WorldWideScience

Sample records for metal uranium borates

  1. Uranium(iii) complexes supported by hydrobis(mercaptoimidazolyl)borates: synthesis and oxidation chemistry.

    Science.gov (United States)

    Maria, Leonor; Santos, Isabel C; Santos, Isabel

    2018-05-23

    The reaction of [UI3(thf)4] with the sodium or lithium salts of hydrobis(2-mercapto-1-methylimidazolyl)borate ligands ([H(R)B(timMe)2]-) in a 1 : 2 ratio, in tetrahydrofuran, gave the U(iii) complexes [UI{κ3-H,S,S'-H(R)B(timMe)2}2(thf)2] (R = H (1), Ph (2)) in good yields. Crystals of [UI{κ3-H,S,S'-H(Ph)B(timMe)2}2(thf)2] (2) were obtained by recrystallization from a tetrahydrofuran/acetonitrile solution, and the ion-separated uranium complex [U{κ3-H,S,S'-H(Ph)B(timMe)2}2(CH3CN)3][I] (3-I) was obtained by dissolution of 2 in acetonitrile followed by recrystallization. One-electron oxidation of 2 with AgBPh4 or I2 resulted in the formation of the cationic U(iv) complexes [U{κ3-H,S,S'-H(Ph)B(timMe)2}3][X] (X = BPh4 (6-BPh4), I (6-I)), due to a ligand redistribution process. These complexes are the first examples of homoleptic poly(azolyl)borate U(iv) complexes. Treatment of complex 2 with azobenzene led to the isolation of crystals of the U(iv) compound [UI{κ3-H(Ph)B(timMe)2}2(κ2-timMe)] (7). Treatment of 2 with pyridine-N oxide (pyNO) led to the formation of the uranyl complex [UO2{κ2-S,S'-H(Ph)B(timMe)2}2] (8) and of complex 6-I, while from the reaction of [U{κ3-H(Ph)B(timMe)2}2(thf)3][BPh4] (5) with pyNO, the oxo-bridged U(iv) complex [{U{κ3-H(Ph)B(timMe)2}2(pyNO)}2(μ-O)][BPh4]2 (9) was also obtained. In the U(iii) and U(iv) complexes, the bis(azolyl)borate ligands bind to the uranium center in a κ3-H,S,S' coordination mode, while in the U(vi) complex the ligands bind to the metal in a κ2-S,S' mode. The presence of UH-B interactions in the solid-state, for the nine-coordinate complexes 1, 2, 3, 6 and 7 and for the eight-coordinate complex 9, was supported by IR spectroscopy and/or X-ray diffraction analysis.

  2. Method for converting uranium oxides to uranium metal

    International Nuclear Information System (INIS)

    Duerksen, W.K.

    1988-01-01

    A method for converting uranium oxide to uranium metal is described comprising the steps of heating uranium oxide in the presence of a reducing agent to a temperature sufficient to reduce the uranium oxide to uranium metal and form a heterogeneous mixture of a uranium metal product and oxide by-products, heating the mixture in a hydrogen atmosphere at a temperature sufficient to convert uranium metal in the mixture to uranium hydride, cooling the resulting uranium hydride-containing mixture to a temperature sufficient to produce a ferromagnetic transition in the uranium hydride, magnetically separating the cooled uranium hydride from the mixture, and thereafter heating the separated uranium hydride in an inert atmosphere to a temperature sufficient to convert the uranium hydride to uranium metal

  3. Method for converting uranium oxides to uranium metal

    Science.gov (United States)

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  4. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  5. Purification of uranium metal

    International Nuclear Information System (INIS)

    Suzuki, Kenji; Shikama, Tatsuo; Ochiai, Akira.

    1993-01-01

    We developed the system for purifying uranium metal and its metallic compounds and for growing highly pure uranium compounds to study their intrinsic physical properties. Uranium metal was zone refined under low contamination conditions as far as possible. The degree of the purity of uranium metal was examined by the conventional electrical resistivity measurement and by the chemical analysis using the inductive coupled plasma emission spectrometry (ICP). The results show that some metallic impurities evaporated by the r.f. heating and other usual metallic impurities moved to the end of a rod with a molten zone. Therefore, we conclude that the zone refining technique is much effective to the removal of metallic impurities and we obtained high purified uranium metal of 99.99% up with regarding to metallic impurities. The maximum residual resistivity ratio, the r.r.r., so far obtained was about 17-20. Using the purified uranium, we are attempting to grow a highly pure uranium-titanium single crystals. (author)

  6. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  7. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  8. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-01-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  9. Influence of uranium hydride oxidation on uranium metal behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  10. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  11. Synthesis of uranium metal using laser-initiated reduction of uranium tetrafluoride by calcium metal

    International Nuclear Information System (INIS)

    West, M.H.; Martinez, M.M.; Nielsen, J.B.; Court, D.C.; Appert, Q.D.

    1995-09-01

    Uranium metal has numerous uses in conventional weapons (armor penetrators) and nuclear weapons. It also has application to nuclear reactor designs utilizing metallic fuels--for example, the former Integral Fast Reactor program at Argonne National Laboratory. Uranium metal also has promise as a material of construction for spent-nuclear-fuel storage casks. A new avenue for the production of uranium metal is presented that offers several advantages over existing technology. A carbon dioxide (CO 2 ) laser is used to initiate the reaction between uranium tetrafluoride (UF 4 ) and calcium metal. The new method does not require induction heating of a closed system (a pressure vessel) nor does it utilize iodine (I 2 ) as a chemical booster. The results of five reductions of UF 4 , spanning 100 to 200 g of uranium, are evaluated, and suggestions are made for future work in this area

  12. Researches on the electrolysis of metal oxides dissolved in boric anhydride or in melt borates. New methods of preparation of amorphous boron, borides and some metals; Recherches sur l'electrolyse des oxydes metalliques dissous dans l'anhydride borique ou dans les borates fondus. Nouvelles methodes de preparation du bore amorphe, des borures et de quelques metaux

    Energy Technology Data Exchange (ETDEWEB)

    Andrieux, Lucien

    1929-06-15

    This research thesis reports the investigation of the electrolysis of alkaline borates, alkaline earth borates and magnesium borate, and the investigation of mixtures containing a metal oxide dissolved in a bath formed by a tetraborate and a fluoride. The author more particularly studies the chemical products separated at the cathode level, i.e. boron (more or less pure), borates and other metals (zinc, tungsten, molybdenum)

  13. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    Science.gov (United States)

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  14. Process for electrolytically preparing uranium metal

    Science.gov (United States)

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  15. Uranium metal production by molten salt electrolysis

    International Nuclear Information System (INIS)

    Takasawa, Yutaka

    1999-01-01

    Atomic vapor laser isotope separation (AVLIS) is a promising uranium enrichment technology in the next generation. Electrolytic reduction of uranium oxides into uranium metal is proposed for the preparation of uranium metal as a feed material for AVLIS plant. Considering economical performance, continuos process concept and minimizing the amount of radioactive waste, an electrolytic process for producing uranium metal directly from uranium oxides will offer potential advantages over the existing commercial process. Studies of uranium metal by electrolysis in fluoride salts (BaF 2 -LiF-UF 4 (74-11-15 w/o) at 1150-1200degC, using both a laboratory scale apparatus and an engineering scale one, and continuous casting of uranium metal were carried out in order to decide the optimum operating conditions and the design of the industrial electrolytic cells. (author)

  16. Dissolution of metallic uranium and its alloys. Part 1. Review of analytical and process-scale metallic uranium dissolution

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    This review focuses on dissolution/reaction systems capable of treating uranium metal waste to remove its pyrophoric properties. The primary emphasis is the review of literature describing analytical and production-scale dissolution methods applied to either uranium metal or uranium alloys. A brief summary of uranium's corrosion behavior is included since the corrosion resistance of metals and alloys affects their dissolution behavior. Based on this review, dissolution systems were recommended for subsequent screening studies designed to identify the best system to treat depleted uranium metal wastes at Lawrence Livermore National Laboratory (LLNL). (author)

  17. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    Science.gov (United States)

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  18. Uranium Metal Analysis via Selective Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  19. 50 years of uranium metal production in Uranium Metal Plant, BARC, Trombay

    International Nuclear Information System (INIS)

    2009-01-01

    The Atomic Energy Programme in India, from the very beginning, has laid emphasis on indigenous capabilities in all aspects of nuclear technology. This meant keeping pace with developments abroad and recognizing the potentials of indigenous technologies. With the development of nuclear programme in India, the importance of uranium was growing at a rapid pace. The production of reactor grade uranium in India started in January 1959 when the first ingot of nuclear pure uranium was discharged using CTR process at Trombay. The decision to set up a uranium refinery to purify the crude uranium fluoride, obtained as a by-product of the DAE's Thorium Plant at Trombay, and to produce nuclear grade pure uranium metal was taken at the end of 1956. The task was assigned to the 'Project Fire Wood Group'. The main objective of the plant was to produce pure uranium metal for use in the Canada India Reactor and Zerlina. Besides this, it was to function as a pilot plant to collect operational data and to train personnel for larger plants to be set up in future. The plant designing and erection work was entrusted to Messrs. Indian Rare Earths Ltd.

  20. METHOD OF DISSOLVING URANIUM METAL

    Science.gov (United States)

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  1. Precise coulometric titration of uranium in a high-purity uranium metal and in uranium compounds

    International Nuclear Information System (INIS)

    Tanaka, Tatsuhiko; Yoshimori, Takayoshi

    1975-01-01

    Uranium in uranyl nitrate, uranium trioxide and a high-purity uranium metal was assayed by the coulometric titration with biamperometric end-point detection. Uranium (VI) was reduced to uranium (IV) by solid bismuth amalgam in 5M sulfuric acid solution. The reduced uranium was reoxidized to uranium (VI) with a large excess of ferric ion at a room temperature, and the ferrous ion produced was titrated with the electrogenerated manganese(III) fluoride. In the analyses of uranium nitrate and uranium trioxide, the results were precise enough when the error from uncertainty in water content in the samples was considered. The standard sample of pure uranium metal (JAERI-U4) was assayed by the proposed method. The sample was cut into small chips of about 0.2g. Oxides on the metal surface were removed by the procedure shown by National Bureau of Standards just before weighing. The mean assay value of eleven determinations corrected for 3ppm of iron was (99.998+-0.012) % (the 95% confidence interval for the mean), with a standard deviation of 0.018%. The proposed coulometric method is simple and permits accurate and precise determination of uranium which is matrix constituent in a sample. (auth.)

  2. Uranium recovering from slags generated in the metallic uranium by magnesiothermic reduction

    International Nuclear Information System (INIS)

    Fornarolo, F.; Carvalho, E.F. Urano de; Durazzo, M.; Riella, H.G.

    2008-01-01

    The Nuclear Fuel Center of IPEN/CNEN-SP has recent/y concluded a program for developing the fabrication technology of the nuclear fuel based on the U 3 Si 2 -Al dispersion, which is being used in the IEA-R1 research reactor. The uranium silicide (U 3 Si 2 ) fuel production starts with the uranium hexafluoride (UF 6 ) processing and uranium tetrafluoride (UF 4 ) precipitation. Then, the UF 4 is converted to metallic uranium by magnesiothermic reduction. The UF 4 reduction by magnesium generates MgF 2 slag containing considerable concentrations of uranium, which could reach 20 wt%. The uranium contained in that slag should be recovered and this work presents the results obtained in recovering the uranium from that slag. The uranium recovery is accomplished by acidic leaching of the calcined slag. The calcination transforms the metallic uranium in U 3 O 8 , promoting the pulverization of the pieces of metallic uranium and facilitating the leaching operation. As process variables, have been considered the nitric molar concentration, the acid excess regarding the stoichiometry and the leaching temperature. As result, the uranium recovery reached a 96% yield. (author)

  3. Radiological chronometry of uranium metal samples

    International Nuclear Information System (INIS)

    Meyers, L.A.; Stalcup, A.M.; Glover, S.E.; Spitz, H.B.; LaMont, S.P.

    2014-01-01

    Radiological chronometry is an important tool in nuclear forensics that uses several methods to determine the length of time that has elapsed since a material was last purified. One of the chronometers used in determining the age of metallic uranium involves measuring the fractional ingrowth of 230 Th from its parent 234 U with the assumption that the uranium metal contained no impurities, especially thorium, when it was purified. The affects of different etching procedures were evaluated for the removal of surface oxidation with three different types of uranium metal samples to determine whether the etching procedure affects the radiological age. The sample treated with a rigorous etching procedure had exhibited the most reliable radiological age while less rigorous etching yields a radiological age from 15 years to hundreds of years older than the known age. Any excess thorium on the surface of a uranium metal sample presents a bias in age determination and the sample will appear older than the true age. Although this research demonstrates the need for rigorous surface etching, a bias in the radiological age could have arisen if the uranium in the metal was heterogeneously distributed. (author)

  4. Development of metallic uranium recovery technology from uranium oxide by Li reduction and electrorefining

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu; Kawabe, Akihiro; Yuda, Ryouichi; Usami, Tsuyoshi; Fujita, Reiko; Nakamura, Hitoshi; Yahata, Hidetsugu

    2002-01-01

    The purpose of the study is to develop technology for pre-treatment of oxide fuel reprocessing through pyroprocess. In the pre-treatment process, it is necessary to reduce actinide oxide to metallic form. This paper outlines some experimental results of uranium oxide reduction and recovery of refined metallic uranium in electrorefining. Both uranium oxide granules and pellets were used for the experiments. Uranium oxide granules was completely reduced by lithium in several hours at 650degC. Reduced uranium pellets by about 70% provided a simulation of partial reduction for the process flow design. Almost all adherent residues of Li and Li 2 O were successfully washed out with fresh LiCl salt. During electrorefining, metallic uranium deposited on the iron cathode as expected. The recovery efficiencies of metallic uranium from reduced uranium oxide granules and from pellets were about 90% and 50%, respectively. The mass balance data provided the technical bases of Li reduction and refining process flow for design. (author)

  5. Radiation damage of metal uranium

    International Nuclear Information System (INIS)

    Mihajlovic, A.

    1965-01-01

    This report is concerned with the role of dispersion second phase in uranium and burnup rate. The role of dispersion phases in radiation stability of metal uranium was studies by three methods: variation of electric conductivity dependent on the neutron flux and temperature of pure uranium for different states of dispersion second phase; influence of dispersion phase on the radiation creep; transmission electron microscopy of fresh and irradiated uranium

  6. The life of some metallic uranium based fuel elements; Duree de vie de quelques combustibles a base d'uranium metal

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J A; Englander, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Description of some theoretical and experimental data concerning the design and most economic preparation of metallic uranium based fuel elements, which are intended to produce an energy of 3 kW days/g of uranium in a thermal reactor, at a sufficiently high mean temperature. Experimental results obtained by testing by analogy or by actually trying out fuel elements obtained by alloying uranium with other metals in proportions such that the resistance to deformation of the alloy produced is much higher than that of pure metallic uranium and that the thermal utilisation factor is only slightly different from that of the uranium. (author) [French] Description de quelques donnees theoriques et experimentales concernant la conception et la preparation la plus economique d'elements combustibles a base d'uranium metallique naturel, destines a degager dans un reacteur thermique une energie de l'ordre de 3 kWj/g d'uranium a une temperature moyenne suffisamment elevee. Resultats experimentaux acquis par tests analogiques ou reels sur combustibles obtenus par alliage de l'uranium avec des elements metalliques en proportions telles que la resistance a la deformation soit bien superieure a celle de l'uranium metal pur et que le facteur propre d'utilisation thermique n ne soit que peu affecte. (auteur)

  7. Copper doped borate dosimeters revisited

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ghoshal, S.K.; Bradley, D.A.; Mhareb, M.; Saleh, M.A.

    2014-01-01

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu + and Cu ++ ) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu + ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated technique in borate

  8. Preparation of the pur uranium-metal; La preparation de l'uranium-metal pur

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B; Vertes, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    A detailed description of the chemical processes used to prepare in the factory of Bouchet of the CEA (Seine-Et-Oise) pur metal uranium with either relatively rich ores, or extracts coming of physical or chemical treatment of poor ores. The nitric treatment of ores succeeds to the production of uranate of impure sodium carbonate. This last last product is dissolved in nitric acid and the uranyl nitrate is extracted by tributyl-phosphate diluted in an inert solvent. The uranyl nitrate pure is re-extracted and successively transformed in uranium peroxide, in orange oxide then in brown oxide which is transformed in fluoride by the anhydrous hydrofluoric acid. Uranate fluoride is then reduced in metal by the pure calcium with an yield superior to 99%. (authors) [French] Description detaillee des procedes chimiques mis en jeu pour preparer a l'Usine du Bouchet du Commissariat a l'Energie Atomique (Seine-et-Oise) l'uranium metal pur a partir soit de minerais relativement riches, soit de concentres provenant de traitement physique ou chimique de minerais pauvres. Le traitement nitrique des minerais aboutit a la production d'uranate de soude impur. Ce dernier est a son tour dissous dans l'acide nitrique et le nitrate d'uranyle est extrait par du tributyl-phosphate dilue par un solvant inerte. Le nitrate d'uranyle pur reextrait est transforme successivement en peroxyde d'uranium, en oxyde orange puis en oxyde brun qui est transforme en fluorure par l'acide fluorhydrique anhydre. Le fluorure uraneux est reduit en metal par le calcium pur avec un rendement superieur a 99 %. (auteurs)

  9. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    Science.gov (United States)

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  10. ELECTROCHEMICAL STUDIES OF URANIUM METAL CORROSION MECHANISM AND KINETICS IN WATER

    International Nuclear Information System (INIS)

    Boudanova, Natalya; Maslennikov, Alexander; Peretroukhine, Vladimir F.; Delegard, Calvin H.

    2006-01-01

    During long-term underwater storage of low burn-up uranium metal fuel, a corrosion product sludge forms containing uranium metal grains, uranium dioxide, uranates and, in some cases, uranium peroxide. Literature data on the corrosion of non-irradiated uranium metal and its alloys do not allow unequivocal prediction of the paragenesis of irradiated uranium in water. The goal of the present work conducted under the program 'CORROSION OF IRRADIATED URANIUM ALLOYS FUEL IN WATER' is to study the corrosion of uranium and uranium alloys and the paragenesis of the corrosion products during long-term underwater storage of uranium alloy fuel irradiated at the Hanford Site. The elucidation of the physico-chemical nature of the corrosion of irradiated uranium alloys in comparison with non-irradiated uranium metal and its alloys is one of the most important aspects of this work. Electrochemical methods are being used to study uranium metal corrosion mechanism and kinetics. The present part of work aims to examine and revise, where appropriate, the understanding of uranium metal corrosion mechanism and kinetics in water

  11. Uranium fluoride and metallic uranium as target materials for heavy-element experiments at SHIP

    Energy Technology Data Exchange (ETDEWEB)

    Kindler, Birgit [Gesellschaft fuer Schwerionenforschung (GSI), Planckstrasse 1, D-64291 Darmstadt (Germany)], E-mail: b.kindler@gsi.de; Ackermann, Dieter; Hartmann, Willi; Hessberger, Fritz Peter; Hofmann, Sigurd; Huebner, Annett; Lommel, Bettina; Mann, Rido; Steiner, Jutta [Gesellschaft fuer Schwerionenforschung (GSI), Planckstrasse 1, D-64291 Darmstadt (Germany)

    2008-06-01

    In this contribution we describe the production and application of uranium targets for synthesis of heavy elements. The targets are prepared from uranium fluoride (UF{sub 4}) and from metallic uranium with thin carbon foils as backing. Targets of UF{sub 4} were produced by thermal evaporation in a similar way as the frequently applied targets out of Bi, Bi{sub 2}O{sub 3}, Pb, PbS, SmF{sub 3}, and NdF{sub 3,} prepared mostly from isotopically enriched material [Birgit Kindler, et al., Nucl. Instr. and Meth. A 561 (2006) 107; Bettina Lommel, et al., Nucl. Instr. and Meth. A 561 (2006) 100]. In order to use more intensive beams and to avoid scattering of the reaction products in the target, metallic uranium is favorable. However, evaporation of metallic uranium is not feasible at a sustainable yield. Therefore, we established magnetron sputtering of metallic uranium. We describe production and properties of these targets. First irradiation tests show promising results.

  12. The measurement of metallic uranium solubility in lithium chloride molten salt

    International Nuclear Information System (INIS)

    Park, K. K.; Choi, I. K.; Yeon, J. W.; Choi, K. S.; Park, Y. J.

    2002-01-01

    For the purpose of more precise solubility measurement of metallic uranium in lithium chloride melt, the effect of lithium chloride on uranium determination and and the change of oxidation state of metallic uranium in the media were investigated. Uranium of higher than 10 μg/g could be directly determined by ICP-AES. In the case of the lower concentration, the separation and concentration of uranium by anion exchanger was followed by ICP-AES, thereby extending the measurable concentration to 0.1 μg/g. The effects of lithium oxide, uranium oxides(UO 2 or U 3 O 8 ) and metallic lithium on the solubility of metallic uranium were individually investigated in glassy carbon or stainless steel crucibles under argon gas atmosphere. Since metallic uranium is oxidized to uranium(III) in the absence of metallic lithium, causing an increase in the solubility, metallic lithium as reducing agent should be present in the reaction media to obtain the more precise solubility. The metallic uranium solubilities measured at 660 and 690 .deg. C were both lower than 10 μg/g

  13. Metallization of uranium oxide powders by lithium reduction

    International Nuclear Information System (INIS)

    Kim, I. S.; Seo, J. S.; Oh, S. C.; Hong, S. S.; Lee, W. K.

    2002-01-01

    Laboratory scale experiments on the reduction of uranium oxide powders into metal by lithium were performed in order to determine the equipment setup and optimum operation conditions. The method of filtration using the porous magnesia filter was introduced to recover uranium metal powders produced. Based on the laboratory scale experimental results, mock-up scale (20 kg U/batch) metallizer was designed and made. The applicability to the metallization process was estimated with respect to the thermal stability of the porous magnesia filter in the high temperature molten salt, the filtration of the fine uranium metal powders, and the operability of the equipment

  14. A study on chlorination of uranium metal using ammonium chloride

    International Nuclear Information System (INIS)

    Eun, H.C.; Kim, T.J.; Jang, J.H.; Kim, G.Y.; Lee, S.J.; Hur, J.M.

    2017-01-01

    In this study, the chlorination of uranium metal using ammonium chloride (NH 4 Cl) was conducted to derive an easy and simple uranium chloride production method without impurities. In thermodynamic equilibrium calculations, it was predicted that only uranium chlorides can be produced by the reactions between uranium metal and NH 4 Cl. Experimental conditions for the chlorination of uranium metal were determined using a chlorination test of cerium metal using NH 4 Cl. It was confirmed that UCl 3 and UCl 4 in the form of particles as uranium chlorination products can be obtained from the chlorination method using NH 4 Cl. (author)

  15. Uranium decontamination of common metals by smelting, a review (handbook)

    International Nuclear Information System (INIS)

    Mautz, E.W.; Briggs, G.G.; Shaw, W.E.; Cavendish, J.H.

    1975-01-01

    The published and unpublished literature relating to the smelting of common metals scrap contaminated with uranium-bearing compounds has been searched and reviewed. In general, standard smelting practice produces ingots having a low uranium content, particularly for ferrous, nickel, and copper metals or alloys. Aluminum recovered from uranium contaminated scrap shows some decontamination by smelting but the uranium content is not as low as for other metals. Due to the heterogeneous nature and origin of scrap metals contaminated with uranium, information is frequently missing as to the extent of the initial contamination and the degree of decontamination obtained. The uranium content of the final cast ingots is generally all that is available. Results are summarized below by the primary composition of the uranium contaminated scrap metal. (U.S.)

  16. Sequential extraction of uranium metal contamination

    International Nuclear Information System (INIS)

    Murry, M.M.; Spitz, H.B.; Connick, W.B.

    2016-01-01

    Samples of uranium contaminated dirt collected from the dirt floor of an abandoned metal rolling mill were analyzed for uranium using a sequential extraction protocol involving a series of five increasingly aggressive solvents. The quantity of uranium extracted from the contaminated dirt by each reagent can aid in predicting the fate and transport of the uranium contamination in the environment. Uranium was separated from each fraction using anion exchange, electrodeposition and analyzed by alpha spectroscopy analysis. Results demonstrate that approximately 77 % of the uranium was extracted using NH 4 Ac in 25 % acetic acid. (author)

  17. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    Science.gov (United States)

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  18. PROCESS FOR PREPARING URANIUM METAL

    Science.gov (United States)

    Prescott, C.H. Jr.; Reynolds, F.L.

    1959-01-13

    A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

  19. Copper doped borate dosimeters revisited

    Energy Technology Data Exchange (ETDEWEB)

    Alajerami, Y.S.M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Oncology Treatment Centre, Sultan Ismail Hospital, 81100 Johor Bahru (Malaysia); Ghoshal, S.K. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mhareb, M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saleh, M.A. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); National Atomic Energy Commission (NATEC), Sana' a (Yemen)

    2014-11-15

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu{sup +} and Cu{sup ++}) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu{sup +} ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated

  20. Some potential strategies for the treatment of waste uranium metal and uranium alloys

    International Nuclear Information System (INIS)

    Burns, C.J.; Frankcom, T.M.; Gordon, P.L.; Sauer, N.N.

    1993-01-01

    Large quantities of uranium metal chips and turnings stored throughout the DOE Complex represent a potential hazard, due to the reactivity of this material toward air and water. Methods are being sought to mitigate this by conversion of the metal, via room temperature solutions routes, to a more inert oxide form. In addition, the recycling of uranium and concomitant recovery of alloying metals is a desirable goal. The emphasis of the authors' research is to explore a variety of oxidation and reduction pathways for uranium and its compounds, and to investigate how these reactions might be applied to the treatment of bulk wastes

  1. Refining of crude uranium by solvent extraction for production of nuclear pure uranium metal

    International Nuclear Information System (INIS)

    Gupta, S.K.; Manna, S.; Singha, M.; Hareendran, K.N.; Chowdhury, S.; Satpati, S.K.; Kumar, K.

    2007-01-01

    Uranium is the primary fuel material for any nuclear fission energy program. Natural uranium contains only 0.712% of 235 U as fissile constituent. This low concentration of fissile isotope in natural uranium calls for a very high level of purity, especially with respect to neutron poisons like B, Cd, Gd etc. before it can be used as nuclear fuel. Solvent extraction is a widely used technique by which crude uranium is purified for reactor use. Uranium metal plant (UMP), BARC, Trombay is engaged in refining of uranium concentrate for production of nuclear pure uranium metal for fabrication of fuel for research reactors. This paper reviews some of the fundamental aspects of this refining process with some special references to UMP, BARC. (author)

  2. Improvements in process technology for uranium metal production

    International Nuclear Information System (INIS)

    Meghal, A.M.; Singh, H.; Koppiker, K.S.

    1991-01-01

    The research reactors in Trombay use uranium metal as a fuel. The plant to produce nuclear grade uranium metal ingots has been in operation at Trombay since 1959. Recently, the capacity of the plant has been expanded to meet the additional demand of the uranium metal. The operation of the expanded plant, has brought to the surface various shortcomings. This paper identifies various problems and describes the measures to be taken to upgrade the technology. Some comments are made on the necessity for development of technology for future requirement. (author). 6 refs., 1 fig

  3. Preparation of the pur uranium-metal; La preparation de l'uranium-metal pur

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B.; Vertes, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    A detailed description of the chemical processes used to prepare in the factory of Bouchet of the CEA (Seine-Et-Oise) pur metal uranium with either relatively rich ores, or extracts coming of physical or chemical treatment of poor ores. The nitric treatment of ores succeeds to the production of uranate of impure sodium carbonate. This last last product is dissolved in nitric acid and the uranyl nitrate is extracted by tributyl-phosphate diluted in an inert solvent. The uranyl nitrate pure is re-extracted and successively transformed in uranium peroxide, in orange oxide then in brown oxide which is transformed in fluoride by the anhydrous hydrofluoric acid. Uranate fluoride is then reduced in metal by the pure calcium with an yield superior to 99%. (authors) [French] Description detaillee des procedes chimiques mis en jeu pour preparer a l'Usine du Bouchet du Commissariat a l'Energie Atomique (Seine-et-Oise) l'uranium metal pur a partir soit de minerais relativement riches, soit de concentres provenant de traitement physique ou chimique de minerais pauvres. Le traitement nitrique des minerais aboutit a la production d'uranate de soude impur. Ce dernier est a son tour dissous dans l'acide nitrique et le nitrate d'uranyle est extrait par du tributyl-phosphate dilue par un solvant inerte. Le nitrate d'uranyle pur reextrait est transforme successivement en peroxyde d'uranium, en oxyde orange puis en oxyde brun qui est transforme en fluorure par l'acide fluorhydrique anhydre. Le fluorure uraneux est reduit en metal par le calcium pur avec un rendement superieur a 99 %. (auteurs)

  4. URANIUM BISMUTHIDE DISPERSION IN MOLTEN METAL

    Science.gov (United States)

    Teitel, R.J.

    1959-10-27

    The formation of intermetallic bismuth compounds of thorium or uranium dispersed in a liquid media containing bismuth and lead is described. A bismuthide of uranium dispersed in a liquid metal medium is formed by dissolving uranium in composition of lead and bismuth containing less than 80% lead and lowering the temperature of the composition to a temperature below the point at which the solubility of uranium is exceeded and above the melting point of the composition.

  5. Examination of long-stored uranium metal

    International Nuclear Information System (INIS)

    Gate, A.M.; Hambley, D.I.

    2013-01-01

    A small quantity of unirradiated uranium from Magnox fuel elements is currently held in archive storage. Some of these samples date back to the late fifties. This material has been stored, untreated, in unsealed containers in air at ambient temperature, humidity and pressure conditions. Such conditions are relevant to those that may exist in a passive storage facility. A sample of this material has been subject to optical, electron-optical and Raman spectroscopic examination to determine the extent of corrosion and the composition of corrosion product arising from long-term, low-temperature oxidation of uranium metal in air. The examinations have established that, even after a period in excess of 40 years, there was no observable spalling of uranium oxide from the sample during storage. The extent of oxidation of the metal, derived by SEM analysis, was slight and insignificant in relation to overall structural stability of the material. Raman spectroscopy data showed that the bulk of the oxide layer was comprised of hyper-stoichiometric UO 2 , with U 4 O 9 being the dominant component. The oxygen/uranium ratio was observed to be decreased at the metal/oxide interface, with a very thin layer that consisted of mainly UO 2 at the metal surface. At the oxide/air interface, a very thin U 3 O 8 layer was detected. U 4 O 9 is relatively mechanically stable, due to a significantly higher density than UO 2 and U 3 O 8 . It is likely that the lower internal stresses in the thick U 4 O 9 layer have resulted in less oxide film cracking than would be expected from UO 2 or U 3 O 8 and hence the low oxidation rate observed. These results suggest that storage of uranium metal in air over decades is a safe and credible option. (authors)

  6. Process development study on production of uranium metal from monazite sourced crude uranium tetra-fluoride

    International Nuclear Information System (INIS)

    Chowdhury, S; Satpati, S.K.; Hareendran, K.N.; Roy, S.B.

    2014-01-01

    Development of an economic process for recovery, process flow sheet development, purification and further conversion to nuclear grade uranium metal from the crude UF 4 has been a technological challenge and the present paper, discusses the same.The developed flow-sheet is a combination of hydrometallurgical and pyrometallurgical processes. Crude UF 4 is converted to uranium di-oxide (UO 2 ) by chemical conversion route and UO 2 produced is made fluoride-free by repeated repulping, followed by solid liquid separation. Uranium di-oxide is then purified by two stages of dissolution and suitable solvent extraction methods to get uranium nitrate pure solution (UNPS). UNPS is then precipitated with air diluted ammonia in a leak tight stirred vessel under controlled operational conditions to obtain ammonium di-uranate (ADU). The ADU is then calcined and reduced to produce metal grade UO 2 followed by hydro-fluorination using anhydrous hydrofluoric acid to obtain metal grade UF 4 with ammonium oxalate insoluble (AOI) content of 4 is essential for critical upstream conversion process. Nuclear grade uranium metal ingot is finally produced by metallothermic reduction process at 650℃ in a closed vessel, called bomb reactor. In the process, metal-slag separation plays an important role for attaining metal purity as well as process yield. Technological as well economic feasibility of indigenously developed process for large scale production of uranium metal from the crude UF 4 has been established in Bhabha Atomic Research Centre (BARC), India

  7. METHOD OF PURIFYING URANIUM METAL

    Science.gov (United States)

    Blanco, R.E.; Morrison, B.H.

    1958-12-23

    The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

  8. Determination of uranium in uranium metal, uranium oxides, and uranyl nitrate solutions by potentiometric titration

    International Nuclear Information System (INIS)

    Tucker, H.L.; McElhaney, R.J.

    1983-01-01

    A simple, fast method for the determination of uranium in uranium metal, uranium oxides, and uranyl nitrate solutions has been adapted from the Davies-Gray volumetric method to meet the needs of Y-12. One-gram duplicate aliquots of uranium metal or uranium oxide are dissolved in 1:1 HNO 3 and concentrated H 2 SO 4 to sulfur trioxide fumes, and then diluted to 100-mL volume. Duplicate aliquots are then weighed for analysis. For uranyl nitrate samples, duplicate aliquots containing between 50 and 150 mg of U are weighed and analyzed directly. The weighed aliquot is transferred to a Berzelius beaker; 1.5 M sulfamic acid is added, followed in order by concentrated phosphoric acid, 1 M ferrous sulfate, and (after a 30-second interval) the oxidizing reagent. After a timed 3-minute waiting period, 100 mL of the 0.1% vanadyl sulfate-sulfuric acid mixture is added. The sample is then titrated past its endpoint with standard potassium dichromate, and the endpoint is determined by second derivative techniques on a mV/weight basis

  9. Examination of long-stored uranium metal

    Energy Technology Data Exchange (ETDEWEB)

    Gate, A.M.; Hambley, D.I. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)

    2013-07-01

    A small quantity of unirradiated uranium from Magnox fuel elements is currently held in archive storage. Some of these samples date back to the late fifties. This material has been stored, untreated, in unsealed containers in air at ambient temperature, humidity and pressure conditions. Such conditions are relevant to those that may exist in a passive storage facility. A sample of this material has been subject to optical, electron-optical and Raman spectroscopic examination to determine the extent of corrosion and the composition of corrosion product arising from long-term, low-temperature oxidation of uranium metal in air. The examinations have established that, even after a period in excess of 40 years, there was no observable spalling of uranium oxide from the sample during storage. The extent of oxidation of the metal, derived by SEM analysis, was slight and insignificant in relation to overall structural stability of the material. Raman spectroscopy data showed that the bulk of the oxide layer was comprised of hyper-stoichiometric UO{sub 2}, with U{sub 4}O{sub 9} being the dominant component. The oxygen/uranium ratio was observed to be decreased at the metal/oxide interface, with a very thin layer that consisted of mainly UO{sub 2} at the metal surface. At the oxide/air interface, a very thin U{sub 3}O{sub 8} layer was detected. U{sub 4}O{sub 9} is relatively mechanically stable, due to a significantly higher density than UO{sub 2} and U{sub 3}O{sub 8}. It is likely that the lower internal stresses in the thick U{sub 4}O{sub 9} layer have resulted in less oxide film cracking than would be expected from UO{sub 2} or U{sub 3}O{sub 8} and hence the low oxidation rate observed. These results suggest that storage of uranium metal in air over decades is a safe and credible option. (authors)

  10. Metallic uranium as fuel for fast reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de

    1988-01-01

    This paper presents a first overview of the use of metallic uranium and its alloys as an option for fuel for rapid reactors. Aspects are discussed concerning uranium alloys which present high solubility in the gamma phase. (author)

  11. Determination of uranium metal concentration in irradiated fuel storage basin sludge using selective dissolution

    International Nuclear Information System (INIS)

    Delegard, C.H.; Sinkov, S.I.; Chenault, J.W.; Schmidt, A.J.; Pool, K.N.; Welsh, T.L.

    2014-01-01

    Irradiated uranium metal fuel was stored underwater in the K East and K West storage basins at the US Department of Energy Hanford Site. The uranium metal under damaged cladding reacted with water to generate hydrogen gas, uranium oxides, and spalled uranium metal particles which intermingled with other particulates to form sludge. While the fuel has been removed, uranium metal in the sludge remains hazardous. An expeditious routine method to analyze 0.03 wt% uranium metal in the presence of >30 wt% total uranium was needed to support safe sludge management and processing. A selective dissolution method was designed based on the rapid uranium oxide dissolution but very low uranium metal corrosion rates in hot concentrated phosphoric acid. The uranium metal-bearing heel from the phosphoric acid step then is rinsed before the uranium metal is dissolved in hot concentrated nitric acid for analysis. Technical underpinnings of the selective dissolution method, including the influence of sludge components, were investigated to design the steps and define the reagents, quantities, concentrations, temperatures, and times within the selective dissolution analysis. Tests with simulant sludge proved the technique feasible. Tests with genuine sludge showed a 0.0028 ± 0.0037 wt% (at one standard deviation) uranium metal analytical background, a 0.011 wt% detection limit, and a 0.030 wt% quantitation limit in settled (wet) sludge. In tests using genuine K Basin sludge spiked with uranium metal at concentrations above the 0.030 wt% ± 25 % (relative) quantitation limit, uranium metal recoveries averaged 99.5 % with a relative standard deviation of 3.5 %. (author)

  12. METHOD OF HOT ROLLING URANIUM METAL

    Science.gov (United States)

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  13. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  14. Dissolution of metallic uranium and its alloys. Part II. Screening study results: Identification of an effective non-thermal uranium dissolution method

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    Screening experiments were performed to evaluate reagent systems that deactivate pyrophoric, metallic depleted uranium waste streams at ambient temperature. The results presented led to the selection of two systems, which would be investigated further, for the design of the LLNL onsite treatment process of metallic depleted uranium wastes. The two feasible systems are: (a) 7.5 mol/l H 2 SO 4 - 1 mol/l HNO 3 and (b) 3 mol/l HCl - 1 mol/l H 3 PO 4 . The sulfuric acid system dissolves uranium metal completely, while the hydrochloric-phosphoric acid system converts the metal completely into a solid, which might be suitable for direct disposal. Both systems combine oxidation of metallic uranium with complexation of the uranium ions formed to effectively deactivate uranium.s pyrophoricity at ambient temperature. (author)

  15. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil

    DEFF Research Database (Denmark)

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils...... from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42– radiotracer method, was restricted to reduced soil horizons with rates of 142 ± 20 nmol cm–3 day–1. Concentrations...... of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone...

  16. Transformations of highly enriched uranium into metal or oxide

    International Nuclear Information System (INIS)

    Nollet, P.; Sarrat, P.

    1964-01-01

    The enriched uranium workshops in Cadarache have a double purpose on the one hand to convert uranium hexafluoride into metal or oxide, and on the other hand to recover the uranium contained in scrap materials produced in the different metallurgical transformations. The principles that have been adopted for the design and safety of these workshops are reported. The nuclear safety is based on the geometrical limitations of the processing vessels. To establish the processes and the technology of these workshops, many studies have been made since 1960, some of which have led to original achievements. The uranium hexafluoride of high isotopic enrichment is converted either by injection of the gas into ammonia or by an original process of direct hydrogen reduction to uranium tetrafluoride. The uranium contained m uranium-zirconium metal scrap can be recovered by combustion with hydrogen chloride followed treatment of the uranium chloride by fluorine in order to obtain the uranium in the hexafluoride state. Recovery of the uranium contained m various scrap materials is obtained by a conventional refining process combustion of metallic scrap, nitric acid dissolution of the oxide, solvent purification by tributyl phosphate, ammonium diuranate precipitation, calcining, reduction and hydro fluorination into uranium tetrafluoride, bomb reduction by calcium and slag treatment. Two separate workshops operate along these lines one takes care of the uranium with an isotopic enrichment of up to 3 p. 100, the other handles the high enrichments. The handling of each step of this process, bearing in mind the necessity for nuclear safety, has raised some special technological problems and has led to the conception of new apparatus, in particular the roasting furnace for metal turnings, the nitric acid dissolution unit, the continuous precipitator and ever safe filter and dryer for ammonium diuranate, the reduction and hydro fluorination furnace and the slag recovery apparatus These are

  17. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    Science.gov (United States)

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs

  18. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    Science.gov (United States)

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  19. Uranium metal and uranium dioxide powder and pellets - Determination of nitrogen content - Method using ammonia-sensing electrode. 1. ed.

    International Nuclear Information System (INIS)

    1994-01-01

    This International Standard specifies an analytical method for determining the nitrogen content in uranium metal and uranium dioxide powder and pellets. It is applicable to the determination of nitrogen, present as nitride, in uranium metal and uranium dioxide powder and pellets. The concentration range within which the method can be used is between 9 μg and 600 μg of nitrogen per gram. Interference can occur from metals which form complex ammines, but these are not normally present in significant amounts

  20. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    Science.gov (United States)

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined uranium increased in carbon-amended treatments, reaching metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  1. Effect of CO on surface oxidation of uranium metal

    International Nuclear Information System (INIS)

    Wang, X.; Fu, Y.; Xie, R.

    1997-01-01

    The surface reactions of uranium metal with carbon monoxide at 25 and 200 deg C have been studied by X-ray photoelectron spectroscopy (XPS);respectively. Adsorption of carbon monoxide on the surface layer of uranium metal leads to partial reduction of surface oxide and results in U4f photoelectron peak shifting to the lower binding energy. The content of oxygen in the surface oxide is decreased and O1s/O4f ratio decreases with increasing the exposure of carbon monoxide. The investigation indicates the surface layer of uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide. (author)

  2. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, L A; Williams, R W; Glover, S E; LaMont, S P; Stalcup, A M; Spitz, H B

    2012-03-16

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.

  3. Radiochronological age of a uranium metal sample from an abandoned facility

    International Nuclear Information System (INIS)

    Meyers, L.A.; Stalcup, A.M.; Glover, S.E.; Spitz, H.B.

    2013-01-01

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940 and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope 230 Th from the decay of 234 U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 ± 1.5 years. (author)

  4. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    International Nuclear Information System (INIS)

    Meyers, L.A.; Williams, R.W.; Glover, S.E.; LaMont, S.P.; Stalcup, A.M.; Spitz, H.B.

    2012-01-01

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope 230 Th from the decay of 234 U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 ± 1.5 years.

  5. Release of gases from uranium metal at high temperatures

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Yadav, C.S.; Shankaran, P.S.; Chhapru, G.C.; Ramakumar, K.L.; Venugopal, V.

    2008-01-01

    Depending on the ambient environmental conditions, different gaseous species could get entrapped in uranium metal ingots or pellets. On heating, melting or vapourising uranium metal, these get released and depending on the composition, may cause detrimental effects either within the metal matrix itself or on the surrounding materials/environment. For instance, these gases may affect the performance of the uranium metal, which is used as fuel in the heavy water moderated research reactors, CIRUS and DHRUVA. Hence, detailed investigations have been carried out on the release of gases over a temperature range 875-1500 K employing hot vacuum extraction technique, in specimen uranium pellets made from uranium rods/ingots. Employing an on-line quadrupole mass spectrometer, the analysis of released gases was carried out. The isobaric interference between carbon monoxide and nitrogen at m/e = 28 in the mass spectrometric analysis has been resolved by considering their fragmentation patterns. Since no standards are available to evaluate the results, only the reproducibility is tested. The precision (relative standard deviation at 3σ level) of the method is ±5%. The minimum detectable gas content employing the method is 5.00 x 10 -09 m 3 . About 4 x 10 -04 m 3 /kg of gas is released from uranium pellets, with hydrogen as the main constituent. The gas content increases with storage in air

  6. The Resonance Absorption of Uranium Metal and Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hellstrand, E; Lundgren, G

    1962-06-15

    The resonance integrals for uranium metal and uranium oxide have been determined for a 1/E flux. The following results were obtained Metal RI 2.95 + 25.8{radical}(S/M); Oxide RI = 4.15 + 26.6{radical}(S/M). The oxide value agrees with the expression found earlier at this laboratory. But the result for the metal is 4. 5 % larger than the earlier one. In addition, the resonance absorption in a R1 fuel rod has been compared with that for a cadmium-covered rod placed in an approximate cell boundary flux. The former came out 3 % larger than the latter. A comparison of the fuel rod absorption with that for a 1/E flux yields a corresponding figure of 7 %. The neutron flux was monitored below the lowest resonance in uranium.

  7. Comparison of heavy metals and uranium removal using adsorbent in soil

    Science.gov (United States)

    Choi, Jaeyoung; Yun, Hunsik

    2017-04-01

    This study investigates heavy metals (As, Ni, Zn, Cd, and Pb) and uranium removal onto geomaterials (limestone, black shale, and concrete) and biosorbents (Pseudomonas putida and starfish) from waste in soil. Geomaterials or biosorbents with a high capacity for heavy metals and uranium can be obtained and employed of with little cost. For investigating the neutralization capacity, the change in pH, Eh, and EC as a function of time was quantified. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing heavy metals and uranium concentrations. Dead cells adsorbed the largest quantity of all heavy metals than lother sorbents. The adsorption capacity followed the order: U(VI) > Pb > Cd > Ni. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated soil.

  8. Green colorants based on energetic azole borates.

    Science.gov (United States)

    Glück, Johann; Klapötke, Thomas M; Rusan, Magdalena; Stierstorfer, Jörg

    2014-11-24

    The investigation of green-burning boron-based compounds as colorants in pyrotechnic formulations as alternative for barium nitrate, which is a hazard to health and to the environment, is reported. Metal-free and nitrogen-rich dihydrobis(5-aminotetrazolyl)borate salts and dihydrobis(1,3,4-triazolyl)borate salts have been synthesized and characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and vibrational spectroscopy. Their thermal and energetic properties have been determined as well. Several pyrotechnic compositions using selected azolyl borate salts as green colorants were investigated. Formulations with ammonium dinitramide and ammonium nitrate as oxidizers and boron and magnesium as fuels were tested. The burn time, dominant wavelength, spectral purity, luminous intensity, and luminous efficiency as well as the thermal and energetic properties of these compositions were measured. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The passivation of uranium metal surfaces by nitrogen bombardment - the formation of uranium nitride

    International Nuclear Information System (INIS)

    Allen, G.C.; Holmes, N.R.

    1987-08-01

    As part of a detailed investigation of the behaviour of metallic uranium in various atmospheres, we have examined the reaction between nitrogen gas and uranium metal. At room temperature there was no evidence of reaction between nitrogen gas and a clean metal surface; the only changes observed could be attributed to reaction between the metal and traces of oxygen (less than 0.1 ppm) in the nitrogen gas. Reaction between the metal and nitrogen was induced however by accelerating nitrogen towards the surface using a fast atom gun. The resulting nitrided surface was characterised by X-ray photoelectron spectroscopy, and its oxidation behaviour was monitored over an extended period in UHV and in air. (author)

  10. The passivation of uranium metal surfaces by nitrogen bombardment - the formation of uranium nitride

    International Nuclear Information System (INIS)

    Allen, G.C.; Holmes, N.R.

    1988-01-01

    As part of a detailed investigation of the behaviour of metallic uranium in various atmospheres, we have examined the reaction between nitrogen gas and uranium metal. At room temperature there was no evidence of reaction between nitrogen gas and a clean metal surface; the only changes observed could be attributed to reaction between the metal and traces of oxygen (less than 0.1 ppm) in the nitrogen gas. Reaction between the metal and nitrogen was induced, however, by accelerating nitrogen towards the surface using a fast atom gun. The resulting nitrided surface was characterized by X-ray photoelectron spectroscopy, and its oxidation behaviour was monitored over an extended period in UHV and in air. (orig.)

  11. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    The alkaline earth borate glasses containing heavy metal oxides show good solubility of rare-earth ions. Glasses containing PbO exhibit low glass transition temperature (Tg) and high ..... These oxygen ions carry a partial negative charge and.

  12. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  13. Possibilities of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    Djuric, B.; Mihajlovic, A.; Drobnjak, Dj.

    1965-11-01

    There are serious economic reasons for using metal uranium in heavy water reactors, because of its high density, i.e. high conversion factor, and low cost of fuel elements production. Most important disadvantages are swelling at high burnup and corrosion risk. Some design concepts and application of improved uranium obtained by alloying are promising for achievement of satisfactory stability of metal uranium under reactor operation conditions [sr

  14. Development of metal uranium fuel and testing of construction materials (I-VI); Part I

    International Nuclear Information System (INIS)

    Mihajlovic, A.

    1965-11-01

    This project includes the following tasks: Study of crystallisation of metal melt and beta-alpha transforms in uranium and uranium alloys; Study of the thermal treatment influence on phase transformations and texture in uranium alloys; Radiation damage of metal uranium; Project related to irradiation of metal uranium in the reactor; Development of fuel element for nuclear reactors

  15. Preparation and Purification of natural uranium metal by Iodine method

    International Nuclear Information System (INIS)

    Taies, J.A.

    2008-01-01

    In this work ,glass-metal apparatus was designed and manufactured which used for preparing a high purity uranium.The reaction is simply take place between iodine vapour and uranium metal at 500C in closed system to form uranium tetra iodide which is decomposed on hot wire at high temperature around 1100C.Also another apparatus was made from Glass and used for preparing a high purity of UI 4 more than 99.9%purity

  16. Structural influence of mixed transition metal ions on lithium bismuth borate glasses

    Science.gov (United States)

    Yadav, Arti; Dahiya, Manjeet S.; Hooda, A.; Chand, Prem; Khasa, S.

    2017-08-01

    Lithium bismuth borate glasses containing mixed transition metals having composition 7CoO·23Li2O·20Bi2O3·50B2O3 (CLBB), 7V2O5·23Li2O·20Bi2O3·50B2O3 (VLBB) and x(2CoO·V2O5)·(30 - x)Li2O·20Bi2O3·50B2O3 (x = 0.0 (LBB) and x = 2.0, 5.0, 7.0, 10.0 mol% (CVLBB1-4)) are synthesized via melt quench route. The synthesized compositions are investigated for their physical properties using density (D) and molar volume (Vm), thermal properties by analyzing DSC/TG thermo-graphs, structural properties using IR absorption spectra in the mid-IR range and optical properties using UV-Vis-NIR spectroscopy. The Electron Paramagnetic Resonance (EPR) spectra of vanadyl and cobalt ion have been analyzed to study compositional effects on spin-Hamiltonian parameters. The non linear variations in physical properties depict a strong structural influence of Co/V- oxides on the glassy matrix. The compositional variations in characteristic temperatures (glass transition temperature Tg, glass crystallization temperature Tp and glass melting temperature Tm) reveals that Tg for glass samples CLBB is relatively less than that of pure lithium bismuth borate (LBB) glass sample wherein Tg for sample VLBB is higher than that of LBB. The increase in Tg (as compared with LBB) with an enhanced substitution of mixed transition metal oxides (2CoO·V2O5) shows a progressive structure modification of bismuth borate matrix. These predictions are very well corroborated by corresponding compositional trends of Tp and Tm. FTIR studies reveal that Co2+& VO2+ ions lead to structural rearrangements through the conversion of three-coordinated boron into four coordinated boron and thereby reducing number of non-bridging oxygen atoms. Bismuth is found to exist in [BiO6] octahedral units only, whereas boroxol rings are not present in the glass network. The theoretical values of optical basicity (Λth) and corresponding oxide ion polarizability (αo2-) have also been calculated to investigate oxygen covalency of

  17. Storage of unirradiated fuel in borated concrete at the Savannah River Plant

    International Nuclear Information System (INIS)

    Honkonen, D.L.

