be increased by novel alcohol mixtures. • Efficiency increase is in the range of 16% and 75%. • ORC with zeotropic mixtures proves to be superior to Kalina Cycle.

  1. Boiling of multicomponent working fluids used in refrigeration and cryogenic systems

    Science.gov (United States)

    Mogorychny, V. I.; Dolzhikov, A. S.

    2017-11-01

    Working fluids based on mixtures are widely used in cryogenic and refrigeration engineering. One of the main elements of low-temperature units is a recuperative heat exchanger where the return flow cools the direct (cold regeneration is carrying out) resulting in continuous boiling and condensation of the multicomponent working fluid in the channels. The temperature difference between the inlet and outlet of the heat exchanger can be more than 100K, which leads to a strong change in thermophysical properties along its length. In addition, the fraction of the liquid and vapor phases in the flow varies very much, which affects the observed flow regimes in the heat exchanger channels. At the moment there are not so many experimental data and analytical correlations that would allow to estimate the heat transfer coefficient during the flow of a two-phase mixture flow at low temperatures. The work is devoted to the study of the boiling process of multicomponent working fluids used in refrigeration and cryogenic engineering. The description of the method of determination of heat transfer coefficient during boiling of mixtures in horizontal heated channel is given as well as the design of the experimental stand allowing to make such measurements. This stand is designed on the basis of a refrigeration unit operating on the Joule-Thomson throttle cycle and makes it possible to measure the heat transfer coefficient with a good accuracy. Also, the calculated values of the heat transfer coefficient, obtained with the use of various correlations, are compared with the existing experimental data. Knowing of the heat transfer coefficient will be very useful in the design of heat exchangers for low-temperature units operating on a mixture refrigerant.

  2. Working with Design: A Package for Sheet Metal

    Science.gov (United States)

    Fiebich, Paul D.

    1974-01-01

    The author describes a design approach used to study sheet metal layout in junior high and high school mechanical drafting courses. Students observe packaging in stores, study package construction, and design and produce their own packages. (EA)

  3. Generic trend of work functions in transition-metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Yoshitake, Michiko, E-mail: yoshitake.michiko@nims.go.jp [MANA Nanoelectronics Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0003 (Japan)

    2014-11-15

    Transition-metal carbides and nitrides (TMCs and TMNs) are promising electrode materials for various electronic devices such as metal-oxide-semiconductor field-effect transistors and metal-insulator-metal capacitors. In this paper, the work functions of TMCs and TMNs are discussed systematically. Based upon the origin of the work function, the effect upon transition metal species by different periodic table groups is explained, carbides are compared with nitrides for the same transition metal, and the effect of carbon or nitrogen vacancies is discussed. In addition, a method to estimate the generic trend of the work function is proposed for TMC{sub x}, TMN{sub x}, TMC{sub 1−y}N{sub y} (transition metal carbonitrides), and TM{sub 1−z}TM′{sub z}C (alloy carbides)

  4. X-ray Fluorescence Tomography of Aged Fluid-Catalytic-Cracking Catalyst Particles Reveals Insight into Metal Deposition Processes

    NARCIS (Netherlands)

    Kalirai, Samanbir; Boesenberg, Ulrike; Falkenberg, Gerald; Meirer, Florian; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2015-01-01

    Microprobe X-ray fluorescence tomography was used to investigate metal poison deposition in individual, intact and industrially deactivated fluid catalytic cracking (FCC) particles at two differing catalytic life-stages. 3D multi-element imaging, at submicron resolution was achieved by using a

  5. Modeling of the transient behavior of heat pipes with room-temperature working fluids

    Science.gov (United States)

    Brocheny, Pascal O.

    2006-07-01

    The heat pipe is a capillary-driven and two-phase flow device, capable of transporting and converting large amounts of energy with minimal losses. As a means of thermal management, uses of heat pipe technology not only include thermal control of satellites and spacecrafts in aerospace applications, but also the cooling of electronic components for ground applications. Recently, there has been a flourishing interest in exploring the use of heat pipe technology in the automotive field. However, in many thermal control applications, heat pipes using room-temperature working fluids, such as water or ammonia, with operating temperatures between 200 K (-73ºC) and 550 K (277ºC), can hardly operate at steady state conditions. The study of transient heat pipe phenomena becomes a significant area of research interests including not only startup and shutdown phases, but also heat redistribution, changes of thermal loading and heat removal. The transient performance is affected by thermal capacity and conductance of the heat pipe, capillary pumping forces, heating and cooling conditions. In the present study, the transient operations of different conventional room-temperature heat pipes were investigated analytically, including the capillary dryout and rewetting behaviors occurring at the evaporator section during startups. The physical model is based on the displacement of a leading-edge front of a thin liquid layer flowing on finite groove uniformly heated with a constant heat flux. A one-dimensional transient heat conduction model along the evaporator wall is coupled with the movement of the fluid layer during startup. Numerical solutions were obtained by a fully implicit Finite Difference Method, accounting for the movement of the liquid and a known time-variable temperature boundary condition at the liquid front. The velocity and position of the liquid front were found to vary with the applied heat flux, the initial conditions, and the thermophysical properties of the

  6. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid

    International Nuclear Information System (INIS)

    Kim, Yoon Jo; Kim, Sarah; Joshi, Yogendra K.; Fedorov, Andrei G.; Kohl, Paul A.

    2012-01-01

    Thermodynamics of an ionic-liquid (IL) based absorption refrigeration system has been numerically analyzed. It provides an alternative to the normally toxic working fluids, such as the ammonia in conventional absorption systems. The use of ILs also eliminates crystallization and metal-compatibility problems of the water/LiBr system. Mixtures of refrigerants and imidazolium-based ILs are theoretically explored as the working fluid pairs in a miniature absorption refrigeration system, so as to utilize waste-heat to power a refrigeration/heat pump system for electronics cooling. A non-random two-liquid (NRTL) model was built and used to predict the solubility of the mixtures. Saturation temperatures at the evaporator and condenser were set at 25 °C and 50 °C, respectively, with the power dissipation of 100 W. Water in combination with [emim][BF 4 ] (1-ethyl-3-methylimidazolium tetrafluoroborate) gave the highest coefficient of performance (COP) around 0.9. The refrigerant/IL compatibility indicated by the circulation ratio, alkyl chain length of the IL, and thermodynamic properties of the refrigerants, such as latent heat of evaporation were proven to be important factors in determining the performance of the absorption system. The negative effect of high viscosity was mitigated by dilution of the IL with the refrigerant and the use of slightly larger microfluidic channel heat exchangers. -- Highlights: ► Mixtures of refrigerant/ionic-liquid are studied for absorption system. ► We carry out comprehensive theoretical thermodynamic analysis. ► The essential factors of refrigerant/IL affecting the performance are identified. ► Water/[emim][BF 4 ] showed the best performance of COP. ► The effects of high viscosity ILs on the system performance are not significant.

  7. Mesoporous Metal-Organic Frameworks with Exceptionally High Working Capacities for Adsorption Heat Transformation.

    Science.gov (United States)

    Mo, Zong-Wen; Zhou, Hao-Long; Zhou, Dong-Dong; Lin, Rui-Biao; Liao, Pei-Qin; He, Chun-Ting; Zhang, Wei-Xiong; Chen, Xiao-Ming; Zhang, Jie-Peng

    2018-01-01

    Pore size is one of the most important parameters of adsorbents, and mesoporous materials have received intense attention for large guests. Here, a series of mesoporous coordination polymers underlying a new framework prototype for fast expansion of pore size is reported and the profound effect of pore size on adsorption heat transformation is demonstrated. Three isostructural honeycomb-like frameworks are designed and synthesized by combining ditopic linear metal oxalate chains and triangular tris-pyridine ligands. Changing the ligand bridging length from 5.5 to 8.6 and 9.9 Å gives rise to effective pore diameter from 20 to 33 and 37 Å, surface area from 2096 to 2630 and 2749 m 2 g -1 , and pore volume from 1.19 to 1.93 and 2.36 cm 3 g -1 , respectively. By virtue of the unique and tunable isotherm shape of mesopores, exceptionally large working capacity up to 1.19 g g -1 or 0.38 g cm -3 for adsorption heat transformation can be achieved using R-134a (1,1,1,2-tetrafluroethane) as a working fluid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Estimation and Uncertainty Analysis of Flammability Properties for Computer-aided molecular design of working fluids for thermodynamic cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    Computer Aided Molecular Design (CAMD) is an important tool to generate, test and evaluate promising chemical products. CAMD can be used in thermodynamic cycle for the design of pure component or mixture working fluids in order to improve the heat transfer capacity of the system. The safety...... assessment of novel working fluids relies on accurate property data. Flammability data like the lower and upper flammability limit (LFL and UFL) play an important role in quantifying the risk of fire and explosion. For novel working fluid candidates experimental values are not available for the safety...

  9. Oxygen effect on the work function of electropositive metal films adsorbed on 4d and 5d-transition metals

    International Nuclear Information System (INIS)

    Kultashev, O.K.; Makarov, A.P.; Rozhkov, S.E.

    1976-01-01

    The thermionic emission method was used to study the effect of oxygen upon the work function of films of electropositive metals, Sc, Y, La and Ba on some monocrystal and polycrystalline specimens of 4d- and 5d-transition metals of groups 4-8 of the Periodic system. It was revealed that when the supports were polycrystalline and monocrystalline specimens of transition metals of Group 5 (niobium and tantalum), the work function phi of films of electropositive adsorbates dropped substantially as compared, e.g., to the phi values on the same faces of tungsten. When the concentration of the electropositive adsorbate exceeds the optimum value (in the absence of oxygen), oxygen exerts an appreciably activating action upon the work function phi of films of electropositive adsorbates on transition metals of the Groups 7 and 8. The activating action of oxygen is assumed to be due to a possibility of formation of surface interstitial structures

  10. Working Memory and Cognitive Flexibility Training Reveals No Relationship to Fluid Intelligence in College Students

    Directory of Open Access Journals (Sweden)

    Sarah Luca

    2017-07-01

    Full Text Available Recently, there has been an increased interest in cognitive training due to claims of widespread and transferable benefits of online brain training games. A growing body of literature supports the idea that working memory and cognitive flexibility are linked with fluid intelligence and academic success. The literature is less consistent on whether lasting improvements in cognition can be made through training these abilities. This study compared the effectiveness of cognitively challenging tasks, including Lumosity’s program, in building transferable abilities that contribute to improvements in fluid intelligence. To this end, cognitive performance by no- contact control participants was compared with that of two groups participating in either Flexibility-Focused Lumosity or Memory-Focused Lumosity trainings, and active control groups training in either Sudoku puzzles (alternate task control or online trivia games (crystallized intelligence control. Measures of cognitive flexibility, memory and fluid intelligence were compared and showed significant improvements pre- and post-test, but not significantly greater improvement for any particular training group. These data suggest that the tested brain training programs are no more effective than any other cognitively engaging task in building transferable cognitive abilities.

  11. The interior working mechanism and temperature characteristics of a fluid based micro-vibration isolator

    Science.gov (United States)

    Wang, Jie; Zhao, Shougen; Wu, Dafang; Jing, Xingjian

    2016-01-01

    Micro-vibration isolation is a hot topic in spacecraft vibration control, and fluid based vibration isolators alternatively provide a good and reliable solution to this challenging issue. In this paper, a novel fluid based micro-vibration isolator (FBMVI) is investigated. According to its inherent working principle and deformation pattern, the generation mechanisms of the damping and stiffness characteristics are derived, which are nonlinear functions of the environmental temperature. Then a lumped parameter model which is expressed by the physical design parameters (PDPs) is constructed, and the corresponding performance objective indices (POIs) are also obtained by applying the equivalence of mechanical impedance. Based on the finite element analysis of the internal damping component, a single variable method is further adopted to carry out the parametric study, and the influences of each PDP on the POIs are analyzed in details. Finally, experiments are conducted to identify the variation of fluid bulk modulus with the outside environmental temperature, and to validate the performance of the isolator under different temperature environments. The tested results show great consistence compared with the predicted tendencies of the parametric study. The results of this study can provide a very useful insight into and/or an important guidance for the design and application of this type of FBMVIs in engineering practice.

  12. Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, Ulrik; Knudsen, Thomas

    2014-01-01

    We present a generic methodology for organic Rankine cycle optimization, where the working fluid is included as an optimization parameter, in order to maximize the net power output of the cycle. The method is applied on two optimization cases with hot fluid inlet temperatures at 120°C and 90°C. P...

  13. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a

  14. Experimental Comparison Of Working Fluids For Organic Rankine Cycle With Single-Screw Expander

    OpenAIRE

    Gusev, Sergei; Ziviani, Davide; Bell, Ian; De Paepe, Michel; van den Broek, Martijn

    2014-01-01

    This paper describes the behavior of an Organic Rankine Cycle (ORC) fed by a heat source with adaptable temperature and mass flow. For a suitable choice of working fluid, the setting of its evaporation pressure is crucial for the performance of an ORC installation. The higher the evaporation pressure, the higher the cycle efficiency on the one hand, but the lower the energy recovered from the heat source due to a higher outlet temperature on the other hand. An optimum has to be found to achie...

  15. FLUOROETHERS AS A WORKING FLUIDS FOR LOW TEMPERATURE ORGANIC RANKINE CYCLE

    Directory of Open Access Journals (Sweden)

    Artemenko S.V

    2014-12-01

    Full Text Available Hydrofluoroethers as a new class of working fluids for the organic Rankine cycle have been considered to utilize the low-potential waste heat. Temperature range 300…400 K was chosen to provide energy conversion of waste heat from fuel cells. The direct assessment of the efficiency criteria for the Rankine cycle via artificial neural networks (ANN was used. To create ANN the critical parameters of substance and normal boiling temperature as input were chosen. The forecast of efficiency criteria for the Rankine cycle as output parameter which reproduces the coefficient of performance with high accuracy and without thermodynamic property calculations was presented.

  16. THERMODYNAMIC ANALYSIS OF DIFFERENT WORKING FLUIDS USED IN ORGANIC RANKINE CYCLE FOR RECOVERING WASTE HEAT FROM GT-MHR

    Directory of Open Access Journals (Sweden)

    AMIN HABIBZADEH

    2016-01-01

    Full Text Available In this paper, the performance of 13 working fluids in two Organic Rankine Cycles, which operate as the bottoming cycles for recovering waste heat from gas turbine modular helium reactor (GT-MHR, is investigated. Working fluids are classified in three dry, isentropic and wet fluids. The effect of varying pump temperature and evaporator pressure on the thermal efficiency, total exergy loss of the combined cycle is studied for each category, and the results are compared. The results are calculated for an optimum pressure ratio in which thermal efficiency is maximum. According to the results, dry fluids show a higher thermal efficiency while wet fluids have the lowest values. However, the highest value for thermal efficiency is for R141b, which is an isentropic fluid. Furthermore, the results indicate that pump temperature increase, reduces the total thermal efficiency and increases the total exergy loss of the combined cycle. Increasing evaporator pressure leads to an optimum pressure that maximizes total thermal efficiency. According to the optimized pressure ratio and evaporator pressure, R141b in isentropic fluids, R123 in dry fluids and R717 in wet fluids have the highest thermal efficiency values.

  17. Diffused vs. Focused Flow - Metaproteogenomic Insights into Effects of Hydrothermal Fluid Flow on Metal-Sulfide Chimney Colonizing Biofilms

    Science.gov (United States)

    Pjevac, P.; Markert, S.; Richter, M.; Gruber-Vodicka, H.; Schweder, T.; Amann, R.; Meyerdierks, A.

    2014-12-01

    At many sites of hydrothermal discharge in the deep-sea, the deposition of metal sulfides from hydrothermal fluids leads to the formation of geological structures known as hydrothermal chimneys. The mixing of reduced hydrothermal fluids with oxygenated seawater leads to the formation of steep redox gradients within the chimney walls. These gradients facilitate the co-existence of metabolically diverse microorganisms in the narrow habitable zone of hydrothermal chimney walls. However, the overall composition of chimney-associated microbial community is usually of low complexity and represents an environment suitable for metaomic-based studies. We used metagenomic and metaproteomic tools to compare microbial communities colonizing two metal-sulfide chimneys from the Manus Basin back-arc spreading center in the Bismarck Sea off Papua New Guinea. These chimneys were supplied by the same source hydrothermal fluids, but exhibited different fluid flow regimes. One chimney (RMR5) had a focused venting edifice, while the other (RMR-D) displayed diffuse fluid efflux on its entire outer surface. Although the microbial diversity of both chimneys is similar and dominated by mesophilic Epsilonproteobacteria, our results indicate a strong structuring effect of hydrothermal fluid flow regime on chimney-associated biofilms. The microbial community composition indicates a homogeneous colonization of the diffuse chimney walls. In contrast, the walls of the focused venting chimney appear to be colonized in layers reflecting different temperature tolerances of the dominant microorganisms. Sulfide-oxidation is likely the key metabolism in both chimneys, which is in line with the high sulfide content of the source hydrothermal fluid. However, preliminary metaproteome analysis indicates high activity of low-abundant methanotrophic Bacteria in the diffuser chimney walls. This finding is particularly interesting in light of the very low methane content of the source hydrothermal fluid

  18. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids

    International Nuclear Information System (INIS)

    Liu, Qiang; Duan, Yuanyuan; Yang, Zhen

    2013-01-01

    ORC (organic Rankine cycles) are promising systems for conversion of low temperature geothermal energy to electricity. The thermodynamic performance of the ORC with a wet cooling system is analyzed here using hydrocarbon working fluids driven by geothermal water from 100 °C to 150 °C and reinjection temperatures not less than 70 °C. The hydrocarbon working fluids are butane (R600), isobutane (R600a), pentane (R601), isopentane (R601a) and hexane. For each fluid, the ORC net power output first increases and then decreases with increasing turbine inlet temperature. The turbine inlet parameters are then optimized for the maximum power output. The ORC net power output increases as the condensation temperature decreases but the circulating pump power consumption increases especially for lower condensation temperatures at higher cooling water flow rates. The optimal condensation temperatures for the maximum plant power output are 29.45–29.75 °C for a cooling water inlet temperature of 20 °C and a pinch point temperature difference of 5 °C in the condenser. The maximum power is produced by an ORC using R600a at geothermal water inlet temperatures higher than 120 °C, followed by R245fa and R600 for reinjection temperatures not less than 70 °C. R600a also has the highest plant exergetic efficiency with the lowest turbine size factor. - Highlights: • ORC (organic Rankine cycles) using geothermal water from 100 to 150 °C and reinjection temperatures not less than 70 °C are analyzed. • Condensation temperatures optimized to maximize the plant power output. • An IHE (internal heat exchanger) gives higher plant power at low geothermal water temperatures and high reinjection temperatures. • ORC performance optimized considering the condensation and reinjection temperature. • R600a gives the best performance at the optimal turbine operating parameters

  19. Screening of hydrocarbons as supercritical ORCs working fluids by thermal stability

    International Nuclear Information System (INIS)

    Dai, Xiaoye; Shi, Lin; An, Qingsong; Qian, Weizhong

    2016-01-01

    Highlights: • A rapid evaluation method for thermal stability of hydrocarbons for ORCs. • Methane and hydrogen are confirmed to be decomposition indicators. • The decomposition temperatures for some hydrocarbons using the rapid method. • Long carbon chain hydrocarbons are not suitable for supercritical ORCs. - Abstract: Organic Rankine Cycle (ORC) systems are widely used for industrial waste heat recovery and renewable energy utilization. The supercritical ORC is currently one of the main development directions due to its low exergy loss, high thermal efficiency and high work output. The thermal stability is the major limitation of organic working fluid selection with high temperature heat sources. This paper presents a rapid experimental method for assessing the thermal stability of hydrocarbons for ORCs. The fluids were tested in a high temperature reactor with methane and hydrogen theoretically and experimentally confirmed to be the indicators of thermal decomposition. The thermal decomposition temperatures were obtained for n-hexane, n-pentane, isopentane, cyclopentane, n-butane and isobutane using the rapid experimental method. The results show that cycloalkanes are not the good choices by thermal stability and long carbon chain hydrocarbons (longer than C6) are not suitable for supercritical ORCs due to the thermal stability limitation.

  20. The simulation of organic rankine cycle power plant with n-pentane working fluid

    Science.gov (United States)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  1. Methodology for the thermal characterization of linear Fresnel collectors: Comparative of different configurations and working fluids

    Science.gov (United States)

    Montes, María José; Abbas, Rubén; Rovira, Antonio; Muñoz-Antón, Javier; Martínez-Val, José María

    2017-06-01

    Linear Fresnel collectors are becoming an attractive option to generate electricity from solar radiation. This paper is focused in the thermal performance of Fresnel collectors working with different heat transfer fluids: synthetic oil, water-steam, molten salt and air, also comparing the results of the Fresnel technology with those obtained in reference parabolic trough loops. Although there are two basic designs of the Fresnel receiver: multi-tube and single-tube with secondary concentrator, this work only studies in depth the single-tube option, as this design is more suitable for a proper comparison with parabolic troughs. The receiver in parabolic troughs has been modeled as an evacuated tube with a selective coating and a glass cover. For Fresnel receivers it has been simulated two different configurations: non-evacuated receiver, with a glass window at the cavity aperture and evacuated receiver, characterized by a tube with a glass cover and a selective coating.

  2. A multi-objective optimization approach for the selection of working fluids of geothermal facilities: Economic, environmental and social aspects.

    Science.gov (United States)

    Martínez-Gomez, Juan; Peña-Lamas, Javier; Martín, Mariano; Ponce-Ortega, José María

    2017-12-01

    The selection of the working fluid for Organic Rankine Cycles has traditionally been addressed from systematic heuristic methods, which perform a characterization and prior selection considering mainly one objective, thus avoiding a selection considering simultaneously the objectives related to sustainability and safety. The objective of this work is to propose a methodology for the optimal selection of the working fluid for Organic Rankine Cycles. The model is presented as a multi-objective approach, which simultaneously considers the economic, environmental and safety aspects. The economic objective function considers the profit obtained by selling the energy produced. Safety was evaluated in terms of individual risk for each of the components of the Organic Rankine Cycles and it was formulated as a function of the operating conditions and hazardous properties of each working fluid. The environmental function is based on carbon dioxide emissions, considering carbon dioxide mitigation, emission due to the use of cooling water as well emissions due material release. The methodology was applied to the case of geothermal facilities to select the optimal working fluid although it can be extended to waste heat recovery. The results show that the hydrocarbons represent better solutions, thus among a list of 24 working fluids, toluene is selected as the best fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Study on Mixed Working Fluids with Different Compositions in Organic Rankine Cycle (ORC Systems for Vehicle Diesel Engines

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-08-01

    Full Text Available One way to increase the thermal efficiency of vehicle diesel engines is to recover waste heat by using an organic Rankine cycle (ORC system. Tests were conducted to study the running performances of diesel engines in the whole operating range. The law of variation of the exhaust energy rate under various engine operating conditions was also analyzed. A diesel engine-ORC combined system was designed, and relevant evaluation indexes proposed. The variation of the running performances of the combined system under various engine operating conditions was investigated. R245fa and R152a were selected as the components of the mixed working fluid. Thereafter, six kinds of mixed working fluids with different compositions were presented. The effects of mixed working fluids with different compositions on the running performances of the combined system were revealed. Results show that the running performances of the combined system can be improved effectively when mass fraction R152a in the mixed working fluid is high and the engine operates with high power. For the mixed working fluid M1 (R245fa/R152a, 0.1/0.9, by mass fraction, the net power output of the combined system reaches the maximum of 34.61 kW. Output energy density of working fluid (OEDWF, waste heat recovery efficiency (WHRE, and engine thermal efficiency increasing ratio (ETEIR all reach their maximum values at 42.7 kJ/kg, 10.90%, and 11.29%, respectively.

  4. Overview of Ionic Liquids Used as Working Fluids in Absorption Cycles

    Directory of Open Access Journals (Sweden)

    Mehrdad Khamooshi

    2013-01-01

    Full Text Available The cycle performance of refrigeration cycles depends not only on their configuration, but also on thermodynamic properties of working pairs regularly composed of refrigerant and absorbent. The commonly used working pairs in absorption cycles are aqueous solutions of either lithium bromide water or ammonia water. However, corrosion, crystallization, high working pressure, and toxicity are their major disadvantages in industrial applications. Therefore, seeking more advantageous working pairs with good thermal stability, with minimum corrosion, and without crystallization has become the research focus in the past two decades. Ionic liquids (ILs are room-temperature melting salts that can remain in the liquid state at near or below room temperature. ILs have attracted considerable attention due to their unique properties, such as negligible vapor pressure, nonflammability, thermal stability, good solubility, low melting points, and staying in the liquid state over a wide temperature range from room temperature to about 300°C. The previously mentioned highly favorable properties of ILs motivated us for carrying out the present research and reviewing the available ILs found in the literature as the working fluids of absorption cycles. Absorption cycles contain absorption heat pumps, absorption chillers, and absorption transformers.

  5. Aircraft Metal Skin Repair and Honeycomb Structure Repair; Sheet Metal Work 3: 9857.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course helps students determine types of repairs, compute repair sizes, and complete the repair through surface protection. Course content includes goals, specific objectives, protection of metals, repairs to metal skin, and honeycomb structure repair. A bibliography and post-test are appended. A prerequisite for this course is mastery of the…

  6. Lubricating-cooling liquid for cold working of metals

    Energy Technology Data Exchange (ETDEWEB)

    Bokhanov, D.F.; Bykovskaya, Ye.Ye.; Chuprinina, A.I.; Gubanova, V.A.; Pigulskiy, A.A.; Stepanyants, S.A.

    1979-09-25

    A lubricating-cooling liquid with adequate adhesion to metals, good antioxidant and high antiwear properties with a wide range of application in metal processing consists of petroleum oil as the base and (in percent) 1.5-3.0 percent dibutyl ester of trichlormethylphosphine acid, 0.5-1.0 tributylphosphate, 20-25 SENZh products obtained by successive esterification, condensation and sulfurization of a mixture of synthetic fatty acids of fraction C10-C20, synthetic alcohols of fraction C10-C18 and polyfunctional oxygen containing compounds, and 3-5 percent odorizing additive (coriander oil). The functions of all components are examined and the stage-by-stage technology of producing the SENZh product with complex chemical composition is described.

  7. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources

    International Nuclear Information System (INIS)

    Vivian, Jacopo; Manente, Giovanni; Lazzaretto, Andrea

    2015-01-01

    Highlights: • General guidelines are proposed to select ORC working fluid and cycle layout. • Distance between critical and heat source temperature for optimal fluid selection. • Separate contributions of cycle efficiency and heat recovery factor. - Abstract: The selection of the most suitable working fluid and cycle configuration for a given heat source is a fundamental step in the search for the optimum design of Organic Rankine Cycles. In this phase cycle efficiency and heat source recovery factor lead to opposite design choices in the achievement of maximum system efficiency and, in turn, maximum power output. In this work, both separate and combined effects of these two performance factors are considered to supply a thorough understanding of the compromise resulting in maximum performance. This goal is pursued by carrying out design optimizations of four different ORC configurations operating with twenty-seven working fluids and recovering heat from sensible heat sources in the temperature range 120–180 °C. Optimum working fluids and thermodynamic parameters are those which simultaneously allow high cycle efficiency and high heat recovery from the heat source to be obtained. General guidelines are suggested to reach this target for any system configuration. The distance between fluid critical temperature and inlet temperature of the heat source is found to play a key role in predicting the optimum performance of all system configurations regardless of the inlet temperature of the heat source

  8. Advanced working fluids: Thermodynamic properties. Final report, 1 December 1987-30 November 1989

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L.L.; Gering, K.L.

    1990-09-01

    Electrolytes are used as working fluids in gas-fired heat pump-chiller engine cycles. To find out which molecular parameters of the electrolytes impact on cycle performance, a molecular theory, the EXP-MSA correlation, is developed for calculating solution properties, enthalpies, vapor-liquid equilibria, and engine cycle performance. Aqueous and ammoniac single and mixed salt solutions in single and multisolvent systems are investigated. The outcomes are: (1) an accurate correlation is developed to evaluate properties for concentrated electrolyte solutions (e.g., for aqueous LiBr to 19 molal); (2) sensitivity analysis is used to determine the impact of molecular parameters on the thermodynamic properties and cycle performance. The preferred electrolytes are of 1-1 valence type, small ion size, high molecular weight, and in a strongly colligative cosolvent; (3) the abilities of correlation on single-effect and double-effect engine cycles are demonstrated; (4) the operating windows are determined for a number of absorption fluids of industrial importance.

  9. Working research codes into fluid dynamics education: a science gateway approach

    Science.gov (United States)

    Mason, Lachlan; Hetherington, James; O'Reilly, Martin; Yong, May; Jersakova, Radka; Grieve, Stuart; Perez-Suarez, David; Klapaukh, Roman; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Research codes are effective for illustrating complex concepts in educational fluid dynamics courses, compared to textbook examples, an interactive three-dimensional visualisation can bring a problem to life! Various barriers, however, prevent the adoption of research codes in teaching: codes are typically created for highly-specific `once-off' calculations and, as such, have no user interface and a steep learning curve. Moreover, a code may require access to high-performance computing resources that are not readily available in the classroom. This project allows academics to rapidly work research codes into their teaching via a minimalist `science gateway' framework. The gateway is a simple, yet flexible, web interface allowing students to construct and run simulations, as well as view and share their output. Behind the scenes, the common operations of job configuration, submission, monitoring and post-processing are customisable at the level of shell scripting. In this talk, we demonstrate the creation of an example teaching gateway connected to the Code BLUE fluid dynamics software. Student simulations can be run via a third-party cloud computing provider or a local high-performance cluster. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  10. Cognitive predictors of a common multitasking ability: Contributions from working memory, attention control, and fluid intelligence.

    Science.gov (United States)

    Redick, Thomas S; Shipstead, Zach; Meier, Matthew E; Montroy, Janelle J; Hicks, Kenny L; Unsworth, Nash; Kane, Michael J; Hambrick, D Zachary; Engle, Randall W

    2016-11-01

    Previous research has identified several cognitive abilities that are important for multitasking, but few studies have attempted to measure a general multitasking ability using a diverse set of multitasks. In the final dataset, 534 young adult subjects completed measures of working memory (WM), attention control, fluid intelligence, and multitasking. Correlations, hierarchical regression analyses, confirmatory factor analyses, structural equation models, and relative weight analyses revealed several key findings. First, although the complex tasks used to assess multitasking differed greatly in their task characteristics and demands, a coherent construct specific to multitasking ability was identified. Second, the cognitive ability predictors accounted for substantial variance in the general multitasking construct, with WM and fluid intelligence accounting for the most multitasking variance compared to attention control. Third, the magnitude of the relationships among the cognitive abilities and multitasking varied as a function of the complexity and structure of the various multitasks assessed. Finally, structural equation models based on a multifaceted model of WM indicated that attention control and capacity fully mediated the WM and multitasking relationship. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Effect of Metal Alloys, Degradation Inhibitors, Temperatures, and Exposure Duration on the Stability of Poly(hexafluoropropene oxide) Fluid

    Science.gov (United States)

    Paciorek, Kazimiera J. L.; Masuda, Steven R.; Lin, Wen-Huey; Jones, William R., Jr.

    1997-01-01

    Results of the action of 440C steel, Ti(4Al,4Mn), and Ti(6Al,4V) alloys on poly(hexafluoropropene oxide) fluid and the degradation inhibition by phosphate esters, phosphine, and monophospha-s-triazine are reported. The effects of temperature, exposure duration, and metal surface area are discussed. The studies show clearly the autocatalytic nature of the metal-promoted degradation, which explains the effectiveness of the degradation-arresting additives, even in the case of the highly detrimental titanium alloys.

  12. Analysis of fluid lubrication mechanisms in metal forming at mesoscopic scale

    DEFF Research Database (Denmark)

    Dubar, L.; Hubert, C.; Christiansen, Peter

    2012-01-01

    computation steps. The first one is a fully coupled fluid-structure Finite Element computation, where pockets in the surface are plastically deformed leading to the pressurization of the entrapped fluid. The second step computes the fluid exchange between cavities through the plateaus of asperity contacts...

  13. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems

    Directory of Open Access Journals (Sweden)

    Van Duong

    2014-03-01

    Full Text Available This paper explores the benefits and drawbacks of using carbon dioxide in solar thermal systems at medium and high operating temperatures. For medium temperatures, application of CO2 in non-imaging-optics based compound parabolic concentrators (CPC combined with evacuated-tube collectors is studied. These collectors have been shown to obtain efficiencies higher than 40% operating at around 200℃ without the need of tracking. Validated numerical models of external compound parabolic concentrators (XCPCs are used to simulate their performance using CO2 as working fluid. For higher temperatures, a mathematical model is implemented to analyze the operating performance of a parabolic trough solar collector (PTC using CO2 at temperatures between 100℃ and 600℃.

  14. Performance analysis a of solar driven organic Rankine cycle using multi-component working fluids

    DEFF Research Database (Denmark)

    Baldasso, E.; Andreasen, J. G.; Modi, A.

    2015-01-01

    is still under progress for small scale low temperature solar-driven power plants. The steam Rankine cycle is suitable for high temperature applications, but its efficiency drastically decreases as the heat source temperature drops. In these cases a much more promising configuration is the organic Rankine......Among the different renewable sources of energy, solar power could play a primary role in the development of a more sustainable electricity generation system. While large scale concentrated solar power plants based on the steam Rankine cycle have already been proved to be cost effective, research...... cycle. The purpose of this paper is to optimize a low temperature organic Rankine cycle tailored for solar applications. The objective of the optimization is the maximization of the solar to electrical efficiency and the optimization parameters are the working fluid and the turbine inlet temperature...

  15. Sensitivity analysis of molecular design problem for the development of novel working fluids for power cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    and energy balances for a pump, a condenser, a turbine and an evaporator. As regards sensitivity analysis method, a global sensitivity analysis is performed based on Morris screening to determine which change of input parameters have important effects on the net power output. The screening is composed......In recent years there is a large availability of low-temperature heat sources in different applications such as waste heat in chemical industries and refrigeration plants as well as renewable energy sources such as biomass combustion, geothermal and solar heat sources. Power cycles are an important...... technology to convert such waste heat sources into usable energy. So far the low-temperature heat is not utilized efficiently for electricity generation. To optimize the heat transfer process and the power generation, the influence of the working fluid, the cycle designs and the operating conditions is vital...

  16. Evaluation of carbon dioxide blends with isopentane and propane as working fluids for organic Rankine cycles

    International Nuclear Information System (INIS)

    Garg, Pardeep; Kumar, Pramod; Srinivasan, Kandadai; Dutta, Pradip

    2013-01-01

    The main theme of this paper is to study the flammability suppression of hydrocarbons by blending with carbon dioxide, and to evaluate these mixtures as possible working fluids in organic Rankine cycle for medium temperature concentrated solar power applications. The analysis takes into account inevitable irreversibilities in the turbine, the pump, and heat exchangers. While the isopentane + CO 2 mixture suffers from high irreversibility mainly in the regenerator owing to a large temperature glide, the propane + CO 2 mixture performs more or less the same as pure propane albeit with high cycle pressures. In general, large temperature glides at condensing pressures extend the heat recovery into the two-phase dome, which is an advantage. However, at the same time, the shift of the pinch point towards the warm end of the regenerator is found to be a major cause of irreversibility. In fact, as the number of carbon atoms in alkanes decreases, their blend with CO 2 moves the pinch point to the colder end of the regenerator. This results in lower entropy generation in the regenerator and improved cycle efficiency of propane + CO 2 mixtures. With this mixture, real cycle efficiencies of 15–18% are achievable at a moderate source temperature of 573 K. Applicability for a wide range of source temperatures is found to be an added advantage of this mixture. -- Highlights: ► Non-water based working fluids and their mixtures for power generation. ► Results for carbon dioxide blends with isopentane and propane. ► Appropriation of irreversibilities in cycle components. ► Entropy generation based on pinch point of regenerator and heat source temperature

  17. Relationships between heavy metal concentrations in three different body fluids and male reproductive parameters: a pilot study

    Directory of Open Access Journals (Sweden)

    Ten Jorge

    2011-01-01

    Full Text Available Abstract Background Animal studies have shown the reproductive toxicity of a number of heavy metals. Very few human observational studies have analyzed the relationship between male reproductive function and heavy metal concentrations in diverse biological fluids. Methods The current study assessed the associations between seminal and hormonal parameters and the concentration of the 3 most frequent heavy metal toxicants (lead, cadmium and mercury in three different body fluids. Sixty one men attending infertility clinics that participated in a case-control study to explore the role of environmental toxins and lifestyles on male infertility were analyzed. Concentration of lead, cadmium and mercury were measured in blood and seminal plasma and whole blood using anodic stripping voltammetry and atomic absorption spectrophotometry. Serum samples were analyzed for follicle-stimulating hormone, luteinizing hormone and testosterone. Semen analyses were performed according to World Health Organization criteria. Mann-Whitney test and Spearman's rank correlations were used for unadjusted analyses. Multiple linear regression models were performed controlling for age, body mass index and number of cigarettes per day. Results There were no significant differences between cases and controls in the concentrations of heavy metals in any of the three body fluids. In multivariate analyses using all subjects no significant associations were found between serum hormone levels and metal concentrations. However there was a significant positive association between the percentage of immotile sperms and seminal plasma levels of lead and cadmium. Conclusions Our results suggest that the presence of lead and cadmium in the reproductive tract of men may be related to a moderate alteration of their seminal parameters.

  18. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    Directory of Open Access Journals (Sweden)

    Smitka Martin

    2014-03-01

    Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.

