WorldWideScience

Sample records for metal taylor-couette experiment

  1. Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment

    International Nuclear Information System (INIS)

    Nornberg, M. D.; Ji, H.; Schartman, E.; Roach, A.; Goodman, J.

    2010-01-01

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

  2. Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment.

    Science.gov (United States)

    Nornberg, M D; Ji, H; Schartman, E; Roach, A; Goodman, J

    2010-02-19

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

  3. Theory of current-driven instability experiments in magnetic Taylor-Couette flows.

    Science.gov (United States)

    Rüdiger, Günther; Schultz, Manfred; Shalybkov, Dima; Hollerbach, Rainer

    2007-11-01

    We consider the linear stability of dissipative magnetic Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10(-5) , approaching realistic liquid-metal values. The magnetic field destabilizes the flow, except for radial profiles of B(phi)(R) close to the current-free solution. The profile with B(in)=B(out) (the most uniform field) is considered in detail. For weak fields the Taylor-Couette flow is stabilized, until for moderately strong fields the m=1 azimuthal mode dramatically destabilizes the flow again so that a maximum value for the critical Reynolds number exists. For sufficiently strong fields (as measured by the Hartmann number) the toroidal field is always unstable, even for the nonrotating case with Re=0 . The electric currents needed to generate the required toroidal fields in laboratory experiments are a few kA if liquid sodium is used, somewhat more if gallium is used. Weaker currents are needed for wider gaps, so a wide-gap apparatus could succeed even with gallium. The critical Reynolds numbers are only somewhat larger than the nonmagnetic values; hence such experiments would work with only modest rotation rates.

  4. A spherical Taylor-Couette dynamo

    Science.gov (United States)

    Marcotte, Florence; Gissinger, Christophe

    2016-04-01

    We present a new scenario for magnetic field amplification in the planetary interiors where an electrically conducting fluid is confined in a differentially rotating, spherical shell (spherical Couette flow) with thin aspect-ratio. When the angular momentum sufficiently decreases outwards, a primary hydrodynamic instability is widely known to develop in the equatorial region, characterized by pairs of counter-rotating, axisymmetric toroidal vortices (Taylor vortices) similar to those observed in cylindrical Couette flow. We characterize the subcritical dynamo bifurcation due to this spherical Taylor-Couette flow and study its evolution as the flow successively breaks into wavy and turbulent Taylor vortices for increasing Reynolds number. We show that the critical magnetic Reynolds number seems to reach a constant value as the Reynolds number is gradually increased. The role of global rotation on the dynamo threshold and the implications for planetary interiors are finally discussed.

  5. Theory of current instability experiments in magnetic Taylor-Couette flows

    OpenAIRE

    Ruediger, G.; Schultz, M.; Shalybkov, D.; Hollerbach, R.

    2006-01-01

    We consider the linear stability of dissipative MHD Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10-5, approaching realistic liquid-metal values. The magnetic field destabilizes the flow, except for radial profiles of B$_\\phi$(R) close to the current-free solution. The profile with B$_{in}$=B$_{out}$ (the most un...

  6. Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow.

    Science.gov (United States)

    Szklarski, Jacek; Rüdiger, Günther

    2007-12-01

    We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical magnetohydrodynamic (MHD) Taylor-Couette flow at the finite aspect ratio HD=10 . The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed with Hartmann number Ha approximately 10 , and the rotation rates correspond to Reynolds numbers of order 10(2)-10(3). We show that the end plates introduce, besides the well-known Ekman circulation, similar magnetic effects which arise for infinite, rotating plates, horizontally unbounded by any walls. In particular, there exists the Hartmann current, which penetrates the fluid, turns in the radial direction, and together with the applied magnetic field gives rise to a force. Consequently, the flow can be compared with a Taylor-Dean flow driven by an azimuthal pressure gradient. We analyze the stability of such flows and show that the currents induced by the plates can give rise to instability for the considered parameters. When designing a MHD Taylor-Couette experiment, special care must be taken concerning the vertical magnetic boundaries so that they do not significantly alter the rotational profile.

  7. PREFACE: The 15th International Couette-Taylor Worskhop

    Science.gov (United States)

    Mutabazi, Innocent; Crumeyrolle, Olivier

    2008-07-01

    The 15th International Couette-Taylor Worskhop (ICTW15) was held in Le Havre, France from 9-12 July 2007. This regular international conference started in 1979 in Leeds, UK when the research interest in simple models of fluid flows was revitalized by systematic investigation of Rayleigh-Bénard convection and the Couette-Taylor flow. These two flow systems are good prototypes for the study of the transition to chaos and turbulence in closed flows. The workshop themes have been expanded from the original Couette-Taylor flow to include other centrifugal instabilities (Dean, Görtler, Taylor-Dean), spherical Couette flows, thermal convection instabilities, MHD, nonlinear dynamics and chaos, transition to turbulence, development of numerical and experimental techniques. The impressive longevity of the ICTW is due to the close interaction and fertile exchanges between international research groups from different disciplines: Physics and Astrophysics, Applied Mathematics, Mechanical Engineering, Chemical Engineering. The present workshop was attended by 100 participants, the program included over 83 contributions with 4 plenary lectures, 68 oral communications and 17 posters. The topics include, besides the classical Couette-Taylor flows, the centrifugal flows with longitudinal vortices, the shear flows, the thermal convection in curved geometries, the spherical Couette-Taylor flow, the geophysical flows, the magneto-hydrodynamic effects including the dynamo effect, the complex flows (viscoelasticity, immiscible fluids, bubbles and migration). Selected papers have been processed through the peer review system and are published in this issue of the Journal of Physics: Conference Series. The Workshop has been sponsored by Le Havre University, the Region Council of Haute-Normandie, Le Havre City Council, CNRS (ST2I, GdR-DYCOEC), and the European Space Agency through GEOFLOW program. The French Ministry of Defense (DGA), the Ministry of Foreign Affairs, the Ministry of

  8. Instabilities with polyacrylamide solution in small and large aspect ratios Taylor-Couette systems

    International Nuclear Information System (INIS)

    Smieszek, M; Egbers, C; Crumeyrolle, O; Mutabazi, I

    2008-01-01

    We have investigated the stability of viscoelastic polyacrylamide solution in Taylor-Couette system with different aspect ratios. The first instability modes observed in a Taylor-Couette system with Γ = 10 were TVF and WVF, as for Newtonian fluid. At higher Taylor numbers moving vortices occur, a wavy mode with non-stationary vortex size. In the Taylor-Couette system with Γ = 45.9 we note a coexistence of various instability modes. In addition to TVF, counterpropagating waves developed at the transition from the base state flow. At higher Taylor number values Taylor vortices of different sizes occurred. Reduced amplitude Wavy vortex flow has also been observed.

  9. Numerical analyses of a Couette-Taylor flow in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Tagawa, T; Kaneda, M

    2005-01-01

    An axisymmetric Couette-Taylor flow of liquid metal in the presence of a magnetic field has been numerically studied. An inner cylinder of a coaxial container is rotating at a constant angular velocity whereas the outer cylindrical wall is at rest. An axial or a toroidal magnetic field is applied to this configuration to investigate the influence of such magnetic fields on the liquid metal Couette-Taylor flow. The toroidal magnetic field can be produced with a straight wire along the central axis in which electric current passes. The governing equations of mass conservation, momentum, Ohm's law and conservation of electric charge for an axisymmetric cylindrical coordinate system have been numerically solved with a finite difference method using the HSMAC algorithm. In the numerical analyses, since the Joule heating and the induced magnetic field are neglected, the system parameters are the Hartmann number and the Reynolds number. The numerical results reveal significant difference in the Couette-Taylor flow depending on whether the applied magnetic field is axial or toroidal as well as on the Hartmann and Reynolds numbers. The axial magnetic field damps out the secondary flow efficiently and velocity gradient in the direction of the magnetic field tends to diminish while the toroidal magnetic field does not have such an efficient damping

  10. The Ekman-Hartmann layer in MHD Taylor-Couette flow

    OpenAIRE

    Szklarski, Jacek; Rüdiger, Günther

    2007-01-01

    We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical MHD Taylor-Couette flow at the finite aspect ratio $H/D=10$. The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed $\\Ha \\approx 10$, the rotation rates correspond to $\\Rey$ of order $10^2-10^3$. We show that the end-plates introduce, besides the well known Ekman circulati...

  11. Fluid Dynamics And Mass Transfer In Two-Fluid Taylor-Couette Flow

    International Nuclear Information System (INIS)

    Baier, G.; Graham, M.D.

    1998-01-01

    The Taylor-Couette instability of a single liquid phase can be used to enhance mass transfer processes such as filtration and membrane separations. We consider here the possibility of using this instability to enhance interphase transport in a two-fluid systems, with a view toward improved liquid-liquid extractions for biotechnology applications. We investigate the centrifugal instability of a pair of radially stratified immiscible liquids in the annular gap between concentric, corotating cylinders: two-fluid Taylor-Couette flow. Experiments show that a two-layer flow with a well-defined interface and Taylor vortices in each phase can be obtained. The experimental results are in good agreement with predictions of inviscid arguments based on a two-phase extension of Rayleigh's criterion, as well as with detailed linear stability calculations. For a given geometry, the most stable configuration occurs for fluids of roughly (exactly in the inviscid limit) equal dynamic viscosities. A number of preliminary mass transfer experiments have also been performed, in the presence of axial counterflow. The onset of Taylor vortices coincides with a clear decrease in the extent of axial dispersion and an increase in the rate of interphase transport, thus suggesting that this flow geometry may provide an effective means for countercurrent chromatographic separations

  12. Pinch instabilities in Taylor-Couette flow.

    Science.gov (United States)

    Shalybkov, Dima

    2006-01-01

    The linear stability of the dissipative Taylor-Couette flow with an azimuthal magnetic field is considered. Unlike ideal flows, the magnetic field is a fixed function of a radius with two parameters only: a ratio of inner to outer cylinder radii, eta, and a ratio of the magnetic field values on outer and inner cylinders, muB. The magnetic field with 0rotation. The unstable modes are located into some interval of the axial wave numbers for the flow stable without magnetic field. The interval length is zero for a critical Hartmann number and increases with an increasing Hartmann number. The critical Hartmann numbers and length of the unstable axial wave number intervals are the same for every rotation law. There are the critical Hartmann numbers for m=0 sausage and m=1 kink modes only. The sausage mode is the most unstable mode close to Ha=0 point and the kink mode is the most unstable mode close to the critical Hartmann number. The transition from the sausage instability to the kink instability depends on the Prandtl number Pm and this happens close to one-half of the critical Hartmann number for Pm=1 and close to the critical Hartmann number for Pm=10(-5). The critical Hartmann numbers are smaller for kink modes. The flow stability does not depend on magnetic Prandtl numbers for m=0 mode. The same is true for critical Hartmann numbers for both m=0 and m=1 modes. The typical value of the magnetic field destabilizing the liquid metal Taylor-Couette flow is approximately 10(2) G.

  13. Frictional Torque Reduction in Taylor-Couette Flows with Riblet-Textured Rotors

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth

    2017-11-01

    Inspired by the riblets on the denticles of fast swimming shark species, periodic surface microtextures of different shapes have been studied under laminar and turbulent flow conditions to understand their drag reduction mechanism and to offer guides for designing optimized low-friction bio-inspired surfaces. Various reports over the past four decades have suggested that riblet surfaces can reduce the frictional drag force in high Reynolds number laminar and turbulent flow regimes. Here, we investigate the effect of streamwise riblets on torque reduction in steady flow between concentric cylinders, known as Taylor-Couette Flow. Using 3D printed riblet-textured rotors and a custom-built Taylor-Couette cell which can be mounted on a rheometer we measure the torque on the inner rotor as a function of three different dimensionless parameters; the Reynolds number of the flow, the sharpness of the riblets, and the size of the riblets with respect to the scale of the Taylor-Couette cell. Our experimental results in the laminar viscous flow regime show a reduction in torque up to 10% over a wide range of Reynolds numbers, that is a non-monotonic function of the aspect ratio and independent of Re. However, after transition to the Taylor vortex regime, the modification in torque becomes a function of the Reynolds number, while remaining a non-monotonic function of the aspect ratio. Using finite volume modelling of the geometry we discuss the changes in the Taylor-Couette flow in presence of the riblets compared to the case of smooth rotors and the resulting torque reduction as a function of the parameter space defined above.

  14. Bubble behavior in a vertical Taylor-Couette flow

    International Nuclear Information System (INIS)

    Murai, Y; Oiwa, H; Takeda, Y

    2005-01-01

    Bubble distributions organized in a vertical Taylor-Couette flow are experimentally investigated. Modification of shear stress due to bubbles is measured with a torque sensor installed on the rotating inner cylinder. The wall shear stress decreases as bubbles are injected in all the tested range of Re from 600 to 4500. The drag reduction ratio per void fraction measured in the present experiment, which indicates net gain of the drag reduction, has been evaluated. The gain was more than unity for Re 4000. The maximum gain achieved was around 10 at Re = 600, at which point the bubbles dispersed widely on the inner cylinder surface and effectively restrict momentum exchange of fluid between the two walls. The expansion of Taylor vortices in the vertical direction by the presence of bubbles was confirmed by flow visualization including particle tracking velocimetry. Such bubble behaviours interacting with Taylor vortices are discussed in detail in this paper

  15. Taylor-Couette flow stability with toroidal magnetic field

    International Nuclear Information System (INIS)

    Shalybkov, D

    2005-01-01

    The linear stability of the dissipative Taylor-Couette flow with imposed azimuthal magnetic field is considered. Unlike to ideal flow, the magnetic field is fixed function of radius with two parameters only: a ratio of inner to outer cylinder radii and a ratio of the magnetic field values on outer and inner cylinders. The magnetic field with boundary values ratio greater than zero and smaller than inverse radii ratio always stabilizes the flow and called stable magnetic field below. The current free magnetic field is the stable magnetic field. The unstable magnetic field destabilizes every flow if the magnetic field (or Hartmann number) exceeds some critical value. This instability survives even without rotation (for zero Reynolds number). For the stable without the magnetic field flow, the unstable modes are located into some interval of the vertical wave numbers. The interval length is zero for critical Hartmann number and increases with increasing Hartmann number. The critical Hartmann numbers and the length of the unstable vertical wave numbers interval is the same for every rotation law. There are the critical Hartmann numbers for m = 0 sausage and m = 1 kink modes only. The critical Hartmann numbers are smaller for kink mode and this mode is the most unstable mode like to the pinch instability case. The flow stability do not depend on the magnetic Prandtl number for m = 0 mode. The same is true for critical Hartmann numbers for m = 0 and m = 1 modes. The typical value of the magnetic field destabilizing the liquid metal Taylor-Couette flow is order of 100 Gauss

  16. Quantitative investigation of the transition process in Taylor-Couette flow

    International Nuclear Information System (INIS)

    Tu, Xin Cheng; Kim, Hyoung Bum Kim; Liu, Dong

    2013-01-01

    The transition process from circular Couette flow to Taylor vortex flow regime was experimentally investigated by measuring the instantaneous velocity vector fields at the annular gap flow region between two concentric cylinders. The proper orthogonal decomposition method, vorticity calculation, and frequency analysis were applied in order to analyze the instantaneous velocity fields to identify the flow characteristics during the transition process. From the results, the kinetic energy and corresponding reconstructed velocity fields were able to detect the onset of the transition process and the alternation of the flow structure. The intermittency and oscillation of the vortex flows during the transition process were also revealed from the analysis of the instantaneous velocity fields. The results can be a measure of identifying the critical Reynolds number of the Taylor-Couette flow from a velocity measurement method.

  17. Mode transition in bubbly Taylor-Couette flow measured by PTV

    International Nuclear Information System (INIS)

    Yoshida, K; Tasaka, Y; Murai, Y; Takeda, T

    2009-01-01

    The drag acting to the inner cylinder in Taylor-Couette flow system can be reduced by bubble injection. In this research, relationship between drag reduction and change of vortical structure in a Taylor-Couette flow is investigated by Particle Tracking Velocimetry (PTV). The velocity vector field in the r-z cross section and the bubble concentration in the front view (z-θ plane) are measured. This paper describes the change of vortical structures with bubbles, and the mode transition that is sensitively affected by the bubbles is discussed. The bubbles accumulate in the three parts relative to vortex position by the interaction between bubbles and vortices. The status of bubble's distribution is different depending on position. This difference affects mode transition as its trigger significantly. The presence of bubbles affects the transition from toroidal mode to spiral mode but does not induce the transition from spiral mode to toroidal mode. Further we found that Taylor vortex bifurcates and a pair of vortices coalesces when the flow switches between spiral mode and toroidal mode.

  18. Traveling waves in a magnetized Taylor-Couette flow

    International Nuclear Information System (INIS)

    Liu Wei; Ji Hantao; Goodman, Jeremy

    2007-01-01

    We investigate numerically a traveling wave pattern observed in experimental magnetized Taylor-Couette flow at low magnetic Reynolds number. By accurately modeling viscous and magnetic boundaries in all directions, we reproduce the experimentally measured wave patterns and their amplitudes. Contrary to previous claims, the waves are shown to be transiently amplified disturbances launched by viscous boundary layers, rather than globally unstable magnetorotational modes

  19. Parametric modulation in the Taylor-Couette ferrofluid flow

    International Nuclear Information System (INIS)

    Singh, Jitender; Bajaj, Renu

    2008-01-01

    A parametric instability of the Taylor-Couette ferrofluid flow excited by a periodically oscillating magnetic field, has been investigated numerically. The Floquet analysis has been employed. It has been found that the modulation of the applied magnetic field affects the stability of the basic flow. The instability response has been found to be synchronous with respect to the frequency of periodically oscillating magnetic field.

  20. On the CFD Analysis of a Stratified Taylor-Couette System Dedicated to the Fabrication of Nanosensors

    Directory of Open Access Journals (Sweden)

    Duccio Griffini

    2017-02-01

    Full Text Available Since the pioneering work of Taylor, the analysis of flow regimes of incompressible, viscous fluids contained in circular Couette systems with independently rotating cylinders have charmed many researchers. The characteristics of such kind of flows have been considered for some industrial applications. Recently, Taylor-Couette flows found an innovative application in the production of optical fiber nanotips, to be used in molecular biology and medical diagnostic fields. Starting from the activity of Barucci et al., the present work concerns the numerical analysis of a Taylor-Couette system composed by two coaxial counter-rotating cylinders with low aspect ratio and radius ratio, filled with three stratified fluids. An accurate analysis of the flow regimes is performed, considering both the variation of inner and outer rotational speed and the reduction of fiber radius due to etching process. The large variety of individuated flow configurations provides useful information about the possible use of the Taylor-Couette system in a wide range of engineering applications. For the present case, the final objective is to provide accurate information to manufacturers of fiber nanotips about the expected flow regimes, thus helping them in the setup of the control process that will be used to generate high-quality products.