    1979-06-01

    At the Savannah River Plant (SRP), more than 3000 enriched uranium fuel elements can be stored in horizontal holes in borated concrete racks. This method of storage was selected. This paper describes the largest of these racks and the reactivity calculations and measurements which confirmed that SRP fuel may be safely stored in them

  18. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    Science.gov (United States)

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  19. The passivation of uranium metal surfaces by nitrogen bombardment — the formation of uranium nitride

    Science.gov (United States)

    Allen, Geoffrey C.; Holmes, Nigel R.

    1988-05-01

    As part of a detailed investigation of the behaviour of metallic uranium in various atmospheres, we have examined the reaction between nitrogen gas and uranium metal. At room temperature there was no evidence of reaction between nitrogen gas and a clean metal surface; the only changes observed could be attributed to reaction between the metal and traces of oxygen (less than 0.1 ppm) in the nitrogen gas. Reaction between the metal and nitrogen was induced, however, by accelerating nitrogen towards the surface using a fast atom gun. The resulting nitrided surface was characterized by X-ray photoelectron spectroscopy, and its oxidation behaviour was monitored over an extended period in UHV and in air.

  20. Role of modern analytical techniques in the production of uranium metal

    International Nuclear Information System (INIS)

    Hareendran, K.N.; Roy, S.B.

    2009-01-01

    Production of nuclear grade uranium metal conforming to its stringent specification with respect to metallic and non metallic impurities necessitates implementation of a comprehensive quality control regime. Founding members of Uranium Metal Plant realised the importance of this aspect of metal production and a quality control laboratory was set up as part of the production plant. In the initial stages of its existence, the laboratory mainly catered to the process control analysis of the plant process samples and Spectroscopy Division and Analytical Division of BARC provided analysis of trace metallic impurities in the intermediates as well as in the product uranium metal. This laboratory also provided invaluable R and D support for the optimization of the process involving both calciothermy and magnesiothermy. Prior to 1985, analytical procedures used were limited to classical methods of analysis with minimal instrumental procedures. The first major analytical instrument, a Flame AAS was installed in 1985 and a beginning to the trace analysis was made. However during the last 15 years the Quality Control Section has modernized the analytical set up by acquiring appropriate instruments. Presently the facility has implemented a complete quality control and quality assurance program required to cover all aspects of uranium metal production viz analysis of raw materials, process samples, waste disposal samples and also determination of all the specification elements in uranium metal. The current analytical practices followed in QCS are presented here

  1. Chemical Separation of Fission Products in Uranium Metal Ingots from Electrolytic Reduction Process

    International Nuclear Information System (INIS)

    Lee, Chang-Heon; Kim, Min-Jae; Choi, Kwang-Soon; Jee, Kwang-Yong; Kim, Won-Ho

    2006-01-01

    Chemical characterization of various process materials is required for the optimization of the electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. In the uranium metal ingots of interest in this study, residual process materials and corrosion products as well as fission products are involved to some extent, which further adds difficulties to the determination of trace fission products. Besides it, direct inductively coupled plasma atomic emission spectrometric (ICP-AES) analysis of uranium bearing materials such as the uranium metal ingots is not possible because a severe spectral interference is found in the intensely complex atomic emission spectra of uranium. Thus an adequate separation procedure for the fission products should be employed prior to their determinations. In present study ion exchange and extraction chromatographic methods were adopted for selective separation of the fission products from residual process materials, corrosion products and uranium matrix. The sorption behaviour of anion and tri-nbutylphosphate (TBP) extraction chromatographic resins for the metals in acidic solutions simulated for the uranium metal ingot solutions was investigated. Then the validity of the separation procedure for its reliability and applicability was evaluated by measuring recoveries of the metals added

  2. Liquid uranium contaimment in refractories metals

    International Nuclear Information System (INIS)

    Duarte, J.L.; Padilha, A.F.

    1982-01-01

    Tests were performed on metalic materials for liquid uranium containment up to 2100 0 C. The materials Nb, Mo, Ta and W in the form of crucibles were tested at 2100 0 C for one hour in the presence of flowing argon. After testing, the crucibles were etched using HCl and analysed by optical metallography and electron proble microanalysis. The results are discussed in terms of Berthoud equation and indicated that the solubility limit of the crucible material in uranium at the temperature controlls the crucible dissolution by liquid uranium. The various phases formed, the mechanism of dissolution and the possible material for future use are presented and discussed. (Author) [pt

  3. Study on uranium metallization yield of spent Pressurized Water Reactor fuels and oxidation behavior of fission products in uranium metals

    International Nuclear Information System (INIS)

    Choi, Ke Chon; Lee, Chang Heon; Kim, Won Ho

    2003-01-01

    Metallization yield of uranium oxide to uranium metal from lithium reduction process of spent Pressurized Water Reactor (PWR) fuels was measured using thermogravimetric analyzer. A reduced metal produced in the process was divided into a solid and a powder part, and each metallization yield was measured. Metallization yield of the solid part was 90.7∼95.9 wt%, and the powder being 77.8∼71.5 wt% individually. Oxidation behaviour of the quarternary alloy was investigated to take data on the thermal oxidation stability necessary for the study on dry storage of the reduced metal. At 600∼700 .deg. C, weight increments of allow of No, Ru, Rh and Pd was 0.40∼0.55 wt%. Phase change on the surface of the allow was started at 750 .deg. C. In particular, Mo was rapidly oxidized and then the alloy lost 0.76∼25.22 wt% in weight

  4. Nuclear fuel cycle head-end enriched uranium purification and conversion into metal

    International Nuclear Information System (INIS)

    Bonini, A.; Cabrejas, J.; Lio, L. de; Dell'Occhio, L.; Devida, C.; Dupetit, G.; Falcon, M.; Gauna, A.; Gil, D.; Guzman, G.; Neuringer, P.; Pascale, A.; Stankevicius, A.

    1998-01-01

    The CNEA (Comision Nacional de Energia Atomica - Argentina) operated two facilities at the Ezeiza Atomic Center which supply purified enriched uranium employed in the production of nuclear fuels. At one of those facilities, the Triple Height Laboratory scraps from the production of MTR type fuel elements (mainly out of specification U 3 O 8 plates or powder) are purified to nuclear grade. The purification is accomplished by a solvent extraction process. The other facility, the Enriched Uranium Laboratory produces 90% enriched uranium metal to be used in Mo 99 production (originally the uranium was used for the manufacture of MTR fuel elements made of aluminium-uranium alloy). This laboratory also provided metallic uranium with a lower enrichment (20%) for a first uranium-silicon testing fuel element, and in the near future it is going to recommence 20% enriched uranium related activities in order to provide the metal for the silicon-based fuel elements production (according to the policy of enrichment reduction for MTR reactors). (author)

  5. Quantitative analysis of hydrogen gas formed by aqueous corrosion of metallic uranium

    International Nuclear Information System (INIS)

    Fonnesbeck, J.

    2000-01-01

    Three unirradiated EBR-II blanket fuel samples containing depleted uranium metal were corrosion tested in simulated J-13 well water at 90 C. The corrosion rate of the blanket uranium metal was then determined relative to H 2 formation. Corrosion of one of the samples was interrupted prior to complete oxidation of the uranium metal and the solid corrosion product was analyzed for UO 2 and UH 3

  6. Quantitative analysis of hydrogen gas formed by aqueous corrosion of metallic uranium

    Energy Technology Data Exchange (ETDEWEB)

    Fonnesbeck, J.

    2000-03-20

    Three unirradiated EBR-II blanket fuel samples containing depleted uranium metal were corrosion tested in simulated J-13 well water at 90 C. The corrosion rate of the blanket uranium metal was then determined relative to H{sub 2} formation. Corrosion of one of the samples was interrupted prior to complete oxidation of the uranium metal and the solid corrosion product was analyzed for UO{sub 2} and UH{sub 3}.

  7. Preparation of the pur uranium-metal

    International Nuclear Information System (INIS)

    Goldschmidt, B.; Vertes, P.

    1955-01-01

    A detailed description of the chemical processes used to prepare in the factory of Bouchet of the CEA (Seine-Et-Oise) pur metal uranium with either relatively rich ores, or extracts coming of physical or chemical treatment of poor ores. The nitric treatment of ores succeeds to the production of uranate of impure sodium carbonate. This last last product is dissolved in nitric acid and the uranyl nitrate is extracted by tributyl-phosphate diluted in an inert solvent. The uranyl nitrate pure is re-extracted and successively transformed in uranium peroxide, in orange oxide then in brown oxide which is transformed in fluoride by the anhydrous hydrofluoric acid. Uranate fluoride is then reduced in metal by the pure calcium with an yield superior to 99%. (authors) [fr

  8. Biosorption of heavy metals and uranium by starfish and Pseudomonas putida.

    Science.gov (United States)

    Choi, Jaeyoung; Lee, Ju Young; Yang, Jung-Seok

    2009-01-15

    Biosorption of heavy metals and uranium from contaminated wastewaters may represent an innovative purification process. This study investigates the removal ability of unit mass of Pseudomonas putida and starfish for lead, cadmium, and uranium by quantifying the adsorption capacity. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing Pb, Cd, and U concentrations. Dead cells adsorbed the largest quantity of all heavy metals than live cells and starfish. The adsorption capacity followed the order: U(VI)>Pb>Cd. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated wastewaters.

  9. Biosorption of heavy metals and uranium by starfish and Pseudomonas putida

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Lee, Ju Young; Yang, Jung-Seok

    2009-01-01

    Biosorption of heavy metals and uranium from contaminated wastewaters may represent an innovative purification process. This study investigates the removal ability of unit mass of Pseudomonas putida and starfish for lead, cadmium, and uranium by quantifying the adsorption capacity. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing Pb, Cd, and U concentrations. Dead cells adsorbed the largest quantity of all heavy metals than live cells and starfish. The adsorption capacity followed the order: U(VI) > Pb > Cd. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated wastewaters

  10. Radiation damage of metal uranium; Radijaciono ostecenje metalnog urana

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This report is concerned with the role of dispersion second phase in uranium and burnup rate. The role of dispersion phases in radiation stability of metal uranium was studies by three methods: variation of electric conductivity dependent on the neutron flux and temperature of pure uranium for different states of dispersion second phase; influence of dispersion phase on the radiation creep; transmission electron microscopy of fresh and irradiated uranium.

  11. Thermal simulation of the magnesium thermal of metallic uranium reduction

    International Nuclear Information System (INIS)

    Borges, W.A.; Saliba-Silva, A.M.

    2008-01-01

    Metallic uranium production is vital to fabricate fuel elements for nuclear research reactors and to produce radioisotopes and radiopharmaceuticals. Metallic uranium is got via magnesiothermal reduction of UF 4 . This reaction is carried out inside a closed graphite crucible inserted in a metallic reactor adequately sealed without any outside contact. The assembled set is gradually heated up inside a pit furnace up to reach the reaction ignition temperature (between 600-650 deg C). The optimization of the reactive system depends on the mathematical modeling using simulation by finite elements and computational calculation with specialized programs. In this way, the reactants' thermal behavior is forecast until they reach the ignition temperature. The optimization of the uranium production reaction is based on minimization of thermal losses using better the exo thermal reaction heat. As lower the thermal losses, as higher would be the heat amount to raise the temperature of reaction products. This promotes the adequate melting of uranium and slag, so allowing better metal/slag separation with higher metallic yield. This work shows how the mathematical simulation is made and supplies some preliminary results. (author)

  12. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Science.gov (United States)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  13. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse-Helmreich, Carissa J., E-mail: carissahelmreich@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States); Corbin, Rob, E-mail: rcorbin@terrapower.com [TerraPower, LLC, 330 120th Ave NE, Suite 100, Bellevue, WA 98005 (United States); McDeavitt, Sean M., E-mail: mcdeavitt@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States)

    2014-03-15

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  14. Measurement of thermal diffusivity of depleted uranium metal microspheres

    International Nuclear Information System (INIS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-01-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal

  15. PRETREATING URANIUM FOR METAL PLATING

    Science.gov (United States)

    Wehrmann, R.F.

    1961-05-01

    A process is given for anodically treating the surface of uranium articles, prior to metal plating. The metal is electrolyzed in an aqueous solution of about 10% polycarboxylic acid, preferably oxalic acid, from 1 to 5% by weight of glycerine and from 1 to 5% by weight of hydrochloric acid at from 20 to 75 deg C for from 30 seconds to 15 minutes. A current density of from 60 to 100 amperes per square foot is used.

  16. The behaviour of uranium metal in hydrogen atmospheres

    International Nuclear Information System (INIS)

    Allen, G.C.; Stevens, J.C.H.

    1988-01-01

    The reaction between commercial H 2 and uranium metal leads to the formation of UO 2 due to traces of water vapour or oxygen. When extremely pure H 2 is used uranium hydride may be formed but, even with 99.9999% H 2 , uranium dioxide forms preferentially. The present work identifies the presence of UH 3 in the X-ray photoelectron spectrum of a uranium sample which has been exposed to ca. 10 10 L† H 2 at ca. 200 0 C. This spectrum indicates that the hydride possesses a high degree of covalency, since the oxidation state of uranium in UH 3 appears to be ca. 1.4. (author)

  17. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    Science.gov (United States)

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  18. Compact reaction cell for homogenizing and down-blanding highly enriched uranium metal

    Science.gov (United States)

    McLean, II, William; Miller, Philip E.; Horton, James A.

    1995-01-01

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gasses into the reaction chamber, the upper port allowing for the exit of gasses from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gasses into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell.

  19. Uranium Metal Reaction Behavior in Water, Sludge, and Grout Matrices

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.

    2009-05-27

    This report summarizes information and data on the reaction behavior of uranium metal in water, in water-saturated simulated and genuine K Basin sludge, and in grout matrices. This information and data are used to establish the technical basis for metallic uranium reaction behavior for the K Basin Sludge Treatment Project (STP). The specific objective of this report is to consolidate the various sources of information into a concise document to serve as a high-level reference and road map for customers, regulators, and interested parties outside the STP (e.g., external reviewers, other DOE sites) to clearly understand the current basis for the corrosion of uranium metal in water, sludge, and grout.

  20. Uranium Metal Reaction Behavior in Water, Sludge, and Grout Matrices

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.

    2008-09-25

    This report summarizes information and data on the reaction behavior of uranium metal in water, in water-saturated simulated and genuine K Basin sludge, and in grout matrices. This information and data are used to establish the technical basis for metallic uranium reaction behavior for the K Basin Sludge Treatment Project (STP). The specific objective of this report is to consolidate the various sources of information into a concise document to serve as a high-level reference and road map for customers, regulators, and interested parties outside the STP (e.g., external reviewers, other DOE sites) to clearly understand the current basis for the corrosion of uranium metal in water, sludge, and grout.

  1. Small cell experiments for electrolytic reduction of uranium oxides to uranium metal using fluoride salts

    International Nuclear Information System (INIS)

    Haas, P.A.; Adcock, P.W.; Coroneos, A.C.; Hendrix, D.E.

    1994-01-01

    Electrolytic reduction of uranium oxide was proposed for the preparation of uranium metal feed for the atomic vapor laser isotope separation (AVLIS) process. A laboratory cell of 25-cm ID was operated to obtain additional information in areas important to design and operation of a pilot plant cell. Reproducible test results and useful operating and control procedures were demonstrated. About 20 kg of uranium metal of acceptable purity were prepared. A good supply of dissolved UO 2 feed at the anode is the most important controlling requirement for efficient cell operation. A large fraction of the cell current is nonproductive in that it does not produce a metal product nor consume carbon anodes. All useful test conditions gave some reduction of UF 4 to produce CF 4 in addition to the reduction of UO 2 , but the fraction of metal from the reduction of UF 4 can be decreased by increasing the concentration of dissolved UO 2 . Operation of large continuous cells would probably be limited to current efficiencies of less than 60 pct, and more than 20 pct of the metal would result from the reduction of UF 4

  2. Possibility of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    Djuric, B.; Mihajlovic, A.; Drobnjak, Dj.

    1965-01-01

    The review of metal uranium properties including irradiation in the reactor core lead to the following conclusions. Using metal uranium in the heavy water reactors would be favourable from economic point of view for ita high density, i.e. high conversion factor and low cost of fuel elements fabrication. Most important constraint is swelling during burnup and corrosion

  3. X-ray photoelectron and Auger electron spectroscopic study of the adsorption of molecular iodine on uranium metal and uranium dioxide

    International Nuclear Information System (INIS)

    Dillard, J.G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H.J.

    1984-01-01

    The adsorption of molecular iodine on uranium metal and on uranium dioxide has been investigated at 25 0 C. Clean surfaces were prepared in an ultrahigh vacuum apparatus and were characterized by X-ray photoelectron (XPS) and X-ray and electron-induced Auger electron spectroscopies (AES). Adsorption of I 2 was studied for exposures up to 100 langmuirs (1 langmuir = 10 -6 torr s) on uranium metal and to 75 langmuirs on uranium dioxide. Above about 2-langmuir I 2 exposure on uranium, spectroscopic evidence is obtained to indicate the beginning of UI 3 formation. Saturation coverage for I 2 adsorption on uranium dioxide occurs at approximately 10-15 langmuirs. Analysis of the XPS and AES results as well as studies of spectra as a function of temperature lead to the conclusions that a dissociative chemisorption/reaction process occurs on uranium metal while nondissociative adsorption occurs on uranium dioxide. Variations in the iodine Auger kinetic energy and in the Auger parameter are interpreted in light of extra-atomic relaxation processes. 42 references, 10 figures, 1 table

  4. Spectrophotometric determination of boron in complex matrices by isothermal distillation of borate ester into curcumin

    International Nuclear Information System (INIS)

    Thangavel, S.; Dhavile, S.M.; Dash, K.; Chaurasia, S.C.

    2004-01-01

    In situ distillation of borate ester into the curcumin solution has been developed for the spectrophotometric determination of boron in a variety of complex matrixes. A polypropylene vessel containing the sample solution was placed inside a vessel (PP) containing 10 ml of curcumin solution and the distillation was carried out at room temperature/on a water bath. The borate ester collected in to the curcumin solution was evaporated to dryness on the water bath, taken in acetone and the absorbance was measured at 550 nm. In situ distillation of borate ester directly into the chromogenic reagent eliminates tedious sample treatment (before and/or after borate separation), use of methanol, complicated quartz set up, possible loss of boron and reduces the analysis time significantly. In situ dehydration of sample solution by ethanolic vapour in the absence of dehydrating acid prevents the formation of fluoborate and co-distillation of potential anionic interferents (nitrate and fluoride). This developed method has been applied for the determination of traces of boric acid in boron powder by the distillation of methyl borate at room temperature. For other matrixes (water, uranium oxide, uranyl nitrate, fluoride salt, etc.) distillation of ethyl borate was carried out on the water bath. LOD (3σ) was 5 ng g -1 for water and 30 ng g -1 for solid samples

  5. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  6. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  7. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99 mTc for medical purposes is currently produced from the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers. (author)

  8. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99m Tc for medical purposes is currently produced form the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers

  9. Mid-crustal uranium and rare metal mineralisation in the Mount Isa Inlier: a genetic model for formation of orogenic uranium deposits

    OpenAIRE

    McGloin, Matthew

    2017-01-01

    Uranium mineralisation near Mount Isa in northwest Queensland, Australia, is widespread yet poorly understood. Within this region in the Western Fold Belt, one hundred and ninety uranium-rare metal occurrences are known. This uranium mineralisation is similar to worldwide examples of albitite-hosted or sodium-metasomatic uranium deposits, which host albite-carbonate ore zones enriched in incompatible elements. Various metal sources and ore-forming processes have been sugg...

  10. Standard specification for uranium metal enriched to more than 15 % and less Than 20 % 235U

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This specification covers nuclear grade uranium metal that has either been processed through an enrichment plant, or has been produced by the blending of highly enriched uranium with other uranium, to obtain uranium of any 235U concentration below 20 % (and greater than 15 %) and that is intended for research reactor fuel fabrication. The scope of this specification includes specifications for enriched uranium metal derived from commercial natural uranium, recovered uranium, or highly enriched uranium. Commercial natural uranium, recovered uranium and highly enriched uranium are defined in Section 3. The objectives of this specification are to define the impurity and uranium isotope limits for commercial grade enriched uranium metal. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched uranium metal which is to be used in the production of research reactor fuel. In addition to this specification, the parties concerned may agree to other appropriate conditions. ...

  11. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    Science.gov (United States)

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Dissolution of metallic uranium in alkalis

    International Nuclear Information System (INIS)

    Mondino, Angel V.; Wilkinson, Maria V.; Manzini, Alberto C.

    1999-01-01

    The dissolution of U metallic foils has been studied in the framework of the development of an improved 99 Mo-production process. The best conditions for the dissolution of uranium foils of approximately 150 μm are the following: a) NaClO concentrations of 0.20 and 0.23 M with NaOH of 0.27 and 0.31 M respectively; b) temperature of the solution, 70 C degrees; c) volume of the solution, 15 ml / cm 2 of uranium foil; d) dissolution time, 30 minutes. (author)

  13. Production of uranium metal via electrolytic reduction of uranium oxide in molten LiCl and salt distillation

    International Nuclear Information System (INIS)

    Eun-Young Choi; Chan Yeon Won; Dae-Seung Kang; Sung-Wook Kim; Ju-Sun Cha; Sung-Jai Lee; Wooshin Park; Hun Suk Im; Jin-Mok Hur

    2015-01-01

    Recovery of metallic uranium has been achieved by electrolytic reduction of uranium oxide in a molten LiCl-Li 2 O electrolyte at 650 deg C, followed by the removal of the residual salt by vacuum distillation at 850 deg C. Four types of stainless steel mesh baskets, with various mesh sizes (325, 1,400 and 2,300 meshes) and either three or five ply layers, were used both as cathodes and to contain the reduced product in the distillation stage. The recovered uranium had a metal fraction greater than 98.8 % and contained no residual salt. (author)

  14. U3O8 obtained from metallic uranium

    International Nuclear Information System (INIS)

    Lopez, Marisol; Gonzalez, Alfredo; Pasqualini, Enrique E.

    2003-01-01

    Enriched uranium oxide, U 3 O 8 , used as nuclear powder in MTR's, can be obtained by direct oxidation of metallic uranium at 800 C degrees. Maximum density, 8.2 gr/cm 3 , is achieved after grinding and a high temperature treatment at 1400 C degrees. All the process is highly controllable and performed in dry environments. (author)

  15. Treatment of uranium-containing effluent in the process of metallic uranium parts

    International Nuclear Information System (INIS)

    Yuan Guoqi

    1993-01-01

    The anion exchange method used in treatment of uranium-containing effluent in the process of metallic parts is the subject of the paper. The results of the experiments shows that the uranium concentration in created water remains is less than 10 μg/l when the waste water flowed through 10000 column volume. A small facility with column volume 150 litre was installed and 1500 m 3 of waste water can be cleaned per year. (1 tab.)

  16. Preparation and characterization of uranium alkoxides through oxidation of uranium metal

    International Nuclear Information System (INIS)

    Gordon, P.L.; Sauer, N.N.; Burns, C.J.; Watkin, J.G.; Van Der Sluys, W.G.

    1993-01-01

    Currently the authors are investigating the preparation of halide-containing uranium alkoxides by simultaneous halogen and alcohol oxidation of uranium metal. They recently reported the formation of U 2 I 4 (O-i-Pr) 4 (HO-i-Pr) 2 which upon addition of excess isopropanol forms UI 2 (O-i-Pr) 2 (HO-i-Pr) 2 . They report further characterization and reactivity for this monomeric species. Attempts to prepare similar complexes are being made using chlorine gas in the presence of other alcohols. They describe this ongoing research

  17. Thermoluminescence properties of alkali borate glasses containing neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, A.F.; Henaish, B.A.; Kenaway, M.A.; Salem, L.R.

    1988-01-01

    The thermoluminescence properties of sodium borate glasses as a function of neodymium oxide content as well as the divalent metal oxides (RO = ZnO, MgO and CaO) in replacement of Na/sub 2/O have been investigated. It is observed that the addition of Nd/sub 2/O/sub 3/ imparts to the host glass a monopeak glow curve according to an active luminescent centre (E approx. = 0.97 eV to 1.232 eV). The gradual addition of neodymium oxide to the sodium borate glass causes gradual enhancement in the TL-intensity up to a quenching concentration value (4 g Nd/sub 2/O/sub 3/ added to 100 g of borate glass) above which a draw back in TL-intensity occurs. On the other hand the replacement of 5 wt% Na/sub 2/O by RO shows that CaO dominates the other two divalent metal oxides used, as it possesses a much deeper luminescent trap (1.232 eV). The results obtained suggest that these glasses can be used in radiation detection and dosimetry. The ..gamma..-induced Tl-signal of such type of glass is found to be reproducible within an acceptable error of not more than 3.5% in all individual and group scattering over the detector samples each of which is used 10 times for evaluating the same ..gamma..-dose.

  18. The composition and character of oxycarbide phase in uranium metal

    International Nuclear Information System (INIS)

    Liu Kezhao; Lai Xinchun; Yu Yong; Ni Ranfu

    1999-08-01

    The oxide layer of uranium metal formed by vacuum heating were examined with X-ray photoelectron spectroscopy (XPS) and Auger Electron Spectroscopy (AES). XPS results indicated that the air-exposed surface of the oxide layer were mainly consisted of UO 2 and free carbon. After the air-exposed surface were removed by low energy argon ion sputtering, C1s spectra shifted from 284.8 eV to 281.8 eV, indicating the existence of carbide phase. AES results of C(KVV) Auger transitions confirmed this result. Resolved and fitted using a combination of Gaussian and Lorentzian peak shape, U4f 7/2 spectra showed that three uranium chemical states existed in the layer, there were uranium dioxide, uranium carbide (or oxycarbide, UC x O 1-x ) and uranium metal phase. Calculated the AES data by relatively sensitive factor, the composition of oxycarbide was given as UC 0.41+-0.04 O 0.62+-0.01

  19. Uranium and other heavy metal resistance and accumulation in bacteria isolated from uranium mine wastes.

    Science.gov (United States)

    Choudhary, Sangeeta; Islam, Ekramul; Kazy, Sufia K; Sar, Pinaki

    2012-01-01

    Ten bacterial strains isolated from uranium mine wastes were characterized in terms of their uranium and other metal resistance and accumulation. 16S rRNA gene sequence analysis identified the strains as members of genera Bacillus, Serratia, and Arthrobacter. Strains were able to utilize various carbon sources, particularly aromatic hydrocarbons, grow at broad pH and temperature ranges and produce non specific acid phosphatase relevant for metal phosphate precipitation in contaminated environment. The isolates exhibited high uranium and other heavy metals (Ni, Co, Cu and Cd) resistance and accumulation capacities. Particularly, Arthrobacter sp. J001 and Bacillus sp. J003 were superior in terms of U resistance at low pH (pH 4.0) along with metals and actinides (U and Th) removal with maximum cell loading of 1088 μmol U, 1293 μmol Th, 425 μmol Cu, 305 μmol Cd, 377 μmol Zn, 250 μmol Ni g(-1) cell dry wt. Genes encoding P(1B)-type ATPases (Cu-CPx and Zn-CPx) and ABC transporters (nik) as catalytic tools for maintaining cellular metal homeostasis were detected within several Bacillus spp., with possible incidence of horizontal gene transfer for the later gene showing phylogenetic lineage to α Proteobacteria members. The study provides evidence on intrinsic abilities of indigenous bacteria from U-mine suitable for survival and cleaning up of contaminated mine sites.

  20. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, A.E.M.

    2008-01-01

    Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples where collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration, in ppm, were measured. The annual addition of these elements in soil due to fertilization were calculated and discussed. (author)(tk)

  1. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, Ashraf E.M.; King Saud University, Riyadh

    2008-01-01

    Full text: Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples were collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration were measured. The annual addition of these elements in soil due to soil fertilization were calculated and discussed. (author)

  2. Influence of Ambient Gas on Laser-Induced Breakdown Spectroscopy of Uranium Metal

    International Nuclear Information System (INIS)

    Zhang Dacheng; Ma Xinwen; Wang Shulong; Zhu Xiaolong

    2015-01-01

    Laser-induced breakdown spectroscopy (LIBS) is regarded as a suitable method for the remote analysis of materials in any phase, even in an environment with high radiation levels. In the present work we used the third harmonic pulse of a Nd:YAG laser for ablation of uranium metal and measured the plasma emission with a fiber-optic spectrometer. The LIBS spectra of uranium metal and their features in different ambient gases (i.e., argon, neon, oxygen, and nitrogen) at atmospheric pressure were studied. Strong continuum spectrum and several hundreds of emission lines from UI and UII were observed. It is found that the continuum spectrum observed in uranium not only comes from bremsstrahlung emission but is also due to the complex spectrum of uranium. The influence of ambient gas and the gas flow rate for ablation of uranium metal was investigated. The experimental results indicate that the intensity of the uranium lines was enhanced in argon and nitrogen. However, the intensity of uranium lines was decreased in oxygen due to the generation of UO and other oxides. The results also showed that the highest intensity of uranium lines were obtained in argon gas with a gas flow rate above 2.5 L/min. The enhanced mechanism in ambient gas and the influence of the gas flow rate were analyzed in this work. (paper)

  3. Stability and electronic properties of groups IIB to VB metal ions in unusual oxidation states and the 2S /SUB 1/2/ electronic state in lithium borate glasses

    International Nuclear Information System (INIS)

    Aleksandrov, A.I.; Bubnov, N.N.; Kraevskii, S.L.; Prokof'ev, A.I.; Raspertova, Z.I.; Solinov, V.F.

    1986-01-01

    The authors study lithium borate glasses containing groups IIB to VB metal oxides. Chemically pure reagents were used to synthesize the glasses which were subjected to gamma-rays at 77 and 300 K with doses of up to 100 kR. The EST spectra were recorded on a Varian E-12 spectrometer in the 3 cm CW frequency region with a 100 kHz magnetic field modulation. It was established that after gamma-irradiation at 77 and 300 K of the lithium borate glass system containing up to 10% of cadmium, tin, thalium, and lead oxides, additional ESR lines arise in the free electron g factor region. The authors have determined the missing ESR spectra for nonactivated lithium borate glasses by studying glasses with additions of Zn, Ge, and Sb oxides

  4. DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRY FOR DETERMINATION OF SOME HEAVY METALS IN URANIUM

    Directory of Open Access Journals (Sweden)

    Saryati Saryati

    2010-06-01

    Full Text Available The direct determination of some metals impurity in uranium by using differential pulse anodic stripping voltammetry (DPASV method at a hanging mercury drop electrode and in a carbonate buffer media was developed. It was found that the carbonate buffer show the strongest affinity for uranium and gives the best separation between the DPASV peaks of heavy metals impurities. The carbonate concentration markedly affects the oxidation and reduction the major and the minor constituents of the uranium samples. In 0.1 M carbonate buffer solution pH 10, copper, bismuth, thalium, lead, cadmium, zinc, could be determined without the removal of the uranium matrix. Recovery and relative standard deviation (RSD of this method was in the range of 174% - 85.2% for recovery and 36.8% - 1.2% for RSD. The larger error of analytical result was obtained for Zn at low concentration. In general, the analytic results error and RSD decreased with increasing metals concentration.   Keywords: heavy metal determination, differential pulse anodic stripping voltammetry, uranium

  5. Development of a recovery process of scraps resulting from the manufacture of metallic uranium fuels

    International Nuclear Information System (INIS)

    Camilo, Ruth L.; Kuada, Terezinha A.; Forbicini, Christina A.L.G.O.; Cohen, Victor H.; Araujo, Bertha F.; Lobao, Afonso S.T.

    1996-01-01

    The study of the dissolution of natural metallic uranium fuel samples with aluminium cladding is presented, in order to obtain optimized conditions for the system. The aluminium cladding was dissolved in an alkaline solution of Na OH/Na NO 3 and the metallic uranium with HNO 3 . A fumeless dissolution with total recovery of nitrous gases was achieved. The main purpose of this project was the recovery of uranium from scraps resulting from the manufacture of the metallic uranium fuel or other non specified fuels. (author)

  6. Device for safe disposal of non-utilizable cuttings from depleted uranium metal

    International Nuclear Information System (INIS)

    Fiala, B.

    1991-01-01

    A device was developed for the production of U 3 O 8 from cuttings of depleted uranium metal or of uranium metal waste whose surface area is sufficiently large for combustion. The waste may contain organic impurities or other metals. The purity of the U 3 O 8 thus obtained is about 98%. Tests gave evidence that the combustion facility meets all requirements set forth by hygienic and ecological regulations. (Z.M.). 1 fig

  7. The Determination of Uranium and Trace Metal Impurities in Yellow Cake Sample by Chemical Method

    International Nuclear Information System (INIS)

    Busamongkol, Arporn; Rodthongkom, Chouvana

    1999-01-01

    The purity of uranium cake is very critical in nuclear-grade uranium (UO 2 ) and uranium hexafluoride (UF 6 ) production. The major element in yellow cake is uranium and trace metal impurities. The objective of this study is to determine uranium and 25 trace metal impurities; Aluminum, Barium, Bismuth, Calcium, Cadmium, Cobalt, Chromium, Copper, Iron, Potassium, Iithium, Magnesium, Manganese, Molybdenum, Sodium, Niobium, Nickel, Lead, Antimony, Tin, Strontium, Titanium, Vanadium, Zinc and Zirconium, Uranium is determined by Potassium dichromate titration, after solvent extraction with Cupferon in Chloroform, Trace metal impurities are determined by solvent extraction with Tributyl Phosphate in Carbon-tetrachloride ( for first 23 elements) and N-Benzoyl-N-Phenylhydroxylamine in Chloroform ( for last 2 elements), then analyzed by Atomic Absorption Spectrophotometer (AAS) compared with Inductively Couple Plasma Spectrophotometers (ICP). The accuracy and precision are studied with standard uranium octaoxide

  8. On the theory system of hydrothermal uranium metallization in China

    International Nuclear Information System (INIS)

    Du Letian

    2011-01-01

    Based on summarizing the mass of research outcome of the predecessors, the author attempts to make a brief generalization on the theory system of hydrothermal uranium mineralization in China. The system of uranium metallization is founded in the basic way of uranium source-migration-transportation-richment-reservation. The system mainly consists of the following frames: (1) mineralization type of silification zone; (2) age gap of mineralization to host rock; (3) alkli metasomatism; (4) metallogenic layer of crust; (5)integratation of 4 types mineralization (granite, volcanics, carbonaceous-siliceous-argilaceous rock and sandstone) in tectonic-hydrothermal process; (6) pre-enrichment process of metallization; (7) decouplement of granite magma evolution; (8) types of rich ore by high tempreture sericitization; (9)basalt event;(10) rock and ore formation by HARCON. (authors)

  9. Uranium metal oxidation, grinding, and encapsulation in BorobondR: TRU waste management - 59279

    International Nuclear Information System (INIS)

    Cook, Kevin S.; Addington, Larry A.; Utley, Beth

    2012-01-01

    Hydrogen generation mitigation for K Basin sludge was examined by encapsulation of uranium metal in BoroBond R , pre-oxidation of uranium metal with Fenton's reagent and grinding of Densalloy SD170, an irradiated uranium metal surrogate. Encapsulation in BoroBond R resulted in pressure increase rates at 60 deg. C ranging from 0.116 torr/h to 0.186 torr/h compared to 0.240 torr/h for a uranium metal in water standard. Samples cast with higher water content led to increased rates. A Fenton's reagent system consisting of a simple reagent mix of FeSO 4 .7H 2 O, H 2 O 2 and HCl effectively oxidized 1/4'' cubes of uranium metal in under four days at room temperature. Increased peroxide addition rate, increased FeSO 4 .7H 2 O concentration and low pH all increase the corrosion rate. Densalloy SD170 with an average particle size of 581 μm with 7.63 % of particles less than 90 μm was milled so that over 90 % of the Densalloy mass measured less than 90 μm in 6 hours of milling. Acceptable wear rates were seen on wear components that were from standard materials (Nitronic SS and 440SS). (authors)

  10. Protection of uranium by metallic coatings

    International Nuclear Information System (INIS)

    Baque, P.; Koch, P.; Dominget, R.; Darras, R.

    1968-01-01

    A study is made of the possibilities of inhibiting or limiting, by means of protective metallic coatings, the oxidation of uranium by carbon dioxide at high temperature. In general, surface films containing intermetallic compounds or solid solutions of uranium with aluminium, zirconium, copper, niobium, nickel or chromium are formed, according to the techniques employed which are described here. The processes most to be recommended are those of direct diffusion starting from a thin sheet or tube, of vacuum deposition, or of immersion in a molten bath of suitable composition. The conditions for preparing these coatings have been optimized as a function of the protective effect obtained in carbon dioxide at 450 or at 500 C. Only the aluminium and zirconium based coatings are really satisfactory since they can lead to a reduction by a factor of 5 to 10 in the oxidation rate of uranium in the conditions considered; they make it possible in particular to avoid or to reduce to a very large extent the liberation of powdered oxide. Furthermore, the coatings produced generally give the uranium good protection against atmospheric corrosion. (author) [fr

  11. Quantification of the effect of in-situ generated uranium metal on the experimentally determined O/U ratio of a sintered uranium dioxide fuel pellet

    International Nuclear Information System (INIS)

    Narasimha Murty, B.; Bharati Misra, U.; Yadav, R.B.; Srivastava, R.K.

    2005-01-01

    This paper describes quantitatively the effect of in-situ generated uranium metal (that could be formed due to the conducive manufacturing conditions) in a sintered uranium dioxide fuel pellet on the experimentally determined O/U ratio using analytical methods involving dissolution of the pellet material. To quantify the effect of in-situ generated uranium metal in the fuel pellet, a mathematical expression is derived for the actual O/U ratio in terms of the O/U ratio as determined by an experiment involving dissolution of the material and the quantity of uranium metal present in the uranium dioxide pellet. The utility of this derived mathematical expression is demonstrated by tabulating the calculated actual O/U ratios for varying amounts of uranium metal (from 5 to 95% in 5% intervals) and different O/U ratio values (from 2.001 to 2.015 in 0.001 intervals). This paper brings out the necessity of care to be exercised while interpreting the experimentally determined O/U ratio and emphasizes the fact that it is always safer to produce the nuclear fuel with oxygen to uranium ratios well below the specified maximum limit of 2.015. (author)

  12. Evidence for Single Metal Two Electron Oxidative Addition and Reductive Elimination at Uranium

    OpenAIRE

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; Mcinnes, Eric; Tuna, Floriana; Wooles, Ashley; Maron, Laurent; Liddle, Stephen

    2017-01-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here, we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido compl...

  13. Behavior of uranium and its surrogates in molten aluminosilicate glasses in contact with liquid metals

    International Nuclear Information System (INIS)

    Chevreux, Pierrick

    2016-01-01

    This study concerns an innovative process used for conditioning nuclear waste that contain metallic parts contaminated with actinides. High actinides concentrations are expected to be incorporated in the glass melt in contact with the molten metals. Among these metals, aluminum and/or stainless steel impose a strongly reducing environment to the glass melt involving redox reactions. These reactions modify actinides oxidation states and therefore change their solubilities in the glass and could also reduce them into the metallic form. In this work, we focus on the behavior of uranium and its surrogates, namely hafnium and neodymium, in aluminosilicate glasses from the Na 2 O-CaO-SiO 2 -Al 2 O 3 system melted in highly reducing conditions. The first step consists in comparing the hafnium and uranium solubilities in the glass as functions of redox conditions and glass composition. A methodology has been set up and a specific device has been used to control the oxygen fugacity and the alkali content of the glass. The results show that uranium is far less soluble in the glass than hafnium (Hf(IV)) in reducing conditions. The uranium solubility ranges from 4 to 7 wt% UO 2 for an oxygen fugacity below 10 -14 atm at 1250 C-1400 C. Uranium oxidation states have been investigated by X-ray absorption spectroscopy (XANES). It has been pointed out that U(IV) is the main form in the glass for such imposed oxygen fugacities. The second step of this work is to identify the glass-metal interaction mechanisms in order to determine the localization of uranium and its surrogates (Nd, Hf) in the glass-metal system. Mechanisms are mostly ruled by the presence of metallic aluminum and are similar for uranium, neodymium and hafnium. Glass-metal interaction kinetics demonstrate that uranium and its surrogates can temporarily be reduced into the metallic form for particular conditions. A re-oxidation occurs with time which is in good agreement with thermodynamics. Regarding uranium, the re

  14. High temperature behavior of metallic inclusions in uranium dioxide

    International Nuclear Information System (INIS)

    Yang, R.L.

    1980-08-01

    The object of this thesis was to construct a temperature gradient furnace to simulate the thermal conditions in the reactor fuel and to study the migration of metallic inclusions in uranium oxide under the influence of temperature gradient. No thermal migration of molybdenum and tungsten inclusions was observed under the experimental conditions. Ruthenium inclusions, however, dissolved and diffused atomically through grain boundaries in slightly reduced uranium oxide. An intermetallic compound (probably URu 3 ) was formed by reaction of Ru and UO/sub 2-x/. The diffusivity and solubility of ruthenium in uranium oxide were measured

  15. Nuclear criticality safety parameter evaluation for uranium metallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Andrea; Abe, Alfredo, E-mail: andreasdpz@hotmail.com, E-mail: abye@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Energia Nuclear

    2013-07-01

    Nuclear criticality safety during fuel fabrication process, transport and storage of fissile and fissionable materials requires criticality safety analysis. Normally the analysis involves computer calculations and safety parameters determination. There are many different Criticality Safety Handbooks where such safety parameters for several different fissile mixtures are presented. The handbooks have been published to provide data and safety principles for the design, safety evaluation and licensing of operations, transport and storage of fissile and fissionable materials. The data often comprise not only critical values, but also subcritical limits and safe parameters obtained for specific conditions using criticality safety calculation codes such as SCALE system. Although many data are available for different fissile and fissionable materials, compounds, mixtures, different enrichment level, there are a lack of information regarding a uranium metal alloy, specifically UMo and UNbZr. Nowadays uranium metal alloy as fuel have been investigated under RERTR program as possible candidate to became a new fuel for research reactor due to high density. This work aim to evaluate a set of criticality safety parameters for uranium metal alloy using SCALE system and MCNP Monte Carlo code. (author)

  16. Active method of neutron time correlation coincidence measurement to authenticate mass and enrichment of uranium metal

    International Nuclear Information System (INIS)

    Zhang Songbai; Wu Jun; Zhu Jianyu; Tian Dongfeng; Xie Dong

    2011-01-01

    The active methodology of time correlation coincidence measurement of neutron is an effective verification means to authenticate uranium metal. A collimated 252 Cf neutron source was used to investigate mass and enrichment of uranium metal through the neutron transport simulation for different enrichments and different masses of uranium metal, then time correlation coincidence counts of them were obtained. By analyzing the characteristic of time correlation coincidence counts, the monotone relationships were founded between FWTH of time correlation coincidence and multiplication factor, between the total coincidence counts in FWTH for time correlation coincidence and mass of 235 U multiplied by multiplication factor, and between the ratio of neutron source penetration and mass of uranium metal. Thus the methodology to authenticate mass and enrichment of uranium metal was established with time correlation coincidence by active neutron investigation. (authors)

  17. Effect of alkali ion on relaxation properties of binary alkali-borate glasses

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.; Bartenev, G.M.

    1992-01-01

    Method of relaxation spectrometry were used to analyze the data on internal friction spectra of lithium, sodium, potassium and rubidium alkali-borate glasses in wide range of temperatures and frequencies. The nature of two relaxation processes was clarified: β m -process, related with mobility of alkaline metal cations, and α-process (vitrification), conditioned by system transformation from viscous-flow to vitreous state. It is shown that atomic-molecular mechanism of vitrification process changes when passing from vitreous B 2 O 3 to alkali-borate glasses

  18. Operating experience in processing of differently sourced deeply depleted uranium oxide and production of deeply depleted uranium metal ingots

    International Nuclear Information System (INIS)

    Manna, S.; Ladola, Y.S.; Sharma, S.; Chowdhury, S.; Satpati, S.K.; Roy, S.B.

    2009-01-01

    Uranium Metal Plant (UMP) of BARC had first time experience on production of three Depleted Uranium Metal (DUM) ingots of 76kg, 152kg and 163kg during March 1991. These ingots were produced by processing depleted uranyl nitrate solution produced at Plutonium Plant (PP), Trombay. In recent past Uranium Metal Plant (UMP), Uranium Extraction Division (UED), has been assigned to produce tonnage quantity of Deeply DUM (DDUM) from its oxide obtained from PP, PREFRE and RMP, BARC. This is required for shielding the high radioactive source of BHABHATRON Tele-cobalt machine, which is used for cancer therapy. The experience obtained in processing of various DDU oxides is being utilized for design of large scale DDU-metal plant under XIth plan project. The physico- chemical characteristics like morphology, density, flowability, reactivity, particle size distribution, which are having direct effect on reactivity of the powders of the DDU oxide powder, were studied and the shop-floor operational experience in processing of different oxide powder were obtained and recorded. During campaign trials utmost care was taken to standardized all operating conditions using the same equipment which are in use for natural uranium materials processing including safety aspects both with respect to radiological safety and industrial safety. Necessary attention and close monitoring were specially arranged and maintained for the safety aspects during the trial period. In-house developed pneumatic transport system was used for powder transfer and suitable dust arresting system was used for reduction of powder carry over

  19. Thermochemistry of uranium(VI), arsenic, and alkali metal triple oxides

    International Nuclear Information System (INIS)

    Karyakin, N.V.; Chernorukov, G.N.

    1994-01-01

    The standard enthalpies of reactions of stoichiometric mixtures of potassium dyhydrogen orthoarsenate, uranium(VI) oxide, alkali metal nitrates, and of mixtures of triple oxides with the general formula M I AsUO 6 (M I =Li, Na, K, Rb, and Cs) and potassium nitrate with aqueous solution of hydrofluoric acid were determined an an adiabatic calorimeter at 298.15 K. The standard enthalpies of formation of uranium(VI), arsenic, and alkali metal triple oxides at 298.15 K were calculated form the data obtained. 8 refs., 1 tab

  20. Gas chromatographic method fr determination of carbon in metallic uranium

    International Nuclear Information System (INIS)

    Nikol'skij, V.A.; Markov, V.K.; Evseeva, T.I.; Cherstvenkova, E.P.

    1983-01-01

    Gas chromatographic device to determine carbon in metal uranium is developed. Burnout unite, permitting to load in the burnout tube simultaneously quite a few (up to 20) weight amounts of materials to be burned is a characteristic feature of the device. As a result amendments for control experiment and determination limit are decreased. The time of a single determination is also reduced. Conditions of carbon burn out from metal uranium are studied and temperature and time of complete extraction of carbon in the form of dioxide from weight amount into gaseous phase are established

  1. Study on 'Tannix' an absorbent for heavy metals including uranium

    International Nuclear Information System (INIS)

    Nakamura, Yasuo

    1997-01-01

    To treat radioactive wastes including uranium and transuranic elements such as plutonium, americium etc., development of an absorbent which can be used to absorb and isolate these elements without producing secondary wastes after treatment was attempted. And an absorbent has been successfully developed by polymerizing tannin, a natural product. It is known that tannin binds heavy metals including uranium resulting to produce their precipitates. There are some reports suggesting its absorption ability for uranium. However, tannin has not been used to isolate a heavy metal from a solution because it is soluble in water. Here, insolubilization of tannin was attempted and a manufacturing method for a gelatinized insoluble tannin named as ''Tannix'' was established. Wattle tannin extracted from Mimosa pudica produced in Africa was dissolved in an alkaline solution and gelatinized by heating after the addition of formalin. Thus obtained insoluble tannin was used after crushing and sieving. This product, ''Tannix'' was able to absorb more than 99% of uranium in the waste. And the absorbed Tannin could be degraded by incineration even at a low temperature, leaving only uranium, but not producing any secondary product. (M.N.)

  2. Study on `Tannix` an absorbent for heavy metals including uranium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yasuo [Mitsubishi Nuclear Fuel Co. Ltd., Tokyo (Japan)

    1997-09-01

    To treat radioactive wastes including uranium and transuranic elements such as plutonium, americium etc., development of an absorbent which can be used to absorb and isolate these elements without producing secondary wastes after treatment was attempted. And an absorbent has been successfully developed by polymerizing tannin, a natural product. It is known that tannin binds heavy metals including uranium resulting to produce their precipitates. There are some reports suggesting its absorption ability for uranium. However, tannin has not been used to isolate a heavy metal from a solution because it is soluble in water. Here, insolubilization of tannin was attempted and a manufacturing method for a gelatinized insoluble tannin named as ``Tannix`` was established. Wattle tannin extracted from Mimosa pudica produced in Africa was dissolved in an alkaline solution and gelatinized by heating after the addition of formalin. Thus obtained insoluble tannin was used after crushing and sieving. This product, ``Tannix`` was able to absorb more than 99% of uranium in the waste. And the absorbed Tannin could be degraded by incineration even at a low temperature, leaving only uranium, but not producing any secondary product. (M.N.)

  3. Influence of carbon monoxide to the surface layer of uranium metal and its oxides

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-09-01

    The surface structures of uranium metal and triuranium octaoxide (U 3 O 8 ) and the influence of carbon monoxide to the surface layers have been studied by X-ray photoelectron spectroscopy (XPS). After exposure to carbon monoxide, contents of oxygen in the surface oxides of uranium metal and U 3 O 8 are decreased and O/U ratios decrease 7.2%, 8.0% respectively. The investigation indicated the surface layers of uranium metal and its oxides were forbidden to further oxidation in the atmosphere of carbon monoxide. (11 refs., 9 figs., 2 tabs.)

  4. Sodium-cooled Fast Reactor Cores using Uranium-Free Metallic Fuels for Maximizing TRU Support Ratio

    International Nuclear Information System (INIS)

    You, WuSeung; Hong, Ser Gi

    2014-01-01

    The depleted uranium plays important roles in the SFR burner cores because it substantially contributes to the inherent safety of the core through the negative Doppler coefficient and large delayed neutron. However, the use of depleted uranium as a diluent nuclide leads to a limited value of TRU support ratio due to the generation of TRUs through the breeding. In this paper, we designed sodium cooled fast reactor (SFR) cores having uranium-free fuels 3,4 for maximization of TRU consumption rate. However, the uranium-free fuelled burner cores can be penalized by unacceptably small values of the Doppler coefficient and small delayed neutron fraction. In this work, metallic fuels of TRU-(W or Ni)-Zr are considered to improve the performances of the uranium-free cores. The objective of this work is to consistently compare the neutronic performances of uranium-free sodium cooled fast reactor cores having TRU-Zr metallic fuels added with Ni or W and also to clarify what are the problematic features to be resolved. In this paper, a consistent comparative study of 400MWe sodium cooled burner cores having uranium-based fuels and uranium-free fuels was done to analyze the relative core neutronic features. Also, we proposed a uranium-free metallic fuel based on Nickel. From the results, it is found that tungsten-based uranium-free metallic fuel gives large negative Doppler coefficient due to high resonance of tungsten isotopes but this core has large sodium void worth and small effective delayed neutron fraction while the nickel-based uranium-free metallic fuelled core has less negative Doppler coefficient but smaller sodium void worth and larger effective delayed neutron fraction than the tungsten-based one. On the other hand, the core having TRU-Zr has very high burnup reactivity swing which may be problematic in compensating it using control rods and the least negative Doppler coefficient

  5. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  6. Evidence for single metal two electron oxidative addition and reductive elimination at uranium.