  19. Technology of Processing of Fluorol with Metallic Oxides and It's Resistance toward Active Fluid

    International Nuclear Information System (INIS)

    Mahmoud, G.M.; Hadhoud, M.K.; Mohamed, A.Z.; Sherif, S.A

    2004-01-01

    Fluorocarbon polymers are the best elastomers for a variety of applications. In this work we investigate the characteristics of fluorocarbon rubber for use in different applications, via preparation different formulations. We investigate the effect of added metallic oxides ( CaO, MgO, ZnO and PbO ) on the chemical and physical properties of prepared formulations. Chemical resistance tests were made for conc. H 2 SO 4 , conc. HCl, conc. HNO 3 , ASTM Oil No.2, ASTM Ref. Fuel C and conc. NaOH solution. Results showed that the prepared fluorocarbon rubber have high chemical resistance to various acids, alkalis, oils and fuels, also chemical resistance towards conc. HNO 3 is enhanced in the presence of lead oxide

  20. A study of power cycles using supercritical carbon dioxide as the working fluid

    Science.gov (United States)

    Schroder, Andrew Urban

    theoretical recuperated Lenoir cycle using supercritical carbon dioxide as the working fluid. The real fluid cycle analysis code was also enhanced to study a combined cycle engine cascade. Two engine cascade configurations were studied. The first consisted of a traditional open loop gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 65.0% using a peak temperature of 1,890K [1,617°C]. The second configuration consisted of a hybrid natural gas powered solid oxide fuel cell and gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 73.1%. Both configurations had a minimum temperature of 306K [33°C]. The hybrid stochastic and gradient based optimization technique was used to optimize all engine design parameters for each engine in the cascade such that the entire engine cascade achieved the maximum thermal efficiency. The parallel design exploration mode was also utilized in order to understand the impact of different design parameters on the overall engine cascade thermal efficiency. Two dimensional conjugate heat transfer (CHT) numerical simulations of a straight, equal height channel heat exchanger using supercritical carbon dioxide were conducted at various Reynolds numbers and channel lengths.

  1. Status of design code work for metallic high temperature components

    International Nuclear Information System (INIS)

    Bieniussa, K.; Seehafer, H.J.; Over, H.H.; Hughes, P.

    1984-01-01

    The mechanical components of high temperature gas-cooled reactors, HTGR, are exposed to temperatures up to about 1000 deg. C and this in a more or less corrosive gas environment. Under these conditions metallic structural materials show a time-dependent structural behavior. Furthermore changes in the structure of the material and loss of material in the surface can result. The structural material of the components will be stressed originating from load-controlled quantities, for example pressure or dead weight, and/or deformation-controlled quantities, for example thermal expansion or temperature distribution, and thus it can suffer rowing permanent strains and deformations and an exhaustion of the material (damage) both followed by failure. To avoid a failure of the components the design requires the consideration of the following structural failure modes: ductile rupture due to short-term loadings; creep rupture due to long-term loadings; reep-fatigue failure due to cyclic loadings excessive strains due to incremental deformation or creep ratcheting; loss of function due to excessive deformations; loss of stability due to short-term loadings; loss of stability due to long-term loadings; environmentally caused material failure (excessive corrosion); fast fracture due to instable crack growth

  2. Effect of the metal work function on the electrical properties of carbon nanotube network transistors

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Ko, Dae Young; Kil, Joon Pyo; Lee, Jung Wha; Park, Wan Jun

    2012-01-01

    A nearly perfect semiconducting single-walled carbon nanotube random network thin film transistor array was fabricated, and its reproducible transport properties were investigated. The effects of the metal work function for both the source and the drain on the electrical properties of the transistors were systematically investigated. Three different metal electrodes, Al, Ti, and Pd, were employed. As the metal work function increased, p-type behavior became dominant, and the field effect hole mobility dramatically increased. Also, the Schottky barrier of the Ti-nanotube contact was invariant to the molecular adsorption of species in air.

  3. Characterization of inorganic wastes from metal working industries

    International Nuclear Information System (INIS)

    Gomez, A.; Viguri, J.R.; Andres, A.; Irabien, A.; Guise, L.; Magalhaes, J.; Castro, F.

    1999-01-01

    The paper present the results obtained in the characterisation of metalworking wastes, with the sampling of wastes and characterisation data interpretation subjects as the main studied steps. The results of this work allow to establish the environmental impact assessment of the inorganic wastes from a wide range of metalworking processes in order to determine the optimum options to their management (treatment and/or reuses)

  4. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  5. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables...... the simultaneousdesign approach the optimum solution was found in 5.04 s, while a decomposed approach found thesame solution in 5.77 h. However, the decomposed approach provided insights on the correlationbetween the fluid and cycle design variables by analyzing all possible solutions. It was shown that thehigh...... sensitivity between the fluid and cycle design variables was overcome by using the simultaneousapproach. Correlation between net power output and the product of the overall heat transfer coefficientand the heat transfer area could further be addressed by employing a new solution strategy includingmaximum...

  6. Global sensitivity analysis of computer-aided molecular design problem for the development of novel working fluids for power cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    2016-01-01

    study involving the design of a working fluid for an Organic Ranking Cycle (ORC) design for power generation. Morris Screening is found to be favorable over Monte Carlo based standard regression. Monte Carlo based standard regression cannot be applied, because the current model cannot be sufficiently...... linearized. For Morris Screening techniques the critical temperature, the critical pressure and the acentric factor of the working fluid has been identified as the target properties with the highest sensitivity to the net power output of the cycle....

  7. Working memory and fluid intelligence are both identical to g?! Reanalyses and critical evaluation

    Directory of Open Access Journals (Sweden)

    GILLES E. GIGNAC

    2007-09-01

    Full Text Available In this investigation, two previously published confirmatory factor analytic studies that separately reported working memory and fluid intelligence higher-order loadings so large as to suggest isomor-phism with g were evaluated critically within the context of internal consistency reliability. Specifi-cally, based on two data analytic approaches, the previously reported higher-order loadings which suggested isomorphism with g were demonstrated to have been achieved via the substantial disattenua-tion effects observed within structural equation modeling, when the latent variable corresponding composite scores are associated with low levels of reliability. The two approaches were: (1 the obverse of the disattenuation procedure for imperfect reliability, and (2 the implied correlation between a corresponding phantom composite variable and a higher-order g factor. The results derived from the two approaches were found to correspond very closely. To allow for a more informative evaluation, researchers are encouraged to report the internal consistency reliabilities associated with the composite scores which correspond to their latent variables, as well as to report both the disattenuated and attenu-ated higher-order loadings within their multi-factor models.

  8. On the paradoxical behavior of a cyclic device working with a non-Boltzmannian fluid

    Science.gov (United States)

    Fanelli, D.; De Ninno, G.; Turchi, A.

    2012-11-01

    According to standard thermodynamics, the efficiency of a cyclic machine is strictly lower than one. Such a result is a straightforward consequence of the second principle of thermodynamics. Recent advances in the study of the thermodynamics of long-range interacting system report however on a rather intricate zoology of peculiar behaviors, which are occasionally in contrast with customarily accepted scenarios, dueling with intuition and common sense. In this paper, a thermodynamical cycle is assembled for an ideal device working with non-Boltzmanian long-range fluid and operating in contact with two thermal reservoirs. Assuming the microcanonical or canonical temperature to be the correct thermodynamic temperature, we obtain a paradoxical conclusion: the system is in fact analytically shown to violate the second principle of thermodynamics. This phenomenon ultimately relates to the existence of regions in the canonical ensemble where the energy decreases with the average kinetic temperature. We argue that the validity of the second principle of thermodynamics can be possibly regained, by revisiting the definition of canonical ensemble, as well as the Fourier law of heat transport, and consequently relaxing the constraint on the maximal efficiency as imposed by the Carnot theorem.

  9. Work function anisotropy and surface stability of half-metallic CrO(2)

    NARCIS (Netherlands)

    Attema, J. J.; Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    Insight in the interplay between work function and stability is important for many areas of physics. In this paper, we calculate the anisotropy in the work function and the surface stability of CrO(2), a prototype half-metal, and find an anisotropy of 3.8 eV. An earlier model for the relation

  10. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys.

    Science.gov (United States)

    Kokubo, Tadashi; Yamaguchi, Seiji

    2016-10-15

    Until the discovery of the bone-bonding activity of Bioglass by Hench et al. in the early 1970s, it had not been demonstrated that a synthetic material could bond to living bone without eliciting a foreign body reaction. Since then, various kinds of materials based on calcium phosphate, such as sintered hydroxyapatite and β-tricalcium phosphate have also been shown to bond to living bone. Until the discovery of the bone-bonding activity of Ti metal formed with a sodium titanate surface layer by the present authors in 1996, it had not been shown that a metallic material could bond to living bone. Since then, various kinds of surface-modified Ti metal and its alloys have been found to bond to living bone. Until the discovery of the osteoinduction of porous hydroxyapatite by Yamasaki in 1990, it was unknown whether a synthetic material could induce bone formation even in muscle tissue. Since then, various kinds of porous calcium phosphate ceramics have been shown to induce osteoinduction. Until the discovery of osteoinduction induced by a porous Ti metal formed with a titanium oxide surface layer by Fujibayashi et al. in 2004, it had been unclear whether porous metals would be able to induce osteoinduction. These novel bioactive materials have been developed by systematic research into the apatite formation that occurs on surface-modified Ti metal and its related materials in an acellular simulated body fluid (SBF) having ion concentrations almost equal to those of human blood plasma. Some of the novel bioactive materials based on Ti metal are already in clinical use or clinical trials, such as artificial hip joints and spinal fusion devices. In the present paper, we review how these novel bioactive materials based on Ti metal have been developed based on an evaluation of apatite formation in SBF. Without the SBF evaluation, these novel bioactive materials would most likely never have been developed. On the basis of systematic study of apatite formation on a material

  11. Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review

    Directory of Open Access Journals (Sweden)

    Patrick Linke

    2015-05-01

    Full Text Available Efficient power generation from low to medium grade heat is an important challenge to be addressed to ensure a sustainable energy future. Organic Rankine Cycles (ORCs constitute an important enabling technology and their research and development has emerged as a very active research field over the past decade. Particular focus areas include working fluid selection and cycle design to achieve efficient heat to power conversions for diverse hot fluid streams associated with geothermal, solar or waste heat sources. Recently, a number of approaches have been developed that address the systematic selection of efficient working fluids as well as the design, integration and control of ORCs. This paper presents a review of emerging approaches with a particular emphasis on computer-aided design methods.

  12. Comparative evaluation of metal ions release from titanium and Ti-6Al-7Nb into bio-fluids

    Directory of Open Access Journals (Sweden)

    Lori A Joseph

    2009-01-01

    Full Text Available Background: The study was designed to investigate the effects of pH, chloride ions and nature of some bio-fluids on the amount of metal ions released from titanium and TiAl 6 Nb 7 plates following incubation in actual and simulated bio-fluids over time. Methods: The amounts of released metal ions from commercially pure titanium (CpTi and TiAl 6 Nb 7 of surgical grade on immersion in 20 mL Hank′s solution of pH 4.0 or 7.0, Hank′s solution of high chloride ions concentration, Whole Blood Serum (WBS and Phosphate Buffered Saline (PBS at 37° C were determined over an incubation time of 20 weeks using atomic absorption spectrophotometry. The levels of released metal ions were compared by two-way ANOVA and Duncan′s post-hoc tests. The amounts of titanium ions released by the samples were analyzed by Pearson′s correlation. Results: TiAl 6 Nb 7 plate showed no release of Ti ions into the test solutions until after 12 weeks of incubation, while Ti ions were released from the CpTi plate from the 1 day immersion time. The re-lease of measurable amount of Al ions from TiAl 6 Nb 7 was after 12 weeks of incubation. The rate of release of Ti and Al ions from the samples increased initially with incubation time and then stabilized due to adsorption-desorption equilibrium. Conclusion: The results showed that variations in pH and chloride ions of the test media has a sig-nificant effect on the amounts of Ti ions released, while increase in chloride ions concentration sig-nificantly elevates the release of Al ions into the bio-fluids.

  13. Experimental Analysis for the Use of Sodium Dodecyl Sulfate as a Soluble Metal Cutting Fluid for Micromachining with Electroless-Plated Micropencil Grinding Tools

    Directory of Open Access Journals (Sweden)

    Peter A. Arrabiyeh

    2017-11-01

    Full Text Available Microgrinding with micropencil grinding tools (MPGTs is a flexible and economic process to machine microstructures in hard and brittle materials. In macrogrinding, cooling and lubrication are done with metal cutting fluids; their application and influence is well researched. Although it can be expected that metal cutting fluids also play a decisive role in microgrinding, systematic investigations can hardly be found. A metal cutting fluid capable of wetting the machining process, containing quantities as small as 0.02% of the water-soluble fluid sodium dodecyl sulfate was tested in microgrinding experiments with MPGTs (diameter ~50 µm; abrasive grit size 2–4 µm. The workpiece material was hardened 16MnCr5.

  14. Optimization of Cycle and Expander Design of an Organic Rankine Cycle Unit using Multi-Component Working Fluids

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Pierobon, Leonardo

    2016-01-01

    engine onboard a large ship, and the latter is representative of a low-temperature geothermal, solar or waste heat recovery application. Multi-component working fluids are investigated, as they allow improving the match between the temperature pro-files in the heat exchangers and, consequently, reducing...

  15. Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Yourong Li

    2012-08-01

    Full Text Available The performance analysis of a supercritical organic Rankine cycle system driven by exhaust heat using 18 organic working fluids is presented. Several parameters, such as the net power output, exergy efficiency, expander size parameter (SP, and heat exchanger requirement of evaporator and the condenser, were used to evaluate the performance of this recovery cycle and screen the working fluids. The results reveal that in most cases, raising the expander inlet temperature is helpful to improve the net power output and the exergy efficiency. However, the effect of the expander inlet pressure on those parameters is related to the expander inlet temperature and working fluid used. Either lower expander inlet temperature and pressure, or higher expander inlet temperature and pressure, generally makes the net power output more. Lower expander inlet temperature results in larger total heat transfer requirement and expander size. According to the screening criteria of both the higher output and the lower investment, the following working fluids for the supercritical ORC system are recommended: R152a and R143a.

  16. Anisotropy of electron work function and reticular compacting of friable faces of metallic crystals

    International Nuclear Information System (INIS)

    Vladimirov, A.F.

    1999-01-01

    The review and statistical estimate of experimental data on work functions for BCC-, FCC- and HCP - metals (W, Mo, Ta, Nb, Cr, V, Ni, Y) as well as the earlier developed quantum-mechanical statistical model of double electrical layer formation at metal surface and the calculation of an electron work function dipole constituent serve as a basis for the development of a semi-empirical theory of electron work function anisotropy. A coefficient of reticular compacting of friable crystal faces is introduced and statistically estimated. A coefficient of crystal emission anisotropy is also introduced and estimated both theoretically and empirically. The theory permits calculating work functions for all crystal faces and a volumetric constituent of the work function from the measured value of electron work function for a single face [ru

  17. Insights into the effects of metal nanostructuring and oxidation on the work function and charge transfer of metal/graphene hybrids

    Science.gov (United States)

    Giangregorio, M. M.; Jiao, W.; Bianco, G. V.; Capezzuto, P.; Brown, A. S.; Bruno, G.; Losurdo, M.

    2015-07-01

    Graphene/metal heterojunctions are ubiquitous in graphene-based devices and, therefore, have attracted increasing interest of researchers. Indeed, the literature on the field reports apparently contradictory results about the effect of a metal on graphene doping. Here, we elucidate the effect of metal nanostructuring and oxidation on the metal work function (WF) and, consequently, on the charge transfer and doping of graphene/metal hybrids. We show that nanostructuring and oxidation of metals provide a valid support to frame WF and doping variation in metal/graphene hybrids. Chemical vapour-deposited monolayer graphene has been transferred onto a variety of metal surfaces, including d-metals, such as Ag, Au, and Cu, and sp-metals, such as Al and Ga, configured as thin films or nanoparticle (NP) ensembles of various average sizes. The metal-induced charge transfer and the doping of graphene have been investigated using Kelvin probe force microscopy (KPFM), and corroborated by Raman spectroscopy and plasmonic ellipsometric spectroscopy. We show that when the appropriate WF of the metal is considered, without any assumption, taking into account WF variations by nanostructure and/or oxidation, a linear relationship between the metal WF and the doping of graphene is found. Specifically, for all metals, nanostructuring lowers the metal WF. In addition, using gold as an example, a critical metal nanoparticle size is found at which the direction of charge transfer, and consequently graphene doping, is inverted.

  18. Development and computational simulation of thermoelectric electromagnetic pumps for controlling the fluid flow in liquid metal cooled space nuclear reactors

    International Nuclear Information System (INIS)

    Borges, E.M.

    1991-01-01

    Thermoelectric Electromagnetic (TEEM) Pumps can be used for controlling the fluid flow in the primary and secondary circuits of liquid metal cooled space nuclear reactor. In order to simulate and to evaluate the pumps performance, in steady-state, the computer program BEMTE has been developed to study the main operational parameters and to determine the system actuation point, for a given reactor operating power. The results for each stage of the program were satisfactory, compared to experimental data. The program shows to be adequate for the design and simulating of direct current electromagnetic pumps. (author)

  19. A NEW TREND IN MAGNETIC-PULSE METAL WORKING ASSOCIATED WITH THIN-WALLED SHEET METAL ATTRACTION. HISTORY AND DEVELOPMENT PROSPECTS

    Directory of Open Access Journals (Sweden)

    A.V. Gnatov

    2013-04-01

    Full Text Available Within the scope of this article, a summary is presented on the main world achievements of the new trend in magnetic-pulse metal working associated with attraction of specified sheet metal sections in vehicle production and repair. The importance of the new trend has been justified, its basic sources disclosed. Alternative straightening methods for damaged sheet metals are given.

  20. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    2017-09-03

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties of Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.

  1. Systematics of Alkali Metals in Pore Fluids from Serpentinite Mud Volcanoes: IODP Expedition 366

    Science.gov (United States)

    Wheat, C. G.; Ryan, J.; Menzies, C. D.; Price, R. E.; Sissmann, O.

    2017-12-01

    IODP Expedition 366 focused, in part, on the study of geo­chemical cycling, matrix alteration, material and fluid transport, and deep biosphere processes within the subduction channel in the Mariana forearc. This was accomplished through integrated sampling of summit and flank regions of three active serpentinite mud volcanoes (Yinazao (Blue Moon), Asùt Tesoro (Big Blue), and Fantangisña (Celestial) Seamounts). These edifices present a transect of depths to the Pacific Plate, allowing one to characterize thermal, pressure and compositional effects on processes that are associated with the formation of serpentinite mud volcanoes and continued activity below and within them. Previous coring on ODP Legs 125 and 195 at two other serpentinite mud volcanoes (Conical and South Chamorro Seamounts) and piston, gravity, and push cores from several other Mariana serpentinite mud volcanoes add to this transect of sites where deep-sourced material is discharged at the seafloor. Pore waters (149 samples) were squeezed from serpentinite materials to determine the composition of deep-sourced fluid and to assess the character, extent, and effect of diagenetic reactions and mixing with seawater on the flanks of the seamounts as the serpentinite matrix weathers. In addition two Water Sampler Temperature Tool (WSTP) fluid samples were collected within two of the cased boreholes, each with at least 30 m of screened casing that allows formations fluids to discharge into the borehole. Shipboard results for Na and K record marked seamount-to-seamount differences in upwelling summit fluids, and complex systematics in fluids obtained from flank sites. Here we report new shore-based Rb and Cs measurements, two elements that have been used to constrain the temperature of the deep-sourced fluid. Data are consistent with earlier coring and drilling expeditions, resulting in systematic changes with depth (and by inference temperature) to the subduction channel.

  2. A study of the cooling systems and fluid flow simulation in metal cutting processing

    Science.gov (United States)

    Olaru, I.

    2017-08-01

    This paper analyzes several types of cooling agents, their properties and how they can be chosen for a better heat dispersion resulting from the cutting process. An excessive heat in the cutting zone leads to excessive wear of the cutting tools, that leading finally to additional costs of their acquisition and due to wear is reached in cutting process more irregular surfaces. The coolant chosen can be a combination of different cooling fluids from the most simple and inexpensive to more complex, the difference between them being more appropriately cool the processing area. The fluid flow parameters of coolant can be influenced by the nature of the fluid or fluids used, the geometry of the nozzle in order to achieve a better dispersion of the lubricant on the area to be processed. A smaller amount of fluid is important in terms of the economy lubricant, because some of these lubricants are quite expensive. A minimal quantity of lubricant (MQL) may have a better impact on the environment and the health of the operator because the coolants in contact with overheated machined surface may develop a substantial amount of these gases that are not always beneficial to health.

  3. The partitioning behaviour of trace metals between melts and H-O-C-Cl fluids: an experimental study

    Science.gov (United States)

    Teague, A.; Blundy, J. D.; Coath, C.

    2010-12-01

    Models of volcanic processes and hydrothermal ore formation are increasingly reliant on the availability of data describing how trace elements partition between silicate melts and a volatile phase (including homogenous H-O-C fluids or coexisting vapours and dense saline brines). Since any partition coefficients will vary as a function of pressure (P), temperature (T), and the composition of both the melt and the volatile phase, then expanding the availability of such data should unlock a wealth of information for any volcanic or hydrothermal system for which one can acquire trace metal analyses. Here we present partitioning data acquired using a new experimental and analytical technique. The experimental setup is a variation on the fluid trap experiments of Stalder (1998) and Kessel (2004), in which a volume of vitreous carbon, corundum or quartz glass spheres form a pore space into which the fluids may migrate while maintaining constant communication with the melt. The pore space also performs the vital role of evenly distributing the precipitation of any solute load during quench. Fluids are introduced as free water, plus or minus NaCl, while CO2 is produced via the equilibrium reaction with the substrate in the vitreous carbon bearing experiments. Experiments are run at conditions of 100-300 MPa and 800°C using a rapid quench cold seal pressure vessel apparatus. Analysis is performed by Laser Ablation ICP-MS, using a thermo-electric cryo-stage to freeze the fluid sample so that it may be analysed as a solid. Access to the fluid is achieved by using the laser itself to cut through the capsule, thereby avoiding contamination or loss of the capsule’s contents during opening; the first communication with the outside world is to be directly ablated by the laser and passed into the mass spectrometer. A series of standards are prepared and analysed in the same manner as the experimental charge, and quantification is achieved using a five-point calibration curve

  4. Working regime identification for natural circulation loops by comparative thermalhydraulic analyses with three fluids under identical operating conditions

    International Nuclear Information System (INIS)

    Sarkar, Milan K.S.; Basu, Dipankar N.

    2015-01-01

    Highlights: • Thermalhydraulic analyses of NCL to justify the use of supercritical condition. • Mass flow rate of supercritical loop increases with heater power till a maxima. • Supercritical loop suffer from HTD beyond the maxima with jump in fluid temperature. • HTD is pronounced at higher sink temperatures and pressures just above critical. • Supercritical CO 2 is preferred fluid till the HTD and single-phase water afterwards. - Abstract: Computational investigation for comparative thermalhydraulic analyses of rectangular natural circulation loops is performed to propose a guideline for selecting the working fluid and nature of the loop, subcritical or supercritical, under identical levels of operating parameters like pressure, heating power and coolant temperature. A 3-d uniform-diameter loop geometry is developed with horizontal heating and cooling. Heating is provided in constant heat flux mode, whereas cooling is through a constant temperature sink. Due to favourable thermophysical properties and environmental conformity, water, CO 2 and R134a are selected as possible working fluids. Operational parameters are set so as to have sub- to supercritical condition for CO 2 , supercritical for R134a and single-phase liquid for water. Mass flow rate for supercritical fluid rapidly increases with heater power, when the fluid is allowed to cross the pseudocritical point during its passage through the heater, and exhibits a maxima. Drastic fall in mass flow rate can be observed beyond the maxima, accompanied by a jump in maximum fluid temperature and a rapid decline in sink-side heat transfer coefficient. That can be identified as heat transfer deterioration in supercritical natural circulation loops, a highly undesirable situation from loop safety point of view. Allowable working range of heater power can be enhanced by increasing system pressure and decreasing sink temperature. For any specified set of operating conditions, CO 2 -based supercritical loops

  5. Standard Practices for Simulated Service Testing for Corrosion of Metallic Containment Materials for Use With Heat-Transfer Fluids in Solar Heating and Cooling Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1980-01-01

    1.1 These practices cover test procedures simulating field service for evaluating the performance under corrosive conditions of metallic containment materials in solar heating and cooling systems. All test results relate to the performance of the metallic containment material only as a part of a metal/fluid pair. Performance in these test procedures, taken by itself, does not necessarily constitute an adequate basis for acceptance or rejection of a particular metal/fluid pair in solar heating and cooling systems, either in general or in a particular design. 1.2 These practices describe test procedures used to evaluate the resistance to deterioration of metallic containment materials in the several conditions that may occur in operation of solar heating and cooling systems. These conditions include: (1) operating full flow; (2) stagnant empty vented; (3) stagnant, closed to atmosphere, non-draindown; and (4) stagnant, closed to atmosphere, draindown. 1.3 The recommended practices cover the following three te...

  6. Hydrogen Peroxide Formation in a Surrogate Lung Fluid by Transition Metals and Quinones Present in Particulate Matter

    Science.gov (United States)

    2015-01-01

    Inhaled ambient particulate matter (PM) causes adverse health effects, possibly by generating reactive oxygen species (ROS), including hydrogen peroxide (HOOH), in the lung lining fluid. There are conflicting reports in the literature as to which chemical components of PM can chemically generate HOOH in lung fluid mimics. It is also unclear which redox-active species are most important for HOOH formation at concentrations relevant to ambient PM. To address this, we use a cell-free, surrogate lung fluid (SLF) to quantify the initial rate of HOOH formation from 10 transition metals and 4 quinones commonly identified in PM. Copper, 1,2-naphthoquinone, 1,4-naphthoquinone, and phenanthrenequinone all form HOOH in a SLF, but only copper and 1,2-naphthoquinone are likely important at ambient concentrations. Iron suppresses HOOH formation in laboratory solutions, but has a smaller effect in ambient PM extracts, possibly because organic ligands in the particles reduce the reactivity of iron. Overall, copper produces the majority of HOOH chemically generated from typical ambient PM while 1,2-naphthoquinone generally makes a small contribution. However, measured rates of HOOH formation in ambient particle extracts are lower than rates calculated from soluble copper by an average (±1σ) of 44 ± 22%; this underestimate is likely due to either HOOH destruction by Fe or a reduction in Cu reactivity due to organic ligands from the PM. PMID:24857372

  7. Carbide-metal assemblages in a sample returned from asteroid 25143 Itokawa: Evidence for methane-rich fluids during metamorphism

    Science.gov (United States)

    Harries, Dennis; Langenhorst, Falko

    2018-02-01

    We found that the particle RA-QD02-0115 returned by the Hayabusa spacecraft from near-Earth asteroid 25143 Itokawa contains the iron carbide haxonite (Fe21.9-22.7Co0.2-0.3Ni0.2-0.8)C6 and several Fe,Ni alloys, including multi-domain tetrataenite and spinodally decomposed taenite. Ellipsoidal to nearly spherical voids occur throughout the particle and suggest the presence of a fluid phase during textural and chemical equilibration of the host rock within the parent asteroid of 25143 Itokawa. The calculated solubility of carbon in Fe,Ni metal indicates that the carbide formed at temperatures larger than 600 °C during thermal metamorphism of the LL-chondritic mineral assemblage. Haxonite formed metastably with respect to graphite and cohenite, probably due to its high degree of lattice match with neighboring taenite, a low cooling rate at peak metamorphic temperatures, and the hindered nucleation of graphite. Thermodynamic equilibrium calculations indicate that the fluid present was dry (H2O-poor) and dominated by methane. The reactive fluid most plausibly had an atomic H/C ratio of 4-5 and was derived from the reduction of macromolecular, insoluble organic matter (IOM) that initially co-accreted with water ice. The initial presence of water is a necessary assumption to provide sufficient hydrogen for the formation of methane from hydrolyzed IOM. Metallic iron was in turn partially oxidized and incorporated into the ferromagnesian silicates during the high-temperature stage of metamorphism. An exemplary bulk reaction from unequilibrated material on the left to an equilibrated assemblage on the right may be written as: 330 CH0.8O0.2(IOM) + 500 H2O(ice/g) + 681 Fe(in alloy) + 566 FeSiO3(in Opx) → 300 CH4(g) + 32 H2(g) + 5 Fe23C6(in Hx) + 566 Fe2SiO4(in Ol) (Opx = orthopyroxene, Hx = haxonite, Ol = olivine, g = fluid species). The best estimate of the fluid/rock ratio in the region of the LL parent body where RA-QD02-0115 formed is about 3 × 10-3 and corresponds to

  8. A Generalised Assessment of Working Fluids and Radial Turbines for Non-Recuperated Subcritical Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Martin T. White

    2018-03-01

    Full Text Available The aim of this paper is to conduct a generalised assessment of both optimal working fluids and radial turbine designs for small-scale organic Rankine cycle (ORC systems across a range of heat-source temperatures. The former has been achieved by coupling a thermodynamic model of subcritical, non-recperated cycles with the Peng–Robinson equation of state, and optimising the working-fluid and cycle parameters for heat-source temperatures ranging between 80 ° C and 360 ° C . The critical temperature of the working fluid is found to be an important parameter governing working-fluid selection. Moreover, a linear correlation between heat-source temperature and the optimal critical temperature that achieves maximum power output has been found for heat-source temperatures below 300 ° C ( T cr = 0.830 T hi + 41.27 . This correlation has been validated against cycle calculations completed for nine predefined working fluids using both the Peng–Robinson equation of state and using the REFPROP program. Ultimately, this simple correlation can be used to identify working-fluid candidates for a specific heat-source temperature. In the second half of this paper, the effect of the heat-source temperature on the optimal design of a radial-inflow turbine rotor for a 25 kW subcritical ORC system has been studied. As the heat-source temperature increases, the optimal blade-loading coefficient increases, whilst the optimal flow coefficient reduces. Furthermore, passage losses are dominant in turbines intended for low-temperature applications. However, at higher heat-source temperatures, clearance losses become more dominant owing to the reduced blade heights. This information can be used to identify the most direct route to efficiency improvements in these machines. Finally, it is observed that the transition from a conventional converging stator to a converging-diverging stator occurs at heat-source temperatures of approximately 165 ° C , whilst radially

  9. Correlation of cutting fluid performance in different machining operations

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Belluco, Walter

    2001-01-01

    An analysis of cutting fluid performance in different metal cutting operations is presented, based on experimental investigations in which type of operation, performance criteria, work material, and fluid type are considered. Cutting fluid performance was evaluated in turning, drilling, reaming a...

  10. Analysis and optimization of three main organic Rankine cycle configurations using a set of working fluids with different thermodynamic behaviors

    Science.gov (United States)

    Hamdi, Basma; Mabrouk, Mohamed Tahar; Kairouani, Lakdar; Kheiri, Abdelhamid

    2017-06-01

    Different configurations of organic Rankine cycle (ORC) systems are potential thermodynamic concepts for power generation from low grade heat. The aim of this work is to investigate and optimize the performances of the three main ORC systems configurations: basic ORC, ORC with internal heat exchange (IHE) and regenerative ORC. The evaluation for those configurations was performed using seven working fluids with typical different thermodynamic behaviours (R245fa, R601a, R600a, R227ea, R134a, R1234ze and R1234yf). The optimization has been performed using a genetic algorithm under a comprehensive set of operative parameters such as the fluid evaporating temperature, the fraction of flow rate or the pressure at the steam extracting point in the turbine. Results show that there is no general best ORC configuration for all those fluids. However, there is a suitable configuration for each fluid. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  11. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    Channel length decreases and becomes crucial in deep-submicrometre technologies. In this work, we study the effect of short channel and the influences of quantum mechanical on nanoscale DG-MOSFETs. As CMOS technology continues to scale, metal gate electrodes need to be intro- duced to overcome the deleterious ...

  12. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    Further- more, quantum effects on the performance of DG-MOSFETs are addressed and discussed. We also study the influence of metal gate work function on the performance of nanoscale MOSFETs. We use a self-consistent Poisson–Schrödinger solver in two dimensions over the entire device. A good agreement with ...

  13. Doping of graphite by an alkaline-earth metal to reduce the work function

    NARCIS (Netherlands)

    Baturin, AS; Nikolski, KN; Knyazev, AI; Tchesov, RG; Sheshin, EP

    2004-01-01

    A technique for reducing the work function of a field-emission graphite cathode by doping it by an alkaline-earth metal (barium) is suggested. A model of formation of a barium monolayer on the cathode surface is proposed. Field-emission tests show that the operating voltage of the doped cathode is

  14. Work functions of self-assembled monolayers on metal surfaces by first-principles calculations

    NARCIS (Netherlands)

    Rusu, P.C.; Brocks, G.

    2006-01-01

    Using first-principles calculations we show that the work function of noble metals can be decreased or increased by up to 2 eV upon the adsorption of self-assembled monolayers of organic molecules. We identify the contributions to these changes for several (fluorinated) thiolate molecules adsorbed

  15. Compatibility of refractory alloys with space reactor system coolants and working fluids

    International Nuclear Information System (INIS)

    DeVan, J.H.; DiStefano, J.R.; Hoffman, E.E.

    1984-01-01

    The bulk of this report deals with compatibility studies in liquid lithium and boiling potassium. Substantial information is also presented concerning the reactivity of niobium and tantalum alloys with residual gases in high and ultrahigh vacuum atmospheres. The remaining information, which is much less extensive, covers the compatibility behavior of molybdenum and tungsten alloys in alkali metals and a qualitative assessment of the use of refractory metals for containing helium in a closed Brayton cycle. 22 references, 29 figures, 14 tables

  16. Time-dependent changes in cerebrospinal fluid metal ions following aneurysm subarachnoid hemorrhage and their association with cerebral vasospasm.

    Science.gov (United States)

    Singla, Amit; Villwock, Mark R; Riordan, Margaret A; Padalino, David J; Deshaies, Eric M

    2015-01-01

    Aneurysm subarachnoid hemorrhage affects 10 in 100,000 people annually, 40 % of whom will develop neurological deficits from ischemic stroke caused by cerebral vasospasm. Currently, the underlying mechanisms are uncertain. Metal ions are important modulators of neuronal electrophysiological conduction and smooth muscle cell activity, thereby potentially contributing to vasospasm. We hypothesized that metal ion concentrations in the cerebrospinal fluid (CSF) after aneurysm rupture would change over time and be associated with vasospasm. To test this hypothesis, for 21 days, we collected CSF from patients with aneurysmal rupture and subjected it to spectrometry to detect metals. A repeated measures analysis was performed to analyze concentration changes over time. Six of the seven patients with aneurysmal rupture experienced vasospasm, all resolving by day 14. Changes in Fe²⁺ and Zn²⁺ concentrations in the CSF paralleled the incidence of vasospasm in this study population. Na²⁺, Ca²⁺, Mg²⁺, and Cu²⁺ concentrations exhibited no statistically significant changes over time. In conclusion, Fe²⁺ concentration in the CSF was significantly elevated during days 7-10, whereas Zn²⁺ concentrations spiked shortly thereafter, during days 11-14. This suggests that Fe²⁺ may be related to the induction of vasospasm and Zn²⁺ may be a marker of early brain injury secondary to ischemic injury and inflammation.

  17. Computational Fluid Dynamics at work - Design and Optimization of Microfluidic Applications

    DEFF Research Database (Denmark)

    Krühne, Ulrich; Bodla, Vijaya Krishna; Møllenbach, Jacob

    2012-01-01

    Computational Fluid Dynamics (CFD) is presented as a powerful tool to support design and optimization of microfluidic reactors. This is demonstrated by means of three case studies. First a three-dimensional scaffold for tissue engineering purposes is investigated using a combination of CFD...

  18. Computer analysis of an adiabatic Stirling cryocooler using a two-phase two-component working fluid

    International Nuclear Information System (INIS)

    Renfroe, D.A.; Cheung, C.M.

    1992-01-01

    This paper describes the performance and behavior of a Stirling cyrocooler incorporating a working fluid composed of helium and nitrogen. At the operating temperature of the cryocooler (80 K), the nitrogen component will condense in the freezer section. It is shown that the phase change in the working fluid increased the heat lifted for a given size and weight of machine and the coefficient of performance. The magnitude of these effects was dependent on the mass ratio of nitrogen to helium, phase angle between the compression and expansion processes, and the ratio of the compression space volume to the expansion space volume. The optimum heat lifted performance was obtained for a mass ratio of four parts of nitrogen to one part of helium, a phase angle of approximately 100 degrees, and a volume ratio of two which resulted in a heat lifted increase of 75% over the single phase, 90 degree phase angle configuration. The coefficient of performance showed a 20% improvement

  19. Optimum design of the metal bellows on the SolidWorks platform

    Directory of Open Access Journals (Sweden)

    Mikhail V. Chugunov

    2017-06-01

    Full Text Available Introduction: The metal bellows are widely used in various technical systems as the sensitive, compensating and separating elements. A variety of possible constructive solutions using bellows causes a broad range of standard sizes specified in GOST. In this regard the problem of the metal bellows design, which in the present case resolves itself to the choice of the bellow corresponding to the set specifications optimum, is important. Thus, the purpose of the research is the development of technique and software for the optimum design automation of the considered class structures. Materials and Methods: SolidWorks is the world leader in the area of CAD/CAE computer aided design-engineering system and possesses not only a developed standard functionality, but also opportunities of extension of this functionality by the user. In this article SolidWorks is used as a platform for the development of Add-In application to create automatically the metal bellow 3D model for the given parameters from the database corresponding to the given specifications. At the same time access to SolidWorks simulation functionality, through the analysis of SolidWorks Simulation, and to the appropriate database is provided by COM technology. For the solution of the optimization problem, the functionality of the Add-In-application developed by authors of this article is used. A development environment is MS Visual Studio C ++ (2015. The basis for work is object-oriented programming with API SolidWorks use. Results: The technique of optimum design of the metal bellows is developed. The software represents the SolidWorks application for practical use creating the project solution in the form of 3D models (parts and assemblies corresponding to the given specifications. Discussion and Conclusions: The developed technique and software reduce considerably time for the development of the project for structures of the considered class.