  1. Life stages of wall-bounded decay of Taylor-Couette turbulence

    NARCIS (Netherlands)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Arza, Vamsi Spandan; Verzicco, Roberto; Lohse, Detlef

    2017-01-01

    The decay of Taylor-Couette turbulence, i.e., the flow between two coaxial and independently rotating cylinders, is numerically studied by instantaneously stopping the forcing from an initially statistically stationary flow field at a Reynolds number of Re=3.5×104. The effect of wall friction is

  2. Disentangling the origins of torque enhancement through wall roughness in Taylor-Couette turbulence

    NARCIS (Netherlands)

    Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef

    2017-01-01

    Direct numerical simulations (DNS) are performed to analyse the global transport properties of turbulent Taylor-Couette flow with inner rough wall up to Taylor number Ta = 1010. The dimensionless torque Nuω shows an effective scaling of Nuω ∝ Ta0.42±0.01, which is steeper than the ultimate regime

  3. Prospects for observing the magnetorotational instability in the plasma Couette experiment

    Science.gov (United States)

    Flanagan, K.; Clark, M.; Collins, C.; Cooper, C. M.; Khalzov, I. V.; Wallace, J.; Forest, C. B.

    2015-08-01

    Many astrophysical disks, such as protoplanetary disks, are in a regime where non-ideal, plasma-specific magnetohydrodynamic (MHD) effects can significantly influence the behaviour of the magnetorotational instability (MRI). The possibility of studying these effects in the plasma Couette experiment (PCX) is discussed. An incompressible, dissipative global stability analysis is developed to include plasma-specific two-fluid effects and neutral collisions, which are inherently absent in analyses of Taylor-Couette flows (TCFs) in liquid metal experiments. It is shown that with boundary driven flows, a ion-neutral collision drag body force significantly affects the azimuthal velocity profile, thus limiting the flows to regime where the MRI is not present. Electrically driven flow (EDF) is proposed as an alternative body force flow drive in which the MRI can destabilize at more easily achievable plasma parameters. Scenarios for reaching MRI relevant parameter space and necessary hardware upgrades are described.

  4. Mixing and axial dispersion in Taylor-Couette flow: experimental and numerical study

    International Nuclear Information System (INIS)

    Nemri, M.

    2013-01-01

    Taylor-Couette flows between two concentric cylinders have great potential applications in chemical engineering. They are particularly convenient for two-phase small scale devices enabling solvent extraction operations. An experimental device was designed with this idea in mind. It consists of two concentric cylinders with the inner one rotating and the outer one fixed. Taylor-Couette flows take place in the annular gap between them, and are known to evolve towards turbulence through a sequence of successive instabilities. Macroscopic quantities, such as axial dispersion and mixing index, are extremely sensitive to these flow structures, which may lead to flawed modelling of the coupling between hydrodynamics and mass transfer. This particular point has been studied both experimentally and numerically. The flow and mixing have been characterized by means of flow visualization and simultaneous PIV (Particle Imaging Velocimetry) and PLIF (Planar Laser Induced Fluorescence) measurements. PLIF visualizations showed clear evidences of different transport mechanisms including 'intra-vortex mixing' and 'inter-vortex mixing'. Under WVF and MWVF regimes, intra-vortex mixing is controlled by chaotic advection, due to the 3D nature of the flow, while inter-vortex transport occurs due to the presence of waves between neighboring vortices. The combination of these two mechanisms results in enhanced axial dispersion. We showed that hysteresis may occur between consecutive regimes depending on flow history and this may have a significant effect on mixing for a given Reynolds number. The axial dispersion coefficient Dx evolution along the successive flow states was investigated thanks to dye Residence Time Distribution measurements (RTD) and particle tracking (DNS). Both experimental and numerical results have confirmed the significant effect of the flow structure and history on axial dispersion. Our study confirmed that the commonly used 1-parameter chemical engineering models (e

  5. Characterization of the two-phase Taylor Couette flow

    International Nuclear Information System (INIS)

    Mehel A; Gabillet B; Djeridi H

    2005-01-01

    The focus of the present study concerns the effects of a dispersed phase on the structure of a quasi periodic Couette Taylor flow. The two phase flow patterns are investigated experimentally for the Taylor number Ta=780. Small bubbles (0.035 times as small as the gap) are generated by agitation of the upper free surface. Larger bubbles (0.15 times as small as the gap) are produced by injection at the bottom of the apparatus associated with a pressure drop. Void fraction, bubble size and velocity are measured, as well as the azimuthal and axial velocity components of the liquid. A premature transition to turbulence is pointed out and discussed according to the bubble size and their localization in the gap. (authors)

  6. Bifurcating fronts for the Taylor-Couette problem in infinite cylinders

    Science.gov (United States)

    Hărăguş-Courcelle, M.; Schneider, G.

    We show the existence of bifurcating fronts for the weakly unstable Taylor-Couette problem in an infinite cylinder. These fronts connect a stationary bifurcating pattern, here the Taylor vortices, with the trivial ground state, here the Couette flow. In order to show the existence result we improve a method which was already used in establishing the existence of bifurcating fronts for the Swift-Hohenberg equation by Collet and Eckmann, 1986, and by Eckmann and Wayne, 1991. The existence proof is based on spatial dynamics and center manifold theory. One of the difficulties in applying center manifold theory comes from an infinite number of eigenvalues on the imaginary axis for vanishing bifurcation parameter. But nevertheless, a finite dimensional reduction is possible, since the eigenvalues leave the imaginary axis with different velocities, if the bifurcation parameter is increased. In contrast to previous work we have to use normalform methods and a non-standard cut-off function to obtain a center manifold which is large enough to contain the bifurcating fronts.

  7. Inertial migration of particles in Taylor-Couette flows

    Science.gov (United States)

    Majji, Madhu V.; Morris, Jeffrey F.

    2018-03-01

    An experimental study of inertial migration of neutrally buoyant particles in the circular Couette flow (CCF), Taylor vortex flow (TVF) and wavy vortex flow (WVF) is reported. This work considers a concentric cylinder Taylor-Couette device with a stationary outer cylinder and rotating inner cylinder. The device has a radius ratio of η = ri/ro = 0.877, where ri and ro are the inner and outer radii of the flow annulus. The ratio of the annular width between the cylinders (δ = ro - ri) and the particle diameter (dp) is α = δ/dp = 20. For η = 0.877, the flow of a Newtonian fluid undergoes transitions from CCF to TVF and TVF to WVF at Reynolds numbers Re = 120 and 151, respectively, and for the dilute suspensions studied here, these critical Reynolds numbers are almost unchanged. In CCF, particles were observed to migrate, due to the competition between the shear gradient of the flow and the wall interactions, to an equilibrium location near the middle of the annulus with an offset toward the inner cylinder. In TVF, the vortex motion causes the particles to be exposed to the shear gradient and wall interactions in a different manner, resulting in a circular equilibrium region in each vortex. The radius of this circular region grows with increase in Re. In WVF, the azimuthal waviness results in fairly well-distributed particles across the annulus.

  8. Taylor-Couette fluid flow with force oscillation in the inner-cylinder using the immersed boundary method

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Jonatas Emmanuel; Lourenco, Marcos Antonio de Souza; Padilla, Elie Luis Martinez; Silveira Neto, Aristeu da [Federal University of Uberlandia , MG (Brazil)], e-mails: lourenco@mecanica.ufu.br, epadilla@mecanica.ufu.br, aristeus@mecanica.ufu.br; Leibsohn, Andre Martins [CENPES/Petrobras, Rio de Janeiro, RJ (Brazil)], e-mail: aleibsohn@petrobras.com

    2010-07-01

    As new challenges arise in the exploration of deep and ultra-deep water oil fields by PETROBRAS more knowledge and research are needed, so that tools could be developed to assist in the critical operations and make things practicable. In the context of the drilling process, the complexity of the fluid flow inside the riser is associated with the nature of the non-Newtonian flow, immersed solid particles, variable eccentricity and the superimposed traveling azimuthal waves on the inflow and outflow boundaries of the Taylor vortices. This work presents the numerical three-dimensional results of the following simplified fluid flows: Taylor-Couette, Taylor-Couette with varying imposed eccentricity and Taylor-Couette with forced oscillation in the inner cylinder. Using the Navier-Stokes equations, a finite volume method discretization with second order accuracy in both time and space was utilized to simulate the Newtonian, single-phase incompressible fluid flow in the three cases. The circular walls of the inner and outer cylinders are represented by the immersed boundary method, with the direct multi-forcing model. The determined results allow to evidence the flow structures in the three cases in a very qualitative way, even so in the presence of the inner cylinder oscillation. (author)

  9. Irregular wall roughness in turbulent Taylor-Couette flow

    Science.gov (United States)

    Berghout, Pieter; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef; Stevens, Richard

    2017-11-01

    Many wall bounded flows in nature, engineering and transport are affected by surface roughness. Often, this has adverse effects, e.g. drag increase leading to higher energy costs. A major difficulty is the infinite number of roughness geometries, which makes it impossible to systematically investigate all possibilities. Here we present Direct Numerical Simulations (DNS) of turbulent Taylor-Couette flow. We focus on the transitionally rough regime, in which both viscous and pressure forces contribute to the total wall stress. We investigate the effect of the mean roughness height and the effective slope on the roughness function, ΔU+ . Also, we present simulations of varying Ta (Re) numbers for a constant mean roughness height (kmean+). Alongside, we show the behavior of the large scale structures (e.g. plume ejection, Taylor rolls) and flow structures in the vicinity of the wall.

  10. Vortex formation in Taylor-Couette flow with weakly spatial modulation

    International Nuclear Information System (INIS)

    Li, Z.; Khayat, R.E.

    2002-01-01

    The onset of the vortex structure in axisymmetric Taylor-Couette flow with spatially modulated cylinders is examined. The modulation amplitude is assumed to be small for a regular perturbation solution to be sought at small to moderate Taylor numbers. It is found that the presence of a weak modulation of the outer or inner cylinders leads unavoidably to the emergence of steady vortex flow even for a vanishingly small Taylor number. This situation is reminiscent of the onset of an imperfect bifurcation. The vortex structure of the forced TVF is found to have same periodicity when only one cylinder is modulated or the two modulations are commensurate for the Taylor number measured. The vortex structure is quasi-periodic when the two modulations are incommensurate. For a certain Taylor number, there exists a critical wavelength for the presence of the strongest vortex flow when the modulation is in the form of sinusoidal. This critical wavelength tends to the critical value predicted by the linear stability analysis when Ta approaches the supercritical value. (author)

  11. Experimental investigation of liquid-liquid system drop size distribution in Taylor-Couette flow and its application in the CFD simulation

    Science.gov (United States)

    Farzad, Reza; Puttinger, Stefan; Pirker, Stefan; Schneiderbauer, Simon

    Liquid-liquid systems are widely used in the several industries such as food, pharmaceutical, cosmetic, chemical and petroleum. Drop size distribution (DSD) plays a key role as it strongly affects the overall mass and heat transfer in the liquid-liquid systems. To understand the underlying mechanisms single drop breakup experiments have been done by several researchers in the Taylor-Couette flow; however, most of those studies concentrate on the laminar flow regime and therefore, there is no sufficient amount of data in the case of in turbulent flows. The well-defined pattern of the Taylor-Couette flow enables the possibility to investigate DSD as a function of the local fluid dynamic properties, such as shear rate, which is in contrast to more complex devices such as stirred tank reactors. This paper deals with the experimental investigation of liquid-liquid DSD in Taylor-Couette flow. From high speed camera images we found a simple correlation for the Sauter mean diameter as a function of the local shear employing image processing. It is shown that this correlation holds for different oil-in-water emulsions. Finally, this empirical correlation for the DSD is used as an input data for a CFD simulation to compute the local breakup of individual droplets in a stirred tank reactor.

  12. Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow

    Science.gov (United States)

    Cagney, Neil; Balabani, Stavroula

    2017-11-01

    Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.

  13. Surfactants and the Rayleigh-Taylor instability of Couette type flows

    Science.gov (United States)

    Frenkel, A. L.; Halpern, D.; Schweiger, A. S.

    2011-11-01

    We study the Rayleigh-Taylor instability of slow Couette- type flows in the presence of insoluble surfactants. It is known that with zero gravity, the surfactant makes the flow unstable to longwave disturbances in certain regions of the parameter space; while in other parametric regions, it reinforces the flow stability (Frenkel and Halpern 2002). Here, we show that in the latter parametric sectors, and when the (gravity) Bond number Bo is below a certain threshold value, the Rayleigh-Taylor instability is completely stabilized for a finite interval of Ma, the (surfactant) Marangoni number: MaL Ma2. For Ma Ma2, and also for MaL Ma2 as functions of the Bond number. We note that (for an interval of the Bond number) there are two distinct criticalities with nonzero (and distinct) critical wavenumbers.

  14. Onset of secondary flow in the modulated Taylor-Couette system

    International Nuclear Information System (INIS)

    Wu, X.; Swift, J.B.

    1989-01-01

    The critical Reynolds number for the linear instability of primary flow is calculated for a Taylor-Couette system in which the rotation rate of either cylinder is modulated sinusoidally in time. The method used is based on that of Hall [J. Fluid Mech. 67, 29 (1975)] and is restricted to small amplitudes of modulation but allows for a finite gap. For the case of outer-cylinder modulation, we find that the critical Reynolds number is larger than that for the unmodulated system, while, if the inner cylinder is modulated, it is smaller

  15. An experimental study of the connection between the hydrodynamic and phase-transition descriptions of the Couette-Taylor instability

    International Nuclear Information System (INIS)

    Berland, T.; Joessang, T.; Feder, J.

    1986-04-01

    The laser doppler velocimetry technique has been used to measure the radial flow velocity in the Taylor vortex flow at several Taylor numbers close to and above the critical value. The first four harmonics of the flow field have been analyzed using a model described by Davey. The analysis demonstrates that the amplitude of the first harmonic of the super-critical flow field can be regarded as the ''order parameter'' of the transition from the laminar Couette flow to the Taylor vortex flow. This transition is described by a generalized Landau theory for classical second order mean-field phase transitions. The analysis of the results of carefully performed experiments not only confirms the findings of earlier experimental work, but in addition all the significant parameters of the full Davey model for this hydrodynamic instability are determied

  16. Development of a miniature Taylor-Couette extractor column for nuclear solvent extraction

    International Nuclear Information System (INIS)

    Shekhar Kumar; Sivakumar, D.; Bijendra Kumar; Kamachi Mudali, U.; Natarajan, R.

    2012-01-01

    Miniature annular centrifugal contactors are nearly perfect for shielded hot-cell applications during flowsheet evaluation but these contactors require complex maintenance of electrical drive-motors during radioactive experiments. To reduce the number of electrical drives in the shielded cell, an indigenous design of miniature Taylor Couette (TC) mixing based countercurrent differential extraction column has been developed. In this paper, results of mass transfer experiments for an indigenously developed TC column with 30% TBP/aqueous nitric acid solutions are reported. The developed device worked perfectly in counter-current differential mode and demonstrated equivalence to multiple-extraction stages while working with a single electrical drive. The developed TC unit demonstrated operation with a reduced efficiency without flooding even in absence of rotor rotation. This observation is a vital step towards designing of robust contactors, which do not flood during temporary power failure or failure of drive mechanism. (author)

  17. Development of a Couette-Taylor flow device with active minimization of secondary circulation

    International Nuclear Information System (INIS)

    Schartman, Ethan

    2009-01-01

    A novel Taylor-Couette experiment has been developed to produce rotating shear flows for the study of hydrodynamic and magnetohydrodynamic instabilities which are believed to drive angular momentum transport in astrophysical accretion disks. High speed, concentric, corotating cylinders generate the flow where the height of the cylinders is twice the radial gap width. Ekman pumping is controlled and minimized by splitting the vertical boundaries into pairs of nested, differentially rotating rings. The end rings and cylinders comprise four independently driven rotating components which provide exibility in developing flow profiles. The working fluids of the experiment are water, a water-glycerol mix, or a liquid gallium alloy. The mechanical complexity of the apparatus and large dynamic pressures generated by high speed operation with the gallium alloy presented unique challenges. The mechanical implementation of the experiment and some representative results obtained with Laser Doppler Velocimetry in water are discussed

  18. Development of a Couette-Taylor flow device with active minimization of secondary circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ethan Schartman

    2009-01-27

    A novel Taylor-Couette experiment has been developed to produce rotating shear ows for the study of hydrodynamic and magnetohydrodynamic instabilities which are believed to drive angular momentum transport in astrophysical accretion disks. High speed, concentric, corotating cylinders generate the flow where the height of the cylinders is twice the radial gap width. Ekman pumping is controlled and minimized by splitting the vertical boundaries into pairs of nested, differentially rotating rings. The end rings and cylinders comprise four independently driven rotating components which provide exibility in developing flow profiles. The working fluids of the experiment are water, a water-glycerol mix, or a liquid gallium alloy. The mechanical complexity of the apparatus and large dynamic pressures generated by high speed operation with the gallium alloy presented unique challenges. The mechanical implementation of the experiment and some representative results obtained with Laser Doppler Velocimetry in water are discussed.

  19. Unmixing demonstration with a twist: A photochromic Taylor-Couette device

    Science.gov (United States)

    Fonda, Enrico; Sreenivasan, Katepalli R.

    2017-10-01

    10.1119/1.4996901.1 This article describes an updated version of the famous Taylor-Couette flow reversibility demonstration. The viscous fluid confined between two concentric cylinders is forced to move by the rotating inner cylinder and visualized through the transparent outer cylinder. After a few rotations, a colored blob of fluid appears well mixed. Yet, after reversing the motion for the same number of turns, the blob reappears in the original location as if the fluid has just been unmixed. The use of household supplies makes the device inexpensive and easy to build without specific technical skills. The device can be used for demonstrations in fluid dynamics courses and outreach activities to discuss the concepts of viscosity, creeping flows, the absence of inertia, and time-reversibility.