    Science.gov (United States)

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; McInnes, Eric J L; Tuna, Floriana; Wooles, Ashley J; Maron, Laurent; Liddle, Stephen T

    2017-12-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.

  7. Melting decontamination and recycling of radioactive polluted metals from uranium mining and metallurgy

    International Nuclear Information System (INIS)

    Chen Anquan

    2011-01-01

    Melting method is a primary method used for decontamination of radioactive polluted metal from uranium mining and metallurgy. The decontamination mechanism of the method, the way selection and its features are introduced. Taking the ten year's work of CNNC Uranium Mining and Metallurgy Radioactive Polluted Metal Melting Processing Center as example, the effects of processing radioactive polluted metals by smelting method are discussed. The surface pollution levels of radioactive polluted metal from uranium mining and metallurgy decreased from 4-48 Bq/cm 2 before decontamination to 0.004-0.016 Bq/cm 2 after decontamination, and the specific activity of its metal is less than 1 Bq/g, which is below the solution control level proposed by IAEARS-G1.7 'the application of the concepts of exclusion, immunity and solution control'. The metals after decontamination can be recycled by producing tooth plate and bucket teeth of excavator used in mines. (authors)

  8. Trace metal assay of uranium silicide fuel

    International Nuclear Information System (INIS)

    Kulkarni, M.J.; Argekar, A.A.; Thulasidas, S.K.; Dhawale, B.A.; Rajeswari, B.; Adya, V.C.; Purohit, P.J.; Neelam, G.; Bangia, T.R.; Page, A.G.; Sastry, M.D.; Iyer, R.H.

    1994-01-01

    A comprehensive trace metal assay of uranium silicide, a fuel for nuclear research reactors that employs low-enrichment uranium, is carried out by atomic spectrometry. Of the list of specification elements, 21 metallic elements are determined by a direct current (dc) arc carrier distillation technique; the rare earths yttrium and zirconium are chemically separated from the major matrix followed by a dc arc/inductively coupled argon plasma (ICP) excitation technique in atomic emission spectrometry (AES); silver is determined by electrothermal atomization-atomic absorption spectrometry (ETA-AAS) without prior chemical separation of the major matrix. Gamma radioactive tracers are used to check the recovery of rare earths during the chemical separation procedure. The detection limits for trace metallics vary in the 0.1- to 40-ppm range. The precision of the determinations as evaluated from the analysis of the synthetic sample with intermediate range analyte concentration is better than 25% relative standard deviation (RSD) for most of the elements employing dc arc-AES, while that for silver determination by ETS-AAS is 10% RSD. The precision of the determinations for four crucially important rare earths by ICP-AES is better than 3% RSD

  9. Development of uranium metal targets for 99Mo production

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Hofman, G.L.

    1993-10-01

    A substantial amount of high enriched uranium (HEU) is used for the production of medical-grade 99 Mo. Promising methods of producing irradiation targets are being developed and may lead to the reduction or elimination of this HEU use. To substitute low enriched uranium (LEU) for HEU in the production of 99 Mo, the target material may be changed to uranium metal foil. Methods of fabrication are being developed to simplify assembly and disassembly of the targets. Removal of the uranium foil after irradiation without dissolution of the cladding is a primary goal in order to reduce the amount of liquid radioactive waste material produced in the process. Proof-of-concept targets have been fabricated. Destructive testing indicates that acceptable contact between the uranium foil and the cladding can be achieved. Thermal annealing tests, which simulate the cladding/uranium diffusion conditions during irradiation, are underway. Plans are being made to irradiate test targets

  10. Concentrations of heavy metals (lead, manganese, cadmium) in blood and urine of former uranium workers

    International Nuclear Information System (INIS)

    Apostolova, D.; Pavlova, S.; Paskalev, Z.

    1999-01-01

    Uranium ores contain heavy metals and other stable chemical elements as oxides, hydro-carbonates, sulphates, etc. During chemical processing of ore they could be transformed into compounds soluble in biologic liquids. The purpose of this study was to determine the combined intoxication of uranium miners and millers by heavy metals and radiation. Heavy metal (lead, manganese and cadmium) concentrations in blood and urine od 149 former uranium miners and millers were determined by AAS method. Data of significantly increased lead and manganese concentration in blood (p<0.05) of two groups were established in comparison with a control group. There is no statistical significant differences in the cadmium concentrations. The lead and manganese blood levels at the uranium millers were significant higher than those of the uranium miner group (p<0.05). Tendency towards increased blood lead concentrations of uranium millers depending on the length of service was established

  11. Determination of the oxygen-metal-ratio of uranium-americium mixed oxides

    International Nuclear Information System (INIS)

    Bartscher, W.

    1982-01-01

    During the dissolution of uranium-americium mixed oxides in phosphoric acid under nitrogen tetravalent uranium is oxidized by tetravalent americium. The obtained hexavalent uranium is determined by constant potential coulometry. The coulombs measured are equivalent to the oxygen in excess of the minimum composition of UO 2 x AmO 1 . 5 . The total uranium content of the sample is determined in a subsequent coulometric titration. The oxygen-metal ratio of the sample can be calculated for a given uranium-americium ratio. An excess of uranium dioxide is necessary in order to suppress the oxidation of water by tetravalent americium. The standard deviation of the method is 0.0017 O/M units. (orig.) [de

  12. Melting of Uranium Metal Powders with Residual Salts

    International Nuclear Information System (INIS)

    Jin-Mok Hur; Dae-Seung Kang; Chung-Seok Seo

    2007-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) of the Korea Atomic Energy Research Institute focuses on the conditioning of Pressurized Water Reactor spent oxide nuclear fuel. After the oxide reduction step of the ACP, the resultant metal powders containing ∼ 30 wt% residual LiCl-Li 2 O should be melted for a consolidation of the fine metal powders. In this study, we investigated the melting behaviors of uranium metal powders considering the effects of a LiCl-Li 2 O residual salt. (authors)

  13. Distribution of uranium and some selected trace metals in human scalp hair from Balkans.

    Science.gov (United States)

    Zunic, Z S; Tokonami, S; Mishra, S; Arae, H; Kritsananuwat, R; Sahoo, S K

    2012-11-01

    The possible consequences of the use of depleted uranium (DU) used in Balkan conflicts in 1995 and 1999 for the people and the environment of this reason need attention. The heavy metal content in human hair may serve as a good indicator of dietary, environmental and occupational exposures to the metal compounds. The present work summarises the distribution of uranium and some selected trace metals such as Mn, Ni, Cu, Zn, Sr, Cd and Cs in the scalp hair of inhabitants from Balkans exposed to DU directly and indirectly, i.e. Han Pijesak, Bratoselce and Gornja Stubla areas. Except U and Cs, all other metals were compared with the worldwide reported values of occupationally unexposed persons. Uranium concentrations show a wide variation ranging from 0.9 ± 0.05 to 449 ± 12 µg kg(-1). Although hair samples were collected from Balkan conflict zones, uranium isotopic measurement ((235)U/(238)U) shows a natural origin rather than DU.

  14. Surface characterization of uranium metal and uranium dioxide using X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Allen, G.C.; Trickle, I.R.; Tucker, P.M.

    1981-01-01

    X-ray photoelectron spectra of pure uranium metal and stoichiometric uranium dioxide have been obtained using an AEI ES300 spectrometer. Binding energy values for core and valence electrons have been determined using an internally calibrated energy scale and monochromatic Al Kα radiation. Satellite peaks observed accompanying certain principal core ionizations are discussed in relation to the mechanisms by which they arise. Confirmation is obtained that for stoichiometric UOsub(2.00) a single shake-up satellite is observed accompanying the U 4fsub(7/2,5/2) principal core lines, separated by 6.8 eV to higher binding energy. (author)

  15. Characterization of uranium isotopic abundances in depleted uranium metal assay standard 115

    International Nuclear Information System (INIS)

    Mathew, K.J.; Singleton, G.L.; Essex, R.M.; Hasozbek, A.; Orlowicz, G.; Soriano, M.

    2013-01-01

    Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. The certified 235 U/ 238 U 'major' isotope-amount ratio of 0.0020337 (12) in CRM 115 was determined using the total evaporation (TE) and the modified total evaporation (MTE) analytical techniques. In the MTE method, the total evaporation process is interrupted on a regular basis to allow correction of background from peak tailing, internal calibration of the secondary electron multiplier detector versus the Faraday cups, peak-centering, and ion source re-focusing. For the 'minor' 234 U/ 238 U and 236 U/ 238 U isotope-amount ratio measurements using MTE, precision and accuracy comparable to conventional analyses are achieved, without compromising the quality of the 235 U/ 238 U isotope-amount ratios. Characterized values of the 234 U/ 238 U and 236 U/ 238 U isotope-amount ratios in CRM 115 are 0.000007545 (10) and 0.000032213 (84), respectively. The 233 U/ 238 U isotope-amount ratio in CRM 115 is estimated to be -9 . The homogeneity of the CRM 115 materials is established through the absence of any statistically significant unit-to-unit variation in the uranium isotope-amount ratios. The measurements leading to the certification of uranium isotope-amount ratios are discussed. (author)

  16. Nonaqueous chlorination of uranium metal in tributyl phosphate

    International Nuclear Information System (INIS)

    Buchikhin, E.P.; Kuznetsov, A.Yu.; Shatalov, V.V.; Vidanov, V.L.; Chekmarev, A.M.

    2005-01-01

    Low-temperature (30-50 deg C) chlorination of uranium metal in the TBP-TCE-Cl 2 system (TCE = tetrachloroethylene) was studied. Dissolution of uranium in the dipolar aprotic solvent proceeds with formation of U(IV) compounds. The activation energy of this process is 31.24 kJ mol -1 , and relative reaction order with respect to Cl 2 is 2. The effect of TBP concentration on chlorination was examined. The chlorination rate sharply increases at a water content in the TBP-TCE system of 0.2- 0.6 vol % [ru

  17. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-01

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  18. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  19. Study and development of refractory coatings for metallic uranium fusion and evaporation

    International Nuclear Information System (INIS)

    Vasconcelos, Getulio de

    2004-01-01

    In melting process or evaporation of metallic uranium, the reaction with the crucible and the possible contamination of the molten metal should be avoided. This effect can be reduced using an inert and protective coating on the crucible walls. The selection of the coating should be based on the chemical inertia and the kinetic of the reaction products. By avoiding chemical reactions, the amount of impurities in the molten metal can be reduced, leading to an increased crucible lifetime. This work presents a comparative study among different crucible coatings used in the melting process of metallic uranium, at temperatures above its melting point. Samples of metallic uranium are melted in contact with different materials in a vacuum furnace. The reactions occur at a given temperature during a certain time interval; samples are then cooled down to room temperature. Finally, samples are characterized by optical and electronic microscopy, dispersive X-ray spectroscopy, surface roughness and X-ray diffraction. Samples preparation consists of polishing selected areas, and milling the reaction products originated from the corroded interfaces. The extent of the reactions is determined as a function of the temperature by optical microscopy and roughness analyses. The compositions of the reacted products are determined by Energy Dispersive Spectroscopy, and the phase changes by X-ray diffraction. The results indicate that alumina presented higher activation energy (39 kcal.mol -1 ) than magnesia (12 kcal.mol -1 ), otherwise, it is corroded faster. On the other hand, the alumina could be protected by a thick coating of titanium nitride, because no rection between titanium nitride and uranium was observed at temperatures near to 1700 K. After cooling to the room temperature, there is stress concentration between the graphite and the TiN layer, generating a compressive stress of 0,5 GPa. When uranium is deposited on the TiN, a tensile stress is generated in this new layer, which

  20. Recovery of uranium and accompanying metals from various types of industrial wastes

    International Nuclear Information System (INIS)

    Chajduk, E.; Danko, B.; Gajda, D.; Zakrzewska, G.; Harasimowicz, M.; Bieluszka, P.

    2014-01-01

    On January 28"t"h 2014 the Program of Polish Nuclear Energy was signed by Polish Government. According to this program Poland has to secure a constant supply of uranium for Polish NPPs in the future. Uranium in Poland occurs in Vistula Spit area in sandstone rocks and Podlasie Depression area in black dictyonema shales, which are low grade ores. Scarce uranium resources stimulate interest in its recovery from secondary resources as potential raw materials. Industrial wastes and by-products were considered as a source of uranium in this studies. Apart from uranium other valuable metals (e.g. vanadium, molybdenum or lanthanides) were recovered to improve the economy of the process. Three types of industrial wastes were examined: flotation tailings from the copper industry, phosphoric acid from the fertilizer industry and fracturing fluid from shale gas exploitation. Metals from flotation tailings were separated in two steps: 1) acidic leaching of the flotation waste using sulfuric acid solution and 2) separation of metals by ion-exchange chromatography. All the liquid samples were analyzed by ICP-MS method to determine the separation efficiency of the process. Uranium was recovered from phosphoric acid by high-pressure membrane filtration or by extraction/stripping integrated processes applying membrane modules Liquid-Cel® Extra-Flow (Celgard). Aqueous solutions after hydraulic fracturing are very diverse in terms of chemical composition, depending on borehole and fracturing technology applied. The content of various substances in backflow fluid depends on mechanical behavior and chemical composition of shale. Organic matter content in this type of waste did not exceed 1% usually, but the salinity is high. Initially, organic pollutants were removed and next the fluid was purified by combined various ion-exchangers. Individual metals were selectively eluted from ion-exchanger by combination of different eluents. The content of metals in samples was analyzed by ICP

  1. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sangeeta [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India); Sar, Pinaki, E-mail: sarpinaki@yahoo.com [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2011-02-15

    Uranium biomineralization by a metal-resistant Pseudomonas aeruginosa strain isolated from uranium mine waste was characterized for its potential in bioremediation. Uranium resistance, its cellular localization and chemical nature of uranium-bacteria interaction were elucidated. Survival and uranium biomineralization from mine water were investigated using microcosm experiments. The selected bacterium showed U resistance and accumulation (maximum of 275 mg U g{sup -1} cell dry wt.) following incubation in 100 mg U L{sup -1}, pH 4.0, for 6 h. Transmission electron microscopy and X-ray diffraction analyses revealed that bioaccumulated uranium was deposited within the cell envelope as needle shaped U-phosphate compounds that attain crystallinity only at pH 4.0. A synergistic involvement of deprotonated phosphate and carboxyl moieties in facilitating bioprecipitation of uranium was evident from FTIR analysis. Based on these findings we attribute the localized U sequestration by this bacterium as innocuous complex to its possible mechanism of uranium resistance. Microcosm data confirmed that the strain can remove soluble uranium (99%) and sequester it as U oxide and phosphate minerals while maintaining its viability. The study showed that indigenous bacteria from contaminated site that can survive uranium and other heavy metal toxicity and sequester soluble uranium as biominerals could play important role in uranium bioremediation.

  2. Novel ceramic coatings for containment of uranium and reactive molten metals

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Satpute, R.U.; Ramanathan, S.; Thiyagarajan, T.K.; Padmanabhan, P.V.A.; Kutty, T.R.G.

    2005-01-01

    Plasma sprayed aluminium oxide coatings, which are currently used for casting uranium metal are, however, not suitable for long duration handling of molten uranium and is also unstable under reducing conditions. Yttrium oxide and rare earth phosphates are suggested as promising materials for prevention of high temperature corrosion by molten metals. The present paper reports research efforts directed towards development of plasma sprayed coatings of yttria and lanthanum phosphate. Thermal spray grade powders of yttrium oxide and lanthanum phosphate, synthesized using locally available raw materials have been used as feedstock powders for plasma spray deposition. The coatings have been deposited using the indigenously developed 40 kW atmospheric plasma spray system and have been characterized. Results of preliminary experiments on compatibility of yttria and lanthanum phosphate with molten uranium are quite encouraging. (author)

  3. A study on the reduction of uranium oxide to uranium metal in LiCl molten salt

    International Nuclear Information System (INIS)

    Seo, J. S.; Hur, J. M.; Lee, W. K.; Hong, S. S.; Kang, D. S.; Park, S. W.

    2002-01-01

    Research for the analysis on a metallization process of uranium oxide in LiCl-Li molten salt was carried out. Effect of a concentration of Li 2 O on the metallization process was also studied. The new concept, electrochemical reduction of uranium oxide in LiCl-Li 2 O molten salt was proposed. The concept is based on the integrated process of metallization of UO 2 with simultaneous electrochemical reduction of Li 2 O which is recycled in a closed system. In a LiCl-Li molten salt system, U 3 O 8 whose conversion ratio to U turns out to be 97.1%, showed a better metallization characteristic than UO 2 . It is verified that electrochemically reduced Li is well deposited on the UO 2 powder cathode through a porous magnesia filter in LiCl-Li 2 O molten salt. In that process Li 2 O was from by the reduction process of UO 2 to U. This electrochemical reduction process showed good results to covert UO 2 to U

  4. Fragility, anharmonicity and anelasticity of silver borate glasses

    International Nuclear Information System (INIS)

    Carini, Giovanni; Carini, Giuseppe; D'Angelo, Giovanna; Tripodo, Gaspare; Bartolotta, Antonio; Marco, Gaetano Di

    2006-01-01

    The fragility and the anharmonicity of (Ag 2 O) x (B 2 O 3 ) 1-x borate glasses have been quantified by measuring the change in the specific heat capacity at the glass transition temperature T g and the room-temperature thermodynamic Grueneisen parameter. Increasing the silver oxide content above X = 0.10 leads to an increase of both the parameters, showing that a growing fragility of a glass-forming liquid is predictive of an increasing overall anharmonicity of its glassy state. The attenuation and velocity of ultrasonic waves of frequencies in the range of 10-70 MHz have also been measured in silver borate glasses as a function of temperature between 1.5 and 300 K. The experimental data reveal anelastic behaviours which are governed by (i) quantum-mechanical tunnelling below 20 K (ii) thermally activated relaxations between 20 and 200 K and (iii) vibrational anharmonicity at even higher temperatures. Evaluation of tunnelling (C) and relaxation (C * ) strengths shows that C is independent of the structural changes affecting the borate network with increasing metal oxide content and is at least one order of magnitude smaller than C * . The latter observation implies that only a small fraction of the locally mobile defects are subjected to tunnelling motions

  5. FUSED SALT METHOD FOR COATING URANIUM WITH A METAL

    Science.gov (United States)

    Eubank, L.D.

    1959-02-01

    A method is presented for coating uranium with a less active metal such as Cr, Ni, or Cu comprising immersing the U in a substantially anhydrous molten solution of a halide of these less active metals in a ternary chloride composition which consists of selected percentages of KCl, NaCl and another chloride such as LiCl or CaCl/sub 2/.

  6. Study on the surface reaction of uranium metal in hydrogen atmosphere with XPS

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1998-01-01

    The surface reactions of uranium metal in hydrogen atmosphere at 25 degree C and 200 degree C and effects of temperature and carbon monoxide to the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between H 2 and uranium metal at 25 degree C leads to the further oxidation of surface layer of metal due to traces of water vapor. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing exposure to H 2 in the initial stages. The U4f 7/2 binding energy of UH 3 has been found to be 378.6 eV. Investigation indicates carbon monoxide inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmosphere

  7. UN2−x layer formed on uranium metal by glow plasma nitriding

    International Nuclear Information System (INIS)

    Long, Zhong; Hu, Yin; Chen, Lin; Luo, Lizhu; Liu, Kezhao; Lai, Xinchun

    2015-01-01

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN 2−x . • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN 2−x . TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed

  8. Elution of Uranium and Transition Metals from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Horng-Bin; Kuo, Li-Jung; Wai, Chien M.; Miyamoto, Naomi; Joshi, Ruma; Wood, Jordana R.; Strivens, Jonathan E.; Janke, Christopher J.; Oyola, Yatsandra; Das, Sadananda; Mayes, Richard T.; Gill, Gary A.

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na2CO3-H2O2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. The Na2CO3-H2O2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater.

  9. Uranium Metal to Oxide Conversion by Air Oxidation –Process Development

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A

    2001-12-31

    Published technical information for the process of metal-to-oxide conversion of uranium components has been reviewed and summarized for the purpose of supporting critical decisions for new processes and facilities for the Y-12 National Security Complex. The science of uranium oxidation under low, intermediate, and high temperature conditions is reviewed. A process and system concept is outlined and process parameters identified for uranium oxide production rates. Recommendations for additional investigations to support a conceptual design of a new facility are outlined.

  10. Contribution to the study of nuclear fuel materials with a metallic uranium base

    International Nuclear Information System (INIS)

    Englander, M.

    1957-11-01

    In a power reactor destined to supply industrially recoverable thermal energy, the most economical source of heat still consists of natural metallic uranium. However, the nuclear fuel material, most often employed in the form of rods of 20 to 40 mm diameter, is subjected to a series of stresses which lead to irreversible distortions usually incompatible with the substructure of the reactor. As a result the fuel material must possess at the outset a certain number of qualities which must be determined. Investigations have therefore been carried out, first on the technological characters peculiar to each of the three allotropic phases of pure uranium metal, and on their interactions on the stabilisation of the material which consists of either cast uranium or uranium pile-treated in the γ phase. (author) [fr

  11. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste.

    Science.gov (United States)

    Choudhary, Sangeeta; Sar, Pinaki

    2011-02-15

    Uranium biomineralization by a metal-resistant Pseudomonas aeruginosa strain isolated from uranium mine waste was characterized for its potential in bioremediation. Uranium resistance, its cellular localization and chemical nature of uranium-bacteria interaction were elucidated. Survival and uranium biomineralization from mine water were investigated using microcosm experiments. The selected bacterium showed U resistance and accumulation (maximum of 275 mg U g(-1)cell dry wt.) following incubation in 100 mg U L(-1), pH 4.0, for 6 h. Transmission electron microscopy and X-ray diffraction analyses revealed that bioaccumulated uranium was deposited within the cell envelope as needle shaped U-phosphate compounds that attain crystallinity only at pH 4.0. A synergistic involvement of deprotonated phosphate and carboxyl moieties in facilitating bioprecipitation of uranium was evident from FTIR analysis. Based on these findings we attribute the localized U sequestration by this bacterium as innocuous complex to its possible mechanism of uranium resistance. Microcosm data confirmed that the strain can remove soluble uranium (99%) and sequester it as U oxide and phosphate minerals while maintaining its viability. The study showed that indigenous bacteria from contaminated site that can survive uranium and other heavy metal toxicity and sequester soluble uranium as biominerals could play important role in uranium bioremediation. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. A new method for alkaline dissolution of uranium metal foil

    International Nuclear Information System (INIS)

    Mondino, A.V.; Wilkinson, M.V.; Manzini, A.C.

    2001-01-01

    In order to develop a production process of 99 Mo by fission of low-enriched uranium, the first purification step, which consists of dissolution of a uranium metal foil target, was studied. It was found that alkaline NaClO gave good results, reaching the dissolution of up to 300 μm of uranium foil. The different conditions for the dissolution were studied and the optimum ones were found. The influence of NaClO and NaOH concentration, temperature, dissolving solution volume per unit of surface and dissolution time were investigated. During this step, a gas identified as H 2 , was generated, and a precipitate characterized as Na 2 U 2 O 7 was observed. A stoichiometric reaction for this uranium dissolution is proposed. (author)

  13. Crystallization of Reduced Strontium and Barium Niobate Perovskites from Borate Fluxes.

    NARCIS (Netherlands)

    Hessen, B.; Sunshine, S.A.; Siegrist, T.; Jimenez, R.

    1991-01-01

    Single crystals of three AxNbO3 (A = Sr, Ba) reduced niobate cubic perovskites have been obtained by recrystallization of reduced ternary ceramic precursors from borate fluxes under high-vacuum. Product formation could be influenced by variation of the alkaline-earth metal oxide content of the flux,

  14. Investigations on the passivity of iron in borate and phosphate buffers, pH 8.4

    International Nuclear Information System (INIS)

    Sieber, I.V.; Hildebrand, H.; Virtanen, S.; Schmuki, P.

    2006-01-01

    In the present work surface analytical experiments (XPS and AES) on the passive film on iron formed in borate and phosphate buffers (pH 8.4) have been carried out. In the passive film formed in phosphate buffer a significant amount of phosphates is found in the outer part of the film. Boron species are not significantly incorporated in the passive film formed in borate buffer. The mechanism of the reduction of the passive film depends strongly on the electrolyte composition. In borate buffer, cathodic polarization leads to reductive dissolution of the passive film whereas in phosphate buffer the passive film is converted into metallic iron without dissolution but via laterally inhomogeneously formation of an intermediate Fe(II) phosphate layer

  15. Cell-metal interactions: A comparison of natural uranium to other common metals in renal cells and bone osteoblasts

    International Nuclear Information System (INIS)

    Milgram, S.; Carriere, M.; Thiebault, C.; Berger, P.; Khodja, H.; Gouget, B.

    2007-01-01

    Uranium acute intoxication has been documented to induce nephrotoxicity. Kidneys are the main target organs after short term exposures to high concentrations of the toxic, while chronic exposures lead to its accumulation in the skeleton. In this paper, chemical toxicity of uranium is investigated for rat osteoblastic bone cells and compared to results previously obtained on renal cells. We show that bone cells are less sensitive to uranium than renal cells. The influence of the chemical form on U cytotoxicity is demonstrated. For both cell types, a comparison of uranium toxicity with other metals or metalloids toxicities (Mn, Ni, Co, Cu, Zn, Se and Cd) permits classification of Cd, Zn, Se IV and Cu as the most toxic and Ni, Se VI , Mn and U as the least toxic. Chemical toxicity of natural uranium proves to be far less than that of cadmium. To try to explain the differences in sensitivities observed between metals and different cell types, cellular accumulations in cell monolayers are quantified by inductively coupled plasma-mass spectroscopy (ICP-MS), function of time or function of dose: lethal doses which simulate acute intoxications and sub-lethal doses which are more realistic with regard to environmentally metals concentrations. In addition to being more resistant, bone cells accumulated much more uranium than did renal cells. Moreover, for both cell models, Mn, U-citrate and U-bicarbonate are strongly accumulated whereas Cu, Zn and Ni are weakly accumulated. On the other hand, a strong difference in Cd behaviour between the two cell types is shown: whereas Cd is very weakly accumulated in bone cells, it is very strongly accumulated in renal cells. Finally, elemental distribution of the toxics is determined on a cellular scale using nuclear microprobe analysis. For both renal and osteoblastic cells, uranium was accumulated in as intracellular precipitates similar to those observed previously by SEM/EDS

  16. Cell-metal interactions: A comparison of natural uranium to other common metals in renal cells and bone osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Milgram, S. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Carriere, M. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Thiebault, C. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Berger, P. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Khodja, H. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Gouget, B. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France)]. E-mail: barbara.gouget@cea.fr

    2007-07-15

    Uranium acute intoxication has been documented to induce nephrotoxicity. Kidneys are the main target organs after short term exposures to high concentrations of the toxic, while chronic exposures lead to its accumulation in the skeleton. In this paper, chemical toxicity of uranium is investigated for rat osteoblastic bone cells and compared to results previously obtained on renal cells. We show that bone cells are less sensitive to uranium than renal cells. The influence of the chemical form on U cytotoxicity is demonstrated. For both cell types, a comparison of uranium toxicity with other metals or metalloids toxicities (Mn, Ni, Co, Cu, Zn, Se and Cd) permits classification of Cd, Zn, Se{sup IV} and Cu as the most toxic and Ni, Se{sup VI}, Mn and U as the least toxic. Chemical toxicity of natural uranium proves to be far less than that of cadmium. To try to explain the differences in sensitivities observed between metals and different cell types, cellular accumulations in cell monolayers are quantified by inductively coupled plasma-mass spectroscopy (ICP-MS), function of time or function of dose: lethal doses which simulate acute intoxications and sub-lethal doses which are more realistic with regard to environmentally metals concentrations. In addition to being more resistant, bone cells accumulated much more uranium than did renal cells. Moreover, for both cell models, Mn, U-citrate and U-bicarbonate are strongly accumulated whereas Cu, Zn and Ni are weakly accumulated. On the other hand, a strong difference in Cd behaviour between the two cell types is shown: whereas Cd is very weakly accumulated in bone cells, it is very strongly accumulated in renal cells. Finally, elemental distribution of the toxics is determined on a cellular scale using nuclear microprobe analysis. For both renal and osteoblastic cells, uranium was accumulated in as intracellular precipitates similar to those observed previously by SEM/EDS.

  17. Development of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.

    1997-01-01

    The Reduced Enrichment Research and Test Reactor Program has continued its effort in the past 3 yr to develop use of low-enriched uranium (LEU) to produce the fission product 99 Mo. This work comprises both target and chemical processing development and demonstration. Two major target systems are now being used to produce 99 Mo with highly enriched uranium-one employing research reactor fuel technology (either uranium-aluminum alloy or uranium aluminide-aluminum dispersion) and the other using a thin deposit of UO 2 on the inside of a stainless steel (SST) tube. This paper summarizes progress in irradiation testing of targets based on LEU uranium metal foils. Several targets of this type have been irradiated in the Indonesian RSG-GAS reactor operating at 22.5 MW

  18. Study on the dimensional instability of metallic uranium subject to thermal alternation

    International Nuclear Information System (INIS)

    Gentile, E.F.

    1976-01-01

    Methalographic properties of metallic uranium submitted to a thermal cycle are studied. Microstructures heat treatment and methods utilized are presented. Dimensional instability of uranium is the main subject of the study and it is seen that it is strongly reduced in the presence of molybdenum [pt

  19. Effect of alkali content on AC conductivity of borate glasses containing two transition metals

    International Nuclear Information System (INIS)

    Kashif, I.; Rahman, Samy A.; Soliman, A.A.; Ibrahim, E.M.; Abdel-Khalek, E.K.; Mostafa, A.G.; Sanad, A.M.

    2009-01-01

    Sodium borate glasses containing iron and molybdenum ions with the total concentration of transition ions constant and gradual substitution of sodium oxide (network modifier) by borate oxide (network former) was prepared. Densities, molar volume, DC and AC conductivities are measured. The trends of these properties are attributed to changes in the glass network structure. Their DC and AC conductivity increased with increasing NaO concentration. The increase of AC conductivity of sodium borate glasses is attributed to the chemical composition and the hopping mechanism of conduction. Measurements of the dielectric constant (ε) and dielectric loss (tan δ) as a function of frequency (50 Hz-100 kHz) and temperature (RT-600 K) indicate that the increase in dielectric constant and loss (ε and tan δ) values with increasing sodium ion content could be attributed to the assumption that Fe and Mo ions tend to assume network-forming position in the glass compositions studied. The variation of the value of frequency exponent s for all glass samples as the function of temperature at a definite frequency indicates that the value of s decreases with increasing the temperature which agrees with the correlated barrier-hopping (CBH) model.

  20. Study on the surface oxidation resistance of uranium metal in the atmosphere of carbon monoxide

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1999-01-01

    The surface reactions of different layers on uranium metal with carbon monoxide at 25, 80 and 200 degree C are studied by X-ray photoelectron spectroscopy (XPS). The experimental results show that the carbon monoxide is adsorbed on the surface oxide layer of uranium and interacted each other. The content of oxygen in the surface oxide and O/U ratio are decreased with increasing the exposure of carbon monoxide to the surface layer. The effect of reduction on the metal surface is more obviously with a higher temperature and increasing of layer thickness. The investigation indicates the uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide

  1. Determination of uranium and plutonium in metal conversion products from electrolytic reduction process

    International Nuclear Information System (INIS)

    Lee, Chang Heon; Suh, Moo Yul; Joe, Kih Soo; Sohn, Se Chul; Jee, Kwang Young; Kim, Won Ho

    2005-01-01

    Chemical characterization of process materials is required for the optimization of an electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. A study on the determination of fissile materials in the uranium metal products containing corrosion products, fission products and residual process materials has been performed by controlled-potential coulometric titration which is well known in the field of nuclear science and technology. Interference of Fe, Ni, Cr and Mg (corrosion products), Nd (fission product) and LiCl molten salt (residual process material) on the determination of uranium and plutonium, and the necessity of plutonium separation prior to the titration are discussed in detail. Under the analytical condition established already, their recovery yields are evaluated along with analytical reliability

  2. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells.

    Science.gov (United States)

    Yamauchi, Noboru; Gosho, Tadashi; Asatuma, Satoru; Toyooka, Kiminori; Fujiwara, Toru; Matsuoka, Ken

    2013-01-01

    In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species.

  3. Computational simulation studies of the reduction process of UF4 to metallic uranium

    International Nuclear Information System (INIS)

    Borges, Wesden de Almeida

    2011-01-01

    The production of metallic uranium is essential for production of fuel elements for using in nuclear reactors manufacturing of radioisotopes and radiopharmaceuticals. In IPEN, metallic uranium is produced by magnesiothermical reduction of UF 4 . This reaction is performed in a closed graphite crucible inserted in a sealed metal reactor and no contact with the outside environment. The set is gradually heated in an oven pit, until it reaches the ignition temperature of the reaction (between 600-650 degree C). The modeling of the heating profile of the system can be made using simulation programs by finite element method. Through the thermal profiles in the load, we can have a notion of heating period required for the reaction to occur, allowing the identification of the same group in a greater or smaller yield in metallic uranium production. Thermal properties of UF 4 are estimated, obtaining thermal conductivity and heat capacity using the Flash Laser Method, and for the load UF 4 + Mg, either. The results are compared to laboratory tests to simulate the primary production process. (author)

  4. Mo{sub 2}B{sub 4}O{sub 9} - connecting borate and metal-cluster chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Martin K.; Huppertz, Hubert [Institut fuer Allgemeine, Anorganische und Theoretische Chemie, Universitaet Innsbruck (Austria); Janka, Oliver; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Benndorf, Christopher [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Institut fuer Physikalische Chemie, Universitaet Muenster (Germany); Institut fuer Mineralogie, Kristallographie und Materialwissenschaften, Universitaet Leipzig (Germany); Oliveira, Marcos de Jr. [Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos (Brazil); Eckert, Hellmut [Institut fuer Physikalische Chemie, Universitaet Muenster (Germany); Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos (Brazil); Pielnhofer, Florian; Tragl, Amadeus-Samuel [Institut fuer Anorganische Chemie, Universitaet Regensburg (Germany); Weihrich, Richard [Institut fuer Materials Resource Management, Universitaet Augsburg (Germany); Joachim, Bastian [Institut fuer Mineralogie und Petrographie, Universitaet Innsbruck (Austria); Johrendt, Dirk [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2017-06-01

    We report on the first thoroughly characterized molybdenum borate, which was synthesized in a high-pressure/high-temperature experiment at 12.3 GPa/1300 C using a Walker-type multianvil apparatus. Mo{sub 2}B{sub 4}O{sub 9} incorporates tetrahedral molybdenum clusters into an anionic borate crystal structure - a structural motif that has never been observed before in the wide field of borate crystal chemistry. The six bonding molecular orbitals of the [Mo{sub 4}] tetrahedron are completely filled with 12 electrons, which are fully delocalized over the four molybdenum atoms. This finding is in agreement with the results of the magnetic measurements, which confirmed the diamagnetic character of Mo{sub 2}B{sub 4}O{sub 9}. The two four-coordinated boron sites can be differentiated in the {sup 11}B MAS-NMR spectrum because of the strongly different degrees of local distortions. Experimentally obtained IR and Raman bands were assigned to vibrational modes based on DFT calculations. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Using geoelectrochemical technique to extract uranium and other metals

    International Nuclear Information System (INIS)

    Gao Yulong

    1990-10-01

    The geoelectrochemical extraction technique, which is a direct deep exploring method, is one of the geoelectrochemical exploring methods. It is developed recently to explore basic metals, precious metals, rare metals and some nonmetal mineral products. It is also a combination of electrical surveying and geochemical surveying. This method is more useful in the seeking of gold ore deposit. The principle and technique of this method and the results in seeking gold, uranium, lead, nickel and tin ore deposits are introduced. The equipment and instruments used in this method are also given

  6. Transformations of highly enriched uranium into metal or oxide; Etudes des procedes de transformation des composes d'uranium a fort enrichissement isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Nollet, P; Sarrat, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The enriched uranium workshops in Cadarache have a double purpose on the one hand to convert uranium hexafluoride into metal or oxide, and on the other hand to recover the uranium contained in scrap materials produced in the different metallurgical transformations. The principles that have been adopted for the design and safety of these workshops are reported. The nuclear safety is based on the geometrical limitations of the processing vessels. To establish the processes and the technology of these workshops, many studies have been made since 1960, some of which have led to original achievements. The uranium hexafluoride of high isotopic enrichment is converted either by injection of the gas into ammonia or by an original process of direct hydrogen reduction to uranium tetrafluoride. The uranium contained m uranium-zirconium metal scrap can be recovered by combustion with hydrogen chloride followed treatment of the uranium chloride by fluorine in order to obtain the uranium in the hexafluoride state. Recovery of the uranium contained m various scrap materials is obtained by a conventional refining process combustion of metallic scrap, nitric acid dissolution of the oxide, solvent purification by tributyl phosphate, ammonium diuranate precipitation, calcining, reduction and hydro fluorination into uranium tetrafluoride, bomb reduction by calcium and slag treatment. Two separate workshops operate along these lines one takes care of the uranium with an isotopic enrichment of up to 3 p. 100, the other handles the high enrichments. The handling of each step of this process, bearing in mind the necessity for nuclear safety, has raised some special technological problems and has led to the conception of new apparatus, in particular the roasting furnace for metal turnings, the nitric acid dissolution unit, the continuous precipitator and ever safe filter and dryer for ammonium diuranate, the reduction and hydro fluorination furnace and the slag recovery apparatus These are

  7. Thermal Conductivity of Metallic Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Hin, Celine

    2018-03-10

    used in the original fitting. Moreover, as fuels burn up in the reactor and fission products are built up, thermal conductivity is also significantly changed [3]. Unfortunately, fundamental understanding of the effect of fission products is also currently lacking. In this project, we probe thermal conductivity of metallic fuels with ab initio calculations, a theoretical tool with the potential to yield better accuracy and predictive power than empirical fitting. This work will both complement experimental data by determining thermal conductivity in wider composition and temperature ranges than is available experimentally, and also develop mechanistic understanding to guide better design of metallic fuels in the future. So far, we focused on α-U perfect crystal, the ground-state phase of U metal. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Both methods were complementary and very helpful to understand the physics behind the thermal conductivity in metallic uranium and other materials with similar characteristics. In Section I, the combined model developed at UWM is explained. In Section II, the ab-initio method developed at VT is described along with the uranium pseudo-potential and its validation. Section III is devoted to the work done by Jianguo Yu at INL. Finally, we will present the performance of the project in terms of milestones, publications, and presentations.

  8. Separation of uranium and other metals from commercial phosphoric acid by ion-exchange and voltammetric determination of uranium

    International Nuclear Information System (INIS)

    Ferreira, J.B.C.; Carvalho, F.M.S. de; Abrao, A.

    1985-11-01

    The separation of metals from crude commercial phosphoric acid is achieved by simple dilution and percolation through a strong cationic ion exchanger. Uranium, calcium, magnesium, manganese, iron and aluminum are quantitatively fixed by the exchanger and can be detected or analysed after their complete elution with 6 M HCI. Titanium and zirconium are only partially retained. Specially for its separation and determination uranium is retained selectively by the resin from the phosphoric acid-EDTA solution, the column is washed with water and then eluted with hydrochloric acid. Uranium is analyzed by voltametry with the hanging drop mercury electrode. (Author) [pt

  9. Alkaline-earth metal bicarbonates as lixiviants for uranium (VI) under CO2 sparging

    International Nuclear Information System (INIS)

    Vaziri, F.; White, D.A.

    1989-01-01

    In recent years it has become apparent that uranium is significantly soluble in solutions of alkaline-earth metal bicarbonates -particularly those of magnesium and calcium. A system has been proposed by previous authors in which milled uranium ore is leached in a medium to which an oxidizing agent, the metal hydroxide and CO 2 are added. The alkaline-earth metal hydroxides are much more readily soluble in this medium than the corresponding carbonates. Magnesium and calcium bicarbonates are quite soluble in aqueous media at neutral or nearly neutral pH. The pH determines the relative quantities of bicarbonate and carbonate ions in the system. Even if the pH is quite low, small amounts of carbonate ion are present that can complex with the uranyl ion to produce anionic uranyl complexes. Both UO 2 (CO 3 ) 2 2- and UO 2 (CO 3 ) 3 4- complexes are known and both have a very high stability constant. Despite the appearance of several patents on the use of alkaline-earth metal ions in carbonate media as uranium lixiviants, little theoretical or experimental work on the system has been published. In view of the potential of these systems for cheap, large-scale dissolution of uranium the present contribution will discuss the theory behind this method and provide some experimental data to verify the theoretical treatment. (author)

  10. UN{sub 2−x} layer formed on uranium metal by glow plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Long, Zhong [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Hu, Yin [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Chen, Lin [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Luo, Lizhu [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Liu, Kezhao, E-mail: liukz@hotmail.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Lai, Xinchun, E-mail: lai319@yahoo.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China)

    2015-01-25

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN{sub 2−x}. • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN{sub 2−x}. TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed.

  11. Selective extraction of metals from acidic uranium(VI) solutions using neo-tridecano-hydroxamic acid

    International Nuclear Information System (INIS)

    Bardoncelli, F.; Grossi, G.

    1975-01-01

    According to this invention neo-alkyl-hydroxamic acids are employed as ion-exchanging agents in processes for liquid-liquid extraction with the aim of separating, purifying dissolved metals and of converting a metal salt solution into a solution of a salt of the same metal but with different anion. In particular it is an objective of this invention to provide a method whereby a molecular pure uranium solution is obtained by selective extraction from a uranium solution delivered by irradiated fuel reprocessing plants and containing plutonium, fission products and other unwanted metals, in which method neo-tridecane-hydroxamic acid is employed as ion exchanger. (Official Gazette)

  12. The Synthesis and Physical Properties of Magnesium Borate Mineral of Admontite Synthesized from Sodium Borates

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun Kipcak

    2014-01-01

    Full Text Available Magnesium borates are significant compounds due to their advanced mechanical and thermal durability properties. This group of minerals can be used in ceramic industry, in detergent industry, and as neutron shielding material, phosphor of thermoluminescence by dint of their extraordinary specialties. In the present study, the synthesis of magnesium borate via hydrothermal method from sodium borates and physical properties of synthesized magnesium borate minerals were investigated. The characterization of the products was carried out by X-ray diffraction (XRD, Fourier transform infrared (FT-IR and Raman spectroscopies, and differential thermal analysis and thermal gravimetry (DTA/TG. The surface morphology was examined by scanning electron microscopy (SEM. B2O3 content was determined through titration. The electrical resistivity/conductivity properties of products were measured by Picoammeter Voltage Source. UV-vis spectrometer was used to investigate optical absorption characteristics of synthesized minerals in the range 200–1000 nm at room temperature. XRD results identified the synthesized borate minerals as admontite [MgO(B2O33·7(H2O] with code number “01-076-0540” and mcallisterite [Mg2(B6O7(OH62·9(H2O] with code number “01-070-1902.” The FT-IR and Raman spectra of the obtained samples were similar with characteristic magnesium borate bands. The investigation of the SEM images remarked that both nano- and microscale minerals were produced. The reaction yields were between 75.1 and 98.7%.

  13. Process for recovering uranium and other base metals

    International Nuclear Information System (INIS)

    Jan, R. J-J.

    1979-01-01

    Uranium and other base metals are leached from their ores with aqueous solutions containing bicarbonate ions that have been generated or reconstituted by converting other non-bicarbonate anions into bicarbonate ions. The conversion is most conveniently effected by contacting solutions containing SO 4 - and Cl - ions with a basic anion exchange resin so that the SO 4 - and Cl - ions are converted into or exhanged for HCO 3 - ions. CO 2 may be dissolved in the solution so it is present during the exhange. The resin is preferably in bicarbonate form prior to contact and CO 2 partial pressure is adjusted so that the resin is not fouled by depositing metal precipitates. In-situ uranium mining is conducted by circulating such solutions through the ore deposit. Oxidizing agents are included in the injected lixiviant. The leaching strength of the circulating bicarbonate lixiviant is maintained by converting the anions generated during leaching or above-ground recovery processes into HCO 3 - ions. The resin may conveniently be eluted and reformed intermittently

  14. Process for recovering uranium and other base metals

    International Nuclear Information System (INIS)

    Jan, R.J.

    1981-01-01

    Uranium and other base metals are leached from their ores with aqueous solutions containing bicarbonate ions that have been generated or reconstituted by converting other non-bicarbonate anions into bicarbonate ions. The conversion is most conveniently effected by contacting solutions containing SO 4 -- and C1 - ions with a basic anion exchange resin so that the SO 4 -- and Cl - ions are converted into or exchanged for HCO 3 - ions. CO 2 may be dissolved in the solution so it is present during the exchange. The resin is preferably in bicarbonate form prior to contact and CO 2 partial pressure is adjusted so that the resin is not fouled by depositing metal precipitates. In-situ uranium mining is conducted by circulating such solutions through the ore deposit. Oxidizing agents are included in the injected lixiviant. The leaching strength of the circulating bicarbonate lixiviant is maintained by converting the anions generated during leaching or above-ground recovery processes into HCO 3 - ions. The resin may conveniently be eluted and performed intermittently. (author)

  15. Process for recovering uranium and other base metals

    International Nuclear Information System (INIS)

    Jan, R.J.

    1984-01-01

    Uranium and other base metals are leached from their ores with aqueous solutions containing bicarbonate ions that have been generated or reconstituted by converting other non-bicarbonate anions into bicarbonate ions. The conversion is most conveniently effected by contacting solutions containing SO 4 2- and Cl - ions with a basic anion exchange resin so that the SO 4 2- and Cl - ions are converted into or exchanged for HCO 3 - ions. CO 2 may be dissolved in the solution so it is present during the exchange. The resin is preferably in bicarbonate form prior to contact and CO 2 partial pressure is adjusted so that the resin is not fouled by depositing metal precipitates. In-situ uranium mining is conducted by circulating such solutions through the ore deposit. Oxidizing agents are included in the injected lixiviant. The leaching strength of the circulating bicarbonate lixiviant is maintained by converting the anions generated during leaching or above-ground recovery processes into HCO 3 - ions. The resin may conveniently be eluted and reformed intermittently

  16. Surface area and chemical reactivity characteristics of uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m 2 /g. The reactivity of the products in Ar-9%O 2 and Ar-20%O 2 were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal

  17. Reoxidation of uranium metal immersed in a Li{sub 2}O-LiCl molten salt after electrolytic reduction of uranium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Jeon, Min Ku [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Jeong [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Sang Kwon [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Sung-Jai [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-03-15

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO{sub 2}) in a Li{sub 2}O–LiCl salt can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li{sub 2}O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li{sub 2}O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal. - Highlights: • Uranium (U) metal can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. • The degree of reoxidation increases with the Li{sub 2}O concentration in LiCl. • The presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  18. Biosorption of heavy metals and uranium from dilute solutions

    International Nuclear Information System (INIS)

    Schneider, I.A.H.; Misra, M.; Smith, R.W.

    1995-01-01

    Eichhornia crassipes approaches being a scourge in many parts of the world, choking waterways and hindering transport upon them. At the same time it is known to readily abstract heavy metal ions from water and, thus, aids in the removal of heavy metals found in such waters. This paper considers the possibility of using specific parts of the plant as an inexpensive adsorbent for the removal of heavy metals from contaminated chemical and mining industry waste waters. In particular the root of the plant was found to be an excellent accumulator of heavy metal ions including uranium from solution. It is also suggested that dried roots of the plant might be placed in simple bags and used in a very low cost metal ion removal system

  19. Synthesis of graphite intercalation compound of group VI metals and uranium hexafluorides

    International Nuclear Information System (INIS)

    Fukui, Toshihiro; Hagiwara, Rika; Ema, Keiko; Ito, Yasuhiko

    1993-01-01

    Systematic investigations were made on the synthesis of graphite intercalation compounds of group VI transition metals (W and Mo) and uranium hexafluorides. The reactions were performed by interacting liquid or gaseous metal hexafluorides with or without elemental fluorine at ambient temperature. The degree of intercalation of these metal fluorides depends on the formation enthalpy of fluorometallate anion from the original metal hexafluoride, as has been found for other intercalation reactions of metal fluorides. (author)

  20. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour

    International Nuclear Information System (INIS)

    Scott, T.B.; Petherbridge, J.R.; Harker, N.J.; Ball, R.J.; Heard, P.J.; Glascott, J.; Allen, G.C.

    2011-01-01

    Highlights: → High resolution imagery (FIB, SEM and SIMS) of carbide inclusions in uranium metal. → Real time images following the reaction of the carbide inclusions with water vapour. → Shown preferential consumption of carbide over that of the bulk metal. → Quantity of impurities in the metal therefore seriously influence reaction rate. → Metal purity must be considered when storing uranium in air or moist conditions. - Abstract: The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO 3 .xH 2 O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets.

  1. Synthesis and characterization of a uranium(III) complex containing a redox-active 2,2'-bipyridine ligand.

    Science.gov (United States)

    Kraft, Steven J; Fanwick, Phillip E; Bart, Suzanne C

    2010-02-01

    Hydrotris(3,5-dimethylpyrazolyl)borate uranium(III) diiodide derivatives have been prepared as an entry into low-valent uranium chemistry with these ligands. The bis(tetrahydrofuran) adduct, Tp*UI(2)(THF)(2) (1) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate), was synthesized by addition of sodium hydrotris(3,5-dimethylpyrazolyl)borate (NaTp*) to an equivalent of UI(3)(THF)(4). Addition of 2,2'-bipyridine (2,2'-bpy) to 1 displaced the THF molecules producing Tp*UI(2)(2,2'-bpy) (2). Both derivatives were characterized by (1)H NMR and IR spectroscopies, magnetic measurements, and X-ray crystallography. Reduction of both species was attempted with two equivalents of potassium graphite. The reduction of 1 did not result in a clean product, but rather decomposition and ligand redistribution. However, compound 2 was reduced to form Tp*(2)U(2,2'-bpy), 3, which is composed of a uranium(III) ion with a radical monoanionic bipyridine ligand. This was confirmed by X-ray crystallography, which revealed distortions in the bond lengths of the bipyridine consistent with reduction. Further support was obtained by (1)H NMR spectroscopy, which showed resonances shifted far upfield, consistent with radical character on the 2,2'-bipyridine ligand. Future studies will explore the reactivity of this compound as well as the consequences for redox-activity in the bipyridine ligand.