  20. Heavy metal ion extraction of crownether compounds with supercritical CO2 fluid

    International Nuclear Information System (INIS)

    Yun, Y. H.; Ko, M. S.; Kim, H. W.; Park, K. H.; Kim, H. D.

    2001-01-01

    Benzocrownether-diarylethene derivatives (5BCD, 6BCD) were synthesized and utilized to extract metal ions into supercritical CO 2 . In order to enhance the CO 2 -phillicity and the extraction capability, synthesized compounds have both perfluoro unit and benzocrown moiety and were compared with dicyclohexano 18-crown-6(DC18C6). With minimal amount of water and counter ions such as perfluorooctanesulphonic acid or perfluorooctanic acid, their metal ion(Sr 2+ , Co +2 , Na + ) extraction efficiency was investigated. 5BCD, 6BCD showed more than 50% extraction for Sr +2 , Na + ions and their extraction efficiency was better than that of DC18C6 compound

  1. Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (Athabasca Basin and Basement, Canada)

    Science.gov (United States)

    Richard, Antonin; Cathelineau, Michel; Boiron, Marie-Christine; Mercadier, Julien; Banks, David A.; Cuney, Michel

    2016-02-01

    -rich alteration. Finally, the metal concentrations in the NaCl-rich and CaCl2-rich brines are among the highest recorded compared to present-day sedimentary formation waters and fluid inclusions from basin-hosted base metal deposits (up to 600 ppm U, 3000 ppm Mn, 4000 ppm Zn, 6000 ppm Cu, 8000 ppm Pb, and 10,000 ppm Fe). The CaCl2-rich brine carries up to one order of magnitude more metal than the NaCl-rich brine. Though the exact origin of major cations and metals of the two brines remains uncertain, their contrasting compositions indicate that the two brines had distinct flow paths and fluid-rock interactions. Large-scale circulation of the brines in the Athabasca Basin and Basement was therefore a key parameter for metal mobility (including U) and formation of unconformity-related U deposits.

  2. Transformation of chlorinated paraffins to olefins during metal work and thermal exposure - Deconvolution of mass spectra and kinetics.

    Science.gov (United States)

    Schinkel, Lena; Lehner, Sandro; Knobloch, Marco; Lienemann, Peter; Bogdal, Christian; McNeill, Kristopher; Heeb, Norbert V

    2018-03-01

    Chlorinated paraffins (CPs) are high production volume chemicals widely used as additives in metal working fluids. Thereby, CPs are exposed to hot metal surfaces which may induce degradation processes. We hypothesized that the elimination of hydrochloric acid would transform CPs into chlorinated olefins (COs). Mass spectrometry is widely used to detect CPs, mostly in the selected ion monitoring mode (SIM) evaluating 2-3 ions at mass resolutions R drilling indeed induced HCl-losses. CO proportions in exposed mixtures of chlorotridecanes increased. Thermal exposure of chlorotridecanes at 160, 180, 200 and 220 °C also induced dehydrohalogenation reactions and CO proportions also increased. Deconvolution of respective mass spectra is needed to study the CP transformation kinetics without bias from CO interferences. Apparent first-order rate constants (k app ) increased up to 0.17, 0.29 and 0.46 h -1 for penta-, hexa- and heptachloro-tridecanes exposed at 220 °C. Respective half-life times (τ 1/2 ) decreased from 4.0 to 2.4 and 1.5 h. Thus, higher chlorinated paraffins degrade faster than lower chlorinated ones. In conclusion, exposure of CPs during metal drilling and thermal treatment induced HCl losses and CO formation. It is expected that CPs and COs are co-released from such processes. Full-scan mass spectra and subsequent deconvolution of interfered signals is a promising approach to tackle the CP/CO problem, in case of insufficient mass resolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function

    International Nuclear Information System (INIS)

    Chen Lin; Wu Wen-Bin; Liu Pin-Yang; Xiao Yun-Qing; Li Guo-Peng; Liu Yi-Ran; Jiang Hao-Yu; Guo Yan-Ling; Chen Xi-Meng

    2016-01-01

    For Li + and Na + ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako–Newns (BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li + and Na + ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states. (paper)

  4. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2016-03-01

    Full Text Available We present a thermo-economic analysis of an Organic Rankine Cycle (ORC for waste heat recovery. A case study for a heat source temperature of 150 °C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mixture composition are chosen as variables in order to identify the most suitable working fluid in combination with optimal process parameters under thermo-economic criteria. In general, the results show that cost-effective systems have a high minimal temperature difference ΔTPP,C at the pinch-point of the condenser and a low minimal temperature difference ΔTPP,E at the pinch-point of the evaporator. Choosing isobutane as the working fluid leads to the lowest costs per unit exergy with 52.0 €/GJ (ΔTPP,E = 1.2 K; ΔTPP,C = 14 K. Considering the major components of the ORC, specific costs range between 1150 €/kW and 2250 €/kW. For the zeotropic mixture, a mole fraction of 90% isobutane leads to the lowest specific costs per unit exergy. A further analysis of the ORC system using isobutane shows high sensitivity of the costs per unit exergy for the selected cost estimation methods and for the isentropic efficiency of the turbine.

  5. Circumferential-wave phase velocities for empty, fluid-immersed spherical metal shells

    DEFF Research Database (Denmark)

    Überall, Herbert; Ahyi, A. C.; Raju, P. K.

    2002-01-01

    -loaded, evacuated spherical metal shells of aluminum, stainless steel, and tungsten carbide. In particular, the characteristic upturn of the dispersion curves of low-order shell-borne circumferential waves (A or A0 waves) which takes place on spherical shells when the frequency tends towards very low values...

  6. Circumferential-wave phase velocities for empty, fluid-immersed spherical metal shells

    DEFF Research Database (Denmark)

    Überall, Herbert; Claude Ahyi, A.; Raju, P. K.

    2001-01-01

    frequency/elasticity-theory connection, and we obtain comparative dispersion-curve results for water-loaded, evacuated spherical shells of various metals. In particular, the characteristic upturn of the dispersion curves of low-order shell-borne circumferential waves (A or A0 waves) which takes place...

  7. On the relationship between executive functions of working memory and components derived from fluid intelligence measures.

    Science.gov (United States)

    Ren, Xuezhu; Schweizer, Karl; Wang, Tengfei; Chu, Pei; Gong, Qin

    2017-10-01

    The aim of the current study is to provide new insights into the relationship between executive functions and intelligence measures in considering the item-position effect observed in intelligence items. Raven's Advanced Progressive Matrices (APM) and Horn's LPS reasoning test were used to assess fluid intelligence which served as criterion in investigating the relationship between intelligence and executive functions. A battery of six experimental tasks measured the updating, shifting, and inhibition processes of executive functions. Data were collected from 205 university students. Fluid intelligence showed substantial correlations with the updating and inhibition processes and no correlation with the shifting process without considering the item-position effect. Next, the fixed-link model was applied to APM and LPS data separately to decompose them into an ability component and an item-position component. The results of relating the components to executive functions showed that the updating and shifting processes mainly contributed to the item-position component whereas the inhibition process was mainly associated with the ability component of each fluid intelligence test. These findings suggest that improvements in the efficiency of updating and shifting processes are likely to occur during the course of completing intelligence measures and inhibition is important for intelligence in general. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soria, José, E-mail: jose.soria@probien.gob.ar [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina); Gauthier, Daniel; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (PROMES-CNRS, UPR 8521), 7 Four Solaire Street, Odeillo, 66120 Font-Romeu (France); Rodriguez, Rosa [Chemical Engineering Institute, National University of San Juan, 1109 Libertador (O) Avenue, 5400 San Juan (Argentina); Mazza, Germán [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina)

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  9. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protective equipment or clothing for welding, cutting, or working with molten metal. 57.15007 Section 57.15007 Mineral Resources MINE SAFETY AND HEALTH... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment...

  10. Relation between morphology and work function of metals deposited on organic substrates

    Science.gov (United States)

    Kampen, T. U.; Das, A.; Park, S.; Hoyer, W.; Zahn, D. R. T.

    2004-07-01

    Ultraviolet photoemission spectroscopy (UPS) is employed to determine the work function of silver and indium films grown on two perylene derivatives, dimethylen-3, 4, 9, 10-perylenetetracarboxyiimide (DiMe-PTCDI) and 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA). The PTCDA and DiMe-PTCDI substrates were prepared as thick organic layers on sulphur passivated GaAs(0 0 1), where the molecular planes of PTCDA and DiMe-PTCDI are parallel and tilted with respect to the substrate surface, respectively. The crystalline structure of the evaporated metal layers is investigated using X-ray diffraction (XRD) and is found to be strongly dependent on the underlying organic substrate. Correspondingly, work functions are found to be different by more than 200 meV in agreement with the crystalline orientation of the metal films.

  11. Sensory ERPs predict differences in working memory span and fluid intelligence.

    Science.gov (United States)

    Brumback, Carrie R; Low, Kathy A; Gratton, Gabriele; Fabiani, Monica

    2004-02-09

    The way our brain reacts to sensory stimulation may provide important clues about higher-level cognitive function and its operation. Here we show that short-latency (memory span, as well as between subjects scoring high and low on a fluid intelligence test. Our findings also suggest that this link between sensory responses and complex cognitive tasks is modality specific (visual sensory measures correlate with visuo-spatial tasks whereas auditory sensory measures correlate with verbal tasks). We interpret these findings as indicating that people's effectiveness in controlling attention and gating sensory information is a critical determinant of individual differences in complex cognitive abilities.

  12. Selecting the process arrangement for preparing the gas turbine working fluid for an integrated gasification combined-cycle power plant

    Science.gov (United States)

    Ryzhkov, A. F.; Gordeev, S. I.; Bogatova, T. F.

    2015-11-01

    Introduction of a combined-cycle technology based on fuel gasification integrated in the process cycle (commonly known as integrated gasification combined cycle technology) is among avenues of development activities aimed at achieving more efficient operation of coal-fired power units at thermal power plants. The introduction of this technology is presently facing the following difficulties: IGCC installations are characterized by high capital intensity, low energy efficiency, and insufficient reliability and availability indicators. It was revealed from an analysis of literature sources that these drawbacks are typical for the gas turbine working fluid preparation system, the main component of which is a gasification plant. Different methods for improving the gasification plant chemical efficiency were compared, including blast air high-temperature heating, use of industrial oxygen, and a combination of these two methods implying limited use of oxygen and moderate heating of blast air. Calculated investigations aimed at estimating the influence of methods for achieving more efficient air gasification are carried out taking as an example the gasifier produced by the Mitsubishi Heavy Industries (MHI) with a thermal capacity of 500 MW. The investigation procedure was verified against the known experimental data. Modes have been determined in which the use of high-temperature heating of blast air for gasification and cycle air upstream of the gas turbine combustion chamber makes it possible to increase the working fluid preparation system efficiency to a level exceeding the efficiency of the oxygen process performed according to the Shell technology. For the gasification plant's configuration and the GTU working fluid preparation system be selected on a well-grounded basis, this work should be supplemented with technical-economic calculations.

  13. Fluid Interfaces

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius

    2001-01-01

    Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....

  14. A luminescent metal organic framework with high sensitivity for detecting and removing copper ions from simulated biological fluids.

    Science.gov (United States)

    Zheng, Tian-Tian; Zhao, Jiao; Fang, Zhou-Wen; Li, Meng-Ting; Sun, Chun-Yi; Li, Xiao; Wang, Xin-Long; Su, Zhong-Min

    2017-02-21

    The crystal structure of Cd-MOF-74 was obtained for the first time that possesses high sensitivity for the detection of copper ions from water and simulated biological fluids based on changes in luminescent intensity. Furthermore, Cd-MOF-74 could selectively remove Cu 2+ from simulated biological fluids that contain Mg 2+ , Co 2+ , Zn 2+ , Fe 2+ , Ni 2+ , Na + , and K + . The adsorption capacity of this adsorbent for copper ions reached 189.5 mg g -1 and it quickly adsorbed copper ions within 10 minutes under 10 ppm Cu 2+ in the simulated biological system. XPS, PXRD, and gas adsorption measurements revealed that this high sensitivity and selectivity of Cd-MOF-74 resulted from the partial substitution of Cd 2+ by Cu 2+ in the framework. Although many MOF materials have been employed for sensor or selective adsorption of Cu 2+ , Cd-MOF-74 is the first example of MOFs showing both capabilities in simulated biological fluids, which represents a pioneering work that extends the applications of MOF materials in the biological field.

  15. Evaluation of solubility in simulated lung fluid of metals present in the sludge from a metallurgical industry to produce metallic zinc

    International Nuclear Information System (INIS)

    Lima, Rosilda Maria Gomes de

    2012-01-01

    The objective of this study was to determine the solubility parameters (rapid and slow dissolution rates, rapid and slow dissolution fractions) metal particles present in a pile of sludge accumulated under exposure to weathering from the Cia Mercantil Inga, located at the Ilha da Madeira, Sepetiba Bay, Rio de Janeiro. Plant samples collected in the neighboring of the pile and bioindicators placed in the region and collected after some months indicated that the inhabitants of Ilha da Madeira have been exposed to trace elements such zinc, cadmium, mercury and lead, produced during the processing of zinc minerals (hemimorphite - Zn 4 (OH) 2 Si 2 O 7 .H 2 O, and willemite - Zn 2 SiO 4 ). A static dissolution test in vitro was used to determine the solubility parameters using a simulated lung fluid (SLF), on a time basis ranging from 10 min to 1 year. The metal concentrations in the sludge samples and in the SLF were determined using Particle Induced X-rays Emission (PIXE). In conclusion, this study confirms the harmful effects on the neighboring population of the airborne particles containing these metals that came from the sludge. The solubility parameters obtained for Zn, Cd, Cr, Ni and Mn present in the rapid dissolution fraction in SLF were 0.945; 0.473; 0.226; 0.300 and 0.497, respectively, and the corresponding times for half life of dissolution of the rapid fraction were f r = 2.082 days; f r = 0.09 days; f r = 0.37 days; f r = 0.332 days ad f r = 0.99 days; for the slow dissolution fraction times were f r = 146.95 days; f r = 63 days; f r = 86.64 days; f r = 79.66 days and f r = 59.84 days. These values indicate that these metals present a moderate absorption level in SLF, and may be classified as M type, according to the International Commission on Radiological Protection (ICRP). The use of solubility parameters allowed a better description of the kinetic behaviour of the sludge in the human body and, therefore, a better evaluation of the worker’s risk to

  16. Evaluation of absorbents for an absorption heat pump using natural organic working fluids (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Hisajima, Daisuke; Sakiyama, Ryoko; Nishiguchi, Akira [Hitachi Ltd., Tsuchiura (Japan). Mechanical Engineering Research Lab.

    1999-07-01

    The present situation of electric power supply and energy consumption in Japan has made it necessary to develop a new absorption air conditioning system which has low electric energy consumption, uses natural organic refrigerants, and can work as a heat pump in winter. Estimating vapor and liquid equilibrium of new pairs of working fluids is prerequisite to developing the new absorption heat pump system. In this phase of the work, methods for estimating vapor and liquid equilibrium that take into account intermolecular force were investigated. Experimental and calculated data on natural organic materials mixtures were considered to find optimum candidates, and then a procedure for evaluation was chosen. Several candidate absorbents were selected that used isobutane and dimethyl ether as refrigerants. (orig.)

  17. Numerical Study on Heat Transfer Performance of PCHE With Supercritical CO{sub 2} as Working Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Woo; Ngo, Ich-long; Byon, Chan [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2016-11-15

    The printed circuit heat exchanger (PCHE) is regarded as a promising candidate for advanced heat exchangers for the next-generation supercritical CO{sub 2} power generation owing to its high compactness and rigid structure. In this study, an innovative type of PCHE, in which the channel sizes for the heat source fluid and heat sink fluid are different, is considered for analysis. The thermal performance of the PCHE, with supercritical CO{sub 2} as the working fluid, is numerically analyzed. The results have shown that the thermal performance of the PCHE decreases monotonically when the channel size of either the heat source channel or the heat sink channel, because of the decreased flow velocity. On the other hand, the thermal performance of the PCHE is found to be almost independent of the spacing between the channels. In addition, it was found that the channel cross sectional shape has little effect on the thermal performance when the hydraulic diameter of the channel remains constant.

  18. Possible maternal offloading of metals in the plasma, uterine and capsule fluid of pregnant ragged-tooth sharks (Carcharias taurus) on the east coast of South Africa.

    Science.gov (United States)

    Naidoo, Kristina; Chuturgoon, Anil; Cliff, Geremy; Singh, Sanil; Ellis, Megan; Otway, Nicholas; Vosloo, Andre; Gregory, Michael

    2017-07-01

    We studied the possible metal offloading onto the progeny of three pregnant female ragged-tooth sharks (Carcharias taurus) (C. taurus). The presences of five metals, i.e. aluminium (Al), arsenic (As), cadmium (Cd), lead (Pb) and selenium (Se) were validated by mass spectrometry in the maternal plasma as well as the intracapsular and uterine fluids (UF) in which embryos develop. Metals were ranked in a decreasing concentration as follows: Plasma: As > Al > Se > Pb > Cd; ICF: As > Se > Al > Cd > Pb and UF: As > Se > Al > Cd > Pb. As was present in the highest concentration in all three sharks. Al, Pb and Cd were found to be the highest within the plasma, while concentrations of Se were similar in all three fluids. These results indicate that C. taurus embryos are exposed to metals during early development, but the impact of this exposure remains unknown. To the best of our knowledge, this is the first investigation to confirm the presence of metals in the fluids that surround the developing C. taurus embryos, a species that is already listed as vulnerable.

  19. Turbo-alternator-compressor design for supercritical high density working fluids

    Science.gov (United States)

    Wright, Steven A.; Fuller, Robert L.

    2013-03-19

    Techniques for generating power are provided. Such techniques involve a thermodynamic system including a housing, a turbine positioned in a turbine cavity of the housing, a compressor positioned in a compressor cavity of the housing, and an alternator positioned in a rotor cavity between the turbine and compressor cavities. The compressor has a high-pressure face facing an inlet of the compressor cavity and a low-pressure face on an opposite side thereof. The alternator has a rotor shaft operatively connected to the turbine and compressor, and is supported in the housing by bearings. Ridges extending from the low-pressure face of the compressor may be provided for balancing thrust across the compressor. Seals may be positioned about the alternator for selectively leaking fluid into the rotor cavity to reduce the temperature therein.

  20. Expansion of organic Rankine cycle working fluid in a cylinder of a low-speed two-stroke ship engine

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Wronski, Jorrit; Andreasen, Jesper Graa

    2017-01-01

    presents the thermodynamic analysis of a concept that aims at reducing the cost of an organic Rankine cycle unit by using one of the cylinders in a large diesel engine as expansion device. Numerical models were used to optimise the process parameters and thereby determine the power potential...... for this concept. The evaluation of 104 working fluids points to cyclopropane, R245fa and R1234ze(z) as the most promising. The results suggest that the power produced by the organic Rankine cycle cylinder is at least equivalent to that of the cylinders operating with the diesel process. This enables potential...

  1. Experimental investigation and numerical simulation of a copper micro-channel heat exchanger with HFE-7200 working fluid

    Science.gov (United States)

    Borquist, Eric

    Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, time, and required equipment. Testing involved filling the micro-channel heat exchanger with 3MTM NovecTM HFE-7200 working fluid. The working fluid was chosen for appropriate physical and environmental properties for the prototypes intended application. Using a dry heat exchanger as the baseline, the addition of the working fluid proved advantageous by increasing energy output by 8% while decreasing overall device temperatures. Upon successful experimental testing of the physical device, internal operation was determined based on implementation of the lattice Boltzmann method, a physics-based statistical method that actively tracked the phase change occurring in a simulated micro-channel. The simulation demonstrated three primary areas of phase change occurring, surfaces adjacent to where the heat source and heat sink were located and the bulk vapor-liquid interface, which agreed with initial device design intentions. Condensation film thickness grew to 5microm over the time interval, while the bulk interface tracked from initial 12microm from the lid to 20microm from the lid. Surface tension effects dominating vapor pressure kept the liquid near the heat source; however, the temperature and pressure VLE data suggested vapor interface growth from the heated surface to

  2. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.

    Science.gov (United States)

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-01

    Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Thermal resistance of rotating closed-loop pulsating heat pipes: Effects of working fluids and internal diameters

    Directory of Open Access Journals (Sweden)

    Kammuang-Lue Niti

    2017-01-01

    Full Text Available The objective of this study was to experimentally investigate the effects of working fluids and internal diameters on the thermal resistance of rotating closed-loop pul¬sating heat pipes (RCLPHP. The RCLPHP were made of a copper tube with internal diameters of 1.50 mm and 1.78 mm, bent into the shape of a flower petal, and arranged into a circle with 11 turns. The evaporator section was located at the outer end of the tube bundle. R123, ethanol, and water were filled as the working fluids. The RCLPHP was rotated at centrifugal accelerations 0.5, 1, 3, 5, 10, and 20 times of the gravitational acceleration considered at the connection between the evaporator and the condenser sections. The heat input was varied from 30 W to 50 W, and then to 100 W, 150 W, and 200 W. It can be concluded that when the latent heat of evaporation increases, the pressure difference between the evaporator and the condenser sections decreases, and the thermal resistance increases. Moreover, when the internal diameter increases, the driving force increases and the frictional force proportionally decreases, or the Karman number increases, and the thermal resistance decreases.

  4. An experimental study on the performance of closed loop pulsating heat pipe (CLPHP) with methanol as a working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md. Lutfor; Nourin, Farah Nazifa, E-mail: farahnazifanourin@gmail.com; Salsabil, Zaimaa; Yasmin, Nusrat, E-mail: nusratyasmin015@gmail.com [Military Institute of Science and Technology, Mirpur Cantonment, Dhaka -1216 (Bangladesh); Ali, Mohammad [Bangladesh University of Engineering and Technology, Dhaka -1000 (Bangladesh)

    2016-07-12

    Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2 mm,outer diameter is 2.5 mm and 250 mm long. The CLPHP has 8 loops where the evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.

  5. An experimental study on the performance of closed loop pulsating heat pipe (CLPHP) with methanol as a working fluid

    Science.gov (United States)

    Rahman, Md. Lutfor; Nourin, Farah Nazifa; Salsabil, Zaimaa; Yasmin, Nusrat; Ali, Mohammad

    2016-07-01

    Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2mm,outer diameter is 2.5mm and 250mm long. The CLPHP has 8 loops where the evaporation section is 50mm, adiabatic section is 120mm and condensation section is 80mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.

  6. An experimental study on the performance of closed loop pulsating heat pipe (CLPHP) with methanol as a working fluid

    International Nuclear Information System (INIS)

    Rahman, Md. Lutfor; Nourin, Farah Nazifa; Salsabil, Zaimaa; Yasmin, Nusrat; Ali, Mohammad

    2016-01-01

    Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2 mm,outer diameter is 2.5 mm and 250 mm long. The CLPHP has 8 loops where the evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.

  7. Rates of hydroxyl radical production from transition metals and quinones in a surrogate lung fluid

    Science.gov (United States)

    Charrier, Jessica G.; Anastasio, Cort

    2016-01-01

    Hydroxyl radical (.OH) is the most reactive, and perhaps most detrimental to health, of the reactive oxygen species. .OH production in lungs following inhalation of particulate matter (PM) can result from redox-active chemicals, including iron and copper, but the relative importance of these species is unknown. This work investigates .OH production from iron, copper, and quinones, both individually and in mixtures at atmospherically relevant concentrations. Iron, copper and three of the four quinones (1,2-naphthoquinone, phenanthrenequinone and 1,4-naphthoquinone) produce .OH. Mixtures of copper or quinones with iron synergistically produce .OH at a rate 20 - 130% higher than the sum of the rates of the individual redox-active species. We developed a regression equation from 20 mixtures to predict the rate of .OH production from the particle composition. For typical PM compositions, iron and copper account for most .OH production, while quinones are a minor source, although they can contribute if present at very high concentrations. This work shows that Cu contributes significantly to .OH production in ambient PM; other work has shown that Cu appears to be the primary driver of HOOH production and dithiothreitol (DTT) loss in ambient PM extracts. Taken together, these results indicate that copper appears to be the most important individual contributor to direct oxidant production from inhaled PM. PMID:26153923

  8. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples

    International Nuclear Information System (INIS)

    Rajabi, Maryam; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-01-01

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2–70, 6–360, 7–725, 7–370, and 8–450 ng mL −1 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ and Ni 2+ ions, respectively, with the correlation of determinations (R 2 s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid and tap water samples. - Highlights: • A novel centrifugeless dispersive

  9. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Maryam, E-mail: mrajabi@semnan.ac.ir; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-03-08

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}, and Ni{sup 2+} prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2–70, 6–360, 7–725, 7–370, and 8–450 ng mL{sup −1} for the Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}and Ni{sup 2+} ions, respectively, with the correlation of determinations (R{sup 2}s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}, and Ni{sup 2+} ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid

  10. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields, or goggles shall...

  11. Static, dynamic and electronic properties of expanded fluid mercury in the metal-nonmetal transition range. An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    CalderIn, L [Research Computing and Cyberinfrastructure, The Pennsylvania State University, University Park, PA 16802 (United States); Gonzalez, L E; Gonzalez, D J, E-mail: david@liq1.fam.cie.uva.es [Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain)

    2011-09-21

    Fluid Hg undergoes a metal-nonmetal (M-NM) transition when expanded toward a density of around 9 g cm{sup -3}. We have performed ab initio molecular dynamics simulations for several thermodynamic states around the M-NM transition range and the associated static, dynamic and electronic properties have been analyzed. The calculated static structure shows a good agreement with the available experimental data. It is found that the volume expansion decreases the number of nearest neighbors from 10 (near the triple point) to around 8 at the M-NM transition region. Moreover, these neighbors are arranged into two subshells and the decrease in the number of neighbors occurs in the inner subshell. The calculated dynamic structure factors agree fairly well with their experimental counterparts obtained by inelastic x-ray scattering experiments, which display inelastic side peaks. The derived dispersion relation exhibits some positive dispersion for all the states, although its value around the M-NM transition region is not as marked as suggested by the experiment. We have also calculated the electronic density of states, which shows the appearance of a gap at a density of around 8.3 g cm{sup -3}. (paper)

  12. Metal and hydrocarbon behavior in sediments from Brazilian shallow waters drilling activities using nonaqueous drilling fluids (NAFs).

    Science.gov (United States)

    do Carmo R Peralba, Maria; Pozebon, Dirce; dos Santos, João H Z; Maia, Sandra M; Pizzolato, Tânia M; Cioccari, Giovani; Barrionuevo, Simone

    2010-08-01

    The impact of drilling oil activities in the Brazilian Bonito Field/Campos Basin (Rio de Janeiro) shell drilling (300 m) using nonaqueous fluids (NAFs) was investigated with respect to Al, Fe, Mn, Ba, Co, Pb, Cu, As, Hg, Cr, Ni, Zn, Cd, V, and aliphatic and polynuclear aromatic hydrocarbons concentrations in the sediment. Sampling took place in three different times during approximately 33 months. For the metals Al, As, Co, Cr, Cu, Cd, Fe, Ni, Mn, V, and Zn, no significant variation was observed after drilling activities in most of the stations. However, an increase was found in Ba concentration--due to the drilling activity--without return to the levels found 22 months after drilling. High Ba contents was already detected prior to well drilling, probably due to drilling activities in other wells nearby. Hydrocarbon contents also suggest previous anthropogenic activities. Aliphatic hydrocarbon contents were in the range usually reported in other drilling sites. The same behavior was observed in the case of polyaromatic hydrocarbons. Nevertheless, the n-alkane concentration increased sharply after drilling, returning almost to predrilling levels 22 months after drilling activities.

  13. Realization of N-Type Semiconducting of Phosphorene through Surface Metal Doping and Work Function Study

    Directory of Open Access Journals (Sweden)

    Haocheng Sun

    2018-01-01

    Full Text Available Phosphorene becomes an important member of the layered nanomaterials since its discovery for the fabrication of nanodevices. In the experiments, pristine phosphorene shows p-type semiconducting with no exception. To reach its full capability, n-type semiconducting is a necessity. Here, we report the electronic structure engineering of phosphorene by surface metal atom doping. Five metal elements, Cu, Ag, Au, Li, and Na, have been considered which could form stable adsorption on phosphorene. These elements show patterns in their electron configuration with one valence electron in their outermost s-orbital. Among three group 11 elements, Cu can induce n-type degenerate semiconducting, while Ag and Au can only introduce localized impurity states. The distinct ability of Cu, compared to Ag and Au, is mainly attributed to the electronegativity. Cu has smaller electronegativity and thus denotes its electron to phosphorene, upshifting the Fermi level towards conduction band, resulting in n-type semiconducting. Ag and Au have larger electronegativity and hardly transfer electrons to phosphorene. Parallel studies of Li and Na doping support these findings. In addition, Cu doping effectively regulates the work function of phosphorene, which gradually decreases upon increasing Cu concentration. It is also interesting that Au can hardly change the work function of phosphorene.

  14. Working memory components that predict word problem solving: Is it merely a function of reading, calculation, and fluid intelligence?

    Science.gov (United States)

    Fung, Wenson; Swanson, H Lee

    2017-07-01

    The purpose of this study was to assess whether the differential effects of working memory (WM) components (the central executive, phonological loop, and visual-spatial sketchpad) on math word problem-solving accuracy in children (N = 413, ages 6-10) are completely mediated by reading, calculation, and fluid intelligence. The results indicated that all three WM components predicted word problem solving in the nonmediated model, but only the storage component of WM yielded a significant direct path to word problem-solving accuracy in the fully mediated model. Fluid intelligence was found to moderate the relationship between WM and word problem solving, whereas reading, calculation, and related skills (naming speed, domain-specific knowledge) completely mediated the influence of the executive system on problem-solving accuracy. Our results are consistent with findings suggesting that storage eliminates the predictive contribution of executive WM to various measures Colom, Rebollo, Abad, & Shih (Memory & Cognition, 34: 158-171, 2006). The findings suggest that the storage component of WM, rather than the executive component, has a direct path to higher-order processing in children.

  15. Sensitivity analysis of Computer-aided molecular design problem for the development of novel working fluids for power cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    problem. It integrates both a system model for the ORC and property models,such as GC+-based models for estimation of pure component properties, Peng-Robinson equation of state for estimationof enthalpy, entropy, etc.. The system consists of coupled mass and energy balances for a pump, a condenser......In recent years there is a large availability of low-temperature heat sources in different applications such as waste heat in chemical industries and refrigeration plants as well as renewable energy sources suchas biomass combustion, geothermal and solar heat sources. Power cycles are an important...... technical tool to convert this waste heat into usable energy. So far the low-temperature heat cannot be utilized efficiently for electricity generation.In order to optimize the heat transfer process and the power generation, the influence of the working fluid, the cycledesigns and the operating conditions...

  16. The Challenges of a “more fluid universe” in the Work of Giorgio Fontana

    Directory of Open Access Journals (Sweden)

    Patrizia Farinelli

    2016-12-01

    Full Text Available In his written works, Giorgio Fontana repeatedly focuses on the transformations of the outer world of Milan in order to narrate changes to the city’s cultural identity. The attention he pays to these changes is, in Babele 56. Otto fermate nella città che cambia (2008, a documentary one; in his short novel Per legge superiore (2011, it is a literary one. In both texts, and in the mode both genres require, he shows how the massive presence of migrants in Italy leads not only to reconsidering the identitymaking coordinates of locations, but also to shaking paradigms of thoughts, beliefs, and lifestyles. The contact with a crowd of people of different ethnicities whose lives are frequently characterized by mobility and precariousness enables us to discern the fragility of what is often considered unmovable into a specific culture: in his 2011 novel, it is the confidence in the law itself but also the need for a new consideration of it.

  17. Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic working fluid

    Directory of Open Access Journals (Sweden)

    Thoranis Deethayat

    2015-09-01

    Full Text Available In this study, performance of a 50 kW organic Rankine cycle (ORC with internal heat exchanger (IHE having R245fa/R152a zeotropic refrigerant with various compositions was investigated. The IHE could reduce heat rate at the ORC evaporator and better cycle efficiency could be obtained. The zeotropic mixture could reduce the irreversibilities during the heat exchanges at the ORC evaporator and the ORC condenser due to its gliding temperature; thus the cycle working temperatures came closer to the temperatures of the heat source and the heat sink. In this paper, effects of evaporating temperature, mass fraction of R152a and effectiveness of internal heat exchanger on the ORC performances for the first law and the second law of thermodynamics were considered. The simulated results showed that reduction of R245fa composition could reduce the irreversibilities at the evaporator and the condenser. The suitable composition of R245fa was around 80% mass fraction and below this the irreversibilities were nearly steady. Higher evaporating temperature and higher internal heat exchanger effectiveness also increased the first law and second law efficiencies. A set of correlations to estimate the first and the second law efficiencies with the mass fraction of R245fa, the internal heat exchanger effectiveness and the evaporating temperature were also developed.

  18. Modulation of the work function of fullerenes C60 and C70 by alkali-metal adsorption: A theoretical study

    International Nuclear Information System (INIS)

    Liang, Hong; Xu, Shunfu; Liu, Weihui; Sun, Yueqiang; Liu, Xiangfa; Zheng, Xinqing; Li, Sen; Zhang, Qiang; Zhu, Ziliang; Zhang, Xiaochun; Dong, Chengguo; Li, Chun; Yuan, Guang; Mimura, Hitenori

    2013-01-01

    The impact of alkali-metal (Li/Na/Cs) adsorption on work function of fullerenes C 60 and C 70 was investigated by first-principles calculations. After adsorption, the work functions of fullerenes C 60 and C 70 decrease distinctly and vary linearly with the electronegativity of the alkali metal elements, and the positions where the alkali atoms are adsorbed considerably influence the work functions. On the contrary, a vacancy defect elevates the work functions of the fullerenes C 60 and C 70 . The variation in the work functions rests with variation in Fermi level (which are attributed to charge transfer) and variation in vacuum levels (which are attributed to the induced dipole moments). Moreover, alkali-metal adsorption can also improve the electric conductivity of a fullerene mixture of C 60 and C 70 .

  19. Adverse reactions to metal on polyethylene implants: Highly destructive lesions related to elevated concentration of cobalt and chromium in synovial fluid.

    Science.gov (United States)

    Eltit, Felipe; Assiri, Ali; Garbuz, Donald; Duncan, Clive; Masri, Bassam; Greidanus, Nelson; Bell, Robert; Sharma, Manju; Cox, Michael; Wang, Rizhi

    2017-07-01

    Adverse local tissue reactions (ALTR) are the primary cause of failure of metal on metal (MoM) hip implants, and fewer but not negligible number cases of nonmodular metal on polyethylene (MoP) implants. In this study, we analyzed 17 cases of MoP ALTR, and equal number of MoM, by histological observation, cobalt and chromium concentration in serum and synovial fluid and cytokine analysis in ALTR tissues. ALTRs in MoP are highly necrotic, affecting larger areas than MoM ALTRs. Degenerative changes in blood vessels' wall were seen in all MoP ALTRs. The concentration of cobalt and chromium was higher in synovial fluid but lower in serum of MoP patients compared to MoM patients. Elevated concentrations of chemokines were observed in ALTR tissues. We conclude that ALTRs in MoP systems are highly necrotizing lesions that seem to have a similar development to ALTRs in MoM. Alteration of vessels wall seems to have a role in the tissues necrosis, as well as the elevated concentration of cobalt and chromium in synovial fluid of MoP patients. Chemokines may be involved in the pathogenesis of ALTR and constitute possible diagnostic targets. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1876-1886, 2017. © 2017 Wiley Periodicals, Inc.

  20. Numerical analysis of an air condenser working with the refrigerant fluid R407C

    International Nuclear Information System (INIS)

    Aprea, Ciro; Maiorino, Angelo

    2007-01-01

    As CFC (clorofluorocarbon) and HCFC (hydrochlorofluorocarbon) refrigerants which have been used as refrigerants in a vapour compression refrigeration system were know to provide a principal cause to ozone depletion and global warming, production and use of these refrigerants have been restricted. Therefore, new alternative refrigerants should be searched for, which fit to the requirements in an air conditioner or a heat pump, and refrigerant mixtures which are composed of HFC (hydrofluorocarbon) refrigerants having zero ODP (ozone depletion potential) are now being suggested as drop-in or mid-term replacement. However also these refrigerants, as the CFC and HCFC refrigerants, present a greenhouse effect. The zeotropic mixture designated as R407C (R32/R125/R134a 23/25/52% in mass) represents a substitute of the HCFC22 for high evaporation temperature applications as the air-conditioning. Aim of the paper is a numerical-experimental analysis for an air condenser working with the non azeotropic mixture R407C in steady-state conditions. A homogeneous model for the condensing refrigerant is considered to forecast the performances of the condenser; this model is capable of predicting the distributions of the refrigerant temperature, the velocity, the void fraction, the tube wall temperature and the air temperature along the test condenser. Obviously in the refrigerant de-superheating phase the numerical analysis becomes very simple. A comparison with the measurements on an air condenser mounted in an air channel linked to a vapour compression plant is discussed. The results show that the simplified model provides a reasonable estimation of the steady-state response and that this model is useful to design purposes

  1. The [Y/Mg] clock works for evolved solar metallicity stars

    Science.gov (United States)

    Slumstrup, D.; Grundahl, F.; Brogaard, K.; Thygesen, A. O.; Nissen, P. E.; Jessen-Hansen, J.; Van Eylen, V.; Pedersen, M. G.

    2017-08-01

    Aims: Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. Methods: High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2.56 m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M 67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the log g is determined to much higher precision than what is possible with spectroscopy. Results: It is confirmed that the four open clusters are close to solar metallicity and they follow the [Y/Mg] vs. age trend previously found for solar twins. Conclusions: The [Y/Mg] vs. age clock also works for giant stars in the helium-core burning phase, which vastly increases the possibilities to estimate the age of stars not only in the solar neighborhood, but in large parts of the Galaxy, due to the brighter nature of evolved stars compared to dwarfs. Based on spectroscopic observations made with two telescopes: the Nordic Optical Telescope operated by NOTSA at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias and the Keck I Telescope at the W.M. Keck Observatory (Mauna Kea, Hawaii, USA) operated by the California Institute of Technology, the University of California and the National Aeronautics and Space Administration.