  20. Stability and instability of hydromagnetic Taylor-Couette flows

    Science.gov (United States)

    Rüdiger, Günther; Gellert, Marcus; Hollerbach, Rainer; Schultz, Manfred; Stefani, Frank

    2018-04-01

    Decades ago S. Lundquist, S. Chandrasekhar, P. H. Roberts and R. J. Tayler first posed questions about the stability of Taylor-Couette flows of conducting material under the influence of large-scale magnetic fields. These and many new questions can now be answered numerically where the nonlinear simulations even provide the instability-induced values of several transport coefficients. The cylindrical containers are axially unbounded and penetrated by magnetic background fields with axial and/or azimuthal components. The influence of the magnetic Prandtl number Pm on the onset of the instabilities is shown to be substantial. The potential flow subject to axial fields becomes unstable against axisymmetric perturbations for a certain supercritical value of the averaged Reynolds number Rm bar =√{ Re ṡ Rm } (with Re the Reynolds number of rotation, Rm its magnetic Reynolds number). Rotation profiles as flat as the quasi-Keplerian rotation law scale similarly but only for Pm ≫ 1 while for Pm ≪ 1 the instability instead sets in for supercritical Rm at an optimal value of the magnetic field. Among the considered instabilities of azimuthal fields, those of the Chandrasekhar-type, where the background field and the background flow have identical radial profiles, are particularly interesting. They are unstable against nonaxisymmetric perturbations if at least one of the diffusivities is non-zero. For Pm ≪ 1 the onset of the instability scales with Re while it scales with Rm bar for Pm ≫ 1. Even superrotation can be destabilized by azimuthal and current-free magnetic fields; this recently discovered nonaxisymmetric instability is of a double-diffusive character, thus excluding Pm = 1. It scales with Re for Pm → 0 and with Rm for Pm → ∞. The presented results allow the construction of several new experiments with liquid metals as the conducting fluid. Some of them are described here and their results will be discussed together with relevant diversifications of

  1. Superhydrophobic and polymer drag reduction in turbulent Taylor-Couette flow

    Science.gov (United States)

    Rajappan, Anoop; McKinley, Gareth H.

    2017-11-01

    We use a custom-built Taylor-Couette apparatus (radius ratio η = 0.75) to study frictional drag reduction by dilute polymer solutions and superhydrophobic (SH) surfaces in turbulent flows for 15000 analysis. We also investigate drag reduction by dilute polymer solutions, and show that natural biopolymers from plant mucilage can be an inexpensive and effective alternative to synthetic polymers in drag reduction applications, approaching the same maximum drag reduction asymptote. Finally we explore combinations of the two methods - one arising from wall slip and the other due to changes in turbulence dynamics in the bulk flow - and find that the two effects are not additive; interestingly, the effectiveness of polymer drag reduction is drastically reduced in the presence of an SH coating on the wall. This study was financially supported by the Office of Naval Research (ONR) through Contract No. 3002453814.

  2. Enhanced mixing in two-phase Taylor-Couette flows

    International Nuclear Information System (INIS)

    Dherbecourt, Diane

    2015-01-01

    In the scope of the nuclear fuel reprocessing, Taylor-Couette flows between two concentric cylinders (the inner one in rotation and the outer one at rest) are used at laboratory scale to study the performances of new liquid/liquid extraction processes. Separation performances are strongly related to the mixing efficiency, the quantification of the latter is therefore of prime importance. A previous Ph.D. work has related the mixing properties to the hydrodynamics parameters in single-phase flow, using both experimental and numerical investigations. The Reynolds number, flow state and vortices height (axial wavelength) impacts were thus highlighted. This Ph.D. work extends the previous study to two-phase configurations. For experimental simplification, and to avoid droplets coalescence or breakage, spherical solid particles of PMMA from 800 μm to 1500 μm diameter are used to model rigid droplets. These beads are suspended in an aqueous solution of dimethyl sulfoxide (DMSO) and potassium Thiocyanate (KSCN). The experimental setup uses coupled Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) to access simultaneously the hydrodynamic and the mixing properties. Although the two phases are carefully chosen to match in density and refractive index, these precautions are not sufficient to ensure a good measurement quality, and a second PLIF channel is added to increase the precision of the mixing quantification. The classical PLIF channel monitors the evolution of Rhodamine WT concentration, while the additional PLIF channel is used to map a Fluorescein dye, which is homogeneously concentrated inside the gap. This way, a dynamic mask of the bead positions can be created and used to correct the Rhodamine WT raw images. Thanks to this experimental setup, a parametric study of the particles size and concentration is achieved. A double effect of the dispersed phase is evidenced. On one hand, the particles affect the flow hydrodynamic properties

  3. High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment: A Prelude to an α-Ω Dynamo

    International Nuclear Information System (INIS)

    Colgate, Stirling A.; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Cebastian; Klein, Brianna; Schendel, Paul; Scharle, Cletus; McKinney, Travis; Ginanni, Rocky; Bentley, Ian; Mickey, Timothy; Ferrel, Regnar; Li, Hui; Pariev, Vladimir; Finn, John

    2011-01-01

    The Ω phase of the liquid sodium α-Ω dynamo experiment at New Mexico Institute of Mining and Technology in cooperation with Los Alamos National Laboratory has demonstrated a high toroidal field B φ that is ≅8xB r , where B r is the radial component of an applied poloidal magnetic field. This enhanced toroidal field is produced by the rotational shear in stable Couette flow within liquid sodium at a magnetic Reynolds number Rm≅120. Small turbulence in stable Taylor-Couette flow is caused by Ekman flow at the end walls, which causes an estimated turbulence energy fraction of (δv/v) 2 ∼10 -3 .

  4. Torque scaling in small-gap Taylor-Couette flow with smooth or grooved wall

    Science.gov (United States)

    Zhu, Bihai; Ji, Zengqi; Lou, Zhengkun; Qian, Pengcheng

    2018-03-01

    The torque in the Taylor-Couette flow for radius ratios η ≥0.97 , with smooth or grooved wall static outer cylinders, is studied experimentally, with the Reynolds number of the inner cylinder reaching up to Rei=2 ×105 , corresponding to the Taylor number up to Ta =5 ×1010 . The grooves are perpendicular to the mean flow, and similar to the structure of a submersible motor stator. It is found that the dimensionless torque G , at a given Rei and η , is significantly greater for grooved cases than smooth cases. We compare our experimental torques for the smooth cases to the fit proposed by Wendt [F. Wendt, Ing.-Arch. 4, 577 (1993), 10.1007/BF02084936] and the fit proposed by Bilgen and Boulos [E. Bilgen and R. Boulos, J Fluids Eng. 95, 122 (1973), 10.1115/1.3446944], which shows both fits are outside their range for small gaps. Furthermore, an additional dimensionless torque (angular velocity flux) N uω in the smooth cases exhibits an effective scaling of N uω˜T a0.39 in the ultimate regime, which occurs at a lower Taylor number, Ta ≈3.5 ×107 , than the well-explored η =0.714 case (at Ta ≈3 ×108 ). The same effective scaling exponent, 0.39, is also evident in the grooved cases, but for η =0.97 and 0.985, there is a peak before this exponent appears.

  5. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    Science.gov (United States)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  6. Numerical investigations of passive scalar transport in Taylor-Couette flows: Counter-rotation effect

    Science.gov (United States)

    Ouazib, Nabila; Salhi, Yacine; Si-Ahmed, El-Khider; Legrand, Jack; Degrez, G.

    2017-07-01

    Numerical methods for solving convection-diffusion-reaction (CDR) scalar transport equation in three-dimensional flow are used in the present investigation. The flow is confined between two concentric cylinders both the inner cylinder and the outer one are allowed to rotate. Direct numerical simulations (DNS) have been achieved to study the effects of the gravitational and the centrifugal potentials on the stability of incompressible Taylor-Couette flow. The Navier-Stokes equations and the uncoupled convection-diffusion-reaction equation are solved using a spectral development in one direction combined together with a finite element discretization in the two remaining directions. The complexity of the patterns is highlighted. Since, it increases as the rotation rates of the cylinders increase. In addition, the effect of the counter-rotation of the cylinders on the mass transfer is pointed out.

  7. Experimental Study on Momentum Transfer of Surface Texture in Taylor-Couette Flow

    Science.gov (United States)

    Xue, Yabo; Yao, Zhenqiang; Cheng, De

    2017-05-01

    The behavior of Taylor-Couette (TC) flow has been extensively studied. However, no suitable torque prediction models exist for high-capacity fluid machinery. The Eckhardt-Grossmann-Lohse (EGL) theory, derived based on the Navier-Stokes equations, is proposed to model torque behavior. This theory suggests that surfaces are the significant energy transfer interfaces between cylinders and annular flow. This study mainly focuses on the effects of surface texture on momentum transfer behavior through global torque measurement. First, a power-law torque behavior model is built to reveal the relationship between dimensionless torque and the Taylor number based on the EGL theory. Second, TC flow apparatus is designed and built based on the CNC machine tool to verify the torque behavior model. Third, four surface texture films are tested to check the effects of surface texture on momentum transfer. A stereo microscope and three-dimensional topography instrument are employed to analyze surface morphology. Global torque behavior is measured by rotating a multi component dynamometer, and the effects of surface texture on the annular flow behavior are observed via images obtained using a high-speed camera. Finally, torque behaviors under four different surface conditions are fitted and compared. The experimental results indicate that surface textures have a remarkable influence on torque behavior, and that the peak roughness of surface texture enhances the momentum transfer by strengthening the fluctuation in the TC flow.

  8. Characterising the structure of quasi-periodic mixing events in stratified turbulent Taylor-Couette flow

    Science.gov (United States)

    Singh, Kanwar Nain; Partridge, Jamie; Dalziel, Stuart; Caulfield, C. P.; Mathematical Underpinnings of Stratified Turbulence (MUST) Team

    2017-11-01

    We present results from experiments conducted to study mixing in a two-layer stably-stratified turbulent Taylor-Couette flow. It has previously been observed that there is a quasi-periodic mixing event located at the interface separating the layers. We observe, through conductivity probe measurements, that the power of the mixing event in the frequency spectrum of the density data at the interface is higher when measured near the inner cylinder than in the middle of the annular gap. This is consistent with Oglethorpe's (2014) hypothesis that the mixing structure is triggered near the inner cylinder, and then advects and decays or disperses radially. We also observe that at Ri =g/'Ro (RiΩi)2 7 , where Ri, Ro are the inner and outer cylinder radius, respectively, g ' the reduced gravity characterising the density jump between the layers and Ωi is the rotation rate of the inner cylinder, the power drops significantly at all radial locations, which is reminiscent of the onset of the enhanced flux regime as observed by Oglethorpe et al. (2013). We perform experiments to characterise the spatial extent and dynamics of this mixing structure using particle image velocimetry (PIV) giving further insights into this important mixing process. EPSRC programme Grant EP/K034529/1 & SGPC-CCT Scholarship.

  9. Thermal treatment of starch slurry in Couette-Taylor flow apparatus

    Directory of Open Access Journals (Sweden)

    Hubacz Robert

    2017-09-01

    Full Text Available In this paper, thermal processing of starch slurry in a Couette-Taylor flow (CTF apparatus was investigated. Gelatinized starch dispersion, after treatment in the CTF apparatus, was characterized using such parameters like starch granule diameters (or average diameter, starch granule swelling degree (quantifying the amount of water absorbed by starch granules and concentration of dissolved starch. These parameters were affected mostly by the process temperature, although the impact of the axial flow or rotor rotation on them was also observed. Moreover, the analysis of results showed a relatively good correlation between these parameters, as well as, between those parameter and apparent viscosity of gelatinized starch dispersion. Meanwhile, the increase in the value of the apparent viscosity and in shear-tinning behaviour of dispersion was associated with the progress of starch processing in the CTF apparatus. Finally, the CTF apparatuses of different geometries were compared using numerical simulation of the process. The results of the simulation indicated that the apparatus scaling-up without increasing the width of the gap between cylinders results in higher mechanical energy consumption per unit of processed starch slurry.

  10. Spontaneous electrorheological effect in nematic liquid crystals under Taylor-Couette flow configuration

    Science.gov (United States)

    Dhar, Jayabrata; Chakraborty, Suman

    2017-09-01

    Electrorheological (ER) characteristics of Nematic Liquid Crystals (NLCs) have been a topic of immense interest in the field of soft matter physics owing to its rheological modulation capabilities. Here we explore the augmentation in rheological characteristics of the nematic fluid confined within the annular region of the concentric cylindrical space with an Electrical Double Layer (EDL) induced at the fluid-substrate interface due to certain physico-chemical interactions. Using a Taylor-Couette flow configuration associated with an EDL induced at the inner cylinder wall, we show that a spontaneous electrorheological effect is generated owing to the intrinsic director anisotropy and structural order of complex nematic fluids. We seek to find the enhancement in torque transfer capability due to the inherent electrorheological nature of the nematic medium, apart from exploiting the innate nature of such homogeneous media to remain free of coagulation, a fact which makes it an excellent candidate for the applications in microfluidic environment. Our analysis reveals that with stronger induced charge density within the EDL, the apparent viscosity enhances, which, in turn, augments torque transfer across the concentric cylinder. The velocity profile tends to flatten in comparison to the classical circular Couette flow in annular geometry as one increases the surface charge density. We further observe a more pronounced ER effect for the nematic medium having larger electrical permittivity anisotropy. Besides the torque transfer qualifications, we also explore the distinct scenarios, wherein the same NLC medium exhibits shear thinning and shear thickening characteristics. The present configuration of the efficient torque transfer mechanism may be proficiently downscaled to micro-level and is relevant in the fabrication of micro-clutch and micro-dampers.

  11. Quasi-two-dimensional nonlinear evolution of helical magnetorotational instability in a magnetized Taylor-Couette flow

    Science.gov (United States)

    Mamatsashvili, G.; Stefani, F.; Guseva, A.; Avila, M.

    2018-01-01

    Magnetorotational instability (MRI) is one of the fundamental processes in astrophysics, driving angular momentum transport and mass accretion in a wide variety of cosmic objects. Despite much theoretical/numerical and experimental efforts over the last decades, its saturation mechanism and amplitude, which sets the angular momentum transport rate, remains not well understood, especially in the limit of high resistivity, or small magnetic Prandtl numbers typical to interiors (dead zones) of protoplanetary disks, liquid cores of planets and liquid metals in laboratory. Using direct numerical simulations, in this paper we investigate the nonlinear development and saturation properties of the helical magnetorotational instability (HMRI)—a relative of the standard MRI—in a magnetized Taylor-Couette flow at very low magnetic Prandtl number (correspondingly at low magnetic Reynolds number) relevant to liquid metals. For simplicity, the ratio of azimuthal field to axial field is kept fixed. From the linear theory of HMRI, it is known that the Elsasser number, or interaction parameter determines its growth rate and plays a special role in the dynamics. We show that this parameter is also important in the nonlinear problem. By increasing its value, a sudden transition from weakly nonlinear, where the system is slightly above the linear stability threshold, to strongly nonlinear, or turbulent regime occurs. We calculate the azimuthal and axial energy spectra corresponding to these two regimes and show that they differ qualitatively. Remarkably, the nonlinear state remains in all cases nearly axisymmetric suggesting that this HMRI-driven turbulence is quasi two-dimensional in nature. Although the contribution of non-axisymmetric modes increases moderately with the Elsasser number, their total energy remains much smaller than that of the axisymmetric ones.

  12. Hydrodynamic instabilities and concentration polarization coupled by osmotic pressure in a Taylor-Couette cell

    Science.gov (United States)

    Martinand, Denis; Tilton, Nils

    2016-11-01

    This study addresses analytically and numerically the coupling between hydrodynamic instabilities and osmotic pressure driven by concentration polarization. The configuration consists of a Taylor-Couette cell filled with a Newtonian fluid carrying a passive scalar. Whereas the concentric inner and outer cylinders are membranes permeable to the solvent, they totally reject the scalar. As a radial in- or outflow of solvent is imposed through both cylinders, a concentration boundary layer develops on the cylinder where the solvent exits, until an equilibrium steady state is reached. In addition, the rotation of the inner cylinder is used to drive centrifugal instabilities in the form of toroidal vortices, which interact with the concentration boundary layer. By means of the osmotic pressure, concentration polarization is found to promote or hinder the hydrodynamic instabilities, depending on capacity of the vortices and diffusion to increase the concentration field at the membrane. The results obtained by analytical stability analysis agree with dedicated Direct Numerical Simulations.

  13. Transitions between Taylor vortices and spirals via wavy Taylor vortices and wavy spirals

    International Nuclear Information System (INIS)

    Hoffmann, Ch; Altmeyer, S; Pinter, A; Luecke, M

    2009-01-01

    We present numerical simulations of closed wavy Taylor vortices and of helicoidal wavy spirals in the Taylor-Couette system. These wavy structures appearing via a secondary bifurcation out of Taylor vortex flow and out of spiral vortex flow, respectively, mediate transitions between Taylor and spiral vortices and vice versa. Structure, dynamics, stability and bifurcation behaviour are investigated in quantitative detail as a function of Reynolds numbers and wave numbers for counter-rotating as well as corotating cylinders. These results are obtained by solving the Navier-Stokes equations subject to axial periodicity for a radius ratio η=0.5 with a combination of a finite differences method and a Galerkin method.

  14. Cultivation of the photosynthesis microorganism in a Taylor-Couette Vortex Flow with a small aspect ratio

    Science.gov (United States)

    Kawai, H.; Yasui, S.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    This study focuses on the dynamics of the Taylor-Couette Vortex Flow (TVF) in a photo-bioreactor in which CO2 is changed to O2 with high efficiency by the photosynthesis ability of micro algae. Stirring by means of a screw propeller is generally used for a simple agitation. However, the problem is that there exists a very high shearing flow region just near the propeller, which causes the destruction of the alga cell by the shearing force. In contrast, the TVF mixing is expected to reduce such a local and random shearing force because of their column of steady and orderly vortices. In this study, the relationship between the microorganism growth rate and the flow structures in dilute suspensions of a TVF is investigated and the flow characteristics are measured by using an ultrasonic velocity profiler with a small aspect ratio of 3.

  15. Cultivation of the photosynthesis microorganism in a Taylor-Couette Vortex Flow with a small aspect ratio

    International Nuclear Information System (INIS)

    Kawai, H; Yasui, S; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    This study focuses on the dynamics of the Taylor-Couette Vortex Flow (TVF) in a photo-bioreactor in which CO 2 is changed to O 2 with high efficiency by the photosynthesis ability of micro algae. Stirring by means of a screw propeller is generally used for a simple agitation. However, the problem is that there exists a very high shearing flow region just near the propeller, which causes the destruction of the alga cell by the shearing force. In contrast, the TVF mixing is expected to reduce such a local and random shearing force because of their column of steady and orderly vortices. In this study, the relationship between the microorganism growth rate and the flow structures in dilute suspensions of a TVF is investigated and the flow characteristics are measured by using an ultrasonic velocity profiler with a small aspect ratio of 3.