  2. Migration of heavy metals in soils in a uranium mining area

    International Nuclear Information System (INIS)

    Hu Ruixia; Gao Bai; Hu Baoqun; Feng Jiguang

    2009-01-01

    Contents of several heavy metals (Zn,Ni,Cu,Cd,Pb) in soil samples collected from different depths of the soil sections in a uranium mining area were analyzed, and vertical migration dis-ciplines of heavy metals were obtained. The results show that the concents of heavy metals in vertical direction decrease as the soil increases in thickness and there is a trend of facies-cumulation for the heavy metals. The accumulation status of each heavy metal in soils differs, which is dependent on the content and migration velocity of the heavy metal itself, the local natural environment about the soil, etc. (authors)

  3. Sorption of uranium by clinoptilolite modified by a some metals hydroxides

    International Nuclear Information System (INIS)

    Plotnikov, V.I.; Medvedeva, Z.V.; Zhabykbaev, G.T.

    2005-01-01

    In the present report the sorption character of uranium (IV) in the static conditions on the thin layer sorbents with application of the clinoptilolite of the Chankan deposit of the Republic of Kazakhstan is shown. A wide circle of metal hydroxides - in both the individual form and in the their mixture - is used. It is shown that the most sorptive capacity against the uranium (IV) has the modified clinoptilolite of MnO 2

  4. Exoelectron emission from magnesium borate glass ceramics

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Yanagisawa, Hideo; Nakamichi, Hiroshi; Kikuchi, Riichi; Kawanishi, Masaharu.

    1986-01-01

    Thermally stimulated exoelectron emission (TSEE) of a magnesium borate glass ceramics was investigated for its application to dosemetric use. It has been found that the TSEE glow patterns of the magnesium borate glass ceramics as well as a Li 2 B 4 O 7 glass ceramics depend on the kind of the radiation used and that the heat resistance of the magnesium borate glass ceramics is higher than that of the Li 2 B 4 O 7 glass ceramics. Therefore, the TSEE glow patterns of the magnesium borate glass ceramics indicate a possibility to be used as the dose measurement for each kind of radiation in the mixed radiation field. (author)

  5. Impurities determination of uranium metal flame spectrophotometry and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Rukihati.

    1978-01-01

    The atomic absorption flame spectrophotometry has been applied to the determination of chromium, copper, iron, lead, manganese and nickel in the metal of uranium. The first step to be done is to dissolve the uranium sample in nitric acid and then the uranium is extracted by a tributylphosphate-carbon tetrachloride solution. The aqueous phase which contains the chromium, copper, iron, lead, manganese and nickel is aspirated into an airacetylene flame. The results of this method are compared with the results of emission spectrographic method. It is found that this technique is competative to other methods in the sense that it is quite fast and accurate. (author)

  6. The crystallographic structure of the air-grown oxide on depleted uranium metal

    International Nuclear Information System (INIS)

    Jones, Christopher P.; Petherbridge, James R.; Davis, Sean A.; Jones, Jonathon A.; Scott, Thomas B.

    2016-01-01

    Highlights: • Oxidation of depleted uranium coupons under ambient conditions and 150 °C. • Oxide characterised using SEM, TEM and electron backscatter diffraction analysis, • Layer comprises of UO 2 crystallites 12 nm in diameter. • Preferred [110] growth direction normal to the surface of the metal. • Oxide growth direction is independent of the underlying crystal orientation. - Abstract: Oxide formation on depleted uranium metal was investigated using a combination of electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) characterisation. Diffraction analysis of the oxide revealed an FCC crystalline formation of UO 2 crystallites whilst TEM data indicated an average grain size of 12 nm with a standard deviation of 3.8 nm. EBSD analysis revealed a preferential texture of [110] normal to the surface of the metal. This data implied that lattice matching between the oxide and the underlying metal did not occur, therefore, the observed preferential growth direction is independent of the underlying crystal orientation.

  7. Surface area and chemical reactivity characteristics of uranium metal corrosion products.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-02-17

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m{sup 2}/g. The reactivity of the products in Ar-9%O{sub 2} and Ar-20%O{sub 2} were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal.

  8. Behavior of metallic uranium-fissium fuel in TREAT transient overpower tests

    International Nuclear Information System (INIS)

    Bauer, T.H.; Klickman, A.E.; Lo, R.K.; Rhodes, E.A.; Robinson, W.R.; Stanford, G.S.; Wright, A.E.

    1986-01-01

    TREAT tests M2, M3, and M4 were performed to obtain information on two key behavior characteristics of fuel under transient overpower accident conditions in metal-fueled fast reactors: the prefailure axial self-extrusion (elongation beyond thermal expansion) of fuel within intact cladding and the margin to cladding breach. Uranium-5 wt% fissium Experimental Breeder Reactor-II driver fuel pins were used for the tests since they were available as suitable stand-ins for the uranium-plutonium-zirconium ternary fuel, which is the reference fuel of the integral fast reactor (IFR) concept. The ternary fuel will be used in subsequent TREAT tests. Preliminary results from tests M2 and M3 were presented earlier. The present report includes significant advances in analysis as well as additional data from test M4. Test results and analysis have led to the development and validation of pin cladding failure and fuel extrusion models for metallic fuel, within reasonable uncertainties for the uranium-fissium alloy. Concepts involved are straightforward and readily extendable to ternary alloys and behavior in full-size reactors

  9. XPS study on the surface reaction of uranium metal in H2 and H2-CO atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1996-04-01

    The surface reactions of uranium metal in H 2 and H 2 -CO atmospheres and the effects of temperature and CO on the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between commercial H 2 and uranium metal at 25 degree C leads mainly to the further oxidation of surface layer of metal due to traces of water vapour. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing the exposure of H 2 . Investigation indicates CO inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmospheres. (13 refs., 10 figs.)

  10. Borated stainless steel joining technology. Final report

    International Nuclear Information System (INIS)

    Smith, R.J.

    1994-12-01

    EPRI had continued investigating the application of borated stainless steel products within the US commercial nuclear power industry through participation in a wide range of activities. This effort provides the documentation of the data obtained in the development of the ASTM-A887 Specification preparation effort conducted by Applied Science and Technology and the most recent efforts for the development of joining technologies conducted under a joint effort by EPRI, Carpenter Technologies and Sandia National Laboratory under a US DOE CRADA program. The data presented in this report provides the basis for the ASTM specification which has been previously unpublished by EPRI and the data generated in support of the Joining Technology research effort conducted at Sandia. The results of the Sandia research, although terminated prior to the completion, confirms earlier data that the degradation of material properties in fusion welded borated stainless steels occurs in the heat affected zone of the weld area and not in the base material. The data obtained also supports the conclusion that the degradation of material properties can be overcome by post weld heat treatment which can result in material properties near the original unwelded metal

  11. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    International Nuclear Information System (INIS)

    Herrmann, S.D.; Li, S.X.

    2010-01-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl - 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  12. Estimation of metallic impurities in uranium by carrier distillation method

    International Nuclear Information System (INIS)

    Page, A.G.; Godbole, S.V.; Deshkar, S.B.; Joshi, B.D.

    1976-01-01

    An emission spectrographic method has been standardised for the estimation of twenty-two metallic impurities in uranium using carrier-distillation technique. Silver chloride with a concentration of 5% has been used as the carrier and palladium and gallium are used as internal standards. Precision and accuracy determinations of the synthetic samples indicate 6-15% deviation for most of the elements. Using the method described here, five uranium reference samples received from C.E.A.-France were analysed. The detection limits obtained for Cd, Co and W are lower than those reported in the literature while limits for the remaining elements are comparable to the values reported. The method is suitable for the chemical quality control analysis of uranium used for the Fast Breeder Test Reactor (FBTR) fuel. (author)

  13. Electrodeposition of uranium metal by reduction of uranium oxides in molten Lif-KF=NaF-CaF 2-UF4

    International Nuclear Information System (INIS)

    Pao, D.S.; Burris, L.; Steunenberg, R.K.; Tomczuk, Z.

    1990-01-01

    Although electrolytic reduction of uranium oxides was shown to be feasible in the early 1960's it is recognized that considerable improvement in the electrolytic reduction technology must be achieved for practical applications. This exploratory work on electrolytic reduction of uranium oxide was undertaken to investigate potential improvements in the technology. The approach taken was to deposit solid uranium metal directly on a solid cathode at temperatures below the melting point of uranium (1132 degrees C). The lower temperature electrolytic reduction process has several advantages over the existing chemical reduction processes. It lessens materials problems and special heating and insulating requirements associated with high-temperature operations. It removes most impurities. It does not produce the large quantities of byproduct oxides wastes typical of chemical reduction processes

  14. Ultrasonic relaxations in borate glasses

    International Nuclear Information System (INIS)

    D'Angelo, G.; Tripodo, G.; Carini, G.; Cosio, E.; Bartolotta, A.; Di Marco, G.

    2004-01-01

    The attenuation and velocity of ultrasonic waves of frequencies in the range from 10 to 70 MHz have been measured in M 2 O-B 2 O 3 borate glasses (M: Li or Ag) as a function of temperature between 15 and 350 K. The velocity of sound waves decreases with increasing temperature in all the glasses, the decrease as the temperature is increased is larger in glasses containing silver than in those with lithium. A broad relaxation peak characterises the attenuation behaviour of the lithium and silver borate glasses at temperatures below 100 K and is paralleled by a corresponding dispersive behaviour of the sound velocity. Above 100 K, the ultrasonic velocity shows a nearly linear behaviour regulated by the vibrational anharmonicity, which decreases with increasing content of modifier oxide and is smaller in lithium than in silver borates. These results suggest that the relaxation of structural defects and the anharmonicity of borate glasses are strongly affected by two parameters: the number of bridging bonds per network forming ion and the polarising power of network modifier ions which occupy sites in the existing interstices

  15. Gas Generation from K East Basin Sludges and Irradiated Metallic Uranium Fuel Particles Series III Testing

    International Nuclear Information System (INIS)

    Schmidt, Andrew J.; Delegard, Calvin H.; Bryan, Samuel A.; Elmore, Monte R.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2003-01-01

    The path forward for managing of Hanford K Basin sludge calls for it to be packaged, shipped, and stored at T Plant until final processing at a future date. An important consideration for the design and cost of retrieval, transportation, and storage systems is the potential for heat and gas generation through oxidation reactions between uranium metal and water. This report, the third in a series (Series III), describes work performed at the Pacific Northwest National Laboratory (PNNL) to assess corrosion and gas generation from irradiated metallic uranium particles (fuel particles) with and without K Basin sludge addition. The testing described in this report consisted of 12 tests. In 10 of the tests, 4.3 to 26.4 g of fuel particles of selected size distribution were placed into 60- or 800-ml reaction vessels with 0 to 100 g settled sludge. In another test, a single 3.72-g fuel fragment (i.e., 7150-mm particle) was placed in a 60 ml reaction vessel with no added sludge. The twelfth test contained only sludge. The fuel particles were prepared by crushing archived coupons (samples) from an irradiated metallic uranium fuel element. After loading the sludge materials (whether fuel particles, mixtures of fuel particles and sludge, or sludge-only) into reaction vessels, the solids were covered with an excess of K Basin water, the vessels closed and connected to a gas measurement manifold, and the vessels back-flushed with inert neon cover gas. The vessels were then heated to a constant temperature. The gas pressures and temperatures were monitored continuously from the times the vessels were purged. Gas samples were collected at various times during the tests, and the samples analyzed by mass spectrometry. Data on the reaction rates of uranium metal fuel particles with water as a function of temperature and particle size were generated. The data were compared with published studies on metallic uranium corrosion kinetics. The effects of an intimate overlying sludge layer

  16. Experience in the development of metal uranium-base nuclear fuel for heavy-water gas-cooled reactors

    International Nuclear Information System (INIS)

    Ashikhmin, V.P.; Vorob'ev, M.A.; Gusarov, M.S.; Davidenko, A.S.; Zelenskij, V.F.; Ivanov, V.E.; Krasnorutskij, V.S.; Petel'guzov, I.A.; Stukalov, A.I.

    1978-01-01

    Investigations were carried out to solve the problem of making the development of radiation-resistant uranium fuel for power reactors including the heavy-water gas-cooled KS-150 reactor. Factors are considered that limit the lifetime of uranium fuel elements, and the ways of suppressing them are discussed. Possible reasons of the insufficient radiation resistance of uranium rod fuel element and the progress attained are analyzed. Some general problems on the fuel manufacture processes are discussed. The main results are presented on the operation of the developed fuel in research reactor loops and the commercial heavy-water KS-150 reactor. The results confirm an exceptionally high radiation resistance of fuel to burn-ups of 1.5-2%. The successful solution of a large number of problems associated with the development of metal uranium fuel provides for new possibilities of using metal uranium in power reactors

  17. Method for the recovery of uranium values from uranium tetrafluoride

    International Nuclear Information System (INIS)

    Kreuzmann, A.B.

    1984-01-01

    The invention comprises reacting particulate uranium tetrafluoride and alkaline earth metal oxide (e.g. CaO, MgO) in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. (author)

  18. Development of metal uranium fuel and testing of construction materials (I-VI); Part I; Razvoj metalnog goriva i ispitivanje konstrukcionih materijala (I-VI deo); I deo

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This project includes the following tasks: Study of crystallisation of metal melt and beta-alpha transforms in uranium and uranium alloys; Study of the thermal treatment influence on phase transformations and texture in uranium alloys; Radiation damage of metal uranium; Project related to irradiation of metal uranium in the reactor; Development of fuel element for nuclear reactors.

  19. Contribution to the study of nuclear fuel materials with a metallic uranium base; Contribution a l'etude des materiaux combustibles nucleaires a base d'uranium metallique

    Energy Technology Data Exchange (ETDEWEB)

    Englander, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-11-15

    In a power reactor destined to supply industrially recoverable thermal energy, the most economical source of heat still consists of natural metallic uranium. However, the nuclear fuel material, most often employed in the form of rods of 20 to 40 mm diameter, is subjected to a series of stresses which lead to irreversible distortions usually incompatible with the substructure of the reactor. As a result the fuel material must possess at the outset a certain number of qualities which must be determined. Investigations have therefore been carried out, first on the technological characters peculiar to each of the three allotropic phases of pure uranium metal, and on their interactions on the stabilisation of the material which consists of either cast uranium or uranium pile-treated in the {gamma} phase. (author) [French] Dans un reacteur de puissance destine a fournir de l'energie thermique industriellement recuperable, la source de chaleur la plus economique reste constituee par de l'uranium metallique naturel. Or, le materiau combustible nucleaire, employe le plus souvent sous forme de barreaux de 20 a 40 mm de diametre, se trouve soumis a un ensemble de contraintes qui provoque des deformations irreversibles, le plus souvent incompatibles avec l'infrastructure du reacteur. Par consequent, le materiau combustible doit presenter a l'origine un certain nombre de qualites qu'il est necessaire de determiner. Aussi a-t-on d'abord etudie les caracteres technologiques propres a chacune des trois phases allotropiques de l'uranium-metal pur et leurs interactions sur la stabilisation du materiau constitue soit par de l'uranium coule, soit par de l'uranium traite en pile en phase {gamma}. (auteur)

  20. Electrodeposition in molten salts of metals used in nuclear industry: hafnium and uranium

    International Nuclear Information System (INIS)

    Serrano, K.

    1998-01-01

    The aim of this work is to study the electrodeposition in molten salts of metals used in nuclear industry: hafnium and uranium. The experiment is carried out in a molten alkaline halogenide medium in a temperature range between 670 and 750 degrees Celsius. The first part of this work concerns more particularly the electrochemical behaviour of the hafnium and uranium ions in the electrolytic solution. The reduction mechanisms of these ions have been studied by the use of three methods: cyclic voltametry, chrono-potentiometry and square wave voltametry. Results have shown that the process of metal deposition is difficult to explain because secondary reactions (as for instance: adsorption phenomena or cathodic deposit dissolution) occur. The uranium germination has then been studied by modelling of chrono-amperograms. The experiments have shown that the deposition is the result of the initial uranium crystal growth and depends on the electrolyte diffusion. The second part of this work deals with the implementation of hafnium and uranium deposition taking into account the preceding mechanistic studies. Depositions have all been observed by physical methods as for instance scanning electron microscopy. Particular experimental solutions (soluble anode, addition of fluoride ions to the electrolyte) have been used. The obtained deposition of hafnium is smooth and adheres very well to the substrate. The uranium depositions have been implemented with the use of a soluble anode. Uranium is deposited in a dendritic shape to the cathode. It has also been shown that the electro-kinetic parameters (temperature, uranium ions concentration, current density) have not an important influence on the dendritic morphology of the deposition. This morphology could be the consequence of particular convection movements to the surface of the cathode. (O.M.)

  1. Nitrogen content determinations in different stages of thermal treatment involved in conversion of ammonium diuranate to uranium metal

    International Nuclear Information System (INIS)

    Shrivastava, K.C.; Shelke, G.P.

    2017-01-01

    Determination of nitrogen content in the uranium metal and uranium oxide based reactor fuels is important to meet the requirement of specifications given by fuel designer. Therefore, a systematic study was carried out to determine the variations in nitrogen content during the conversion of ammonium diuranate (ADU) to uranium oxides (UO 3 and UO 2 ), and finally to uranium metal by inert gas fusion-thermal conductivity detection (IGF-TCD) technique. To understand the measured nitrogen content variations, the thermal decomposition study of ADU was carried out using thermogravimetry (TG)/differential thermogravimetry (DTG) and differential thermal analysis (DTA) in the temperature range of 25-1073 K. Powder X-ray diffraction (XRD) technique was used to confirm the formation of uranium oxide precursors at different temperature. (author)

  2. Investigation into the structure of lead-borate glass

    International Nuclear Information System (INIS)

    Kurtsinovskaya, R.I.

    1976-01-01

    X-ray phase and IR analysis of lead borate glasses show that glasses containing from 12 to 45 mole % PbO consist of several phases. A comparison of x-ray different data for lead borate and lead germanate glasses, which have two maxima on the diffraction patterns throughout the glass-formation region, shows that the microstructure of lead borate glasses is far more complex

  3. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  4. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    Science.gov (United States)

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Uranium and base metal dispersion studies in the Maquire Lake area, Saskatchewan

    International Nuclear Information System (INIS)

    Sopuck, V.J.; Lehto, D.A.W.; Alley, D.W.

    1980-03-01

    The objective of this study was to study uranium and base metal dispersion in various sample media occurring in the Maguire Lake area of Saskatchewan: bedrock, overburden, lake water, and lake sediments. Factors controlling partitioning of metals among various sample media were investigated, and lake sediment data were interpreted in terms of the factors to determine the significance of lake sediment data in indicating local mineralization. The association between organic matter contents and metal contents was found to vary between lake-center and nearshore sediments. Nickel, cobalt and zinc in lake sediments are strongly controlled by hydroxide precipitation and are less dependent on bedrock type. The concentration of Fe in center-lake sediments appears to reflect only the physicochemical parameters in the lake. Uranium and copper are strongly controlled by and preferentially concentrated in the organic matter; however, in center-lake sediments with >12 percent organic matter, U and Cu strongly reflect rock type

  6. Preliminary analysis on tectonic movement and uranium metallization in Kang-Dian the earth's axis

    International Nuclear Information System (INIS)

    Luo Yiyue; Wei Mingji; Ma Guangzhong

    1998-01-01

    On the basis of analyzing available data the authors expounds the regional geology, tectonic movement, as well as the relationship between geological evolution and uranium metallization in Kang-Dian the earth's axis and propose that the Jinning Period (960-1006 Ma) is the first metallogenic epoch of uranium in Kang-Dian the earth's axis

  7. Sequential separation of transuranic elements and fission products from uranium metal ingots in electrolytic reduction process of spent PWR fuels

    International Nuclear Information System (INIS)

    Chang Heon Lee; Kih Soo Joe; Won Ho Kim; Euo Chang Jung; Kwang Yong Jee

    2009-01-01

    A sequential separation procedure has been developed for the determination of transuranic elements and fission products in uranium metal ingot samples from an electrolytic reduction process for a metallization of uranium dioxide to uranium metal in a medium of LiCl-Li 2 O molten salt at 650 deg C. Pu, Np and U were separated using anion-exchange and tri-n-butylphosphate (TBP) extraction chromatography. Cs, Sr, Ba, Ce, Pr, Nd, Sm, Eu, Gd, Zr and Mo were separated in several groups from Am and Cm using TBP and di(2-ethylhexyl)phosphoric acid (HDEHP) extraction chromatography. Effect of Fe, Ni, Cr and Mg, which were corrosion products formed through the process, on the separation of the analytes was investigated in detail. The validity of the separation procedure was evaluated by measuring the recovery of the stable metals and 239 Pu, 237 Np, 241 Am and 244 Cm added to a synthetic uranium metal ingot dissolved solution. (author)

  8. Reduction of uranium hexafluoride to uranium tetrafluoride

    International Nuclear Information System (INIS)

    Chang, I.S.; Do, J.B.; Choi, Y.D.; Park, M.H.; Yun, H.H.; Kim, E.H.; Kim, Y.W.

    1982-01-01

    The single step continuous reduction of uranium hexafluoride (UF 6 ) to uranium tetrafluoride (UF 4 ) has been investigated. Heat required to initiate and maintain the reaction in the reactor is supplied by the highly exothermic reaction of hydrogen with a small amount of elemental fluorine which is added to the uranium hexafluoride stream. When gases uranium hexafluoride and hydrogen react in a vertical monel pipe reactor, the green product, UF 4 has 2.5g/cc in bulk density and is partly contaminated by incomplete reduction products (UF 5 ,U 2 F 9 ) and the corrosion product, presumably, of monel pipe of the reactor itself, but its assay (93% of UF 4 ) is acceptable for the preparation of uranium metal with magnesium metal. Remaining problems are the handling of uranium hexafluoride, which is easily clogging the flowmeter and gas feeding lines because of extreme sensitivity toward moisture, and a development of gas nozzel for free flow of uranium hexafluoride gas. (Author)

  9. Density of mixed alkali borate glasses: A structural analysis

    International Nuclear Information System (INIS)

    Doweidar, H.; El-Damrawi, G.M.; Moustafa, Y.M.; Ramadan, R.M.

    2005-01-01

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B 2 O 3 . The number of BO 3 and BO 4 units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide

  10. NWIS Measurements for uranium metal annular castings

    International Nuclear Information System (INIS)

    Mattingly, J.K.; Valentine, T.E.; Mihalczo, J.T.

    1998-01-01

    This report describes measurements performed with annular uranium metal castings of different enrichments to investigate the use of 252 Cf-source-driven noise analysis measurements as a means to quantify the amount of special nuclear material (SNM) in the casting. This work in FY 97 was sponsored by the Oak Ridge Y-12 Plant and the DOE Office of Technology Development Programs. Previous measurements and calculational studies have shown that many of the signatures obtained from the source-driven measurement are very sensitive to fissile mass. Measurements were performed to assess the applicability of this method to standard annular uranium metal castings at the Oak Ridge Y-12 plant under verification by the International Atomic Energy Agency (IAEA) using the Nuclear Weapons Identification System (NWIS) processor. Before the measurements with different enrichments, a limited study of source-detector-casting moderator configurations was performed to enhance the correlated information. These configurations consisted of a casting with no reflector and with various thicknesses of polyethylene reflectors up to 10.16 cm in 2.54 cm steps. The polyethylene moderator thickness of 7.62 cm was used for measurements with castings of different enrichments reported here. The sensitivity of the measured parameters to fissile mass was investigated using four castings each with a different enrichment. The high sensitivity of this measurement method to fissile mass and to other material and configurations provides some advantages over existing safeguards methods

  11. Determination of uranium in plutonium--238 metal and oxide by differential pulse polarography

    International Nuclear Information System (INIS)

    Fawcett, N.C.

    1976-01-01

    A differential pulse polarographic method was developed for the determination of total uranium in 238 Pu metal and oxides. A supporting electrolyte of 0.5 M ascorbic acid in 0.15 N H 2 SO 4 was found satisfactory for the determination of 500 ppM or more of uranium in 10 mg or less of plutonium. A relative standard deviation of 0.27 to 4.3 percent was obtained in the analysis of samples ranging in uranium content from 0.65 to 2.79 percent. The limit of detection was 0.18 μg ml -1 . Peak current was a linear function of uranium concentration up to at least 100 μg ml -1 . Amounts of neptunium equal to the uranium content were tolerated. The possible interference of a number of other cations and anions were investigated

  12. Difficulties in preparing a standard sample of uranium metal having traces of nitrogen

    International Nuclear Information System (INIS)

    Toteja, R.S.D.; Jangida, B.L.; Sundaresan, M.

    1991-01-01

    Normally in the analysis of uranium for nitrogen, the nitrides are hydrolysed to give NH 3 and that for standardisation purposes to approximate the closest conditions of analysis of ammonia, NH 4 Cl is added to the sample and the recovery is tested. An appropriate method will be to have a standard sample of uranium with known amounts of nitrogen to be used as reference sample. The present work describes the efforts made in the preparation of such a reference sample and a general assessment of such methods available. In present work, known microamounts of nitrogen in an enclosed volume were allowed to react at a temperature of 773 K with a fixed amount of uranium metal of nitrogen content determined chemically. As the reaction of nitrogen with uranium is essentially a surface reaction, a sample had to be homogenised by allowing the nitrided sample to melt at about 1500 K and allow the nitrogen to diffuse through so that the concentration gradient along the profile will disappear. Attempts were made to prepare such samples in the range to 40 to 100 ppm of nitrogen. The density differences of uranium nitride and uranium metal made this diffusion and homogenisation process difficult. The prepared samples were analysed by the micro-kjeldahl's method and the recoveries tested. The equipment used for the preparation of the nitrided samples, for homogenisation and analysis of the results obtained are detailed in the paper together with the assessment of the general methods. (author). 2 refs., 1 fig., 1 tab

  13. Study of neutron and gamma shielding by lead borate and bismuth lead borate glasses: transparent radiation shielding

    International Nuclear Information System (INIS)

    Singh, Vishwanath P.; Badiger, N.M.

    2013-01-01

    Radiation shielding for gamma and neutron is the prominent area in nuclear reactor technology, medical application, dosimetry and other industries. Shielding of these types of radiation requires an appropriate concrete with mixture of low-to-high Z elements which is an opaque medium. The transparent radiation shielding in visible light for gamma and neutron is also extremely essential in the nuclear facilities as lead window. Presently various types of lead equivalent glass oxides have been invented which are transparent as well as provide protection from radiation. In our study we have assessment of effectiveness of neutron and gamma radiation shielding of xPbO.(1-x) B 2 O 3 (x=0.15 to 0.60) and xBi 2 O 3 .(0.80-x) PbO.0.20 B 2 O 3 (x=0.10 to 0.70) transparent borate and bismuth glasses by NXCOM program. The neutron effective mass removal cross section, Σ R /ρ (cm 2 /g) of the lead, bismuth and boron oxides are given. We found invariable Σ R /ρ of various combinations of the lead borate glass for x=0.15 to 0.60 and bismuth lead borate glass for x=0.10 to 0.70. It is observed that the effective removal cross-section for fast neutron (cm -1 ) of lead borate reduces significantly whereas roughly constant for bismuth borate. The gamma mass attenuation coefficients (μ/ρ) of the glasses were also compared with possible experimental values and found comparable. High (μ/ρ) for gamma radiation of the bismuth glasses shows that it is better gamma shielding compared with lead containing glass. However lead borate glasses are better neutron shielding as the neutron removal coefficient are higher. Our investigation is very useful for nuclear reactor technology where prompt neutron of energy 17 MeV and gamma photon up to 10 MeV produced. (author)

  14. Quality assurance in the manufacture of metallic uranium fuel for research reactors

    International Nuclear Information System (INIS)

    Shah, B.K.; Kumar, Arbind; Nanekar, P.P.; Vaidya, P.R.

    2009-01-01

    Two Research Reactors viz. CIRUS and DHRUVA are operating at Trombay since 1960 and 1985 respectively. Cirus is a 40 MWth reactor using heavy water as moderator and light water as coolant. Dhruva is a 100 MWth reactor using heavy water as moderator and coolant. The maximum neutron flux of these reactors are 6.7 x 10 13 n/cm 2 /s (Cirus) and 1.8 x 10 14 n/cm 2 /s (Dhruva). Both these reactors are used for basic research, R and D in reactor technology, isotope production and operator training. Fuel material for these reactors is natural uranium metallic rods claded in finned aluminium (99.5%) tubes. This presentation will discuss various issues related to fabrication quality assurance and reactor behavior of metallic uranium fuel used in research reactors

  15. Theoretical study of adsorption of water vapor on surface of metallic uranium

    CERN Document Server

    Xiong Bi Tao; Xue Wei Dong; Zhu Zheng He; Jiang Gang; Wang Hong Yan; Gao Tao

    2002-01-01

    According to the experimental data, there is an intermediate substance that formed in the initial stage of oxidation reaction when water vapor is absorbed onto the metallic uranium. The minimum energy of UOH sub 2 witch C sub 2 subupsilon configuration is obtained in the state of sup 5 A sub 1 by B3LYP method of the density function theory (DFT), which is consistent with that by statics of atoms and molecules reaction (AMRS) and group theory. The results from calculations indicate that the adsorption of water vapor on the metallic uranium is an exothermic reaction and that the adsorbed amount decreases with the elevated temperatures. The adsorptive heat at 1 atm is -205.4747 kJ centre dot mol sup - sup 1 , which indicates a typical chemical adsorption

  16. Determination of fluorine trace amounts in metallic uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kukisheva, T N; Bolshakova, A S; Yefimova, N S

    1976-05-01

    A simple and rapid method was proposed for the determination of fluorine in metallic uranium without the removal of the latter. The method is based on the weakening of the color intensity of a complex of zirconium with xylenol orange in the presence of fluorine in a 1 N solution with respect to hydrochloric acid. For preparation for photometry, the solution to be analyzed is neutralized with ammonia to a pH of approximately 3. It is suggested that a complex of sulfosalicylic acid with uranium (VI) be used as the indicator in neutralization. The required acidity in the solution subjected to photometry is provided by the addition of a 5 N hydrochloric acid solution of zirconium. The coefficient of variation V/sub 15/ (at a fluorine content 3x10/sup -3/%) is 10%. In 7 h, 15-20 determinations can be performed.

  17. Interaction of natural borates with potassium hydroxide solution

    International Nuclear Information System (INIS)

    Azarova, L.A.; Vinogradov, E.E.; Kudinov, I.B.; Panasyuk, G.P.; Danilov, V.P.

    2000-01-01

    Interaction of natural borates - inyoite, ulexite and hydroboracite MgCa[B 3 O 4 (OH) 3 ] 2 ·3H 2 O with KOH solution is studied at 50 Deg C by the methods of chemical, x- ray phase, differential thermal analyses and IR spectroscopy. IR spectra points out on island character of forming borates and confirms the data of x-ray phase and chemical analyses about presence of asharite and calcium hydrous borate in resulting products. Hydroboracite (chain structure) under the action of potassium hydroxide passes into borates of magnesium and calcium with island structure and in this case boron transforms partially into liquid phase. When potassium hydroxide interacts with inyoite and ulexite calcium hydroxide and roentgenoamorphous boron-containing product precipitate [ru

  18. Brittle-ductile gliding shear zone and its dynamic metallization in uranium deposit No. 3110

    International Nuclear Information System (INIS)

    Fang Shiyi.

    1990-01-01

    A preliminary study on the macroscopic geological structure, microstructures of plastic deformation rotary strain, structural geochemistry and zoning regularity of a brittle-ductile gliding shear zone in uranium deposit No. 3110 is made. Structural dynamic metallization of uranium caused by the strong shearing stress is discussed. It is pointed out that great attention must be paid to in further exploration

  19. Strontium borate glass: potential biomaterial for bone regeneration

    OpenAIRE

    Pan, H. B.; Zhao, X. L.; Zhang, X.; Zhang, K. B.; Li, L. C.; Li, Z. Y.; Lam, W. M.; Lu, W. W.; Wang, D. P.; Huang, W. H.; Lin, K. L.; Chang, J.

    2009-01-01

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid relea...

  20. Effect of borate concentration on solidification of radioactive wastes by different cements

    International Nuclear Information System (INIS)

    Sun Qina; Li Junfeng; Wang Jianlong

    2011-01-01

    Highlights: → The effect of borate on cementation of radioactive borate evaporator concentrates by sulfoaluminate cement (SAC) and Portland cement (PC) was compared. → The X-ray diffraction (XRD) revealed that borate did not interfere with the formation of main hydration products of SAC and PC. → Borate, in the form of B(OH) 4- , incorporated in ettringite as solid solution phase. - Abstract: To investigate the effect of borate on the cementation of radioactive evaporator concentrates, and to provide more data for solidification formula optimization, the simulated borate evaporator concentrates with different borate concentrations (as B) and Na/B ratio (molar ratio) were solidified by sulfoaluminate cement (SAC) and Portland cement (PC), with addition of Ca(OH) 2 , zeolite and accelerator or water reducer. The hydration products of solidified matrices were characterized by X-ray diffraction (XRD). The experimental results showed that borate retarded the cement setting for both SAC and PC formulas, and the final setting time prolonged with decrease of Na/B ratio. Borate could enhance the fluidity of the cement mixture. The 28 d compressive strengths of the solidified matrices for both SAC and PC formulas decreased with increase of borate concentration. The XRD patterns suggested that, in the matrices maintained for 28 d, borate did not interfere with the formation of main hydration products of SAC and PC. Borate, in the form of B(OH) 4- , incorporated in ettringite (3CaO.Al 2 O 3 .3CaSO 4 .32H 2 O) as solid solution phase. The formula of SAC and PC developed in this study was effective for cementation of the simulated borate evaporator concentrates. However further optimization was required to reduce retarding effect of higher borate concentrations and to extend the practical feasibility for actual evaporator concentrates.

  1. A novel method for the preparation of uranium metal, oxide and carbide via electrolytic amalgamation

    International Nuclear Information System (INIS)

    Wang, L.C.; Lee, H.C.; Lee, T.S.; Lai, W.C.; Chang, C.T.

    1978-01-01

    A solid uranium amalgam was prepared electrolytically using a two-compartment cell separated with an ion exchange membrane for the purpose of regulating pH value within a narrowly restricted region of 2 to 3. The mercury cathode was kept at -1.8V vs SCE during electrolysis. The thereby obtained amalgam containing as high as 1.9gm U/ml Hg is easily converted into uranium metal by heating in vacuo above 1300 0 C. Uranium dioxide and uranium monocarbide could be easily obtained at relatively low temperature by reacting the amalgam with water vapor and methane. (author)

  2. Calculated NWIS signatures for enriched uranium metal

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.; Koehler, P.E.

    1995-01-01

    Nuclear Weapons Identification System (NWIS) signatures have been calculated using a Monte Carlo transport code for measurement configurations of a 252 Cf source, detectors, and a uranium metal casting. NWIS signatures consist of a wide variety of time-and frequency-analysis signatures such as the time distribution of neutrons after californium fission, the time distribution of counts in a detector after a previous count, the number of times n pulses occur in a time interval, and various frequency-analysis signatures, such as auto-power and cross-power spectral densities, coherences, and a ratio of spectral densities. This ratio is independent of detection efficiency. The analysis presented here, using the MCNP-DSP code, evaluates the applicability of this method for measurement of the 235 U content of 19-kg castings of depleted uranium and uranium with enrichments of 20, 40, 60, 80, 90, and 93.2 wt % 235 U. The dependence of the wide variety of NWIS signatures on 235 U content and possible configurations of a measurement system are presented. These preliminary calculations indicate short measurement times. Additional calculations are being performed to optimize the source-detector-moderator-casting configuration for the shortest measurement time. Although the NWIS method was developed for nuclear weapons identification, the development of a small processor now allows it to be also applied in a practical way to subcriticality measurements, nuclear fuel process monitoring and qualitative nondestructive assay of special nuclear material

  3. Study on the influence of carbon monoxide to the surface oxide layer of uranium metal

    International Nuclear Information System (INIS)

    Wang Xiaolin; Duan Rongliang; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1997-01-01

    The influence of carbon monoxide to the surface oxide layer of uranium metal has been studied by X-ray photoelectron spectroscopy (XPS) and gas chromatography (GC). Carbon monoxide adsorption on the oxide layer resulted in U4f peak shifting to the lower binding energy. The content of oxygen in the oxide is decreased and the atomic ratio (O/U) is decreased by 7.2%. The amount of carbon dioxide in the atmosphere after the surface reaction is increased by 11.0%. The investigation indicates that the surface layer can prevent the further oxidation uranium metal in the atmosphere of carbon monoxide

  4. Chemical Decontamination of Metallic Waste from Uranium Conversion Plant Dismantling

    International Nuclear Information System (INIS)

    Hwang, D. S.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Byun, J. I.; Jang, N. S.

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of the uranium conversion plant. Pre-work was carried as follows; installation of the access control facility, installation of a changing room and shower room, designation of an emergency exit way and indicating signs, installation of a radiation management facility, preparation of a storage area for tools and equipments, inspection and load test of crane, distribution and packaging of existing waste, and pre-decontamination of the equipment surface and the interior. First, decommissioning work was performed in kiln room, which will be used for temporary radioactive waste storage room. Kiln room housed hydro fluorination rotary kiln for production of uranium tetra-fluoride. The kiln is about 0.8 m in diameter and 5.5 m long. The total dismantled waste was 6,690 kg, 73 % of which was metallic waste and 27 % the others such as cable, asbestos, concrete, secondary waste, etc. And effluent treatment room and filtration room were dismantled for installation of decontamination equipment and lagoon sludge treatment equipment. There were tanks and square mixer in these rooms. The total dismantled waste was 17,250 kg, 67% of which was metallic waste and 33% the others. These dismantled metallic wastes consist of stainless and carbon steel. In this paper, the stainless steel plate and pipe were decontaminated by the chemical decontamination with ultrasonic

  5. Improvements to the properties of uranium by addition of small quantities of other metals

    International Nuclear Information System (INIS)

    Englander, M.

    1960-01-01

    The most economical nuclear fuel used in power reaction which produce energy for industrial purposes is metallic uranium, either in natural form or slightly enriched in the 235 U isotope. Under optimum working conditions any fuel should produce a minimum of 3,000 MW days/tonne, i.e. 72 x 10 6 kWh per tonne of natural uranium, while at the same lime being maintained at a temperature sufficiently high for it to fulfil its role of heat-source (at a minimum of between 350 and 550 deg. C). Now it is rather surprising to note that polycrystalline aggregates in uranium billets, obtained either by casting under vacuum or by extrusion at high temperature, are made up of course grains having broken-up, irregular contours and exhibit numerous signs of intergranular deformation (twin crystals, slip-lines) as well as a pronounced sub-structure. As well as this, the range of grain diameters extends from a few microns up to a few millimeters, according to the micrographic zones examined. Under the influence of irradiation at these temperatures, pure cylindrical metallic uranium bars of about 1 inch diameter are deformed: cracks appear in the metal and changes in the length and diameter occur (these produce an 'orange-peel' texture on the surface). These changes are caused either by growths which are more or less oriented, or else by surface distortions which can cause faults in the material and in the canning and can produce bending which may be sufficiently pronounced to interfere with the cooling circuits. It has since been realised that this instability under the effects of thermal stresses of nuclear origin is due to the heterogeneous morphology of uranium and to its anisotropic crystalline structure (U α or U β ). (author) [fr

  6. The study of molten salt electrorefining characteristics of metallic uranium and cerium

    International Nuclear Information System (INIS)

    Kang, Young Ho; Yoo, Jae Hyung; Woo, Mun Sik; Hwang, Sung Chan

    2000-01-01

    Uranium was electrodeposited on solid cathode in LiCl-KCl eutectic with some CdCl 2 as an oxidizing agent at 550 deg C. In every electro-transport, uranium metal deposit was obtained in the form of dendrite grown on the cathode surface The shape of dendrite on the cathode surface was changed on applied voltage. At the current density range of 100 ∼150 mA/cm 2 , the highest efficiency was observed in this experiment. The deposition rate and current efficiency was the highest at about 75 rpm

  7. Contribution to the study of nuclear fuel materials with a metallic uranium base; Contribution a l'etude des materiaux combustibles nucleaires a base d'uranium metallique

    Energy Technology Data Exchange (ETDEWEB)

    Englander, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-11-15

    In a power reactor destined to supply industrially recoverable thermal energy, the most economical source of heat still consists of natural metallic uranium. However, the nuclear fuel material, most often employed in the form of rods of 20 to 40 mm diameter, is subjected to a series of stresses which lead to irreversible distortions usually incompatible with the substructure of the reactor. As a result the fuel material must possess at the outset a certain number of qualities which must be determined. Investigations have therefore been carried out, first on the technological characters peculiar to each of the three allotropic phases of pure uranium metal, and on their interactions on the stabilisation of the material which consists of either cast uranium or uranium pile-treated in the {gamma} phase. (author) [French] Dans un reacteur de puissance destine a fournir de l'energie thermique industriellement recuperable, la source de chaleur la plus economique reste constituee par de l'uranium metallique naturel. Or, le materiau combustible nucleaire, employe le plus souvent sous forme de barreaux de 20 a 40 mm de diametre, se trouve soumis a un ensemble de contraintes qui provoque des deformations irreversibles, le plus souvent incompatibles avec l'infrastructure du reacteur. Par consequent, le materiau combustible doit presenter a l'origine un certain nombre de qualites qu'il est necessaire de determiner. Aussi a-t-on d'abord etudie les caracteres technologiques propres a chacune des trois phases allotropiques de l'uranium-metal pur et leurs interactions sur la stabilisation du materiau constitue soit par de l'uranium coule, soit par de l'uranium traite en pile en phase {gamma}. (auteur)

  8. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  9. CREEP BEHAVIOR OF BORATE-TREATED STRANDBOARD: EFFECT OF ZINC BORATE RETENTION, WOOD SPECIES, AND LOAD LEVEL

    OpenAIRE

    Wu,Qinglin; Lee,Ong N; Cai,Zhiyong; Zhou,Dingguo

    2009-01-01

    Creep performance of zinc borate-treated strandboard from southern pine (Pinus taeda L.) and red oak (Quercus falcata) was investigated at 25(0)C temperature and 65% relative humidity. It was shown that the borate treatment had some significant effect on creep deflection of the test panels, and the effect varied with wood species. There was no significant effect of creep loading on residual bending properties of treated strandboard under the stress levels used. The four element spring-dashpot...

  10. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    Science.gov (United States)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  11. XPS study on the surface reaction of uranium metal with carbon monoxide at 200 degree C

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-12-01

    The surface reaction of uranium metal with carbon monoxide at 200 degree C has been studied by X-ray photoelectron spectroscopy (XPS). The carbon monoxide adsorption on the surface oxide layer resulted in U4f peak shifting to the lower binding energy and the content of oxygen in the oxide is decreased. O/U radio decreases with increasing the exposure of carbon monoxide to the surface layer. The investigation indicated the surface layer of uranium metal was further reduced in the atmosphere of carbon monoxide at high temperature. (3 refs., 5 figs.)

  12. Recovery of fluorine, uranium, and rare earth metal values from phosphoric acid by-product brine raffinate

    International Nuclear Information System (INIS)

    Wamser, C.A.; Bruen, C.P.

    1976-01-01

    A method for recovering substantially all of the fluorine and uranium values and at least 90 percent of the rare earth metal values from brine raffinate obtained as by-product in the production of phosphoric acid by the hydrochloric acid decomposition of tricalcium phosphate minerals is described. A basically reacting compound is added to the brine raffinate to effect a pH 9 or greater, whereby fluorine, uranium and rare earth metal values are simultaneously precipitated. These values may then be separately recovered from the precipitate by known processes

  13. Study of the recrystallisation of irradiated uranium; Etude sur l'uranium irradie

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, J; Mustelier, J P; Bussy, P; Blin, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    1- Study of the recrystallisation of irradiated uranium. The recrystallisation of uranium irradiated to a burnup level of 220 MWj/t, at a temperature of the order of 350 deg. C, has been investigated. The observations were made chiefly by means of micrography an hardness measurements. If the irradiated metal is compared with a cold-drawn metal showing the same shearing of the twinned crystals, and therefore the same rate of plastic deformation, as the irradiated metal, it is noted that the restoring of the irradiated metal takes place at a considerably higher temperature than that of the cold-drawn metal. Pre-crystallisation is very much delayed. Only, a passage of the {alpha}-{beta} transformation point quickly wipes out irradiation effect. 2- Hardening of uranium by irradiation. Using hardness measurements we have studied more especially the effect of very weak irradiations on uranium (integrated flux < 10{sup 16} nvt). The hardness does not increase linearly with the flux, but a period of incubation is observed probably representing the time necessary for saturation of the dislocations. (author)Fren. [French] 1- Etude de la recristallisation de l'uranium irradie. On a etudie la recristallisation d'uranium irradie jusqu'a un taux de combustion de 220 MWj/t a une temperature de l'ordre de 350 deg. C. Les observations ont ete faites principalement a l'aide de la micrographie et de la durete. Si l'on compare le metal irradie avec un metal ecroui presentant le meme cisaillement des macles, donc le meme taux de deformation plastique que le metal irradie, on constate que la restauration du metal irradie se fait a une temperature notablement superieure a celle du metal ecroui. La recristallisation est tres retardee. Seul, un passage du point de transformation {alpha}-{beta} efface rapidement l'effet de l'irradiation. 2- Durcissement de l'uranium par irradiation. Nous avons, a l'aide de la durete, etudie plus particulierement l'effet de tres faibles irrtions sur l'uranium

  14. In situ effects of metal contamination from former uranium mining sites on the health of the three-spined stickleback (Gasterosteus aculeatus, L.).

    Science.gov (United States)

    Le Guernic, Antoine; Sanchez, Wilfried; Bado-Nilles, Anne; Palluel, Olivier; Turies, Cyril; Chadili, Edith; Cavalié, Isabelle; Delahaut, Laurence; Adam-Guillermin, Christelle; Porcher, Jean-Marc; Geffard, Alain; Betoulle, Stéphane; Gagnaire, Béatrice

    2016-08-01

    Human activities have led to increased levels of various pollutants including metals in aquatic ecosystems. Increase of metallic concentrations in aquatic environments represents a potential risk to exposed organisms, including fish. The aim of this study was to characterize the environmental risk to fish health linked to a polymetallic contamination from former uranium mines in France. This contamination is characterized by metals naturally present in the areas (manganese and iron), uranium, and metals (aluminum and barium) added to precipitate uranium and its decay products. Effects from mine releases in two contaminated ponds (Pontabrier for Haute-Vienne Department and Saint-Pierre for Cantal Department) were compared to those assessed at four other ponds outside the influence of mine tailings (two reference ponds/department). In this way, 360 adult three-spined sticklebacks (Gasterosteus aculeatus) were caged for 28 days in these six ponds before biomarker analyses (immune system, antioxidant system, biometry, histology, DNA integrity, etc.). Ponds receiving uranium mine tailings presented higher concentrations of uranium, manganese and aluminum, especially for the Haute-Vienne Department. This uranium contamination could explain the higher bioaccumulation of this metal in fish caged in Pontabrier and Saint-Pierre Ponds. In the same way, many fish biomarkers (antioxidant and immune systems, acetylcholinesterase activity and biometric parameters) were impacted by this environmental exposure to mine tailings. This study shows the interest of caging and the use of a multi-biomarker approach in the study of a complex metallic contamination.

  15. Fusion welding of borated stainless steels

    International Nuclear Information System (INIS)

    Robino, C.V.; Cieslak, M.J.

    1993-01-01

    Borated austenitic stainless steels have been developed for use in the nuclear industry where storage, transport, and reprocessing of nuclear materials are required. The objective of this work is to develop appropriate joining technology for borated stainless steels based upon understanding the response of these materials to thermal processing involving melting. This understanding is being developed through the application of physical metallurgy techniques to determine the evolution of microstructure and mechanical properties within the various regions of the HAZ. Initial investigations include development of the kinetics of boride coarsening in the solid-state region of HAZ and the effect of boride coarsening on the impact properties of this region of the weld zone. Microstructures of the borated stainless steels, their response to high temperature isothermal heat treatments, and the implications of these heat treatments with respect to welding behavior will be presented

  16. Overview of ultraviolet and infrared spectroscopic properties of Yb3+ doped borate and oxy-borates compounds

    International Nuclear Information System (INIS)

    Sablayrolles, J.

    2006-12-01

    The trivalent ytterbium ion can give rise to two emissions with different spectroscopic properties: the first one, with a short lifetime, in the ultraviolet (charge transfer emission) is used in detectors such as scintillators, and the other one, with a long lifetime, in the infrared (4f-4f emission) for laser applications. The strong link between material structure and properties is illustrated through ytterbium luminescence study, in the ultraviolet and infrared, inserted in the borate Li 6 Y(BO 3 ) 3 and two oxy-borates: LiY 6 O 5 (BO 3 ) 3 and Y 17,33 B 8 O 38 . For the first time an ytterbium charge transfer emission in oxy-borates has been observed. The calculation of the single configurational coordinate diagram, as well as the thermal quenching, has been conducted under a fundamental approach on the ytterbium - oxygen bond. The study of the ytterbium infrared spectroscopy in these compounds has been realised and an energy level attribution is proposed in the particular case of the borate Li 6 Y(BO 3 ) 3 : Yb 3+ . An original approach is introduced with the study of the charge transfer states for the three compounds by looking at the infrared emission. The first laser performances in three operating modes (continuous wave, Q-switch and mode locking) of a Li 6 Y(BO 3 ) 3 : Yb 3+ crystal are reported. (author)

  17. Pyrophoric behaviour of uranium hydride and uranium powders

    Science.gov (United States)

    Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.

    2010-01-01

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (Oxidation mechanisms are proposed.

  18. A review of uranium corrosion by hydrogen and the formation of uranium hydride

    OpenAIRE

    Banos, A.; Harker, N. J.; Scott, T. B.

    2018-01-01

    Uranium hydride (UH3) is the direct product of the reaction between uranium metal and gaseous hydrogen. In the context of uranium storage, this corrosion reaction is considered deleterious, not just because the structure of the metal may become significantly degraded but also because the resulting hydride is pyrophoric and therefore potentially flammable in air if present in significant quantity. The current review draws from the literature surrounding the uranium-hydrogen system accrued over...

  19. Evaluation of residual uranium contamination in the dirt floor of an abandoned metal rolling mill.

    Science.gov (United States)

    Glassford, Eric; Spitz, Henry; Lobaugh, Megan; Spitler, Grant; Succop, Paul; Rice, Carol

    2013-02-01

    A single, large, bulk sample of uranium-contaminated material from the dirt floor of an abandoned metal rolling mill was separated into different types and sizes of aliquots to simulate samples that would be collected during site remediation. The facility rolled approximately 11,000 tons of hot-forged ingots of uranium metal approximately 60 y ago, and it has not been used since that time. Thirty small mass (≈ 0.7 g) and 15 large mass (≈ 70 g) samples were prepared from the heterogeneously contaminated bulk material to determine how measurements of the uranium contamination vary with sample size. Aliquots of bulk material were also resuspended in an exposure chamber to produce six samples of respirable particles that were obtained using a cascade impactor. Samples of removable surface contamination were collected by wiping 100 cm of the interior surfaces of the exposure chamber with 47-mm-diameter fiber filters. Uranium contamination in each of the samples was measured directly using high-resolution gamma ray spectrometry. As expected, results for isotopic uranium (i.e., U and U) measured with the large-mass and small-mass samples are significantly different (p 0.05) from results for the large- or small-mass samples. Large-mass samples are more reliable for characterizing heterogeneously distributed radiological contamination than small-mass samples since they exhibit the least variation compared to the mean. Thus, samples should be sufficiently large in mass to insure that the results are truly representative of the heterogeneously distributed uranium contamination present at the facility. Monitoring exposure of workers and the public as a result of uranium contamination resuspended during site remediation should be evaluated using samples of sufficient size and type to accommodate the heterogeneous distribution of uranium in the bulk material.