  2. Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function

    Science.gov (United States)

    Chen, Lin; Wu, Wen-Bin; Liu, Pin-Yang; Xiao, Yun-Qing; Li, Guo-Peng; Liu, Yi-Ran; Jiang, Hao-Yu; Guo, Yan-Ling; Chen, Xi-Meng

    2016-08-01

    For Li+ and Na+ ions scattered from high work function metal surfaces, efficient neutralization is observed, and it cannot be explained by the conventional free electron model. In order to explain these experimental data, we investigate the velocity-dependent neutral fraction with the modified Brako-Newns (BN) model. The calculated results are in agreement with the experimental data. We find that the parallel velocity effect plays an important role in neutralizing the Li+ and Na+ ions for large angle scattering. The nonmonotonic velocity behavior of neutral fraction is strongly related to the distance-dependent coupling strength between the atomic level and metal states. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405078 and 11474140), the Fundamental Research Funds for the Central Universities, China (Grant Nos. lzujbky-2014-169 and lzujbky-2015-244), the Project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry, and the National Students’ Innovation and Entrepreneurship Training Program (Grant Nos. 201410730069 and 201510730078).

  3. Exceptional CO2 working capacity in a heterodiamine-grafted metal-organic framework.

    Science.gov (United States)

    Lee, Woo Ram; Jo, Hyuna; Yang, Li-Ming; Lee, Hanyeong; Ryu, Dae Won; Lim, Kwang Soo; Song, Jeong Hwa; Min, Da Young; Han, Sang Soo; Seo, Jeong Gil; Park, Yong Ki; Moon, Dohyun; Hong, Chang Seop

    2015-07-15

    An amine-functionalized metal-organic framework (MOF), dmen-Mg 2 (dobpdc) (dmen = N , N -dimethylethylenediamine), which contains a heterodiamine with both primary and tertiary amines, was prepared via a post-synthetic method. This material exhibits a significant selectivity factor for CO 2 over N 2 that is commensurate with top-performing MOFs. It is remarkable that the solid is fully regenerated under vacuum or flowing Ar at low desorption temperatures, and following this can take up CO 2 at more than 13 wt%. An exceptionally high working capacity is achieved at low regeneration temperatures and after exposure to humid conditions, which are important parameters for a real post-combustion CO 2 capture process.

  4. Twinning-induced plasticity (TWIP) and work hardening in Ti-based metallic glass matrix composites.

    Science.gov (United States)

    Fan, J; Qiao, J W; Wang, Z H; Rao, W; Kang, G Z

    2017-05-12

    The present study demonstrates that Ti-based metallic glass matrix composites (MGMCs) with a normal composition of Ti 43 Zr 32 Ni 6 Ta 5 Be 14 containing ductile dendrites dispersed in the glass matrix has been developed, and deformation mechanisms about the tensile property have been investigated by focusing on twinning-induced plasticity (TWIP) effect. The Ti-based MGMC has excellent tensile properties and pronounced tensile work-hardening capacity, with a yield strength of 1100 MPa and homogeneous elongation of 4%. The distinguished strain hardening is ascribed to the formation of deformation twinning within the dendrites. Twinning generated in the dendrites works as an obstacle for the rapid propagation of shear bands, and then, the localized necking is avoided, which ensures the ductility of such kinds of composites. Besides, a finite-element model (FEM) has been established to explain the TWIP effect which brings out a work-hardening behavior in the present MGMC instead of a localized strain concentration. According to the plasticity theory of traditional crystal materials and some new alloys, TWIP effect is mainly controlled by stacking fault energy (SFE), which has been analyzed intensively in the present MGMC.

  5. VLSI-compatible carbon nanotube doping technique with low work-function metal oxides.

    Science.gov (United States)

    Suriyasena Liyanage, Luckshitha; Xu, Xiaoqing; Pitner, Greg; Bao, Zhenan; Wong, H-S Philip

    2014-01-01

    Single-wall carbon nanotubes (SWCNTs) have great potential to become the channel material for future high-speed transistor technology. However, as-made carbon nanotube field effect transistors (CNFETs) are p-type in ambient, and a consistent and reproducible n-type carbon nanotube (CNT) doping technique has yet to be realized. In addition, for very large scale integration (VLSI) of CNT transistors, it is imperative to use a solid-state method that can be applied on the wafer scale. Herein we present a novel, VLSI-compatible doping technique to fabricate n-type CNT transistors using low work-function metal oxides as gate dielectrics. Using this technique we demonstrate wafer-scale, aligned CNT transistors with yttrium oxide (Y2Ox) gate dielectrics that exhibit n-type behavior with Ion/Ioff of 10(6) and inverse subthreshold slope of 95 mV/dec. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses confirm that slow (∼1 Å/s) evaporation of yttrium on the CNTs can form a smooth surface that provides excellent wetting to CNTs. Further analysis of the yttrium oxide gate dielectric using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques revealed that partially oxidized elemental yttrium content increases underneath the surface where it acts as a reducing agent on nanotubes by donating electrons that gives rise to n-type doping in CNTs. We further confirm the mechanism for this technique with other low work-function metals such as lanthanum (La), erbium (Er), and scandium (Sc) which also provide similar CNT NFET behavior after transistor fabrication. This study paves the way to exploiting a wide range of materials for an effective n-type carbon nanotube transistor for a complementary (p- and n-type) transistor technology.

  6. Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region.

    Science.gov (United States)

    Huang, C H; Lai, J J; Wei, T Y; Chen, Y H; Wang, X; Kuan, S Y; Huang, J C

    2015-01-01

    The effects of the nanocrystalline phases on the bio-corrosion behavior of highly bio-friendly Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid were investigated, and the findings are compared with our previous observations from the Zr53Cu30Ni9Al8 metallic glasses. The Ti42Zr40Si15Ta3 metallic glasses were annealed at temperatures above the glass transition temperature, Tg, with different time periods to result in different degrees of α-Ti nano-phases in the amorphous matrix. The nanocrystallized Ti42Zr40Si15Ta3 metallic glasses containing corrosion resistant α-Ti phases exhibited more promising bio-corrosion resistance, due to the superior pitting resistance. This is distinctly different from the previous case of the Zr53Cu30Ni9Al8 metallic glasses with the reactive Zr2Cu phases inducing serious galvanic corrosion and lower bio-corrosion resistance. Thus, whether the fully amorphous or partially crystallized metallic glass would exhibit better bio-corrosion resistance, the answer would depend on the crystallized phase nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Influence of the type of working fluid in the lower cycle and superheated steam parameters in the upper cycle on effectiveness of operation of binary power plant

    Directory of Open Access Journals (Sweden)

    Stachel Aleksander A.

    2015-03-01

    Full Text Available In the paper presented have been the results of the analysis of effectiveness of operation of binary power plant consisting of combined two Clausius-Rankine cycles, namely the binary cycle with water as a working fluid in the upper cycle and organic substance as a working fluid in the lower cycle, as well as a single fluid component power plant operating also in line with the C-R cycle for superheated steam, with water as a working fluid. The influence of the parameters of superheated steam in the upper cycle has been assessed as well as the type of working fluid in the lower cycle. The results of calculations have been referred to the single-cycle classical steam power plant operating at the same parameters of superheated steam and the same mass flow rate of water circulating in both cycles. On the basis of accomplished analysis it has been shown that the binary power plant shows a greater power with respect to the reference power plant.

  8. Containment of fluid samples in the hydrothermal diamond-anvil cell without the use of metal gaskets: Performance and advantages for in situ analysis

    Science.gov (United States)

    Chou, I.-Ming; Bassett, William A.; Anderson, Alan J.; Mayanovic, Robert A.; Shang, L.

    2008-01-01

    Metal gaskets (Re, Ir, Inconel, or stainless steel) normally used to contain fluid samples in the hydrothermal diamond-anvil cell (HDAC) are sometimes undesirable due to possible contamination and to gasket deformation at high pressures and temperatures resulting in nonisochoric behavior. Furthermore, in x-ray spectroscopic experiments, metal gaskets may attenuate the incident x-ray beam and emitted fluorescence x-rays, and the interaction of scattered radiation with the gasket may produce fluorescence that interferes with the x-ray spectrum of the sample. New arrangements and procedures were tested for the operation of the HDAC without using the metal gaskets. Distilled, de-ionized water was loaded into the sample chamber, a laser-milled recess 300 ??m in diameter and ???50 ??m deep centered in the 1.0 mm face of the lower diamond anvil, and sealed by pressing the top diamond anvil face directly against the lower one without a metal gasket in between. A maximum sample pressure of 202 MPa at 617 ??C was maintained for a duration of 10 min without evidence of leakage. A small change in fluid density was observed in one experiment where the sample was held at 266 MPa at 708 ??C for 10 min. The gasketless HDAC was also employed in x-ray absorption spectroscopy experiments, where, in addition to the sample chamber in the lower diamond, two grooves were milled at a 90?? angle to each other around the sample chamber to minimize the attenuation of incident and fluorescent x rays. With a minimum distance between the sample chamber and the grooves of 80 ??m, a pressure of 76 MPa at 500 ??C was maintained for 2 h with no change in the original fluid density. ?? 2008 American Institute of Physics.

  9. Precision machining, sheet-metal work and welding at the heart of CERN

    CERN Multimedia

    2001-01-01

    From the writing of specifications and the production of high-tech components, to technology transfer and call-out work on-site, the MF group in EST Division offers CERN users a wide variety of services. Its full range of activities is presented in a new brochure. In addition to its many physicists and engineers, CERN also has teams of mechanics, welders and sheet-metalworkers whose expertise is a precious asset for the Organization. Within the MF Group (Manufacturing Facilities, EST Division) these teams perform precision machining, sheet-metal work and welding. As an example, the Group has been responsible for producing radiofrequency accelerating cells to a precision of the order of 1/100th mm and with a surface roughness of only 0.1 micron. The Group's workshops also manufactured the stainless steel vacuum chamber for the brand new n-TOF experiment (Bulletin n°47/2000), a 200-m long cylindrical chamber with a diameter of just 800 millimetres! The MF Group is assisted in its task of providing me...

  10. Gate-first integration of tunable work function metal gates of different thicknesses into high-k metal gates CMOS FinFETs for multi- VTh engineering

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-03-01

    Gate-first integration of tunable work function metal gates of different thicknesses (320 nm) into high-k/metal gates CMOS FinFETs was demonstrated to achieve multiple threshold voltages (VTh) for 32-nm technology and beyond logic, memory, input/output, and system-on-a-chip applications. The fabricated devices showed excellent short-channel effect immunity (drain-induced barrier lowering ∼ 40 mV/V), nearly symmetric VTh, low T inv(∼ 1.4 nm), and high Ion(∼780μAμm) for N/PMOS without any intentional strain enhancement. © 2006 IEEE.

  11. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Oyeniyi A. Oyewunmi

    2016-06-01

    Full Text Available In the present paper, we consider the employment of working-fluid mixtures in organic Rankine cycle (ORC systems with respect to thermodynamic and heat-transfer performance, component sizing and capital costs. The selected working-fluid mixtures promise reduced exergy losses due to their non-isothermal phase-change behaviour, and thus improved cycle efficiencies and power outputs over their respective pure-fluid components. A multi-objective cost-power optimization of a specific low-temperature ORC system (operating with geothermal water at 98 °C reveals that the use of working-fluid-mixtures does indeed show a thermodynamic improvement over the pure-fluids. At the same time, heat transfer and cost analyses, however, suggest that it also requires larger evaporators, condensers and expanders; thus, the resulting ORC systems are also associated with higher costs. In particular, 50% n-pentane + 50% n-hexane and 60% R-245fa + 40% R-227ea mixtures lead to the thermodynamically optimal cycles, whereas pure n-pentane and pure R-245fa have lower plant costs, both estimated as having ∼14% lower costs per unit power output compared to the thermodynamically optimal mixtures. These conclusions highlight the importance of using system cost minimization as a design objective for ORC plants.

  12. Work-related problems in metal handling tasks in Bangladesh: obstacles to the development of safety and health measures.

    Science.gov (United States)

    Ahasan, M R; Mohiuddin, G; Väyrynen, S; Ironkannas, H; Quddus, R

    1999-02-01

    Many manual labourers in Bangladesh are involved with metal-handling tasks that are both physically demanding and stressful. The metal workers have been significantly exposed to prolonged hammering and cutting activities in excessive noise and with awkward body postures. Moreover, stressors from heat and humidity, welding fumes and metal dusts often cause excess strain, and are reflected in a deterioration of their physical work performance. Indeed, physical work is the economic source in many developing countries for the support of worker's family and relatives. Unfortunately, there are many obstacles and a lack of efficient steps to restore ergonomics principles as well as occupational safety and health measures. Thus, in this paper, tasks, and jobs are classified and analysed from the results of an ergonomics survey from 343 subjects (293 adults men, age 20-40 years; 17 women, 19-32 years) and 33 child workers (14-17 years). Four types of metal working sites from two districts in Bangladesh were surveyed using questionnaires and interviews. The results showed that a significant number of workers experienced a high prevalence of work-related problems. The main aim was to identify stressful task that are related to musculoskeletal and psychosocial symptoms. Moreover, the findings reveal the possibility of why ergonomics measures are unsuccessful; and if they could have an immediate effect on the safety and health of metal workers in Bangladesh.

  13. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  14. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    Science.gov (United States)

    Smith, D.D.; Hiller, J.M.

    1998-02-24

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.

  15. Modeling Mental Speed: Decomposing Response Time Distributions in Elementary Cognitive Tasks and Correlations with Working Memory Capacity and Fluid Intelligence

    Directory of Open Access Journals (Sweden)

    Florian Schmitz

    2016-10-01

    Full Text Available Previous research has shown an inverse relation between response times in elementary cognitive tasks and intelligence, but findings are inconsistent as to which is the most informative score. We conducted a study (N = 200 using a battery of elementary cognitive tasks, working memory capacity (WMC paradigms, and a test of fluid intelligence (gf. Frequently used candidate scores and model parameters derived from the response time (RT distribution were tested. Results confirmed a clear correlation of mean RT with WMC and to a lesser degree with gf. Highly comparable correlations were obtained for alternative location measures with or without extreme value treatment. Moderate correlations were found as well for scores of RT variability, but they were not as strong as for mean RT. Additionally, there was a trend towards higher correlations for slow RT bands, as compared to faster RT bands. Clearer evidence was obtained in an ex-Gaussian decomposition of the response times: the exponential component was selectively related to WMC and gf in easy tasks, while mean response time was additionally predictive in the most complex tasks. The diffusion model parsimoniously accounted for these effects in terms of individual differences in drift rate. Finally, correlations of model parameters as trait-like dispositions were investigated across different tasks, by correlating parameters of the diffusion and the ex-Gaussian model with conventional RT and accuracy scores.

  16. Performance and energy saving analysis of a refrigerator using hydrocarbon mixture (HC-R134a) as working fluid

    Science.gov (United States)

    Mohtar, M. N.; Nasution, H.; Aziz, A. A.

    2015-12-01

    The use of hydrocarbon mixture as a working fluid in a refrigerator system is rarely explored. Almost all domestic refrigerators use hydroflourocarbon R134a (HFC-R134a) as refrigerants. In this study, hydrocarbon gas (HC-R134a) is used as the alternative refrigerant to replace HFC-R134a. It has a composition of R290 (56%), R600a (54.39%) and additive (0.1%wt) blended for the trials. The experiments were conducted with 105 g and 52.5 g refrigerant mass charge, subjected to internal heat load of 0, 1, 2, 3 and 4 kg respectively. The study investigates the coefficient of performance of the refrigerator (COPR) and energy consumption. The results show that the use of HC-R134a as the replaceable refrigerant can save energy ranging from 2.04% to 7.09%, as compared to the conventional HFC-R134a refrigerant. Naturally, the COPR improvement and temperature distribution using HC-R134a are much better than HFC-R134a

  17. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    Science.gov (United States)

    Smith, Douglas D.; Hiller, John M.

    1998-01-01

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.

  18. Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization

    Science.gov (United States)

    Song, WenLei; Xu, Cheng; Veksler, Ilya V.; Kynicky, Jindrich

    2016-01-01

    Carbonatites host some unique ore deposits, especially rare earth elements (REE). Hydrothermal fluids have been proposed to play a significant role in the concentration and transport of REE and other rare metals in carbonatites, but experimental constraints on fluid-melt equilibria in carbonatitic systems are sparse. Here we present an experimental study of trace element (REE, Ba, Sr, Mo and W) partitioning between hydrous fluids and carbonatitic melts, bearing on potential hydrothermal activity associated with carbonatite ore-forming systems. The experiments were performed on mixtures of synthetic carbonate melts and aqueous fluids at 700-800 °C and 100-200 MPa using rapid-quench cold-seal pressure vessels and double-capsule assemblages with diamond traps for analyzing fluid precipitates in the outer capsule. Starting mixtures were composed of Ca, Mg and Na carbonates spiked with trace elements. Small amounts of F or Cl were added to some of the mixtures to study the effects of halogens on the element distribution. The results show that REE, Ba, Sr, Mo and W all preferentially partition into carbonatite melt and have fluid-melt distribution coefficients ( D f/m) below unity. The REE partitioning is slightly dependent on the major element (Ca, Mg and Na) composition of the starting mixtures, and it is influenced by temperature, pressure, and the presence of halogens. The fluid-melt D values of individual REE vary from 0.02 to 0.15 with D_{Lu}^{f} / {fm}{m} being larger than D_{La}^{f} / {fm}{m} by a factor of 1.1-2. The halogens F and Cl have strong and opposite effects on the REE partitioning. Fluid-melt D REE are about three times higher in F-bearing compositions and ten times lower in Cl-bearing compositions than in halogen-free systems. D_{W}^{f} / {fm}{m} and D_{Mo}^{f} / {fm}{m} are the highest among the studied elements and vary between 0.6 and 0.7; D_{Ba}^{f} / {fm}{m} is between 0.05 and 0.09, whereas D_{Sr}^{f} / {fm}{m} is at about 0.01-0.02. The

  19. Numerical study of a gas coupled VM-PT hybrid cryocooler using 3He as the working fluid

    Science.gov (United States)

    Wang, J.; Pan, C. Z.; Zhang, T.; Wang, J. J.; Zhou, Y.

    2017-12-01

    The two-stage Vuilleumier gas-coupling pulse tube cryocooler (VM-PT) is one kind of novel low-frequency cryocoolers. In this gas-coupled form, the single stage Vuilleumier cryocooler serves as both pressure wave generator and a pre-cooler for coaxial pulse tube. Compared with the most commercialized GM and GM pulse tube cryocooler, the two-stage VM-PT cryocooler is characterized by its high stability, compact size and thermal actuation which are indispensable for space application. It has already been verified experimentally that this cryocooler can obtain 9.75mW@4.2K and the lowest no-load temperature 3.39K when 4He as the working fluid. However, such refrigerating capacity seems not enough for further application. 3He as a more potential substitution of 4He has better physical properties to improve performance, which has been studied in GM type and Stirling pulse tube cryocooler. For further optimization, a numerical study on the specific performance of two-stage VM-PT cryocooler using 3He is carried out in the present paper though Sage software. Working at the frequency of 1.0Hz and the pressure of 0.8MPa, the two-stage VM-PT cryocooler with 3He obtained 50mW@4.06K. The usage of 3He was 0.0038kg, about 30L under STP. At 4.2K, using 3He can obtain 58mW cooling power and 0.49% relative Carnot efficiency, about 1.6 times higher than using 4He.

  20. Work Function Tuning in Sub-20nm Titanium Nitride (TiN) Metal Gate: Mechanism and Engineering

    KAUST Repository

    Hasan, Mehdi

    2011-07-01

    Scaling of transistors (the building blocks of modern information age) provides faster computation at the expense of excessive power dissipation. Thus to address these challenges, high-k/metal gate stack has been introduced in commercially available microprocessors from 2007. Since then titanium nitride (TiN) metal gate’s work function (Wf) tunability with its thickness (thickness increases, work function increases) is a well known phenomenon. Many hypotheses have been made over the years which include but not limited to: trap charge and metal gate nucleation, nitrogen concentration, microstructure agglomeration and global stress, metal oxide formation, and interfacial oxide thickness. However, clear contradictions exist in these assumptions. Also, nearly all these reports skipped a comprehensive approach to explain this complex paradigm. Therefore, in this work we first show a comprehensive physical investigation using transmission electron microcopy/electron energy loss spectroscopy (TEM/EELS), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) to show replacement of oxygen by nitrogen in the metal/dielectric interface, formation of TiONx, reduction of Ti/N concentration and grain size increment happen with TiN thickness increment and thus may increase the work function. Then, using these finding, we experimentally show 100meV of work function modulation in 10nm TiN Metal-oxide-semiconductor capacitor by using low temperature oxygen annealing. A low thermal budget flow (replicating gate-last) shows similar work function boost up. Also, a work function modulation of 250meV has been possible using oxygen annealing and applying no thermal budget. On the other hand, etch-back of TiN layer can decrease the work function. Thus this study quantifies role of various factors in TiN work function tuning; it also reproduces the thickness varied TiN work function modulation in single thickness TiN thus reducing the

  1. Ra and the average effective strain of surface asperities deformed in metal-working processes

    DEFF Research Database (Denmark)

    Bay, Niels; Wanheim, Tarras; Petersen, A. S

    1975-01-01

    Based upon a slip-line analysis of the plastic deformation of surface asperities, a theory is developed determining the Ra-value (c.l.a.) and the average effective strain in the surface layer when deforming asperities in metal-working processes. The ratio between Ra and Ra0, the Ra-value after...... and before deformation, is a function of the nominal normal pressure and the initial slope γ0 of the surface asperities. The last parameter does not influence Ra significantly. The average effective strain View the MathML sourcege in the deformed surface layer is a function of the nominal normal pressure...... and γ0. View the MathML sourcege is highly dependent on γ0, View the MathML sourcege increasing with increasing γ0. It is shown that the Ra-value and the strain are hardly affected by the normal pressure until interacting deformation of the asperities begins, that is until the limit of Amonton's law...

  2. Numerical Analysis of an Organic Rankine Cycle with Adjustable Working Fluid Composition, a Volumetric Expander and a Recuperator

    Directory of Open Access Journals (Sweden)

    Peter Collings

    2017-03-01

    Full Text Available Conventional Organic Rankine Cycles (ORCs using ambient air as their coolant cannot fully utilize the greater temperature differential available to them during the colder months. However, changing the working fluid composition so its boiling temperature matches the ambient temperature as it changes has been shown to have potential to increase year-round electricity generation. Previous research has assumed that the cycle pressure ratio is able to vary without a major loss in the isentropic efficiency of the turbine. This paper investigates if small scale ORC systems that normally use positive-displacement expanders with fixed expansion ratios could also benefit from this new concept. A numerical model was firstly established, based on which a comprehensive analysis was then conducted. The results showed that it can be applied to systems with positive-displacement expanders and improve their year-round electricity generation. However, such an improvement is less than that of the systems using turbine expanders with variable expansion ratios. Furthermore, such an improvement relies on heat recovery via the recuperator. This is because expanders with a fixed expansion ratio have a relatively constant pressure ratio between their inlet and outlet. The increase of pressure ratio between the evaporator and condenser by tuning the condensing temperature to match colder ambient condition in winter cannot be utilised by such expanders. However, with the recuperator in place, the higher discharging temperature of the expander could increase the heat recovery and consequently reduce the heat input at the evaporator, increasing the thermal efficiency and the specific power. The higher the amount of heat energy transferred in the recuperator, the higher the efficiency improvement.

  3. The influence of metal and alloy dental works on the quality of magnetic resonance imaging of the head and neck

    Czech Academy of Sciences Publication Activity Database

    Linetskiy, I.; Hubálková, H.; Starčuk jr., Zenon; Mazánek, J.

    2006-01-01

    Roč. 14, č. 2 (2006), s. 201-208 ISSN 1027-3204 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : MRI * image artefact * metallic dental work Subject RIV: FS - Medical Facilities ; Equipment

  4. Metal Work: Making an Adjustable C-Clamp. Kit No. 23. Instructor's Manual [and] Student Learning Activity Manual.

    Science.gov (United States)

    White, Jim

    An instructor's manual and student activity guide on making an adjustable C-clamp are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry (metal work). (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings:…

  5. A new method for determining extra time by considering ergonomic loads in the garment and metal working industries

    OpenAIRE

    Verhovnik, Vekoslav; Polajnar, Andrej

    2017-01-01

    The changing labour conditions in the garment and metal-working industries have led to the necessity of determining new extra times to establish the time standard. In this paper, a method of measuring stress and strain imposed upon the operator in new working conditions by determining the additional production coefficient is presented. The method gives criteria and grades to assess stress at the workplace. Physical stress (dynamic and static), thermal and visual stress, discomfort caused by n...

  6. Two-extremum electrostatic potential of metal-lattice plasma and the work function of an electron

    Directory of Open Access Journals (Sweden)

    Surma S.A.

    2015-06-01

    Full Text Available Metal-lattice plasma is treated as a neutral two-component two-phase system of 2D surface and 3D bulk. Free electron density and bulk chemical potential are used as intensive parameters of the system with the phase boundary position determined in the crystalline lattice. A semiempirical expression for the electron screened electrostatic potential is constructed using the lattice-plasma polarization concept. It comprises an image term and three repulsion/attraction terms of second and fourth orders. The novel curve has two extremes and agrees with certain theoretical forms of potential. A practical formula for the electron work function of metals and a simplified schema of electronic structure at the metal/vacuum interface are proposed. This yields 10.44 eV for the Fermi energy of free electron gas; -5.817 eV for the Fermi energy level; 4.509 eV for the average work function of bcc tungsten. Selected data are also given for fcc Cu and hcp Re. For harmonic frequencies ~ 10E16 per s of the self-excited metal-lattice plasma, energy gaps of 14.54 and 8.02 eV are found, which correspond to the bulk and surface plasmons, respectively. Further extension of this thermodynamics and metal-lattice theory based approach may contribute to a better understanding of theoretical models which are employed in chemical physics, catalysis and materials science of nanostructures.

  7. A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery

    International Nuclear Information System (INIS)

    Chen, Y.; Lundqvist, P.; Johansson, A.; Platell, P.

    2006-01-01

    The organic rankine cycle (ORC) as a bottoming cycle to convert low-grade waste heat into useful work has been widely investigated for many years. The CO 2 transcritical power cycle, on the other hand, is scarcely treated in the open literature. A CO 2 transcritical power cycle (CO 2 TPC) shows a higher potential than an ORC when taking the behavior of the heat source and the heat transfer between heat source and working fluid in the main heat exchanger into account. This is mainly due to better temperature glide matching between heat source and working fluid. The CO 2 cycle also shows no pinch limitation in the heat exchanger. This study treats the performance of the CO 2 transcritical power cycle utilizing energy from low-grade waste heat to produce useful work in comparison to an ORC using R123 as working fluid. Due to the temperature gradients for the heat source and heat sink the thermodynamic mean temperature has been used as a reference temperature when comparing both cycles. The thermodynamic models have been developed in EES The relative efficiencies have been calculated for both cycles. The results obtained show that when utilizing the low-grade waste heat with the same thermodynamic mean heat rejection temperature, a transcritical carbon dioxide power system gives a slightly higher power output than the organic rankine cycle

  8. Protein profiles of nasal lavage fluid from individuals with work-related upper airway symptoms associated with moldy and damp buildings.

    Science.gov (United States)

    Wåhlén, K; Fornander, L; Olausson, P; Ydreborg, K; Flodin, U; Graff, P; Lindahl, M; Ghafouri, B

    2016-10-01

    Upper airway irritation is common among individuals working in moldy and damp buildings. The aim of this study was to investigate effects on the protein composition of the nasal lining fluid. The prevalence of symptoms in relation to work environment was examined in 37 individuals working in two damp buildings. Microbial growth was confirmed in one of the buildings. Nasal lavage fluid was collected from 29 of the exposed subjects and 13 controls, not working in a damp building. Protein profiles were investigated with a proteomic approach and evaluated by multivariate statistical models. Subjects from both workplaces reported upper airway and ocular symptoms. Based on protein profiles, symptomatic subjects in the two workplaces were discriminated from each other and separated from healthy controls. The groups differed in proteins involved in inflammation and host defense. Measurements of innate immunity proteins showed a significant increase in protein S100-A8 and decrease in SPLUNC1 in subjects from one workplace, while alpha-1-antitrypsin was elevated in subjects from the other workplace, compared with healthy controls. The results show that protein profiles in nasal lavage fluid can be used to monitor airway mucosal effects in personnel working in damp buildings and indicate that the profile may be separated when the dampness is associated with the presence of molds. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The degradation of metal vessels properties working under pressure during a long term use

    Directory of Open Access Journals (Sweden)

    А. В. Білосточний

    2017-06-01

    Full Text Available Mechanical properties and metal structure of all-metal gas tanks made of medium-carbon steel after different periods of service have been studied. It has been observed that the duration of the service does not significantly influence on the strength of the metal tanks, but it leads to some reduction of plasticity and toughness decrease. It has been observed that toughness degradation appears after 25-30 years of tanks exploitation. At testing of the Menazhe and Sharp specimen it was also found out that temperature dependence of metal tanks toughness varies with the service life. It has been noted that the metal microstructure does not change under continuous operation. Therefore the decrease in properties after long-term use of the cylinders was caused by the metal substructure. Exploration of the mechanism and kinetics of the substructure changes requires special studies. On the strength of these data the need to improve the existing methods of periodic inspection (as a function of service time of all-metal steel cylinders, as well as setting limits of the life-span of these vessels has been shown

  10. Determinação voltamétrica de metais em águas e fluidos biológicos empregando mineralização de amostras com radiação ultravioleta Voltammetric determination of metals in waters and biological fluids using sample mineralization with ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    Leandro M. de Carvalho

    2008-01-01

    Full Text Available This work describes the optimization of pretreatment steps for the destruction of organic matter in samples of waters and biological fluids, by using an UV irradiation system with a high power UV radiation source (400 W. The efficiency of the system constructed for the photo-decomposition of samples of model waters, natural waters and biological fluids was investigated by performing recovery experiments of the metallic species Zn(II, Cd(II, Pb(II, Cu(II, Al(III and Fe(III. The use of UV irradiation allowed the liberation of metals bound to the organic matrix and the determination of the total content of elements in the samples.

  11. CONTROL OF METAL SURFACES MACHINED IN ACCORDANCE WITH THE DIAMOND NANOMACHINING TECHNOLOGY BASED ON THE ELECTRON WORK FUNCTION

    Directory of Open Access Journals (Sweden)

    G. V. Sharonov

    2015-01-01

    Full Text Available Dimensional machining technology is based on the use of integrated geometric parameters of machined surfaces. Technological impact of a pick results in oxidation processes and changes in physic-chemical parameters of surface. Control of only geometric parameters is insufficient to describe characteristics of machining and formation of ultra-smooth surfaces. The electron work function is therefore used. The aim of the work was to study electrophysical states of optic surfaces of non-ferrous metals and alloys in relation to geometric and physic-chemical parameters according to the distribution of the electron work function over the surface. We conducted the study on experimental metal samples made of copper and aluminum alloy, machined in accordance with the diamond nanomachining technology. The diamond nanomachining technology would be capable of ensuring the roughness of non-ferrous metals and alloys machined at the level of Ra ≤ 0,005 µm. Modernized Kelvin probe was used as the registration technique of the changes of the electron work function over the surface. Dependence between the electron work function value, as well as its alteration and the physicchemical and geometric parameters of a surface has been determined. It has been shown that the diamond nanomachining technology makes it possible to obtain electro-physically uniform optical surfaces on copper and aluminum alloy with the minimal range of the distribution of the electric potential over the surface. 

  12. FINAL TAILINGS OF METAL-WORKING PRODUCTION. Part 3. PHYSICO-MECHANICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    O. M. Djakonov

    2011-01-01

    Full Text Available The indices of adhesion and friability of metal-containing tailings, their water absorbency and wettability and also abrasive characteristics of tailings with the purpose of prevention of contacting surfaces wear are studied.

  13. Insulator-to-metal transition in vanadium sesquioxide: does the Mott criterion work in this case?

    Science.gov (United States)

    Pergament, Alexander; Stefanovich, Genrikh

    2012-03-01

    It is shown that the Mott criterion expressed by the simple relation a B(n c)1/3 ≈ 0.25 turns out to be quite successful in describing metal-insulator phase transitions not only in heavily doped semiconductors, but also in transition metal oxides such as VO2 and V2O3. It is found in this article that, in the case of a high-temperature transition 'paramagnetic insulator - paramagnetic metal' in vanadium sesquioxide, a B(n c)1/3 = 0.254. Difficulties connected with the analogous description of a low-temperature transition ('paramagnetic metal - antiferromagnetic insulator') in V2O3 are discussed.

  14. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples.

    Science.gov (United States)

    Rajabi, Maryam; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-03-08

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2-70, 6-360, 7-725, 7-370, and 8-450 ng mL -1 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ and Ni 2+ ions, respectively, with the correlation of determinations (R 2 s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid and tap water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Magmatic-hydrothermal fluids and volatile metals in the Spirit Lake pluton and Margaret Cu-Mo porphyry system, SW Washington, USA

    Science.gov (United States)

    Iveson, Alexander A.; Webster, James D.; Rowe, Michael C.; Neill, Owen K.

    2016-03-01

    late-stage pervasive metasomatism by halogen-bearing exsolved fluid(s) is provided by the high Mg# (>70) secondary amphiboles and biotites from within the Spirit Lake pluton, where the amphiboles are clear replacement products of primary pyroxenes. Fluid halogen fugacity ratios calculated from the biotite compositions overlap with other global mineralised porphyry systems, despite not being immediately associated with sulphide ores. The evidence suggests complex fluid processes and the coincidental development of the mineralised porphyry system within the pluton. Heat, fluids, and metals were therefore likely supplied by a later phase of magmatism, unrelated to the consolidation of the main Spirit Lake granitoid. These new constraints on magmatic-hydrothermal fluid signatures have wider applicability to potentially tracing proximal barren and mineralised processes, and for distinguishing between formation mechanisms for primary and secondary halogen-bearing minerals.

  16. Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan

    Science.gov (United States)

    Al-Khashman, Omar. A.

    Karak Industrial Estate (KIE) was investigated for its heavy metals content. Samples of dust, street dust and soil were analyzed for their content of Fe, Cu, Zn, Ni and Pb after digestion with nitric acid. The results of the analysis were used to determine major sources and magnitude of heavy metals pollution. The ranges of heavy metal concentrations in the investigated area were 58.8-94.8, 1.8-84.9, 15.4-136.9, 1.7-6.5 and 2.1-314.1 mg kg -1 dry soil for Fe, Cu, Zn, Ni and Pb, respectively. The concentrations of heavy metals in soils are greater on the surface but decreased in the lower part as a result of the basic nature of this soil. There are two possible sources of heavy metals (Zn, Cu, Ni and Pb) anthropogenic and industrial activities from the work place in KIE. Significant contribution from industrial sources at KIE was evident at nearby places.

  17. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Liquid metal reactor concept: core design and structural materials” was to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials. Main results arising from national and international R&D programmes and projects in the field were reviewed, and new activities to be carried out under the IAEA aegis were identified on the basis of the analysis of current research and technology gaps

  18. New theory of effective work functions at metal/high-k dielectric interfaces : application to metal/high-k HfO2 and la2O 3 dielectric interfaces

    OpenAIRE

    Shiraishi, Kenji; Nakayama, Takashi; Akasaka, Yasushi; Miyazaki, Seiichi; Nakaoka, Takashi; Ohmori, Kenji; Ahmet, Parhat; Torii, Kazuyoshi; Watanabe, Heiji; Chikyow, Toyohiro; Nara, Yasuo; Iwai, Hiroshi; Yamada, Keisaku

    2006-01-01

    We have constructed a universal theory of the work functions at metal/high-k HfO2 and La2O3 dielectric interfaces by introducing a new concept of generalized charge neutrality levels. Our theory systematically reproduces the experimentally observed work functions of various gate metals on Hf-based high-k dielectrics, including the hitherto unpredictable behaviors of the work functions of p-metals. Our new concept provides effective guiding principles to achieving near-bandedge work functions ...

  19. Work of adhesion in laser-induced delamination along polymer-metal interfaces

    NARCIS (Netherlands)

    Fedorov, A.; van Tijum, R.; Vellinga, W. P.; de Hosson, Jeff

    2007-01-01

    Laser-induced delamination is a recent technique aimed at characterizing adhesive strength of thin polymer coatings on metal substrates. A laser pulse is used to create a blister that initiates further delamination of the film under pressure. To process the experimental data a simple elastic model

  20. Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system

    International Nuclear Information System (INIS)

    Guo, T.; Wang, H.X.; Zhang, S.J.

    2011-01-01

    Highlights: → Performances of a novel cogeneration system using low-temperature geothermal sources under disturbance conditions were investigated. → It aimed at identifying appropriate fluids yielding high PPR and QQR values. → Fluids group presenting higher normal boiling point values showed averagely 7.7% higher PPR with a larger variation than QQR values under disturbance conditions. → Smaller T P value, higher η t value, higher geothermal source parameters and lower heating supply parameters led to higher PPR values but lower QQR values. -- Abstract: A novel cogeneration system driven by low-temperature geothermal sources was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The main purpose is to identify appropriate fluids which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Performances of the novel cogeneration system under disturbance conditions have also been studied. Results indicate that fluids group presenting higher normal boiling point values shows averagely 7.7% higher PPR values and R236ea and R245ca outstand among the group. ΔT P (pinch temperature difference in heat exchangers) and η t (turbine efficiency) values play more important roles on the variation of PPR values. QQR values change slightly with various ΔT P , η t and η rp (refrigerant pump efficiency) values while the variation range is larger under various geothermal source and heating supply parameters. Smaller ΔT P value, higher η t value, higher geothermal source parameters and lower heating supply parameters lead to higher PPR values but lower QQR values.