  16. Non-linear dynamics and alternating 'flip' solutions in ferrofluidic Taylor-Couette flow

    Science.gov (United States)

    Altmeyer, Sebastian

    2018-04-01

    This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined between two concentric independently rotating cylinders. We detected alternating 'flip' solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion.

  17. Numerical simulation of turbulent Taylor-Couette flow between conducting cylinders in an axial magnetic field at low magnetic Reynolds number

    Science.gov (United States)

    Leng, Xueyuan; Kolesnikov, Yurii B.; Krasnov, Dmitry; Li, Benwen

    2018-01-01

    The effect of an axial homogeneous magnetic field on the turbulence in the Taylor-Couette flow confined between two infinitely long conducting cylinders is studied by the direct numerical simulation using a periodic boundary condition in the axial direction. The inner cylinder is rotating, and the outer one is fixed. We consider the case when the magnetic Reynolds number Rem ≪ 1, i.e., the influence of the induced magnetic field on the flow is negligible that is typical for industry and laboratory study of liquid metals. Relevance of the present study is based on the similarity of flow characteristics at moderate and high magnetic field for the cases with periodic and end-wall conditions at the large flow aspect ratio, as proven in the earlier studies. Two sets of Reynolds numbers 4000 and 8000 with several Hartmann numbers varying from 0 to 120 are employed. The results show that the mean radial induced electrical current, resulting from the interaction of axial magnetic field with the mean flow, leads to the transformation of the mean flow and the modification of the turbulent structure. The effect of turbulence suppression is dominating at a strong magnetic field, but before reaching the complete laminarization, we capture the appearance of the hairpin-like structures in the flow.

  18. An Instability in Stratified Taylor-Couette Flow

    Science.gov (United States)

    Swinney, Harry

    2015-11-01

    In the late 1950s Russell Donnelly began conducting experiments at the University of Chicago on flow between concentric rotating cylinders, and his experiments together with complementary theory by his collaborator S. Chandrasekhar did much to rekindle interest in the flow instability discovered and studied by G.I. Taylor (1923). The present study concerns an instability in a concentric cylinder system containing a fluid with an axial density gradient. In 2005 Dubrulle et al. suggested that a `stratorotational instability' (SRI) in this system could provide insight into instability and angular momentum transport in astrophysical accretion disks. In 2007 the stratorotational instability was observed in experiments by Le Bars and Le Gal. We have conducted an experiment on the SRI in a concentric cylinder system (radius ratio η = 0 . 876) with buoyancy frequency N / 2 π = 0.25, 0.50, or 0.75 Hz. For N = 0.75 Hz we observe the SRI onset to occur for Ωouter /Ωinner > η , contrary to the prediction of Shalybkov and Rüdiger. Research conducted with Bruce Rodenborn and Ruy Ibanez.

  19. Circulation in a Short Cylindrical Couette System

    Energy Technology Data Exchange (ETDEWEB)

    Akira Kageyama; Hantao Ji; Jeremy Goodman

    2003-07-08

    In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we explore Couette flows having height comparable to the gap between cylinders, centrifugally stable rotation, and high Reynolds number. Experiments in water are compared with numerical simulations. The flow is very different from that of an ideal, infinitely long Couette system. Simulations show that endcaps co-rotating with the outer cylinder drive a strong poloidal circulation that redistributes angular momentum. Predicted toroidal flow profiles agree well with experimental measurements. Spin-down times scale with Reynolds number as expected for laminar Ekman circulation; extrapolation from two-dimensional simulations at Re less than or equal to 3200 agrees remarkably well with experiment at Re approximately equal to 106. This suggests that turbulence does not dominate the effective viscosity. Further detailed numerical studies reveal a strong radially inward flow near both endcaps. After turning vertically along the inner cylinder, these flows converge at the midplane and depart the boundary in a radial jet. To minimize this circulation in the MRI experiment, endcaps consisting of multiple, differentially rotating rings are proposed. Simulations predict that an adequate approximation to the ideal Couette profile can be obtained with a few rings.

  20. Circulation in a Short Cylindrical Couette System

    International Nuclear Information System (INIS)

    Akira Kageyama; Hantao Ji; Jeremy Goodman

    2003-01-01

    In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we explore Couette flows having height comparable to the gap between cylinders, centrifugally stable rotation, and high Reynolds number. Experiments in water are compared with numerical simulations. The flow is very different from that of an ideal, infinitely long Couette system. Simulations show that endcaps co-rotating with the outer cylinder drive a strong poloidal circulation that redistributes angular momentum. Predicted toroidal flow profiles agree well with experimental measurements. Spin-down times scale with Reynolds number as expected for laminar Ekman circulation; extrapolation from two-dimensional simulations at Re less than or equal to 3200 agrees remarkably well with experiment at Re approximately equal to 106. This suggests that turbulence does not dominate the effective viscosity. Further detailed numerical studies reveal a strong radially inward flow near both endcaps. After turning vertically along the inner cylinder, these flows converge at the midplane and depart the boundary in a radial jet. To minimize this circulation in the MRI experiment, endcaps consisting of multiple, differentially rotating rings are proposed. Simulations predict that an adequate approximation to the ideal Couette profile can be obtained with a few rings

  1. Dynamic Transition and Pattern Formation in Taylor Problem

    Institute of Scientific and Technical Information of China (English)

    Tian MA; Shouhong WANG

    2010-01-01

    The main objective of this article is to study both dynamic and structural transitions of the Taylor-Couette flow,by using the dynamic transition theory and geometric theory of incompressible flows developed recently by the authors.In particular,it is shown that as the Taylor number crosses the critical number,the system undergoes either a continuous or a jump dynamic transition,dictated by the sign of a computable,nondimensional parameter R.In addition,it is also shown that the new transition states have the Taylor vortex type of flow structure,which is structurally stable.

  2. Boundary effects and the onset of Taylor vortices

    Science.gov (United States)

    Rucklidge, A. M.; Champneys, A. R.

    2004-05-01

    It is well established that the onset of spatially periodic vortex states in the Taylor-Couette flow between rotating cylinders occurs at the value of Reynolds number predicted by local bifurcation theory. However, the symmetry breaking induced by the top and bottom plates means that the true situation should be a disconnected pitchfork. Indeed, experiments have shown that the fold on the disconnected branch can occur at more than double the Reynolds number of onset. This leads to an apparent contradiction: why should Taylor vortices set in so sharply at the Reynolds number predicted by the symmetric theory, given such large symmetry-breaking effects caused by the boundary conditions? This paper offers a generic explanation. The details are worked out using a Swift-Hohenberg pattern formation model that shares the same qualitative features as the Taylor-Couette flow. Onset occurs via a wall mode whose exponential tail penetrates further into the bulk of the domain as the driving parameter increases. In a large domain of length L, we show that the wall mode creates significant amplitude in the centre at parameter values that are O( L-2) away from the value of onset in the problem with ideal boundary conditions. We explain this as being due to a Hamiltonian Hopf bifurcation in space, which occurs at the same parameter value as the pitchfork bifurcation of the temporal dynamics. The disconnected anomalous branch remains O(1) away from the onset parameter since it does not arise as a bifurcation from the wall mode.

  3. Effect of weak geometrical forcing on the stability of Taylor-vortex flow

    International Nuclear Information System (INIS)

    Pan Xiaolong; Khayat, Roger E

    2008-01-01

    Linear stability analysis of fully developed axisymmetric steady and spatially modulated Taylor-Couette flow is carried out in the narrow-gap limit. The inner cylinder is sinusoidally modulated and rotating, while the outer cylinder is straight and at rest. The modulation amplitude is assumed to be small, and the base steady flow is determined using a regular perturbation expansion of the flow field coupled to a variable-step finite-difference scheme. The disturbance flow equations are derived within the framework of Floquet theory and solved using a nonlinear two-point boundary-value approach. In contrast to unforced Taylor-Couette flow, only vortical base flow is possible in the forced case. It is found that the forcing tends to generally destabilize the base flow, especially around the critical point. Both the critical Taylor number and wavenumber are found to decrease essentially linearly with modulation amplitude.

  4. Wall Shear Rates in Taylor Vortex Flow

    Czech Academy of Sciences Publication Activity Database

    Sobolík, V.; Jirout, T.; Havlica, Jaromír; Kristiawan, M.

    2011-01-01

    Roč. 4, č. 3 (2011), s. 25-31 ISSN 1735-3572 Grant - others:ANR:(FR) ANR-08-BLAN-0184-01 Institutional research plan: CEZ:AV0Z40720504 Keywords : taylor-couette flow * electrodiffusion diagnostics * membrane reactors Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.jafmonline.net/modules/journal/journal_browse.php?EJjid=13

  5. Rayleigh-Taylor mixing in supernova experiments

    International Nuclear Information System (INIS)

    Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.

    2015-01-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order

  6. Instrumental Implementation of an Experiment to Demonstrate αω -dynamos in Accretion Disks

    Science.gov (United States)

    Si, Jiahe; Sonnenfeld, Richard; Colgate, Art; Li, Hui; Nornberg, Mark

    2016-10-01

    The New Mexico Liquid Metal αω -dynamo experiment is aimed to demonstrate a galactic dynamo. Our goal is to generate the ω-effect and α-effect by two semi-coherent flows in laboratory. Two coaxial cylinders are used to generate Taylor-Couette flows to simulate the differential rotation of accretion disks. Plumes induced by jets injected into the Couette flows are expected to produce helicities necessary for the α-effect. We have demonstrated an 8-fold poloidal-to-toroidal flux amplification from differential rotation (the ω-effect) by minimizing turbulence in our apparatus. To demonstrate the α-effect, the experimental apparatus is undergoing significant upgrade. We have constructed a helicity injection facility, and are also designing and testing a new data acquisition system capable of transmitting data in a high speed rotating frame. Additional magnetic field diagnostics will also be included. The upgrade is intended to answer the question of whether a self-sustaining αω -dynamo can be constructed with a realistic fluid flow field, as well as to obtain more details to understand dynamo action in highly turbulent Couette flow.

  7. Experimental investigation of torque scaling and coherent structures in turbulent Taylor–Couette flow

    International Nuclear Information System (INIS)

    Tokgoz, S; Elsinga, G E; Delfos, R; Westerweel, J

    2011-01-01

    The effect of flow structures to the torque values of fully turbulent Taylor-Couette flow was experimentally studied using tomographic PIV. The measurements were performed for various relative cylinder rotation speeds and Reynolds numbers, based on a study of Ravelet et al. (2010). We confirmed that the flow structures are strongly influenced by the rotation number. Our analyses using time-averaged mean flow showed the presence of Taylor vortices for the two smallest rotation numbers that were studied. Increasing the rotation number initially resulted in the shape deformation of the Taylor vortices. Further increment towards only outer cylinder rotation, showed transition to the dominance of the small scale vortices and absence of Taylor vortex-like structures. We compared the transition of the flow structures with the curves of dimensionless torque. Sudden changes of the flow structures confirmed the presence of transition points on the torque curve, where the dominance of small and large scale vortical structures on the mean flow interchanges.

  8. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael

    2017-11-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  9. Inward propagating chemical waves in Taylor vortices.

    Science.gov (United States)

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  10. Influence of a magnetic field on the Taylor instability in magnetic fluids

    International Nuclear Information System (INIS)

    Vislovich, A.N.

    1986-01-01

    The influence of a magnetic field on the stability of Couette flow between rotating cylinders is investigated in the narrow gap approximation. The governing mechanism of the instability is the classical Taylor mechanism. It was shown that rotation of the outer cylinder in the same direction as the inner does not result in a qualitative change in the structure of the theshold perturbations. When the cylinders rotate in different directions in an ordinary fluid, the Taylor vortices develop in the domain of the gap between the inner cylinder and the fluid layer for which v 0 = 0

  11. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.

    2017-12-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  12. Process development of starch hydrolysis using mixing characteristics of Taylor vortices.

    Science.gov (United States)

    Masuda, Hayato; Horie, Takafumi; Hubacz, Robert; Ohmura, Naoto; Shimoyamada, Makoto

    2017-04-01

    In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.

  13. The simultaneous onset and interaction of Taylor and Dean instabilities in a Couette geometry

    International Nuclear Information System (INIS)

    Hills, C P; Bassom, A P

    2005-01-01

    The fluid flow between a pair of coaxial circular cylinders generated by the uniform rotation of the inner cylinder and an azimuthal pressure gradient is susceptible to both Taylor and Dean type instabilities. The flow can be characterised by two parameters: a measure of the relative magnitude of the rotation and pressure effects and a non-dimensional Taylor number. Neutral curves associated with each instability can be constructed but it has been suggested that these curves do not cross but rather posses 'kinks'. Our work is based in the small gap, large wavenumber limit and considers the simultaneous onset of Taylor and Dean instabilities. The two linear instabilities interact at exponentially small orders and a consistent, matched asymptotic solution is found across the whole annular domain, identifying five regions of interest: two boundary adjustment regions and three internal critical points. We construct necessary conditions for the concurrent onset of the linear Taylor and Dean instabilities and show that neutral curve crossing is possible

  14. Laser Induced Fluorescence Diagnostic for the Plasma Couette Experiment

    Science.gov (United States)

    Katz, Noam; Skiff, Fred; Collins, Cami; Weisberg, Dave; Wallace, John; Clark, Mike; Garot, Kristine; Forest, Cary

    2010-11-01

    The Plasma Couette Experiment (PCX) at U. Wisconsin-Madison consists of a rotating high-beta plasma and is well-suited to the study of flow-driven, astrophysically-relevant plasma phenomena. PCX confinement relies on alternating rings of 1kG permanent magnets and the rotation is driven by electrode rings, interspersed between the magnets, which provide an azimuthal ExB. I will discuss the development of a laser-induced fluorescence diagnostic (LIF) to characterize the ion distribution function of argon plasmas in PCX. The LIF system--which will be scanned radially--will be used to calibrate internal Mach probes, as well as to measure the time-resolved velocity profile, ion temperature and density non-perturbatively. These diagnostics will be applied to study the magneto-rotational instability in a plasma, as well as the buoyancy instability thought to be involved in producing the solar magnetic field. This work is supported by NSF and DOE.

  15. Finite length Taylor Couette flow

    Science.gov (United States)

    Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    Axisymmetric numerical solutions of the unsteady Navier-Stokes equations for flow between concentric rotating cylinders of finite length are obtained by a spectral collocation method. These representative results pertain to two-cell/one-cell exchange process, and are compared with recent experiments.

  16. Statistic derivation of Taylor factors for polycrystalline metals with application to pure magnesium

    International Nuclear Information System (INIS)

    Shen, J.H.; Li, Y.L.; Wei, Q.

    2013-01-01

    We have investigated the Taylor factors of textured as well as texture-free polycrystalline aggregates. We begin with examining the Schmid factors of single crystals. A statistical model is then introduced to describe the distribution of grain orientations as well as the Schmid factor of individual grains of the polycrystalline system. The grains are classified into “soft” and “hard” ones. Based on this, a model is proposed for the derivation of the Taylor factors of textured as well as texture-free polycrystalline metals, and as a case study it is applied to polycrystalline magnesium. The model predictions are in very good agreement with the available experimental results. No free parameters have been involved in the development of this model, and the physical processes are clearly defined. Based on the fundamental assumption that grains can be classified into “soft” and “hard” in metals, this model should also be applicable to other hexagonal close packed metals such as α-titanium, beryllium and zirconium, as well as metals of other lattice structures such as face-centered cubic and body-centered cubic. It will also be interesting to see if this model can be incorporated into existing crystal plasticity models for the prediction of texture evolution under mechanical loading

  17. Wall Shear Rate in the Taylor-Couette-Poiseuille Flow at Low Axial Reynolds Number

    Czech Academy of Sciences Publication Activity Database

    Dumont, E.; Fayolle, F.; Sobolík, Václav; Legrand, J.

    2002-01-01

    Roč. 45, č. 3 (2002), s. 679-689 ISSN 0017-9310 Institutional research plan: CEZ:AV0Z4072921 Keywords : Taylor vortices * electrodiffusion diagnostics * model fluid s Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.268, year: 2002

  18. Couette-Poiseuille flow experiment with zero mean advection velocity: Subcritical transition to turbulence

    Science.gov (United States)

    Klotz, L.; Lemoult, G.; Frontczak, I.; Tuckerman, L. S.; Wesfreid, J. E.

    2017-04-01

    We present an experimental setup that creates a shear flow with zero mean advection velocity achieved by counterbalancing the nonzero streamwise pressure gradient by moving boundaries, which generates plane Couette-Poiseuille flow. We obtain experimental results in the transitional regime for this flow. Using flow visualization, we characterize the subcritical transition to turbulence in Couette-Poiseuille flow and show the existence of turbulent spots generated by a permanent perturbation. Due to the zero mean advection velocity of the base profile, these turbulent structures are nearly stationary. We distinguish two regions of the turbulent spot: the active turbulent core, which is characterized by waviness of the streaks similar to traveling waves, and the surrounding region, which includes in addition the weak undisturbed streaks and oblique waves at the laminar-turbulent interface. We also study the dependence of the size of these two regions on Reynolds number. Finally, we show that the traveling waves move in the downstream (Poiseuille) direction.

  19. Surface roughness effects on turbulent Couette flow

    Science.gov (United States)

    Lee, Young Mo; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  20. The Three-Dimensional Velocity Distribution of Wide Gap Taylor-Couette Flow Modelled by CFD

    Directory of Open Access Journals (Sweden)

    David Shina Adebayo

    2016-01-01

    Full Text Available A numerical investigation is conducted for the flow between two concentric cylinders with a wide gap, relevant to bearing chamber applications. This wide gap configuration has received comparatively less attention than narrow gap journal bearing type geometries. The flow in the gap between an inner rotating cylinder and an outer stationary cylinder has been modelled as an incompressible flow using an implicit finite volume RANS scheme with the realisable k-ε model. The model flow is above the critical Taylor number at which axisymmetric counterrotating Taylor vortices are formed. The tangential velocity profiles at all axial locations are different from typical journal bearing applications, where the velocity profiles are quasilinear. The predicted results led to two significant findings of impact in rotating machinery operations. Firstly, the axial variation of the tangential velocity gradient induces an axially varying shear stress, resulting in local bands of enhanced work input to the working fluid. This is likely to cause unwanted heat transfer on the surface in high torque turbomachinery applications. Secondly, the radial inflow at the axial end-wall boundaries is likely to promote the transport of debris to the junction between the end-collar and the rotating cylinder, causing the build-up of fouling in the seal.