  20. Standard guide for pyrophoricity/combustibility testing in support of pyrophoricity analyses of metallic uranium spent nuclear fuel

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This guide covers testing protocols for testing the pyrophoricity/combustibility characteristics of metallic uranium-based spent nuclear fuel (SNF). The testing will provide basic data for input into more detailed computer codes or analyses of thermal, chemical, and mechanical SNF responses. These analyses would support the engineered barrier system (EBS) design bases and safety assessment of extended interim storage facilities and final disposal in a geologic repository. The testing also could provide data related to licensing requirements for the design and operation of a monitored retrievable storage facility (MRS) or independent spent fuel storage installation (ISFSI). 1.2 This guide describes testing of metallic uranium and metallic uranium-based SNF in support of transportation (in accordance with the requirements of 10CFR71), interim storage (in accordance with the requirements of 10CFR72), and geologic repository disposal (in accordance with the requirements of 10CFR60/63). The testing described ...

  1. Selection of lixiviant System for the alkaline in-situ Leaching of uranium from an arkosic type of sandstone and measuring the dissolution behaviour of some metals and non-metals

    International Nuclear Information System (INIS)

    Khan, Y.; Shah, S.S.; Siddiq, M.

    2012-01-01

    A laboratory simulation study was carried out to check the possibility of alkaline in-situ leaching of uranium from an arkosic type of sandstone recovered from a specific location at a depth of 300-500 m. The ore body was overlaying impervious clay shale below the water table. Different CO/sub 3/ containing soluble salts were tested as complexing agent of the UO/sup +2/ ions along with H/sub 2/O/sub 2/ as oxidizing agent. The lixiviant system, comprising NH/sub 4/HCO/sub 3/ as complexing agent along with H/Sub 2/O/sub 2/ as oxidizing agent in concentrations of 5 g/L and 0.5 g/L respectively, was found to be the most efficient for the leaching of uranium among the 25 different compositions employed. Along with uranium, the dissolution behaviour of 15 other metals, non-metals and radicals, including eight transition metals, was also observed in the lixiviant employed. These were Na, K, Ca, Mg, Cl, SO/sub 4/, CO/sub 3/, Ti, V, Cr, Mn, Fe, Cu, Zn and Mo. It was found that the leaching of uranium compared to non-transition et als/radicals followed the trend Cl > SO > U > Na > K > Mg > Ca > CO. The comparison of uranium leaching to the transition metals was in the order U > Cr > Mo > V > Ti > Cu > Zn > Mn > Fe. Physical parameters like pH, oxidation reduction potential (ORP) and conductivity were also measured for the fresh and pregnant lixiviants. It was found that the leaching of uranium is directly related to the concentration of native soluble hexavalent uranium, contact time of the lixiviant and ore and to some extent with the total concentration of uranium as well as the porosity and permeability of the ore. (author)

  2. Thermochemistry of the complex oxides of uranium, vanadium, and alkali metals

    International Nuclear Information System (INIS)

    Karyakin, N.V.; Chernorukov, N.G.; Suleimanov, E.V.; Kharyushina, E.A.

    1992-01-01

    The standard enthalpies of the formation at T 298.15 K of complex oxides of uranium(VI), vanadium(V) and alkali metals with the general formula M 1 VUO 6 where M 1 = Na, K, Rb, and Cs, were calculated from the results of calorimetric experiments and from published data. 8 refs., 1 tab

  3. Exposure to enhanced levels of radioactivity and toxic metals in uranium mining areas

    International Nuclear Information System (INIS)

    Carvalho, F.P.; Madruga, M.J.; Alves, J.G.; Reis, M.C.; Oliveira, J.M.; Leite, M.M.; Pinto, E.M.; Falcao, J.M.

    2006-01-01

    The areas of several former uranium mines in Portugal were investigated for concentrations of radionuclides belonging to the uranium and thorium series as well as for stable metals eventually present in the radioactive ore. Concentrations of radionuclides were determined by alpha and gamma spectrometry in mining and milling waste as well as in soils, water and vegetables grown in the area. Stable metals were determined by mass spectrometry in soils and waters from the mining regions. Concentrations of radionuclides, such as uranium isotopes, 226 Ra and 210 Po, were enhanced in mill tailings and in mine waters, as well as in surface waters near the facilities of uranium ore treatment. For instance, the concentrations of 226 Ra in mill tailings reached 25 kBq/kg whereas in mud from ponds used to treat acid mine water 238 U concentrations reach about 42 kBq/kg in radioactive equilibrium with 234 U. The areas receiving surface runoff and drainage from mill tailings display enhanced concentrations of naturally occurring radionuclides. These concentrations in the most contaminated soils may be up to 200 times higher than concentrations in agriculture soils of the region. With increasing distance to the tailings and mining waste heaps, the concentrations of radionuclides decrease rapidly to background values. The same trend is observed with environment radiation doses that may reach values of 20 μSv/h on the tailings and decreasing to values near 0.2 μSv/h on agriculture fields. Radiation doses received by people living near the uranium mill tailings may be higher than the radiation dose from natural background. Results of external radiation dos e measurements are discussed in the light of recommended dose limits for members of the public. Regarding stable metals and other chemical contaminants present in the ore, the majority were measured in soils and underground waters in concentrations below the maximum permissible concentrations generally accepted, although more

  4. Natural uranium metallic fuel elements: fabrication and operating experience

    International Nuclear Information System (INIS)

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  5. Comprehensive uranium thiophosphate chemistry: Framework compounds based on pseudotetrahedrally coordinated central metal atoms

    International Nuclear Information System (INIS)

    Neuhausen, Christine; Panthoefer, Martin; Tremel, Wolfgang; Hatscher, Stephan T.; Urland, Werner

    2013-01-01

    The new ternary compounds UP 2 S 6 , UP 2 S 7 , U(P 2 S 6 ) 2 , and U 3 (PS 4 ) 4 were prepared from uranium metal, phosphorus pentasulfide, and sulfur at 700 C. The crystal structures were determined by single-crystal X-ray diffraction methods. UP 2 S 6 (I) crystallizes in the ZrP 2 S 6 structure type [tetragonal, P4 2 /m, a = 6.8058(7) Aa, c = 9.7597(14) Aa, Z = 2], which consists of central uranium(IV) atoms coordinated by P 2 S 6 4- anions (staggered conformation). The anions are two-dimensional connectors for four uranium cations arranged in one plane. The structure of UP 2 S 7 (II) [orthorhombic, Fddd, a = 8.9966(15) Aa, b = 15.2869(2) Aa, c = 30.3195(5) Aa, Z = 16] is closely related to the monoclinic ZrP 2 S 7 structure type. It consists of U 4+ cations linked by P 2 S 7 4- ligands, the resulting 3D network contains large pores (diameter approx. 3.5 x 16.7 Aa). In the previously reported compound U(P 2 S 6 ) 2 (III) [I4 1 /a, a = 12.8776(9) Aa, c = 9.8367(10) Aa, Z = 2], the metal atoms are coordinated by four bidentate P 2 S 6 2- ligands. This arrangement can be considered as a pseudotetrahedral coordination of the uranium atoms by the linear ligands. Three of the resulting diamondoid frameworks are inseparably interwoven in order to optimize space filling. U 3 (PS 4 ) 4 (IV) [I4 1 /acd, a = 10.7440(9) Aa, c = 19.0969(2) Aa, Z = 2] crystallizes in a defect variant of the PrPS 4 structure type, with 50 % of the U2 sites statistically occupied with uranium atoms. The resulting stoichiometry is U 3 (PS 4 ) 4 with tetravalent uranium atoms. The structure of U 3 (PS 4 ) 4 consists of uranium atoms connected by PS 4 3- groups, each PS 4 group linking four central uranium atoms. Vibrational spectra, which were recorded for I-III, show good agreement between the obtained results and the expected values for the anionic units, while magnetic measurements confirm the presence of tetravalent uranium. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGa

  6. Study on growth of highly pure uranium compounds

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Ochiai, Akira; Suzuki, Kenji.

    1992-01-01

    We developed the systems for growing highly pure uranium compounds to study their intrinsic physical properties. Uranium metal was zone refined under low contamination conditions as far as possible. Chemical analysis of the purified uranium was performed using the inductive coupled plasma emission spectrometry (ICP). The problem that emission spectra of the uranium conceal those of analyzed impurities was settled by extraction of the uranium using tri-n-butyl-phosphate (TBP). The result shows that some metallic impurities such as Pb, Mn, Cu etc. evaporated by the r.f. heating and other usual metallic impurities moved to the end of rod with molten zone. Therefore, we conclude that the zone refining technique is much effective to the removal of metallic impurities and we obtained highly purified uranium metal of 99.99 % up with regard to metallic impurities. Using the purified uranium, we attempted to grow a highly pure uranium-titanium single crystals. (author)

  7. Conditioning highly concentrated borate solutions with calcium sulfo-aluminate cement

    International Nuclear Information System (INIS)

    Champenois, J.B.; Cau dit Coumes, C.; Poulesquen, A.; Le Bescop, P.; Damidot, D.

    2012-01-01

    The early age hydration by borate solution of 3 calcium sulfo-aluminate cements (CSA), containing respectively 0%, 10% and 20% of gypsum by weight of cement was studied using isothermal calorimetry and dynamic mode rheo-metry. XRD and TGA analysis were carried out on pastes with increasing hydration degrees (up to 90 days) to specify the mineralogy and to figure out the mechanisms of borate immobilisation. It has been shown that the retarding effect of borate anions is due to the precipitation of the amorphous calcium borate C 2 B 3 H 8 ; borate anions were then incorporated in Aft-type phases. The macroscopic properties of hydrated binders (compressive strength, length change) were also followed during 180 days. It appears that the mechanical strength continuously increases with the hydration degree. Length changes under wet-curing and sealed bag remain moderate and seem to be stabilized after 180 days

  8. Spatial Variation and Assessment of Heavy Metal and Radioactive Risk in Farmland around a Retired Uranium Mine

    Science.gov (United States)

    Liang, Jie; Shi, Chen-hao; Zeng, Guang-ming; Zhong, Min-zhou; Yuan, Yu-jie

    2017-07-01

    In recent years, heavy metal contamination in the environment has been attracted worldwide attention due to their toxicity, persistence,extensive sources and non-biodegradable properties. We herein investigate variation trend and risk of heavy metal and radiation distribution in the former mine stope, former mineral ore stockyard, and mine road with surface soils of a retired uranium mine in the mid-south of China. The mean concentrations (mg/kg) of Pb,Cd,Cu,Zn,As,Hg,Cr,Mn,Ni,U, and 232Th were analyzed according to the corresponding background values in Hunan, China. The Geo-accumulation index (Igeo ) were used for the assessment of pollution level of heavy metals and the radioactive elements of U and 232Th. Then, Pollution load index (PLI) and GIS techniquewere integrated to assess spatial distribution of heavy metal contamination and radioactive contamination. Results confirmed that three areas in the retired uranium mine was a primary source of pollution, which showed anthropogenic origin mainly from agricultural runoff, hydrometallurgy from chemical industries, radioactive tailings, and electroplating industriesfinally drained into Zishui River and Xiangjiang River. Based on the actual situation, some suggestions were put forward for the treatment of the retired uranium mine in conclusion.

  9. Critical experiments with 4.31 wt % 235U-enriched UO2 rods in highly borated water lattices

    International Nuclear Information System (INIS)

    Durst, B.M.; Bierman, S.R.; Clayton, E.D.

    1982-08-01

    A series of critical experiments were performed with 4.31 wt % 235 U enriched UO 2 fuel rods immersed in water containing various concentrations of boron ranging up to 2.55 g/l. The boron was added in the form of boric acid (H 3 BO 3 ). Critical experimental data were obtained for two different lattice pitches wherein the water-to-uranium oxide volume ratios were 1.59 and 1.09. The experiments provide benchmarks on heavily borated systems for use in validating calculational techniques employed in analyzing fuel shipping casks and spent fuel storage systems that may utilize boron for criticality control

  10. Magnesium Borate Synthesis by Microwave Energy: A New Method

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun Kipcak

    2013-01-01

    Full Text Available Magnesium borates are one of the major groups of boron minerals that have important properties such as high heat and corrosion resistances and high coefficients of elasticity. In this study, magnesium borate minerals are synthesized using boric acid and magnesium oxide with a new method of microwave, and the synthesized minerals are characterized by various analysis techniques. The results show that pure, “magnesium borate hydrate” minerals are obtained at the end of various steps. The characterization of the products is determined with the techniques of X-Ray Diffraction (XRD, Fourier Transform Infrared Spectroscopy (FT-IR, Raman Spectroscopy, and Scanning Electron Microscopy (SEM. Additionally, overall “magnesium borate hydrate” yields are calculated and found about 67% at 270 W, 8 minutes and 360 W, 3 minutes of reaction times, respectively.

  11. Recent irradiation tests of uranium-plutonium-zirconium metal fuel elements

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Villarreal, R.; Hofman, G.L.; Beck, W.N.

    1986-09-01

    Uranium-Plutonium-Zirconium metal fuel irradiation tests to support the ANL Integral Fast Reactor concept are discussed. Satisfactory performance has been demonstrated to 2.9 at.% peak burnup in three alloys having 0, 8, and 19 wt % plutonium. Fuel swelling measurements at low burnup in alloys to 26 wt % plutonium show that fuel deformation is primarily radial in direction. Increasing the plutonium content in the fuel diminishes the rate of fuel-cladding gap closure and axial fuel column growth. Chemical redistribution occurs by 2.1 at.% peak burnup and generally involves the inward migration of zirconium and outward migration of uranium. Fission gas release to the plenum ranges from 46% to 56% in the alloys irradiated to 2.9 at.% peak burnup. No evidence of deleterious fuel-cladding chemical or mechanical interaction was observed

  12. Microbial cells as biosorbents for heavy metals: accumulation of Uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.

    1981-01-01

    Uranium accumulated extracellularly on the surfaces of Saccharomyces cerevisiae cells. The rate and extent of accumulation were subject to environmental parameters, such as pH, temperature, and interference by certain anions and cations. Uranium accumulation by Pseudomonas aeruginosa occurred intracellularly and was extremely rapid (<10 s), and no response to environmental parameters could be detected. Metabolism was not required for metal uptake by either organism. Cell-bound uranium reached a concentration of 10 to 15% of the dry cell weight, but only 32% of the S. cerevisiae cells and 44% of the P. aeruginosa cells within a given population possessed visible uranium deposits when examined by electron microscopy. Rates of uranium uptake by S. cerevisiae were increased by chemical pretreatment of the cells. Uranium could be removed chemically from S. cerevisiae cells, and the cells could then be reused as a biosorbent

  13. Former uranium mine-induced effects in caged roach: a multiparametric approach for the evaluation of in situ metal toxicity.

    Science.gov (United States)

    Gagnaire, Béatrice; Bado-Nilles, Anne; Betoulle, Stéphane; Amara, Rachid; Camilleri, Virginie; Cavalié, Isabelle; Chadili, Edith; Delahaut, Laurence; Kerambrun, Elodie; Orjollet, Daniel; Palluel, Olivier; Sanchez, Wilfried

    2015-01-01

    To characterize environmental risks linked to former uranium mines in the Limousin region of France, a study was conducted on fish health effects from uranium releases. Two private ponds were compared in this study, one with uranium contamination and one background site, upstream of the mining zone. Roach, Rutilus rutilus, were caged for 28 days in both ponds. Physico-chemical parameters of water and sediments and bioaccumulation of metals in several organs were determined. After 14 and 28 days of caging, immune, oxidative stress, biotransformation, neurotoxicity and physiological parameters were measured. Iron and aluminium were quantified in the water of both sites; however, barium and manganese were only present in the water of the uranium contaminated site. Uranium was present in both sites but at very different concentrations. The sediments from the uranium contaminated site contained high levels of radioactive elements coming from the disintegration chain of uranium. Results of biological parameters indicated stimulation of immune parameters and of oxidative stress and a decrease of AChE in fish caged in the uranium contaminated pond compared to the uranium-free pond. Overall, the results determined roach health status in the context of pollution from poly-metallic mining. The data strengthen our knowledge of the environmental risk assessment associated with radioactive substances in the environment.

  14. Uranium dioxide electrolysis

    Science.gov (United States)

    Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  15. Glass laser discs with annular alkali lead borate coatings and use thereof

    International Nuclear Information System (INIS)

    Cooley, R.F.

    1975-01-01

    A laser assembly that includes a novel glass laser disc having an annular alkali lead borate glass coating for use in the assembly is disclosed. The annular coating has an index of refraction that is about 3 to 12 percent greater than the index of refraction of the laser disc, the thermal properties also being sufficiently matched with the glass laser disc so as to prevent the development of undesirable strains therein, the glass coating comprising a mixture of alkali metal oxides in which at least two different alkali metal oxides are present, and any K 2 O that is present is limited to an amount of not substantially more than about 1 percent by weight and an effective energy absorbing amount of heavy metal oxide that absorbs energy at a wavelength of about 1.06 microns to prevent parasitic oscillations. The heavy metal oxides include oxides of transition metals of the 3d, 4d, 4f, 5d and 5f orbital series. (auth)

  16. A study on the electrolytic reduction of U3O8 to uranium metal in LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Seo, J. S.; Heo, J. M.; Hong, S. S.; Kang, D. S.; Park, S. W.

    2002-01-01

    New electrolytic reduction technology was proposed that is based on the intregration of metallization of U 3 O 8 and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxide to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, materials for cathode and anode electrode, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt, increase of metallization yield, and simplification of process

  17. Bioremediation of uranium contaminated soils and wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1998-01-01

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs

  18. Corrosion studies of titanium in borated water for TPX

    International Nuclear Information System (INIS)

    Wilson, D.F.; Pawel, S.J.; DeVan, J.H.; Cole, M.J.; Nelson, B.E.

    1995-01-01

    Corrosion testing was performed to demonstrate the compatibility of the titanium vacuum vessel with borated water. Borated water is proposed to fill the annulus of the double wall vacuum vessel to provide effective radiation shielding. Borating the water with 110 grams of boric acid per liter is sufficient to reduce the nuclear heating in the Toroidal Field Coil set and limit the activation of components external to the vacuum vessel. Constant extension rate tensile (CERT) and electrochemical potentiodynamic tests were performed. Results of the CERT tests confirm that stress corrosion cracking is not significant for Ti-6Al4V or Ti-3AI-2.5V. Welded and unwelded specimens were tested in air and in borated water at 150 degree C. Strength, elongation, and time to failure were nearly identical for all test conditions, and all the samples exhibited ductile failure. Potentiodynamic tests on Ti-6A1-4V and Ti in borated water as a function of temperature showed low corrosion rates over a wide passive potential range. Further, this passivity appeared stable to anodic potentials substantially greater than those expected from MHD effects

  19. Strontium borate glass: potential biomaterial for bone regeneration.

    Science.gov (United States)

    Pan, H B; Zhao, X L; Zhang, X; Zhang, K B; Li, L C; Li, Z Y; Lam, W M; Lu, W W; Wang, D P; Huang, W H; Lin, K L; Chang, J

    2010-07-06

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones.

  20. Intrinsic luminescence of un-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2017-01-01

    The nature of intrinsic luminescence in the un-doped borate glasses of different compositions has been investigated using spectroscopic methods including photoluminescence, optical absorption, electron paramagnetic resonance (EPR), and thermally stimulated luminescence (TSL). The un-doped borate glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 basic compositions were obtained from corresponding polycrystalline compounds in the air with usage the standard technology of glasses. Three different broad emission bands in the UV–Visible spectral range have been observed under different wavelength of photoexcitation. The luminescence kinetics of the observed emission bands have been registered and analysed. The nature and possible mechanisms of the intrinsic luminescence in the investigated borate glasses are considered and discussed based on the obtained results and referenced data.

  1. Diversity, metal resistance and uranium sequestration abilities of bacteria from uranium ore deposit in deep earth stratum.

    Science.gov (United States)

    Islam, Ekramul; Sar, Pinaki

    2016-05-01

    Metal resistance and uranium (U) sequestration abilities of bacteria residing in subsurface U ore was investigated using 122 pure culture strains isolated through enrichment. The cumulative frequencies of isolates resistant to each metal tested were as follows: As(V), 74%; Zn, 58%; Ni, 53%; Cd, 47%; Cr(VI), 41%; Co, 40%; Cu, 20%; and Hg, 4%. 16S rRNA gene analysis revealed that isolated bacteria belonged to 14 genera with abundance of Arthrobacter, Microbacterium, Acinetobacter and Stenotrophomonas. Cobalt did not interfere with the growth of most of the bacterial isolates belonging to different groups while U allowed growth of four different genera of which Stenotrophomonas and Microbacterium showed high U tolerance. Interestingly, tolerance to Ni, Zn, Cu, and Hg was observed only in Microbacterium, Arthrobacter, Paenibacillus¸ and Acinetobacter, respectively. However, Microbacterium was found to be dominant when isolated from other five different metal enrichments including U. Uranium removal study showed that 84% of the test bacteria could remove more than 50mgUg(-1) dry weight from 80 or 160mgL(-1) U within 48h. In general, Microbacterium, Arthrobacter and Acinetobacter could remove a higher amount of U. High resolution transmission electron microscopy (HRTEM) study of U exposed cells revealed that accumulated U sequestered mostly around the cell periphery. The study highlights that indigenous U ore deposit bacteria have the potential to interact with U, and thus could be applied for bioremediation of U contaminated sites or wastes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Allyl borates: a novel class of polyhomologation initiators

    KAUST Repository

    Wang, De

    2016-12-24

    Allyl borates, a new class of monofunctional polyhomologation initiators, are reported. These monofunctional initiators are less sensitive and more effective towards polymethylene-based architectures. As an example, the synthesis of α-vinyl-ω-hydroxypolymethylenes is given. By designing/synthesizing different allylic borate initiators, and using 1H and 11B NMR spectroscopy, the initiation mechanism was elucidated.

  3. Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal

    International Nuclear Information System (INIS)

    Usami, T.; Kurata, M.; Inoue, T.; Sims, H.E.; Beetham, S.A.; Jenkins, J.A.

    2002-01-01

    The lithium reduction process has been developed to apply a pyrochemical recycle process for oxide fuels. This process uses lithium metal as a reductant to convert oxides of actinide elements to metal. Lithium oxide generated in the reduction would be dissolved in a molten lithium chloride bath to enhance reduction. In this work, the solubility of Li 2 O in LiCl was measured to be 8.8 wt% at 650 deg. C. Uranium dioxide was reduced by Li with no intermediate products and formed porous metal. Plutonium dioxide including 3% of americium dioxide was also reduced and formed molten metal. Reduction of PuO 2 to metal also occurred even when the concentration of lithium oxide was just under saturation. This result indicates that the reduction proceeds more easily than the prediction based on the Gibbs free energy of formation. Americium dioxide was also reduced at 1.8 wt% lithium oxide, but was hardly reduced at 8.8 wt%

  4. 133Xe release during post-irradiation annealing of uranium metal in the presence of a constant volume of air Pt. 1

    International Nuclear Information System (INIS)

    Marei, S.A.; El-Garhy, M.; El-Bayoumy, S.; Muenze, R.; Hladik, O.

    1978-01-01

    The fractional release of 133 Xe at different temperatures was studied as a function of time in the presence of air during post-irradiation annealing of uranium metal. The relation between the fractional release and tsup(1/2) was found to be irregular. There is an initial step in the annealing curves (at the temperature range of 400-710 deg C) which decreases by increasing temperature and totally disappears at the high temperature of 800-1000 deg C. The initial step was found to be due to the surface oxidation of uranium metal. The other two parts of the release curves are normal for 133 Xe release from uranium metal. Since in this work the irradiation temperature is low ( 133 Xe. (T.G.)

  5. An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate

    Directory of Open Access Journals (Sweden)

    Wuseong You

    2017-12-01

    Full Text Available In this paper, we designed and analyzed advanced sodium-cooled fast reactor cores using uranium-free metallic fuels for maximizing burning rate of transuranics (TRU nuclides from PWR spent fuels. It is well known that the removal of fertile nuclides such as 238U from fuels in liquid metal cooled fast reactor leads to the degradation of important safety parameters such as the Doppler coefficient, coolant void worth, and delayed neutron fraction. To resolve the degradation of the Doppler coefficient, we considered adding resonant nuclides to the uranium-free metallic fuels. The analysis results showed that the cores using uranium-free fuels loaded with tungsten instead of uranium have a significantly lower burnup reactivity swing and more negative Doppler coefficients than the core using uranium-free fuels without resonant nuclides. In addition, we considered the use of axially central B4C absorber region and moderator rods to further improve safety parameters such as sodium void worth, burnup reactivity swing, and the Doppler coefficient. The results of the analysis showed that the final design core can consume ~353 kg per cycle and satisfies self-controllability under unprotected accidents. The fuel cycle analysis showed that the PWR–SFR coupling fuel cycle option drastically reduces the amount of waste going to repository and the SFR burner can consume the amount of TRUs discharged from 3.72 PWRs generating the same electricity.

  6. Determination of carbon in uranium and its compounds; Determinacion de carbono en uranio metal y sus compuestos

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Garcia, M M

    1972-07-01

    This paper collects the analytical methods used our laboratories for the determination of carbon in uranium metal, uranate salts and the oxides, fluorides and carbides of uranium. The carbon is usually burned off in a induction or resistance oven under oxygen flow. The CO{sub 2} is collected in barite solution. Where it is backtitrated with potassium biphthalate. (Author)

  7. Assay of uranium in fused salt cake generated at the natural uranium metal fuel fabrication plants by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Kalsi, P.C.; Bhanu, A.U.; Sahoo, S.; Iyer, R.H.

    1986-01-01

    A passive gamma-ray spectroscopic method is employed for the assay of uranium in fused salt cake, a scrap produced at the natural uranium metal fuel fabrication plants. The method makes use of NaI(TI) detector coupled with a multichannel analyser. The 1 MeV gamma-ray of 238 U was used for the calibration. The calibration curve was made by counting synthetic mixtures made of U 3 O 8 powder, the heat treatment salt and iron in the form of fine powder. The uranium content in these synthetic mixtures was kept in the range of 1-11 per cent. 23 lots of the fused salt cake taken from three different batches of the salt cake were then analysed by this method. The uranium content of fused salt cake was found to be in the range of 1.70-11.43 per cent. To compare the gamma spectrometric results with a completely independent method, chemical analysis of all the fused salt cakes were also carried out. The NDA results were found to agree within ± 17 per cent with the chemical analysis results. (author)

  8. Sonochemical-assisted magnesium borate synthesis from different boron sources

    Directory of Open Access Journals (Sweden)

    Yildirim Meral

    2017-03-01

    Full Text Available In this study, sonochemical-assisted magnesium borate synthesis is studied from different boron sources. Various reaction parameters are successfully applied by a simple and green method. X-ray diffraction (XRD, Fourier transform infrared (FT-IR and Raman spectroscopies are used to characterize the synthesized magnesium borates on the other hand surface morphologies are investigated by using scanning electron microscope (SEM. The XRD analyses showed that the products were admontite [MgO(B2O33 · 7(H2O] with JCPDS (Joint Committee on Powder Diffraction Standards no. of 01-076-0540 and mcallisterite [Mg2(B6O7(OH62 · 9(H2O] with JCPDS no. of 01-070-1902. The results that found in the spectroscopic studies were in a good agreement with characteristic magnesium borate bands in both regions of infra-red and visible. According to SEM results, obtained borates were in micro and sub-micro scales. By the use of ultrasonication, reaction yields were found between 84.2 and 97.9%. As a result, it is concluded that the sonochemical approach is a practicable synthesis method to get high efficiency and high crystallinity in the synthesis magnesium borate compounds.

  9. The temperature coefficient of the resonance integral for uranium metal and oxide

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, P; Hellstrand, E; Homer, S

    1960-06-15

    The temperature coefficient of the resonance integral in uranium metal and oxide has been measured over a wide temperature range for rods with three different diameters. The results for metal agree with most earlier results from activation measurements but differ as much as a factor of two from results obtained with reactivity methods. For oxide only one measurement has been reported recently. Our value is considerably lower than the result of that measurement. The experiments will continue in order to find the reason for the large discrepancy mentioned above.

  10. The temperature coefficient of the resonance integral for uranium metal and oxide

    International Nuclear Information System (INIS)

    Blomberg, P.; Hellstrand, E.; Homer, S.

    1960-06-01

    The temperature coefficient of the resonance integral in uranium metal and oxide has been measured over a wide temperature range for rods with three different diameters. The results for metal agree with most earlier results from activation measurements but differ as much as a factor of two from results obtained with reactivity methods. For oxide only one measurement has been reported recently. Our value is considerably lower than the result of that measurement. The experiments will continue in order to find the reason for the large discrepancy mentioned above

  11. Uranium recovery from AVLIS slag

    International Nuclear Information System (INIS)

    D'Agostino, A.E.; Mycroft, J.R.; Oliver, A.J.; Schneider, P.G.; Richardson, K.L.

    2000-01-01

    Uranium metal for the Atomic Vapor Laser Isotope Separation (AVLIS) project was to have been produced by the magnesiothermic reduction of uranium tetrafluoride. The other product from this reaction is a magnesium fluoride slag, which contains fine and entrained natural uranium as metal and oxide. Recovery of the uranium through conventional mill leaching would not give a magnesium residue free of uranium but to achieve more complete uranium recovery requires the destruction of the magnesium fluoride matrix and liberation of the entrapped uranium. Alternate methods of carrying out such treatments and the potential for recovery of other valuable byproducts were examined. Based on the process flowsheets, a number of economic assessments were performed, conclusions were drawn and the preferred processing alternatives were identified. (author)

  12. Tensile behavior of borated stainless steels

    International Nuclear Information System (INIS)

    Stephens, J.J. Jr.; Sorenson, K.B.

    1991-01-01

    Borated stainless steel tensile testing is being conducted at Sandia National Laboratories (SNL). The goal of the test program is to provide data to support a code case inquiry to the ASME Boiler and Pressure Vessel Code, Section III. The adoption by ASME facilitates a material's qualification for structural use in transport cask applications. For transport cask basket applications, the potential advantage to using borated stainless steel arises from the fact that the structural and criticality control functions can be combined into one material. This can result in a decrease in net section thickness of the basket web (increased payload capacity) and eliminates the fabrication process and cost of attaching a discrete boron poison material to the basket web. In addition, adding borate stainless steel to the inventory of acceptable structural material provides the Department of Energy (DOE) and its cask contractors an alternative to current proposed materials which have not been qualified for structural service. The test program at SNL involves procuring material, machining test specimens, and conducting the tensile tests. From test measurements obtained so far, general trends indicate that tensile properties (yield strength and ultimate strength) increase with boron content and are in all cases superior to the minimum required properties established in A-240, Type 304, a typical grade of austenitic stainless steel. Therefore, in a designed basket, web thicknesses using borated stainless steel would be comparable to or thinner tan an equivalent basket manufactured from a typical stainless steel without boron additions. General trends from test results indicate that ductilities decrease with increasing boron content

  13. Drawing of uranium in {gamma} phase; Filage de l'uranium en phase gamma

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Chevigny, R [Conpagnie, Pechiney, 73 - Chambery (France)

    1955-07-01

    It describes the study of working and drawing of uranium in {gamma} phase. In a first part, the forgeable characteristics of uranium metal in the three different phases ({alpha}, {beta} and {gamma}) are compared by using BASTIEN-PORTEVIN method. The different experiments are testing the behaviour metal in each phase under different stresses and a temperature gradient as slow and shock traction, slow and shock compression, resilience, flexibility. Results show that optimum conditions for uranium drawing is uranium in phase {gamma}. In a second part, it described the drawing method and process. The uranium rods obtained by this technique are of very good quality. In addition, the material wear is very low which permits a low production cost. Finally, the uranium rod physical properties are studied. (M.P.)

  14. Neutron activation analysis of rare earths in uranium containing rocks

    International Nuclear Information System (INIS)

    May, S.; Pinte, G.

    1984-01-01

    The determination of rare earths by activation analysis in uranium rocks is disturbed either by fission-produced rare earths, or by neptunium-239 originating from uranium-238. In order to eliminate these interferencies, the chemical separation of rare earths from uranium prior to activation should be performed. The chemical process is as follows: the rock sample is fused with sodium borate, then, after addition of hydrochloric acid, the resulting solution is passed through a Dowex 1x8 column. Uranium is retained on the resin, and rare earths and scandium are eluted. Aluminium is added as a carrier to the solution, and rare earths and scandium are coprecipitated with aluminium hydroxide. This precipitate is irradiated in the nuclear reactor. Gamma spectrometry is used for the determination of earth radionuclide. Activity measurements are performed in successive steps during one month. The following elements are determined: Pr, La, Sm, Nd, Yb, Lu, Ce, Tb, Eu and Sc. The chemical yield is measured by using scandium as an internal standard. (author)

  15. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells [v1; ref status: indexed, http://f1000r.es/kv

    Directory of Open Access Journals (Sweden)

    Noboru Yamauchi

    2013-09-01

    Full Text Available In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM. This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species.

  16. Uranium isotopic signatures measured in samples of dirt collected at two former uranium facilities

    International Nuclear Information System (INIS)

    Meyers, L.A.; Stalcup, A.M.; LaMont, S.P.; Spitz, H.B.

    2014-01-01

    Nuclear forensics is a multidisciplinary science that uses a variety of analytical methods and tools to explore the physical, chemical, and isotopic characteristics of nuclear and radiological materials. These characteristics, when evaluated alone or in combination, become signatures that may reveal how and when the material was fabricated. The signatures contained in samples of dirt collected at two different uranium metal processing facilities in the United States were evaluated to determine uranium isotopic composition and compare results with processes that were conducted at these sites. One site refined uranium and fabricated uranium metal ingots for fuel and targets and the other site rolled hot forged uranium and other metals into dimensional rods. Unique signatures were found that are consistent with the activities and processes conducted at each facility and establish confidence in using these characteristics to reveal the provenance of other materials that exhibit similar signatures. (author)

  17. Separation of cesium from aqueous solutions using alkylated tetraaryl borates

    International Nuclear Information System (INIS)

    Feldmaier, F.

    1991-01-01

    The water solubility of cesium tetraaryl borates was lowered by introducing hydrophobic aliphatic side chains into corresponding acid-resistant fluorosubstituted tetraaryl borates. This improved cesium spearability both in precipitation and in extraction from aqueous solutions. (orig.) [de

  18. Application of a chronoamperometric measurement to the on-line monitoring of a lithium metal reduction for uranium oxide

    International Nuclear Information System (INIS)

    Kim, Tack-Jin; Cho, Young-Hwan; Choi, In-Kyu; Kang, Jun-Gill; Song, Kyuseok; Jee, Kwang-Yong

    2008-01-01

    Both a potentiometric and a chronoamperometric electrochemical technique have been applied in an attempt to develop an efficient method for an on-line monitoring of a lithium metal reduction process of uranium oxides at a high-temperature in a molten salt medium. As a result of this study, it was concluded that the chronoamperometric method provided a simple and effective way for a direct on-line monitoring measurement of a lithium metal reduction process of uranium oxides at 650 o C by the measuring electrical currents dependency on a variation of the reduction time for the reaction. A potentiometric method, by adopting a homemade oxide ion selective electrode made of ZrO 2 stabilized by a Y 2 O 3 doping, however, was found to be inappropriate for an on-line monitoring of the reduction reaction of uranium oxide in the presence of lithium metal due to an abnormal behavior of the adopted electrodes. The observed experimental results were discussed in detail by comparing them with previously published experimental data

  19. Manhattan Project Technical Series The Chemistry of Uranium (I) Chapters 1-10

    International Nuclear Information System (INIS)

    Rabinowitch, E. I.; Katz, J. J.

    1946-01-01

    This constitutes Chapters 1 through 10. inclusive, of The Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Nuclear Properties of Uranium; Properties of the Uranium Atom; Uranium in Nature; Extraction of Uranium from Ores and Preparation of Uranium Metal; Physical Properties of Uranium Metal; Chemical Properties of Uranium Metal; Intermetallic Compounds and Alloy systems of Uranium; the Uranium-Hydrogen System; Uranium Borides, Carbides, and Silicides; Uranium Nitrides, Phosphides, Arsenides, and Antimonides.

  20. XPS characterization of the anodic oxide film formed on uranium metal in sodium hydroxide solution

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Guo Huanjun; Wang Qingfu; Zhao Zhengping; Zhong Yongqiang

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) is used to examine the anodic oxide film formed on uranium metal in 0.8 mol/L NaOH solution. The U4f 7/2 fitting spectra suggests that the anodic oxide film is composed of uranium trioxide and a small amount of UO 2+x . Under UHV condition, the U4f peak shifts to the lower binding energy, while a gradual increase in the intensity of U5f peak and the broad of U4f peak are also observed. All of these changes are due to reduction of uranium trioxide in the anodic oxide film. XPS quantitative analysis confirms the occurrence of reduction reaction

  1. Uranium in the black schists of Goesan (Ogcheon, Korea): relationships between organic matter and uranium

    International Nuclear Information System (INIS)

    Trichet, J.; Chun-Hyuck, O.

    1990-01-01

    The uranium deposit of Goesan is polyphased: its genesis resulted from sedimentary, diagenetic and metamorphic processes which occurred from late Proterozoic (presumed age of the deposition of the black shales) to late Trias. By its geochemical characters, this deposit resulted from the affinity existing between uranium and organic matter. The latter had a role both through the formation of organo-metallic complexes and as a reducing agent of the metal during the diagenetic evolution. Beside these factors favourable to metal accumulation, the possible development of evaporitic conditions and tectono-metamorphic processes can also have played an important role in the reconcentration of uranium as well as other metals [fr

  2. Chapter 3: Exponential experiments on graphite-moderated lattices fuelled with near-natural uranium metal rods

    International Nuclear Information System (INIS)

    McCulloch, D.B.; Clarke, W.G.; Ashworth, F.P.O.; Hoskins, T.A.

    1963-01-01

    Exponential experiments have been carried out on graphite lattices fuelled by 1.2 in. diameter uranium metal rods at three near-natural U 235 compositions, 0.6 Co, 1.3 Co and 1.6 Co. The results, together with those already existing from earlier exponential or critical measurements on these and similar natural uranium rods, have been correlated with the theory of Syrett (1961) and also with the modified form of this theory given in Vol.1, Ch. 7. (author)

  3. Barium-borate-flyash glasses: As radiation shielding materials

    International Nuclear Information System (INIS)

    Singh, Sukhpal; Kumar, Ashok; Singh, Devinder; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The attenuation coefficients of barium-borate-flyash glasses have been measured for γ-ray photon energies of 356, 662, 1173 and 1332 keV using narrow beam transmission geometry. The photon beam was highly collimated and overall scatter acceptance angle was less than 3 o . Our results have an uncertainty of less than 3%. These coefficients were then used to obtain the values of mean free path (mfp), effective atomic number and electron density. Good agreements have been observed between experimental and theoretical values of these parameters. From the studies of the obtained results it is reported here that from the shielding point of view the barium-borate-flyash glasses are better shields to γ-radiations in comparison to the standard radiation shielding concretes and also to the ordinary barium-borate glasses

  4. Inherently safe in situ uranium recovery

    International Nuclear Information System (INIS)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-01-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  5. Uranium processing and properties

    CERN Document Server

    2013-01-01

    Covers a broad spectrum of topics and applications that deal with uranium processing and the properties of uranium Offers extensive coverage of both new and established practices for dealing with uranium supplies in nuclear engineering Promotes the documentation of the state-of-the-art processing techniques utilized for uranium and other specialty metals

  6. The effect of Cu-rich sub-layer on the increased corrosion resistance of Cu-xZn alloys in chloride containing borate buffer

    International Nuclear Information System (INIS)

    Milosev, Ingrid; Mikic, Tadeja Kosec; Gaberscek, Miran

    2006-01-01

    The electrochemical behaviour of Cu-xZn alloys, as well as their constituent metals, in a borate buffer containing chloride ions in the molar range from 0.01 to 1 M are studied. Characteristics of these materials under anodic polarization are compared and the composition and morphology of the corrosion products formed in the course of polarization experiment are analysed by SEM and EDS. X-ray photoelectron spectroscopy and electrochemical impedance measurements are used for characterization of the surface layers formed on Cu, Zn and Cu-40Zn alloy during 2-h immersion at E oc in a borate buffer containing two different concentrations of chloride ions. New aspects of the behaviour of brass under E oc condition are revealed. The improved corrosion resistance of brass in chloride media, if compared to zinc metal, is attributed to a Cu-rich layer formed by the selective dissolution of zinc. Based on the results, a structural model describing the improved corrosion resistance of Cu-40Zn alloy with respect to Zn metal is proposed

  7. Corrosion behaviour of borated aluminium used as neutron absorber

    Energy Technology Data Exchange (ETDEWEB)

    Emmerich, R. [EaglePicher Technologies GmbH, Oehringen (Germany); Ensinger, W.; Enders, B. [Philipps-Univ. of Marburg, Dept. of Chemistry, Material Science Centre (Germany)

    2004-07-01

    The electrochemical behaviour of pure and borated aluminium was examined. Measurements were performed in two different electrolytes at 90 C containing different trace-amounts of chloride. For borated aluminium current transients, i.e. metastable depassivation events were found. It is suggested to attribute these transients to less stable passivation layers in comparison to pure aluminium.

  8. Drawing of uranium in {gamma} phase; Filage de l'uranium en phase gamma

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J.A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Chevigny, R. [Conpagnie, Pechiney, 73 - Chambery (France)

    1955-07-01

    It describes the study of working and drawing of uranium in {gamma} phase. In a first part, the forgeable characteristics of uranium metal in the three different phases ({alpha}, {beta} and {gamma}) are compared by using BASTIEN-PORTEVIN method. The different experiments are testing the behaviour metal in each phase under different stresses and a temperature gradient as slow and shock traction, slow and shock compression, resilience, flexibility. Results show that optimum conditions for uranium drawing is uranium in phase {gamma}. In a second part, it described the drawing method and process. The uranium rods obtained by this technique are of very good quality. In addition, the material wear is very low which permits a low production cost. Finally, the uranium rod physical properties are studied. (M.P.)

  9. Purification method for calcium fluoride containing uranium

    International Nuclear Information System (INIS)

    Ogami, Takeshi

    1998-01-01

    Calcium fluoride (CaF 2 ) containing uranium is heated in an electrolytic bath having a cathode and an anode to form a molten salt, and the molten salt is electrolytically reduced to form metal uranium deposited on the surface of the cathode. The calcium fluoride molten salt separated by the deposition of generated metal uranium on the surface of the cathode is solidified by cooling. The solidified calcium fluoride is recovered. When metal uranium is deposited on the surface of the cathode by the electrolytic reduction of the molten salt, impurities such as plutonium and neptunium are also deposited on the surface of the anodes entrained by the metal uranium. Impurities having high vapor pressures such as americium and strontium are evaporated and removed from the molten salts. Then, nuclides such as uranium can thus be separated and recovered, and residual CaF 2 can be recovered in a state easily storable and reutilizable. (T.M.)

  10. Industrial realities: Uranium

    International Nuclear Information System (INIS)

    Thiron, H.

    1990-01-01

    In this special issue are examined ores and metals in France and in the world for 1988. The chapter on uranium gives statistical data on the uranium market: Demand, production, prices and reserves [fr

  11. Possibilities of using metal uranium fuel in heavy water reactors; Mogucnosti upotrebe metalnog urana kao goriva za teskovodne reaktore

    Energy Technology Data Exchange (ETDEWEB)

    Djuric, B; Mihajlovic, A; Drobnjak, Dj [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    There are serious economic reasons for using metal uranium in heavy water reactors, because of its high density, i.e. high conversion factor, and low cost of fuel elements production. Most important disadvantages are swelling at high burnup and corrosion risk. Some design concepts and application of improved uranium obtained by alloying are promising for achievement of satisfactory stability of metal uranium under reactor operation conditions. Postoje ozbiljni ekonomski razlozi za primenu metalnog urana u teskovodnim reaktorima, pre svega zbog njegove velike gustine, odnosno visokog konverzionog faktora, i zbog niskih troskova proizvodnje gorivnih elemenata. Glavne prepreke su bubrenje pri velikim stepenima sagorevanja i opasnost od korozije. Postoje veliki izgledi da se primenom odredjenih projektnih koncepcija i upotrebom legiranjem poboljsanog urana postigne zadovoljavajuca stabilnost metalnog urana u uslovima rada reaktora (author)

  12. Corrosion resistant coatings for uranium and uranium alloys

    International Nuclear Information System (INIS)

    Weirick, L.J.; Lynch, C.T.

    1977-01-01

    Coatings to prevent the corrosion of uranium and uranium alloys are considered in two military applications: kinetic energy penetrators and aircraft counterweights. This study, which evaluated organic films and metallic coatings, demonstrated that the two most promising coatings are based on an electrodeposited nickel system and a galvanized zinc system

  13. Multi-metal contamination with uranium trend impact on aquatic environment and consequences for fish immune system and adaptive responses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guernic, A.; Gagnaire, B. [IRSN/PRP-ENV/SERIS/LECO (France); Sanchez, W. [Institut national de l' environnement industriel et des risques - INERIS (France); Betoulle, S. [Champagne Ardenne University (France)

    2014-07-01

    Human activities have conducted to an increase of concentrations of various metals in aquatic ecosystems, including uranium. Its extraction and use have been rapidly magnified because of its role in the nuclear fuel cycle. These activities have led to high concentrations of uranium in the aquatic environment and thus a potential risk to exposed organisms, including fish. Consequences can be observed through metabolic and physiological responses, called biomarkers. Some biomarkers are interesting in order to evaluate the effects of metal contamination, among other immunotoxicity markers, antioxidant defenses and genotoxicity. The aims of this study are: i) to investigate the effects of a multi-metal contamination on a fish, the three-spined stickleback, Gasterosteus aculeatus, and ii) to observe the adaptive capacity of fish due to a combination of stress (chemical stress and biological stress). To meet the first objective, six water bodies (ponds and lakes) located in two departments (Cantal and Haute-Vienne, France) were chosen according to their proximity to old uranium mines and to their levels of metal contamination related to chemical processes appeared during extraction. 240 three-spined sticklebacks were caged for 28 days in the six selected sites. A battery of biomarkers was measured in fish sampled after 14 and 28 of caging. The results for the Haute-Vienne department showed that caged fish in the pond with the highest uranium concentration (20 μg.L{sup -1}) presented the most DNA damage after 14 days of caging. Leukocyte phagocytosis (marker of immunotoxicity) of caged fish in this pond was lower at 14 days and greater at 28 days compared to other ponds without uranium. The multi-metal contamination negatively affected other parameters such as the condition index, oxidative activity, viability of lysosomal membrane and leukocytes distribution. In order to study the response of fish to a combined stress (chemical + biological) (objective ii), a second

  14. Influence of fast neutrons on thermophysical properties of pure and borated low density polyethylene

    International Nuclear Information System (INIS)

    El-Khatib, A. M.; Kassem, M.

    1990-01-01

    The impact of radiation crosslinking on the mechanical, thermomechanical and electrical conductivity properties of LDPE and borated polyethylene have been studied and evaluated. The 8% borated polyethylene samples have added a new advantage where the tensile strength has increased to the maximum and then it became constant at higher crosslink density. Moreover, the electrical conductivity of 8% borated polyethylene is much higher than pure and 4% borated polyethylene. (author). 16 refs., 8 figs

  15. Amount of leachant and water absorption levels of wood treated with borates and water repellents.

    Science.gov (United States)

    Baysal, Ergun; Sonmez, Abdullah; Colak, Mehmet; Toker, Hilmi

    2006-12-01

    Wood protection efficacy of borates against biological agents, flame retardancy, and suitability to the environment is well known. Since borates can be applied to timber as water based solutions, they are preferred economically as well. Even though they are highly mobile in wood, boron compounds are widely used in timber preservation. Borates migrate in liquid and increase the hygroscopicity of wood in damp conditions. This study deals with the physical restriction of water access in wood by impregnating water repellent agents into wood to limit amount of leachant and water absorption levels of wood after boron treatment. Borates were incorporated with polyethylene glycol-400 (PEG-400) their bulking effect in wood was considered. Results indicated that the amount of leachates from wood treated with borates in PEG-400 was remarkably higher compared to those of wood treated with the aqueous solutions of borates. Water absorption (WA) levels of wood treated with aqueous solutions of borates were higher than those of their treated samples with the solutions in PEG-400. Secondary treatments of wood with the water repellent (WR) chemicals following borate impregnation reduced the leaching of chemicals from wood in water and also WA of the specimens were less than those of the wood treated with only borates from aqueous and PEG solutions. Styrene (St) was the most effective monomer among the other agents used in terms of immobility effect on borates and WA.

  16. Measurement of thermal conductivity of uranium metal using transient plane source technique

    International Nuclear Information System (INIS)

    Subramanian, G.G.S.; Bapuji, T.; Panneerselvam, G.; Antony, M.P.; Nagarajan, K.

    2012-01-01

    Thermo physical properties of fuel, cladding and structural materials play a significant role in the reactor operation. Thermal conductivity is one of the most important physical properties of the fuel which determines the maximum linear heat rating of the fuel in a reactor. As part of this study, the thermal conductivity of uranium metal was measured using a transient plane source (TPS) by Hot-disc method

  17. Properties of uranium and thorium in host rocks of multi-metal (Ag, Pb, U, Cu, Bi, Z, F) Big Kanimansur deposit (Tajikistan)

    International Nuclear Information System (INIS)

    Fayziev, A.R.