  1. Restricted accessed nanoparticles for direct magnetic solid phase extraction of trace metal ions from human fluids followed by inductively coupled plasma mass spectrometry detection.

    Science.gov (United States)

    Yan, Ping; He, Man; Chen, Beibei; Hu, Bin

    2015-06-21

    Herein, restricted accessed magnetic nanoparticles were synthesized by self-assembly of a non-ionic surfactant (Tween-20) onto the 4-(2-pyridylazo)resorcinol (PAR) functionalized magnetic nanoparticles (MNPs). A series of analytical techniques were employed for the characterization of the as-prepared restricted accessed Fe3O4@SiO2@PAR, and it was found that the as-prepared restricted accessed Fe3O4@SiO2@PAR nanoparticles have a porous structure with a BET surface area of around 99.4 m(2) g(-1), an average pore size of about 6.14 nm and a pore volume of 0.47 cm(3) g(-1). Besides, the prepared restricted accessed Fe3O4@SiO2@PAR showed good size exclusion properties toward proteins, providing application potential for the direct analysis of biological samples. Based on this, a novel method of restricted accessed magnetic solid phase extraction (MSPE) combined with inductively coupled plasma-mass spectrometry (ICP-MS) was developed for the direct determination of trace metal ions in human fluids. The parameters affecting the extraction of the target metals by MSPE were studied and the optimized conditions were established. Under the optimum conditions, the adsorption capacity of Cr(III), Cd(II), La(III), Nd(III) and Pb(II) on the as-prepared restricted accessed Fe3O4@SiO2@PAR was 62.9, 56.6, 33.7, 36.9 and 43.3 mg g(-1), respectively. With an enrichment factor of 30, the limits of detection for Cr(III), Cd(II), La(III), Nd(III) and Pb(II) were as low as 11.9, 0.8, 0.7, 1.6 and 4.1 ng L(-1), and the relative standard deviations were 7.6, 8.7, 8.4, 8.1 and 5.0 (C(Cr, Pb) = 0.05 μg L(-1), C(Cd, La) = 0.005 μg L(-1), C(Nd) = 0.01 μg L(-1), n = 7), respectively. The developed method was successfully applied for the direct analysis of free metal ions in human urine and serum samples, and has the advantages of good anti-interference ability, high sensitivity and exhibits great application potential in the direct analysis of trace metals in biological fluids.

  2. The correlation between acoustic and magnetic properties in the long working metal boiler drum with the parameters of the electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ababkov, Nikolai, E-mail: n.ababkov@rambler.ru; Smirnov, Alexander, E-mail: galvas.kem@gmail.com [T.F. Gorbachev Kuzbass State Technical University, Vesennjaja str 28, Kemerovo, 650000 Russian Federation (Russian Federation)

    2016-01-15

    The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of research results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector.

  3. The correlation between acoustic and magnetic properties in the long working metal boiler drum with the parameters of the electron microscope

    International Nuclear Information System (INIS)

    Ababkov, Nikolai; Smirnov, Alexander

    2016-01-01

    The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of research results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector

  4. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into

  5. Fluid inclusion geothermometry

    Science.gov (United States)

    Cunningham, C.G.

    1977-01-01

    Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.

  6. Effects of fluid dynamics on cleaning efficacy of supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.

    1993-03-01

    Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a Berty'' autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.

  7. Effects of fluid dynamics on cleaning efficacy of supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.

    1993-03-01

    Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a ``Berty`` autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.

  8. Metal-loaded graphene surface plasmon waveguides working in the terahertz regime

    DEFF Research Database (Denmark)

    Xiao, Binggang; Qin, Kang; Xiao, Sanshui

    2015-01-01

    A metal-loaded graphene surface plasmon waveguide composed of a thin silica layer sandwiched between a graphene layer and a metal stripe is proposed and the waveguiding properties in the THz regime are numerically investigated. The results show that the fundamental mode of the proposed waveguide...... is tightly confined in the middle silica layer with an acceptable propagation loss. Compared with most other graphene waveguides proposed in the literature, the realization of this waveguide does not need to pattern or deform the graphene layer, thus retaining the superior properties of bulk graphene...... material. The tight modal confinement and the ease of fabrication suggest the high potential use of this waveguide in high-density THz photonic integration....

  9. Photoemission from Low Work Function Coated Metal Surfaces A Comparison of Theory to Experiment

    CERN Document Server

    Jensen, Kevin; Moody, Nathan A

    2005-01-01

    The development of rugged and/or self rejuvenating photocathodes with high quantum efficiency (QE) using the longest wavelength drive laser is of paramount importance for RF photo-injectors for high power FELs and accelerators. We report on our program to develop advanced photocathodes and to develop and validate models of photoemission from coated metals to analyze experimental data,* provide emission models usable by beam simulation codes,** and project performance. The model accounts for the effects of laser heating, thermal evolution, surface conditions, laser parameters, and material characteristics, and predicts current distribution and QE. The photoemission and QE from metals and dispenser photocathodes is evaluated: the later introduces complications such as coverage non-uniformity and field enhancement. The performance of the models is compared to our experimental results for dispenser photocathodes and cesiated surfaces (e.g., tungsten, silver, etc.) in which the time-dependent models are shown to a...

  10. Experimental determination of the temperature dependence of metallic work functions at low temperatures. Progress report

    International Nuclear Information System (INIS)

    Pipes, P.B.

    1977-01-01

    Progress made under ERDA Contract No. EY-76-S-02-2314.002 is described. Efforts to gain theoretical insight into the temperature dependence of the contact potential of Nb near the superconducting transition have only been qualitatively successful. Preliminary measurements of adsorbed 4 He gas on the temperature dependence of the contact potentials of metals were performed and compared with a previously developed theory

  11. Increasing the life of cutting fluids used in the LLNL machine shop

    International Nuclear Information System (INIS)

    Cadena, C.A.; da Roza, R.A.; Johnson, J.S.; Szidon, R.D.

    1981-01-01

    The objective of this study was to extend the working life of cutting fluids used in metal machining operations at LLNL. The characteristics of the fluids in nine different machines were studied. The pH, bacteria level, percent coolant concentrate, percent tramp oil, and total undissolved solids were monitored on a week-to-week basis for 6 weeks. During this time, the criteria and procedures used for changing the cutting fluids in the machines were also observed. Although the study is incomplete, the following recommendations were made. Cutting fluids should be diluted with deionized water and the concentration of the cutting fluid should be monitored regularly with a refractometer. A bactericide should be added to the cutting fluid. The machines should have a thorough initial cleaning and machine oil leaks should be eliminated. Only one cutting fluid should be used throughout the shop. Methods for removing metal particles from used cutting oils should be investigated

  12. Influence of the Applied Working Fluid and the Arrangement of the Steering Edges on Multi-Vane Expander Performance in Micro ORC System

    Directory of Open Access Journals (Sweden)

    Józef Rak

    2018-04-01

    Full Text Available Micro-power domestic organic Rankine cycle (ORC systems are nowadays of great interest. These systems are considered for combined heat and power (CHP generation in domestic and distributed applications. The main issues of ORC systems design is selection of the expander and the working fluid. Thanks to their positive features, multi-vane expanders are especially promising for application in micro-power ORC systems. These expanders are very simple in design, small in dimensions, inexpensive and feature low gas flow capacity and expansion ratio. The application of multi-vane expanders in ORC systems is innovative and currently limited to prototype applications. However, a literature review indicates the growing interest in these machines and the potential for practical implementation. For this reason, it is necessary to conduct detailed studies on the multi-vane expanders operation in ORC systems. In this paper the results of experimental and numerical investigations on the influence of the applied working fluid and the arrangement of the steering edges on multi-vane expander performance in micro ORC system are reported. The experiments were performed using the specially designed lab test-stand, i.e. the domestic ORC system. Numerical simulations were proceeded in ANSYS CFX software (ANSYS, Inc., Canonsburg, PA, USA and were focused on determining the expander performance under various flow conditions of different working fluids. Detailed numerical analysis of the arrangement of the machine steering edges showed existence of optimal mutual position of the inlet and outlet port for which the multi-vane expander achieves maximum internal work and internal efficiency.

  13. Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    Directory of Open Access Journals (Sweden)

    Victor M. García-Chocano

    2011-12-01

    Full Text Available Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in a channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.

  14. Quantum size correction to the work function and centroid of excess charge in positively ionized simple metal clusters

    International Nuclear Information System (INIS)

    Payami, M.

    2004-01-01

    In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different r s values (2≤ r s ≥ 7). For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes 2≤ N ≥100 in the framework of local spin-density approximation and stabilized jellium model as well as simple jellium model with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere

  15. Sr Isotopes in Western Aleutian Seafloor Lavas: Implications for the Source of Fluids and Geochemical Decoupling of Trace Metals from Water

    Science.gov (United States)

    Yogodzinski, G. M.; Kelemen, P. B.; Hoernle, K.; Brown, S. T.; Vervoort, J. D.; Portnyagin, M.; Sims, K. W. W.

    2016-12-01

    Sr provides unique constraints on subduction magma source models because it is a fluid-mobile element that is abundant and relatively unradiogenic in arc volcanic rocks. It is common for arc basalts to be 3-4-times more Sr-rich than similarly evolved MORB (Sr/Nd = 30-50 vs 10-15 in MORB) yet Sr isotopes in arc basalts are usually offset from MORB only slightly (87Sr/86Sr 0.7034 vs 0.7028 for MORB). This is a puzzle because abundant sources of subducted Sr in sediment (GLOSS II 87Sr/86Sr = 0.712) and altered oceanic crust (87Sr/86Sr = 0.704-0.705) are more radiogenic than average arc basalts globally (87Sr/86Sr 0.7034). This is exemplified by lavas in the oceanic Aleutian volcanic arc, where data patterns reveal the need for a source component with 87Sr/86Sr 0.7028 and Sr/Nd 100. This component cannot be a fluid produced by dewatering of altered oceanic crust, which should have 87Sr/86Sr >0.704. The likely source is an eclogite melt, which - after reaction with the mantle wedge - is well represented by primitive, high-Sr lavas from the western Aleutians. End-member samples are magnesian rhyodacites (SiO2 69%, Mg#>0.65) with 1400 ppm Sr, 87Sr/86Sr 100. Formation of this end-member probably involves small degrees of fluid-saturated melting of MORB eclogite, minimally affected by prior seawater alteration. The aqueous fluid flux for melting must have come from a separate source, probably via dewatering of serpentinized peridotite within the mantle section of the subducting plate, which would carry little Sr or other metals, due to their low abundances in serpentinite. This example suggests that Sr, Pb, K, Rb and other incompatible trace elements in Aleutian lavas come primarily from partial melts of subducted basalt and sediment, and so are decoupled from H2O derived from dehydration of serpentinite at sub-arc depths in subducting oceanic lithosphere. Boron may be an exception, because of its high abundance in serpentinite. These source characteristics may help explain

  16. A Longitudinal Study of Higher-Order Thinking Skills: Working Memory and Fluid Reasoning in Childhood Enhance Complex Problem Solving in Adolescence

    Directory of Open Access Journals (Sweden)

    Samuel eGreiff

    2015-07-01

    Full Text Available Scientists have studied the development of the human mind for decades and have accumulated an impressive number of empirical studies that have provided ample support for the notion that early cognitive performance during infancy and childhood is an important predictor of later cognitive performance during adulthood. As children move from childhood into adolescence, their mental development increasingly involves higher-order cognitive skills that are crucial for successful planning, decision-making, and problem solving. Importantly, few studies have employed higher-order thinking skills such as Complex Problem Solving (CPS as developmental outcomes in adolescents. To fill this gap, we tested a longitudinal developmental model in a sample of 2,021 Finnish sixth grade students (M = 12.41 years, SD = 0.52; 1,041 female, 978 male, 2 missing sex. We assessed working memory and fluid reasoning at age 12 as predictors of two CPS dimensions: knowledge acquisition and knowledge application. We further assessed students’ CPS performance 3 years later as a developmental outcome (N= 1696; M = 15.22 years, SD = 0.43; 867 female, 829 male. Missing data partly occurred due to dropout and technical problems during the first days of testing and varied across indicators and time with a mean of 27.2%. Results revealed that fluid reasoning was a strong predictor of both CPS dimensions, whereas working memory exhibited only a small influence on one of the two CPS dimensions. These results provide strong support for the view that CPS involves fluid reasoning and, to a lesser extent, working memory in childhood, and from there evolves into an increasingly complex structure of higher-order cognitive skills in adolescence.

  17. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy.

    Science.gov (United States)

    Saleh, B

    2016-09-01

    The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E) working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR) system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS) and the total mass flow rate of the working fluid for each kW cooling capacity ([Formula: see text]). The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest [Formula: see text] under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters.

  18. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy

    Directory of Open Access Journals (Sweden)

    B. Saleh

    2016-09-01

    Full Text Available The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS and the total mass flow rate of the working fluid for each kW cooling capacity (ṁtotal. The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest ṁtotal under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters.

  19. Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location, Location, Location

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Paul [Gas Equipment Engineering Corp., Milford, CT (United States); Selman, Nancy [Gas Equipment Engineering Corp., Milford, CT (United States); Volpe, Anthony Della [Gas Equipment Engineering Corp., Milford, CT (United States); Moss, Deborah [Gas Equipment Engineering Corp., Milford, CT (United States); Mobley, Rick [Plasma Energy Services, LLC, Putnam, CT (United States); Dickey, Halley [Turbine Air Systems, Houston, TX (United States); Unruh, Jeffery [Fugro NV/Wm. Lettis & Associates, Houston, TX (United States); Hitchcock, Chris [Fugro NV/Wm. Lettis & Associates, Houston, TX (United States); Tanguay, Jasmine [Conservation Law Foundation/CLF Ventures, Boston, MA (United States); Larsen, Walker [Conservation Law Foundation/CLF Ventures, Boston, MA (United States); Sanyal, Sabir [GeothermEx, Inc., San Pablo, CA (United States); Butler, Steven [GeothermEx, Inc., San Pablo, CA (United States); Stacey, Robert [GeothermEx, Inc., San Pablo, CA (United States); Robertson-Tait, Ann [GeothermEx, Inc., San Pablo, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gutoski, Greg [Fairbanks Morse Engines (FME), Beloit, WI (United States); Fay, Jamie M. [Fort Point Associates, Boston, MA (United States); Stitzer, John T. [Fort Point Associates, Boston, MA (United States); Oglesby, Ken [Impact Technologies LLC, Tulsa, OK (United States)

    2012-04-30

    Substantial unexploited opportunity exists for the US, and the world, in Enhanced Geothermal Systems (EGS). As a result of US DOE investment, new drilling technology, new power generation equipment and cycles enable meaningful power production, in a compact and modular fashion; at lower and lower top side EGS working fluid temperatures and in a broader range of geologies and geographies. This cost analysis effort supports the expansion of Enhanced Geothermal Systems (EGS), furthering DOE strategic themes of energy security and sub goal of energy diversity; reducing the Nation's dependence on foreign oil while improving the environment.

  20. Unitary or Non-Unitary Nature of Working Memory? Evidence from Its Relation to General Fluid and Crystallized Intelligence

    Science.gov (United States)

    Dang, Cai-Ping; Braeken, Johan; Ferrer, Emilio; Liu, Chang

    2012-01-01

    This study explored the controversy surrounding working memory: whether it is a unitary system providing general purpose resources or a more differentiated system with domain-specific sub-components. A total of 348 participants completed a set of 6 working memory tasks that systematically varied in storage target contents and type of information…

  1. City of Chicago Combined Work Plan and Summary Report for Loewenthal Metals

    Science.gov (United States)

    Summary of the work performed by the City’s Department of Fleet and Facility Management on behalf of the Chicago Department of Transportation (CDOT) to address elevated levels of lead in City right of way..

  2. Work hardening and mechanical equation of state in some metals in monotonic loading

    International Nuclear Information System (INIS)

    Wire, G.L.; Ellis, F.V.; Li, C.Y.

    The work hardening coefficients of Type 316 stainless steel, niobium, and 1100 aluminum alloy are measured in tensile tests. It is demonstrated experimentally that in the measured stress, plastic strain rate, and temperature range the work hardening coefficient depends only on stress and plastic strain rate. The significance of the experimental results is discussed in terms of the concept of the mechanical equation of state for plastic deformation. 13 figures

  3. Analysis of actual status of works on technology of heavy liquid metal coolants

    International Nuclear Information System (INIS)

    Martynov, P.N.; Askhadullin, R.Sh.; Orlov, Yu.I.; Storozhenko, A.N.

    2014-01-01

    Principle duties in heavy liquid metal coolant technology (HLMC) are provision of the purity of coolant and surfaces of circulation loop for maintenance of design thermohydraulic characteristics, prevention of structural materials corrosion and erosion during long service life and present-day safety precautions on different stages of reactor facility operation. For this reason, current HLMC (Pb-Bi, Pb) technology must include coolant pre-operation and charging; monitoring and regulating of coolant oxygen potential; hydrogen purification of coolant and surfaces of circulation loop from lead oxides-based slags; coolant filtration; reactor cover gas purification from coolant aerosols. The current topical problem is personnel training on the questions of HLMC technology [ru

  4. Bioremediation of metals and radionuclides: What it is and How itWorks

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, J.; Hazen, Terry; Benson, Sally

    1999-01-01

    This primer is intended for people interested in DOE environmental problems and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on physical environment, microbial communities, and nature of contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through inoculation with microorganisms (bioaugmentation) or the addition of nutrients (biostimulation).

  5. Numerical simulation of an advanced energy storage system using H{sub 2}O-LiBr as working fluid, Part 2: System simulation and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.M.; Xu, C.H.; Zhang, L. [R and D Lab of Refrigeration and Heat Pump Technology, Department of Power Engineering, Dalian University of Technology, Liao Ning, 116024 (China); Liang, J.; Du, R. [Department of Automation and Computer-Aided Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China)

    2007-03-15

    This paper is the second part of our study on the advanced energy storage system using H{sub 2}O-LiBr as working fluid. In the first part, the system working principle has been introduced, and the system dynamic models in the operation process have also been developed. Based on the previous research, this paper focuses on the numerical simulation to investigate the system dynamic characteristics and performances when it works to provide combined air-conditioning and hot water supplying for a hotel located near by Yangzi River in China. The system operation conditions were set as follows: the outdoor temperature was between 29 C and 38 C, the maximum air-conditioning load was 1450 kW, the total air-conditioning capacity was 19,890 kWh and the 50 C hot water capacity for showering was 20 tons which needed heat about 721 kWh on a given day. Under these conditions, the system operation characteristics were simulated under the full- and partial-storage strategies. The simulation results predicted the dynamic characteristics and performances of the system, including the temperature and concentration of the working fluid, the mass and energy in the storage tanks, the compressor intake mass or volume flow rate, discharge pressure, compression ratio, power and consumption work, the heat loads of heat exchanger devices in the system and so on. The results also showed that the integrated coefficient of performances (COP{sub int}) of the system were 3.09 and 3.26, respectively, under the two storage strategies while the isentropic efficiency of water vapor compressor was 0.6. The simulation results are very helpful for understanding and evaluating the system as well as for system design, operation and control, and device design or selection in detail. (author)

  6. FDTD for Hydrodynamic Electron Fluid Maxwell Equations

    Directory of Open Access Journals (Sweden)

    Yingxue Zhao

    2015-05-01

    Full Text Available In this work, we develop a numerical method for solving the three dimensional hydrodynamic electron fluid Maxwell equations that describe the electron gas dynamics driven by an external electromagnetic wave excitation. Our numerical approach is based on the Finite-Difference Time-Domain (FDTD method for solving the Maxwell’s equations and an explicit central finite difference method for solving the hydrodynamic electron fluid equations containing both electron density and current equations. Numerical results show good agreement with the experiment of studying the second-harmonic generation (SHG from metallic split-ring resonator (SRR.

  7. Surveying and Comparing Thermal Conductivity and Physical Properties of Oil Base NanoFluids Containing Carbon and Metal Oxide Nanotubes

    Directory of Open Access Journals (Sweden)

    H. Ahmadi

    2012-12-01

    Full Text Available In this research, nano materials with tubular structures are added to SAE 20W50 engine oil to study the rate of their effects on the properties of engine oil. Multi-walled carbon nanotubes (MWCNTs and vanadium oxide nanotubes (VONTs has been used as two different additive materials, one of them is carbonic and the other is metallic oxides and their effect on  different parameters containing viscosity, thermal conductivity coefficient, flash point and pour point of engine oil as the quality properties of engine oil has been studied and compared. The samples of two concentrations 0.1 and 0.2 wt% with using planetary ball mill were made. The obtained results show that MWCNTs in all cases, which  have been evaluated, had better functionality with respect to vanadium oxide nanotubes. In the 0.1 wt% concentration, flash point of MWCNTs/oil and VONTs/oil increased about 9.3% and 5.8% respectively. In addition, thermal conductivity of them increased 13.2% and 10.2% respectively.

  8. Technical meeting on 'Primary coolant pipe rupture event in liquid metal cooled fast reactors'. Working material

    International Nuclear Information System (INIS)

    2003-01-01

    In Liquid Metal cooled Fast Reactors (LMFR) or in accelerator driven sub-critical systems (ADS) with LMFR like sub-critical cores, the primary coolant pipes (PCP) connect the primary coolant pumps to the grid plate. A rupture in one of these pipes could cause significant loss of coolant flow to the core with severe consequences. In loop type reactors, all primary pipelines are provided with double envelopes and inter-space coolant leak monitoring systems that permit leak detection before break. Thus, the PCP rupture event can be placed in the beyond design basis event (BDBE) category. Such an arrangement is difficult to incorporate for pool type reactors, and hence it could be argued that the PCP rupture event needs to be analysed in detail as a design basis event (DBE, category 4 event). The primary coolant pipes are made of ductile austenitic stainless steel material and operate at temperatures of the cold pool and at comparatively low pressures. For such low stressed piping with negligible creep and embrittlement effects, it is of interest to discuss under what design provisions, for pool type reactors, the guillotine rupture of PCP could be placed in the BDBE category. The topical Technical Meeting (TM) on 'Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors' was called to enable the specialists to present the philosophy and analyses applied on this topic in the various Member States for different LMFRs. The scope of the Technical Meeting was to provide a global forum for information exchange on the philosophy applied in the various participating Member States and the analyses performed for different LMFRs with regard to the primary coolant pipe rupture event. More specifically, the objectives of the Technical Meeting were to review the safety philosophy for the PCP rupture event in pool type LMFR, to assess the structural reliability of the PCP and the probability of rupture under different conditions (with/without in-service inspection), to

  9. Modeling of Artificial Neural Network for Predicting Specific Heat capacity of working fluid LiBr-H2O used in Vapor Absorption Refrigeration System

    Directory of Open Access Journals (Sweden)

    Dheerendra Vikram Singh

    2011-05-01

    Full Text Available The objective of this work is to model an artificial neural network (ANN to predict the value of specific heat capacity of working fluid LiBr-H2O used in vapour absorption refrigeration systems. A feed forward back propagation algorithm is used for the network, which is most popular for ANN. The consistence between experimental and ANN’s approach result was achieved by a mean relative error -0.00573, sum of the squares due to error0.00321, coefficient of multiple determination R-square 0.99961and root mean square error 0.01573 for test data. These results had been achieved in Matlab environment and the use of derived equations in any programmable language for deriving the specific heat capacity of LiBr-H2O solution.

  10. Pragmatic approach to the clinical work-up of patients with putative allergic disease to metallic orthopaedic implants before and after surgery

    DEFF Research Database (Denmark)

    Thyssen, J P; Menné, T; Schalock, P C

    2011-01-01

    on in the work-up of patients with putative allergic complications following surgery. Few studies have investigated whether subjects with metal contact allergy have increased risk of developing complications following orthopaedic implant insertion. Metal allergy might in a minority increase the risk...... testing prior to surgery unless the patient has already had implant surgery with complications suspected to be allergic or has a history of clinical metal intolerance of sufficient magnitude to be of concern to the patient or a health provider. The clinical work-up of a patient suspected of having......Allergic complications following insertion of metallic orthopaedic implants include allergic dermatitis reactions but also extracutaneous complications. As metal-allergic patients and/or surgeons may ask dermatologists and allergologists for advice prior to planned orthopaedic implant surgery...

  11. Unexpected current lowering by a low work-funkction metal contact: Mg/SI-GaAs

    Czech Academy of Sciences Publication Activity Database

    Dubecký, F.; Dubecký, M.; Hubík, Pavel; Kindl, Dobroslav; Gombia, E.; Baldini, M.; Nečas, V.

    2013-01-01

    Roč. 82, APR (2013), s. 72-76 ISSN 0038-1101 Institutional support: RVO:68378271 Keywords : Schottky barrier * low-bias transport * semi-insulating GaAs * low work-function * high resistence * low leakage current * blocking contact Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.514, year: 2013

  12. A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions

    International Nuclear Information System (INIS)

    Collings, Peter; Yu, Zhibin; Wang, Enhua

    2016-01-01

    Highlights: • A dynamic ORC using a zeotropic mixture with composition tuning is proposed. • The working principle is verified theoretically, based on a thermodynamic model. • Improvements in the resultant power plant’s annual power production are analysed. • The economic benefits have been demonstrated by an economic analysis. - Abstract: Air-cooled condensers are widely used for Organic Rankine Cycle (ORC) power plants where cooling water is unavailable or too costly, but they are then vulnerable to changing ambient air temperatures especially in continental climates, where the air temperature difference between winter and summer can be over 40 °C. A conventional ORC system using a single component working fluid has to be designed according to the maximum air temperature in summer and thus operates far from optimal design conditions for most of the year, leading to low annual average efficiencies. This research proposes a novel dynamic ORC that uses a binary zeotropic mixture as the working fluid, with mechanisms in place to adjust the mixture composition dynamically during operation in response to changing heat sink conditions, significantly improving the overall efficiency of the plant. The working principle of the dynamic ORC concept is analysed. The case study results show that the annual average thermal efficiency can be improved by up to 23% over a conventional ORC when the heat source is 100 °C, while the evaluated increase of the capital cost is less than 7%. The dynamic ORC power plants are particularly attractive for low temperature applications, delivering shorter payback periods compared to conventional ORC systems.

  13. Evaluation of solubility in simulated lung fluid of metals present in the sludge from a metallurgical industry to produce metallic zinc; Avaliacao da solubilidade em liquido pulmonar simulado dos metais presentes no rejeito gerado por uma industria metalurgica de zinco

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Rosilda Maria Gomes de

    2012-07-01

    The objective of this study was to determine the solubility parameters (rapid and slow dissolution rates, rapid and slow dissolution fractions) metal particles present in a pile of sludge accumulated under exposure to weathering from the Cia Mercantil Inga, located at the Ilha da Madeira, Sepetiba Bay, Rio de Janeiro. Plant samples collected in the neighboring of the pile and bioindicators placed in the region and collected after some months indicated that the inhabitants of Ilha da Madeira have been exposed to trace elements such zinc, cadmium, mercury and lead, produced during the processing of zinc minerals (hemimorphite - Zn{sub 4}(OH){sub 2}Si{sub 2}O{sub 7}.H{sub 2}O, and willemite - Zn{sub 2}SiO{sub 4}). A static dissolution test in vitro was used to determine the solubility parameters using a simulated lung fluid (SLF), on a time basis ranging from 10 min to 1 year. The metal concentrations in the sludge samples and in the SLF were determined using Particle Induced X-rays Emission (PIXE). In conclusion, this study confirms the harmful effects on the neighboring population of the airborne particles containing these metals that came from the sludge. The solubility parameters obtained for Zn, Cd, Cr, Ni and Mn present in the rapid dissolution fraction in SLF were 0.945; 0.473; 0.226; 0.300 and 0.497, respectively, and the corresponding times for half life of dissolution of the rapid fraction were f{sub r} = 2.082 days; f{sub r} = 0.09 days; f{sub r} = 0.37 days; f{sub r} = 0.332 days ad f{sub r} = 0.99 days; for the slow dissolution fraction times were f{sub r} = 146.95 days; f{sub r} = 63 days; f{sub r} = 86.64 days; f{sub r} = 79.66 days and f{sub r} = 59.84 days. These values indicate that these metals present a moderate absorption level in SLF, and may be classified as M type, according to the International Commission on Radiological Protection (ICRP). The use of solubility parameters allowed a better description of the kinetic behaviour of the sludge in

  14. Heating production fluids in a wellbore

    Science.gov (United States)

    Orrego, Yamila; Jankowski, Todd A.

    2016-07-12

    A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.

  15. Assessment of levels and 'health-effects' of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques

    International Nuclear Information System (INIS)

    2008-01-01

    The International Atomic Energy Agency (IAEA) has been supporting, over the years, several coordinated research programmes (CRPs) on various research topics related to environmental issues impacting human health. The primary aim of these CRPs has been to help enhance the research and development capabilities in the Member States, particularly among developing countries; to identify the sources of various environmental contaminants and evaluate their fate; and to provide for the basis of improved health among human populations by the use of nuclear and related analytical techniques. The CRP on Assessment of Levels and Health-Effects of Airborne Particulate Matter in Mining, Metal Refining and Metal Working Industries using nuclear and related analytical techniques focused on improving the competence for research on workplace monitoring in a variety of industrial environments. The personal monitoring of the APM (airborne particulate matter) of the exposed workforce was carried out for the first time by many participants. Nuclear and related analytical techniques, including the application of proton micro-beam, were used to generate the trace element concentration profiles in various biomarkers tissues of the exposed workers. The quality assurance/quality control (QA/QC) aspects related to the CRP were addressed through intercomparison analyses of APM on filter paper samples and freeze dried human urine samples to generate validated data. These data have helped to generate correlations between the occupational exposure measured and the magnitude of the biological response. Such new information is essential to evolve procedures to considerably reduce/eliminate the pollutants in the workplace environment and to make informed decisions on the evolution of standards in working environments aimed at preserving the health of workers. The purpose of this TECDOC is to provide an overview of the activities performed under the CRP by the participants. The overall achievements

  16. Technique for detecting liquid metal leaks

    International Nuclear Information System (INIS)

    Bauerle, J.E.

    1979-01-01

    In a system employing flowing liquid metal as a heat transfer medium in contact with tubular members containing a working fluid, i.e., steam, liquid metal leaks through the wall of the tubular member are detected by dislodging the liquid metal compounds forming in the tubular member at the leak locations and subsequently transporting the dislodged compound in the form of an aerosol to a detector responsive to the liquid metal compound. In the application to a sodium cooled tubular member, the detector would consist of a sodium responsive device, such as a sodium ion detector

  17. Enhanced performance of wet compression-resorption heat pumps by using NH3-CO2-H2O as working fluid

    International Nuclear Information System (INIS)

    Gudjonsdottir, V.; Infante Ferreira, C.A.; Rexwinkel, Glenn; Kiss, Anton A.

    2017-01-01

    Upgrading waste heat by compression resorption heat pumps (CRHP) has the potential to make a strong impact in industry. The efficiency of CRHP can be further improved by using alternative working fluids. In this work, the addition of carbon dioxide to aqueous ammonia solutions for application in CRHP is investigated. The previously published thermodynamic models for the ternary mixture are evaluated by comparing their results with experimental thermodynamic data, and checking their advantages and disadvantages. Then the models are used to investigate the impact of adding CO 2 to NH 3 -H 2 O in wet compression resorption heat pump applications. For an application where a waste stream is heated from 60 to 105 °C, a COP increase of up to 5% can be attained by adding CO 2 to the ammonia-water mixture, without any risk of salt formation. Additional advantages of adding CO 2 to the ammonia-water mixture in that case are decreased pressure ratio, as well as an increase in the lower pressure level. When practical pressure restrictions are considered the benefits of the added CO 2 become even larger or around 25% increase in the COP. Nonetheless, when the waste stream was considered to be additionally cooled down, no significant benefits were observed. - Highlights: • NH 3 -CO 2 -H 2 O mixture is proposed as a working fluid for CRHP. • COP improvements of 5% are achieved compared to NH 3 -H 2 O. • Additional advantages of the added CO 2 are decreased pressure ratio.

  18. Age-related changes in electrophysiological and neuropsychological indices of working memory, attention control, and fluid intelligence

    Directory of Open Access Journals (Sweden)

    Carrie Brumback Peltz

    2011-08-01

    Full Text Available Older adults exhibit great variability in their cognitive abilities, with some maintaining high levels of performance on executive control tasks and others showing significant deficits. Previous event-related potential (ERP work has shown that some of these performance differences are correlated with persistence of the novelty/frontal P3 in older adults elicited by task-relevant events, presumably reflecting variability in the capacity to suppress orienting to unexpected but no longer novel events. In recent ERP work in young adults, we showed that the operation-span task (OSPAN, a measure of attention control is predictive of the ability of individuals to keep track of stimulus sequencing and to maintain running mental representations of task stimuli, as indexed by the parietally-distributed P300 (or P3b. Both of these phenomena reflect aspects of frontal function (cognitive flexibility and attention control, respectively. To investigate these phenomena we sorted both younger and older adults into low- and high-working memory spans and low- and high-cognitive flexibility subgroups, and examined ERPs during an equal-probability choice reaction-time task. For both age groups (a participants with high OSPAN scores were better able to keep track of stimulus sequencing, as indicated by their smaller P3b to sequential changes; and (b participants with lower cognitive flexibility had larger P3a than their high-scoring counterparts. However, these two phenomena did not interact suggesting that they manifest dissociable control mechanisms. Further, the fact that both effects are already visible in younger adults suggests that at least some of the brain mechanisms underlying individual differences in cognitive aging may already operate early in life.

  19. The method of contact angle measurements and estimation of work of adhesion in bioleaching of metals

    Directory of Open Access Journals (Sweden)

    Matlakowska Renata

    1999-01-01

    Full Text Available In this paper, we present our method for the measurement of contact angles on the surface of minerals during the bioleaching process because the standard deviation obtained in our measurements achieved unexpectedly low error. Construction of a goniometer connected with a specially prepared computer program allowed us to repeat measurements several times over a short time course, yielding excellent results. After defining points on the outline of the image of a drop and its baseline as well of the first approximation of the outline of the drop, an iterative process is initiated that is aimed at fitting the model of the drop and baseline. In turn, after defining the medium for which measurements were made, the work of adhesion is determined according to Young-Dupré equation. Calculations were made with the use of two methods named the L-M and L-Q methods.

  20. Technical Meeting on Passive Shutdown Systems for Liquid Metal-Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2015-01-01

    A major focus of the design of modern fast reactor systems is on inherent and passive safety. Specific systems to improve reactor safety performance during accidental transients have been developed in nearly all fast reactor programs, and a large number of proposed systems have reached various stages of maturity. This Technical Meeting on Passive Shutdown Systems for Fast Reactors, which was recommended by the Technical Working Group on Fast Reactors (TWG-FR), addressed Member States’ expressed need for information exchange on projects and programs in the field, as well as for the identification of priorities based on the analysis of technology gaps to be covered through R&D activities. This meeting was limited to shutdown systems only, and did not include other passive features such as natural circulation decay heat removal systems etc.; however the meeting catered to passive shutdown safety devices applicable to all types of fast neutron systems. It was agreed to initiate a new study and produce a Nuclear Energy Series (NES) Technical Report to collect information about the existing operational systems as well as innovative concepts under development. This will be a useful source for member states interested in gaining technical expertise to develop passive shutdown systems as well as to highlight the importance and development in this area

  1. Methodology of simulation of underground working in metal mines. Application to a uranium deposit in Australia

    International Nuclear Information System (INIS)

    Deraisme, J.; de Fouquet, C.; Fraisse, H.

    1983-01-01

    For the Ben Lomond (Northern Queensland Australia) underground uranium mining project, studies were carried out to compare the feasibility of different mining methods according to their cost per ton and selectivity, i.e. cut and fill, sublevel stopping and both mixed. First, a geostatistical orebody model was built. The ore grade variability of this model results from the drillhole structural analysis. Working on two dimensional vertical cross sections, the usual hand drawing stope reserve estimate obtained with computer assisted design for each of the three different mining methods is compared with the results obtained with automatic algorithms allocated to the characteristics of each mining method. These algorithms use mathematical morphology to reproduce the geometrical constraints connected with each mining method and/or dynamic programmation. These techniques lead to fully automatic of optimal economical stope design. Comparison is positive: automatic stopes designs are in agreement with hand made drawings, but they can be defined faster through interactive questionning of the computer, and the total maximum profit obtained is a least as high as the best profit found through hand designed projects [fr

  2. The use of organic zeotropic mixture with high temperature glide as a working fluid in medium-temperature vapor power plant

    Directory of Open Access Journals (Sweden)

    Borsukiewicz Aleksandra

    2017-01-01

    Full Text Available The paper presents the idea of using organic substances as working fluids in vapor power plants, in order to convert the low and medium temperature thermal energy sources into electrical energy. The calculation results of the power plant efficiency for butane-ethane zeotropic mixtures of different mass compositions, for the power plant supplied with hot water having a temperature of 120°C. Based on the results of thermal-flow calculations it was found that the use of zeotropic mixture does not allow to increase the efficiency and output of the power plant (these values appeared as slightly lower ones. However, it was found that, through the selection of a mixture of sufficiently large temperature glide, the heat exchange surface of the condenser can be reduced or a co-generation system can be implemented.

  3. Effect of Metal Alloys, Degradation Inhibitors, Temperatures on Thermal Oxidative Stability of CF3O(CF2O)(sub x)(CF2O)(sub y)CF3 Fluids

    Science.gov (United States)

    Jones, William R., Jr.; Paciorek, Kazimiera J. L.; Masuda, Steven R.; Lin, Wen-Huey

    1997-01-01

    Degradation-promoting action of a series of ferrous and titanium alloys on CF3O(CF2O)(sub x)(CF2-CF2O)(sub y)CF3-based Z25 fluids and the inhibition effectiveness of several classes of additives were investigated. Four types of additives-phosphines, phosphates, phospha-s-triazines, and diphosphatetraazacyclooctatetraene-were studied in two batches of Z25 fluid, P28 and P151. In the absence of inhibitors, titanium alloys were more detrimental than the ferrous metals, but the additives were more effective in the presence of titanium alloys. Phosphate esters totally inhibited the decomposition of P151 at 330 C over 24 h in both types of alloys. The other additives were effective at lower temperatures. The responsiveness of fluid to an additive was found to be batch dependent.