  1. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  2. Experiments on the Taylor system with an axial flow

    International Nuclear Information System (INIS)

    Tsameret, Avraham.

    1993-02-01

    This work is an experimental study of the Taylor system with a superimposed axial flow. The convective and absolute instability lines which are associated with the propagating Taylor vortices are measured. A quantitative agreement is found with the theoretical predictions. Noise-sustained structures are found to exist in the convectively unstable region, above a critical value of the through flow. These structures are propagating Taylor vortices that are characterized by a noisy power spectrum and irregular temporal dynamics of velocity amplitude. At the absolute instability line the power spectrum of the propagating Taylor vortices exhibits transition to a sharp peak, and the amplitude of the propagating Taylor vortices becomes stationary. The mechanism that generates the noise-sustained structures is identified with a process of permanent amplification of noise that is generated mainly near the inlet boundary. The intrinsic noise in the system is studied. This study is motivated by the question of whether the noise which generates the noise-sustained structures is thermal. The intensity of the intrinsic noise is estimated by several methods, which includes a comparison of data with numerical simulations of the amplitude equation with a noise term. It is found that the intrinsic noise is not thermal, although its intensity reaches the thermal noise level at small through-flow velocities. Novel states are manifested in the system as a result of interaction between the propagating Taylor vortices and spiral modes. These states are studied and their spatial and temporal properties are analyzed. (author)

  3. Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Oh; Shin, Hyung Seop [Andong National Univ., Andong (Korea, Republic of)

    2016-09-15

    To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding 10{sup 4} s{sup -1}. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

  4. Experiment of ablative Rayleigh-Taylor instability in a strongly non linear regime on the National Ignition Facility

    International Nuclear Information System (INIS)

    Casner, A.; Masse, L.; Liberatore, S.; Delorme, B.; Jacquet, L.; Loiseau, P.; Smalyuk, V. A.; Martinez, D.; Remington, B. A.

    2012-01-01

    As the control of the development of Rayleigh-Taylor-type hydrodynamic instabilities is crucial to achieve efficient implosions on the Laser Megajoule, and as the complexity of these instabilities requires an experimental validation of theoretical models and of the associated numerical simulations, the authors briefly present a proposition of experiments aimed at studying the strongly non linear Rayleigh-Taylor instability on the National Ignition Facility (NIF). This should allow a regime of competition between bubbles to be achieved for the first time in direct attack. They evoke the first experiment performed in March 2013

  5. Some Features of the Plane Couette Flow

    National Research Council Canada - National Science Library

    Skovorodko, Petr

    2000-01-01

    In the previous paper 1 it was found, in particular, that in the transition regime of the plane Couette flow the values of total energy flux and shear stress may exceed the corresponding free molecular values...

  6. Design for solid-state Rayleigh-Taylor experiments in tantalum at Omega

    International Nuclear Information System (INIS)

    Pollaine, S M; Remington, B A; Park, H S; Prisbrey, S T; Cavallo, R M

    2010-01-01

    We have designed an experiment for the Omega - EP laser facility to measure the Rayleigh-Taylor (RT) growth rate of solid-state Ta samples at ∼1 Mbar pressures and very high strain rates, 10 7 -10 8 s -1 . A thin walled, hohlraum based, ramp-wave, quasi-isentropic drive has been developed for this experiment. Thick samples (∼50 um) of Ta, with a pre-imposed sinusoidal rippled on the driven side, will be accelerated. The ripple growth due to the RT instability is greatly reduced due to the dynamic material strength. We will show detailed designs, and a thorough error analysis used to optimize the experiment and minimize uncertainty.

  7. Self-similarity in high Atwood number Rayleigh-Taylor experiments

    Science.gov (United States)

    Mikhaeil, Mark; Suchandra, Prasoon; Pathikonda, Gokul; Ranjan, Devesh

    2017-11-01

    Self-similarity is a critical concept in turbulent and mixing flows. In the Rayleigh-Taylor instability, theory and simulations have shown that the flow exhibits properties of self-similarity as the mixing Reynolds number exceeds 20000 and the flow enters the turbulent regime. Here, we present results from the first large Atwood number (0.7) Rayleigh-Taylor experimental campaign for mixing Reynolds number beyond 20000 in an effort to characterize the self-similar nature of the instability. Experiments are performed in a statistically steady gas tunnel facility, allowing for the evaluation of turbulence statistics. A visualization diagnostic is used to study the evolution of the mixing width as the instability grows. This allows for computation of the instability growth rate. For the first time in such a facility, stereoscopic particle image velocimetry is used to resolve three-component velocity information in a plane. Velocity means, fluctuations, and correlations are considered as well as their appropriate scaling. Probability density functions of velocity fields, energy spectra, and higher-order statistics are also presented. The energy budget of the flow is described, including the ratio of the kinetic energy to the released potential energy. This work was supported by the DOE-NNSA SSAA Grant DE-NA0002922.

  8. Strange attractors in weakly turbulent Couette-Taylor flow

    Science.gov (United States)

    Brandstater, A.; Swinney, Harry L.

    1987-01-01

    An experiment is conducted on the transition from quasi-periodic to weakly turbulent flow of a fluid contained between concentric cylinders with the inner cylinder rotating and the outer cylinder at rest. Power spectra, phase-space portraits, and circle maps obtained from velocity time-series data indicate that the nonperiodic behavior observed is deterministic, that is, it is described by strange attractors. Various problems that arise in computing the dimension of strange attractors constructed from experimental data are discussed and it is shown that these problems impose severe requirements on the quantity and accuracy of data necessary for determining dimensions greater than about 5. In the present experiment the attractor dimension increases from 2 at the onset of turbulence to about 4 at a Reynolds number 50-percent above the onset of turbulence.

  9. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    Science.gov (United States)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  10. Transition to magnetorotational turbulence in Taylor–Couette flow with imposed azimuthal magnetic field

    International Nuclear Information System (INIS)

    A Guseva; Avila, M; Willis, A P; Hollerbach, R

    2015-01-01

    The magnetorotational instability (MRI) is thought to be a powerful source of turbulence and momentum transport in astrophysical accretion discs, but obtaining observational evidence of its operation is challenging. Recently, laboratory experiments of Taylor–Couette flow with externally imposed axial and azimuthal magnetic fields have revealed the kinematic and dynamic properties of the MRI close to the instability onset. While good agreement was found with linear stability analyses, little is known about the transition to turbulence and transport properties of the MRI. We here report on a numerical investigation of the MRI with an imposed azimuthal magnetic field. We show that the laminar Taylor–Couette flow becomes unstable to a wave rotating in the azimuthal direction and standing in the axial direction via a supercritical Hopf bifurcation. Subsequently, the flow features a catastrophic transition to spatio-temporal defects which is mediated by a subcritical subharmonic Hopf bifurcation. Our results are in qualitative agreement with the PROMISE experiment and dramatically extend their realizable parameter range. We find that as the Reynolds number increases defects accumulate and grow into turbulence, yet the momentum transport scales weakly. (paper)

  11. Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Casner, A.; Masse, L.; Liberatore, S.; Jacquet, L.; Loiseau, P.; Poujade, O.; Smalyuk, V. A.; Bradley, D. K.; Park, H. S.; Remington, B. A.; Igumenshchev, I.; Chicanne, C.

    2012-01-01

    We present two designs relevant to ablative Rayleigh-Taylor instability in transition from weakly nonlinear to highly nonlinear regimes at the National Ignition Facility [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008)]. The sensitivity of nonlinear Rayleigh-Taylor instability physics to ablation velocity is addressed with targets driven by indirect drive, with stronger ablative stabilization, and by direct drive, with weaker ablative stabilization. The indirect drive design demonstrates the potential to reach a two-dimensional bubble-merger regime with a 20 ns duration drive at moderate radiation temperature. The direct drive design achieves a 3 to 5 times increased acceleration distance for the sample in comparison to previous experiments allowing at least 2 more bubble generations when starting from a three-dimensional broadband spectrum.

  12. Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casner, A.; Masse, L.; Liberatore, S.; Jacquet, L.; Loiseau, P.; Poujade, O. [CEA, DAM, DIF, F-91297 Arpajon (France); Smalyuk, V. A.; Bradley, D. K.; Park, H. S.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Igumenshchev, I. [Laboratory of Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Chicanne, C. [CEA, DAM, VALDUC, F-21120 Is-sur-Tille (France)

    2012-08-15

    We present two designs relevant to ablative Rayleigh-Taylor instability in transition from weakly nonlinear to highly nonlinear regimes at the National Ignition Facility [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008)]. The sensitivity of nonlinear Rayleigh-Taylor instability physics to ablation velocity is addressed with targets driven by indirect drive, with stronger ablative stabilization, and by direct drive, with weaker ablative stabilization. The indirect drive design demonstrates the potential to reach a two-dimensional bubble-merger regime with a 20 ns duration drive at moderate radiation temperature. The direct drive design achieves a 3 to 5 times increased acceleration distance for the sample in comparison to previous experiments allowing at least 2 more bubble generations when starting from a three-dimensional broadband spectrum.

  13. Surface roughness effects on heat transfer in Couette flow

    International Nuclear Information System (INIS)

    Elia, G.G.

    1981-01-01

    A cell theory for viscous flow with rough surfaces is applied to two basic illustrative heat transfer problems which occur in Couette flow. Couette flow between one adiabatic surface and one isothermal surface exhibits roughness effects on the adiabatic wall temperature. Two types of rough cell adiabatic surfaces are studied: (1) perfectly insulating (the temperature gradient vanishes at the boundary of each cell); (2) average insulating (each cell may gain or lose heat but the total heat flow at the wall is zero). The results for the roughness on a surface in motion are postulated to occur because of fluid entrainment in the asperities on the moving surface. The symmetry of the roughness effects on thermal-viscous dissipation is discussed in detail. Explicit effects of the roughness on each surface, including combinations of roughness values, are presented to enable the case where the two surfaces may be from different materials to be studied. The fluid bulk temperature rise is also calculated for Couette flow with two ideal adiabatic surfaces. The effect of roughness on thermal-viscous dissipation concurs with the viscous hydrodynamic effect. The results are illustrated by an application to lubrication. (Auth.)

  14. New Mexico Liquid Metal αω -dynamo experiment: Most Recent Progress

    Science.gov (United States)

    Si, Jiahe; Sonnenfeld, Richard; Colgate, Art; Li, Hui

    2017-10-01

    The goal of the New Mexico Liquid Metal αω -dynamo experiment is to demonstrate a galactic dynamo can be generated through two phases, the ω-phase and α-phase by two semi-coherent flows in laboratory. We have demonstrated an 8-fold poloidal-to-toroidal flux amplification from differential rotation (the ω-effect) by minimizing turbulence in our apparatus. To demonstrate the α-effect, major upgrades are needed. The upgrades include building a helicity injection facility, mounting new 100hp motors and new sensors, designing a new data acquisition system capable of transmitting data from about 80 sensors in a high speed rotating frame with an overall 200kS/sec sampling rate. We hope the upgrade can be utilized to answer the question of whether a self-sustaining αω -dynamo can be implemented with a realistic lab fluid flow field, as well as to obtain more details to understand dynamo action in highly turbulent Couette flow.

  15. Metamorphosis of helical magnetorotational instability in the presence axial electric current

    OpenAIRE

    Priede, Jānis

    2014-01-01

    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical ...

  16. Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta

    Energy Technology Data Exchange (ETDEWEB)

    Kamojjala, Krishna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lacy, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chu, Henry S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Brannon, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayenta’s various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimen are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.

  17. From Taylor series to Taylor models

    International Nuclear Information System (INIS)

    Berz, Martin

    1997-01-01

    An overview of the background of Taylor series methods and the utilization of the differential algebraic structure is given, and various associated techniques are reviewed. The conventional Taylor methods are extended to allow for a rigorous treatment of bounds for the remainder of the expansion in a similarly universal way. Utilizing differential algebraic and functional analytic arguments on the set of Taylor models, arbitrary order integrators with rigorous remainder treatment are developed. The integrators can meet pre-specified accuracy requirements in a mathematically strict way, and are a stepping stone towards fully rigorous estimates of stability of repetitive systems

  18. computational study of Couette flow between parallel plates for steady and unsteady cases

    International Nuclear Information System (INIS)

    Rihan, Y.

    2008-01-01

    Couette flow between parallel plates is a classical problem that has important applications in various industrial processing. In this investigation an analytical solution was obtained to predict the steady and unsteady Couette flow between parallel plates. One of the plates was stationary and the other plate moved with constant velocity. The governing partial differential equations were solved numerically using Crank-Nicolson implicit method to represent the flow behavior of the fluid

  19. Rayleigh-Taylor instability and mixing in SN 1987A

    International Nuclear Information System (INIS)

    Ebisuzaki, T.; Shigeyama, T.; Nomoto, K.

    1989-01-01

    The stability of the supernova ejecta is compared with the Rayleigh-Taylor instability for a realistic model of SN 1987A. A linear analysis indicates that the layers around the composition interface between the hydrogen-rich and helium zones, and become Rayleigh-Taylor unstable between the helium and metal zones. In these layers, the pressure increases outward because of deceleration due to the reverse shock which forms when the blast shock hits the massive hydrogen-rich envelope. On the contrary, the density steeply decreases outward because of the preexisting nuclear burning shell. Then, these layers undergo the Raleigh-Taylor instability because of the opposite signs of the pressure and density gradients. The estimated growth rate is larger than the expansion rate of the supernova. The Rayleigh-Taylor instability near the composition interface is likely to induce mixing, which has been strongly suggested from observations of SN 1987A. 25 refs

  20. The spectral link in mean-velocity profile of turbulent plane-Couette flows

    Science.gov (United States)

    Zhang, Dongrong; Gioia, Gustavo; Chakraborty, Pinaki

    2015-03-01

    In turbulent pipe and plane-Couette flows, the mean-velocity profile (MVP) represents the distribution of local mean (i.e., time-averaged) velocity on the cross section of a flow. The spectral theory of MVP in pipe flows (Gioia et al., PRL, 2010) furnishes a long-surmised link between the MVP and turbulent energy spectrum. This missing spectral link enables new physical insights into an imperfectly understood phenomenon (the MVP) by building on the well-known structure of the energy spectrum. Here we extend this theory to plane-Couette flows. Similar to pipe flows, our analysis allows us to express the MVP as a functional of the spectrum, and to relate each feature of the MVP relates to a specific spectral range: the buffer layer to the dissipative range, the log layer to the inertial range, and the wake (or the lack thereof) to the energetic range. We contrast pipe and plane-Couette flows in light of the theory.

  1. From Taylor series to Taylor models

    International Nuclear Information System (INIS)

    Berz, M.

    1997-01-01

    An overview of the background of Taylor series methods and the utilization of the differential algebraic structure is given, and various associated techniques are reviewed. The conventional Taylor methods are extended to allow for a rigorous treatment of bounds for the remainder of the expansion in a similarly universal way. Utilizing differential algebraic and functional analytic arguments on the set of Taylor models, arbitrary order integrators with rigorous remainder treatment are developed. The integrators can meet pre-specified accuracy requirements in a mathematically strict way, and are a stepping stone towards fully rigorous estimates of stability of repetitive systems. copyright 1997 American Institute of Physics

  2. Diffusion in Poiseuille and Couette flows of binary mixtures of incompressible newtonian fluids

    International Nuclear Information System (INIS)

    Caetano Filho, E.; Qassim, R.Y.

    1981-07-01

    Using the continuum theory of binary mixtures of incompressible Newtonian fluids, Poiseuille and Couette flows are studied with a view to determining whether diffusion occurs in such flows. It is shown that diffusion is absent in the Couette case. However, in Poiseuille flow there are significant differences between the velocities of the species comprising the mixture. This result is in broad agreement with that of Mills for similar mixtures of nonuniform composition. (Author) [pt

  3. Steady hydromagnetic Couette flow in a rotating system with ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... Couette flow of class-II of a viscous incompressible electrically conducting fluid in a rotating system ... Heat transfer characteristics of the flow are considered taking viscous and ...

  4. Magnetorotational Instability in a Rotating Liquid Metal Annulus

    International Nuclear Information System (INIS)

    Hantao Ji; Jeremy Goodman; Akira Kageyama

    2001-01-01

    Although the magnetorotational instability (MRI) has been widely accepted as a powerful accretion mechanism in magnetized accretion disks, it has not been realized in the laboratory. The possibility of studying MRI in a rotating liquid-metal annulus (Couette flow) is explored by local and global stability analysis and magnetohydrodynamic (MHD) simulations. Stability diagrams are drawn in dimensionless parameters, and also in terms of the angular velocities at the inner and outer cylinders. It is shown that MRI can be triggered in a moderately rapidly rotating table-top apparatus, using easy-to-handle metals such as gallium. Practical issues of this proposed experiment are discussed

  5. Time-Dependent Natural Convection Couette Flow of Heat ...

    African Journals Online (AJOL)

    Time-Dependent Natural Convection Couette Flow of Heat Generating/Absorbing Fluid between Vertical Parallel Plates Filled With Porous Material. ... The numerical simulation conducted for some saturated liquids reveled that at t ≥ Pr the steady and unsteady state velocities (as well as the temperature of the fluid) ...

  6. Tuning strain of granular matter by basal assisted Couette shear

    Directory of Open Access Journals (Sweden)

    Zhao Yiqiu

    2017-01-01

    Full Text Available We present a novel Couette shear apparatus capable of generating programmable azimuthal strain inside 2D granular matter under Couette shear. The apparatus consists of 21 independently movable concentric rings and two boundary wheels with frictional racks. This makes it possible to quasistatically shear the granular matter not only from the boundaries but also from the bottom. We show that, by specifying the collective motion of wheels and rings, the apparatus successfully generates the desired strain profile inside the sample granular system, which is composed of about 2000 photoelastic disks. The motion and stress of each particle is captured by an imaging system utilizing reflective photoelasticimetry. This apparatus provides a novel method to investigate shear jamming properties of granular matter with different interior strain profiles and unlimited strain amplitudes.

  7. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    Science.gov (United States)

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar

    2015-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  8. Lattice Boltzmann Simulation of Collision between 2D Circular Particles Suspension in Couette Flow

    Directory of Open Access Journals (Sweden)

    Li-Zhong Huang

    2013-01-01

    Full Text Available Collision between 2D circular particles suspension in Couette flow is simulated by using multiple-relaxation-time based lattice Boltzmann and direct forcing/fictitious domain method in this paper. The patterns of particle collisions are simulated and analyzed in detail by changing the velocity of top and bottom walls in the Couette flow. It can be seen from the simulation results that, while the velocity is large enough, the number of collisions between particles will change little as this velocity varies.