    2007-01-01

    Multi-metal Big Kanimansur Deposit host rocks contain high averages of uranium and thorium which are more than clark averages by 7 and 2.5 times accordingly. The second property of radio-active elements distribution are low ratio of thorium to uranium. That criteria can be used as prospecting sings for flanks and depth of know ore fields as well as for new squares of multi-metal mineralisation

  18. Improvements to the properties of uranium by addition of small quantities of other metals; Ameliorations apportees a l'uranium par de faibles additions metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Englander, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The most economical nuclear fuel used in power reaction which produce energy for industrial purposes is metallic uranium, either in natural form or slightly enriched in the {sup 235}U isotope. Under optimum working conditions any fuel should produce a minimum of 3,000 MW days/tonne, i.e. 72 x 10{sup 6} kWh per tonne of natural uranium, while at the same lime being maintained at a temperature sufficiently high for it to fulfil its role of heat-source (at a minimum of between 350 and 550 deg. C). Now it is rather surprising to note that polycrystalline aggregates in uranium billets, obtained either by casting under vacuum or by extrusion at high temperature, are made up of course grains having broken-up, irregular contours and exhibit numerous signs of intergranular deformation (twin crystals, slip-lines) as well as a pronounced sub-structure. As well as this, the range of grain diameters extends from a few microns up to a few millimeters, according to the micrographic zones examined. Under the influence of irradiation at these temperatures, pure cylindrical metallic uranium bars of about 1 inch diameter are deformed: cracks appear in the metal and changes in the length and diameter occur (these produce an 'orange-peel' texture on the surface). These changes are caused either by growths which are more or less oriented, or else by surface distortions which can cause faults in the material and in the canning and can produce bending which may be sufficiently pronounced to interfere with the cooling circuits. It has since been realised that this instability under the effects of thermal stresses of nuclear origin is due to the heterogeneous morphology of uranium and to its anisotropic crystalline structure (U{sub {alpha}} or U{sub {beta}}). (author) [French] Les reacteurs de puissance destines a fournir l'energie industriellement recuperable utilisent comme materiau combustible nucleaire le plus economique, l'uranium metallique naturel ou legerement enrichi en isotope U

  19. High-sensitive detection by direct interrogation of 14 MeV Acc neutrons, (1). Uranium-contained metal matrix in a waste dram

    International Nuclear Information System (INIS)

    Haruyama, Mitsuo; Takase, Misao; Tobita, Hiroshi; Mori, Takamasa

    2004-01-01

    Previously, authors reported that the 14 MeV-neutron direct interrogation method has made possible measure for the discrimination of clearance levels of concrete solidification uranium waste. In this paper, applicability of the method to metal waste matrix is discussed based on the results of simulation experiments by the continuation energy Monte Carlo calculation code (MVP). The problem is that self-neutron moderation effect in a waste cannot be expected when a waste matrix is metal. To solve this, a moderator is adopted so as to surround a metal waste drum and to slow down suitably a 14 MeV neutrons. The simulation calculation showed that this effect is satisfactorily large. The detection limit of radioactivity concentration to 4.5% enriched uranium has been found to be 0.0973 Bq/g in the metal waste model of 215.59 kg gross weight, in which 61 pipes are stuffed into its drum. Moreover, the position-dependent sensitivity difference in a metal waste drum can be settled as small as to ±13.5%. In conclusion, it can be said that 14 MeV-neutron direct interrogation method can be applied to the waste of a metal system: the detection sensitivity is high enough and the position-dependent sensitivity difference is small admittedly. Hence the method can be applied also to discrimination measurement of the clearance level of metal uranium waste. (author)

  20. A new methodology using mathematical treatment in uranium recovery of slags from U-metal production

    International Nuclear Information System (INIS)

    Ferreto, Helio Fernando Rodrigues; Araujo, Berta Floh de

    1999-01-01

    U 3 Si 2 fuel was developed by the Fuel Cycle Department of IPEN/CNEN - SP in order to provide high density fuel elements for the IEA-R1m swimming pool reactor. Uranium containing magnesium fluoride slags are produced during the reduction of U F 4 to metallic uranium, the first step of U 3 Si 2 production. Since enriched uranium is used and taking in account process economics and environmental impacts, the recovery of uranium from the slags is highly recommended. This work deals with the uranium recovery from magnesium fluoride slag via nitric acid leaching process using a new methodology for the study. A statistical procedure for process optimization was applied using a fractional factorial design at two levels and four variables represented as 2 4-1 . Variance analysis followed by multiple regression was used, setting up a first order polygonal model, as follow: y 92,409 +3,825 x 1 - 0,875 x 3 + 1,65 x 4 - 0,95 x 3 x 4 Standard error 1,04572. This equation represents the variables and the most suitable interactions in the uranium recovery process. By using this equation, one can obtain in advance and without making experiments the values from the process variables for a giving process yield. (author)

  1. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal

  2. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-01-01

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate's beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ∼60 C, 80 C, and 95 C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal

  3. Metal bioaccumulation, genotoxicity and gene expression in the European wood mouse (Apodemus sylvaticus) inhabiting an abandoned uranium mining area

    Energy Technology Data Exchange (ETDEWEB)

    Lourenço, Joana, E-mail: joanalourenco@ua.pt [Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Pereira, Ruth [Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Gonçalves, Fernando; Mendo, Sónia [Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2013-01-15

    Genotoxic effects caused by the exposure to wastes containing metals and radionuclides were investigated in the European wood mice (Apodemus sylvaticus). The animals were captured in the surroundings of an abandoned uranium mining site. DNA damage was assessed by comet assay; gene expression and single nucleotide polymorphisms (SNPs) were assessed, respectively, by Real-Time PCR and melt curve analysis. The bioaccumulation of metals in the liver, kidney and bones was also determined to help clarify cause–effect relationships. Results confirmed the bioaccumulation of cadmium and uranium in organisms exposed to uranium mining wastes. P53 gene was found to be significantly up-regulated in the liver of those organisms and SNPs in the Rb gene were also detected in the kidney. Our results showed that uranium mining wastes caused serious DNA damage resulting in genomic instability, disclosed by the significant increase in DNA strand breaks and P53 gene expression disturbance. These effects can have severe consequences, since they may contribute for the emergence of serious genetic diseases. The fact that mice are often used as bioindicator species for the evaluation of risks of environmental exposure to humans, raises concerns on the risks for human populations living near uranium mining areas. - Highlights: ► Long term effects of chronic pollution in natural population of rodents. ► Bioaccumulation of cadmium and uranium by organisms exposed to uranium wastes. ► P53 upregulation in the liver and SNPs in the Rb gene detected in the kidney. ► Significant DNA damages detected by the comet assay. ► Concerns on the risks of human populations living nearby uranium mining areas.

  4. Metal bioaccumulation, genotoxicity and gene expression in the European wood mouse (Apodemus sylvaticus) inhabiting an abandoned uranium mining area.

    Science.gov (United States)

    Lourenço, Joana; Pereira, Ruth; Gonçalves, Fernando; Mendo, Sónia

    2013-01-15

    Genotoxic effects caused by the exposure to wastes containing metals and radionuclides were investigated in the European wood mice (Apodemus sylvaticus). The animals were captured in the surroundings of an abandoned uranium mining site. DNA damage was assessed by comet assay; gene expression and single nucleotide polymorphisms (SNPs) were assessed, respectively, by Real-Time PCR and melt curve analysis. The bioaccumulation of metals in the liver, kidney and bones was also determined to help clarify cause-effect relationships. Results confirmed the bioaccumulation of cadmium and uranium in organisms exposed to uranium mining wastes. P53 gene was found to be significantly up-regulated in the liver of those organisms and SNPs in the Rb gene were also detected in the kidney. Our results showed that uranium mining wastes caused serious DNA damage resulting in genomic instability, disclosed by the significant increase in DNA strand breaks and P53 gene expression disturbance. These effects can have severe consequences, since they may contribute for the emergence of serious genetic diseases. The fact that mice are often used as bioindicator species for the evaluation of risks of environmental exposure to humans, raises concerns on the risks for human populations living near uranium mining areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Kinetic parameters and TL mechanism in cadmium tetra borate phosphor

    International Nuclear Information System (INIS)

    Annalakshmi, O.; Jose, M.T.; Sridevi, J.; Venkatraman, B.; Amarendra, G.; Mandal, A.B.

    2014-01-01

    Polycrystalline powder samples of cadmium tetra borate were synthesized by a simple solid state sintering technique and gamma irradiated sample showed a simple Thermoluminescence (TL) glow peak around 460 K. The TL kinetic parameters of gamma irradiated phosphor were determined by initial rise (IR), isothermal decay (ID), peak shape (PS), variable heating rate (VHR) and glow curve de-convolution method. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were calculated by IR, ID, PS and VHR methods are in the order of ∼1.05 eV, 10 9 –10 12 s −1 and 1.58, respectively. From the results of TL and PL emission studies carried out on the phosphor revealed that the defect centers related to TL is different from that for PL. EPR measurements were carried out to identify the defect centers formed in cadmium tetra borate phosphor on gamma irradiation. Based on EPR studies the mechanism for TL process in cadmium tetra borate is proposed in this paper -- Highlights: • Polycrystalline powder samples of undoped cadmium tetra borate synthesized. • Cadmium tetra borate phosphor exhibits a dosimetric peak at 458 K. • Kinetic parameters of the trap responsible for TL evaluated. • TL mechanism is proposed from TL to EPR correlation studies

  6. Kinetic parameters and TL mechanism in cadmium tetra borate phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Annalakshmi, O. [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Jose, M.T., E-mail: mtj@igcar.gov.in [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Sridevi, J. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600 020, Tamilnadhu (India); Venkatraman, B. [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mandal, A.B. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600 020, Tamilnadhu (India)

    2014-03-15

    Polycrystalline powder samples of cadmium tetra borate were synthesized by a simple solid state sintering technique and gamma irradiated sample showed a simple Thermoluminescence (TL) glow peak around 460 K. The TL kinetic parameters of gamma irradiated phosphor were determined by initial rise (IR), isothermal decay (ID), peak shape (PS), variable heating rate (VHR) and glow curve de-convolution method. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were calculated by IR, ID, PS and VHR methods are in the order of ∼1.05 eV, 10{sup 9}–10{sup 12} s{sup −1} and 1.58, respectively. From the results of TL and PL emission studies carried out on the phosphor revealed that the defect centers related to TL is different from that for PL. EPR measurements were carried out to identify the defect centers formed in cadmium tetra borate phosphor on gamma irradiation. Based on EPR studies the mechanism for TL process in cadmium tetra borate is proposed in this paper -- Highlights: • Polycrystalline powder samples of undoped cadmium tetra borate synthesized. • Cadmium tetra borate phosphor exhibits a dosimetric peak at 458 K. • Kinetic parameters of the trap responsible for TL evaluated. • TL mechanism is proposed from TL to EPR correlation studies.

  7. Thermal, structural and spectroscopic properties of Pr3+-doped lead zinc borate glasses modified by alkali metal ions

    Directory of Open Access Journals (Sweden)

    M.V. Sasi kumar

    2017-07-01

    Full Text Available This paper offers a study on Pr3+-doped alkali and mixed-alkali borate glasses prepared by the melt quenching technique and characterized by thermal, structural and spectroscopic studies. The amorphous nature of the glassy systems was identified based on X-ray diffraction. The thermal behaviour of glasses was studied using differential thermal analysis (DTA. The functional groups contained in the glasses were identified by Fourier transform infrared spectroscopy (FTIR. Spectral intensities were evaluated from the absorption spectra and used for calculating J–O intensity parameters, Ωλ (λ = 2, 4 and 6. Further, these parameters were used for calculating different radiative properties. The best radiative state was identified as the laser transition state among the various states. Emission analysis was performed for this state by calculating the branching ratios and stimulated emission cross sections (σp for all the prepared glasses. These studies suggest that borate glasses are useful for visible fluorescence.

  8. Research on the surface chemical behavior of uranium metal in hydrogen atmosphere by XPS

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Yu Yong; Zhao Zhengping

    2001-01-01

    The surface chemical behavior clean uranium metal in hydrogen atmosphere at 100 and 200 degree C is studied by X-ray photoelectron spectroscopy (XPS), respectively. It leads to hydriding reaction when the hydrogen exposure is 12.0 Pa·s, and the U4f 7/2 binding energy of UH 3 is found to be 378.7 eV. The higher temperature (200 degree C) is beneficial to UH 3 formation at the same hydrogen exposures. XPS elemental depth profiles indicate that the distribution of uranium surface layer is UO 2 , UH 3 and U after exposure to 174.2 Pa·s hydrogen

  9. Joining uranium to steel

    International Nuclear Information System (INIS)

    Perkins, M.A.

    1976-05-01

    A method has been devised which will allow the joining of uranium to steel by fusion welding through the use of an intermediate material. Uranium-0.5 titanium was joined to AISI 304L stainless steel by using a vanadium insert. Also, a method is now available for selecting possible filler metals when two entirely dissimilar metals need to be joined. This method allows a quantitative ranking to be made of the possible filler metals and thus the most likely candidate can be selected

  10. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Omar Rodriguez

    2016-12-01

    Full Text Available Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion closer to the substrate’s (Ti6Al4V CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass® and Pyrex.

  11. Heat-induced redistribution of surface oxide in uranium

    International Nuclear Information System (INIS)

    Swissa, E.; Shamir, N.; Bloch, J.; Mintz, M.H.; Israel Atomic Energy Commission, Beersheba. Nuclear Research Center-Negev)

    1990-01-01

    The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450deg C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800deg C. The activation energy obtained was E a =15.4±1.9 kcal/mole and the pre-exponential factor, D 0 =1.1x10 -8 cm 2 /s. An internal oxidation mechanism is proposed to explain the results. (orig.)

  12. Heat-induced redistribution of surface oxide in uranium

    Science.gov (United States)

    Swissa, Eli; Shamir, Noah; Mintz, Moshe H.; Bloch, Joseph

    1990-09-01

    The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450°C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800°C. The activation energy obtained was Ea = 15.4 ± 1.9 kcal/mole and the pre-exponential factor, D0 = 1.1 × 10 -8cm2/ s. An internal oxidation mechanism is proposed to explain the results.

  13. Competitive biosorption of thorium and uranium by actinomycetes

    International Nuclear Information System (INIS)

    Nakajima, Akira; Tsuruta, Takehiko

    2002-01-01

    The competitive biosorption of thorium and uranium by actinomycetes was examined. Of the actinomycetes tested, Streptomyces levoris showed the highest ability to sorb both thorium and uranium from aqueous systems. Thorium sorption was not affected by co-existed uranium, while uranium sorption was strongly hindered by co-existed thorium. The amounts of both thorium and uranium sorbed by Streptomyces levoris cells increased with an increase of the solution pH. Although the equilibrium isotherm of uranium biosorption is in similar manner as that of thorium biosorption, uranium was sorbed much faster than thorium. Biosorption isotherm of each metal ion could be well fitted by Langmuir isotherm taking the ionic charge of metal ions into account. The Langmuir isotherm for binary system did not explain completely the competitive biosorption of thorium and uranium by Streptomyces levoris. However, the results suggested that the ion species of both metals in the cells should be Th(OH) 2 2+ and UO 2 2+ , respectively. (author)

  14. Uranium chemistry research unit

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The initial field of research of this Unit, established in 1973, was the basic co-ordination chemistry of uranium, thorium, copper, cobalt and nickel. Subsequently the interest of the Unit extended to extractive metallurgy relating to these metals. Under the term 'co-ordination chemistry' is understood the interaction of the central transition metal ion with surrounding atoms in its immediate vicinity (within bonding distance) and the influence they have on each other - for example, structural studies for determining the number and arrangement of co-ordinated atoms and spectrophotometric studies to establish how the f electron energy levels of uranium are influenced by the environment. New types of uranium compounds have been synthesized and studied, and the behaviour of uranium ions in non-aqueous systems has also received attention. This work can be applied to the development and study of extractants and new extractive processes for uranium

  15. Li2Sr4B12O23: A new alkali and alkaline-earth metal mixed borate with [B10O18]6− network and isolated [B2O5]4− unit

    International Nuclear Information System (INIS)

    Zhang Min; Pan Shilie; Han Jian; Yang Zhihua; Su Xin; Zhao Wenwu

    2012-01-01

    A novel ternary lithium strontium borate Li 2 Sr 4 B 12 O 23 crystal with size up to 20 mm×10 mm×4 mm has been grown via the top-seeded solution growth method below 730 °C. Single-crystal XRD analyses showed that Li 2 Sr 4 B 12 O 23 crystallizes in the monoclinic space group P2 1 /c with a=6.4664(4) Å, b=8.4878(4) Å, c=15.3337(8) Å, β=102.02(3)°, Z=2. The crystal structure is composed of [B 10 O 18 ] 6− network and isolated [B 2 O 5 ] 4− unit. The IR spectrum further confirmed the presence of both BO 3 and BO 4 groups. TG-DSC and Transmission spectrum were reported. Band structures and density of states were calculated. - Graphical abstract: A new phase, Li 2 Sr 4 B 12 O 23 , has been discovered in the ternary M 2 O–M′O–B 2 O 3 (M=alkali-metal, M′=alkalineearth metal) system. The crystal structure consists of [B 10 O 18 ] 6− network and isolated [B 2 O 5 ] 4− unit. Highlights: ► Li 2 Sr 4 B 12 O 23 is a a novel borate discovered in the M 2 O–M′O–B 2 O 3 (M=alkali-metal, M′=alkaline-earth metal) system. ► Li 2 Sr 4 B 12 O 23 crystal structure has a three-dimensional crystal structure with [B 10 O 18 ] 6− network and isolated [B 2 O 5 ] 4− unit. ► Sr 1 and Sr 2 are located in two different channels constructed by 3 ∞ [B 10 O 18 ] network.

  16. Uranium management activities

    International Nuclear Information System (INIS)

    Jackson, D.; Marshall, E.; Sideris, T.; Vasa-Sideris, S.

    2001-01-01

    One of the missions of the Department of Energy's (DOE) Oak Ridge Office (ORO) has been the management of the Department's uranium materials. This mission has been accomplished through successful integration of ORO's uranium activities with the rest of the DOE complex. Beginning in the 1980's, several of the facilities in that complex have been shut down and are in the decommissioning process. With the end of the Cold War, the shutdown of many other facilities is planned. As a result, inventories of uranium need to be removed from the Department facilities. These inventories include highly enriched uranium (HEU), low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU). The uranium materials exist in different chemical forms, including metals, oxides, solutions, and gases. Much of the uranium in these inventories is not needed to support national priorities and programs. (author)

  17. An ICP-AES method for the determination of trace metals in uranium by solvent extraction using KSM-17

    International Nuclear Information System (INIS)

    Jacob, Mary; Radhakrishnan, K.; Dhami, P.S.; Kulkarni, V.T.; Joshi, M.V.; Patwardhan, A.B.; Ramanujam, A.; Mathur, J.N.

    1994-01-01

    This paper describes the studies carried out for the determination of trace metallic impurities in uranium solutions. Uranium matrix is separated from the impurity elements by its selective extraction using 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate (KSM-17, equivalent to PC88A). The aqueous phase is analysed for trace impurities by inductively coupled argon plasma atomic emission spectrometry. The studies also include recovery of impurities at various acidities and spectral interferences of uranium over the analyte element channels. Based on the above studies, a method has been standardised for the analysis of nineteen elements in uranium solutions. The relative standard deviation of the method for various elements is in the range of +- 1-5%. (author). 7 refs., 8 tabs., 1 fig

  18. High-pressure synthesis and characterization of new actinide borates, AnB4O8 (An=Th, U).

    Science.gov (United States)

    Hinteregger, Ernst; Hofer, Thomas S; Heymann, Gunter; Perfler, Lukas; Kraus, Florian; Huppertz, Hubert

    2013-11-18

    New actinide borates ThB4O8 and UB4O8 were synthesized under high-pressure, high-temperature conditions (5.5 GPa/1100 °C for thorium borate, 10.5 GPa/1100 °C for the isotypic uranium borate) in a Walker-type multianvil apparatus from their corresponding actinide oxide and boron oxide. The crystal structure was determined on basis of single-crystal X-ray diffraction data that were collected at room temperature. Both compounds crystallized in the monoclinic space group C2/c (Z=4). Lattice parameters for ThB4O8: a=1611.3(3), b=419.86(8), c=730.6(2) pm; β=114.70(3)°; V=449.0(2) Å(3); R1=0.0255, wR2=0.0653 (all data). Lattice parameters for UB4O8: a=1589.7(3), b=422.14(8), c=723.4(2) pm; β=114.13(3)°; V=443.1(2) Å(3); R1=0.0227, wR2=0.0372 (all data). The new AnB4O8 (An=Th, U) structure type is constructed from corner-sharing BO4 tetrahedra, which form layers in the bc plane. One of the four independent oxygen atoms is threefold-coordinated. The actinide cations are located between the boron-oxygen layers. In addition to Raman spectroscopic investigations, DFT calculations were performed to support the assignment of the vibrational bands. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This isan open access article under the terms of the Creative Commons AttributionLicense, which permits use, distribution and reproduction in any medium,provided the original work is properly cited.

  19. Development of dissolution process for metal foil target containing low enriched uranium

    International Nuclear Information System (INIS)

    Srinivasan, B.; Hutter, J.C.; Johnson, G.K.; Vandegrift, G.F.

    1994-01-01

    About six times more low enriched uranium (LEU) metal is needed to produce the same quantity of 99 Mo as from a high enriched uranium (HEU) oxide target, under similar conditions of neutron irradiation. In view of this, the post-irradiation processing procedures of the LEU target are likely to be different from the Cintichem process procedures now in use for the HEU target. The authors have begun a systematic study to develop modified procedures for LEU target dissolution and 99 Mo separation. The dissolution studies include determination of the dissolution rate, chemical state of uranium in the solution, and the heat evolved in the dissolution reaction. From these results the authors conclude that a mixture of nitric and sulfuric acid is a suitable dissolver solution, albeit at higher concentration of nitric acid than in use for the HEU targets. Also, the dissolver vessel now in use for HEU targets is inadequate for the LEU target, since higher temperature and higher pressure will be encountered in the dissolution of LEU targets. The desire is to keep the modifications to the Cintichem process to a minimum, so that the switch from HEU to LEU can be achieved easily

  20. Recovery and removal of uranium by using plant wastes

    International Nuclear Information System (INIS)

    Nakajima, Akira; Sakaguchi, Takashi

    1990-01-01

    The uranium-adsorbing abilities of seven plant wastes were investigated. High abilities to adsorb uranium from non-saline water containing 10 mg dm -3 of uranium were observed with a number of plant wastes tested. However, with seawater supplemented with 10 mg dm -3 of uranium, similar results were found only with chestnut residues. When the plant wastes were immobilized with formaldehyde, their ability to adsorb uranium was increased. Uranium and copper ions were more readily adsorbed by all plant wastes tested than other metal ions from a solution containing a mixture of seven different heavy metals. The selective adsorption of heavy metal ions differs with different species of plant wastes. The immobilization of peanut inner skin, orange peel and grapefruit peel increased the selectivity for uranium. (author)

  1. Uranium ores

    International Nuclear Information System (INIS)

    Poty, B.; Roux, J.

    1998-01-01

    The processing of uranium ores for uranium extraction and concentration is not much different than the processing of other metallic ores. However, thanks to its radioactive property, the prospecting of uranium ores can be performed using geophysical methods. Surface and sub-surface detection methods are a combination of radioactive measurement methods (radium, radon etc..) and classical mining and petroleum prospecting methods. Worldwide uranium prospecting has been more or less active during the last 50 years, but the rise of raw material and energy prices between 1970 and 1980 has incited several countries to develop their nuclear industry in order to diversify their resources and improve their energy independence. The result is a considerable increase of nuclear fuels demand between 1980 and 1990. This paper describes successively: the uranium prospecting methods (direct, indirect and methodology), the uranium deposits (economical definition, uranium ores, and deposits), the exploitation of uranium ores (use of radioactivity, radioprotection, effluents), the worldwide uranium resources (definition of the different categories and present day state of worldwide resources). (J.S.)

  2. Study on cementation of simulated radioactive borated liquid wastes

    International Nuclear Information System (INIS)

    Sun Qina; Li Junfeng; Wang Jianlong

    2010-01-01

    To compare sulfoaluminate cement with ordinary Portland cement on their cementation of radioactive borated liquid waste and to provide more data for formula optimization, simulated radioactive borated liquid waste were solidified by the two cements. 28 d compressive strength and strength losses after water/freezing/irradiation resistance tests were investigated. Leaching test and X-ray diffraction analysis were also conducted. The results show that it is feasible to solidify borated liquid wastes with sulfoaluminate cement and ordinary Portland cement with formulas used in the study. The 28 d compressive strengths, strength losses after tests and simulated nuclides leaching rates of the solidified waste forms meet the demand of GB 14569.1-93. The sulfoaluminate cement formula show better retention of Cs + than ordinary Portland cement formula. Boron, in form of B (OH) 4 - , incorporate in ettringite as solid solutions. (authors)

  3. Mg- and K-bearing borates and associated evaporites at Eagle Borax spring, Death Valley, California: A spectroscopic exploration

    Science.gov (United States)

    Crowley, J.K.

    1996-01-01

    Efflorescent crusts at the Eagle Borax spring in Death Valley, California, contain an array of rare Mg and K borate minerals, several of which are only known from one or two other localities. The Mg- and/or K-bearing borates include aristarainite, hydroboracite, kaliborite, mcallisterite, pinnoite, rivadavite, and santite. Ulexite and probertite also occur in the area, although their distribution is different from that of the Mg and K borates. Other evaporite minerals in the spring vicinity include halite, thenardite, eugsterite, gypsum-anhydrite, hexahydrite, and bloedite. Whereas the first five of these minerals are found throughout Death Valley, the last two Mg sulfates are more restricted in occurrence and are indicative of Mg-enriched ground water. Mineral associations observed at the Eagle Borax spring, and at many other borate deposits worldwide, can be explained by the chemical fractionation of borate-precipitating waters during the course of evaporative concentration. The Mg sulfate and Mg borate minerals in the Eagle Borax efflorescent crusts point to the fractionation of Ca by the operation of a chemical divide involving Ca carbonate and Na-Ca borate precipitation in the subsurface sediments. At many other borate mining localities, the occurrence of ulexite in both Na borate (borax-kernite) and Ca borate (ulexite-colemanite) deposits similarly reflects ulexite's coprecipitation with Ca carbonate at an early concentration stage. Such ulexite may perhaps be converted to colemanite by later reaction with the coexisting Ca carbonate - the latter providing the additional Ca2+ ions needed for the conversion. Mg and Ca-Mg borates are the expected late-stage concentration products of waters forming ulexite-colemanite deposits and are therefore most likely to occur in the marginal zones or nearby mud facies of ulexite-colemanite orebodies. Under some circumstances, Mg and Ca-Mg borates might provide a useful prospecting guide for ulexite-colemanite deposits

  4. Drawing of uranium in γ phase

    International Nuclear Information System (INIS)

    Stohr, J.A.

    1955-01-01

    It describes the study of working and drawing of uranium in γ phase. In a first part, the forgeable characteristics of uranium metal in the three different phases (α, β and γ) are compared by using BASTIEN-PORTEVIN method. The different experiments are testing the behaviour metal in each phase under different stresses and a temperature gradient as slow and shock traction, slow and shock compression, resilience, flexibility. Results show that optimum conditions for uranium drawing is uranium in phase γ. In a second part, it described the drawing method and process. The uranium rods obtained by this technique are of very good quality. In addition, the material wear is very low which permits a low production cost. Finally, the uranium rod physical properties are studied. (M.P.)

  5. A database of radionuclide activity and metal concentrations for the Alligator Rivers Region uranium province.

    Science.gov (United States)

    Doering, Che; Bollhöfer, Andreas

    2016-10-01

    This paper presents a database of radionuclide activity and metal concentrations for the Alligator Rivers Region (ARR) uranium province in the Australian wet-dry tropics. The database contains 5060 sample records and 57,473 concentration values. The data are for animal, plant, soil, sediment and water samples collected by the Environmental Research Institute of the Supervising Scientist (ERISS) as part of its statutory role to undertake research and monitoring into the impacts of uranium mining on the environment of the ARR. Concentration values are provided in the database for 11 radionuclides ( 227 Ac, 40 K, 210 Pb, 210 Po, 226 Ra, 228 Ra, 228 Th, 230 Th, 232 Th, 234 U, 238 U) and 26 metals (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Th, U, V, Zn). Potential uses of the database are discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  6. Derivation of guidelines for uranium residual radioactive material in soil at the B ampersand T Metals Company site, Columbus, Ohio

    International Nuclear Information System (INIS)

    Kamboj, S.; Nimmagadda, Mm.; Yu, C.

    1996-01-01

    Guidelines for uranium residual radioactive material in soil were derived for the B ampersand T Metals Company site in Columbus, Ohio. This site has been identified for remedial action under the US Department of Energy's (DOE's) Formerly Utilized Sites Remedial Action Program (FUSRAP). Single-nuclide and total-uranium guidelines were derived on the basis of the requirement that following remedial action, the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the site should not exceed a dose constraint of 30 mrem/yr for the current use and likely future use scenarios or a dose limit of 100 n-mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. Three scenarios were considered; each assumed that for a period of 1,000 years following remedial action, the site would be used without radiological restrictions. The three scenarios varied with regard to the type of site use, time spent at the site by the exposed individual, and sources of food and water consumed. The evaluations indicate that the dose constraint of 30 mrem/yr would not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1,000 years, provided that the soil concentration of total uranium (uranium-234, uranium-235, and uranium-238) at the B ampersand T Metals site did not exceed 1, I 00 pCi/g for Scenario A (industrial worker, current use) or 300 pCi/g for Scenario B (resident with municipal water supply, a likely future use). The dose limit of 100 mrem/yr would not be exceeded at the site if the total uranium concentration of the soil did not exceed 880 pCi/g for Scenario C (resident with an on-site water well, a plausible but unlikely future use)

  7. Oxidation kinetics of reaction products formed in uranium metal corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-04-22

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O{sub 2} and Ar-20%O{sub 2} were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates.

  8. Oxidation kinetics of reaction products formed in uranium metal corrosion

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O 2 and Ar-20%O 2 were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates

  9. An interaction of the functionalized closo-borates with albumins: The protein fluorescence quenching and calorimetry study

    International Nuclear Information System (INIS)

    Losytskyy, Mykhaylo Yu.; Kovalska, Vladyslava B.; Varzatskii, Oleg A.; Kuperman, Marina V.; Potocki, Slawomir; Gumienna-Kontecka, Elzbieta; Zhdanov, Andrey P.; Yarmoluk, Sergiy M.; Voloshin, Yan Z.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolai T.; Elskaya, Anna V.

    2016-01-01

    An interaction of the boron clusters closo-borates K 2 [B 10 H 10 ], K 2 [B 12 H 12 ] and their functionalized derivatives with serum proteins human (HSA) and bovine (BSA) albumins and immonoglobulin IgG as well as globular proteins β-lactoglobulin and lysozyme was characterized. The steady state and time resolved protein fluorescence quenching studies point on the binding of the closo-borate arylamine derivatives to serum albumins and discrimination of other proteins. The mechanism of the albumin fluorescence quenching by the closo-borate arylamine derivatives was proposed. The complex formation between albumin and the closo-borate molecules has been confirmed by isothermal titration calorimetry (ITC). The compound (K 2 [B 10 H 10 ]) and its arylamine derivative both interact with HSA, have close values of K a (1.4 and 1.2×10 3 M −1 respectively) and Gibbs energy (−17.9 and −17.5 kJ/mol respectively). However, the arylamine derivative forms complex with the higher guest/host binding ratio (4:1) comparing to the parent closo-borate (2:1). - Highlights: • Complex formation between boron clusters closo-borates and albumins was confirmed. • Functional substituent of closo-borate strongly affects its complex with albumins. • Binding of arylamine closo-borates essentially quench the albumin fluorescence. • Mechanism of tryptophan emission quenching by arylamine closo-borates was proposed.

  10. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    Science.gov (United States)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  11. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  12. Direct reduction of uranium oxide(U3O8) by Li metal and U-metal(Fe, Ni) alloy formation in molten LiCl medium

    International Nuclear Information System (INIS)

    Cho, Young Hwan; Kim, Tack Jin; Choi, In Kyu; Kim, Won Ho; Jee, Kwang Yong

    2004-01-01

    Molten salt based electrochemical processes are proposed as a promising method for the future nuclear programs and more specifically for spent fuel processing. The lithium reduction has been introduced to convert actinide oxides into corresponding actinide metal by using lithium metal as a reductant in molten LiCl medium. We have applied similar lab-scale experiments to reduce uranium oxide in an effort to gain additional information on rates and mechanisms

  13. Cost Analysis of Remediation Systems for Depleted Uranium

    Science.gov (United States)

    2014-04-01

    radioactive metal in all rocks and soils. There are three existing uranium isotopes, and all three are radioactive and emit decay products upon...the chemical toxicity of soluble forms of uranium . If internalized, uranium will cause health problems, as is the case with other heavy metals such...blunt mushroom shape as it penetrates armor, which limits its effectiveness. With a density of 17.6 g/cm3 it weighs less than DU. Uranium oxidizes

  14. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    International Nuclear Information System (INIS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-01-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70–x) B 2 O 3 –30 Li 2 O–(x) Dy 2 O 3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5–5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy 2 O 3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD). - Highlights: • TL response of undoped and dysprosium doped lithium borate glass subjected to 6 MV photons irradiation at low dose range. • TL linear response of dysprosium doped lithium borate glass. • The sensitivity of dysprosium doped lithium borate glass is approximately 93 times higher than undoped glass

  15. Accumulation of thorium and uranium by microbes. The effect of pH, concentration of metals, and time course on the accumulation of both elements using streptomyces levoris

    International Nuclear Information System (INIS)

    Tsuruta, Takehiko

    2006-01-01

    The accumulation of thorium and uranium by various microorganisms from a solution containing both metals at pH 3.5 was examined. Among the tested species, a high accumulation ability for thorium was exhibited by strains of gram-positive bacteria, such as Arthrobacter nicotianae, Bacillus megaterium, B. subtilis, Micrococcus luteus, Rhodococcus erythropolis, and Streptomyces levoris. Though uranium was accumulated in small amounts by most of microorganisms. A. nicotianae, S. flavoviridis, and S. levoris had relatively high uranium accumulation abilities. In these high performance thorium- and uranium-accumulating microorganisms, S. levoris, which accumulated the largest amount of uranium from the solution containing only uranium at pH 3.5, accumulated about 300 μmol thorium and 133 μmol uranium per gram dry weight of microbial cells from a solution containing both thorium and uranium at pH 3.5. The amount and time course of the thorium accumulation were almost unaffected by the co-existing uranium, while those of uranium were strongly affected by the co-existing thorium. The effects of pH, the thorium and uranium concentrations, and time course on both metal accumulations were also evaluated by numerical formulas. (author)

  16. Evaluation of stress-corrosion cracking of sensitized 304SS in low-temperature borated water

    International Nuclear Information System (INIS)

    Jones, R.H.; Johnson, A.B. Jr.; Bruemmer, S.M.

    1981-05-01

    Intergranular stress corrosion cracking has been observed in constant extension rate tests, CERT and constant load tests of 304SS tested at 32 0 C in borated water plus 15 ppM C1 - . Evidence of IGSCC was obtained in CERT tests of welded pipe samples only when the original inner diameter surface was intact and with 15 ppM C1 - added to the borated water while IGSCC occurred in a furnace sensitized pipe sample after 500 h at a constant stress of 340 MPa in borated water containing 15 ppM C1 - . These results indicate that surface features associated with weld preparation grinding contributed to the susceptibility of sensitized 304SS to IGSCC in low temperature borated water; however, the constant load test indicates that such surface defects are not necessary for IGSCC in low temperature borated water

  17. Highly Enriched Uranium Metal Annuli and Cylinders with Polyethylene Reflectors and/or Internal Polyethylene Moderator

    International Nuclear Information System (INIS)

    Tyler Sumner; J. Blair Briggs; Leland Montierth

    2007-01-01

    A variety of critical experiments were constructed of enriched uranium metal during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, experiments of uranium metal annuli with and without polyethylene reflectors and with the central void region either empty or filled with polyethylene were evaluated under ICSBEP Identifier HEU-MET-FAST-076. The outer diameter of the uranium annuli varied from 9 to 15 inches in two-inch increments. In addition, there were uranium metal cylinders with diameters varying from 7 to 15 inches with complete reflection and reflection on one flat surface to simulate floor reflection. Most of the experiments were performed between February 1964 and April 1964. Five partially reflected (reflected on the top only) experiments were assembled in November 1967, but are judged by the evaluators not to be of benchmark quality. Twenty-four of the twenty-five experiments have been determined to have fast spectra. The only exception has a mixed spectrum. Analyses were performed in which uncertainty associated with five different parameters associated with the uranium parts and three associated with the polyethylene parts was evaluated. Included were uranium mass, height, diameter, isotopic content, and impurity content and polyethylene mass, diameter, and impurity content. There were additional uncertainties associated with assembly alignment, support structure, and the value

  18. Radiation damage of uranium

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1966-11-01

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method

  19. Assessment of heavy metal concentration in water around the proposed Mkuju river uranium project in Tanzania

    International Nuclear Information System (INIS)

    Banzi, F.P.; Msaki, P.K.; Mohammed, N.K.

    2015-01-01

    Effective verification for compliance with water quality standards in uranium mining in Tanzania requires data sensitive to monitor heavy metal concentration in water around the Mkuju River Uranium Project before mining commences. The area susceptible for pollution by the project was estimated using AERMOD dispersion model and found to cover about 1300 km"2. Thirty one surface and groundwater samples were collected and analysed for heavy metals and physicochemical properties using ICP-MS and standards techniques, respectively. The physicochemical properties for water samples analysed ranges from 5.7 to 7.8 for pH, 2.8 to 80.2 mg/L for TDS and 15 to 534.5 mS/cm for EC. These values show that the water in the vicinity of the Mkuju River Uranium Project is normal. The ranges of concentration of heavy metals (µgL"-"1) determined in water ranges were: Al(2 to 9049), Cr(0.2 to 19.96), Mn (0.1 to 1452), Fe(2 to 53890), Co(0.02 to 27.63), Ni(0.2 to 9.7), Cu(2 to 17), Zn(2 to 62.94), As(0.4 to 19.17), Cd(0.02 to 0.14), Pb (0.02 to 78.68), Th (0.002 to 1.73), U(0.002 to 29.76). These values are below the tolerance levels of concentrations set by different International organisations. Therefore heavy metal toxicity in the study area is marginal. The parameters that could serve as baseline data because of their enhanced sensitivity to pollution were (i) concentration of chromium, cobalt, nickel, copper, zinc, arsenic, cadmium and lead in water (ii) pH, TDS and EC for water, (iii) TDS ratio for surface to ground water values and (iv) correlation coefficients between the heavy metals. However, since TDS values are season dependent, this indicator can serve as baseline data when measured during the dry season as was the case in the study. (author)

  20. Process for the in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Habib, E.T.; Vogt, T.C.

    1982-01-01

    Process for the in-situ leaching of uranium employing an alkaline lixiviant and an alkali metal or alkaline earth metal hypochlorite as an oxidizing agent. The use of the hypochlorite oxidant results in significantly higher uranium recoveries and leaching rates than those attained by the use of conventional oxidants. The invention is particularly suitable for use in subterranean deposits in which the uranium mineral is associated with carbonaceous material which retards access to the uranium by the lixiviant

  1. An interaction of the functionalized closo-borates with albumins: The protein fluorescence quenching and calorimetry study

    Energy Technology Data Exchange (ETDEWEB)

    Losytskyy, Mykhaylo Yu., E-mail: mlosytskyy@gmail.com [Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03143 Kyiv (Ukraine); Kovalska, Vladyslava B. [Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03143 Kyiv (Ukraine); Varzatskii, Oleg A. [V. I. Vernadsky Institute of General and Inorganic Chemistry, 32/34 Palladin Avenue, 03080 Kyiv (Ukraine); Kuperman, Marina V. [Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03143 Kyiv (Ukraine); Potocki, Slawomir; Gumienna-Kontecka, Elzbieta [Faculty of Chemistry, Wroclaw University, 14F. Joliot-Curie Street, 50-383 Wroclaw (Poland); Zhdanov, Andrey P. [Kurnakov Institute of General and Inorganic Chemistry, 31 Leninskii Avenue, 119991 Moscow (Russian Federation); Yarmoluk, Sergiy M. [Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03143 Kyiv (Ukraine); Voloshin, Yan Z. [Nesmeyanov Institute of Organoelement Compounds, 28 Vavilova Street, 119991 Moscow (Russian Federation); Zhizhin, Konstantin Yu.; Kuznetsov, Nikolai T. [Kurnakov Institute of General and Inorganic Chemistry, 31 Leninskii Avenue, 119991 Moscow (Russian Federation); Elskaya, Anna V. [Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03143 Kyiv (Ukraine)

    2016-01-15

    An interaction of the boron clusters closo-borates K{sub 2}[B{sub 10}H{sub 10}], K{sub 2}[B{sub 12}H{sub 12}] and their functionalized derivatives with serum proteins human (HSA) and bovine (BSA) albumins and immonoglobulin IgG as well as globular proteins β-lactoglobulin and lysozyme was characterized. The steady state and time resolved protein fluorescence quenching studies point on the binding of the closo-borate arylamine derivatives to serum albumins and discrimination of other proteins. The mechanism of the albumin fluorescence quenching by the closo-borate arylamine derivatives was proposed. The complex formation between albumin and the closo-borate molecules has been confirmed by isothermal titration calorimetry (ITC). The compound (K{sub 2}[B{sub 10}H{sub 10}]) and its arylamine derivative both interact with HSA, have close values of K{sub a} (1.4 and 1.2×10{sup 3} M{sup −1} respectively) and Gibbs energy (−17.9 and −17.5 kJ/mol respectively). However, the arylamine derivative forms complex with the higher guest/host binding ratio (4:1) comparing to the parent closo-borate (2:1). - Highlights: • Complex formation between boron clusters closo-borates and albumins was confirmed. • Functional substituent of closo-borate strongly affects its complex with albumins. • Binding of arylamine closo-borates essentially quench the albumin fluorescence. • Mechanism of tryptophan emission quenching by arylamine closo-borates was proposed.

  2. Magnesium borate radiothermoluminescent detectors

    International Nuclear Information System (INIS)

    Kazanskaya, V.A.; Kuzmin, V.V.; Minaeva, E.E.; Sokolov, A.D.

    1974-01-01

    In the report the technology of obtaining polycrystalline magnesium borate activated by dysprosium is described briefly and the method of preparing the tabletted detectors from it is presented. The dependence of the light sum of the samples on the proportion of the components and on the sintering regime has shown that the most sensitive material is obtained at the proportion of boric anhydride and magnesium oxide 2.2-2.4 and at the dysprosium concentration about 1 milligram-atom per gram molecule of the base. The glow curve of such a material has a simple form with one peak the maximum of which is located at 190-200 0 C. The measurement of the main dosimetric characteristics of the magnesium borate tabletted detectors and the comparison with similar parmaeters of the lithium fluoride tabletted detectors have shown that at practically identical effective number the former detectors have the following substantial advantages: the sensitivity is ten-twenty times as large, they are substantially more technological on synthesis of the radiothermoluminophor and during the production of the tabletted detectors, they have a simple glow curve, they do not require the utilization of the thermocycling during the use. (author)

  3. A study on oxidation treatment of uranium metal chip under controlling atmosphere for safe storage

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Ji, Chul Goo; Bae, Sang Oh; Woo, Yoon Myeoung; Kim, Jong Goo; Ha, Yeong Keong

    2011-01-01

    The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than 300 .deg. C and tested for oxidation at various temperatures, which are 300 .deg. C, 400 .deg. C, and 500 .deg. C. When the oxidation temperature was 400 .deg. C, the oxidized sample for 7 hours showed a temperature rise of 60 .deg. C in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of 7 .deg. C representing a stable behavior in the self-ignition test. When the temperature was 500 .deg. C, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported

  4. The action of uranium hexafluoride on some metallic fluorides (1962); Action de l'hexafluorure d'uranium sur quelques fluorures metalliques (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Michallet, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-12-15

    A metallic difluoride is inert to UF{sub 6} unless the metal can exist in a higher valency state. In this case, UF{sub 6} acts as an oxidising agent and is transformed into UF{sub 4}. The fluorides of tri- and tetra-valent metals give rise to new compounds when they are maintained at a high temperature (500 deg. C) in the presence of uranium hexachloride vapour. The products obtained are characterized by their X-ray diffraction diagrams. The distributions of the lines of the powder diagrams are very similar to that of U{sub 4}F{sub 17}. Assuming that this resemblance is due to a stacking of identical fluorine atoms, it can be calculated that the corresponding structure is given by the theoretical formulae: MeF{sub 3}, 0,562 UF{sub 6}; MeF{sub 4}, 0,396 UF{sub 6} which are in good agreement with chemical measurements. (author) [French] Un di-fluorure metallique est inerte vis-a-vis de UF{sub 6}, sauf si le metal est susceptible d'exister a une valence plus elevee. Dans ce cas, UF{sub 6} joue le role d'un oxydant et se transforme en UF{sub 4}. Les fluorures de metaux tri et tetravalents donnent naissance a des composes nouveaux quand ils sont maintenus a haute temperature (500 deg. C) en presence de vapeur d'hexafluorure d'uranium. Les produits obtenus sont caracterises par leurs diagrammes de diffraction X. Les distributions de raies des diagrammes de poudre sont tres voisines de celles de U{sub 4}F{sub 17}. En supposant que cette analogie resulte d'un empilement d'ions fluor identique, le calcul conduit aux formules theoriques suivantes: MeF{sub 3}, 0,562 UF{sub 6}; MeF{sub 4}, 0,396 UF{sub 6} en bon accord avec les resultats des dosages chimiques. (auteur)

  5. Genetic engineering microbes for bioremediation/ biorecovery of uranium

    International Nuclear Information System (INIS)

    Apte, S.K.; Rao, A.S.; Appukuttan, D.; Nilgiriwala, K.S.; Acharya, C.

    2005-01-01

    Bioremediation (both bioremoval and biorecovery) of metals is considered a feasible, economic and eco-friendly alternative to chemical methods of metal extraction, particularly when the metal concentration is very low. Scanty distribution along with poor ore quality makes biomining of uranium an attractive preposition. Biosorption, bioprecipitation or bioaccumulation of uranium, aided by recombinant DNA technology, offer a promising technology for recovery of uranium from acidic or alkaline nuclear waste, tailings or from sea-water. Genetic engineering of bacteria, with a gene encoding an acid phosphatase, has yielded strains that can bioprecipitate uranium from very low concentrations at acidic-neutral pH, in a relatively short time. Organisms overproducing alkaline phosphatase have been selected for uranium precipitation from alkaline waste. Such abilities have now been transferred to the radioresistant microbe Deinococcus radiodurans to facilitate in situ bioremediation of nuclear waste, with some success. Sulfate-reducing bacteria are being characterized for bioremediation of uranium in tailings with the dual objective of uranium precipitation and reduction of sulfate to sulphide. Certain marine cyanobacteria have shown promise for uranium biosorption to extracellular polysaccharides, and intracellular accumulation involving metal sequestering metallothionin proteins. Future work is aimed at understanding the genetic basis of these abilities and to engineer them into suitable organisms subsequently. As photosynthetic, nitrogen-fixing microbes, which are considerably resistant to ionizing radiations, cyanobacteria hold considerable potential for bioremediation of nuclear waste. (author)

  6. Biotransformation of uranium and transition metal citrate complexes by clostridia

    International Nuclear Information System (INIS)

    Francis, A.J.; Joshi-Tope, G.A.; Dodge, C.J.; Gillow, J.B.

    2002-01-01

    Clostridium sphenoides, which uses citric acid as its sole carbon source, metabolized equimolar Fe(III)-citrate with the degradation of citric acid and the reduction of Fe(III) to Fe(II), but not the U(VI)-citrate complex. However, in the presence of excess citric acid or added glucose it was reduced to U(IV)-citrate. In contrast, Clostridium sp., which ferments glucose but not citrate, reduced Fe(III)-citrate to Fe(II)-citrate and U(VI)-citrate to U(IV)-citrate only when supplied with glucose. These results show that complexed uranium is readily accessible as an electron acceptor despite the bacterium's inability to metabolize the organic ligand complexed to the actinide. These results also show that the metabolism of the metal-citrate complex depends upon the type of complex formed between the metal and citric acid. Fe(III) forms a bidentate complex with citric acid and was metabolized, whereas U forms a binuclear complex with citric acid and was recalcitrant. (author)

  7. The release of fission products from uranium metal: a review

    International Nuclear Information System (INIS)

    Minshall, P.C.

    1989-03-01

    The literature on the release of fission products as gaseous species from irradiated uranium metal in oxidising atmospheres has been reviewed. Release of actinides and of fission products as spalled particulate were not considered. Data is given on the release in air, carbon dioxide, steam and mixtures of steam and air. The majority of data discussed lie between 800 and 1200 0 C though some results for xenon, krypton and iodine releases below 800 0 C are given. Two measures of fission product release are discussed: the release fraction, F(tot), which is the ratio of the total release to the initial inventory, and the fractional release, F(ox), which is the fraction released from the oxidised metal. The effect of burn-up, atmosphere and temperature on F(tot) and F(ox) is examined and the conditions under which the release fraction, F(tot) is proportional to the extent of oxidation discussed. (author)

  8. Thermal property of holmium doped lithium lead borate glasses

    Science.gov (United States)

    Usharani, V. L.; Eraiah, B.

    2018-04-01

    The new glass system of holmium doped lithium lead borate glasses were prepared by conventional melt quenching technique. The thermal stability of the different compositions of Ho3+ ions doped lithium lead borate glasses were studied by using TG-DTA. The Tg values are ranging from 439 to 444 °C with respect to the holmium concentration. Physical parameters like polaron radius(rp), inter-nuclear distance (ri), field strength (F) and polarizability (αm) of oxide ions were calculated using appropriate formulae.

  9. Unusual stoichiometry control in the atomic layer deposition of manganese borate films from manganese bis(tris(pyrazolyl)borate) and ozone

    International Nuclear Information System (INIS)

    Klesko, Joseph P.; Bellow, James A.; Saly, Mark J.; Winter, Charles H.; Julin, Jaakko; Sajavaara, Timo

    2016-01-01

    The atomic layer deposition (ALD) of films with the approximate compositions Mn 3 (BO 3 ) 2 and CoB 2 O 4 is described using MnTp 2 or CoTp 2 [Tp = tris(pyrazolyl)borate] with ozone. The solid state decomposition temperatures of MnTp 2 and CoTp 2 are ∼370 and ∼340 °C, respectively. Preparative-scale sublimations of MnTp 2 and CoTp 2 at 210 °C/0.05 Torr afforded >99% recoveries with <0.1% nonvolatile residues. Self-limited ALD growth was demonstrated at 325 °C for MnTp 2 or CoTp 2 with ozone as the coreactant. The growth rate for the manganese borate process was 0.19 Å/cycle within the ALD window of 300–350 °C. The growth rate for the cobalt borate process was 0.39–0.42 Å/cycle at 325 °C. X-ray diffraction of the as-deposited films indicated that they were amorphous. Atomic force microscopy of 35–36 nm thick manganese borate films grown within the 300–350 °C ALD window showed root mean square surface roughnesses of 0.4–0.6 nm. Film stoichiometries were assessed by x-ray photoelectron spectroscopy and time of flight-elastic recoil detection analysis. The differing film stoichiometries obtained from the very similar precursors MnTp 2 and CoTp 2 are proposed to arise from the oxidizing ability of the intermediate high valent manganese oxide layers and lack thereof for cobalt.

  10. Glass-Forming Ability of Soda Lime Borate Liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, J.C.; Smedskjær, Morten Mattrup

    2012-01-01

    We investigate the composition dependence of glass-forming ability (GFA) of a series of iron-containing soda lime borate liquids by substituting Na2O for B2O3. We have characterized GFA by measuring the glass stability against crystallization using a differential scanning calorimeter (DSC......). The results show that the GFA decreases when substituting Na2O for B2O3. Moreover, we find that there is no direct link between the kinetic fragility and GFA for the soda lime borate series studied herein. We have also discovered and clarified a striking thermal history dependence of the glass stability...