  4. Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell-Boltzmann gases

    Science.gov (United States)

    Ahmadi, Mohammad H.; Amin Nabakhteh, Mohammad; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah; Bidi, Mokhtar

    2017-10-01

    The motivation behind this work is to explore a nanoscale irreversible Stirling refrigerator with respect to size impacts and shows two novel thermo-ecological criteria. Two distinct strategies were suggested in the optimization process and the consequences of every strategy were examined independently. In the primary strategy, with the purpose of maximizing the energetic sustainability index and modified the ecological coefficient of performance (MECOP) and minimizing the dimensionless Ecological function, a multi-objective optimization algorithm (MOEA) was used. In the second strategy, with the purpose of maximizing the ECOP and MECOP and minimizing the dimensionless Ecological function, a MOEA was used. To conclude the final solution from each strategy, three proficient decision makers were utilized. Additionally, to quantify the deviation of the results gained from each decision makers, two different statistical error indexes were employed. Finally, based on the comparison between the results achieved from proposed scenarios reveals that by maximizing the MECOP the maximum values of ESI, ECOP, and a minimum of ecfare achieved.

  5. Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant MGDA in biological fluids and natural waters.

    Science.gov (United States)

    Bretti, Clemente; Cigala, Rosalia Maria; De Stefano, Concetta; Lando, Gabriele; Sammartano, Silvio

    2017-09-01

    Thermodynamic information about the metal-ligand interaction between Fe 3+ , Zn 2+ , Cu 2+ and Sn 2+ , and a biodegradable ligand as MGDA is reported. The speciation scheme was obtained by means of potentiometric measurements and isothermal titration calorimetry (to determine enthalpy changes) in NaCl medium. The formation of the ML and MLOH species was evidenced for all the metal cations, and for Fe 3+ also the ML 2 and ML(OH) 2 were found. The relative stability, for the ML species, follows the order: Sn 2+  > Fe 3+  > Cu 2+  > Zn 2+ . Stability constants and enthalpy changes were obtained at different ionic strengths, and data were modeled using the Debye-Hückel and SIT approaches to obtain data in a standard state. At infinite dilution, the enthalpy changes are largely negative for Cu 2+ (-34.1 kJ mol -1 ) and Sn 2+ (-16.6 kJ mol -1 ), slightly negative for Fe 3+ (-3.3 kJ mol -1 ) and positive for Zn 2+ (8.7 kJ mol -1 ). In all cases, the entropic contribution to the stability is predominant. The sequestering ability of MGDA was evaluated determining the pL 0.5 values in different conditions. Comparing the data reported in this work and literature ones, some empirical relationships were obtained with predictive purpose. For example, using 11 data in the test set we have: log K (M/MGDA) ± 0.1 = 1.13 + 0.84·log K (M/NTA) Case studies were built up in the conditions of seawater, fresh water and urine to study the possible use of MGDA towards the metal cations here studied. Some considerations were also done in the light of the ocean acidification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver–metal electrical contacts

    Energy Technology Data Exchange (ETDEWEB)

    Akbi, Mohamed, E-mail: akbi_mohamed@umbb.dz [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France); Department of Physics, Faculty of Sciences, University of Boumerdes (UMBB), Independence Avenue, 35000 Boumerdes (Algeria); Bouchou, Aïssa [Faculty of Physics, University of Algiers (USTHB), B.P. 32, El-Alia, Bab-Ezzouar, 16111 Algiers (Algeria); Zouache, Noureddine [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France)

    2014-06-01

    Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermodynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver–metal (Ag–Me) electrical contacts (Ag–Ni (60/40) and Ag–W (50/50)), before and after surface heat treatments at 513 K–873 K, under UHV conditions (residual gas pressure of 1.4 × 10{sup −7} mbar). The electron work function (EWF) of silver alloyed contacts was measured photoelectrically, using both Fowler's method of isothermal curves and linearized Fowler plots. An interesting fact brought to light by this investigation is that after vacuum heat treatments, the diffusion and/or evaporation phenomena, affecting the atomic composition of the alloy surface, somehow confine the EWF of the silver–nickel alloy, Φ(Ag–Ni), determined at room temperature in interval]Φ(Ag), Φ(Ni) [=] 4.26 eV, 4.51 eV[. Surface analysis of two specimens before and after heating showed a significant increase of tungsten atomic proportion on the contact surface for Ag–W contacts after VH treatments. A multilayer model, taking into account the strong intergranular and volume segregation gives a good interpretation of the obtained results.

  7. Results of LA-ICP-MS sulfide mapping from Algoma-type BIF gold systems with implications for the nature of mineralizing fluids, metal sources, and deposit models

    Science.gov (United States)

    Gourcerol, B.; Kontak, D. J.; Thurston, P. C.; Petrus, J. A.

    2018-01-01

    Quantitative laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) element distribution maps combined with traverse mode analyses have been acquired on various sulfides (pyrite, pyrrhotite, arsenopyrite) from three Canadian Algoma-type BIF-hosted gold deposits ( 4 Moz Au Meadowbank, ≥ 2.8 Moz Au Meliadine district, 6 Moz Au Musselwhite). These data, in conjunction with detailed petrographic and SEM-EDS observations, provide insight into the nature and relative timing of gold events, the presence and implication of trace element zoning regarding crystallization processes, and elemental associations that fingerprint gold events. Furthermore, the use of an innovative method of processing the LA-ICP-MS data in map and traverse modes, whereby the results are fragmented into time-slice data, to generate various binary plots (Ag versus Ni) provides a means to identify elemental associations (Te, Bi) not otherwise apparent. This integrated means of treating geochemical data, along with petrography, allows multiple gold events and remobilization processes to be recognized and their elemental associations determined. The main gold event in each of these deposits is characterized by the coupling of an As-Se-Te-Ag element association coincident with intense stratabound sulfide-replacement of the Fe-rich host rock. Additionally, the data indicate presence of a later remobilization event, which upgraded the Au tenor, as either non-refractory or refractory type, along fracture networks due to the ingress of subsequent base metal-bearing metamorphic fluids (mainly a Pb-Bi association). Furthermore, the data reveal a stratigraphic influence, as reflected in the elemental associations and the elemental enrichments observed and the nature of the sulfide phase hosting the gold mineralization (arsenopyrite versus pyrite).

  8. An electrochemical investigation of TMJ implant metal alloys in an artificial joint fluid environment: the influence of pH variation.

    Science.gov (United States)

    Royhman, Dmitry; Radhakrishnan, Rashmi; Yuan, Judy Chia-Chun; Mathew, Mathew T; Mercuri, Louis G; Sukotjo, Cortino

    2014-10-01

    To investigate the corrosion behaviour of commonly used TMJ implants alloys (CoCrMo and Ti6Al4V) under simulated physiological conditions. Corrosion behaviour was evaluated using standard electrochemical corrosion techniques and galvanic corrosion techniques as per ASTM standards. Standard electrochemical tests (E(corr), I(corr), R(p) and C(f)) were conducted in bovine calf serum (BCS), as a function of alloys type and different pHs. Galvanic corrosion tests were conducted in BCS at a pH of 7.6. Alloy surfaces were characterized using white-light interferometry (WLI) and scanning electron microscopy (SEM). The potentiodynamic test results exhibited the enhanced passive layer growth and a better corrosion resistance of Ti6Al4V compared to CoCrMo. Electrochemical impedance spectroscopy measurements demonstrated the influence of protein as a function of pH on corrosion mechanisms/kinetics. Galvanic coupling was not a major contributor to corrosion. SEM and WLI images demonstrated a significantly higher in surface roughness in CoCrMo after corrosion. The results of this study suggest that Ti6Al4V shows superior corrosion behaviour to CoCrMo due to its strong passive layer, simulated joint fluid components can affect the electrochemical nature of the metal/electrolyte interface as a function of pH, and the galvanic effect of coupling CoCrMo and Ti6Al4V in a single joint is weak. Published by Elsevier Ltd.

  9. Liquid metal cooling of synchrotron optics

    International Nuclear Information System (INIS)

    Smither, R.K.

    1993-01-01

    The installation of insertion devices at existing synchrotron facilities around the world has stimulated the development of new ways to cool the optical elements in the associated x-ray beamlines. Argonne has been a leader in the development of liquid metal cooling for high heat load x-ray optics for the next generation of synchrotron facilities. The high thermal conductivity, high volume specific heat, low kinematic viscosity, and large working temperature range make liquid metals a very efficient heat transfer fluid. A wide range of liquid metals were considered in the initial phase of this work. The most promising liquid metal cooling fluid identified to date is liquid gallium, which appears to have all the desired properties and the fewest number of undesired features of the liquid metals examined. Besides the special features of liquid metals that make them good heat transfer fluids, the very low vapor pressure over a large working temperature range make liquid gallium an ideal cooling fluid for use in a high vacuum environment. A leak of the liquid gallium into the high vacuum and even into very high vacuum areas will not result in any detectable vapor pressure and may even improve the vacuum environment as the liquid gallium combines with any water vapor or oxygen present in the system. The practical use of a liquid metal for cooling silicon crystals and other high heat load applications depends on having a convenient and efficient delivery system. The requirements for a typical cooling system for a silicon crystal used in a monochromator are pumping speeds of 2 to 5 gpm (120 cc per sec to 600 cc per sec) at pressures up to 100 psi. No liquid metal pump with these capabilities was available commercially when this project was started, so it was necessary to develop a suitable pump in house

  10. Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)

    International Nuclear Information System (INIS)

    Olumayegun, Olumide; Wang, Meihong; Kelsall, Greg

    2017-01-01

    Highlights: • Nitrogen closed Brayton cycle for small modular sodium-cooled fast reactor studied. • Thermodynamic modelling and analysis of closed Brayton cycle performed. • Two-shaft configuration proposed and performance compared to single shaft. • Preliminary design of heat exchangers and turbomachinery carried out. - Abstract: Sodium-cooled fast reactor (SFR) is considered the most promising of the Generation IV reactors for their near-term demonstration of power generation. Small modular SFRs (SM-SFRs) have less investment risk, can be deployed more quickly, are easier to operate and are more flexible in comparison to large nuclear reactor. Currently, SFRs use the proven Rankine steam cycle as the power conversion system. However, a key challenge is to prevent dangerous sodium-water reaction that could happen in SFR coupled to steam cycle. Nitrogen gas is inert and does not react with sodium. Hence, intercooled closed Brayton cycle (CBC) using nitrogen as working fluid and with a single shaft configuration has been one common power conversion system option for possible near-term demonstration of SFR. In this work, a new two shaft nitrogen CBC with parallel turbines was proposed to further simplify the design of the turbomachinery and reduce turbomachinery size without compromising the cycle efficiency. Furthermore, thermodynamic performance analysis and preliminary design of components were carried out in comparison with a reference single shaft nitrogen cycle. Mathematical models in Matlab were developed for steady state thermodynamic analysis of the cycles and for preliminary design of the heat exchangers, turbines and compressors. Studies were performed to investigate the impact of the recuperator minimum terminal temperature difference (TTD) on the overall cycle efficiency and recuperator size. The effect of turbomachinery efficiencies on the overall cycle efficiency was examined. The results showed that the cycle efficiency of the proposed

  11. A quantitative risk-assessment system (QR-AS) evaluating operation safety of Organic Rankine Cycle using flammable mixture working fluid.

    Science.gov (United States)

    Tian, Hua; Wang, Xueying; Shu, Gequn; Wu, Mingqiang; Yan, Nanhua; Ma, Xiaonan

    2017-09-15

    Mixture of hydrocarbon and carbon dioxide shows excellent cycle performance in Organic Rankine Cycle (ORC) used for engine waste heat recovery, but the unavoidable leakage in practical application is a threat for safety due to its flammability. In this work, a quantitative risk assessment system (QR-AS) is established aiming at providing a general method of risk assessment for flammable working fluid leakage. The QR-AS covers three main aspects: analysis of concentration distribution based on CFD simulations, explosive risk assessment based on the TNT equivalent method and risk mitigation based on evaluation results. A typical case of propane/carbon dioxide mixture leaking from ORC is investigated to illustrate the application of QR-AS. According to the assessment results, proper ventilation speed, safe mixture ratio and location of gas-detecting devices have been proposed to guarantee the security in case of leakage. The results revealed that this presented QR-AS was reliable for the practical application and the evaluation results could provide valuable guidance for the design of mitigation measures to improve the safe performance of ORC system. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fluid mechanics

    International Nuclear Information System (INIS)

    Paraschivoiu, I.; Prud'homme, M.; Robillard, L.; Vasseur, P.

    2003-01-01

    This book constitutes at the same time theoretical and practical base relating to the phenomena associated with fluid mechanics. The concept of continuum is at the base of the approach developed in this work. The general advance proceeds of simple balances of forces as into hydrostatic to more complex situations or inertias, the internal stresses and the constraints of Reynolds are taken into account. This advance is not only theoretical but contains many applications in the form of solved problems, each chapter ending in a series of suggested problems. The major part of the applications relates to the incompressible flows

  13. Encapsulated Nanoparticle Synthesis and Characterization for Improved Storage Fluids: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G. C.; Pradhan, S.; Kang, J.; Curtis, C.; Blake, D.

    2010-10-01

    Nanoparticles are typically composed of 50--500 atoms and exhibit properties that are significantly different from the properties of larger, macroscale particles that have the same composition. The addition of these particles to traditional fluids may improve the fluids' thermophysical properties. As an example, the addition of a nanoparticle or set of nanoparticles to a storage fluid may double its heat capacity. This increase in heat capacity would allow a sensible thermal energy storage system to store the same amount of thermal energy in half the amount of storage fluid. The benefit is lower costs for the storage fluid and the storage tanks, resulting in lower-cost electricity. The goal of this long-term research is to create a new class of fluids that enable concentrating solar power plants to operate with greater efficiency and lower electricity costs. Initial research on this topic developed molecular dynamic models that predicted the energy states and transition temperatures for these particles. Recent research has extended the modeling work, along with initiating the synthesis and characterization of bare metal nanoparticles and metal nanoparticles that are encapsulated with inert silica coatings. These particles possess properties that make them excellent candidates for enhancing the heat capacity of storage fluids.

  14. Health interventions for the metal working industry: which is the most cost-effective? A study from a developing country.

    Science.gov (United States)

    Salinas, A M; Villarreal, E; Nuñez, G M; Garza, M E; Briones, H; Navarro, O

    2002-05-01

    This study ranked the cost-effectiveness of health interventions in the metal working industry in a developing country. Data were based on 82 034 workers of the Northern region of Mexico. Effectiveness was measured through 'healthy life years' (HeaLYs) gained. Costs were estimated per worker according to type and appropriate inputs from selected health interventions. 'Hand' was the anatomical region that yielded the most gain of HeaLYs and amputation was the injury that yielded the most gain of HeaLYs. The most effective health intervention corresponded to training, followed by medical care, education, helmets, safety shoes, lumbar supports, safety goggles, gloves and safety aprons. In dollar terms, education presented the best cost-effectiveness ratio (US$637) and safety aprons presented the worst cost-effectiveness ratio (US$1 147 770). Training proved to be a very expensive intervention, but presented the best effectiveness outcome and the second best cost-effectiveness ratio (US$2084). Cost-effectiveness analyses in developing countries are critical. Corporations might not have the same funds and technology as those in developed countries or multinational companies.

  15. Assessment of nickel and cobalt release from 200 unused hand-held work tools for sale in Denmark — Sources of occupational metal contact dermatitis?

    DEFF Research Database (Denmark)

    Thyssen, Jacob P.; Jensen, Peter; Lidén, Carola

    2011-01-01

    IntroductionNickel and cobalt allergy remain frequent in dermatitis patients. It is important to determine possible nickel and cobalt exposures at work as these may offer important information to regulators and physicians who perform patch testing. Clinical relevance of metal exposure is usually...... assessed by the treating physician via the medical history and by presentation of allergic contact dermatitis. ObjectivesTo screen unused non-powered hand-held work tools for nickel and cobalt release by using colorimetric spot tests. Materials & methodsA random selection of 200 non-powered hand-held work...... tools for sale in 2 retailers of home improvement and construction products were analyzed qualitatively for metal release using the colorimetric nickel and cobalt spot tests. ResultsNickel release was identified from 5% of 200 work tools using the dimethylglyoxime (DMG) test. In 8 of 10, positive...

  16. Assessment of nickel and cobalt release from 200 unused hand-held work tools for sale in Denmark - Sources of occupational metal contact dermatitis?

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Jensen, Peter; Lidén, Carola

    2011-01-01

    Nickel and cobalt allergy remain frequent in dermatitis patients. It is important to determine possible nickel and cobalt exposures at work as these may offer important information to regulators and physicians who perform patch testing. Clinical relevance of metal exposure is usually assessed...

  17. Applications of fluid dynamics

    International Nuclear Information System (INIS)

    Round, G.R.; Garg, V.K.

    1986-01-01

    This book describes flexible and practical approach to learning the basics of fluid dynamics. Each chapter is a self-contained work session and includes a fluid dynamics concept, an explanation of the principles involved, an illustration of their application and references on where more detailed discussions can be found

  18. First-Principles Investigations of the Working Mechanism of 2D h-BN as an Interfacial Layer for the Anode of Lithium Metal Batteries.

    Science.gov (United States)

    Shi, Le; Xu, Ao; Zhao, Tianshou

    2017-01-18

    An issue with the use of metallic lithium as an anode material for lithium-based batteries is dendrite growth, causing a periodic breaking and repair of the solid electrolyte interphase (SEI) layer. Adding 2D atomic crystals, such as h-BN, as an interfacial layer between the lithium metal anode and liquid electrolyte has been demonstrated to be effective to mitigate dendrite growth, thereby enhancing the Columbic efficiency of lithium metal batteries. But the underlying mechanism leading to the reduced dendrite growth remains unknown. In this work, with the aid of first-principle calculations, we find that the interaction between the h-BN and lithium metal layers is a weak van der Waals force, and two atomic layers of h-BN are thick enough to block the electron tunneling from lithium metal to electrolyte, thus prohibiting the decomposition of electrolyte. The interlayer spacing between the h-BN and lithium metal layers can provide larger adsorption energies toward lithium atoms than that provided by bare lithium or h-BN, making lithium atoms prefer to intercalate under the cover of h-BN during the plating process. The combined high stiffness of h-BN and the low diffusion energy barriers of lithium at the Li/h-BN interfaces induce a uniform distribution of lithium under h-BN, therefore effectively suppressing dendrite growth.

  19. Acute toxicity evaluation of cutting fluids used in manufacturing processes to Poecilia reticulata and Daphnia magna

    OpenAIRE

    William Gerson Matias; Cátia Regina Silva de Carvalho-Pinto; Débora Monteiro Brentano; Alexandre Magno de Paula Dias

    2006-01-01

    Grinding operations are very significant among the manufacturing processes of the metal-mechanic industry. In conventional grinding, cutting fluids are of great concern for improving productivity, but also for being hazardous to the environment. In order to contribute to the knowledge of the actual toxic effects of these products in aquatic environments, the present work assesses the toxicity potential through acute toxicity tests of three different kinds of cutting fluids, with three differe...

  20. No-contact method of determining average working-surface temperature of plate-type radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.

    2015-01-01

    A brand new no-contact method of determining the average working-surface temperature of plate-type radiation-absorbing thermal exchange panels (RATEPs) of flat solar collectors (FSCs) for heating a heat-transfer fluid (HTF) is suggested on the basis of the results of thermal tests in full-scale quasistationary conditions. (authors)

  1. Materials for ER Fluids

    Science.gov (United States)

    Bloodworth, Robert; Wendt, Eckhard

    Recent improvements in the physical understanding of ER fluids have led to the rational design of new ER materials with improved properties. This paper gives an overview of several recent developments in the formulation of ER fluids, concentrating on new particulate phases for ER dispersions. Examples of homogeneous ER fluids are also discussed. The trend leading to designed ER dispersions is demonstrated by a new class of electrorheological fluids based on non-aqueous polyurethane dispersions. The fluids exhibit an attractive combination of properties: low viscosity, high ER effect, and low conductivity. The dispersed phase consists of a specially developed polyurethane elastomer which solvates and stabilizes metal salts. The polymer network density influences the mobility of the dissolved ions, allowing a surprising degree of control over the ER effect. Properties such as the field strength dependence of the ER-effect, switching response, and conductivity of these fluids correlate directly with changes in the polymer structure. Electrorheological measurements in a couette viscometer (shear-mode) and in a model shock absorber (flow-mode) using a commercial polyurethane-based fluid show that the ER effect is also dependent upon the shearing geometry.

  2. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    West, H.B.; Delanoy, G.A.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States). Hawaii Inst. of Geophysics); Gerlach, D.C. (Lawrence Livermore National Lab., CA (United States)); Chen, B.; Takahashi, P.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States) Evans (Charles) and Associates, Redwood City, CA (United States))

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  3. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    Science.gov (United States)

    West, H. B.; Delanoy, G. A.; Thomas, D. M.; Gerlach, D. C.; Chen, B.; Takahashi, P.; Thomas, D. M.

    1992-03-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of the mixing of at least two, and possibly three, source fluids. These source fluids were recognized as a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibriated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80 percent of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs, yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  4. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  5. Evaluation of the toxicity of fluids employed in the metallic tool industrial machining using aquatic ecotoxicology;Avaliacao da toxicidade de fluidos de usinagem atraves da ecotoxicologia aquatica

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Ricardo dos Santos

    2006-07-01

    Eco toxicological analyses have being used to monitor environmental samples, industrial effluents and complex substances. With the objective to analyze the toxicity of cutting fluids used in the machinery industry, acute toxicity test with species of three different trophic levels: Vibrio fischeri, Daphnia similis, Daphnia laevis e Danio rerio, were performing. The samples of fluids were analyzed by COD, phenol, pH, color, density and surfactants. The physical and chemical parameters are the according with the brazilian law, CONAMA 357 (D.O.U. 2005). The results of the toxicity tests showed that the cutting fluids have high toxicity to the organisms used in this study and the gamma radiation treatment was not efficient to decrease the matrix. The biodegradation in soil demonstrated be effective to the cutting fluids and the indigenous bacteria were identified and isolated to possible treatment of soils contaminated with these kinds of substances. The monitoring and management of residues of cutting fluids are necessary to preservation of aquatic live, in consequence of their high toxicity. (author)

  6. Mixing and turbulent mixing in fluids, plasma and materials: summary of works presented at the 3rd International Conference on Turbulent Mixing and Beyond

    Science.gov (United States)

    Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.; Abarzhi, Snezhana I.

    2013-07-01

    in non-homogeneous fluids under the action of external forces. Whitehurst et al report a state-of-the-art study of on plasma filaments and geomagnetic field fluctuations that can concomitantly by solar powered microwave transmissions. Interfacial dynamics . Five works are dedicated to the theme of interfacial dynamics, and one of its key topics—interfacial Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities. Gauthier models the evolution of RT instability in stratified fluids by means of numerical simulations employing a self-adaptive multi-domain spectral method. Matsuoka studies three-dimensional (3D) vortex sheet motion with axial symmetry in incompressible RM and RT instabilities and shows that an azimuthal motion exists in 3D inhomogeneous flows (density stratification) with axial symmetry and without swirl. McFarland et al also investigate the influence of the initial perturbation amplitude for the inclined interface RM instability with an arbitrary Lagrangian-Eulerian hydrodynamic code and emphasize on nonlinear acoustic effects. Pavlenko et al report experimental studies describing the gas-bubble evolution and stability of a gas-bubble interface under the influence of variable pressure field. Tritschler et al report state-of-the-art simulations of a single-mode RM instability employing the central-upwind sixth-order weighted essentially non-oscillatory (WENO) scheme. High energy density physics. Two research papers represent this theme. The research paper by Fryxell et al reports on an integrated experimental and numerical study of radiative shocks in high energy density plasmas, when energy transfer by radiation is large enough to modify the structure of the shock with experiments and numerical simulations. The research paper by Wang et al reports numerical investigations of ablative RT instability in the presence of preheating, that is known to play an important role in inertial confinement fusion. Material science. Three papers are devoted to

  7. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11. meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    This Working Material includes the papers presented at the International Meeting 'Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase', which was held 5-9 July 2004 at the State Scientific Center of Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky, in Obninsk near Moscow. The objectives of the meeting were to discuss new results obtained in the field of liquid metal coolant and to recommend the lines of further general physics and applied investigations, with the purpose of validating existing and codes under development for liquid metal cooled advanced and new generation nuclear reactors. Most of the contributions present results of experimental and numerical investigations into velocity, temperature and heat transfer in fuel subassemblies of fast reactors cooled by sodium or lead. In the frame of the meeting a benchmark problem devoted to heat transfer in the model subassembly of the fast reactor BREST-OD-300 was proposed. Experts from 5 countries (Japan, Netherlands, Spain, Republic of Korea, and Russia) took part in this benchmark exercise. The results of the benchmark calculations are summarized in the Working Material. The results of hydrodynamic studies of pressure head chambers and collector systems of liquid metal cooled reactors are presented in a number of papers. Also attention was given to the generalization of experimental data on hydraulic losses in the pipelines in case of mutual influence of local pressure drops, and to the modeling of natural convection in the fuel subassemblies and circuits with liquid metal cooling. Special emphasis at the meeting was placed on thermal hydraulics issues related to the development and design of target systems, such as heat removal in the target unit of the cascade subcritical reactor cooled by liquid salt; the target complex MK-1 for accelerator driven systems cooled by eutectic lead-bismuth alloy; and the test

  8. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  9. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko

    2012-01-01

    A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...

  10. The origin of the Tongkeng-Changpo tin deposit, Dachang metal district, Guangxi, China: clues from fluid inclusions and He isotope systematics

    Science.gov (United States)

    Minghai, Cai; Jingwen, Mao; Ting, Liang; Pirajno, Franco; Huilan, Huang

    2007-08-01

    Tongkeng-Changpo is the largest tin deposit within the giant Dachang polymetallic tin ore field in Guangxi, southern China, which is part of a large skarn system associated with Cretaceous granitoids. The Tongkeng-Changpo mineralization consists of veins and stockworks in the upper levels and replacement stratiform orebodies (mantos) at lower levels. Based on textural relationships, three major mineralizing stages can be recognized: stage I with cassiterite, sulphides, stannite, tourmaline, and quartz; stage II with cassiterite, sulphides, sulphosalts, quartz, and calcite; and stage III with calcite as the main phase. The study of fluid inclusions has shown that there are two main fluid types: CO2 and NaCl-H2O. Homogenization temperatures are 270 to 365°C, 210 to 240°C, and 140 to 190°C for stages I, II, and III, respectively. Salinities range from 1 to 7 wt.% NaCl equiv. in the early ore stage and 3 to 10 wt.% NaCl equiv. in the late stages. Laser Raman Spectroscopy indicates that the inclusion fluids in stages I and II were of carbono-aqueous composition, with minor amounts of CH4 and H2S, whereas those in stage III were aqueous. Helium isotopic analyses of inclusion fluids indicate that the 3He/4He ratios in the ore veins are in between 1.2 to 2.9 Ra (Ra = 1.4 × 10-6, modern atmospheric ratio), and range from 1.6 to 2.5 Ra in the stratiform orebodies. This range of 3He/4He ratios is significantly higher than that of crustal fluids (0.01-0.05 Ra). The similar characteristics of fluid inclusions and their He isotopic composition, as well as age constraints, indicate that the ore veins and stratiform orebodies of the Tongkeng-Changpo deposit formed from the same hydrothermal system, likely related to granite intrusions of the Mesozoic Yanshanian tectono-thermal event. In addition, the high R/Ra ratios indicate a mantle contribution in the ore fluids.

  11. Critical length scales for flow phenomena in liquid metal batteries

    Science.gov (United States)

    Kelley, Douglas; Weier, Tom

    2017-11-01

    Liquid metal batteries, a new technology for grid-scale energy storage, are composed of three liquid layers and therefore subject to a wide variety of fluid dynamical phenomena, both beneficial and detrimental. Some, like thermal convection and electrovortex flow, drive finite flow regardless of the size, current density, and temperature of the battery. Others, like the Tayler instability and the metal pad instability, occur only in certain parameter regimes - almost always dependent on length scale. I will discuss critical length scales, considering implications for battery design in light of fundamental fluid dynamics. This work was supported by the National Science Foundation under Award Number CBET-1552182.

  12. Fluids engineering

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general

  13. Optimization of metals extraction using cyanex series and NaDDC reagents in liquid/supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ko, M. S.; Kim, S. H.; Park, K. H.; Kim, H. D.; Kim, H. W. [Kyunghee Univ., Youngin (Korea, Republic of)

    2002-05-01

    In this research, extraction of small fraction of radioactive elements from mixed contaminated working dress has been conducted by organic solvent extraction, but use of organic solvents has created secondary wastes. In this study, liquid/supercritical fluid CO{sub 2}, an environmentally friendly solvent, was used to extract five metals(Co, Cu, Pb, Cd, Zn). Using five metals selective ligand Cyanex-272 and NaDDC, the most optimized extraction conditions were founded 20 .deg. C, 100atm and complexed ratio(Cyanex-272: 100mg, NaDDC:5mg). The results suggest the possibility of utilizing supercritical fluid technology for extraction of metals from contaminated working dress.

  14. Complexity in fluids

    International Nuclear Information System (INIS)

    Bayly, B.

    1991-01-01

    Fluids are basically very simple things. The fluids encountered all the time - air, water, milk, coffee, etc. - are undramatic. One blob of a given fluid looks much like any other, except for such gross properties as volume or mass. Of course, blobs of fluid come in different shapes. However, it's easy to change the shape of a blob of fluid, with the result that we rarely think of the shape of a fluid blob as a defining property. In fact, a blob that starts with one shape can be deformed into almost any other shape, with arbitrarily small input of energy. When one talks about lumps of a solid, in contrast, shape is important. This is because it takes work, i.e., energy, to change the shape of a solid. Making a small deformation from some rest configuration takes a small amount of energy, and a large deformation takes a lot of energy. Sometimes, as in idealized elastic systems, the required energy goes to infinity as the deformation becomes unbounded. Real solids usually break if you deform them enough; all subsequent deformations cost no energy. Basically, a finite deformation requires finite energy. Complexity arises in fluid systems because the shape of a blob of fluid is indeterminate. Nothing prevents an initially simple fluid blob from deforming into the weirdest shape imaginable. It is the absence of any kind of blob-shape constraint that allows complexity to enter fluid science. During these lectures the author briefly describes a few areas in which complexity arises and has to be dealt with. These lectures will be roughly divided as follows: (1) physical and mathematical description of fluids and flows; (2) flow transport and ergodic theory; (3) magnetic dynamos and related problems; (4) flow instabilities; (5) turbulence

  15. Fluid machinery

    International Nuclear Information System (INIS)

    Ha, Jae Hyeon; Son, Byeong Jin

    2001-04-01

    This book tells of definition and classification of fluid machinery, energy equation of incompressible fluid, principle of momentum, classification and structure of pump, size, safety of centrifugal pump, theory and operation of contraction pump, reciprocating pump, rotary pump, special pump, using of water power, classification of water turbine, impulse water turbine, reaction water turbine, pump water turbine, liquid movement apparatus, fluid type control machinery and solid and gas type pneumatic machine.

  16. Change in working characteristics of the steam turbine metal with operating time of more than 330000 hours

    Science.gov (United States)

    Gladshteyn, V. I.; Troitskiy, A. I.

    2017-01-01

    Research of a metal of the stop valve case (SVC) of the K-300-23.5 LMZ turbine (steel grade 15Kh1M1FL), destroyed after operation for 331000 hours, is performed. It's chemical composition and properties are determined as follows: a short-term mechanical tensile stress at 20°C and at elevated temperature, critical temperature, fragility, critical crack opening at elevated temperature, and long-term strength. Furthermore, nature of the microstructure, packing density of carbide particles and their size, and chemical composition of carbide sediment are estimated. A manifestation of metal properties for the main case components by comparison with a forecast of the respective characteristics made for the operating time of 331000 hours is tested. Property-time relationships are built for the forecast using statistical treatment of the test results for the samples cut out from more than 300 parts. Representativeness of the research results is proved: the statistical treatment of their differences are within the range of ±5%. It has been found that, after 150000 hours of operation, only the tensile strength insignificantly depends on the operating time at 20°C, whereas indicators of strength at elevated temperature significantly reduce, depending on the operating time. A brittle-to-ductile transition temperature (BDTT) raises, a critical notch opening changes in a complicated way, a long-term strength reduces. It has been found empirically that the limit of a long-term strength of the SVC metal at 540°C and the operating time of 105 hours is almost 1.6 times less than the required value in the as-delivered state. It is possible to evaluate a service life of the operating valves with the operating time of more than 330000 hours with respect to the long-term strength of the metal taking into account the actual temperature and stress. Guidelines for the control of similar parts are provided.

  17. Features of Calculation of the Equation of State, Composition, and Conductivity for a Plasma of Dense, Supercritical Metal Vapors—a Plasma Fluid

    Science.gov (United States)

    Khomkin, A. L.; Shumikhin, A. S.

    2017-12-01

    The caloric and thermal equations of state, composition, and conductivity have been calculated for a supercritical aluminum plasma fluid. A previously proposed chemical plasma model called the "3+"-component one was used for the calculations. The model includes atoms, electrons, ions, and an electron jellium. The thermodynamic functions have been calculated for the first time within the "3+" model for a plasma fluid. The magnification and compensation of intercharge and interatomic interactions when calculating the equation of state and composition are analyzed. The introduction of the jellium leads to an increase in conductivity under compression, while the compensation of interactions when calculating the composition leads to a virtually ideal-gas behavior of the equation of state. Comparison with the data from physical and numerical experiments has confirmed our conclusions and demonstrated that the hypothesis about jellium, a new gas-plasma component, is constructive.

  18. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  19. Schroedinger fluid

    International Nuclear Information System (INIS)

    Kan, K.K.

    1983-01-01

    The relationship of nuclear internal flow and collective inertia, the difference of this flow from that of a classical fluid, and the approach of this flow to rigid flow in independent-particle model rotation are elucidated by reviewing the theory of Schroedinger fluid and its implications for collective vibration and rotation. (author)

  20. Fluid Dynamics

    DEFF Research Database (Denmark)

    Brorsen, Michael

    These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....

  1. Yang-Mills Magneto-Fluid Unification

    OpenAIRE

    Bambah, Bindu A.; Mahajan, Swadesh M.; Mukku, Chandrasekher

    2006-01-01

    We generalize the hybrid magneto-fluid model of a charged fluid interacting with an electromagnetic field to the dynamics of a relativistic hot fluid interacting with a non-Abelian field. The fluid itself is endowed with a non-Abelian charge and the consequences of this generalization are worked out. Applications of this formalism to the Quark Gluon Plasma are suggested.

  2. Absorption fluids data survey

    Science.gov (United States)

    Macriss, R. A.; Zawacki, T. S.

    Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.

  3. Theoretical Analysis of Unit Friction Force Working on the Metal Contact Surface with the Roll Change during Feedstock with Non-Uniform Temperature Distribution Rolling Process

    Directory of Open Access Journals (Sweden)

    Sygut P.

    2016-06-01

    Full Text Available The paper presents the results of theoretical studies influence of non-uniform temperature distribution along the feedstock length to the unit friction force working on the metal contact surface with the roll change during the round bars 70 mm in diameter continuous rolling process. This value is one of the major factors affecting the grooves wear during the rolling process. The studies were carried out based on the actual engineering data for 160 × 160 mm square cross-section feedstock of steel S355J0. Numerical modelling of the rolling process was performed using Forge2008®, a finite-element based computer program.

  4. Fluid transport due to nonlinear fluid-structure interaction

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1997-01-01

    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness...... of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...

  5. Mechanics of fluid flow

    CERN Document Server

    Basniev, Kaplan S; Chilingar, George V 0

    2012-01-01

    The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry.  This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike.  It is a must-have for any engineer working in the oil and gas industry.

  6. Current TVA work on the fluid mechanics of screens with very small openings for the exclusion of larvae at power plant cooling-water intakes

    International Nuclear Information System (INIS)

    Vigander, S.

    1978-01-01

    The potential use of screening media with very small openings to exclude larval fish at power plant cooling-water intakes opens several areas of possible fluid mechanic problems. In this paper, ongoing research is described which focuses on four specific areas: the prediction of the pressure drop across a screen, given flow rate and screen properties; the estimation of the pressure drop across partially plugged screens; the rate of debris buildup on a site-specific stationary screen sample; and methods for stationary screen cleaning and their effectiveness. Other areas are identified in which research is needed to aid in the design of intakes that will effectively exclude larvae

  7. Single-asperity contact mechanics with positive and negative work of adhesion: Influence of finite-range interactions and a continuum description for the squeeze-out of wetting fluids.

    Science.gov (United States)

    Müser, Martin H

    2014-01-01

    In this work, single-asperity contact mechanics is investigated for positive and negative work of adhesion Δγ. In the latter case, finite-range repulsion acts in addition to hard-wall constraints. This constitutes a continuum model for a contact immersed in a strongly wetting fluid, which can only be squeezed out in the center of the contact through a sufficiently large normal load F N. As for positive work of adhesion, two stable solutions can coexist in a finite range of normal loads. The competing solutions can be readily interpreted as contacts with either a load-bearing or a squeezed-out fluid. The possibility for coexistence and the subsequent discontinuous wetting and squeeze-out instabilities depend not only on the Tabor coefficient μT but also on the functional form of the finite-range repulsion. For example, coexistence and discontinuous wetting or squeeze-out do not occur when the repulsion decreases exponentially with distance. For positive work of adhesion, the normal displacement mainly depends on F N, Δγ, and μT but - unlike the contact area - barely on the functional form of the finite-range attraction. The results can benefit the interpretation of atomic force microscopy in liquid environments and the modeling of multi-asperity contacts.