  9. Rayleigh-Taylor instabilities in indirect laser drive with rugby-shaped hohlraums; Experiences d'instabilites Rayleigh-Taylor en attaque indirecte avec des cavites rugby

    Energy Technology Data Exchange (ETDEWEB)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.P.; Richard, A.; Liberatore, S.; Vandenboomgaerde, M. [CEA Bruyeres-le-Chatel, 91 (France)

    2009-07-01

    The mastering of the development of hydrodynamic instabilities like Rayleigh-Taylor instabilities is an important milestone on the way to perform efficient laser implosions. The complexity of these instabilities implies an experimental validation of the theoretical models and their computer simulations. An experimental platform involving the Omega laser has allowed us to perform indirect drive with rugby-shaped hohlraums. The experiments have validated the growth of 2- and 3-dimensional initial defects as predicted by theory. We have shown that the 3-dimensional defect saturates for an higher amplitude than the 2-dimensional one does. The experiments have been made by using a plastic shell doped with Germanium (CH:Ge). (A.C.)

  10. Investigation of the Taylor vortices in electrovortex flow

    Science.gov (United States)

    Vinogradov, D. A.; Ivochkin, Yu P.; Teplyakov, I. O.

    2017-10-01

    The structure of the electrovortex flow appearing when the electric current passing through the liquid metal interacts with own and external magnetic fields was investigated numerically. It was shown that axial external magnetic field leads to the rotation of the liquid and generates secondary flow similar to Taylor vortex. Calculations were carried out for various ratios of electrode sizes.

  11. Large-scale structures in turbulent Couette flow

    Science.gov (United States)

    Kim, Jung Hoon; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulation of fully developed turbulent Couette flow is performed with a large computational domain in the streamwise and spanwise directions (40 πh and 6 πh) to investigate streamwise-scale growth mechanism of the streamwise velocity fluctuating structures in the core region, where h is the channel half height. It is shown that long streamwise-scale structures (> 3 h) are highly energetic and they contribute to more than 80% of the turbulent kinetic energy and Reynolds shear stress, compared to previous studies in canonical Poiseuille flows. Instantaneous and statistical analysis show that negative-u' structures on the bottom wall in the Couette flow continuously grow in the streamwise direction due to mean shear, and they penetrate to the opposite moving wall. The geometric center of the log layer is observed in the centerline with a dominant outer peak in streamwise spectrum, and the maximum streamwise extent for structure is found in the centerline, similar to previous observation in turbulent Poiseuille flows at high Reynolds number. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure in the centerline. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  12. An endogenous Taylor condition in an endogenous growth monetary policy model

    OpenAIRE

    Le, Mai Vo; Gillman, Max; Minford, Patrick

    2007-01-01

    The paper derives a Taylor condition as part of the agent's equilibrium behavior in an endogenous growth monetary economy. It shows the assumptions necessary to make it almost identical to the original Taylor rule, and that it can interchangably take a money supply growth rate form. From the money supply form, simple policy experiments are conducted. A full central bank policy model is derived that includes the Taylor condition along with equations comparable to the standard aggregate-demand/...

  13. Influence of viscous dissipation and radiation on MHD Couette flow ...

    African Journals Online (AJOL)

    The overall analysis of the study of these parameters in various degrees show an increase in the velocity profile of the fluid, while radiation parameter decreases the temperature profile; viscous dissipation and Reynolds number increase the temperature profile of the fluid. Key word: Couette flow, viscous dissipation, ...

  14. Couette flow of a hydro-magnetic electrically conducting fluid with ...

    African Journals Online (AJOL)

    Numerical solution of the problem of Couette flow of a hydromagnetic electrically conducting fluid has been obtained where the temperature of the fluid is assumed to vary exponentially. Results obtained for the flow velocity, temperature, skin friction and rate of heat transfer indicate that the temperature is higher when the ...

  15. Hall effects on hydromagnetic Couette flow of Class-II in a rotating ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... Couette flow of class-II of a viscous, incompressible and electrically conducting fluid with ... Numerical solution of energy equation and numerical values of rate of heat transfer at ...

  16. An Application of Taylor Models to the Nakao Method on ODEs

    OpenAIRE

    Yamamoto, Nobito; Komori, Takashi

    2009-01-01

    The authors give short survey on validated computaion of initial value problems for ODEs especially Taylor model methods. Then they propose an application of Taylor models to the Nakao method which has been developed for numerical verification methods on PDEs and apply it to initial value problems for ODEs with some numerical experiments.

  17. Characterisation of minimal-span plane Couette turbulence with pressure gradients

    Science.gov (United States)

    Sekimoto, Atsushi; Atkinson, Callum; Soria, Julio

    2018-04-01

    The turbulence statistics and dynamics in the spanwise-minimal plane Couette flow with pressure gradients, so-called, Couette-Poiseuille (C-P) flow, are investigated using direct numerical simulation. The large-scale motion is limited in the spanwise box dimension as in the minimal-span channel turbulence of Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704). The effect of the top wall, where normal pressure-driven Poiseuille flow is realised, is distinguished from the events on the bottom wall, where the pressure gradient results in mild or almost-zero wall-shear stress. A proper scaling of turbulence statistics in minimal-span C-P flows is presented. Also the ‘shear-less’ wall-bounded turbulence, where the Corrsin shear parameter is very weak compared to normal wall-bounded turbulence, represents local separation, which is also observed as spanwise streaks of reversed flow in full-size plane C-P turbulence. The local separation is a multi-scale event, which grows up to the order of the channel height even in the minimal-span geometry.

  18. Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. F.; Fan, Z. F.; Zheng, W. D.; Wang, M.; Pei, W. B.; Zhu, S. P.; Zhang, W. Y. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Miao, W. Y.; Yuan, Y. T.; Cao, Z. R.; Deng, B.; Jiang, S. E.; Liu, S. Y.; Ding, Y. K. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, L. F.; Ye, W. H., E-mail: ye-wenhua@iapcm.ac.cn; He, X. T. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2014-04-15

    In this research, a series of single-mode, indirect-drive, ablative Rayleigh-Taylor (RT) instability experiments performed on the Shenguang-II laser facility [X. T. He and W. Y. Zhang, Eur. Phys. J. D 44, 227 (2007)] using planar target is reported. The simulation results from the one-dimensional hydrocode for the planar foil trajectory experiment indicate that the energy flux at the hohlraum wall is obviously less than that at the laser entrance hole. Furthermore, the non-Planckian spectra of x-ray source can strikingly affect the dynamics of the foil flight and the perturbation growth. Clear images recorded by an x-ray framing camera for the RT growth initiated by small- and large-amplitude perturbations are obtained. The observed onset of harmonic generation and transition from linear to nonlinear growth regime is well predicted by two-dimensional hydrocode simulations.

  19. Compression of an Accelerated Taylor State in SSX

    Science.gov (United States)

    Shrock, J. E.; Suen-Lewis, E. M.; Barbano, L. J.; Kaur, M.; Schaffner, D. A.; Brown, M. R.

    2017-10-01

    In the Swarthmore Spheromak Experiment (SSX), compact toroidal plasmas are launched from a plasma gun and evolve into minimum energy twisted Taylor states. The plumes initially have a velocity 40 km/s, density 0.4 ×1016 cm-3 , and proton temperature 20 eV . After formation, the plumes are accelerated by pulsed pinch coils with rise times τ1 / 4 = (π / 2) √{ LC } less than 1 μ s and currents Ipeak =V0 / Z =V0 /√{ L / C } on the order of 104 A. The accelerated Taylor States are abruptly stagnated in a copper flux conserver, and over the course of t plasma, the other to particle motion parallel to the field. We observe Taylor state compression most in agreement with the parallel equation of state: d / dt (P∥B2 /n3) = 0 . DOE ARPA-E ALPHA Program.

  20. Study of the influence of diffusion on the flow velocity, for binary mixtures in Poiseuille and Couette flows

    International Nuclear Information System (INIS)

    Caetano Filho, E.

    1981-05-01

    The influence of diffusion on the flow of binary mixtures of incompressible fluids in POISEUILLE and COUETTE flows, is studied. The constitutive equations sugested by SAMPAIO and WILLIAMS and by STRUMINSKII for the constituent stress tensor and for the diffusive force are used. Results show that diffusion does not influence the flow in the case of planar and circular COUETTE flows. On the other hand, diffusion does play an important part in planar and circular POISEUILLE flows. (Author) [pt

  1. The Weakly Nonlinear Magnetorotational Instability in a Global, Cylindrical Taylor–Couette Flow

    Energy Technology Data Exchange (ETDEWEB)

    Clark, S. E. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu [Department of Physics and Astronomy, Bates College, Lewiston, ME 04240 (United States)

    2017-05-20

    We conduct a global, weakly nonlinear analysis of the magnetorotational instability (MRI) in a Taylor–Couette flow. This is a multiscale, perturbative treatment of the nonideal, axisymmetric MRI near threshold, subject to realistic radial boundary conditions and cylindrical geometry. We analyze both the standard MRI, initialized by a constant vertical background magnetic field, and the helical MRI, with an azimuthal background field component. This is the first weakly nonlinear analysis of the MRI in a global Taylor–Couette geometry, as well as the first weakly nonlinear analysis of the helical MRI. We find that the evolution of the amplitude of the standard MRI is described by a real Ginzburg–Landau equation (GLE), whereas the amplitude of the helical MRI takes the form of a complex GLE. This suggests that the saturated state of the helical MRI may itself be unstable on long spatial and temporal scales.

  2. Taylor-Made Libraries

    Science.gov (United States)

    Lonergan, David

    2011-01-01

    Frederick Winslow Taylor (1856-1915) was an efficiency expert whose concerns were less about avoiding worker fatigue and more about increasing profit margins by any means necessary. Taylor was devoted to finding the One Best Way to carry out a task and then training workers to do that task unvaryingly; attempts by employees to improve their own…

  3. Modeling and simulations of radiative blast wave driven Rayleigh-Taylor instability experiments

    Science.gov (United States)

    Shimony, Assaf; Huntington, Channing M.; Trantham, Matthew; Malamud, Guy; Elbaz, Yonatan; Kuranz, Carolyn C.; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent experiments at the National Ignition Facility measured the growth of Rayleigh-Taylor RT instabilities driven by radiative blast waves, relevant to astrophysics and other HEDP systems. We constructed a new Buoyancy-Drag (BD) model, which accounts for the ablation effect on both bubble and spike. This ablation effect is accounted for by using the potential flow model ]Oron et al PoP 1998], adding another term to the classical BD formalism: βDuA / u , where β the Takabe constant, D the drag term, uA the ablation velocity and uthe instability growth velocity. The model results are compared with the results of experiments and 2D simulations using the CRASH code, with nominal radiation or reduced foam opacity (by a factor of 1000). The ablation constant of the model, βb / s, for the bubble and for the spike fronts, are calibrated using the results of the radiative shock experiments. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  4. Lattice Boltzmann simulation of shear-induced particle migration in plane Couette-Poiseuille flow: Local ordering of suspension

    Science.gov (United States)

    Chun, Byoungjin; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun

    2017-12-01

    The shear-induced migration of concentrated non-Brownian monodisperse suspensions in combined plane Couette-Poiseuille (C-P) flows is studied using a lattice Boltzmann simulation. The simulations are mainly performed for a particle volume fraction of ϕbulk = 0.4 and H/a = 44.3, 23.3, where H and a denote the channel height and radius of suspended particles, respectively. The simulation method is validated in two simple flows, plane Poiseuille and plane Couette flows. In the Poiseuille flow, particles migrate to the mid-plane of the channel where the local concentration is close to the limit of random-close-packing, and a random structure is also observed at the plane. In the Couette flow, the particle distribution remains in the initial uniform distribution. In the combined C-P flows, the behaviors of migration are categorized into three groups, namely, Poiseuille-dominant, Couette-dominant, and intermediate regimes, based on the value of a characteristic force, G, where G denotes the relative magnitude of the body force (P) against the wall-driving force (C). With respect to the Poiseuille-dominant regime, the location of the maximum concentration is shifted from the mid-plane to the lower wall moving in the same direction as the external body force, when G decreases. With respect to the Couette-dominant regime, the behavior is similar to that of a simple shear flow with the exception that a slightly higher concentration of particles is observed near the lower wall. However, with respect to the intermediate value of G, several layers of highly ordered particles are unexpectedly observed near the lower wall where the plane of maximum concentration is located. The locally ordered structure is mainly due to the lateral migration of particles and wall confinement. The suspended particles migrate toward a vanishingly small shear rate at the wall, and they are consequently layered into highly ordered two-dimensional structures at the high local volume fraction.

  5. Nonlinear stability, bifurcation and resonance in granular plane Couette flow

    Science.gov (United States)

    Shukla, Priyanka; Alam, Meheboob

    2010-11-01

    A weakly nonlinear stability theory is developed to understand the effect of nonlinearities on various linear instability modes as well as to unveil the underlying bifurcation scenario in a two-dimensional granular plane Couette flow. The relevant order parameter equation, the Landau-Stuart equation, for the most unstable two-dimensional disturbance has been derived using the amplitude expansion method of our previous work on the shear-banding instability.ootnotetextShukla and Alam, Phys. Rev. Lett. 103, 068001 (2009). Shukla and Alam, J. Fluid Mech. (2010, accepted). Two types of bifurcations, Hopf and pitchfork, that result from travelling and stationary linear instabilities, respectively, are analysed using the first Landau coefficient. It is shown that the subcritical instability can appear in the linearly stable regime. The present bifurcation theory shows that the flow is subcritically unstable to disturbances of long wave-lengths (kx˜0) in the dilute limit, and both the supercritical and subcritical states are possible at moderate densities for the dominant stationary and traveling instabilities for which kx=O(1). We show that the granular plane Couette flow is prone to a plethora of resonances.ootnotetextShukla and Alam, J. Fluid Mech. (submitted, 2010)

  6. Numerical Study on Couette Flow in Nanostructured Channel using Molecular-continuum Hybrid Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjin; Jeong, Myunggeun; Ha, Man Yeong [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-06-15

    A molecular-continuum hybrid method was developed to simulate microscale and nanoscale fluids where continuum fluidic cannot be used to predict Couette flow. Molecular dynamics simulation is used near the solid surface where the flow cannot be predicted by continuum fluidic, and Navier-Stokes equations are used in the other regions. Numerical simulation of Couette flow was performed using the hybrid method to investigate the effect of solid-liquid interaction and surface roughness in a nanochannel. It was found that the solid-liquid interaction and surface roughness influence the boundary condition. When the surface energy is low, slippage occurs near the solid surface, and the magnitude of slippage decreases with increase in surface energy. When the surface energy is high, a locking boundary condition is formed. The roughness disturbs slippage near the solid surface and promotes the locking boundary condition.

  7. Who believes in the Taylor Principle?

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Pierdzioch; Rülke

    2012-01-01

    The Livingston survey data are used to investigate whether economists’ forecasts are consistent with the Taylor principle. Consistency with the Taylor principle is strong for academics and Federal Reserve economists, and less strong for private-sector economists.......The Livingston survey data are used to investigate whether economists’ forecasts are consistent with the Taylor principle. Consistency with the Taylor principle is strong for academics and Federal Reserve economists, and less strong for private-sector economists....

  8. Liquid-metal plasma-facing component research on the National Spherical Torus Experiment

    Science.gov (United States)

    Jaworski, M. A.; Khodak, A.; Kaita, R.

    2013-12-01

    Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m-2, no macroscopic ejection events were observed. The stability can be understood from a Rayleigh-Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments.

  9. Evidence of Rayleigh-Taylor instabilities in tri-layer targets

    International Nuclear Information System (INIS)

    Galmiche, D.; Holstein, P.A.; Meyer, B.; Rostaing, M.; Wilke, N.

    1988-01-01

    The results of the experiments carried out on a laser system are reported. The work is performed in order to investigate the problem of target instability under ablative acceleration and to get direct evidence of Rayleigh-Taylor instabilities. Tri-layer experiments assert the validity of X-ray spectroscopy measurements as experimental method to investigate the problem. A mixing zone is evidenced and general trends of mixing development versus target acceleration are coherent with numerical simulations. Results obtained with optical smoothing demonstrate that the apparent mixing is not due to large scale illumination non uniformities. Numerical simulations confirm that Rayleigh-Taylor instability seems to be the dominant process responsible for the mixing. Benefit of time resolved spectroscopy appears attractive and gives a real knowledge of the mixing layer

  10. Experimental Studies of Acoustics in a Spherical Couette Flow

    Science.gov (United States)

    Gowen, Savannah; Adams, Matthew; Stone, Douglas; Lathrop, Daniel

    2016-11-01

    The Earth, like many other astrophysical bodies, contains turbulent flows of conducting fluid which are able to sustain magnetic field. To investigate the hydromagnetic flow in the Earth's outer core, we have created an experiment which generates flows in liquid sodium. However, measuring these flows remains a challenge because liquid sodium is opaque. One possible solution is the use of acoustic waves. Our group has previously used acoustic wave measurements in air to infer azimuthal velocity profiles, but measurements attempted in liquid sodium remain challenging. In the current experiments we measure acoustic modes and their mode splittings in both air and water in a spherical Couette device. The device is comprised of a hollow 30-cm outer sphere which contains a smaller 10-cm rotating inner sphere to drive flow in the fluid in between. We use water because it has material properties that are similar to those of sodium, but is more convenient and less hazardous. Modes are excited and measured using a speaker and microphones. Measured acoustic modes and their mode splittings correspond well with the predicted frequencies in air. However, water modes are more challenging. Further investigation is needed to understand acoustic measurements in the higher density media.

  11. Generalized Couette flow of a third-grade fluid with slip. The exact solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ellahi, Rahmat [IIUI, Islamabad (Pakistan). Dept. of Mathematics; Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Mathematics; Mahomed, Fazal Mahmood [Univ. of the Witwatersrand, Wits (South Africa). Centre for Differential Equations, Continuum, Mechanics and Applications

    2010-12-15

    The present note investigates the influence of slip on the generalized Couette flows of a third-grade fluid. Two flow problems are considered. The resulting equations and the boundary conditions are nonlinear. Analytical solutions of the governing nonlinear problems are found in closed form. (orig.)

  12. Non-Taylor magnetohydrodynamic self-organization

    International Nuclear Information System (INIS)

    Zhu, Shao-ping; Horiuchi, Ritoku; Sato, Tetsuya.