  11. A spectroscopic study of uranium species formed in chloride melts

    International Nuclear Information System (INIS)

    Volkovich, Vladimir A.; Bhatt, Anand I.; May, Iain; Griffiths, Trevor R.; Thied, Robert C.

    2002-01-01

    The chlorination of uranium metal or uranium oxides in chloride melts offers an acceptable process for the head-end of pyrochemical reprocessing of spent nuclear fuels. The reactions of uranium metal and ceramic uranium dioxide with chlorine and with hydrogen chloride were studied in the alkali metal chloride melts, NaCl-KCl at 973K, NaCl-CsCl between 873 and 923K and LiCl-KCl at 873K. The uranium species formed therein were characterized from their electronic absorption spectra measured in situ. The kinetic parameters of the reactions depend on melt composition, temperature and chlorinating agent used. The reaction of uranium dioxide with oxygen in the presence of alkali metal chlorides results in the formation of alkali metal uranates. A spectroscopic study, between 723 and 973K, on their formation and their solutions was undertaken in LiCl, LiCl-KCl eutectic and NaCl-CsCl eutectic melts. The dissolution of uranium dioxide in LiCl-KCl eutectic at 923K containing added aluminium trichloride in the presence of oxygen has also been investigated. In this case, the reaction leads to the formation of uranyl chloride species. (author)

  12. Study of the recrystallisation of irradiated uranium

    International Nuclear Information System (INIS)

    Bloch, J.; Mustelier, J.P.; Bussy, P.; Blin, J.

    1958-01-01

    1- Study of the recrystallisation of irradiated uranium. The recrystallisation of uranium irradiated to a burnup level of 220 MWj/t, at a temperature of the order of 350 deg. C, has been investigated. The observations were made chiefly by means of micrography an hardness measurements. If the irradiated metal is compared with a cold-drawn metal showing the same shearing of the twinned crystals, and therefore the same rate of plastic deformation, as the irradiated metal, it is noted that the restoring of the irradiated metal takes place at a considerably higher temperature than that of the cold-drawn metal. Pre-crystallisation is very much delayed. Only, a passage of the α-β transformation point quickly wipes out irradiation effect. 2- Hardening of uranium by irradiation. Using hardness measurements we have studied more especially the effect of very weak irradiations on uranium (integrated flux 16 nvt). The hardness does not increase linearly with the flux, but a period of incubation is observed probably representing the time necessary for saturation of the dislocations. (author) [fr

  13. Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Freiboth, Cameron J.; Gibbs, Frank E.

    2000-01-01

    This report documents the position that the concentration of Uranium-233 ( 233 U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The 233 U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ( 233 U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns

  14. Separation of uranium from (Th,U)O2 solid solutions

    International Nuclear Information System (INIS)

    Chiotti, P.; Jha, M.C.

    1976-01-01

    Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets. 7 claims

  15. Gladstone-Dale rule and its applicability to natural calcium borates

    International Nuclear Information System (INIS)

    Gode, G.K.; Spritse, D.P.

    1987-01-01

    Applicability of Gladstone-Dale rule, relating a dependence between the values of refractive index, density and chemical composition of the liquids, to 25 natural crystalline calcium borates (minerals) is determined. The given rule is stated to be applicable to 21 of them. Only for 4 borates with unclear chemical composition and inaccurate data on the density and refractive indices Gladstone-Dale rule variations are expressed by more significant values

  16. A study on the formation of uranium carbide in an induction furnace

    International Nuclear Information System (INIS)

    Song, In Young; Lee, Yoon Sang; Kim, Eung Soo; Lee, Don Bae; Kim, Chang Kyu

    2005-01-01

    Uranium is a typical carbide-forming element. Three carbides, UC, U 2 C 3 and UC 2 , are formed in the uranium-carbon system. The most important of these as fuel is uranium monocarbide UC. It is well known that Uranium carbides can be obtained by three basic methods: 1) by reaction of uranium metal with carbon; 2) by reaction of uranium metal powder with gaseous hydrocarbons; 3) by reaction of uranium oxides with carbon. The use of uranium monocarbide, or materials based on it, has great prospects as fuel for nuclear reactors. It is quite possible that uranium dicarbide UC 2 may also acquire great importance as a fuel, particularly in dispersion fuel elements with graphite matrix. In the present study, uranium carbides are obtained by direct reaction of uranium metal with graphite in a high frequency induction furnace

  17. Extraction of uranium and lead from mixed waste debris using a variety of metal/ligand complexes

    International Nuclear Information System (INIS)

    Needham, D.A.; Duran, B.L.; Ehler, D.S.; Sauer, N.N.

    1997-01-01

    To ensure the safety of our Nation's nuclear stockpile, Los Alamos National Laboratory is in the process of constructing the DARHT (Dual Axis Radiographic Hydrodynamic Test) facility. DARHT will examine the effects of aging and the stability of our stockpile. Contained testing will be phased in to reduce the impact of these tests, which contain depleted uranium, on our environment. The main focus of this research is to develop a treatment scheme for the recovery of depleted uranium and lead from shot debris that will result from these tests. The goals of this research are to optimize the conditions on a bench scale using a commercially available water soluble polymer to bind the lead and a variety of metal/ligand complexes such as 4,5-dihydroxy-1,3-benzene-disulfonic acid, dithionite, sodium carbonate/bicarbonate, and sodium hypochlorite to bind the uranium. Studies were conducted on a mixture of debris, such as wood, cable, paper towels, and tubing that contained both uranium and lead ranging in concentration from 10-1000's of ppm of contaminants. Experiments were done varying combinations and successions of extractant solutions as well as a number of sequential extractions. Studies show that a mixture of sodium hypochlorite and carbonate removed 90+% of both uranium and lead. We then focused on a separation scheme for the lead and uranium

  18. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  19. Novel method for early investigation of bioactivity in different borate bio-glasses

    Science.gov (United States)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  20. Chapter 1. General information about uranium. 1.10. Uranium application

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2011-01-01

    Full text: Metallic uranium or its compounds are used as nuclear fuel in nuclear reactors. A natural or low-enriched admixture of uranium isotopes is applied in stationery reactors of nuclear power plants, and products of a high enrichment degree are used in nuclear power plants or in reactors that operates with fast neutrons. 235 U is a source of nuclear energy in nuclear weapons. Depleted uranium is used as armour-piercing core in bombshells. 238 U serves as a source of secondary nuclear fuel - plutonium. (author)

  1. Chapter 1. General information about uranium. 1.10. Uranium application

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    Full text: Metallic uranium or its compounds are used as nuclear fuel in nuclear reactors. A natural or low-enriched admixture of uranium isotopes is applied in stationery reactors of nuclear power plants, and products of a high enrichment degree are used in nuclear power plants or in reactors that operates with fast neutrons. 235 U is a source of nuclear energy in nuclear weapons. Depleted uranium is used as armour-piercing core in bombshells. 238 U serves as a source of secondary nuclear fuel - plutonium.

  2. Electrochemical preparation of new uranium oxide phases

    International Nuclear Information System (INIS)

    Smolenskij, V.V.; Lyalyushkin, N.V.; Bove, A.L.; Komarov, V.K.; Kapshukov, I.I.

    1992-01-01

    Behaviour of uranium ions in oxidation states 3+ and 4+ in molten chlorides of alkali metals in the temperature range of 700-900 degC in the atmosphere of an inert gas was studied by the method of cyclic voltametry. It is shown that as a result of introduction of crystal uranium dioxide into the salt melt formation of uranium oxide ions of the composition UO + and UO 2+ occurs, the ions participating in electrode reactions and bringing about formation of the following uranium oxides on the cathode: UO and, presumably, U 3 O 4 . Oxides UO and U 3 O 4 are thermodynamically unstable at low temperatures and decompose into uranium oxide of the composition UO 2-x , where x varies from 0 to 0.05, and metal uranium

  3. Research on evolutionary laws of Sr, Nd, Pb isotopes of uranium metallization and volcanic rocks in south china

    International Nuclear Information System (INIS)

    Ying Junlong

    1998-01-01

    According to research on evolutionary tracer of Sr, Nd, Pb isotopes, the author proposes that isotopic evolution of Mesozoic volcanics in south China is controlled by regionally metamorphic rocks of ancient land basement, early reformed derivates and recycled continental crust. Isotopic composition of uranium metallization shows the characteristics of crust sources, and Yanshanian accretion of continental margin caused the crust movement such as magmatic activity in lower crust within continent, extension-down-faulting, etc., promoting the migration, enrichment and ore formation of uranium

  4. Magnesio-thermic reduction of UF4 to uranium metal : plant operating experience

    International Nuclear Information System (INIS)

    Mayekar, S.V.; Singh, H.; Meghal, A.M.; Koppiker, K.S.

    1991-01-01

    Uranium Metal Plant has switched over from calcio-thermy to magnesio-thermy for production of uranium ingots. In this paper, the plant operating experience for magnesio-thermic reduction is described. Based on trials, the production has been stepped up from 40 kg ingots to 200 kg ingots. The operating parameters optimised include : heating schedule, UF 4 quality, magnesium quantity and quality, and particle size. The effect of quality of refractory lining has been discussed. Conditions for lining are optimised with regard to type of material used and size. Developmental work has also been carried out on use of pelletised charge and on use of graphite sleeves. Some experience in the machining of ingots for removal of surface slag is also discussed. Impurity problems, occasionally encountered, have been investigated and results are discussed. Based on the experience gained, specifications for operation have been laid down, and areas for further improvement are identified. (author). 5 refs., 1 fig., 1 tab

  5. Sublethal effects of a metal contamination due to uranium mine tailings in the three-spined stickleback (Gasterosteus aculeatus L.). Implication in the susceptibility to a biological stress

    International Nuclear Information System (INIS)

    Le Guernic, Antoine

    2015-01-01

    Uranium extraction has resulted in a remobilization of this actinide into mine surrounding ecosystems. Uses of metal salts during mining site rehabilitation, and the natural presence of metals have increased the metal contamination in hydro systems submitted to mine tailings. In situ experiments were conducted in two former French uranium mining sites. Three-spined stickleback caging was used to determine the sublethal effects of this metal mixture on this freshwater fish, as well as its effects on fish susceptibility to a sudden biological stress. This pollution, characterised by higher metal concentrations (especially for uranium), has led to an oxidative stress in sticklebacks visible through several bio-markers, and other effects dependent on the study site. The polymetallic contamination has modified the stickleback responses to the biological stress, by preventing their phagocytic and antioxidant responses. This work has reinforced the interest of the caging technique during environmental studies and that of immuno-markers in a multi-bio-marker approach. (author)

  6. Reverse transcriptase-real time PCR analysis of heavy metal stress response in a uranium resistant Pseudomonas aeruginosa strain isolated from Jaduguda uranium mine

    International Nuclear Information System (INIS)

    Choudhary, Sangeeta; Sar, Pinaki

    2011-01-01

    A multimetal resistant Pseudomonas strain isolated from a uranium mine waste site of Jaduguda, India, was characterized for its potential application in bioremediation. Nearly complete 16 Sr RNA gene sequence and fatty acid methyl ester analyses confirmed the identity of this bacterium as Pseudomonas aeruginosa. This bacterium exhibited high U-resistance i.e. up to an exposure of 6 h in 100 mg UL -1 solution (pH 4.0) and accumulation (maximum of 275 mg Ug -1 cell dry wt.) properties. Microcosm studies further proved the ability of the strain to remove soluble uranium (99%) from U-mine effluent and sequester it as U oxide and phosphate minerals while maintaining its viability. Considering the survival of this strain in U-mine site co-contaminated with other heavy metals, genetic basis of metal resistance was investigated. The bacterium was resistant to 3, 2 or 6 mM of Cu, Cd, or Zn, respectively. Polymerase chain reaction based detection followed by sequence identity and phylogenetic analysis revealed presence of specific metal resistance genes copA (copper resistance determinant) and czcA (RND type heavy metal efflux) in this isolate. Real-time PCR expression studies of these genes indicated significantly increased expression of both the genes in response to Cu, Cd, or Zn. Maximum up regulation of copA and czcA genes was observed following exposure (30 mm) to 25 μm of Cu or 10 μm Cd respectively. High levels of mRNA transcripts of copA and czcA genes in response to specific metals suggest that these resistance systems have important role in conferring metal resistance to the bacterium. Response of sodA an antioxidant Mn-cofactored superoxide dismutase gene to metal stress revealed that induction of this stress gene was not evident at lower concentration(s) of metals, the concentration(s) that cause maximum up- regulation of metal resistance genes. Higher test metal concentration or extended period of exposure, however, resulted in expression of sodA gene. The

  7. Enhancing mechanical properties of ceramic papers loaded with zeolites using borate compounds as binders

    OpenAIRE

    Juan P. Cecchini; Ramiro M. Serra; María A. Ulla; Miguel A. Zanuttini; Viviana G. Milt

    2013-01-01

    NaY zeolite-containing ceramic papers were prepared by a papermaking technique with a dual polyelectrolyte retention system that implied the use of cationic and anionic polymers. To improve their mechanical properties, we found that some borate compounds could be successfully used as ceramic binders. Three types of sodium and/or calcium borates were tested as binders: colemanite, nobleite, and anhydrous ulexite. The improvement in the mechanical properties depends both on the borate used and ...

  8. Microbial transformation of uranium in wastes

    International Nuclear Information System (INIS)

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.; Cline, J.E.

    1989-01-01

    Contamination of soils, water, and sediments by radionuclides and toxic metals from the disposal of uranium processing wastes is a major national concern. Although much is known about the physico- chemical aspects of U, we have little information on the effects of aerobic and anaerobic microbial activities on the mobilization or immobilization of U and other toxic metals in mixed wastes. In order to understand the mechanisms of microbial transformations of uranium, we examined a contaminated pond sediment and a sludge sample from the uranium processing facility at Y-12 Plant, Oak Ridge, TN. The uranium concentration in the sediment and sludge samples was 923 and 3080 ug/g dry wt, respectively. In addition to U, the sediment and sludge samples contained high levels of toxic metals such as Cd, Cr, Cu, Hg, Pb, Ni, and Zn. The association of uranium with the various mineral fractions of the sediment and sludge was determined by selective chemical extraction techniques. Uranium was associated to varying degrees with the exchangeable carbonate, iron oxide, organic, and inert fractions in both samples. Initial results in samples amended with carbon and nitrogen indicate immobilization of U due to enhanced indigenous microbial activity under anaerobic conditions. 23 refs., 4 figs., 5 tabs

  9. The Toxicity of Depleted Uranium

    OpenAIRE

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a c...

  10. Unusual stoichiometry control in the atomic layer deposition of manganese borate films from manganese bis(tris(pyrazolyl)borate) and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Klesko, Joseph P.; Bellow, James A.; Saly, Mark J.; Winter, Charles H., E-mail: chw@chem.wayne.edu [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States); Julin, Jaakko; Sajavaara, Timo [Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland)

    2016-09-15

    The atomic layer deposition (ALD) of films with the approximate compositions Mn{sub 3}(BO{sub 3}){sub 2} and CoB{sub 2}O{sub 4} is described using MnTp{sub 2} or CoTp{sub 2} [Tp = tris(pyrazolyl)borate] with ozone. The solid state decomposition temperatures of MnTp{sub 2} and CoTp{sub 2} are ∼370 and ∼340 °C, respectively. Preparative-scale sublimations of MnTp{sub 2} and CoTp{sub 2} at 210 °C/0.05 Torr afforded >99% recoveries with <0.1% nonvolatile residues. Self-limited ALD growth was demonstrated at 325 °C for MnTp{sub 2} or CoTp{sub 2} with ozone as the coreactant. The growth rate for the manganese borate process was 0.19 Å/cycle within the ALD window of 300–350 °C. The growth rate for the cobalt borate process was 0.39–0.42 Å/cycle at 325 °C. X-ray diffraction of the as-deposited films indicated that they were amorphous. Atomic force microscopy of 35–36 nm thick manganese borate films grown within the 300–350 °C ALD window showed root mean square surface roughnesses of 0.4–0.6 nm. Film stoichiometries were assessed by x-ray photoelectron spectroscopy and time of flight-elastic recoil detection analysis. The differing film stoichiometries obtained from the very similar precursors MnTp{sub 2} and CoTp{sub 2} are proposed to arise from the oxidizing ability of the intermediate high valent manganese oxide layers and lack thereof for cobalt.

  11. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour.

    Science.gov (United States)

    Martin, T L; Coe, C; Bagot, P A J; Morrall, P; Smith, G D W; Scott, T; Moody, M P

    2016-07-12

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  12. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    Science.gov (United States)

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W.; Scott, T.; Moody, M. P.

    2016-07-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  13. 40 CFR 471.70 - Applicability; description of the uranium forming subcategory.

    Science.gov (United States)

    2010-07-01

    ... uranium forming subcategory. 471.70 Section 471.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Uranium Forming Subcategory § 471.70 Applicability; description of the uranium forming...

  14. Could borate have played a role in the RNA World?

    Science.gov (United States)

    Grew, E. S.; Bada, J. L.; Hazen, R. M.

    2012-12-01

    Two scenarios have been proposed for boron to play a critical role in the stabilization of ribose and other sugars in the ribonucleic acid (RNA) World, >3.8 Ga ago. One scenario envisages oligomeric RNA being synthesized in subaerial intermountane desert valleys in which groundwater was enriched in borate from breakdown of tourmaline (Benner et al. 2012 doi: 10.1021/ar200332w). In the alternative scenario, borates are enriched in hydrothermal environments (3.8 Ma as they are today and (2) plate tectonics was the prevailing regime. The postulated non-marine borate deposits would have been associated with continental collision and subduction with volcanism releasing B, whereas in the second scenario, ocean floor caught up in an early phase of subduction is considered a favorable site for borate formation. Because borate deposits are typically ephemeral and poorly preserved, the lack of evidence in the geologic record for these scenarios does not invalidate them. For example, the oldest reported non-marine borate deposits analogous to the type postulated in first scenario are only 20 Ma, but metamorphosed borates of Precambrian age have been interpreted to have non-marine evaporite precursors, the oldest being 2.4-2.1 Ga in the Liaoning-Jilin area, China. The first B minerals so far reported in the geologic record are metamorphic dravite-schorl tourmalines in the 3.7-3.8 Ga Isua supracrustal belt (southern West Greenland), where there is good evidence for seafloor spreading and subduction. The precursors to the Isua tourmalines are reported to include B-bearing marine clay minerals and detrital tourmaline. The relatively high Li contents in zircon from Jack Hills, Australia, have been cited as evidence for the presence of granitic (s. l.) "protocontinental" crust by 4.3 Ga (Ushikuba et al. 2008 doi:10.1016/j.epsl.2008.05.032; Valley et al. 2010 Rec Geol Surv W Aust, 5-7), but the existence of conventional plate tectonics prior to 3.8 Ga remains controversial

  15. Study of interaction of uranium, plutonium and rare earth fluorides with some metal oxides in fluoric salt melts

    International Nuclear Information System (INIS)

    Gorbunov, V.F.; Novoselov, G.P.; Ulanov, S.A.

    1976-01-01

    Interaction of plutonium, uranium, and rare-earth elements (REE) fluorides with aluminium and calcium oxides in melts of eutectic mixture LiF-NaF has been studied at 800 deg C by X-ray diffraction method. It has been shown that tetravalent uranium and plutonium are coprecipitated by oxides as a solid solution UO 2 -PuO 2 . Trivalent plutonium in fluorides melts in not precipitated in the presence of tetravalent uranium which can be used for their separation. REE are precipitated from a salt melt by calcium oxide and are not precipitated by aluminium oxide. Thus, aluminium oxide in a selective precipitator for uranium and plutonium in presence of REE. Addition of aluminium fluoride retains trivalent plutonium and REE in a salt melt in presence of Ca and Al oxides. The mechanism of interacting plutonium and REE trifluorides with metal oxides in fluoride melts has been considered

  16. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    International Nuclear Information System (INIS)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100 deg. C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed

  17. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    Science.gov (United States)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100°C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed.

  18. The interaction of H2O with strained uranium metal surfaces

    International Nuclear Information System (INIS)

    Tiferet, E.; Mintz, M. H.; Zalkind, S.; Jacob, I.; Shamir, N.

    2014-01-01

    The interaction of water vapor was studied on uranium metal surfaces, with various degrees of strain (relieved by different degrees of heating). The main features of dissociation, adsorption and initial oxidation for the studied surfaces will be presented. Common to all strained surfaces, on the metal surface a full dissociation occurs, while after oxidation only on most of them the water dissociation is full and on one of them, it is only partial. The oxygen dissociation product adsorbs (with sticking coefficient decreasing with strain relief), forming clusters, for all strains, while the hydrogen product clusters only on the strain relieved and recrystallized surface. The most interesting phenomenon, revealed for these surfaces, is the inhibition of hydrogen adsorption by traces of water vapor , changing from 10% for the mostly strained (defected) surface down to 1% for the strain relieved one. The suggested mechanism for this inhibition will be discussed

  19. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    Science.gov (United States)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  20. Application of metal oxide refractories for melting and casting reactive metals

    International Nuclear Information System (INIS)

    Jessen, N.C. Jr.; Holcombe, C.E. Jr.; Townsend, A.B.

    1979-01-01

    Extensive investigations have been conducted to develop metal oxide refractories for containment of molten uranium and uranium alloys. Since uranium and uranium alloys are readily susceptable to the formation of complex oxides, carbides, nitrides, intermetallic compounds, and suboxide reactions, severe problems exist for the production of quality castings. These contamination reactions are dependent on temperature, pressure, and molten metal interfacial reactions. The need for high purity metals to meet specification repeatedly has resulted in the development of improved metal oxide refractories and sophisticated furnace controls. Applications of Y 2 O 3 for use as a crucible and mold coating, precision molds and cores, and high temperature castable ceramics are discussed. Experimental results on melt impurity levels, thermal controls during melting, surface interactions and casting quality are presented

  1. PROCESS OF RECOVERING URANIUM

    Science.gov (United States)

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  2. Geochemical characteristics of The Emet (Espey-Hisarcik) borate deposits, Kütahya, Turkey

    Science.gov (United States)

    Koçak, İ.; Koç, Ş.

    2018-06-01

    Nearly 72% world's borate reserves are in western part of Turkey. The Emet (Kütahya) deposit is one of these deposits. The Emet borate deposit, like other deposits in western Anatolia, was deposited in Miocene lacustrine environment whose formation coincides with volcanic activity started in Paleogene and lasted to the beginning of Quaternary. The borate ore displaying lenticular structure is alternated with claystone, marl, tuff and thin bedded limestone. The mineral paragenesis is composed of colemanite, hydroboracite, Veatchite, dolomite, calcite, montmorillonite and illite. The Emet borate deposit has been the subject of various geologic and mineralogical studies. In the present study major and trace element contents of 60 borate samples from this deposit are discussed. Among the trace elements, significant enrichment was found in As, Se, Sr, Cs, Sb and Li. Element correlations indicate volcanic source for boron (exhalations and hydrothermal solutions) whilst other elements are found to be derived from a terrestrial source. According to REE data, high Ce concentrations and anomalies are generally indicative of oxygenated depositional environment whilst low Ce contents facilitated the lake waters to be low oxygenated as a result of H2S-rich hydrothermal solutions. The weak negative anomaly detected only in the Hisarcık region is attributed to lacking of Eu contribution to the lake due to insufficient alteration on the continent.

  3. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  4. Neutron shielding and constructional characteristics of a new type concrete and from borated clinker

    International Nuclear Information System (INIS)

    Cakaloz, T.

    1979-07-01

    A boron containing cement, which can be used as nuclear shielding material, is produced at pilot plant scale applying two different methods. In the first method, the raw mixture of a normal portland cement is mixed with pre-calcined colemanite, a calcium borate mineral, and clinkerized in a rotary kiln (borated-clinker). In the second method, the colemanite is mixed with an admixture, which contains mainly limestone and marl, and burnt in the rotary kiln to obtain a borated-lime composite. The borated-lime composite is then added to the normal portland cement clinker up to 2% B 2 O 3 content for shielding purpose. The results have shown that the borated-clinker contained untolerable amount of free lime resulting in a decrease in compressive strength. The addition of the borated-lime composite to the normal portland cement clinker up to 1% B 2 O 3 content did not alter the setting time and the volume expansion properties. The reduction in the compressive strength was found to be tolerable, however, the decrease in the bending strength was 20% lower than that of permissible value. On the other hand, the increase in B 2 O 3 content of the mixture improved the neutron absorptivity resulting in an increase in total cross-section about 7 times for 1% B 2 O 3 without changing the gamma absorption value

  5. Measurement of highly enriched uranium metal buttons with the high-level neutron coincidence counter operating in the active mode

    International Nuclear Information System (INIS)

    Foley, J.E.

    1980-10-01

    The portable High-Level Neutron Coincidence Counter is used in the active mode with the addition of AmLi neutron sources to assay the 235 U content of highly enriched metal pieces or buttons. It is concluded that the portable instrument is a practical instrument for assaying uranium metal buttons with masses in the range 1.5 to 4 kg

  6. METHOD OF RECOVERING URANIUM COMPOUNDS

    Science.gov (United States)

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  7. GEOLOGICAL FEATURES OF NEOGENE BASINS HOSTING BORATE DEPOSITS: AN OVERVIEW OF DEPOSITS AND FUTURE FORECAST, TURKEY

    Directory of Open Access Journals (Sweden)

    Cahit HELVACI

    2015-12-01

    Full Text Available The geometry, stratigraphy, tectonics and volcanic components of the borate bearing Neogene basins in western Anatolia offer some important insights into on the relationship between basin evolution, borate formation and mode of extension in western Anatolia. Some of the borate deposits in NE-SW trending basins developed along the İzmir-Balıkesir Transfer Zone (İBTZ (e.g. Bigadiç, Sultançayır and Kestelek basins, and other deposits in the NE-SW trending basins which occur on the northern side of the Menderes Core Complex (MCC are the Selendi and Emet basins. The Kırka borate deposit occurs further to the east and is located in a completely different geological setting and volcanostratigraphic succession. Boron is widely distributed; including in soil and water, plants and animals. The element boron does not exist freely by itself in nature, but rather it occurs in combination with oxygen and other elements in salts, commonly known as borates. Approximately 280 boron-bearing minerals have been identified, the most common being sodium, calcium and magnesium salts. Four main continental metallogenic borate provinces are recognized at a global scale. They are located in Anatolia (Turkey, California (USA, Central Andes (South America and Tibet (Central Asia. The origin of borate deposits is related to Cenozoic volcanism, thermal spring activity, closed basins and arid climate. Borax is the major commercial source of boron, with major supplies coming from Turkey, USA and Argentina. Colemanite is the main calcium borate and large scale production is restricted to Turkey. Datolite and szaibelyite are confined to Russia and Chinese sources. Four Main borax (tincal deposits are present in Anatolia (Kırka, California (Boron, and two in the Andes (Tincalayu and Loma Blanca. Kırka, Boron and Loma Blanca have similarities with regard to their chemical and mineralogical composition of the borate minerals. Colemanite deposits with/without probertite and

  8. Development and fabrication of seamless Aluminium finned clad tubes for metallic uranium fuel rods for research reactor

    International Nuclear Information System (INIS)

    Singh, A.K.; Hussain, M.M.; Jayachandran, N.K.; Abdulla, K.K.

    2012-01-01

    Natural uranium metal or its alloy is used as fuel in nuclear reactors. Usually fuel is clad with compatible material to prevent its direct contact with coolant which prevents spread of activity. One of the methods of producing fuel for nuclear reactor is by co-drawing finished uranium rods with aluminum clad tube to develop intimate contact for effective heat removal during reactor operation. Presently seam welded Aluminium tubes are used as clad for Research Reactor fuel. The paper will highlight entire fabrication process followed for the fabrication of seamless Aluminium finned tubes along with relevant characterisation results

  9. A review of the environmental behavior of uranium derived from depleted uranium alloy penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Erikson, R.L.; Hostetler, C.J.; Divine, J.R.; Price, K.R.

    1990-01-01

    The use of depleted uranium (DU) penetrators as armor-piercing projectiles in the field results in the release of uranium into the environment. Elevated levels of uranium in the environment are of concern because of radioactivity and chemical toxicity. In addition to the direct contamination of the soil with uranium, the penetrators will also chemically react with rainwater and surface water. Uranium may be oxidized and leached into surface water or groundwater and may subsequently be transported. In this report, we review some of the factors affecting the oxidation of the DU metal and the factors influencing the leaching and mobility of uranium through surface water and groundwater pathways, and the uptake of uranium by plants growing in contaminated soils. 29 refs., 10 figs., 3 tabs.

  10. Surface Characterization and Electrochemical Oxidation of Metal Doped Uranium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongmook; Kim, Jandee; Youn, Young-Sang; Kim, Jong-Goo; Ha, Yeong-Keong; Kim, Jong-Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Trivalent element in UO{sub 2} matrix makes the oxygen vacancy from loss of oxygen for charge compensation. Tetravalent element alters lattice parameter of UO{sub 2} due to diameter difference between the tetravalent element and replaced U. These structural changes have significant effect on not only relevant fuel performance but also the kinetics of fuel oxidation. Park and Olander explained the stabilization of Ln (III)-doped UO{sub 2} against oxidation based on oxygen potential calculations. In this work, we have been investigated the effect of Gd{sup 3+} and Th{sup 4+} doping on the UO{sub 2} structure with Raman spectroscopy and X-ray diffraction to characterize the surface structure of nuclear fuel material. For Gd doped UO{sub 2}, its electrochemical oxidation behaviors are also investigated. The Gd and Th doped uranium dioxide solid solution pellets with various doping level were investigated by XRD, Raman spectroscopy, SEM, electrochemical experiments to investigate surface structure and electro chemical oxidation behaviors. The lattice parameter evaluated from XRD spectra indicated the formation of solid solutions. Raman spectra showed the existence of the oxygen vacancy. SEM images showed the grain structure on the surface of Gd doped uranium dioxide depending on doping level and oxygen-to-metal ratio.

  11. Uranium thiolate complexes

    International Nuclear Information System (INIS)

    Leverd, Pascal C.

    1994-01-01

    This research thesis proposes a new approach to the chemistry of uranium thiolate complexes as these compounds are very promising for various uses (in bio-inorganic chemistry, in some industrial processes like oil desulphurization). It more particularly addresses the U-S bond or more generally bonds between polarizable materials and hard metals. The author thus reports the study of uranium organometallic thiolates (tricyclo-penta-dienic and mono-cyclo-octa-tetraenylic complexes), and of uranium homoleptic thiolates (tetra-thiolate complexes, hexa-thiolate complexes, reactivity of homoleptic thiolate complexes) [fr

  12. Composition effect of potassium-borate glasses on their relaxation properties

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.; Bartenev, G.M.

    1995-01-01

    Relaxation processes in potassium-borate glasses have been investigated in detail for the first time. It is shown that low-temperature β-process of relaxation relating to rotational mobility of the B-O bond is the same for all potassium-borate glasses and B 2 O 3 . The process of β k -relaxation related to diffusion mobility of potassium ions depends on the composition of the glasses in the same way as α-relaxation (glass formation).12 refs., 10 figs., 2 tabs

  13. Determination of uranium in samples containing bulk aluminium

    International Nuclear Information System (INIS)

    Das, S.K.; Kannan, R.; Dhami, P.S.; Tripathi, S.C.; Gandhi, P.M.

    2015-01-01

    The determination of uranium is of great importance in PUREX process and need to be analyzed at different concentration ranges depending on the stage of reprocessing. Various techniques like volumetry, spectrophotometry, ICP-OES, fluorimetry, mass spectrometry etc. are used for the measurement of uranium in these samples. Fast and sensitive methods suitable for low level detection of uranium are desirable to cater the process needs. Microgram quantities of uranium are analyzed by spectrophotometric method using 2-(5- bromo-2-pyridylazo-5-diethylaminophenol) (Br-PADAP) as the complexing agent. But, the presence of some of the metal ions viz. Al, Pu, Zr etc. interferes in its analysis. Therefore, separation of uranium from such interfering metal ions is required prior to its analysis. This paper describes the analysis of uranium in samples containing aluminium as major matrix

  14. Ultraviolet-B radiation mobilizes uranium from uranium-dissolved organic carbon complexes in aquatic systems, demonstrated by asymmetrical flow field-flow fractionation.

    Science.gov (United States)

    Nehete, Sachin Vilas; Christensen, Terje; Salbu, Brit; Teien, Hans-Christian

    2017-05-05

    Humic substances have a tendency to form complexes with metal ions in aquatic medium, impacting the metal mobility, decreasing bioavailability and toxicity. Ultraviolet-B (UV-B) radiation exposure degrades the humic substance, changes their molecular weight distribution and their metal binding capacity in aquatic medium. In this study, we experimented the effect of UV-B radiation on the uranium complexed with fulvic acids and humic acids in a soft water system at different pH, uranium concentrations and radiant exposure. The concentration and distribution of uranium in a complexed form were investigated by asymmetrical flow field-flow fractionation coupled to multi detection technique (AsFlFFF-UV-ICP-MS). The major concentration of uranium present in complexes was primarily associated with average and higher molecular weight fulvic and humic acids components. The concentration of uranium in a complexed form increased with increasing fulvic and humic acid concentrations as well as pH of the solution. The higher molecular weight fraction of uranium was degraded due to the UV-B exposure, transforming about 50% of the uranium-dissolved organic carbon complexes into low molecular weight uranium species in complex form with organic ligands and/or free form. The result also suggests AsFlFFF-UV-ICP-MS to be an important separation and detection technique for understanding the interaction of radionuclides with dissolved organic matter, tracking size distribution changes during degradation of organic complexes for understanding mobility, bioavailability and ecosystem transfer of radionuclides as well as metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Crystallo-chemistry of boric anhydride and of anhydrous borates

    International Nuclear Information System (INIS)

    Bernardin, Jacques

    1968-01-01

    After an overview of various aspects related to the atomic structure of boron and of its three-bind and four-bind compounds, this report briefly presents the different forms of boric anhydride (in solid, liquid, glassy and gaseous state), presents and comments the structure of these different forms, and addresses the molten boric anhydride which is used as oxide solvent. The next part addresses the structure of anhydrous borates. It presents some generalities on their structure, and describes examples of known structures: dimers, trimers, polymers with a degree higher than three like calcium metaborate, caesium tri-borate, lithium tetraborate, or potassium pentaborate

  16. The Kerr nonlinearity of the beta-barium borate crystal

    DEFF Research Database (Denmark)

    Bache, Morten; Guo, Hairun; Zhou, Binbin

    2013-01-01

    A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond experime......A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond...

  17. Vibrational spectroscopy of the borate mineral kotoite Mg₃(BO₃)₂.

    Science.gov (United States)

    Frost, Ray L; Xi, Yunfei

    2013-02-15

    Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm(-1), assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm(-1) are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm(-1) is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. METHOD OF ROLLING URANIUM

    Science.gov (United States)

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  19. New ternary transition metal borides containing uranium and rare earth elements

    International Nuclear Information System (INIS)

    Rogl, P.; Delong, L.

    1983-01-01

    The new ternary actinide metal diborides U 2 MoB 6 , U 2 ReB 6 , U 2 OsB 6 , URuB 4 and UOsB 4 were prepared and found to crystallize with either the Y 2 ReB 6 or the ThMoB 4 type of structure. LuRuB 4 and LuOsB 4 crystallize with the YCrB 4 type of structure. In a ternary series of solid solutions YRh 3 Bsub(1-x) (0 0 C), boron was found to stabilize a Cu 3 Au type of structure. The superconductivity of the new uranium compounds and of a series of ternary transition metal borides was investigated; no superconductivity was observed for temperatures as low at 1.3-1.5 K. The cubic perovskite or filled Cu 3 Au structure is discussed as a type which is very unfavorable for the occurrence of superconductivity. (Auth.)

  20. Uranium extraction by complexation with siderophores

    Science.gov (United States)

    Bahamonde Castro, Cristina

    One of the major concerns of energy production is the environmental impact associated with the extraction of natural resources. Nuclear energy fuel is obtained from uranium, an abundant and naturally occurring element in the environment, but the currently used techniques for uranium extraction leave either a significant fingerprint (open pit mines) or a chemical residue that alters the pH of the environment (acid or alkali leaching). It is therefore clear that a new and greener approach to uranium extraction is needed. Bioleaching is one potential alternative. In bioleaching, complexants naturally produced from fungi or bacteria may be used to extract the uranium. In the following research, the siderophore enterobactin, which is naturally produced by bacteria to extract and solubilize iron from the environment, is evaluated to determine its potential for complexing with uranium. To determine whether enterobactin could be used for uranium extraction, its acid dissociation and its binding strength with the metal of interest must be determined. Due to the complexity of working with radioactive materials, lanthanides were used as analogs for uranium. In addition, polyprotic acids were used as structural and chemical analogs for the siderophore during method development. To evaluate the acid dissociation of enterobactin and the subsequent binding constants with lanthanides, three different analytical techniques were studied including: potentiometric titration, UltraViolet Visible (UV-Vis) spectrophotometry and Isothermal Titration Calorimetry (ITC). After evaluation of three techniques, a combination of ITC and potentiometric titrations was deemed to be the most viable way for studying the siderophore of interest. The results obtained from these studies corroborate the ideal pH range for enterobactin complexation to the lanthanide of interest and pave the way for determining the strength of complexation relative to other naturally occurring metals. Ultimately, this

  1. Melt refining of uranium contaminated copper, nickel, and mild steel

    International Nuclear Information System (INIS)

    Ren Xinwen; Liu Wencang; Zhang Yuan

    1993-01-01

    This paper presents the experiment results on melt refining of uranium contaminated metallic discards such as copper, nickel, and mild steel. Based on recommended processes, uranium contents in ingots shall decrease below 1 ppm; metal recovery is higher than 96%; and slag production is below 5% in weight of the metal to be refined. The uranium in the slag is homogeneously distributed. The slag seems to be hard ceramics, insoluble in water, and can be directly disposed of after proper packaging

  2. Uranium ore processing

    International Nuclear Information System (INIS)

    Ritcey, G.M.; Haque, K.E.; Lucas, B.H.; Skeaff, J.M.

    1983-01-01

    The authors have developed a complete method of recovering separately uranium, thorium and radium from impure solids such as ores, concentrates, calcines or tailings containing these metals. The technique involves leaching, in at least one stage. The impure solids in finely divided form with an aqueous leachant containing HCl and/or Cl 2 until acceptable amounts of uranium, thorium and radium are dissolved. Uranium is recovered from the solution by solvent extraction and precipitation. Thorium may also be recovered in the same manner. Radium may be recovered by at least one ion exchange, absorption and precipitation. This amount of iron in the solution must be controlled before the acid solution may be recycled for the leaching process. The calcine leached in the first step is prepared in a two stage roast in the presence of both Cl 2 and a metal sulfide. The first stage is at 350-450 0 and the second at 550-700 0

  3. Initial process development for uranium bioprecipitation

    International Nuclear Information System (INIS)

    Truex, M.; Peyton, B.; Gorby, Y.; Valentine, N.

    1994-01-01

    Some bacteria can destabilize soluble metal complexes by enzymatically reducing the metal to a valence state where insoluble compounds are formed. For instance, oxidized uranium (VI) is highly soluble, but it precipitates from solution as the U(IV) oxide uraninite after microbial reduction. The advantage of this technology is that the uranium is easily separated from the aqueous phase, resulting in a small volume of relatively pure uraninite waste. A dissimilatory iron-reducing bacterium capable of uranium reduction was found to have a maximum growth rate of 0.142/hr, a Monod half-saturation constant of 3.4 mg/L, and a cellular yield of 0.071 mg-biomass/mg-iron for iron reduction at 30 C and pH 6.8. The kinetics of iron reduction were used to predict the performance of several reactor configurations for reduction of metals of interest such as uranium. A stirred-tank reactor in series with a plug-flow reactor was determined to be the best configuration for application of the bioprecipitation technology in a continuous-flow process

  4. General trends in the use of uranium in the nuclear industry; Tendances generales d'emploi de l'uranium dans les industries nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Salesse, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    It can be seen from a consideration of the development of the military and civil needs for uranium that, in the long run, the main outlet for the metal will be provided by its industrial applications. The technical uncertainties concerning the best method of producing atomic energy are still numerous and in fact reflect the hesitation in choosing one of two classes of fuel: that based on the metal and that based on the oxide. Four main factors should influence the choice: - the neutron reactivity and the enrichment of the uranium; - the operating temperature; - the resistance to radiation effects; - the chemical stability; but in actual fact, when the choice for a particular use has to be made, it will be another type of factor, such as the cost price, and weight and space considerations which will determine the choice of either metallic uranium or uranium oxide reactors. (author) [French] D'apres le developpement des besoins militaires ou civils en uranium, on voit que les usages industriels de ce metal constituent, a long terme, le debouche essentiel. Les incertitudes techniques, sur le procede optimum pour faire de l'energie nucleaire, restent nombreuses, et se traduisent finalement par une hesitation entre deux grandes classes de combustibles: ceux a base de metal et ceux a base d'oxyde: la preference a l'une ou l'autre de ces deux categories doit s'inspirer de quatre considerations: - la reactivite neutronique et l'enrichissement de l'uranium; - la temperature de fonctionnement; - la resistance aux effets du rayonnement; - la stabilite chimique; mais en definitive, lorsqu'il s'agira d'une application determinee, ce seront des considerations d'un autre ordre, comme le prix de revient, le poids et l'encombrement, qui determineront le choix entre piles a uranium metallique et piles a oxyde d'uranium. (auteur)

  5. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    OpenAIRE

    T. L. Martin; C. Coe; P. A. J. Bagot; P. Morrall; G. D. W Smith; T. Scott; M. P. Moody

    2016-01-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (∼5 nm) interfacia...

  6. Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria

    Science.gov (United States)

    Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

    2011-12-01

    Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria

  7. Use of a new borate raw material for glaze formulation

    International Nuclear Information System (INIS)

    Gomez-Tena, M. P.; Moreno, A.; Bou, E.; Cook, S.; Galindo, M.

    2010-01-01

    The Rio Tinto Minerals company has developed a new borate (E-4972), which can be used in glaze formulation (patent WO 2007/148101). This new borate, synthesised by low-temperature calcination, fundamentally contributes five oxides: silicon oxide (SiO 2 ), aluminium oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), calcium oxide (CaO), and sodium oxide (Na 2 O), its content in B 2 O 3 being between 10 and 11% by weight. It is largely amorphous, and quartz is the major crystalline phase present. The characteristics of this new borate, such as its low solubility and ability readily to form glassy phase, enable it to be used as a raw material in glaze compositions. Its suitability for glaze formulation has been the result of several years research in collaboration with the Instituto de Tecnologia Ceramica. In this paper, the feasibility has been studied of fabricating ceramic glazes by using a new synthetic borate raw material that contributes boron to the glaze composition without this needing to be done in fritted form. It has been possible to obtain fired glazes with similar technical and aesthetics characteristics to those obtained from industrial glaze compositions that contain typical frits in their compositions, thus enabling glazes to be formulated by using the new synthetic boron raw material. The results obtained show that this new raw material (E-4972) is particularly appropriate for use in producing glazes with low gloss at high temperature. (Author) 15 refs.

  8. Study of the dry processing of uranium ores; Etude des traitements de minerais d'uranium par voie seche

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, H

    1959-02-01

    A description is given of direct fluorination of pre-concentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by a load of lime to obtain: either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial product in a diffusion plant. (author) [French] Il s'agit d'une description de fluoration directe de preconcentres de minerais d'uranium en vue d'obtention d'hexafluorure. Apres attaque sulfurique normale du minerai, afin d' eliminer la silice, l' uranium est precipite par un toit de chaux pour obtenir: ou uranate de chaux impur de titre moyen, ou uranium de la dizaine du pourcentage. Ce concentre seche en atmosphere inerte est soumis a un courant de fluor elementaire. L'hexafluorure d'uranium forme est condense a la sortie du reacteur et peut etre utilise soit apres reduction en tetrafluorure par l'elaboration d'uranium metal, soit comme produit de base dans le cadre d'une usine de diffusion. (auteur)

  9. Application of insoluble tannin to recovery of uranium, TRU and heavy metals elements form radioactive liquid waste

    International Nuclear Information System (INIS)

    Hamaguchi, Kazuhiko; Shirato, Wataru; Nakamura, Yasuo; Matsumura, Tatsuro; Takeshita, Kenji; Nakano, Yoshio

    1999-01-01

    Mitsubishi Nuclear Fuel Co., Ltd. (MNF) has developed a new adsorbent, TANNIX (tread mark), for the recovery of uranium, TRU and heavy metal elements in the liquid waste, in which TANNIX derived from a natural tannin polymer. TANNIX has same advantages that handling is easier than that of standard IX-resin, and that the volume of secondary waste is reduced by burning the used TANNIX. We have replaced its radioactive liquid waste treatment system from the conventional co-precipitation process to adsorption process by using TANNIX. TANNIX was founded to be more effective for the recovery of Pu, TRU, and hexavalent chromium Cr-(VI) as well as Uranium. (author)

  10. Uranium content measurement in drinking water samples using track etch technique

    International Nuclear Information System (INIS)

    Kumar, Mukesh; Kumar, Ajay; Singh, Surinder; Mahajan, R.K.; Walia, T.P.S.

    2003-01-01

    The concentration of uranium has been assessed in drinking water samples collected from different locations in Bathinda district, Punjab, India. The water samples are taken from hand pumps and tube wells. Uranium is determined using fission track technique. Uranium concentration in the water samples varies from 1.65±0.06 to 74.98±0.38 μg/l. These values are compared with safe limit values recommended for drinking water. Most of the water samples are found to have uranium concentration above the safe limit. Analysis of some heavy metals (Zn, Cd, Pb and Cu) in water is also done in order to see if some correlation exists between the concentration of uranium and these heavy metals. A weak positive correlation has been observed between the concentration of uranium and heavy metals of Pb, Cd and Cu

  11. Allyl borates: a novel class of polyhomologation initiators

    KAUST Repository

    Wang, De; Hadjichristidis, Nikolaos

    2016-01-01

    Allyl borates, a new class of monofunctional polyhomologation initiators, are reported. These monofunctional initiators are less sensitive and more effective towards polymethylene-based architectures. As an example, the synthesis of α

  12. Isolation and characterization of a uranium(VI)-nitride triple bond

    Science.gov (United States)

    King, David M.; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.

    2013-06-01

    The nature and extent of covalency in uranium bonding is still unclear compared with that of transition metals, and there is great interest in studying uranium-ligand multiple bonds. Although U=O and U=NR double bonds (where R is an alkyl group) are well-known analogues to transition-metal oxo and imido complexes, the uranium(VI)-nitride triple bond has long remained a synthetic target in actinide chemistry. Here, we report the preparation of a uranium(VI)-nitride triple bond. We highlight the importance of (1) ancillary ligand design, (2) employing mild redox reactions instead of harsh photochemical methods that decompose transiently formed uranium(VI) nitrides, (3) an electrostatically stabilizing sodium ion during nitride installation, (4) selecting the right sodium sequestering reagent, (5) inner versus outer sphere oxidation and (6) stability with respect to the uranium oxidation state. Computational analyses suggest covalent contributions to U≡N triple bonds that are surprisingly comparable to those of their group 6 transition-metal nitride counterparts.

  13. Determination of geochemical and anthropogenic uranium sources in soil and tailing

    International Nuclear Information System (INIS)

    Stojanovic, M.; Potpara, D.; Tesmanovic, L.

    2002-01-01

    The origin of uranium in soil (geochemical or anthropogenic) influences the degree of its accessibility to plants. Uranium originating from the geochemical sources is much less, if not quite inaccessible to plants. On the other hand uranium accumulated in soil as a result of anthropogenic activity (use of phosphate fertilisers, dissemination of flying ash from the thermal power plants, dissemination of mining wastes, disposal of nuclear waste and use of ammunition produced from depleted uranium) is most often present in forms much more accessible to plants. The aim of this work was to determine the efficiency of different methods of uranium extraction from soil (used to determine the 'mobile' and accessible contents) which could give the answer on the level of its accessibility to plants, and to determine uranium distribution in various chemical fractions by the method of fractional extraction.The applied method of fractional extraction is based on the idea that all metals form bonds of different strength with the solid phase of soil and such bonds can be completely broken under the effect of reagents such as: 0.1M CaCl 2 (pH - 7.0) for extraction of water-soluble and alternately adsorbed forms of metals; 1M CH 3 COONa (pH - 5.0) for the extraction of specifically adsorbed forms of metals bonded to carbonates; 0.04M hydroxylamine hydrochloride in 25% CH 3 COOH (pH - 3.0) for extraction of metals bonded to Fe and Mn oxide; 0.02M HNO 3 in 30% H 2 O 2 for metals bonded to organic matter. Structurally bonded forms of metals in silicates are determined from the difference of the total uranium content and sum of the metal quantity from the first four fractions. Determination of uranium content in samples was performed by the fluorimetric method. (author)

  14. Uranium material removing and recovering device

    International Nuclear Information System (INIS)

    Takita, Shin-ichi.

    1997-01-01

    A uranium material removing and recovering device for use in removing surplus uranium heavy metal (UO 2 ) generated in a uranium handling facility comprises a uranium material removing device and a uranium material recovering device. The uranium material removing device comprises an adsorbing portion filled with a uranium adsorbent, a control portion for controlling the uranium adsorbent of the uranium adsorbing portion by a controlling agent, a uranium adsorbing device connected thereto and a jetting device for jetting the adsorbing liquid to equipments deposited with uranium. The recovering device comprises a recovering apparatus for recovering uranium materials deposited with the adsorbent liquid removed by the jetting device and a recovering tank for storing the recovered uranium materials. The device of the present invention can remove surplus uranium simply and safely, mitigate body's load upon removing and recovering operations, facilitate the processing for the exchange of the adsorbent and reduces the radioactive wastes. (T.M.)

  15. Studies on the fluorination of tri uranium octa oxide to Uranium tetrafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Rofail, N H; Elfekey, S A [Nuclear chemistry department, hot laboratories centre, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    Uranium tetrafluoride suitable for both uranium metal and hexafluoride preparations, was prepared by fluorination of U{sub 3} O{sub 8} with C F{sub 2} Cl{sub 2}. It was found that the oct oxide must have certain physical and chemical specifications to satisfy the specifications needed for subsequent operations. X-ray diffraction analysis, infra red investigations and chemical analysis confirm that the obtained uranium tetrafluoride contains more than 97% of U F{sub 4} with tap density equals to 3.5 g/cc. 3 FIGS., 2 TABS.

  16. Plutonium recovery from spent reactor fuel by uranium displacement

    Science.gov (United States)

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  17. Plutonium recovery from spent reactor fuel by uranium displacement

    International Nuclear Information System (INIS)

    Ackerman, J.P.

    1992-01-01

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished

  18. Effects of long-term radionuclide and heavy metal contamination on the activity of microbial communities, inhabiting uranium mining impacted soils.