  8. Co-ordinated research project on assessment of levels and health-effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. Report on the first research co-ordination meeting (RCM)

    International Nuclear Information System (INIS)

    1998-01-01

    The objectives of the CRP are to: (1) improve competence for research on workplace monitoring in terms of proper sampling and analytical procedures, (2) obtain relevant and reliable data on sources and levels of workplace pollution in various countries, (3) promote a better understanding of methods for the interpretation of such data including occupational heath studies, and (4) encourage closer collaboration between analytical scientists and researchers in the field of occupational health in the countries concerned. The CRP focuses on the use of nuclear and related analytical techniques for the following kinds of studies: (1) strategies and techniques for sampling of workplace airborne particulate matter and of human tissues and body fluids (hair, blood, etc.) sampling of exposed and non-exposed persons; (2) development of suitable analytical procedures for analysis of such types of samples; (3) workplace and personal monitoring of airborne particulate matter in the mining, refining and metal working industries, and the health effects of such exposure; and (4) tissue analysis of the workers exposed for biological monitoring and the health effects studies. This report includes the core and supplementary programme of the CRP; technical aspects of sampling, analysis, data processing, and quality assurance; and organizational aspects. The report includes also 10 papers contributed by the participants. Each individual contribution was indexed and provided with an abstract

  9. The Oscillatory Nature of Rotating Convection in Liquid Metal

    Science.gov (United States)

    Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.

    2016-12-01

    Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.

  10. Bearing Change to Metal-On-Polyethylene for Ceramic Bearing Fracture in Total Hip Arthroplasty; Does It Work?

    Science.gov (United States)

    Lee, Soong Joon; Kwak, Hong Suk; Yoo, Jeong Joon; Kim, Hee Joong

    2016-01-01

    We evaluated the short-term to midterm results of reoperation with bearing change to metal-on-polyethylene (MoP) after ceramic bearing fracture in ceramic-on-ceramic total hip arthroplasty. Nine third-generation ceramic bearing fractures (6 heads and 3 liners) were treated with bearing change to MoP. Mean age at reoperation was 52.7 years. Mean follow-up was 4.3 years. During follow-up, 2 of 3 liner-fractured hips and 1 of 6 head-fractured hips showed radiologic signs of metallosis and elevated serum chromium levels. Re-reoperation with bearing rechange to a ceramic head was performed for the hips with metallosis. One liner-fractured hip had periprosthetic joint infection. Dislocation occurred in 3 hips. From our experience, bearing change to MoP is not a recommended treatment option for ceramic bearing fracture in total hip arthroplasty. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Fluid dynamics and vibration of tube banks in fluid flow

    International Nuclear Information System (INIS)

    Zukauskas, A.; Ulinskas, R.; Katinas, V.

    1988-01-01

    This work presents results derived in fluid dynamics, hydraulic drag and flow-induced vibrations within transverse and yawed tube banks. The studies encompass banks of smooth, rough and finned tubes at Reynolds numbers from 1 to 2x10/sup 6/. Highlighted in the text are fluid dynamic parameters of tube banks measured at inter-tube spaces and tube surfaces

  12. Reactive flash volatilization of fluid fuels

    Science.gov (United States)

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Dreyer, Bradon J.; Salge, James R.

    2013-01-08

    The invention provides methods for the production of synthesis gas. More particularly, various embodiments of the invention relate to systems and methods for volatilizing fluid fuel to produce synthesis gas by using a metal catalyst on a solid support matrix.

  13. Thermostating highly confined fluids.

    Science.gov (United States)

    Bernardi, Stefano; Todd, B D; Searles, Debra J

    2010-06-28

    In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes.

  14. A model for construction of efficiency and stability maps of hot working processes in polycrystalline metallic materials using the Garofalo's equation

    International Nuclear Information System (INIS)

    Rieiro, I.; Fernandez, A.; Martinez, A.; Casi, M.

    1998-01-01

    Has been developed a fast and easy method for to evaluate the efficiency of the process and some or possible stabilities situations in the hot working process for the polycrystalline metallic materials (p.m.m.), by the obtained dates in the Garofalo's equation resolution for the steady state creep and for wide ranges of the work variables, stress, strain rate and temperature. These method use the fitting parameters obtained for the equation mentioned and of their physical meaning. Has been developed the numerical treatment from our previously developed software for the analysis of creep and we can obtained the efficiency energetic maps for the creep and the more generally advises areas for the hot working. Further more has been obtained maps for parameters of great physical significance; f.e. the effective activation energy for different areas of the materials hot working, and in addition has been developed a method for obtained the values of {n P L} for the different ranges of power-law application, when has been obtained the value of { n G } in the Garofalo's equation. (Author) 13 refs

  15. Basic thermo-fluid dynamic problems in high temperature heat exchangers

    International Nuclear Information System (INIS)

    McEligot, D.M.

    1986-01-01

    The authors consider high temperature heat exchangers to be ones where the heat transfer coefficients cannot be predicted confidently by classical analyses for pure forced convection with constant fluid properties. Alternatively, one could consider heat exchangers operating above some arbitrary temperature, say 1000F or 600C perhaps, to be at high temperature conditions. In that case, most common working fluids will be superheated vapors or gases. While some liquid metal heat exchangers are designed to operate in this range, the heat transfer coefficients of liquid metals are usually sufficiently high that the dominant thermal resistance would be due to the second fluid. This paper concentrates on convective heat transfer with gases. Typical applications include modular gas cooled nuclear reactors, proposed nuclear propulsion systems and space power plants, and superheaters in Rankine steam cycles

  16. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  17. Two-phase alkali-metal experiments in reduced gravity

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity

  18. Liquid Metal Transformers

    OpenAIRE

    Sheng, Lei; Zhang, Jie; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series...

  19. Atomic structure and work function of the metal-film systems: lithium-(011) face of tungsten or molybdenum

    International Nuclear Information System (INIS)

    Kanash, O.V.; Fedorus, A.G.

    1984-01-01

    The atomic structure and phase transitions in lithium films and also the variation of the work function under lithium adsorption on the (011) face of W or Mo are studied by the low electron diffraction and contact potential difference methods in a wide range of submonolayer coverage. In the low coverage range (theta 5/9), identical sets of anisotropic structures are formed on both substrates which are specific for localized adsorption. In the coverage range between 1/4 for W (011) or 1/6 for Mo (011) and 5/9 (for both substrates) the film grows by virtue of two consecutive first order phase transitions. In the remaining theta region the film compression proceeds continuously. A model of mixing of cells of various sizes is used to explain the continuity of the compression process. At low coverage the film atomic structure corresponds to a predominant effect of dipole-dipole interaction betWeen the adatoms, whereas at high coverage it corresponds to an indirect interaction. The temperature stability of the films at different theta is studied. The effect of the film structure on the work function and surface diffusion is discussed

  20. The fluid dynamics of climate

    CERN Document Server

    Palazzi, Elisa; Fraedrich, Klaus

    2016-01-01

    This volume provides an overview of the fluid aspects of the climate system, focusing on basic aspects as well as recent research developments. It will bring together contributions from diverse fields of the physical, mathematical and engineering sciences. The volume will be useful to doctorate students, postdocs and researchers working on different aspects of atmospheric, oceanic and environmental fluid dynamics. It will also be of interest to researchers interested in quantitatively understanding how fluid dynamics can be applied to the climate system, and to climate scientists willing to gain a deeper insight into the fluid mechanics underlying climate processes.

  1. Hydrogen sulfide removal in water-based drilling fluid by metal oxide nanoparticle and ZnO/TiO2 nanocomposite

    Science.gov (United States)

    Salehi Morgani, M.; Saboori, R.; Sabbaghi, S.

    2017-07-01

    Advanced approaches to the application of nanomaterials for environmental studies, such as waste-water treatment and pollution removal/adsorption, have been considered in recent decades. In this research, hydrogen sulfide removal from water-based drilling fluid by ZnO and TiO2 nanoparticles and a ZnO/TiO2 nanocomposite was studied experimentally. The ZnO and TiO2 nanoparticles were synthesized by sedimentation and the sol-gel method. A sol-chemical was employed to synthesize the ZnO/TiO2 nanocomposite. X-ray diffraction, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface analysis, inductively coupled plasma mass spectrometry (ICP), dynamic light scattering (DLS) and Fourier transform infrared spectroscopy were used to characterize the produced ZnO and TiO2 nanoparticles, and the ZnO/TiO2 nanocomposite. The results showed that the concentration of hydrogen sulfide decreased from 800 ppm to about 250 ppm (about 70% removal) and less than 150 ppm (more than 80% removal) using the TiO2 and ZnO nanoparticles with a 0.67 wt% concentration, respectively. Hydrogen sulfide removal using the ZnO/TiO2 nanocomposite with a 0.67 wt% showed the highest value of removal in comparison with the TiO2 and ZnO nanoparticles. The hydrogen sulfide level was lowered from 800 ppm to less than 5 ppm (99% removal) by the nanocomposite.

  2. Amniotic Fluid Embolism Pathophysiology Suggests the New Diagnostic Armamentarium: β-Tryptase and Complement Fractions C3-C4 Are the Indispensable Working Tools

    Directory of Open Access Journals (Sweden)

    Francesco Paolo Busardò

    2015-03-01

    Full Text Available Amniotic fluid embolism (AFE is an uncommon obstetric condition involving pregnant women during labor or in the initial stages after delivery. Its incidence is estimated to be around 5.5 cases per 100,000 deliveries. Therefore, this paper investigated the pathophysiological mechanism, which underlies AFE, in order to evaluate the role of immune response in the development of this still enigmatic clinical entity. The following databases (from 1956 to September 2014 Medline, Cochrane Central, Scopus, Web of Science and Science Direct were used, searching the following key words: AFE, pathophysiology, immune/inflammatory response, complement and anaphylaxis. The main key word “AFE” was searched singularly and associated individually to each of the other keywords. Of the 146 sources found, only 19 were considered appropriate for the purpose of this paper. The clinical course is characterized by a rapid onset of symptoms, which include: acute hypotension and/or cardiac arrest, acute hypoxia (with dyspnoea, cyanosis and/or respiratory arrest, coagulopathies (disseminated intravascular coagulation and/or severe hemorrhage, coma and seizures. The pathology still determines a significant morbidity and mortality and potential permanent neurological sequelae for surviving patients. At this moment, numerous aspects involving the pathophysiology and clinical development are still not understood and several hypotheses have been formulated, in particular the possible role of anaphylaxis and complement. Moreover, the detection of serum tryptase and complement components and the evaluation of fetal antigens can explain several aspects of immune response.

  3. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  4. Cementation of kerogen-rich marls by alkaline fluids released during weathering of thermally metamorphosed marly sediments. Part II: Organic matter evolution, magnetic susceptibility and metals (Ti, Cr, Fe) at the Khushaym Matruk natural analogue (Central Jordan)

    Energy Technology Data Exchange (ETDEWEB)

    Elie, M. [Univ Nancy 1, CNRS, F-54506 Vandoeuvre Les Nancy (France); Techer, I. [Univ Aix Marseille 3, CNRS, UMR 6635, CEREGE, F-30035 Nimes, (France); Trotignon, L. [CEN Cadarache, DTN SMTM LMTE, F-13108 St Paul Les Durance (France); Khoury, H.; Salameh, E. [Univ Jordan, Dept Geol, Amman 11942 (Jordan); Vandamme, D. [Univ Aix Marseille 3, CNRS, UMR 6635, CEREGE, F-13545 Aix En Provence (France); Boulvais, P.; Fourcade, S. [Univ Rennes 1, CNRS, UMR 6118, F-35042 Rennes (France)

    2007-07-15

    .05 m as revealed by the oxygen index and induced the generation of bitumen. The spatial correlation between the oxidation levels of organic matter and the metal contents (Fe, Ti and Cr) suggests that redox reactions were responsible for the immobilization of metals in the indurated bio-micrites. The intensity of these reactions is attributed to changes in the fluid flow regime within the sedimentary column. (authors)

  5. Progress in liquid metal fast reactor technology. Proceedings of the 28th meeting of the International Working Group on Fast Reactors

    International Nuclear Information System (INIS)

    1996-04-01

    The key objectives and activities of Member State liquid metal fast reactor (LMFR) programmes are: Demonstration of effective designs; demonstration of system safety; demonstration of economic competitiveness with other power generation systems. The International Working Group on Fast Reactors (IWGFR) at its 1995 meeting observed that while some countries (as a result of static or falling power demand) are reducing the research and development programmes or delaying the commercial deployment of fast reactors, other countries are planning to introduce these reactors and are embarking on their own development programmes. In these circumstances the international exchange of information and experience is of increasing importance. These proceedings contain updated information from long standing members of the IWGFR and new information on the status of LMFR research and development from new members of the Group: Brazil, China, Republic of Kazakhstan and the Republic of Korea. Refs, figs, tabs

  6. Fundamental Issues of Nano-fluid Behavior

    International Nuclear Information System (INIS)

    Williams, Wesley C.

    2006-01-01

    This paper will elucidate some of the behaviors of nano-fluids other than the abnormal conductivity enhancement, which are of importance to the experimental and engineering use of nano-fluids. Nano-fluid is the common name of any sol colloid involving nano-scale (less than 100 nm) sized particles dispersed within a base fluid. It has been shown previously that the dispersion of nano-particulate metallic oxides into water can increase thermal conductivity up to 30-40% over that of the base fluid and anomalously more than the mere weighed average of the colloid. There is a great potential for the use of nano-fluids as a way to enhance fluid/thermal energy transfer systems. Due to the recentness of nano-fluid science, there are still many issues which have not been fully investigated. This paper should act as a primer for the basic understanding of nano-fluid behavior. Particle size and colloid stability are of key importance to the functionality of nano-fluids. The pH and concentration/loading of nano-fluids can alter the size of the nano-particles and also the stability of the fluids. It will be shown through experiment and colloid theory the importance of these parameters. Furthermore, most of the existing literature uses volume percentage as the measure of particle loading, which can often be misleading. There will be discussion of this and other misleading ideas in nano-fluid science. (author)

  7. Metal working oils. Cutting oils, rolling oils, quenching oils, rust preventive oils; Kinzoku kakoyu. Sessakuyu, atsuenyu, yakiireyu, boseiyu

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, S. [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-04-01

    With the demand against complicating working techniques for a background, foundations of the consideration for each of the lubricants in future are outlined. 1. Cutting oils: From the standpoint of speeding up and fireproofing, share of water-soluble type has come up to 30-40%. In this type, emulsifying dispersants and preservatives are combined. 2. Rolling oils: According to thinning of the standard thickness of steel plates, pressure of contacting surfaces has come up to 300 kg/mm{sup 2}(max.) and slip speed has increased too. In stainless steel plates, in order to get rid of the heat-streak (baking streak originated from wearing-out of oil film) shifting from neat oil to emulsion type is required. 3. Quenching oils: Following two systems are recent tendencies, the mineral oil system having excellent thermostability or the water system containing polyalkylneglycol etc., but the latter is expected from the viewpoint of fireproofing. 4. Rust preventive oils: As this oils do not aim at the rust prevention for long term, degreasing property is required. 20 refs., 5 figs., 1 tab.

  8. Rheology of Active Fluids

    Science.gov (United States)

    Saintillan, David

    2018-01-01

    An active fluid denotes a viscous suspension of particles, cells, or macromolecules able to convert chemical energy into mechanical work by generating stresses on the microscale. By virtue of this internal energy conversion, these systems display unusual macroscopic rheological signatures, including a curious transition to an apparent superfluid-like state where internal activity exactly compensates viscous dissipation. These behaviors are unlike those of classical complex fluids and result from the coupling of particle configurations with both externally applied flows and internally generated fluid disturbances. Focusing on the well-studied example of a suspension of microswimmers, this review summarizes recent experiments, models, and simulations in this area and highlights the critical role played by the rheological response of these active materials in a multitude of phenomena, from the enhanced transport of passive suspended objects to the emergence of spontaneous flows and collective motion.

  9. Preliminary Study on CHF Enhancement of Cellulose Nano Fiber (CNF) Fluid with Wire Pool Boiling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Won Ki; Lee, Yun Seok; Lim, Dong Young; Song, Sub Lee; Lee, Jae Young; Lee, Kwon Yeong [Hanyang Global University, Pohang (Korea, Republic of); Hwang, Dong Soo [POSTECH, Pohang (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) is enhancement of a boiling system will make more compact and effective cooling systems, for examples, nuclear reactors, and air conditioning units. For decades, researchers have been trying to develop more efficient working fluid for heat transfer. This is where nano-fluid could play a key role. There have been a lot of researches for CHF enhancements in nucleate boiling by using nano-fluid which are composed of metal such as copper, Al{sub 2}O{sub 3} and ceramic. And a critical factor of the enhancement is deposition of nano-particles on heating surface, although some results of recent studies are contrary. Also, previous nano-fluid are expensive and have a problem in mass production, so they are difficult to apply to practical industries. Therefore we chose a new material, cellulose nano fiber (CNF) as a solution. CNF can be applied to real situation because it has some advantages which are cost-effectiveness, easiness to get and to make it in nano scale. CHF performance of CNF fluid was different from that of distilled water. Compared to CHF of distilled water, CHF of the CNF fluid which had 0.001V%, 0.01V%, and 0.1V% volumetric concentrations were enhanced to 1%, 104%, and 13% respectively. Likewise other nano-fluid, deposition phenomena was observed in this CNF fluid boiling experiment.

  10. Establishing low-power operating limits for liquid metal heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Secary, J. [Phillips Lab., Kirtland AFB, NM (United States); Merrigan, M.A.; Keddy, M.D. [Los Alamos National Lab., NM (United States)

    1992-05-01

    Liquid metal heat pipes operated at power throughputs well below their design point for long durations may fail as a result of the working fluid migrating to a cold region within the pipe, freezing there, and hot returning to the evaporator section. Eventually sufficient working fluid inventory may be lost to the cold region to cause a local dry-out condition in the evaporator. A joint experimental and analytical effort between the Air Force Phillips Laboratory and Los Alamos National Laboratory is underway to investigate the phenomena. Experiments include both high temperature liquid metal and low temperature organic heat pipes. To date, a low temperature working fluid has been selected and its performance in a heat pipe validated. Additionally, a low-temperature heat pipe has been fabricated and is presently being tested.

  11. A Finite-Volume computational mechanics framework for multi-physics coupled fluid-stress problems

    International Nuclear Information System (INIS)

    Bailey, C; Cross, M.; Pericleous, K.

    1998-01-01

    Where there is a strong interaction between fluid flow, heat transfer and stress induced deformation, it may not be sufficient to solve each problem separately (i.e. fluid vs. stress, using different techniques or even different computer codes). This may be acceptable where the interaction is static, but less so, if it is dynamic. It is desirable for this reason to develop software that can accommodate both requirements (i.e. that of fluid flow and that of solid mechanics) in a seamless environment. This is accomplished in the University of Greenwich code PHYSICA, which solves both the fluid flow problem and the stress-strain equations in a unified Finite-Volume environment, using an unstructured computational mesh that can deform dynamically. Example applications are given of the work of the group in the metals casting process (where thermal stresses cause elasto- visco-plastic distortion)

  12. Liquid metal flow control by DC electromagnetic pumps

    International Nuclear Information System (INIS)

    Borges, Eduardo Madeira; Braz Filho, Francisco Antonio; Guimaraes, Lamartine Nogueira Frutuoso

    2006-01-01

    The cooling system of high-density thermal power requires fluids of high thermal conductivity, such as liquid metals. Electromagnetic pumps can be used to liquid metal fluid flow control in cooling circuits. The operation of electromagnetic pumps used to flow control is based on Lorentz force. This force can be achieved by magnetic field and electric current interaction, controlled by external independent power supplies. This work presents the electromagnetic pump operational principles, the IEAv development scheme and the BEMC-1 simulation code. The theoretical results of BEMC-1 simulation are compared to electromagnetic pump operation experimental data, validating the BEMC-1 code. This code is used to evaluate the DC electromagnetic pump performance applied to Mercury flow control and others liquid metal such as Sodium, Lead and Bismuth, used in nuclear fast reactors. (author)

  13. Nanofluid based on self-nanoencapsulated metal/metal alloys phase change materials with tuneable crystallisation temperature.

    Science.gov (United States)

    Navarrete, Nuria; Gimeno-Furio, Alexandra; Mondragon, Rosa; Hernandez, Leonor; Cabedo, Luis; Cordoncillo, Eloisa; Julia, J Enrique

    2017-12-14

    Nanofluids using nanoencapsulated Phase Change Materials (nePCM) allow increments in both the thermal conductivity and heat capacity of the base fluid. Incremented heat capacity is produced by the melting enthalpy of the nanoparticles core. In this work two important advances in this nanofluid type are proposed and experimentally tested. It is firstly shown that metal and metal alloy nanoparticles can be used as self-encapsulated nePCM using the metal oxide layer that forms naturally in most commercial synthesis processes as encapsulation. In line with this, Sn/SnOx nanoparticles morphology, size and thermal properties were studied by testing the suitability and performance of encapsulation at high temperatures and thermal cycling using a commercial thermal oil (Therminol 66) as the base fluid. Secondly, a mechanism to control the supercooling effect of this nePCM type based on non-eutectic alloys was developed.

  14. Fluid Mechanics

    Science.gov (United States)

    Pnueli, David; Gutfinger, Chaim

    1997-01-01

    This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.

  15. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  16. Enhanced active swimming in viscoelastic fluids

    OpenAIRE

    Riley, Emily E; Lauga, Eric Jean-Marie

    2014-01-01

    Swimming microorganisms often self propel in fluids with complex rheology. While past theoretical work indicates that fluid viscoelasticity should hinder their locomotion, recent experiments on waving swimmers suggest a possible non-Newtonian enhancement of locomotion. We suggest a physical mechanism, based on fluid-structure interaction, leading to swimming in a viscoelastic fluid at a higher speed than in a Newtonian one. Using Taylor's two-dimensional swimming sheet model, we solve for the...

  17. Fluid Sounds

    DEFF Research Database (Denmark)

    and in architectural design. Aesthetics, psychoacoustics, perception, and cognition are all present in this expanding field embracing such categories as soundscape composition, sound art, sonic art, sound design, sound studies and auditory culture. Of greatest significance to the overall field is the investigation...... of sound, site and the social, and how the spatial, the visual, and the bodily interact in sonic environments, how they are constructed and how they are entangled in other practices. With the Seismograf special issue Fluid Sounds, we bring this knowledge into the dissemination of audio research itself...

  18. Principles of fluid mechanics

    International Nuclear Information System (INIS)

    Kreider, J.F.

    1985-01-01

    This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements

  19. Performance Testing of Cutting Fluids

    DEFF Research Database (Denmark)

    Belluco, Walter

    The importance of cutting fluid performance testing has increased with documentation requirements of new cutting fluid formulations based on more sustainable products, as well as cutting with minimum quantity of lubrication and dry cutting. Two sub-problems have to be solved: i) which machining...... tests feature repeatability, reproducibility and sensitivity to cutting fluids, and ii) to what extent results of one test ensure relevance to a wider set of machining situations. The present work is aimed at assessing the range of validity of the different testing methods, investigating correlation...... within the whole range of operations, materials, cutting fluids, operating conditions, etc. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping, and with respect to tool life, cutting forces, chip formation and product quality (dimensional accuracy and surface integrity...

  20. Feasibility, safety, and outcomes of a single-step endoscopic ultrasonography-guided drainage of pancreatic fluid collections without fluoroscopy using a novel electrocautery-enhanced lumen-apposing, self-expanding metal stent

    Science.gov (United States)

    Yoo, Joseph; Yan, Linda; Hasan, Raza; Somalya, Saana; Nieto, Jose; Siddiqui, Ali A.

    2017-01-01

    Background and Objectives: There are currently limited data available regarding the safety of endoscopic ultrasound (EUS)-guided drainage of pancreatic fluid collections (PFCs) using the lumen-apposing metal stent without fluoroscopic guidance. This study aims to evaluate clinical outcomes and safety of EUS-guided drainage of PFC using the electrocautery-enhanced lumen-apposing metal stents (EC-LAMSs) without fluoroscopic guidance. Methods: We conducted a retrospective study on patients with symptomatic PFC who underwent EUS-guided drainage using EC-LAMS without fluoroscopy. All patients were followed clinically until resolution of their PFC. Technical success (successful placement of EC-LAMS), number of patients who achieved complete resolution of PFC without additional intervention and adverse events were noted. Results: We evaluated 25 patients, including three with pancreatic pseudocysts and 22 with walled-off necrosis (WON). The etiology of the patient's pancreatitis was gallstones (42%), alcohol (27%), and other causes (31%). The mean cyst size was 82 mm (range, 60–170 mm). The indications for endoscopic drainage were abdominal pain, infected WON, or gastric outlet obstruction. Technical success with placement of the EC-LAMS was achieved in all 25 patients. There were no procedure-related complications. The mean patient follow-up was 7.8 months. PFCs resolved in 24 (96%) patients; the one failure was in a patient with WON. Stent occlusion was seen in one patient. There was a spontaneous migration of one stent into the enteral lumen after resolution of WONs. The EC-LAMS were successfully removed using a snare in all the remaining patients. The median number of endoscopy sessions to achieve PFCs resolution was 2 (range, 2–6). Conclusions: Single-step EUS-guided drainage of PFCs without fluoroscopic guidance using the novel EC-LAMS is a safe and effective endoscopic technique for drainage of PFCs with excellent technical and clinical success rates and no

  1. Pathogen control in complex fluids with water-coupled excimer lamps at 282 and 308 nm.

    Science.gov (United States)

    Coogan, John J

    2005-01-01

    Water-coupled excimer lamp systems have been developed to inactivate microorganisms within complex, low-optical quality, fluids. Monochromatic lamps were selected to minimize UV-B and UV-C absorption within the carrier fluids while maximizing deposition within specific chemical targets. Fundamentals, system scaling and power supply design are discussed. This work used two large-surface area excimer lamps as intense sources of near monochromatic radiation at 308 and 282 nm. Data are presented for two distinct fluid systems: flow-through processing of large-volume metalworking fluids used in heavy industry and batch irradiation of human blood plasma and platelet suspensions used in transfusion medicine. In the first, a 200-600 L/min reactor is used to control bacterial concentrations within metalworking fluids used in large-scale metal machining processes. Control is defined as the maintenance of 10(3) to 10(4) CFU/mL in fluids that without treatment would have concentrations over 10(7) CFU/mL. The second is a batch process for viral inactivation in undiluted blood bank products. Samples of fresh frozen plasma and platelet suspensions were spiked with high titers of porcine parvovirus (PPV) and irradiated at 308 and 282 nm. Although both wavelengths were effective at reducing PPV levels, 308 nm light resulted in both higher rates of viral inactivation (greater than 6 log units) and lower rates of fluid degradation.

  2. Advances in Environmental Fluid Mechanics

    CERN Document Server

    Mihailovic, Dragutin T

    2010-01-01

    Environmental fluid mechanics (EFM) is the scientific study of transport, dispersion and transformation processes in natural fluid flows on our planet Earth, from the microscale to the planetary scale. This book brings together scientists and engineers working in research institutions, universities and academia, who engage in the study of theoretical, modeling, measuring and software aspects in environmental fluid mechanics. It provides a forum for the participants, and exchanges new ideas and expertise through the presentations of up-to-date and recent overall achievements in this field.

  3. Mechanisms, Monitoring and Modeling Earth Fissure generation and Fault activation due to subsurface Fluid exploitation (M3EF3): A UNESCO-IGCP project in partnership with the UNESCO-IHP Working Group on Land Subsidence

    Science.gov (United States)

    Teatini, P.; Carreon-Freyre, D.; Galloway, D. L.; Ye, S.

    2015-12-01

    Land subsidence due to groundwater extraction was recently mentioned as one of the most urgent threats to sustainable development in the latest UNESCO IHP-VIII (2014-2020) strategic plan. Although advances have been made in understanding, monitoring, and predicting subsidence, the influence of differential vertical compaction, horizontal displacements, and hydrostratigraphic and structural features in groundwater systems on localized near-surface ground ruptures is still poorly understood. The nature of ground failure may range from fissuring, i.e., formation of an open crack, to faulting, i.e., differential offset of the opposite sides of the failure plane. Ground ruptures associated with differential subsidence have been reported from many alluvial basins in semiarid and arid regions, e.g. China, India, Iran, Mexico, Saudi Arabia, Spain, and the United States. These ground ruptures strongly impact urban, industrial, and agricultural infrastructures, and affect socio-economic and cultural development. Leveraging previous collaborations, this year the UNESCO Working Group on Land Subsidence began the scientific cooperative project M3EF3 in collaboration with the UNESCO International Geosciences Programme (IGCP n.641; www.igcp641.org) to improve understanding of the processes involved in ground rupturing associated with the exploitation of subsurface fluids, and to facilitate the transfer of knowledge regarding sustainable groundwater management practices in vulnerable aquifer systems. The project is developing effective tools to help manage geologic risks associated with these types of hazards, and formulating recommendations pertaining to the sustainable use of subsurface fluid resources for urban and agricultural development in susceptible areas. The partnership between the UNESCO IHP and IGCP is ensuring that multiple scientific competencies required to optimally investigate earth fissuring and faulting caused by groundwater withdrawals are being employed.

  4. Gyroelastic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kerbel, G.D.

    1981-01-20

    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.

  5. Gyroelastic fluids

    International Nuclear Information System (INIS)

    Kerbel, G.D.

    1981-01-01

    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch

  6. High gliding fluid power generation system with fluid component separation and multiple condensers

    Science.gov (United States)

    Mahmoud, Ahmad M; Lee, Jaeseon; Radcliff, Thomas D

    2014-10-14

    An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.

  7. Electrorheologic fluids; Fluidos electroreologicos

    Energy Technology Data Exchange (ETDEWEB)

    Rejon G, Leonardo; Lopez G, Francisco; Montoya T, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Manero B, Octavio [Instituto de Investigaciones en Materiales, UNAM.(Mexico)

    2003-07-01

    The present article has as an objective to offer a review of the research work made in the Instituto de Investigaciones Electricas (IIE) on the study of the electrorheologic fluids whose flow properties can abruptly change in the presence of an electric field when this is induced by a direct current. The electrorheologic fluids have their main application in the manufacture of self-controlling damping systems. [Spanish] El presente articulo tiene por objetivo ofrecer una resena de los trabajos de investigacion realizados en el Instituto de Investigaciones Electricas (IIE) sobre el estudio de los fluidos electroreologicos cuyas propiedades de flujo pueden cambiar abruptamente en presencia de un campo electrico cuando este es inducido por una corriente directa. Los fluidos electroreologicos tienen su principal aplicacion en la fabricacion de sistemas de amortiguamiento autocontrolables.

  8. Thermophysical Properties of Fluids and Fluid Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sengers, Jan V.; Anisimov, Mikhail A.

    2004-05-03

    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  9. Automatic fluid dispenser

    Science.gov (United States)

    Sakellaris, P. C. (Inventor)

    1977-01-01

    Fluid automatically flows to individual dispensing units at predetermined times from a fluid supply and is available only for a predetermined interval of time after which an automatic control causes the fluid to drain from the individual dispensing units. Fluid deprivation continues until the beginning of a new cycle when the fluid is once again automatically made available at the individual dispensing units.

  10. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  11. Fluid Mechanics and Fluid Power (FMFP)

    Indian Academy of Sciences (India)

    Amitabh Bhattacharya

    decades, mainly due to the rapid improvement in computational efficiency, cameras, optics and instrumentation, both computational and experimental techniques have improved significantly, allowing researchers in Fluid Mechanics to build better mechanistic and analytical models for processes involving dynamics of fluids.

  12. Acute toxicity evaluation of cutting fluids used in manufacturing processes to Poecilia reticulata and Daphnia magna

    Directory of Open Access Journals (Sweden)

    William Gerson Matias

    2006-09-01

    Full Text Available Grinding operations are very significant among the manufacturing processes of the metal-mechanic industry. In conventional grinding, cutting fluids are of great concern for improving productivity, but also for being hazardous to the environment. In order to contribute to the knowledge of the actual toxic effects of these products in aquatic environments, the present work assesses the toxicity potential through acute toxicity tests of three different kinds of cutting fluids, with three different usage times. The tests were carried out using the fish Poecilia reticulate and the microcrustacean Daphnia magna as test organisms. These tests made it possible to determine the Median Lethal Concentration (LC50 for the fish and the Median Effective Concentration (EC50 for the microcrustacean. The results indicate that, after storage, the toxicity potential of cutting fluids decreases. However, in the three situations investigated, the product presented a high toxicity potential, which reinforces the need of special care in its handling, usage and disposal.

  13. Optimal composition of fluid-replacement beverages.

    Science.gov (United States)

    Baker, Lindsay B; Jeukendrup, Asker E

    2014-04-01

    The objective of this article is to provide a review of the fundamental aspects of body fluid balance and the physiological consequences of water imbalances, as well as discuss considerations for the optimal composition of a fluid replacement beverage across a broad range of applications. Early pioneering research involving fluid replacement in persons suffering from diarrheal disease and in military, occupational, and athlete populations incurring exercise- and/or heat-induced sweat losses has provided much of the insight regarding basic principles on beverage palatability, voluntary fluid intake, fluid absorption, and fluid retention. We review this work and also discuss more recent advances in the understanding of fluid replacement as it applies to various populations (military, athletes, occupational, men, women, children, and older adults) and situations (pathophysiological factors, spaceflight, bed rest, long plane flights, heat stress, altitude/cold exposure, and recreational exercise). We discuss how beverage carbohydrate and electrolytes impact fluid replacement. We also discuss nutrients and compounds that are often included in fluid-replacement beverages to augment physiological functions unrelated to hydration, such as the provision of energy. The optimal composition of a fluid-replacement beverage depends upon the source of the fluid loss, whether from sweat, urine, respiration, or diarrhea/vomiting. It is also apparent that the optimal fluid-replacement beverage is one that is customized according to specific physiological needs, environmental conditions, desired benefits, and individual characteristics and taste preferences.

  14. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  15. Supercritical fluids cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Butner, S.; Hjeresen, D.; Silva, L.; Spall, D.; Stephenson, R.

    1991-01-01

    This paper discusses a proposed multi-party research and development program which seeks to develop supercritical fluid cleaning technology as an alternative to existing solvent cleaning applications. While SCF extraction technology has been in commercial use for several years, the use of these fluids as cleaning agents poses several new technical challenges. Problems inherent in the commercialization of SCF technology include: the cleaning efficacy and compatibility of supercritical working fluids with the parts to be cleaned must be assessed for a variety of materials and components; process parameters and equipment design Have been optimized for extractive applications and must be reconsidered for application to cleaning; and co-solvents and entrainers must be identified to facilitate the removal of polar inorganic and organic contaminants, which are often not well solvated in supercritical systems. The proposed research and development program would address these issues and lead to the development and commercialization of viable SCF-based technology for precision cleaning applications. This paper provides the technical background, program scope, and delineates the responsibilities of each principal participant in the program.

  16. Fluid Mechanics and Fluid Power (FMFP)

    Indian Academy of Sciences (India)

    Amitabh Bhattacharya

    of renewable energy (e.g., via wind, hydrokinetic generators), creating low-cost healthcare (e.g., via point-of-care medical testing) and improvement of energy efficiency of fluid power systems, depends on improving our understanding of Fluid. Mechanics. Fluids are ubiquitous in both nature and technological applications, ...

  17. Prediction of ore fluid metal concentrations from solid solution concentrations in ore-stage calcite: Application to the Illinois-Kentucky and Central Tennessee Mississippi Valley-type districts

    Science.gov (United States)

    Smith-Schmitz, Sarah E.; Appold, Martin S.

    2018-03-01

    Knowledge of the concentrations of Zn and Pb in Mississippi Valley-type (MVT) ore fluids is fundamental to understanding MVT deposit origin. Most previous attempts to quantify the concentrations of Zn and Pb in MVT ore fluids have focused on the analysis of fluid inclusions. However, these attempts have yielded ambiguous results due to possible contamination from secondary fluid inclusions, interferences from Zn and Pb in the host mineral matrix, and uncertainties about whether the measured Zn and Pb signals represent aqueous solute or accidental solid inclusions entrained within the fluid inclusions. The purpose of the present study, therefore, was to try to determine Zn and Pb concentrations in MVT ore fluids using an alternate method that avoids these ambiguities by calculating Zn and Pb concentrations in MVT ore fluids theoretically based on their solid solution concentrations in calcite. This method was applied to the Illinois-Kentucky and Central Tennessee districts, which both contain ore-stage calcite. Experimental partition coefficient (D) values from Rimstidt et al. (1998) and Tsusue and Holland (1966), and theoretical thermodynamic distribution coefficient (KD) values were employed in the present study. Ore fluid concentrations of Zn were likely most accurately predicted by Rimstidt et al. (1998) D values, based on their success in predicting known fluid inclusion concentrations of Mg and Mn, and likely also most accurately predicted ore fluid concentrations of Fe. All four of these elements have a divalent ionic radius smaller than that of Ca2+ and form carbonate minerals with the calcite structure. For both the Illinois-Kentucky and the Central Tennessee district, predicted ore fluid Zn and Fe concentrations were on the order of up to 10's of ppm. Ore fluid concentrations of Pb could only be predicted using Rimstidt et al. (1998) D values. However, these concentrations are unlikely to be reliable, as predicted ore fluid concentrations of Sr and Ba

  18. Performance Comparison and Selection of Transformer Fluid

    OpenAIRE

    Lu Yang; Liu Shi Jia

    2016-01-01

    Transformer fluid directly affects the working state of the components and the cooling efficiency of transformer. There are three kinds of transformer fluid used for electric locomotive, EMU and suburban rail vehicles: mineral oil, silicone liquid and synthetic ester based insulating oil. In this paper, the three kinds of oil are compared from the fire safety, environmental protection, reliability and low maintenance. It provides a strong basis for the selection of transformer fluid. By compr...