    1994-10-01

    A self-organization process in a plasma with a finite pressure is investigated by means of a three-dimensional magnetohydrodynamic simulation. It is demonstrated that a non-Taylor finite β self-organized state is realized in which a perpendicular component of the electric current is generated and the force-free(parallel) current decreases until they reach to almost the same level. The self-organized state is described by an MHD force-balance relation, namely, j perpendicular = B x ∇p/B·B and j parallel = μB where μ is not a constant, and the pressure structure resembles the structure of the toroidal magnetic field intensity. Unless an anomalous perpendicular thermal conduction arises, the plasma cannot relax to a Taylor state but to a non-Taylor (non-force-free) self-organized state. This state becomes more prominent for a weaker resistivity condition. The non-Taylor state has a rather universal property, for example, independence of the initial β value. Another remarkable finding is that the Taylor's conjecture of helicity conservation is, in a strict sense, not valid. The helicity dissipation occurs and its rate slows down critically in accordance with the stepwise relaxation of the magnetic energy. It is confirmed that the driven magnetic reconnection caused by the nonlinearly excited plasma kink flows plays the leading role in all of these key features of the non-Taylor self-organization. (author)

  13. Taylor instability in rhyolite lava flows

    Science.gov (United States)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  14. Liquid-metal plasma-facing component research on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Jaworski, M A; Khodak, A; Kaita, R

    2013-01-01

    Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m −2 , no macroscopic ejection events were observed. The stability can be understood from a Rayleigh–Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments. (paper)

  15. "Kaj" je Frederick Winslow Taylor = “What” is Frederick Winslow Taylor

    OpenAIRE

    Andrej Markovic

    2006-01-01

    Raising the issue of Taylor and his scientific management after less than a hundred years seems at first glance to be quite anachronistic. Today we are more likely to find Taylor’s works in antique shops than in the libraries of the schools of management. Has the memory of utilitarian and pragmatic managerial knowledge of a century back faded, or are we in a way ashamed of Taylor, the protagononist of management? How does the research into the origin and nature of management affect the effici...

  16. A Retrospective on Modulated Wavy Vortex Flow

    OpenAIRE

    Gorman, Michael; Swinney, Harry

    2009-01-01

    A fluid dynamics video of the Modulated Wavy Vortex Flow state of Taylor-Couette flow with the outer cylinder fixed is presented. This state precedes the transition to turbulence, which is more gradual than that for other fluid systems.

  17. Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA

    International Nuclear Information System (INIS)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Vandenboomgaerde, M.

    2009-01-01

    Results of ablative Rayleigh-Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MegaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on-foil flux that is about 50% smaller than laser-entrance-hole measurements. The experimentally inferred flux is used to simulate experimental optical depths obtained from face-on radiographies for an extensive set of initial conditions: front-side single-mode (wavelength λ=35, 50, and 70 μm) and two-mode perturbations (wavelength λ=35 and 70 μm, in phase or in opposite phase). Three-dimensional pattern growth is also compared with the 2D case. Finally the case of the feedthrough mechanism is addressed with rear-side modulated foils.

  18. Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA

    Science.gov (United States)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Vandenboomgaerde, M.

    2009-09-01

    Results of ablative Rayleigh-Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MégaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on-foil flux that is about 50% smaller than laser-entrance-hole measurements. The experimentally inferred flux is used to simulate experimental optical depths obtained from face-on radiographies for an extensive set of initial conditions: front-side single-mode (wavelength λ =35, 50, and 70 μm) and two-mode perturbations (wavelength λ =35 and 70 μm, in phase or in opposite phase). Three-dimensional pattern growth is also compared with the 2D case. Finally the case of the feedthrough mechanism is addressed with rear-side modulated foils.

  19. Shear-stress-induced structural arrangement of water molecules in nanoscale Couette flow with slipping at wall boundary

    International Nuclear Information System (INIS)

    Lin, Jau-Wen

    2014-01-01

    This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied

  20. Search for Rayleigh-Taylor instability in laser irradiated layered thin foil targets

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Hares, J.D.; Rumsby, P.T.

    1980-01-01

    An experiment to measure the Rayleigh-Taylor instability at the vacuum-ablation surface of laser irradiated layered targets by time resolved x-ray spectroscopy is described. The time taken to burn through a layer of material is measured to be the same for massive targets as for thin foil accelerating targets. It is inferred that the thin foil targets might be Rayleigh-Taylor stable despite the values of γtauapproximately equal to15 calculated from classical theory. (author)

  1. Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow

    Science.gov (United States)

    Alam, Meheboob; Arakeri, V. H.; Nott, P. R.; Goddard, J. D.; Herrmann, H. J.

    2005-01-01

    Linear stability theory and bifurcation analysis are used to investigate the role of gravity in shear-band formation in granular Couette flow, considering a kinetic-theory rheological model. We show that the only possible state, at low shear rates, corresponds to a "plug" near the bottom wall, in which the particles are densely packed and the shear rate is close to zero, and a uniformly sheared dilute region above it. The origin of such plugged states is shown to be tied to the spontaneous symmetry-breaking instabilities of the gravity-free uniform shear flow, leading to the formation of ordered bands of alternating dilute and dense regions in the transverse direction, via an infinite hierarchy of pitchfork bifurcations. Gravity plays the role of an "imperfection", thus destroying the "perfect" bifurcation structure of uniform shear. The present bifurcation problem admits universal unfolding of pitchfork bifurcations which subsequently leads to the formation of a sequence of a countably infinite number of "isolas", with the solution structures being a modulated version of their gravity-free counterpart. While the solution with a plug near the bottom wall looks remarkably similar to the shear-banding phenomenon in dense slow granular Couette flows, a "floating" plug near the top wall is also a solution of these equations at high shear rates. A two-dimensional linear stability analysis suggests that these floating plugged states are unstable to long-wave travelling disturbances.The unique solution having a bottom plug can also be unstable to long waves, but remains stable at sufficiently low shear rates. The implications and realizability of the present results are discussed in the light of shear-cell experiments under "microgravity" conditions.

  2. Earth's core formation due to the Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Ida, S.; Nakagawa, Y.; Nakazawa, K.

    1987-01-01

    A protoearth accretion stage configuration consisting of an undifferentiated solid core, an intermediate metal-melt layer, and an outer silicate-melt layer, is presently taken as the initial state in an investigation of Rayleigh-Taylor instability-induced core formation. The Ida et al. (to be published) quantitative results on the instability in a self-gravitating fluid sphere are used. The instability is found to occur through the translational mode on a time-scale of about 10 hr, in the case where the metal-melt layer is greater than about 1 km; this implies that the earth's core formed due to the undifferentiated solid core's translation upon the outer layer's melting. Differentiation would then have occurred in the late accretion stage. 17 references

  3. Letter: The link between the Reynolds shear stress and the large structures of turbulent Couette-Poiseuille flow

    Science.gov (United States)

    Gandía-Barberá, Sergio; Hoyas, Sergio; Oberlack, Martin; Kraheberger, Stefanie

    2018-04-01

    The length and width of the long and wide structures appearing in turbulent Couette flows are studied by means of a new dataset of direct numerical simulation covering a stepped transition from pure Couette flow to pure Poiseuille one, at Reτ ≈ 130, based on the stationary wall. The existence of these structures is linked to the averaged Reynolds stress, u v ¯ : as soon as in any part of the channel u v ¯ changes its sign, the structures disappear. The length and width of the rolls are found to be, approximately, 50h and 2.5h, respectively. For this Reynolds number, simulations with a domain shorter than 100h cannot properly describe the behaviour of the longest structures of the flow.

  4. Analytical and numerical analysis of finite amplitude Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Meiron, D.I.; Saffman, P.G.

    1987-01-01

    We summarize the results obtained in the last year. These include a simple model of bubble competition in Rayleigh-Taylor unstable flows which gives results which are in good agreement with experiment. In addition the model has been compared with two dimensional numerical simulations of inviscid Rayleigh-Taylor instability using the cloud-in-cell method. These simulations can now be run into the late time regime and can track the competition of as many as ten bubbles. The improvement in performance over previous applications of the cloud-in-cell approach is due to the application of finite difference techniques designed to handle shock-like structures in the vorticity of the interface which occur at late times. We propose to extend the research carried thus far to Rayleigh-Taylor problems in three dimensional and convergent geometries as well as to two-fluid instabilities in which interface roll-up is observed. Finally we present a budget for the fiscal year 1987-1988. 6 refs

  5. Predictability of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Viecelli, J.A.

    1986-01-01

    Numerical experiments modeling the Rayleigh Taylor instability are carried out using a two-dimensional incompressible Eulerian hydrodynamic code VFTS. The method of integrating the Navier-Stokes equations including the viscous terms is similar to that described in Kim and Moin, except that Lagrange particles have been added and provision for body forces is given. The Eulerian method is 2nd order accurate in both space and time, and the Poisson equation for the effective pressure field is solved exactly at each time step using a cyclic reduction method. 3 refs., 3 figs

  6. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  7. Drive development for an 10 Mbar Rayleigh-Taylor strength experiment on the National Ignition Facility

    Science.gov (United States)

    Prisbrey, Shon; Park, Hye-Sook; Huntington, Channing; McNaney, James; Smith, Raym; Wehrenberg, Christopher; Swift, Damian; Panas, Cynthia; Lord, Dawn; Arsenlis, Athanasios

    2017-10-01

    Strength can be inferred by the amount a Rayleigh-Taylor surface deviates from classical growth when subjected to acceleration. If the acceleration is great enough, even materials highly resistant to deformation will flow. We use the National Ignition Facility (NIF) to create an acceleration profile that will cause sample metals, such as Mo or Cu, to reach peak pressures of 10 Mbar without inducing shock melt. To create such a profile we shock release a stepped density reservoir across a large gap with the stagnation of the reservoir on the far side of the gap resulting in the desired pressure drive history. Low density steps (foams) are a necessary part of this design and have been studied in the last several years on the Omega and NIF facilities. We will present computational and experimental progress that has been made on the 10 Mbar drive designs - including recent drive shots carried out at the NIF. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. LLNL-ABS-734781.

  8. Planar Rayleigh-Taylor and Feed-through experiments with CH(Ge) on OMEGA

    International Nuclear Information System (INIS)

    Casner, A.; Huser, G.; Jadaud, J.P.; Liberatore, S.; Galmiche, D.; Vandenboomgaerde, M.

    2006-01-01

    Germanium-doped CH (CHGe) is one nominal ablator for the laser Megajoule (LMJ) target design. In order to investigate its properties we performed indirect drive planar Rayleigh-Taylor experiments on the OMEGA laser facility. An innovative hohlraum with an internal 'rugby-ball' shape has been experimentally characterized for the first time. On each shot foil motion and modulations growth were simultaneously measured by side-on and face-on radiography, while drive was assessed by measuring radiation escaping through the hohlraum laser-entrance-hole. Modulations growth and foil motion are fully consistent with each other, and also with hydro-code simulations accounting for the effective acceleration of the sample. This complete set of data allows a more stringent comparison between the hydro-code simulations and the experimental results. We compare CHGe perturbations growth with those acquired on CHBr in the same experimental configuration. These preliminary results are the first step toward a test-bed validation of CH(Ge) as an ablator on OMEGA and further on the laser integration line (LIL) at LMJ

  9. Rayleigh-Taylor-instability evolution in colliding-plasma-jet experiments with magnetic and viscous stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Colin Stuart [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Univ. of Washington, Seattle, WA (United States)

    2015-01-15

    The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictions for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.

  10. Experimental investigation of rotation resistance moment energy spectra in multicylindrical circular Couette system with independently rotating cylinders

    Directory of Open Access Journals (Sweden)

    Serov Anatoly

    2017-01-01

    Full Text Available The torque of the rotational resistance in the Ku-Etta multi-cylinder system rotating in the direction towards each other is measured. The experiments were carried out for three values of the kinematic viscosity of the working fluid that fills the multicylinder system: water at a temperature of 24 °C (viscosity 0.9 cSt, an aqueous solution of glycerol at 20 °C and 41 °C (2.5 cSt and 5.2 cSt. An attempt is made to investigate the features of a viscous flow in the multicolor Couette flow system from the analysis of the energy spectra of the moment of resistance to rotation of cylinders.

  11. Plane Couette flow in the presence of a strong centrifugal field

    International Nuclear Information System (INIS)

    Johnson, E.A.

    1982-05-01

    The Pomraning problem of plane Couette flow in a strong centrifugal field is studied by several methods: a half-range polynomial expansion of the linearized BGK equation; the Liu-Lees method; and a new matching approximation constructed to give the correct solution in the free-molecule limit. The matching approximation, which appears valid for strong enough centrifugal field, predicts major differences from hydrodynamic behaviour, and suggests ways in which the lack of convergence of one method studied may be corrected. (author)

  12. 76 FR 76689 - Cibola National Forest, Mount Taylor Ranger District, NM, Mount Taylor Combined Exploratory Drilling

    Science.gov (United States)

    2011-12-08

    ... National Forest, Mount Taylor Ranger District, NM, Mount Taylor Combined Exploratory Drilling AGENCY... proposed action is to approve two Plans of Operations for exploratory uranium drilling on the Cibola... San Mateo. In total, there are up to 279 drill holes that would be drilled over a period not to exceed...

  13. Experimental Studies of the Electrothermal and Magneto-Rayleigh Taylor Instabilities on Thin Metal Foil Ablations

    Science.gov (United States)

    Steiner, Adam; Yager-Elorriaga, David; Patel, Sonal; Jordan, Nicholas; Gilgenbach, Ronald; Lau, Y. Y.

    2015-11-01

    The electrothermal instability (ETI) and magneto-Rayleigh Taylor instability (MRT) are important in the implosion of metallic liners, such as magnetized liner implosion fusion (MagLIF). The MAIZE linear transformer driver (LTD) at the University of Michigan generates 200 ns risetime-current pulses of 500 to 600 kA into Al foil liners to study plasma instabilities and implosion dynamics, most recently MRT growth on imploding cylindrical liners. A full circuit model of MAIZE, along with I-V measurements, yields time-resolved load inductance. This has enabled measurements of an effective current-carrying radius to determine implosion velocity and plasma-vacuum interface acceleration. Measurements are also compared to implosion data from 4-time-frame laser shadowgraphy. Improved resolution measurements on the laser shadowgraph system have been used to examine the liner interface early in the shot to examine surface perturbations resulting from ETI for various seeding conditions. Fourier analysis examines the growth rates of wavelength bands of these structures to examine the transition from ETI to MRT. This work was supported by the U.S. DoE through award DE-SC0012328. S.G. Patel is supported by Sandia National Labs. D.A. Yager is supported by NSF fellowship grant DGE 1256260.

  14. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators.

    Science.gov (United States)

    Liao, Bolin; Zhang, Yunong; Jin, Long

    2016-02-01

    In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.

  15. Effects of couple stresses on MHD Couette flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Aranake, R.N.

    1978-01-01

    An exact analysis of the effects of the couple stresses on the MHD Couette flow of an electrically conducting, viscous incompressible fluid is carried out. Closed form solutions are derived for the velocity, the current density, the skin-friction at the lower plate, the force to move the upper plate, and the coefficient of mass flux for (i) A→infinity, and (ii) 2M/A 1, where a is the couple stress parameter and M is the Hartmann number. These are shown graphically followed by a discussion. During the course of discussion the effects of A are quantitatively compared with those in the ordinary case. It is observed that in the presence of a magnetic field the skin friction is affected by the couple stresses. (Auth.)

  16. "Kaj" je Frederick Winslow Taylor = “What” is Frederick Winslow Taylor

    Directory of Open Access Journals (Sweden)

    Andrej Markovic

    2006-06-01

    Full Text Available Raising the issue of Taylor and his scientific management after less than a hundred years seems at first glance to be quite anachronistic. Today we are more likely to find Taylor’s works in antique shops than in the libraries of the schools of management. Has the memory of utilitarian and pragmatic managerial knowledge of a century back faded, or are we in a way ashamed of Taylor, the protagononist of management? How does the research into the origin and nature of management affect the efficiency of a particular manager, which seems to be the objective of management education? What is the difference between Taylor's management and contemporary management? Is it merely less scientific in approach? And where is modern management developing, if no longer in the field of exact science? And where do key notions of contemporary management, like ‘mission’ and ‘vision’ belong? Has management since its beginings proved to be only knowledge for managing organizations, or does it go beyond that? In a brief analysis of Taylor’s scientific management the author of the article tries to answer the above mentioned questions. Some of the questions are, however, only touched upon, awaiting an answer in the future.

  17. 33 CFR 117.987 - Taylor Bayou.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Bayou. 117.987 Section 117.987 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.987 Taylor Bayou. The draws of the Union Pacific...

  18. A numerical study of three-dimensional bubble merger in the Rayleigh endash Taylor instability

    International Nuclear Information System (INIS)

    Li, X.L.

    1996-01-01

    The Rayleigh endash Taylor instability arises when a heavy fluid adjacent to a light fluid is accelerated in a direction against the density gradient. Under this unstable configuration, a perturbation mode of small amplitude grows into bubbles of the light fluid and spikes of the heavy fluid. Taylor discovered the steady state motion with constant velocity for a single bubble or periodic bubbles in the Rayleigh endash Taylor instability. Read and Youngs studied the motion of a randomly perturbed fluid interface in the Rayleigh endash Taylor instability. They reported constant acceleration for the overall bubble envelope. Bubble merger is believed to cause the transition from constant velocity to constant acceleration. In this paper, we present a numerical study of this important physical phenomenon. It analyzes the physical process of bubble merger and the relationship between the horizontal bubble expansion and the vertical interface acceleration. A dynamic bubble velocity, beyond Taylor close-quote s steady state value, is observed during the merger process. It is believed that this velocity is due to the superposition of the bubble velocity with a secondary subharmonic unstable mode. The numerical results are compared with experiments. copyright 1996 American Institute of Physics

  19. O salário na obra de Frederick Winslow Taylor Frederick Winslow Taylor's oeuvre: an analysis of wages

    Directory of Open Access Journals (Sweden)

    Victor Paulo Gomes da Silva

    2011-08-01

    Full Text Available O presente artigo analisa e explica a perspectiva de Frederick Winslow Taylor sobre o salário, tal como enunciada em suas duas grandes obras: Shop management (1903 e Principles of scientific management (1911. A primeira parte consubstancia-se na apresentação de aspectos econômicos relevantes que caracterizaram o tempo em que ele viveu e o quanto influenciaram suas obras. Na segunda parte, é efetuada uma análise da forma como o salário é apresentado nas duas obras de F. W. Taylor. O artigo termina com um comentário sobre as obras supracitadas no que se refere à perspectiva taylorista do salário.This paper analyses and explains Frederick Winslow Taylor's perspective on wages, as it is presented in his main literary works: Shop management (1903 and Principles of scientific management (1911. The first part presents the main economic aspects that characterized his lifetime, which undoubtedly influenced his literary works. The second part analyses F. W. Taylor's two main books in which the author's perspective about wages is discussed. The paper concludes with a critical view of F. W. Taylor's view on wages.