    Science.gov (United States)

    Boteva, Silvena; Radeva, Galina; Traykov, Ivan; Kenarova, Anelia

    2016-03-01

    Ore mining and processing have greatly altered ecosystems, often limiting their capacity to provide ecosystem services critical to our survival. The soil environments of two abandoned uranium mines were chosen to analyze the effects of long-term uranium and heavy metal contamination on soil microbial communities using dehydrogenase and phosphatase activities as indicators of metal stress. The levels of soil contamination were low, ranging from 'precaution' to 'moderate', calculated as Nemerow index. Multivariate analyses of enzyme activities revealed the following: (i) spatial pattern of microbial endpoints where the more contaminated soils had higher dehydrogenase and phosphatase activities, (ii) biological grouping of soils depended on both the level of soil contamination and management practice, (iii) significant correlations between both dehydrogenase and alkaline phosphatase activities and soil organic matter and metals (Cd, Co, Cr, and Zn, but not U), and (iv) multiple relationships between the alkaline than the acid phosphatase and the environmental factors. The results showed an evidence of microbial tolerance and adaptation to the soil contamination established during the long-term metal exposure and the key role of soil organic matter in maintaining high microbial enzyme activities and mitigating the metal toxicity. Additionally, the results suggested that the soil microbial communities are able to reduce the metal stress by intensive phosphatase synthesis, benefiting a passive environmental remediation and provision of vital ecosystem services.

  19. Borat tungib psüühesse / Rain Tolk

    Index Scriptorium Estoniae

    Tolk, Rain, 1977-

    2006-01-01

    Briti koomik Sacha Baron Cohen ja tema loodud peategelasega film "Borat - kultuurialased õppetunnid Ameerikast abiks suursuguse Kasahstani riigi ülesehitamisel", režissöör Larry Charles : Ameerika Ühendriigid 2006

  20. Rheological properties of potassium barium borate glasses

    NARCIS (Netherlands)

    Szwejda, K.A.; Vogel, D.L.; Stevels, J.M.

    1973-01-01

    Several series of potassium barium borate glasses have been investigated as to their rheological properties. It has been found, that all these glasses show deviations from ‘Newtonian’ behaviour below temperatures corresponding to viscosities of 1010 poises. The activation energies of viscous flow

  1. Supramolecular assembly of borate with quaternary ammonium: Crystal structure and tunable luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jie; Wang, Yong-gang [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Wang, Ying-xia, E-mail: wangyx@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Liao, Fu-hui [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Lin, Jian-hua, E-mail: jhlin@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2013-04-15

    A new borate [C{sub 6}H{sub 16}N][B{sub 5}O{sub 6}(OH){sub 4}] (1) is synthesized hydrothermally by the reaction of isopropyltrimethylammonium hydroxide with boric acid. It crystallizes in the triclinic space group P-1 with the parameters a=9.1578(10) Å, b=9.372(9) Å, c=9.9812(10) Å, α=66.508(2)°, β=74.751(2)°, γ=81.893(2)°. The [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions are interlinked via hydrogen bonding forming a 3D supramolecular network containing large cavities, where reside the (CH{sub 3}){sub 3}(i-C{sub 3}H{sub 7}) N{sup +} cations. This borate shows tunable luminescent properties with temperature, heating-treatment, exciting-light, and solvents. The fluorescent intensity of 1 enhances 6-fold with decreasing the temperature from 25 K to 78 K. By treatment under different temperatures, the luminescence of 1 shifted from blue to white and the sample treated at 230 °C emits bright white light to naked eyes. The hybrid borate can disperse in different solvents, and shows a red-shifted and intense emission in polar solvents. - Graphical abstract: The new quaternary ammonium borate [C{sub 6}H{sub 17}N][B{sub 5}O{sub 6}(OH){sub 4}] contains a 3D supramolecular network formed by hydrogen bond linked [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions and shows tunable luminescent properties with temperature, excitation light, and solvents. Highlights: ► A novel quaternary ammonium borate was synthesized. ► It possesses a supramolecular network fomed by H-bonded [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions. ► This borate shows tunable luminescent properties with temperature, heating treatment, excitation light, and solvents.

  2. Contribution to the study of gaseous Carburization of Uranium

    International Nuclear Information System (INIS)

    Esteban Hernandez, J. A.; Jimenez Moreno, J. M.; Villota Ruiz, P. de

    1966-01-01

    Thermal decomposition of uranium hydride powder obtained by hydrogenation of uranium turnings is studied on the first part of this paper. Carburization of the uranium hydride or metallic uranium powder with methane is studied in the second part. A method of uranium monocarbide fabrication under static atmosphere is described. On this method hydrogen is removed by means of an uranium getter. (Author) 6 refs

  3. Melting-decontamination method for radioactive contaminated metals

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Tsuchiya, Hiroyuki; Miura, Noboru; Iba, Hajime.

    1985-01-01

    Purpose: To eliminate uranium components remaining in metals even after the uranium-contaminated metals are melted. Method: Metal wastes contaminated with actinide element or its compound as nuclear fuel substance are melted in a crucible. Molten metals are fallen through a filter disposed at the bottom of the crucible into another receiving crucible. Uranium compounds are still left in the molten metal fallen in the receiving crucible. The residual uranium compounds are concentrated by utilizing the principle of the zone-refining process. That is, a displaceable local-heating heater is disposed to the receiving crucible, by which metals once solidified in the receiving crucible is again heated locally to transfer from solid to molten phase in a quasi-equibilized manner. In this way, by eliminating the end of the metal rod at which the uranium is segregated, the contaminating coefficient can be improved. (Ikeda, J.)

  4. Characterization and Exergy Analysis of Triphenyl Borate

    International Nuclear Information System (INIS)

    Acarali, N. B.

    2015-01-01

    In this study, unlike from the literature, boron oxide, borax decahydrate, boric acid and borax pentahydrate as boron sources were used to synthesize Triphenyl Borate (TPB). The reactions of TPB were carried out by using both phenol and various boron sources in inert water-immiscible organic solvent successfully. On the basis of analyzes (FT-IR, SEM, TGA/DSC) obtained, it was seen that phenol acted as a support to borate structure framework and thermal characterisation of the amorphous solid under determined conditions suggested that usage of different boron sources had effects for glass transition temperature in TPB production. The exergy analysis was performed to the TPB production to determine efficiency. The exergy analysis showed that the highest exergy efficiency was obtained by using boron oxide as a boron source. Consequently, all analyses results showed that TPB was produced successfully. Accordingly, characterization and exergy analysis supported each other. (author)

  5. Chapter 3. Classical method of uranium leaching from ores and reasons for incomplete recovery at dumps of State Enterprise 'VOSTOKREDMET'. 3.3. Basic regularities of uranium ores leaching

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    Present article is devoted to basic regularities of uranium ores leaching. It was found that the basic method of uranium ores enrichment and producing of reasonably rich and pure uranium concentrates (usually technical uranium oxide) is a chemical concentration concluded in selective uranium leaching from ore raw materials with further, uranium compounds - so called uranium chemical concentrates. Such reprocessing of uranium ores with the purpose of uranium chemical concentrates production, currently, are produced everywhere by hydrometallurgical methods. This method in comparison with enrichment and thermal reprocessing is a universal one. Hydrometallurgy - the part of chemical technology covering so called moist methods of metals and their compounds (in the current case, uranium) extraction from raw materials, where they are contained. It can be ores or ore concentrates produced by radiometric, gravitational, floatation enrichment, sometimes passed through high-temperature reprocessing or even industry wastes. The basic operation in hydrometallurgy is its important industrial element - metal or metals leaching as one or another compound. Leaching is conversion of one or several components to solution under impact of relevant technical solvents: water, water solutions, acids, alkali or base, solution of some salts and etc. The basic purpose of leaching in uranium technology is to obtain the most full and selective solution of uranium.

  6. Study and development of refractory coatings for metallic uranium fusion and evaporation; Estudo e desenvolvimento de suportes refratarios para a fusao e a evaporacao de uranio metalico

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Getulio de

    2004-07-01

    In melting process or evaporation of metallic uranium, the reaction with the crucible and the possible contamination of the molten metal should be avoided. This effect can be reduced using an inert and protective coating on the crucible walls. The selection of the coating should be based on the chemical inertia and the kinetic of the reaction products. By avoiding chemical reactions, the amount of impurities in the molten metal can be reduced, leading to an increased crucible lifetime. This work presents a comparative study among different crucible coatings used in the melting process of metallic uranium, at temperatures above its melting point. Samples of metallic uranium are melted in contact with different materials in a vacuum furnace. The reactions occur at a given temperature during a certain time interval; samples are then cooled down to room temperature. Finally, samples are characterized by optical and electronic microscopy, dispersive X-ray spectroscopy, surface roughness and X-ray diffraction. Samples preparation consists of polishing selected areas, and milling the reaction products originated from the corroded interfaces. The extent of the reactions is determined as a function of the temperature by optical microscopy and roughness analyses. The compositions of the reacted products are determined by Energy Dispersive Spectroscopy, and the phase changes by X-ray diffraction. The results indicate that alumina presented higher activation energy (39 kcal.mol{sup -1}) than magnesia (12 kcal.mol{sup -1}), otherwise, it is corroded faster. On the other hand, the alumina could be protected by a thick coating of titanium nitride, because no rection between titanium nitride and uranium was observed at temperatures near to 1700 K. After cooling to the room temperature, there is stress concentration between the graphite and the TiN layer, generating a compressive stress of 0,5 GPa. When uranium is deposited on the TiN, a tensile stress is generated in this new

  7. Formation of corrosion-resistant oxide film on uranium

    International Nuclear Information System (INIS)

    Petit, G.S.

    1976-01-01

    A vacuum heat-treatment method was developed for coating metallic uranium with an adherent protective film of uranium oxide. The film is prepared by vacuum heat-treating the metallic uranium at 625 0 C for 1 h while controlling the amount of oxygen being metered into the furnace. Uranium coupons with the protective film were exposed for several hundred hours in a corrosion test bath at 95 0 C and 100 percent RH without corroding. Film thicknesses ranging from 5 to 25 μm (0.0002 to 0.001 in.) were prepared and corrosion tested; the film thickness can be controlled to less than +-2.5 μm (+-0.0001 in.). The oxide film is hard, nonwetting, and very adherent. The resulting surface finish of the metal is equivalent to that of the original finish. The advantages of the oxide films over other protective coatings are given. 12 fig

  8. Actinide metal processing

    International Nuclear Information System (INIS)

    Sauer, N.N.; Watkin, J.G.

    1992-01-01

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage

  9. Overview of ultraviolet and infrared spectroscopic properties of Yb{sup 3+} doped borate and oxy-borates compounds; De l'ultraviolet a l'infrarouge: caracterisation spectroscopique de materiaux type borate et oxyborate dopes a l'ytterbium trivalent

    Energy Technology Data Exchange (ETDEWEB)

    Sablayrolles, J

    2006-12-15

    The trivalent ytterbium ion can give rise to two emissions with different spectroscopic properties: the first one, with a short lifetime, in the ultraviolet (charge transfer emission) is used in detectors such as scintillators, and the other one, with a long lifetime, in the infrared (4f-4f emission) for laser applications. The strong link between material structure and properties is illustrated through ytterbium luminescence study, in the ultraviolet and infrared, inserted in the borate Li{sub 6}Y(BO{sub 3}){sub 3} and two oxy-borates: LiY{sub 6}O{sub 5}(BO{sub 3}){sub 3} and Y{sub 17,33}B{sub 8}O{sub 38}. For the first time an ytterbium charge transfer emission in oxy-borates has been observed. The calculation of the single configurational coordinate diagram, as well as the thermal quenching, has been conducted under a fundamental approach on the ytterbium - oxygen bond. The study of the ytterbium infrared spectroscopy in these compounds has been realised and an energy level attribution is proposed in the particular case of the borate Li{sub 6}Y(BO{sub 3}){sub 3}: Yb{sup 3+}. An original approach is introduced with the study of the charge transfer states for the three compounds by looking at the infrared emission. The first laser performances in three operating modes (continuous wave, Q-switch and mode locking) of a Li{sub 6}Y(BO{sub 3}){sub 3}: Yb{sup 3+} crystal are reported. (author)

  10. Metal electrodeposition and electron transfer studies of uranium compounds in room temperature ionic liquids

    International Nuclear Information System (INIS)

    Stoll, M.E.; Oldham, W.J.; Costa, D.A.

    2004-01-01

    Room temperature ionic liquids (RTIL's) comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and one of several anions such as PF 6 - , BF 4 - , or - N(SO 2 CF 3 ) 2 , represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. Part of the intrigue with RTIL's stems from some of their inherent solvent properties including negligible vapor pressure, good conductivity, high chemical and thermal stability, and non-flammability. Additionally, a substantial number of RTIL's can be envisioned simply by combining different cation and anion pairs, thereby making them attractive for specific application needs. We are interested in learning more about the possible use of RTIL's within the nuclear industry. In this regard our research team has been exploring the electron transfer behavior of simple metal ions in addition to coordination and organometallic complexes in these novel solvents. Results from our research have also provided us with insight into the bonding interactions between our current anion of choice, bis(trifluoromethylsulfonyl)imide = NTf 2 , and open coordination sites on actinide and transition metal fragments. This presentation will focus on recent results in two areas: the electrodeposition of electropositive metal ions from RTIL solutions and the electron transfer behavior for several uranium complexes. Details concerning the cathodic electrodeposition and anodic stripping of alkali metals (Na, K) from various working electrode surfaces (Pt, Au, W, Glassy Carbon) will be discussed. Figure 1 displays typical behavior for the electrodeposition of potassium metal from an RTIL containing potassium ions produced through the reaction of KH with H[NTf 2 ]. Our efforts with other metal ions, including our results to date with uranium electrodeposition, will be covered during the presentation. The electron transfer behavior for a number of uranium complexes have been studied with various

  11. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour.

    Science.gov (United States)

    Scott, T B; Petherbridge, J R; Harker, N J; Ball, R J; Heard, P J; Glascott, J; Allen, G C

    2011-11-15

    The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO(3) · xH(2)O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  12. Harnessing redox activity for the formation of uranium tris(imido) compounds

    Science.gov (United States)

    Anderson, Nickolas H.; Odoh, Samuel O.; Yao, Yiyi; Williams, Ursula J.; Schaefer, Brian A.; Kiernicki, John J.; Lewis, Andrew J.; Goshert, Mitchell D.; Fanwick, Phillip E.; Schelter, Eric J.; Walensky, Justin R.; Gagliardi, Laura; Bart, Suzanne C.

    2014-10-01

    Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium-nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.

  13. Enriched uranium recovery at Los Alamos

    International Nuclear Information System (INIS)

    Herrick, C.C.

    1984-01-01

    Graphite casting scrap, fuel elements and nongraphite combustibles are calcined to impure oxides. These materials along with zircaloy fuel elements and refractory solids are leach-dissolved separately in HF-HNO 3 acid to solubilize the contained enriched uranium. The resulting slurry is filtered and the clear filtrate (to which mineral acid solutions bearing enriched uranium may be added) are passed through solvent extraction. The solvent extraction product is filtered, precipitated with H 2 O 2 and the precipitate calcined to U 3 O 8 . Metal is made from U 3 O 8 by conversion to UO 2 , hydrofluorination and reduction to metal. Throughput is 150 to 900 kg uranium per year depending on the type of scrap

  14. Effect of ionic interaction of chlorode-borate and iodide-borate on their absorption by Lemna minor L

    Energy Technology Data Exchange (ETDEWEB)

    Thellier, M; Ayadi, A; Tromeur, C

    1967-11-27

    The effect of borate ions on the absorption of chloride and iodide ions by Lemna minor was studied by using the radioactive tracers Cl-36 at 23/sup 0/C with an illumination of 8000 Lux and I-131 at 25.5 C with 600 Lux. The absorbed quantities of the tracer elements were measured with a Geiger counter. The concentrations of sodium chloride solutions tested ranged from 0.055 to 1 mM, those of potassium iodide from 0.04 to 4 mM. While the presence of borate ions in the test solutions of NaCl inhibited the absorption of Cl ions by Lemna minor, only a mild inhibition or none at all was noted in the case of the absorption of I ions. Because of the difference of the cations (sodium in the case of Cl, potassium in the case of I) no direct comparison can be drawn between the absorption of the two halogens. The absorption of I by the plant is thought to proceed by a much simpler mechanism than that of Cl.

  15. An X-ray photoelectron spectroscopic study of a nitric acid/argon ion cleaned uranium metal surface at elevated temperature

    International Nuclear Information System (INIS)

    Paul, A.J.; Sherwood, P.M.A.

    1987-01-01

    X-ray photoelectron spectroscopy has been used to study the surface of uranium metal cleaned by nitric acid treatment and argon ion etching, followed by heating in a high vacuum. The surface is shown to contain UOsub(2-x) species over the entire temperature range studied. Heating to temperatures in the range 400-600 0 C generates a mixture of this oxide, the metal and a carbide and/or oxycarbide species. (author)

  16. Development of Natural Anthocyanin Dye-Doped Silica Nanoparticles for pH and Borate-Sensing Applications

    Science.gov (United States)

    Ha, Chu T.; Lien, Nghiem T. Ha; Anh, Nguyen D.; Lam, Nguyen L.

    2017-12-01

    Anthocyanin belongs to a large group of phenolic compounds called flavonoids. It is found primarily in fruits, flowers, roots and other parts of higher plants. Within the black carrot, it has been found that the cyanidin component 1,2 diol was the major anthocyanine. Since the terminal thiols potentially display chemical interactions with borate additives, anthocyanin from the black carrot can act as a sensing material for detecting borate in the environment. As a natural dye, anthocyanin responds to pH change of the medium. Here, we present an application of black carrot dyes for pH sensing and for the detection of borate additives within meats. The dyes were encapsulated within a mesoporous silica (SiO2) matrix in order to prevent the sensing materials from dissolution into the aqueous medium. The encapsulation was done in situ during preparation of silica nanoparticles (size from 100 nm to 500 nm) following an advanced Stöber method. These anthocyanin-encapsulated silica nanoparticles show a clear color change from green in an aqueous solution free of borate to GRAY-red in the presence of borate additive and red (pH 2) to green (pH 10).

  17. FTIR of binary lead borate glass: Structural investigation

    Science.gov (United States)

    Othman, H. A.; Elkholy, H. S.; Hager, I. Z.

    2016-02-01

    The glass samples were prepared according to the following formula: (100-x) B2O3 - x PbO, where x = 20-80 mol% by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of PbO content on all the structural borate groups. Some structural parameters such as density, packing density, bond length and bond force constant were theoretically calculated and were compared to the obtained experimental results. Deviation between the experimental and theoretically calculated parameters reflects the dual role of PbO content on the network of borate glass.

  18. Chlorination of uranium oxides in melts of alkali metal chlorides and their mixtures

    International Nuclear Information System (INIS)

    Vorobej, M.P.; Bevz, A.S.; Skiba, O.V.

    1978-01-01

    Chlorination of UO 2 , U 3 O 8 , and UO 3 in melts of chlorides of alkali metals and of their mixtures has been studied by thermogravimetric, X-ray phase, and spectrophotometric methods. The thermogravimetric method has been proposed for evaluating the state of uranylcation in the melt; the effect of the composition of the oxide being chlorinated and of the salt-solvent on the composition of the chlorination products has been studied. The effect of the composition of the chlorination products on the stoichiometry of the electrolytic uranium dioxide has been shown

  19. Uranium chloride extraction of transuranium elements from LWR fuel

    International Nuclear Information System (INIS)

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure

  20. Methods for the exploration and recovering of uranium

    International Nuclear Information System (INIS)

    Kegel, K.E.

    1982-01-01

    The uranium reserves in the western world occur basically in two types of deposits a) vein type and vein like types b) sedimentary types, with the vein deposits providing only 5 percent of the actual uranium production. 85% of the known uranium reserves in the western world, amounting to about 5 million metric tons U occur in a relatively small number of countries (U.S.A., Canada, Australia, South Africa and Namibia, France, Niger and Gabun). Exploration on uranium deposits is carried out by using geophysical and geochemical methods. Radiometry, i.e. the determination of the radioactivity of the ground in a prospective area, is the main geophysical tool. In the mining of uranium ores, practically all mining methods, applied in other metal mining branches, are being used. The benefication of uranium ore is characterized by a large up-grading factor (i.e. the ratio between the uranium content in the concentrates and the uranium content in the ore) which is higher than in most other metal mining operations. In the field of health and safety in uranium mines, the radiation protection of the workers plays a paramount role. Strict rules exist for maximum values of certain elements in waste air and waste water of uranium mining operations, emitted into the environment. (orig.)

  1. Development of casting techniques for uranium and uranium alloys

    International Nuclear Information System (INIS)

    Singh, S.P.

    2003-01-01

    The casting process concerning furnace set-up, mould temperatures, pouring temperatures, out gassing, post heating, casting recovery and crucible and mould clean-up is discussed. Some applications of casting theory can be made in practice, but experience in handling the metal is most valuable in the successful solution of a new problem. The casting of uranium alloys using induction stirring of the melt to promote homogeneity in the casting is described. A few remarks are made concerning safety aspects associated with the casting of uranium

  2. Obtention of uranium tetrafluoride from effluents generated in the hexafluoride conversion process

    International Nuclear Information System (INIS)

    Silva Neto, J.B.; Urano de Carvalho, E.F.; Durazzo, M.; Riella, H.G.

    2009-01-01

    Full text: The uranium silicide (U3Si2) fuel is produced from uranium hexafluoride (UF6) as the primary raw material. The uranium tetrafluoride (UF4) and metallic uranium are the two subsequent steps. There are two conventional routes for UF4 production: the first one reduces the uranium from the UF6 hydrolysis solution by adding stannous chloride (SnCl2). The second one is based on the hydrofluorination of solid uranium dioxide (UO2) produced from the ammonium uranyl carbonate (AUC). This work introduces a third route, a dry way route which utilizes the recovering of uranium from liquid effluents generated in the uranium hexafluoride reconversion process adopted at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recovery of ammonium fluoride by NH4HF2 precipitation. The crystallized bifluoride is added to the solid UO2 to get UF4, which returns to the metallic uranium production process and, finally, to the U3Si2 powder production. The UF4 produced by this new route was chemically and physically characterized and will be able to be used as raw material for metallic uranium production by magnesiothermic reduction. (author)

  3. Method to manufacture a nuclear fuel from uranium-plutonium monocarbide or uranium-plutonium mononitride

    International Nuclear Information System (INIS)

    Krauth, A.; Mueller, N.

    1977-01-01

    Pure uranium carbide or nitride is converted with plutonium oxide and carbon (all in powder form) to uranium-plutonium monocarbide or mononitride by cold pressing and sintering at about 1600 0 C. Pure uranium carbide or uranium nitride powder is firstly prepared without extensive safety measures. The pure uranium carbide or nitride powder can also be inactivated by using chemical substances (e.g. stearic acid) and be handled in air. The sinterable uranium carbide or nitride powder (or also granulate) is then introduced into the plutonium line and mixed with a nonstoichiometrically adjusted, prereacted mixture of plutonium oxide and carbon, pressed to pellets and reaction sintered. The surface of the uranium-plutonium carbide (higher metal content) can be nitrated towards the end of the sinter process in a stream of nitrogen. The protective layer stabilizes the carbide against the water and oxygen content in air. (IHOE) [de

  4. Microbial uptake of uranium, cesium, and radium

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.; McWhirter, D.A.

    1980-01-01

    The ability of diverse microbial species to concentrate uranium, cesium, and radium was examined. Saccharomyces cerevisiae, Pseudomonas aeruginosa, and a mixed culture of denitrifying bacteria accumulated uranium to 10 to 15% of the dry cell weight. Only a fraction of the cells in a given population had visible uranium deposits in electron micrographs. While metabolism was not required for uranium uptake, mechanistic differences in the metal uptake process were indicated. Uranium accumulated slowly (hours) on the surface of S. cerevisiae and was subject to environmental factors (i.e., temperature, pH, interfering cations and anions). In contrast, P. aeruginosa and the mixed culture of denitrifying bacteria accumulated uranium rapidly (minutes) as dense, apparently random, intracellular deposits. This very rapid accumulation has prevented us from determining whether the uptake rate during the transient between the initial and equilibrium distribution of uranium is affected by environmental conditions. However, the final equilibrium distributions are not affected by those conditions which affect uptake by S. cerevisiae. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several microbial species tested. The potential utility of microorganisms for the removal and concentration of these metals from nuclear processing wastes and several bioreactor designs for contacting microorganisms with contaminated waste streams will be discussed.

  5. Biosorption of uranium and lead by Streptomyces longwoodensis

    International Nuclear Information System (INIS)

    Friis, N.; Myers-Keith, P.

    1986-01-01

    Biosorption of uranium and lead by lyophilized cells of Streptomyces longwoodensis was examined as a function of metal concentration, pH, cell concentration, and culture age. Cells harvested from the stationary growth phase exhibited an exceptionally high capacity for uranium (0.44 g U/g dry weight) at pH 5. Calculated values of the distribution coefficient and separation factor indicated a strong preference of the cell mass for uranyl ions over lead ions. The specific uranium uptake was similar for the cell wall and the cytoplasmic fraction. Uranium uptake was associated with an increase in hydrogen ion concentration, and phosphorus analysis of whole cells indicated a simple stoichiometric ratio between uranium uptake and phosphorus content. It is proposed that metal ions are bound to phosphodiester residues present both in the cell wall and cytoplasmic fractions. Based on this model, it was shown that uranium accumulation exhibits a maximum at pH 4.6 that is supported by experimental data from previous investigations

  6. Selective Removal of Uranium from the Washing Solution of Uranium-Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Han, G. S.; Kim, G. N.; Koo, D. S.; Jeong, J. W.; Choi, J. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This study examined selective removal methods of uranium from the waste solution by ion exchange resins or solvent extraction methods to reduce amount of the 2{sup nd} waste. Alamine-336, known as an excellent extraction reagent of uranium from the leaching solution of uranium ore, did not remove uranium from the acidic washing solution of soil. Uranyl ions in the acidic waste solution were sorbed on ampholyte resin with a high sorption efficiency, and desorbed from the resin by a washing with 0.5 M Na{sub 2}CO{sub 3} solution at 60 .deg. C. However, the uranium dissolved in the sulfuric acid solution was not sorbed onto the strong anion exchanger resins. A great amount of uranium-contaminated (U-contaminated) soil had been generated from the decommissioning of a uranium conversion plant. Our group has developed a decontamination process with washing and electrokinetic methods to decrease the amount of waste to be disposed of. However, this process generates a large amount of waste solution containing various metal ions.

  7. Reoxidation of uranium in electrolytically reduced simulated oxide fuel during residual salt distillation

    International Nuclear Information System (INIS)

    Eun-Young Choi; Jin-Mok Hur; Min Ku Jeon; University of Science and Technology, Yuseong-gu, Daejeon

    2017-01-01

    We report that residual salt removal by high-temperature distillation causes partial reoxidation of uranium metal to uranium oxide in electrolytically reduced simulated oxide fuel. Specifically, the content of uranium metal in the above product decreases with increasing distillation temperatures, which can be attributed to reoxidation by Li 2 O contained in residual salt (LiCl). Additionally, we estimate the fractions of Li 2 O reacted with uranium metal under these conditions, showing that they decrease with decreasing temperature, and calculate some thermodynamic parameters of the above reoxidation. (author)

  8. Regional distribution regularity of sandstone uranium deposits in Asian continent and prospecting strategy for sandstone uranium deposits in China

    International Nuclear Information System (INIS)

    Chen Zuyi

    2002-01-01

    Since the 1980's, after the discovery of numerous sandstone uranium deposits in Middle Asia (Kazakhstan, Uzbekistan) many large sandstone uranium deposits have been found in both Russia and Mongolia. So that Asia has become the most concentrated region of sandstone uranium deposits. The known sandstone uranium deposits occur mostly in a arcual tectonic belt constrained from the north by the Siberian continental block, and the Tarim-North China continental block from the south. This belt is named by Russian geologists as the Central Asian Mobile Belt, and some Chinese geologists call it the 'Mongolian Arc'. A lot of large and super large metallic, non-metallic, gold, polymetallic, porphyry copper and gold, massive sulphide and uranium deposits (of sandstone and volcanic types) with different origin and various types concentrated occur in this belt. The abundant and colourful mineral resources in the region are closely associated with the specific geologic-tectonic evolution of the above belt. It is necessary to strengthen the detailed geologic research and uranium prospecting in the region

  9. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  10. Rare earth separations by selective borate crystallization

    Science.gov (United States)

    Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-03-01

    Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation.

  11. Study of the Formation of Eutectic Melt of Uranium and Thermal Analysis for the Salt Distillation of Uranium Deposits

    International Nuclear Information System (INIS)

    Park, Sung Bin; Hwang, Sung Chan; Kang, Young Ho; Park, Ki Min; Jun, Wan Gi; Lee, Han Soo; Cho, Dong Wook

    2010-01-01

    Uranium deposits from an electrorefining process contain about 30% salt. In order to recover pure uranium and transform it into an ingot, the salts have to be removed from the uranium deposits. Major process variables for the salt distillation process of the uranium deposits are hold temperature and vacuum pressure. Effects of the variables on the salt removal efficiency were studied in the previous study 1. By applying the Hertz-Langmuir relation to the salt evaporation of the uranium deposits, the evaporation coefficients were obtained at the various conditions. The operational conditions for achieving above 99% salt removal were deduced. The salt distilled uranium deposits tend to form the eutectic melt with iron, nickel, chromium for structural material of salt evaporator. In this study, we investigated the hold temperature limitation in order to prevent the formation of the eutectic melt between uranium and other metals. The reactions between the uranium metal and stainless steel were tested at various conditions. And for enhancing the evaporation rate of the salt and the efficient recovery of the distilled salt, the thermal analysis of the salt distiller was conducted by using commercial CFX software. From the thermal analysis, the effect of Ar gas flow on the evaporation of the salt was studied.

  12. Moessbauer effect and infrared study of some borate glass containing Mn and Fe oxides

    International Nuclear Information System (INIS)

    Gabr, M.

    2005-01-01

    Lithium borate glasses containing transition metals appeared now of very high technological and scientific interest. Therefore some lithium borate glasses containing mixed transition metal ions (manganese and iron) were investigated. The glass batches were melted at 1250 degree C for three hours and annealed at 350 degree C -over night- to obtain strain free glasses. Moessbauer Effect spectroscopy and Infrared analysis were employed to investigate the structural changes due to the change of their batches composition. Differential thermal analysis, magnetic susceptibility, density and molar volume measurements were also performed to study the effect of changing both manganese and iron oxides at the expense of boron oxide on these properties. Infrared analysis indicated the presence of different structural groups such as BO 3 , BO 4 , FeO 4 and MnO 6 as well as different vibrations indicated the presence of various bonds in the glass network. The values of the characteristic temperatures (T g , T c and T m ) showed gradual increase except those of the last sample where they showed a decrease. The mid sample showed the lowest stability value. It was found that the molar volume showed its highest value at R=0.33 [where R is the ratio of glass network modifier to the glass network former]. After that it showed gradual linear decrease. The magnetic susceptibility measurements showed approximately stable value between R=0.29 and 0.33, then it increased up to R=0.38, and after that, it decreased up to R= 0.43. The obtained magnetic susceptibility values indicated that all these glasses are paramagnetic. The obtained Moessbauer spectra and the calculated parameters confirmed that iron ions participated in the glass network as network former cations. It confirmed also that all glasses reflect paramagnetic character. The observed structural change were explained and correlated with the change of the measured physical properties

  13. Measurement of enriched uranium and uranium-aluminum fuel materials with the AWCC

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.; Zick, J.; Ikonomou, P.

    1985-05-01

    The active well coincidence counter (AWCC) was calibrated at the Chalk River Nuclear Laboratories (CRNL) for the assay of 93%-enriched fuel materials in three categories: (1) uranium-aluminum billets, (2) uranium-aluminum fuel elements, and (3) uranium metal pieces. The AWCC was a standard instrument supplied to the International Atomic Energy Agency under the International Safeguards Project Office Task A.51. Excellent agreement was obtained between the CRNL measurements and previous Los Alamos National Laboratory measurements on similar mockup fuel material. Calibration curves were obtained for each sample category. 2 refs., 8 figs., 15 tabs

  14. The outline of clearance plan for Rokkasho uranium enrichment plant

    International Nuclear Information System (INIS)

    Kojima, Takuo; Sasaki, Hitoshi; Shouno, Shuuzou; Nozawa, Kenji

    2011-01-01

    Japan Nuclear Fuel Limited (JNFL) started operation of uranium enrichment by metal cylinder centrifuge at Rokkasho Uranium Enrichment Plant in 1992. Since operation start, JNFL has extended the plant capacity sequentially, but metal cylinder centrifuges ceased operation gradually with time. Replacement to advanced centrifuge is under construction now. Generally, Uranium Enrichment Plant continues operation by replacing centrifuges after a certain period of operation. So, many used centrifuges (metal waste) are generated through the operation period. JNFL is now considering the disposal plan. We can reduce the radioactivity level that is not necessary to treat as the radioactive waste by decontaminating the radioactive material sticking to the surface of metal materials of used centrifuge. And JNFL plants to recycle (reuse) metal material by making much of the clearance system. (author)

  15. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents

    International Nuclear Information System (INIS)

    Silva Neto, Joao Batista da

    2008-01-01

    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium suicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF 6 hydrolysis solution with stannous chloride, and the hydro fluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH 4 HF 2 precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO 2 , which comes from the U mini plates recovery, also to its conversion in a solid state reaction, to obtain UF 4 . That returns to the process of metallic uranium production unity to the U 3 Si 2 obtention. This fuel is considered in IPEN CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U 3 Si 2 -Al fuel. (author)

  16. Expanding the family of uranium(III) alkyls. Synthesis and characterization of mixed-ligand derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Matson, Ellen M.; Kiernicki, John J.; Fanwick, Phillip E.; Bart, Suzanne C. [Department of Chemistry, Purdue University, West Lafayette, IN (United States)

    2016-06-15

    The generation of uranium(III) alkyls supported by hydrotris(pyrazolyl)borate (Tp) and pentamethylcyclopentadienyl (Cp*) ligands is reported. Mixed ancillary ligand frameworks were synthesized by treating TpUI{sub 2}(THF){sub 3} (1) and Cp*UI{sub 2}(THF){sub 3} with potassium hydrotris(pyrazolyl)borate salts. Addition of one equivalent of potassium hydrotris(3,5-dimethylpyrazolyl)borate (Tp*) generated TpTp*UI (2), while treatment of Cp*UI{sub 2}(THF){sub 3} with either KTp or KTp* resulted in the respective formation of Cp*TpUI(THF) (3) or Cp*Tp*UI(THF) (4). Alkylation of 2 with KCH{sub 2}Ph or NaCH{sub 2}SiMe{sub 3} furnished TpTp*UCH{sub 2}Ph (2-CH{sub 2}Ph) or TpTp*UCH{sub 2}SiMe{sub 3} (2-CH{sub 2}SiMe{sub 3}). Similarly, treatment of 3 with NaCH{sub 2}SiMe{sub 3} formed Cp*TpUCH{sub 2}SiMe{sub 3} (3-CH{sub 2}SiMe{sub 3}), whereas treatment of 4 with KCH{sub 2}Ph generated Cp*Tp*UCH{sub 2}Ph (4-CH{sub 2}Ph). All compounds were characterized by multinuclear NMR, IR, and electronic absorption spectroscopy. Compounds 2-CH{sub 2}Ph, 3, and 3-CH{sub 2}SiMe{sub 3} were structurally characterized using X-ray crystallography as well. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Boron isotopic composition of tertiary borate deposits in the Puna Plateau of the Central Andes, NW Argentina

    International Nuclear Information System (INIS)

    Kasemann, Simone; Franz, Gerhard; Viramonte, Jose G.; Alonso, Ricardo N.

    1998-01-01

    Full text: The most important borate deposits in South America are concentrated in the Central Andes. The Neogene deposits are located in the Puna Plateau of N W Argentina. These continental deposits are stratiform in the tectonically deformed Tertiary rocks. The largest borate accumulations Tincalayu, Sijes and Loma Blanca are part of the Late Miocene Sijes Formation, composed by different evaporitic and clastic units. In the main borate units of each location different phases of borates dominate. In Tincalayu the mayor mineral is borax with minor amounts of kernite and other rare borate minerals (ameginite, rivadavite, etc.). The principal minerals in Loma Blanca are borax with minor ulexite and inyoite. In the two main units of Sijes hydroboracite and colemanite are the major minerals; inyoite and ulexite appear subordinately. The deposition of the borates is due to a strong evaporation in playa lakes, which were fed by boron bearing thermal fluids (Alonso and Viramonte 1990). From Loma Blanca we determined δ 11 B values of ulexite (- 6.3 %0), inyoite (-12.7 %0) and terrugite (-16.2 %0); and from Tincalayu the δ 11 B values of borax (-10.5 %0), tincal (-12.2 %0) kernite (-11.7 %0) and inderite (-15.4 %0). The borates of Sijes are hydroboracite (-16.8 %0 to -17.2 %0), ulexite (-22.4 %0) and inyoite (-28.5 %0 to -29.6 %0). In order to get information about the δ 11 B values and pH of a boron solution we analysed the thermal spring of Antuco. It has a δ 11 B of -12.5%0 at a pH of 7.9. The presently forming ulexite deposit has a δ 11 B of -22.4%0. Borates within one depositional unit show a decreasing δ 11 B value sequence from the Na-Borates to the Ca-Borates related to the boron coordination of the minerals (Oi et al. 1989). The difference in the δ 11 B values excludes the precipitation in equilibrium from solutions with constant pH. According to results from previous work on Neogene borates (Turkey, USA) we interpret the borate succession due to

  18. Selenide Mineralization in the Příbram Uranium and Base-Metal District (Czech Republic

    Directory of Open Access Journals (Sweden)

    Pavel Škácha

    2017-06-01

    Full Text Available Selenium mineralization in the Příbram uranium and base-metal district (Central Bohemia, Czech Republic bound to uraninite occurrences in calcite hydrothermal veins is extremely diverse. The selenides antimonselite, athabascaite, bellidoite, berzelianite, brodtkorbite, bukovite, bytízite, cadmoselite, chaméanite, clausthalite, crookesite, dzharkenite, eskebornite, eucairite, ferroselite, giraudite, hakite, klockmannite, naumannite, permingeatite, příbramite, sabatierite, tiemannite, and umangite were found here, including two new mineral phases: Hg-Cu-Sb and Cu-As selenides. Those selenides—and in some cases their sulphidic equivalents—are characterized using wavelength-dispersive spectroscopy, reflected light, powder X-ray diffraction, single crystal X-ray diffraction, Raman spectroscopy, and electron backscatter diffraction. The selenide mineralization in the Příbram uranium district is bound to the border of the carbonate-uraninite and subsequent carbonate-sulphidic stages. Selenides crystallized there at temperatures near 100 °C in the neutral-to-weakly-alkaline environment from solutions with high oxygen fugacity and a high Se2/S2 fugacity ratio.

  19. Method for producing uranium atomic beam source

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1976-01-01

    A method is described for producing a beam of neutral uranium atoms by vaporizing uranium from a compound UM/sub x/ heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared with that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe 2 . An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced

  20. Study of the dry processing of uranium ores; Etude des traitements de minerais d'uranium par voie seche

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, H

    1959-02-01

    A description is given of direct fluorination of pre-concentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by a load of lime to obtain: either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial product in a diffusion plant. (author) [French] Il s'agit d'une description de fluoration directe de preconcentres de minerais d'uranium en vue d'obtention d'hexafluorure. Apres attaque sulfurique normale du minerai, afin d' eliminer la silice, l' uranium est precipite par un toit de chaux pour obtenir: ou uranate de chaux impur de titre moyen, ou uranium de la dizaine du pourcentage. Ce concentre seche en atmosphere inerte est soumis a un courant de fluor elementaire. L'hexafluorure d'uranium forme est condense a la sortie du reacteur et peut etre utilise soit apres reduction en tetrafluorure par l'elaboration d'uranium metal, soit comme produit de base dans le cadre d'une usine de diffusion. (auteur)

  1. Radium, uranium and metals in acidic or alkaline uranium mill

    International Nuclear Information System (INIS)

    Somot, St.

    1997-01-01

    Uranium mill study sites have been chosen in function of their different characteristics: deposits age, treatment nature (alkaline or acid), mill origin. The realization of specific drilling allowed the simultaneous study of the interstitial water and the solid fraction of samples, cut at determined deep. A radiation imbalance between 230 Th and 226 Ra is observed in the acid treatment residues. The trace elements concentration spectrum is directly bound to the nature of the ore. Diamagnetic evolutions are observed in residues. The uranium concentrations are higher in carbonated waters than in calcic sulfated waters. The selective sequential lixiviation showed that the 226 Ra activity of the interstitial water is controlled by the Gypsum in acid treatment residues. In other hand in the alkaline treatment waters, the carbonates occur. The Ra retention is largely bound to the Fe and Mn oxy-hydroxides. (A.L.B.)

  2. Of floating-zone uranium; Sur l'uranium de zone flottante

    Energy Technology Data Exchange (ETDEWEB)

    Clottes, G [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-01-01

    The floating zone method has been chosen in order to purify uranium. The various parameters occurring in this purification technique, have been studied theoretically and technologically. The speed that proves to be the most efficient is 0,7 cm/h, the direction can only upwards, and the fusion must take place under pressure of 10{sup -7} Torr or so. Besides such problems concerning purification, the study of the floating zone stability led us to define a field touching the size and diameter of uranium drops, which, on the one hand coincides with Heywang's conditions and, on the other hand, is compatible with a fusion in the core of the bar. Such field shows that the floating zone can easily apply to bars whose diameter is included between 5 and 10 mm, and that it cannot work out when the diameter exceeds 21 mm. The apparatus, consisting in a means of heating by electronic bombardment under ultra-vacuum is conditioned by the various parameters that have been studied. As the analysis results were insufficient, the uranium thus dealt with has been characterized by metallurgic and physical tests: micrographic tests, measures of microhardness, measures of electric resistivity at a low temperature, have shown a definite purification at the bar-head; these results have been confirmed by the lowering at 270 C of the temperature of recrystallization together with the definite tendency of the refined metal to polygonize. The measures of electric resistivity constitute an easy and quantitative way of figuring out the metal purity. The influence of an impurity on the electric resistivity of uranium has been studied by U-Au alloys with a weak concentration of gold. The two important following points are brought out be these experiences: 1 - the measure of electric resistivity should be worked out on anneal bars in {gamma} phase and cooled. 2 - Gold has a very strong influence on uranium; the value 500 {mu}{omega}cm per cent of gold enabled us to give a total concentration of 20

  3. Radiation damage of uranium; Radijaciono ostecenje urana

    Energy Technology Data Exchange (ETDEWEB)

    Lazarevic, Dj [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method.

  4. PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS

    Science.gov (United States)

    Carter, J.M.; Kamen, M.D.

    1958-10-14

    A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.

  5. Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration.

    Science.gov (United States)

    Choudhary, Sangeeta; Sar, Pinaki

    2009-05-01

    Heavy metal sequestration by a multimetal resistant Pseudomonas strain isolated from a uranium mine was characterized for its potential application in metal bioremediation. 16S rRNA gene analysis revealed phylogenetic relatedness of this isolate to Pseudomonas fluorescens. Metal uptake by this bacterium was monophasic, fast saturating, concentration and pH dependent with maximum loading of 1048 nmol Ni(2+) followed by 845 nmol Co(2+), 828 nmol Cu(2+) and 700 nmol Cd(2+)mg(-1) dry wt. Preferential metal deposition in cell envelope was confirmed by TEM and cell fractionation. FTIR spectroscopy and EDX analysis revealed a major role of carboxyl and phosphoryl groups along with a possible ion exchange mechanism in cation binding. Binary system demonstrated selective metal binding affinity in the order of Cu(2+)>Ni(2+)>Co(2+)>Cd(2+). A comparison with similar metal uptake reports considering live bacteria strongly indicated the superiority of this strain in metal sequestration, which could be useful for developing efficient metal removal system.

  6. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    International Nuclear Information System (INIS)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K.; Liu, Kun; Brow, Katherine A.; Ma, Yinfa

    2017-01-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  7. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sisi [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Yang, Qingbo [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Richard K. [Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Kun [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Katherine A. [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Ma, Yinfa [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); and others

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  8. The Toxicity of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Wayne Briner

    2010-01-01

    Full Text Available Depleted uranium (DU is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.

  9. Improving the Mechanical and Electrical Properties of Ceramizable Silicone Rubber/Halloysite Composites and Their Ceramic Residues by Incorporation of Different Borates

    Directory of Open Access Journals (Sweden)

    Jianhua Guo

    2018-04-01

    Full Text Available Ceramizable silicone rubber (MVQ/halloysite (HNT composites were fabricated by incorporation of three different borates, including sodium tetraborate decahydrate, ammonium pentaborate, and zinc borate into MVQ matrix, respectively. The composites without any borates were also prepared as control. The effect of the borates on the mechanical and electrical properties of MVQ/HNT composites was investigated. The ceramic residues were obtained from the decomposition of the composites after sintering at 1000 °C. The effect of the borates on the linear shrinkage, weight loss, and flexural and impact strength of the residues was also studied. The fracture surfaces of the composites and their corresponding residues were observed by SEM. The proposed ceramizable mechanism of the composites by incorporation of different borates was revealed by XRD analysis.

  10. Reducing emissions from uranium dissolving

    International Nuclear Information System (INIS)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO x emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO x fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO x emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO 2 which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered

  11. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    Directory of Open Access Journals (Sweden)

    Suwimon Ruengsri

    2014-01-01

    Full Text Available Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of the glass matrices. The silicate and phosphate glass systems are more appropriate choices as lead-based radiation shielding glass than the borate glass system. Moreover, comparison of results has shown that the glasses possess better shielding properties than standard shielding concretes, suggesting a smaller size requirement in addition to transparency in the visible region.

  12. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Pahl, R.G.; Frank, S.M.

    1998-01-01

    The oxidation behavior of hydride-bearing uranium metal corrosion products from zero power physics reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2 , Ar-9%O 2 , and Ar-20%O 2 . Ignition of corrosion product samples from two moderately corroded plates was observed between 125 C and 150 C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride. (orig.)

  13. Solubility of airborne uranium samples from uranium processing plant

    International Nuclear Information System (INIS)

    Kravchik, T.; Oved, S.; Sarah, R.; Gonen, R.; Paz-Tal, O.; Pelled, O.; German, U.; Tshuva, A.

    2005-01-01

    Full text: During the production and machining processes of uranium metal, aerosols might be released to the air. Inhalation of these aerosols is the main route of internal exposure of workers. To assess the radiation dose from the intake of these uranium compounds it is necessary to know their absorption type, based on their dissolution rate in extracellular aqueous environment of lung fluid. The International Commission on Radiological Protection (ICRP) has assigned UF4 and U03 to absorption type M (blood absorption which contains a 10 % fraction with an absorption rate of 10 minutes and 90 % fraction with an absorption rate of 140 fays) and UO2 and U3O8 to absorption type S (blood absorption rate with a half-time of 7000 days) in the ICRP-66 model.The solubility classification of uranium compounds defined by the ICRP can serve as a general guidance. At specific workplaces, differences can be encountered, because of differences in compounds production process and the presence of additional compounds, with different solubility characteristics. According to ICRP recommendations, material-specific rates of absorption should be preferred to default parameters whenever specific experimental data exists. Solubility profiles of uranium aerosols were determined by performing in vitro chemical solubility tests on air samples taken from uranium production and machining facilities. The dissolution rate was determined over 100 days in a simultant solution of the extracellular airway lining fluid. The filter sample was immersed in a test vial holding 60 ml of simultant fluid, which was maintained at a 37 o C inside a thermostatic bath and at a physiological pH of 7.2-7.6. The test vials with the solution were shaken to simulate the conditions inside the extracellular aqueous environment of the lung as much as possible. The tests indicated that the uranium aerosols samples taken from the metal production and machining facilities at the Nuclear Research Center Negev (NRCN

  14. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    International Nuclear Information System (INIS)

    Monado, F.; Permana, S.

    2013-01-01

    Full-text: A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8 % HM. From the neutronic point of view, this design is in compliance with good performance. (author)

  15. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    International Nuclear Information System (INIS)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-01-01

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance

  16. Broad-spectrum antibacterial properties of metal-ion doped borate bioactive glasses for clinical applications

    Science.gov (United States)

    Ottomeyer, Megan

    Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.

  17. A medium range order structural connection to the configurational heat capacity of borate-silicate mixed glasses.

    Science.gov (United States)

    Liu, Hao; Smedskjaer, Morten M; Tao, Haizheng; Jensen, Lars R; Zhao, Xiujian; Yue, Yuanzheng

    2016-04-28

    It has been reported that the configurational heat capacity (C(p,conf)) first increases and then becomes saturated with increasing B2O3/SiO2 ratio in borate-silicate mixed glasses. Through Raman spectroscopy measurements, we have, in this work, found an implication for the intermediate range order (IRO) structural connection to the composition dependence of the C(p,conf) of borate-silicate mixed glasses. In the silica-rich compositions, the C(p,conf) rapidly increases with increasing B2O3 content. This is attributed to the increase of the content of the B-O-Si network units ([B2Si2O8](2-)) and 6-membered borate rings with 1 or 2 B(4). In the boron-rich compositions, the C(p,conf) is almost constant, independent of the increase in the B2O3/SiO2 ratio. This is likely attributed to the counteraction between the decrease of the fraction of two types of metaborate groups and the increase of the fraction of other borate superstructural units (particularly 6-membered borate rings). The overall results suggest that the glasses containing more types of superstructural units have a larger C(p,conf).

  18. High arsenic and boron concentrations in groundwaters related to mining activity in the Bigadic borate deposits (Western Turkey)

    International Nuclear Information System (INIS)

    Gemici, Unsal; Tarcan, Gueltekin; Helvaci, Cahit; Somay, A. Melis

    2008-01-01

    This study documents the environmental impacts of borate mines in Bigadic district, which are the largest colemanite and ulexite deposits in the world. Borate-bearing formations have affected the concentrations of some contaminants in groundwater. Groundwater quality is directly related to the borate zones in the mines as a result of water-rock interaction processes. Calcium is the dominant cation and waters are Ca-SO 4 and HCO 3 type in the mine (Tuelue borate mine) from which colemanite is produced. However in the Simav and Acep Borate Mines, ulexite and colemanite minerals are produced and waters from these open pit mines are Na-HCO 3 -SO 4 types. High SO 4 concentrations (reaching 519 mg/L) might be explained by the existence of anhydrite, gypsum and celestite minerals in the borate zone. Groundwater from tuff and borate strata showed relatively low pH values (7-8) compared to surface and mine waters (>8). EC values ranged from 270 to 2850 μS/cm. Boron and As were the two important contaminants determined in the groundwaters around the Bigadic borate mines. Arsenic is the major pollutant and it ranged from 33 to 911 μg/L in the groundwater samples. The concentrations of B in the study area ranged from 0.05 to 391 mg/L. The highest B concentrations were detected at the mine areas. The extension of the borate zones in the aquifer systems is the essential factor in the enrichment of B and As, and some major and trace elements in groundwaters are directly related to the leaching of the host rock which are mainly composed of tuffs and limestones. According to drinking water standards, all of the samples exceed the tolerance limit for As. Copper, Mn, Zn and Li values are enriched but do not exceed the drinking water standards. Sulfate, Al and Fe concentrations are above the drinking water standard for the groundwater samples

  19. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    Science.gov (United States)

    Willit, James L [Batavia, IL

    2010-09-21

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  20. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    Science.gov (United States)

    Willit, James L.

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.