  19. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    Science.gov (United States)

    Camarda, C. J.; Basiulis, A.

    1983-01-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors.

  20. Thickened water-based hydraulic fluid with reduced dependence of viscosity on temperature

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C. F.

    1985-01-01

    Improved hydraulic fluids or metalworking lubricants, utilizing mixtures of water, metal lubricants, metal corrosion inhibitors, and an associative polyether thickener, have reduced dependence of the viscosity on temperature achieved by the incorporation therein of an ethoxylated polyether surfactant.

  1. Fluid element in SAP IV

    International Nuclear Information System (INIS)

    Yilmaz, C.; Akkas, N.

    1979-01-01

    In previous studies a fluid element is incorporated in the widely used general purpose finite element program SAPIV. This type of problem is of interest in the design of nuclear components involving geometric complexities and nonlinearities. The elasticity matrix of a general-purpose finite element program is modified in such a way that it becomes possible to idealize fluid as a structural finite element with zero shear modulus and a given bulk modules. Using the modified version of SAPIV, several solid-fluid interactions problems are solved. The numerical solutions are compared with the available analytical solutions. They are shown to be in reasonable aggrement. It is also shown that by solving an exterior-fluid interaction problem, the pressure wave propagation in the acoustic medium can be solved with the same approach. In this study, two of the problem not studied in the previous work will be presented. These problems are namely the effects of the link elements used at solid-fluid interfaces and of the concentrated loads on the response of the fluid medium. Truss elements are used as the link elements. After these investigations, it is decided that general purpose finite element programs with slight modifications can be used in the safety analysis of nuclear reactor plants. By this procedure it is possible to handle two-dimensional plane strain and tridimensional axisymmetric problems of this type. (orig.)

  2. An Investigation Into: I) Active Flow Control for Cold-Start Performance Enhancement of a Pump-Assisted, Capillary-Driven, Two-Phase Cooling Loop II) Surface Tension of n-Pentanol + Water, a Self-Rewetting Working Fluid, From 25 °C to 85 °C

    Science.gov (United States)

    Bejarano, Roberto Villa

    Cold-start performance enhancement of a pump-assisted, capillary-driven, two-phase cooling loop was attained using proportional integral and fuzzy logic controls to manage the boiling condition inside the evaporator. The surface tension of aqueous solutions of n-Pentanol, a self-rewetting fluid, was also investigated for enhancing heat transfer performance of capillary driven (passive) thermal devices was also studied. A proportional-integral control algorithm was used to regulate the boiling condition (from pool boiling to thin-film boiling) and backpressure in the evaporator during cold-start and low heat input conditions. Active flow control improved the thermal resistance at low heat inputs by 50% compared to the baseline (constant flow rate) case, while realizing a total pumping power savings of 56%. Temperature overshoot at start-up was mitigated combining fuzzy-logic with a proportional-integral controller. A constant evaporator surface temperature of 60°C with a variation of +/-8°C during start-up was attained with evaporator thermal resistances as low as 0.10 cm2--K/W. The surface tension of aqueous solutions of n-Pentanol, a self-rewetting working fluid, as a function of concentration and temperature were also investigated. Self-rewetting working fluids are promising in two-phase heat transfer applications because they have the ability to passively drive additional working fluid towards the heated surface; thereby increasing the dryout limitations of the thermal device. Very little data is available in literature regarding the surface tension of these fluids due to the complexity involved in fluid handling, heating, and experimentation. Careful experiments were performed to investigate the surface tension of n-Pentanol + water. The concentration and temperature range investigated were from 0.25%wt. to1.8%wt and 25°C to 85°C, respectively.

  3. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  4. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD...

  5. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  6. Videotapes and Movies on Fluid Dynamics and Fluid Machines

    OpenAIRE

    Carr, Bobbie; Young, Virginia E.

    1996-01-01

    Chapter 17 of Handbook of Fluid Dynamics and Fluid Machinery: Experimental and Computational Fluid Dynamics, Volume 11. A list of videorecordings and 16mm motion pictures about Fluid Dynamics and Fluid Machines.

  7. Engineering: Liquid metal pumped at a record temperature

    Science.gov (United States)

    Lambrinou, Konstantina

    2017-10-01

    Although liquid metals are effective fluids for heat transfer, pumping them at high temperatures is limited by their corrosiveness to solid metals. A clever pump design addresses this challenge using only ceramics. See Article p.199

  8. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound......Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  9. Two-fluid hydrodynamic model for semiconductors

    DEFF Research Database (Denmark)

    Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn

    2018-01-01

    The hydrodynamic Drude model (HDM) has been successful in describing the optical properties of metallic nanostructures, but for semiconductors where several different kinds of charge carriers are present an extended theory is required. We present a two-fluid hydrodynamic model for semiconductors...

  10. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  11. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-02-07

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  12. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  13. Fluid mechanics problems and solutions

    CERN Document Server

    Spurk, Joseph H

    1997-01-01

    his collection of over 200 detailed worked exercises adds to and complements the textbook Fluid Mechanics by the same author, and illustrates the teaching material through examples. In the exercises the fundamental concepts of Fluid Mechanics are applied to obtaining the solution of diverse concrete problems, and in doing this the student's skill in the mathematical modeling of practical problems is developed. In addition, 30 challenging questions without detailed solutions have been included, and while lecturers will find these questions suitable for examinations and tests, the student himself can use them to check his understanding of the subject.

  14. Liquid metal heat transfer issues

    International Nuclear Information System (INIS)

    Hoffman, H.W.; Yoder, G.L.

    1984-01-01

    An alkali liquid metal cooled nuclear reactor coupled with an alkali metal Rankine cycle provides a practicable option for space systems/missions requiring power in the 1 to 100 MW(e) range. Thermal issues relative to the use of alkali liquid metals for this purpose are identified as these result from the nature of the alkali metal fluid itself, from uncertainties in the available heat transfer correlations, and from design and performance requirements for system components operating in the earth orbital microgravity environment. It is noted that, while these issues require further attention to achieve optimum system performance, none are of such magnitude as to invalidate this particular space power concept

  15. Fluid discrimination based on rock physics templates

    International Nuclear Information System (INIS)

    Liu, Qian; Yin, Xingyao; Li, Chao

    2015-01-01

    Reservoir fluid discrimination is an indispensable part of seismic exploration. Reliable fluid discrimination helps to decrease the risk of exploration and to increase the success ratio of drilling. There are many kinds of fluid indicators that are used in fluid discriminations, most of which are single indicators. But single indicators do not always work well under complicated reservoir conditions. Therefore, combined fluid indicators are needed to increase accuracies of discriminations. In this paper, we have proposed an alternative strategy for the combination of fluid indicators. An alternative fluid indicator, the rock physics template-based indicator (RPTI) has been derived to combine the advantages of two single indicators. The RPTI is more sensitive to the contents of fluid than traditional indicators. The combination is implemented based on the characteristic of the fluid trend in the rock physics template, which means few subjective factors are involved. We also propose an inversion method to assure the accuracy of the RPTI input data. The RPTI profile is an intuitionistic interpretation of fluid content. Real data tests demonstrate the applicability and validity. (paper)

  16. Analysis of Direct Samples of Early Solar System Aqueous Fluids

    Science.gov (United States)

    Zolensky, Michael E.; Bodnar, R J.; Fedele, L.; Yurimoto,H.; Itoh, S.; Fries, M.; Steele, A.

    2012-01-01

    inclusions of +/- 90 0/00(2 sigma) for delta D, and +/- 29 0/00 (2 sigma) for delta O-18. On the other hand, the reproducibility of Delta O-17 is plus or minus 8 /00 (2 sigma ) because the observed variations of isotope ratios follow a mass dependent fractionation law. Variations of delta D of the aqueous fluids range over sog,a 330(90; 2 sigma ) to +1200(90) 0/00 for Monahans and delta 300(96) 0/00 to +90(98)0/00 for Zag. Delta O-17 of aqueous fluids range over delta 16(22) 0/00 to +18(10) 0/00 for Monahans and +3(10) 0/00 to +27(11) 0/00 for Zag. These variations are larger than the reproducibility of standard analyses and suggest that isotope equilibria were under way in the fluids before trapping into halite. The mean values of delta D and Delta O-17 are +290 0/00 and +9 0/00, respectively. The mean values and the variations of these fluids are different from the representative values of ordinary chondrites, verifying our working hypothesis that the fluid inclusion-bearing halites were not indigenous to the H chondrite parent-asteroid but rather represent exogenous material delivered onto the asteroid from a separate cryovolcanically-active body. This initial isotopic work has demonstrated the feasibility of the measurements, but also revealed sample processing and analytical shortcomings that are now being addressed. Examination of solid mineral inclusions within Monahans and Zag halite grains by confocal Raman spectroscopy at the Carnegie Geophysical Laboratory has revealed them to be metal, magnetite, forsteritic olivine (Fo.98), macromolecular carbon (MMC), pyroxenes, feldspar with Raman spectral affinity to anorthoclase and, probably, fine-grained lepidocrocite (FeO(OH)). In addition, one inclusion features aliphatic material with Raman spectral features consistent with a mixture of short-chain aliphatic compounds. We have initiated analyses of the bulk composition of the fluids within the inclusions in Zag and Monahans halites at Virginia Tech by LA ICPMS using

  17. Solitary waves in fluids

    CERN Document Server

    Grimshaw, RHJ

    2007-01-01

    After the initial observation by John Scott Russell of a solitary wave in a canal, his insightful laboratory experiments and the subsequent theoretical work of Boussinesq, Rayleigh and Korteweg and de Vries, interest in solitary waves in fluids lapsed until the mid 1960's with the seminal paper of Zabusky and Kruskal describing the discovery of the soliton. This was followed by the rapid development of the theory of solitons and integrable systems. At the same time came the realization that solitary waves occur naturally in many physical systems, and play a fundamental role in many circumstances. The aim of this text is to describe the role that soliton theory plays in fluids in several contexts. After an historical introduction, the book is divided five chapters covering the basic theory of the Korteweg-de Vries equation, and the subsequent application to free-surface solitary waves in water to internal solitary waves in the coastal ocean and the atmospheric boundary layer, solitary waves in rotating flows, ...

  18. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  19. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-01-01

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  20. FOREWORD Fluid Mechanics and Fluid Power (FMFP)

    Indian Academy of Sciences (India)

    This section of the Special Issue carries selected articles from the Fluid Mechanics and Fluid. Power Conference held during 12–14 December 2013 at the National Institute of Technology,. Hamirpur (HP). The section includes three review articles and nine original research articles. These were selected on the basis of their ...

  1. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo......M hip implant. A Danish surveillance programme has been initiated addressing these problems....

  2. Liquid metal current collectors for high-speed rotating machinery

    International Nuclear Information System (INIS)

    Carr, S.L.

    1976-01-01

    Recent interest in superconducting motors and generators has created a renewed interest in homopolar machinery. Homopolar machine designs have always been limited by the need for compact, high-current, low-voltage, sliding electrical curent collectors. Conventional graphite-based solid brushes are inadequate for use in homopolar machines. Liquid metals, under certain conditions of relative sliding velocities, electrical currents, and magnetic fields are known to be capable of performing well in homopolar machines. An effort to explore the capabilities and limits of a tongue-and-groove style current collector, utilizing sodium-potassium eutectic alloy (NaK) as the working fluid in high sliding speed operation is reported here. A double current collector generator model with a 14.5-cm maximum rotor diameter, 20,000 rpm rotational capability, and electrical current carrying ability was constructed and operated successfully at a peripheral velocity of 125 m/s. The limiting factor in these experiments was a high-speed fluid-flow instability resulting in the ejection of the working fluid from the operating portions of the collectors. The effects of collector size and geometry, working fluid (NaK or water), and cover gas pressure are reported. Hydrodynamic frictional torque-speed curves are given for the two fluids and for several geometries. Electrical resistances as a function of peripheral velocity at 60 amperes are reported, and the phenomenology of the high-speed fluid-flow instabilities is discussed. The possibility of long-term high-speed operation of current collectors of the tongue-and-groove type, along with experimental and theoretical hydrodynamic friction losses at high peripheral velocities, is considered

  3. Metal-to-nonmetal transitions

    CERN Document Server

    Hensel, Friedrich; Holst, Bastian

    2010-01-01

    This book is devoted to nonmetal-to-metal transitions. The original ideas of Mott for such a transition in solids have been adapted to describe a broad variety of phenomena in condensed matter physics (solids, liquids, and fluids), in plasma and cluster physics, as well as in nuclear physics (nuclear matter and quark-gluon systems). The book gives a comprehensive overview of theoretical methods and experimental results of the current research on the Mott effect for this wide spectrum of topics. The fundamental problem is the transition from localized to delocalized states which describes the nonmetal-to-metal transition in these diverse systems. Based on the ideas of Mott, Hubbard, Anderson as well as Landau and Zeldovich, internationally respected scientists present the scientific challenges and highlight the enormous progress which has been achieved over the last years. The level of description is aimed to specialists in these fields as well as to young scientists who will get an overview for their own work...

  4. Microstructure modeling in weld metal

    International Nuclear Information System (INIS)

    David, S.A.; Babu, S.S.

    1995-01-01

    Since microstructure development in the weld metal region is controlled by various physical processes, there is a need for integrated predictive models based on fundamental principles to describe and predict the effect of these physical processes. These integrated models should be based on various tools available for modeling microstructure development in a wide variety of alloy systems and welding processes. In this paper, the principles, methodology, and future directions of modeling thermochemical reactions in liquid, solidification, and solid state transformations are discussed with some examples for low-alloy steel, stainless steel, and Ni-base superalloy. Thermochemical deoxidation reactions in liquid low-alloy steel lead to oxide inclusion formation. This inclusion formation has been modeled by combining principles of ladle metallurgy and overall transformation kinetics. The model's comparison with the experimental data and the ongoing work on coupling this inclusion model with the numerical models of heat transfer and fluid flow are discussed. Also, recent advances in theoretical and physical modeling of the solidification process are reviewed with regard to predicting the solidification modes, grain structure development, segregation effects, and nonequilibrium solidification in welds. The effects of solid state phase transformations on microstructure development and various methods of modeling these transformations are reviewed. Successful models, based on diffusion-controlled growth and plate growth theories, on microstructure development in low-alloy steel and stainless steel weld metals are outlined. This paper also addresses the importance of advanced analytical techniques to understand the solid state transformation mechanisms in welds

  5. Migration protocol to estimate metal exposure from mouthing copper and tin alloy objects

    OpenAIRE

    Urrestarazu, Paola; Villavicencio, Germán; Opazo, Margaret; Arbildua, José; Boreiko, Craig; Delbeke, Katrien; Rodriguez, Patricio H

    2014-01-01

    Background Low blood lead levels previously thought to pose no health risks may have an adverse impact on the cognitive development of children. This concern has given rise to new regulatory restrictions upon lead metal containing products intended for child use. However few reliable experimental testing methods to estimate exposure levels from these materials are available. Methods The present work describes a migration test using a mimetic saliva fluid to estimate the chronic exposure of ch...

  6. Electric fluid pump

    Science.gov (United States)

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  7. Hydraulic Brake Fluid,

    Science.gov (United States)

    A hydraulic brake fluid consisting of diethylene glycol , monoethyl ether of diethylene glycol , and castor oil has been improved as described in the patent by adding the fluid tributyl ether of orthophosphoric acid.

  8. Lectures on fluid mechanics

    CERN Document Server

    Shinbrot, Marvin

    2012-01-01

    Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.

  9. Pleural fluid Gram stain

    Science.gov (United States)

    Gram stain of pleural fluid ... mixing it with a violet stain (called a Gram stain). A laboratory specialist uses a microscope to ... reveals an abnormal collection of pleural fluid. The Gram stain can help identify the bacteria that might ...

  10. Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Myeong, Hyeon Guk

    1999-06-01

    This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.

  11. Relationships between fluid pressure and capillary pressure in ...

    African Journals Online (AJOL)

    In this work, the Bower's and Gardner's technique of velocity-to fluid pressure gradient methods were applied on seismic reflection data in order to predict fluid pressure of an X- oil field in Niger Delta Basin. Results show significant deflection common with fluid pressure zones . With average connate water saturation Swc ...

  12. Fluid dynamic transient analysis

    International Nuclear Information System (INIS)

    Vilhena Reigosa, R. de

    1992-01-01

    This paper describes the methodology adopted at NUCLEN for the fluid dynamic analyses for ANGRA 2. The fluid dynamic analysis allows, through computer codes to simulate and quantify the loads resulting from fluid dynamic transients caused by postulated ruptures or operational transients, in the piping of the safety systems and of the important operational systems. (author)

  13. Amniotic fluid water dynamics

    NARCIS (Netherlands)

    Beall, M. H.; van den Wijngaard, J. P. H. M.; van Gemert, M. J. C.; Ross, M. G.

    2007-01-01

    Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and

  14. Fundamental Fluid Mechanics

    Indian Academy of Sciences (India)

    BOOK I REVIEW. Fundamental Fluid. Mechanics. Good Text Book Material. V H Arakeri. Fluid Mechanics for Engineers. P N Chatterjee. MacMillan India Limited. Vol. 1, pp. 367. RS.143. Vo1.2, pp.306. RS.130. Fluid Mechanics for Engineers in two vol- umes by P N Chatterjee contains standard material for a first level ...

  15. Endoscopic Management of Pancreatic Fluid Collections in Children.

    Science.gov (United States)

    Nabi, Zaheer; Talukdar, Rupjyoti; Reddy, D Nageshwar

    2017-07-15

    The incidence of acute pancreatitis in children has increased over the last few decades. The development of pancreatic fluid collection is not uncommon after severe acute pancreatitis, although its natural course in children and adolescents is poorly understood. Asymptomatic fluid collections can be safely observed without any intervention. However, the presence of clinically significant symptoms warrants the drainage of these fluid collections. Endoscopic management of pancreatic fluid collection is safe and effective in adults. The use of endoscopic ultrasound (EUS)-guided procedure has improved the efficacy and safety of drainage of pancreatic fluid collections, which have not been well studied in pediatric populations, barring a scant volume of small case series. Excellent results of EUS-guided drainage in adult patients also need to be verified in children and adolescents. Endoprostheses used to drain pancreatic fluid collections include plastic and metal stents. Metal stents have wider lumens and become clogged less often than plastic stents. Fully covered metal stents specifically designed for pancreatic fluid collection are available, and initial studies have shown encouraging results in adult patients. The future of endoscopic management of pancreatic fluid collection in children appears promising. Prospective studies with larger sample sizes are required to establish their definitive role in the pediatric age group.

  16. Fluid and particle mechanics

    CERN Document Server

    Michell, S J

    2013-01-01

    Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th

  17. “Unfriending” IV fluids. Where are we currently with fluid ...

    African Journals Online (AJOL)

    What end-points do we target once we decide to give fluids? • At what rate should fluid be administered? ... South African market, has been ascribed to many factors, including strong marketing. This marketing was ... However much of this work comes from severe sepsis and ongoing critical care. It is probably reasonable to ...

  18. Liquid metal flow control by DC electromagnetic pumps; Controle de vazao de metais liquidos por bombas eletromagneticas de corrente continua

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo Madeira; Braz Filho, Francisco Antonio; Guimaraes, Lamartine Nogueira Frutuoso [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil)], e-mail: eduardo@ieav.cta.br, e-mail: fbraz@ieav.cta.br, e-mail: guimarae@ieav.cta.br

    2006-07-01

    The cooling system of high-density thermal power requires fluids of high thermal conductivity, such as liquid metals. Electromagnetic pumps can be used to liquid metal fluid flow control in cooling circuits. The operation of electromagnetic pumps used to flow control is based on Lorentz force. This force can be achieved by magnetic field and electric current interaction, controlled by external independent power supplies. This work presents the electromagnetic pump operational principles, the IEAv development scheme and the BEMC-1 simulation code. The theoretical results of BEMC-1 simulation are compared to electromagnetic pump operation experimental data, validating the BEMC-1 code. This code is used to evaluate the DC electromagnetic pump performance applied to Mercury flow control and others liquid metal such as Sodium, Lead and Bismuth, used in nuclear fast reactors. (author)

  19. Crystal nucleation in simple and complex fluids.

    Science.gov (United States)

    Oxtoby, David W

    2003-03-15

    The application of density-functional methods from statistical mechanics to the nucleation of crystals from the melt is described. Simple fluids such as metals, with sizes comparable with the range of their attractive forces, are compared with complex fluids such as colloidal suspensions and proteins dissolved in solution. A different mechanism for crystal nucleation is proposed in the latter case, in which density (concentration) changes before periodic crystalline order appears. This leads to a theoretical foundation for empirical observations on the 'crystallization window' in protein crystallization. Comparisons are made with the results of computer simulation via molecular dynamics.

  20. Co-ordinated research project on assessment of levels and health-effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. Report on the second research co-ordination meeting

    International Nuclear Information System (INIS)

    2000-01-01

    Overall objectives: To demonstrate the applicability of nuclear and related techniques in studies that may impact on human health, giving emphasis to the solution of problems that have been identified to be of high priority in national and international programmes for sustainable development. Specific objectives: To develop strategies and techniques for sampling of workplace airborne particulate matter (APM) and of human tissues and body fluids (hair, blood, etc.) of exposed and non-exposed persons; To development suitable analytical procedures for analysis of such types of samples, using nuclear and related analytical techniques; To carry out workplace and personal monitoring of APM and characterise the health effects of such exposure in terms of the observed elemental concentration; To carry out tissue analyses of the workers so exposed for biological monitoring and the health effects studies. Achievements: a) Specific industries not previously monitored in individual countries have been targeted in respect of pollution assessment. Some examples are: Stainless steel processing and construction; Galvanising industry; Zinc smelting operations; Mineral fertiliser industry. b) Validation of analytical techniques through quality control exercises: NAT-3 Interlaboratory comparison for the determination of trace and minor elements in urban dust artificially loaded on air filters; NAT-4 Proficiency test on selected trace elements in lyophilised urine and air filters. c) Capacity building through the establishment of new multidisciplinary teams, personnel training and laboratory expertise. d) The sampling procedures have been harmonised through: The application of the ''Gent'' sampler for APM collection, IAEA procedures and IUPAC guidelines for sampling and sample handling of hair, blood and urine. e) All participants performed surveys on targeted industries and selected pollutants. f) The scientific output of the CRP is materialised in various national and international

  1. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  2. Intravenous fluids: balancing solutions.

    Science.gov (United States)

    Hoorn, Ewout J

    2017-08-01

    The topic of intravenous (IV) fluids may be regarded as "reverse nephrology", because nephrologists usually treat to remove fluids rather than to infuse them. However, because nephrology is deeply rooted in fluid, electrolyte, and acid-base balance, IV fluids belong in the realm of our specialty. The field of IV fluid therapy is in motion due to the increasing use of balanced crystalloids, partly fueled by the advent of new solutions. This review aims to capture these recent developments by critically evaluating the current evidence base. It will review both indications and complications of IV fluid therapy, including the characteristics of the currently available solutions. It will also cover the use of IV fluids in specific settings such as kidney transplantation and pediatrics. Finally, this review will address the pathogenesis of saline-induced hyperchloremic acidosis, its potential effect on outcomes, and the question if this should lead to a definitive switch to balanced solutions.

  3. A new fluid-solid interface algorithm for simulating fluid structure problems in FGM plates

    Science.gov (United States)

    Eghtesad, A.; Shafiei, A. R.; Mahzoon, M.

    2012-04-01

    The capability to track material interfaces, especially in fluid structure problems, is among the advantages of meshless methods. In the present paper, the Smoothed Particle Hydrodynamics (SPH) method is used to investigate elastic-plastic deformation of AL and ceramic-metal FGM (Functionally Graded Materials) plates under the impact of water in a fluid-solid interface. Instead of using an accidental repulsive force which is not stable at higher pressures, a new scheme is proposed to improve the interface contact behavior between fluid and solid structure. This treatment not only prevents the interpenetration of fluid and solid particles significantly, but also maintains the gap distance between fluid and solid boundary particles in a reasonable range. A new scheme called corrected smooth particle method (CSPM) is applied to both fluid and solid particles to improve the free surface behavior. In order to have a more realistic free surface behavior in fluid, a technique is used to detect the free surface boundary particles during the solution process. The results indicate that using the proposed interface algorithm together with CSPM correction, one can predict the dynamic behavior of FGM plates under the impact of fluid very promisingly.

  4. Standardization of Work Measurement. Volume 7, Bench Work Occupations

    National Research Council Canada - National Science Library

    1975-01-01

    ..., sew, assemble, inspect, repair, test, and similarly work relatively small objects and materials, such as metal products, electronic components, electrical appliances, instruments, footwear, and garments...

  5. Bifurcated SEN with Fluid Flow Conditioners

    Directory of Open Access Journals (Sweden)

    F. Rivera-Perez

    2014-01-01

    Full Text Available This work evaluates the performance of a novel design for a bifurcated submerged entry nozzle (SEN used for the continuous casting of steel slabs. The proposed design incorporates fluid flow conditioners attached on SEN external wall. The fluid flow conditioners impose a pseudosymmetric pattern in the upper zone of the mold by inhibiting the fluid exchange between the zones created by conditioners. The performance of the SEN with fluid flow conditioners is analyzed through numerical simulations using the CFD technique. Numerical results were validated by means of physical simulations conducted on a scaled cold water model. Numerical and physical simulations confirmed that the performance of the proposed SEN is superior to a traditional one. Fluid flow conditioners reduce the liquid free surface fluctuations and minimize the occurrence of vortexes at the free surface.

  6. Tribodynamic Modeling of Digital Fluid Power Motors

    DEFF Research Database (Denmark)

    Johansen, Per

    In fluid power engineering, efficiency and reliability optimization have become a major objective. The interest in using fluid power transmission in wind and wave energy applications are producing requirements concerning efficiency and reliability in order to compete with other transmission systems...... design methods and tools are important to the development of digital fluid power machines. The work presented in this dissertation is part of a research program focusing on the development of digital fluid power MW-motors for use in hydraulic drive train in wind turbines. As part of this development....... In fluid power motoring and pumping units, a significant problem is that loss mechanisms do not scale down with diminishing power throughput. Although machines can reach peak efficiencies above 95%, the actual efficiency during operation, which includes part-load situations, is much lower. The invention...

  7. Microbial Metabolism in Serpentinite Fluids

    Science.gov (United States)

    Crespo-Medina, M.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Hoehler, T. M.; Schrenk, M. O.

    2013-12-01

    Serpentinization is the process in which ultramafic rocks, characteristic of the upper mantle, react with water liberating mantle carbon and reducing power to potenially support chemosynthetic microbial communities. These communities may be important mediators of carbon and energy exchange between the deep Earth and the surface biosphere. Our work focuses on the Coast Range Ophiolite Microbial Observatory (CROMO) in Northern California where subsurface fluids are accessible through a series of wells. Preliminary analyses indicate that the highly basic fluids (pH 9-12) have low microbial diversity, but there is limited knowledge about the metabolic capabilities of these communties. Metagenomic data from similar serpentine environments [1] have identified Betaproteobacteria belonging to the order Burkholderiales and Gram-positive bacteria from the order Clostridiales as key components of the serpentine microbiome. In an effort to better characterize the microbial community, metabolism, and geochemistry at CROMO, fluids from two representative wells (N08B and CSWold) were sampled during recent field campaigns. Geochemical characterization of the fluids includes measurements of dissolved gases (H2, CO, CH4), dissolved inorganic and organic carbon, volatile fatty acids, and nutrients. The wells selected can be differentiated in that N08B had higher pH (10-11), lower dissolved oxygen, and cell counts ranging from 105-106 cells mL-1 of fluid, with an abundance of the betaproteobacterium Hydrogenophaga. In contrast, fluids from CSWold have slightly lower pH (9-9.5), DO, and conductivity, as well as higher TDN and TDP. CSWold fluid is also characterized for having lower cell counts (~103 cells mL-1) and an abundance of Dethiobacter, a taxon within the phylum Clostridiales. Microcosm experiments were conducted with the purpose of monitoring carbon fixation, methanotrophy and metabolism of small organic compounds, such as acetate and formate, while tracing changes in fluid

  8. Fluid Mechanics in Sommerfeld's School

    Science.gov (United States)

    Eckert, Michael

    2015-01-01

    Sommerfeld's affiliation with fluid mechanics started when he began his career as an assistant of the mathematician Felix Klein at Göttingen. He always regarded fluid mechanics as a particular challenge. In 1904, he published a theory of hydrodynamic lubrication. Four years later, he conceived an approach for the analysis of flow instability (the Orr-Sommerfeld approach) as an attempt to account for the transition from laminar to turbulent flow. The onset of turbulence also became a major challenge for some of his pupils, in particular Ludwig Hopf and Fritz Noether. Both contributed considerably to elaborate the Orr-Sommerfeld theory. Heisenberg's doctoral work was another attempt in this quest. When Sommerfeld published his lectures on theoretical physics during World War II, he dedicated one of the six volumes to the mechanics of continuous media. With chapters on boundary layer theory and turbulence, it exceeded the scope of contemporary theoretical physics—revealing Sommerfeld's persistent appreciation of fluid mechanics. He resorted to Prandtl's Göttingen school of fluid mechanics in order to stay abreast of the rapid development of these specialties.

  9. A Rh III-N-heterocyclic carbene complex from metal-metal singly ...

    Indian Academy of Sciences (India)

    Metal-metal singly bonded [Rh2(CO)4(acac)2][OTf]2 (1) has been synthesized and characterized by spectroscopic and analytical techniques. A density functional theory ... to each rhodium. This work demonstrates the general utility of the metal-metal bonded compounds for the easy synthesis of metal-NHC compounds.

  10. Micro metal forming

    CERN Document Server

    2013-01-01

    Micro Metal Forming, i. e. forming of parts and features with dimensions below 1 mm, is a young area of research in the wide field of metal forming technologies, expanding the limits for applying metal forming towards micro technology. The essential challenges arise from the reduced geometrical size and the increased lot size. In order to enable potential users to apply micro metal forming in production, information about the following topics are given: tribological behavior: friction between tool and work piece as well as tool wear mechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processes tool making methods numerical modeling of processes and process chains quality assurance and metrology All topics are discussed with respect to the questions relevant to micro...

  11. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD....... The guidebook is also written for people working with CFD which have to be more aware of how this numerical method is applied in the area of ventilation. The guidebook has, for example, chapters that are very important for CFD quality control in general and for the quality control of ventilation related...

  12. Experimental Approach to Teaching Fluids

    Science.gov (United States)

    Stern, Catalina

    2015-11-01

    For the last 15 years we have promoted experimental work even in the theoretical courses. Fluids appear in the Physics curriculum of the National University of Mexico in two courses: Collective Phenomena in their sophomore year and Continuum Mechanics in their senior year. In both, students are asked for a final project. Surprisingly, at least 85% choose an experimental subject even though this means working extra hours every week. Some of the experiments were shown in this congress two years ago. This time we present some new results and the methodology we use in the classroom. I acknowledge support from the Physics Department, Facultad de Ciencias, UNAM.

  13. A peptide-based biological coating for enhanced corrosion resistance of titanium alloy biomaterials in chloride-containing fluids.

    Science.gov (United States)

    Muruve, Noah; Feng, Yuanchao; Platnich, Jaye; Hassett, Daniel; Irvin, Randall; Muruve, Daniel; Cheng, Frank

    2017-03-01

    Titanium alloys are common materials in the manufacturing of dental and orthopedic implants. Although these materials exhibit excellent biocompatibility, corrosion in response to biological fluids can impact prosthesis performance and longevity. In this work, a PEGylated metal binding peptide (D-K122-4-PEG), derived from bacteria Pseudomonas aeruginosa, was applied on a titanium (Ti) alloy, and the corrosion resistance of the coated alloy specimen was investigated in simulated chloride-containing physiological fluids by electrochemical impedance spectroscopy and micro-electrochemical measurements, surface characterization, and biocompatibility testing. Compared to uncoated specimen, the D-K122-4-PEG-coated Ti alloy demonstrates decreased corrosion current density without affecting the natural passivity. Morphological analysis using atomic force microscopy and scanning electron microscopy confirms a reduction in surface roughness of the coated specimens in the fluids. The D-K122-4-PEG does not affect the binding of HEK-293T cells to the surface of unpolished Ti alloy, nor does it increase the leukocyte activation properties of the metal. D-K122-4-PEG represents a promising coating to enhance the corrosion resistance of Ti alloys in physiological fluids, while maintaining an excellent biocompatibility.

  14. Elemental metals for environmental remediation: lessons from hydrometallurgy

    OpenAIRE

    Crane, R. A.; Noubactep, C.

    2012-01-01

    In the mining industry, the separation of economically valuable metals from gangue materials is a well established process. As part of this field, hydrometallurgy uses chemical fluids (leachates) of acidic or basic pH to dissolve the target metal(s) for subsequent concentration, purification and recovery. The type and concentration of the leach solution is typically controlled to allow selective dissolution of the target metal(s), and other parameters such as oxidation potentia...

  15. A comparison between rare earth and transition metals working as magnetic materials in an AMR refrigerator in the room temperature range

    International Nuclear Information System (INIS)

    Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.

    2015-01-01

    This paper describes a two-dimensional (2D) multiphysics model of a packed bed regenerator made of magnetocaloric material. The regenerator operates as a refrigerant for a magnetic refrigerator operating at room temperature on the strength of an active magnetic regenerator (AMR) cycle. The model is able to simulate the thermofluidodynamic behavior of the magnetocaloric material and the magnetocaloric effect of the refrigerant. The model has been validated by means of experimental results. Different magnetic materials have been tested with the model as refrigerants: pure gadolinium, second order phase magnetic transition Pr 0.45 Sr 0.35 MnO 3 and first order phase magnetic transition alloys Gd 5 (Si x Ge 1−x ) 4 , LaFe 11.384 Mn 0.356 Si 1.26 H 1.52 , LaFe 11.05 Co 0.94 Si 1.10 and MnFeP 0.45 As 0.55 . The tests were performed with fixed fluid flow rate (5 l/min), AMR cycle frequency (1.25 Hz) and cold heat exchanger temperature (288 K) while the hot heat exchanger temperature was varied in the range 295–302 K. The results, generated for a magnetic induction which varies from 0 to 1.5 T, are presented in terms of temperature span, refrigeration power and coefficient of performance. From a global point of view (performances and cost), the most promising materials are LaFeSi compounds which are really cheaper than rare earth compounds and they give a performance sufficiently higher than gadolinium. - Graphical abstract: • Active Magnetic Refrigeration (AMR) cycle; • First Order Transition magnetic materials (FOMT); • Second Order Transition magnetic materials (SOMT). - Highlights: • Comparison between different magnetic materials. • 2D model of an Active Magnetic Regenerative refrigeration cycle. • Validation of the model with experimental data. • Gd 5 (Si x Ge 1−x ) 4 is the most performant magnetic material. • The most promising are LaFeSi compounds which are cheaper and they give high performances.

  16. Interfacial motion between nonconductive fluid and liquid metal caused by a quasi-sinusoidal magnetic field; Junsei genpa jiba ni yori yukisareru hidendosei ryutai to ekitai kinzoku tono kaimen no undo

    Energy Technology Data Exchange (ETDEWEB)

    Su, Z.; Iwai, K.; Asai, S. [Nagoya University, Nagoya (Japan)

    2000-07-01

    In many electromagnetic processings of molten metals, the interfacial motion between a molten metal and a slag plays an important role on the productivity and the quality of products. However the behavior of its motion has not been precisely examined yet because of technical difficulties in the direct observation of it. Here, a new experimental method has been developed to observe the interfacial motion between a liquid metal and a non-conductive transparent liquid. In the method, a laser slit beam which was rayed into the interface from the oblique upper side is so projected on a screen as to show the shape of the interface, which is recorded by a high-speed video camera. The interfacial motion caused by the imposition of a quasi-sinusoidal magnetic field is classified by use of the Shielding parameter R{sub {omega}} such that a periodical oscillation and an irregular motion dominate in the low frequency range (R{sub {omega}}<<1) and the high frequency range (R{sub {omega}}>>1), respectively and the periodical oscillation and the irregular motion coexist around the frequency range of R{sub {omega}} {approx} 1. It is noticed that the increase in viscosity of the liquid imitating a slag acted to suppress the interfacial motion and the wave number appeared larger in the case with the liquid imitating a slag than that in the case without it. (author)

  17. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  18. Performance Comparison and Selection of Transformer Fluid

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2016-01-01

    Full Text Available Transformer fluid directly affects the working state of the components and the cooling efficiency of transformer. There are three kinds of transformer fluid used for electric locomotive, EMU and suburban rail vehicles: mineral oil, silicone liquid and synthetic ester based insulating oil. In this paper, the three kinds of oil are compared from the fire safety, environmental protection, reliability and low maintenance. It provides a strong basis for the selection of transformer fluid. By comprehensive analysis, synthetic ester based insulating oil can completely replace mineral oil and silicone liquid. With rail transport safety and environmental protection standards improving, synthetic ester based insulating oil will be the best choice for transformer.

  19. A microsphere suspension model of metamaterial fluids

    Directory of Open Access Journals (Sweden)

    Qian Duan

    2017-05-01

    Full Text Available Drawing an analogy to the liquid phase of natural materials, we theoretically propose a microsphere suspension model to realize a metamaterial fluid with artificial electromagnetic indexes. By immersing high-ε, micrometer-sized dielectric spheres in a low-ε insulating oil, the structured fluid exhibits liquid-like properties from dispersing phase as well as the isotropic negative electromagnetic parameters caused by Mie resonances from dispersed microspheres. The work presented here will benefit the development of structured fluids toward metamaterials.

  20. Topology optimization of fluid mechanics problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan

    D Navier-Stokes equation as well as an example with convection dominated transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the present work gives a proof-of-concept for the application of the method within fluid mechanics problems and it remains...... processing tool. Prior to design manufacturing this allows the engineer to quantify the performance of the computed topology design using standard, credible analysis tools with a body-fitted mesh. [1] Borrvall and Petersson (2003) "Topology optimization of fluids in Stokes flow", Int. J. Num. Meth. Fluids...