  20. Entropy Generation in a Rotating Couette Flow with Suction/Injection

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-05-01

    Full Text Available The present paper is concerned with an analytical study of entropy generation in viscous incompressible Couette flow with suction/injection in a rotating frame of reference. One of the plate is held at rest and the other one moves with an uniform velocity.The flow induced by the moving plate. An exact solution of governing equations has been obtained in closed form. The entropy generation number and the Bejan number are also obtained. The influences of each of the governing parameters on velocity, temperature, entropy generation and Bejan number are discussed with the help of graphs.

  1. 33 CFR 117.335 - Taylor Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  2. Rayleigh-Taylor instability in an equal mass plasma

    Energy Technology Data Exchange (ETDEWEB)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran, E-mail: sran-g@yahoo.com [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2014-09-15

    The Rayleigh-Taylor (RT) instability in an inhomogeneous pair-ion plasma has been analyzed. Considering two fluid model for two species of ions (positive and negative), we obtain the possibility of the existence of RT instability. The growth rate of the RT instability as usual depends on gravity and density gradient scale length. The results are discussed in context of pair-ion plasma experiments.

  3. Momentum balance and stresses in a suspension of spherical particles in a plane Couette flow

    Science.gov (United States)

    Rahmani, Mona; Hammouti, Abdelkader; Wachs, Anthony

    2018-04-01

    Non-Brownian suspension of monodisperse spherical particles, with volume fractions ranging between ϕ = 0.05 and 0.38 and particle Reynolds numbers ranging between Rep = 0.002 and 20, in plane Couette shear flows is investigated using three-dimensional particle-resolved numerical simulations. We examine the effects of volume fraction and particle Reynolds number on the macroscopic and microscopic stresses in the fluid phase. The effective viscosity of the suspension is in a good agreement with the previous empirical and experimental studies. At Rep = 20, however, the effective viscosity increases significantly compared to the lower particle Reynolds number simulations in the Stokes flow regime. Examining the stresses over the depth of the Couette gap reveals that this increase in wall shear stresses at high particle Reynolds numbers is mainly due to the significantly higher particle phase stress contributions. Next, we examine the momentum balance in the fluid and particle phase for different regimes to assess the significance of particle/particle interaction and fluid and particle inertia. At the highest particle Reynolds number and volume fraction, the particle inertia plays a dominant role in the momentum balance and the fluid inertia is non-negligible, while the short-lived contact forces are negligible compared to these effects. For all other regimes, the fluid inertia is negligible, but the particle inertia and contact forces are important in the momentum balance. Reynolds stresses originated from velocity fluctuations do not contribute significantly to the suspension stresses in any of the regimes we have studied, while the reduction in the shear-induced particle rotation can be a reason for higher wall shear stress at Rep = 20. Finally, we study the kinematics of particles, including their velocity fluctuations, rotation, and diffusion over the depth of the Couette gap. The particle diffusion coefficients in the cross flow direction exhibit an abrupt

  4. Production of structured soy-based meat analogues using simple shear and heat in a Couette Cell

    NARCIS (Netherlands)

    Krintiras, G.A.; Gobel, T.W.; Goot, van der A.J.; Stefanidis, G.D.

    2015-01-01

    A Couette Cell device was employed to provide proof of concept for the production of structured meat analogues by application of simple shear flow and heat to a 31 wt% Soy Protein Isolate (SPI)–Wheat Gluten (WG) dispersion. Three relevant process parameters (temperature, time and rotation rate) were

  5. String-theoretic deformation of the Parke-Taylor factor

    Science.gov (United States)

    Mizera, Sebastian; Zhang, Guojun

    2017-09-01

    Scattering amplitudes in a range of quantum field theories can be computed using the Cachazo-He-Yuan (CHY) formalism. In theories with color ordering, the key ingredient is the so-called Parke-Taylor factor. In this paper we give a fully SL (2 ,C )-covariant definition and study the properties of a new integrand called the "string Parke-Taylor" factor. It has an α' expansion whose leading coefficient is the field-theoretic Parke-Taylor factor. Its main application is that it leads to a CHY formulation of open string tree-level amplitudes. In fact, the definition of the string Parke-Taylor factor was motivated by trying to extend the compact formula for the first α' correction found by He and Zhang, while the main ingredient in its definition is a determinant of a matrix introduced in the context of string theory by Stieberger and Taylor.

  6. Theoretical and numerical studies of Rayleigh-Taylor instabilities in magnetized plasmas; Etude theorique et numerique des instabilites Rayleigh-Taylor en plasmas magnetises

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.A

    2001-06-01

    The instabilities of Rayleigh-Taylor type are considered in the thesis. The topic of the thesis was inspired by recent advances in the physics of plasma compression, especially with the aid of systems like Z-pinch. Rayleigh-Taylor instability (RTI) plays an important role in the evolution of magnetized plasmas in these experiments, as well as in stellar plasmas and classic fluids. For the phenomena concerning the nuclear fusion the RTI is very often the factor limiting the possibility of compression. In the current work we try to examine in detail the characteristic features of the instabilities of this type in order to eliminate their detrimental influence. In this thesis we are studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words, two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external &apos

  7. Non-vanishing of Taylor coefficients and Poincaré series

    DEFF Research Database (Denmark)

    O'Sullivan, C.; Risager, Morten S.

    2013-01-01

    We prove recursive formulas for the Taylor coefficients of cusp forms, such as Ramanujan's Delta function, at points in the upper half-plane. This allows us to show the non-vanishing of all Taylor coefficients of Delta at CM points of small discriminant as well as the non-vanishing of certain...... Poincaré series. At a "generic" point, all Taylor coefficients are shown to be non-zero. Some conjectures on the Taylor coefficients of Delta at CM points are stated....

  8. Taylor series maps and their domain of convergence

    International Nuclear Information System (INIS)

    Abell, D.T.; Dragt, A.J.

    1992-01-01

    This paper tries to make clear what limits the validity of a Taylor series map, and how. We describe the concept of a transfer map and quote some theorems that justify not only their existence but also their advantages. Then, we describe the Taylor series representation for transfer maps. Following that, we attempt to elucidate some of the basic theorems from the theory of functions of one and several complex variables. This material forms the core of our understanding of what limits the domain of convergence of Taylor series maps. Lastly, we use the concrete example of a simple anharmonic oscillator to illustrate how the theorems from several complex variable theory affect the domain convergence of Taylor series maps. There we describe the singularities of the anharmonic oscillator in the complex planes of the initial conditions, show how they constrain our use of a Taylor series map, and then discuss our findings

  9. Taylorism and the Logic of Learning Outcomes

    Science.gov (United States)

    Stoller, Aaron

    2015-01-01

    This essay examines the shared philosophical foundations of Fredrick W. Taylor's scientific management principles and the contemporary learning outcomes movement (LOM). It analyses the shared philosophical ground between the focal point of Taylor's system--"the task"--and the conceptualization and deployment of "learning…

  10. LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1990-01-01

    We present the results of two-dimensional LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability. Our growth rates and eigenmodes for classical two- and three-fluid problems agree closely with the exact analytic expressions. We illustrate in several examples how perturbations feed through from one interface to another. For targets driven by a 1/4-μm laser at I=2x10 14 W/cm 2 our growth rates are 40--80 % of the classical case rates for wavelengths between 5 and 100 μm. We find that radiation transport has a stabilizing effect on the Rayleigh-Taylor instability, particularly at high intensities. A brief comparison with a laser-driven experiment is also presented

  11. The Life and Legacy of G. I. Taylor

    Science.gov (United States)

    Batchelor, G. K.

    1996-07-01

    G.I. Taylor, one of the most distinguished physical scientists of this century, used his deep insight and originality to increase our understanding of phenomena such as the turbulent flow of fluids. His interest in the science of fluid flow was not confined to theory; he was one of the early pioneers of aeronautics, and designed a new type of anchor that was inspired by his passion for sailing. Taylor spent most of his working life in the Cavendish Laboratory in Cambridge, where he investigated the mechanics of fluid and solid materials; his discoveries and ideas have had application throughout mechanical, civil, and chemical engineering, meteorology, oceanography and materials science. He was also a noted research leader, and his group in Cambridge became one of the most productive centers for the study of fluid mechanics. How was Taylor able to be innovative in so many different ways? This interesting and unusual biography helps answer that question. Professor Batchelor, himself a student and close collaborator of Taylor, is ideally placed to describe Taylor's life, achievements and background. He does so without introducing any mathematical details, making this book enjoyable reading for a wide range of people--and especially those whose own interests have brought them into contact with the legacy of Taylor.

  12. Educar na autenticidade em Charles Taylor = Educating in the authenticity in Charles Taylor

    Directory of Open Access Journals (Sweden)

    Foschiera, Rogério

    2009-01-01

    Full Text Available Analiso a perspectiva tayloriana da autencidade através de uma hermenêutica de suas principais obras para propor o significado de educar na autencticidade a partir de Charles Taylor. Com autencidade e ontologia moral Taylor apresenta uma antropologia ancorada na moral e na ontologia. Com autencidade e epistemologia se percebe que a perspectiva da autencidade não exclui o paradigma científico, mas necessita de outros paradigmas, principalmente do hermenêutico. Com autencidade e linguagem evidencio a compreensão de Taylor sobre a natureza da linguagem e o destaque que ele dá á definição de ser humano como "animal portador de logos", bem como o significado e as decorrências da perspectiva expressivista. Duas políticas: a da igualdade de direitos de todos e a do reconhecimento das diferenças estão integradas na perspectiva tayloriana da autencidade. Necessariamente, o ser humano, para ser autêntico, estará em constante referência a horizontes de sentido que transcendem o indivíduo, é o que apresento com autencidade e transcendência

  13. A non-self-adjoint quadratic eigenvalue problem describing a fluid-solid interaction Part II : analysis of convergence

    NARCIS (Netherlands)

    Bourne, D.P.; Elman, H.; Osborn, J.E.

    2009-01-01

    This paper is the second part of a two-part paper treating a non-self-adjoint quadratic eigenvalue problem for the linear stability of solutions to the Taylor-Couette problem for flow of a viscous liquid in a deformable cylinder, with the cylinder modelled as a membrane. The first part formulated

  14. Drag and power-loss in rowing due to velocity fluctuations

    NARCIS (Netherlands)

    Greidanus, A.J.; Delfos, R.; Westerweel, J.; Jansen, A.J.

    2016-01-01

    The flow motions in the turbulent boundary layer between water and a rowing boat initiate a turbulent skin friction. Reducing this skin friction results in better rowing performances. A Taylor-Couette (TC) facility was used to verify the power losses due to velocity fluctuations PV′ in

  15. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    van der Veen, Roeland

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study

  16. Laboratory Study of Magnetorotational Instability and Hydrodynamic Stability at Large Reynolds Numbers

    Science.gov (United States)

    Ji, H.; Burin, M.; Schartman, E.; Goodman, J.; Liu, W.

    2006-01-01

    Two plausible mechanisms have been proposed to explain rapid angular momentum transport during accretion processes in astrophysical disks: nonlinear hydrodynamic instabilities and magnetorotational instability (MRI). A laboratory experiment in a short Taylor-Couette flow geometry has been constructed in Princeton to study both mechanisms, with novel features for better controls of the boundary-driven secondary flows (Ekman circulation). Initial results on hydrodynamic stability have shown negligible angular momentum transport in Keplerian-like flows with Reynolds numbers approaching one million, casting strong doubt on the viability of nonlinear hydrodynamic instability as a source for accretion disk turbulence.

  17. Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng [School of Energy and Power Engineering, Jiangsu University, Zhenjiang (China); Kim, Hyoung Bum [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2016-12-15

    The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition.

  18. Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders

    International Nuclear Information System (INIS)

    Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng; Kim, Hyoung Bum

    2016-01-01

    The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition

  19. Measurements of particle dynamics in slow, dense granular Couette flow

    Science.gov (United States)

    Mueth, Daniel M.

    2003-01-01

    Experimental measurements of particle dynamics on the lower surface of a three-dimensional (3D) Couette cell containing monodisperse spheres are reported. The average radial density and velocity profiles are similar to those previously measured within the bulk and on the lower surface of the 3D cell filled with mustard seeds. Observations of the evolution of particle velocities over time reveal distinct motion events, intervals where previously stationary particles move for a short duration before jamming again. The cross correlation between the velocities of two particles at a given distance r from the moving wall reveals a characteristic length scale over which the particles are correlated. The autocorrelation of a single particle’s velocity reveals a characteristic time scale τ, which decreases with increasing distance from the inner moving wall. This may be attributed to the increasing rarity at which the discrete motion events occur and the reduced duration of those events at large r. The relationship between the rms azimuthal velocity fluctuations, δvθ(r), and average shear rate, γ˙(r), was found to be δvθ∝γ˙α with α=0.52±0.04. These observations are compared with other recent experiments and with the modified hydrodynamic model recently introduced by Bocquet et al.

  20. The mechanism by which nonlinearity sustains turbulence in plane Couette flow

    Science.gov (United States)

    Nikolaidis, M.-A.; Farrell, B. F.; Ioannou, P. J.

    2018-04-01

    Turbulence in wall-bounded shear flow results from a synergistic interaction between linear non-normality and nonlinearity in which non-normal growth of a subset of perturbations configured to transfer energy from the externally forced component of the turbulent state to the perturbation component maintains the perturbation energy, while the subset of energy-transferring perturbations is replenished by nonlinearity. Although it is accepted that both linear non-normality mediated energy transfer from the forced component of the mean flow and nonlinear interactions among perturbations are required to maintain the turbulent state, the detailed physical mechanism by which these processes interact in maintaining turbulence has not been determined. In this work a statistical state dynamics based analysis is performed on turbulent Couette flow at R = 600 and a comparison to DNS is used to demonstrate that the perturbation component in Couette flow turbulence is replenished by a non-normality mediated parametric growth process in which the fluctuating streamwise mean flow has been adjusted to marginal Lyapunov stability. It is further shown that the alternative mechanism in which the subspace of non-normally growing perturbations is maintained directly by perturbation-perturbation nonlinearity does not contribute to maintaining the turbulent state. This work identifies parametric interaction between the fluctuating streamwise mean flow and the streamwise varying perturbations to be the mechanism of the nonlinear interaction maintaining the perturbation component of the turbulent state, and identifies the associated Lyapunov vectors with positive energetics as the structures of the perturbation subspace supporting the turbulence.

  1. On truncated Taylor series and the position of their spurious zeros

    DEFF Research Database (Denmark)

    Christiansen, Søren; Madsen, Per A.

    2006-01-01

    A truncated Taylor series, or a Taylor polynomial, which may appear when treating the motion of gravity water waves, is obtained by truncating an infinite Taylor series for a complex, analytical function. For such a polynomial the position of the complex zeros is considered in case the Taylor...

  2. Taylor's series method for solving the nonlinear point kinetics equations

    International Nuclear Information System (INIS)

    Nahla, Abdallah A.

    2011-01-01

    Highlights: → Taylor's series method for nonlinear point kinetics equations is applied. → The general order of derivatives are derived for this system. → Stability of Taylor's series method is studied. → Taylor's series method is A-stable for negative reactivity. → Taylor's series method is an accurate computational technique. - Abstract: Taylor's series method for solving the point reactor kinetics equations with multi-group of delayed neutrons in the presence of Newtonian temperature feedback reactivity is applied and programmed by FORTRAN. This system is the couples of the stiff nonlinear ordinary differential equations. This numerical method is based on the different order derivatives of the neutron density, the precursor concentrations of i-group of delayed neutrons and the reactivity. The r th order of derivatives are derived. The stability of Taylor's series method is discussed. Three sets of applications: step, ramp and temperature feedback reactivities are computed. Taylor's series method is an accurate computational technique and stable for negative step, negative ramp and temperature feedback reactivities. This method is useful than the traditional methods for solving the nonlinear point kinetics equations.

  3. 76 FR 3570 - Proposed Amendment of Class E Airspace; Taylor, AZ

    Science.gov (United States)

    2011-01-20

    ...-1189; Airspace Docket No. 10-AWP-19] Proposed Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal... proposes to modify Class E airspace at Taylor Airport, Taylor, AZ. Controlled airspace is necessary to accommodate aircraft using the CAMBO One Departure Area Navigation (RNAV) out of Taylor Airport. The FAA is...

  4. Application of Taylor-Series Integration to Reentry Problems with Wind

    NARCIS (Netherlands)

    Bergsma, Michiel; Mooij, E.

    2016-01-01

    Taylor-series integration is a numerical integration technique that computes the Taylor series of state variables using recurrence relations and uses this series to propagate the state in time. A Taylor-series integration reentry integrator is developed and compared with the fifth-order

  5. Generalization of the Taylor Principle

    International Nuclear Information System (INIS)

    Jensen, T.H.

    1986-01-01

    The usual Taylor Principle can in general only be applied when the system is closed. This paper describes a suggestion of a generalization to cover the case that the plasma is surrounded by a conducting shell with narrow gaps where the external circuits connected to the gaps consist of just inductors. The suggested constraint of the generalized Taylor Principle is that no helicity is absorbed by the plasma. The usual assumption that the stable Taylor Equilibrium is that for which the magnetic energy in the plasma region as well as in the external inductors is minimized subject to the above constraint, again leads to a unique configuration. It is found that this configuration is dependent upon the inductances of the external inductors. For the sake of conceptual simplicity, consider a closed shell of conducting material. The interior of the shell may be divided into various compartments only corrected through narrow gaps in the conducting walls between these compartments. They assume plasma present in only one of the compartments; the neighboring compartments represent the external inductors connected across the gaps of the plasma compartment

  6. The New Taylorism: Hacking at the Philosophy of the University's End

    Science.gov (United States)

    Goodman, Robin Truth

    2012-01-01

    This article looks at the critical writings of Mark C. Taylor. It suggests that Mark C. Taylor is rewriting a global imaginary devoid of the kind of citizenship that Henry Giroux claims as the basis for public education. Instead, Taylor wants to see the university take shape as profit-generating. According to Taylor, in lieu of learning to take…

  7. 76 FR 18378 - Amendment of Class E Airspace; Taylor, AZ

    Science.gov (United States)

    2011-04-04

    ...-1189; Airspace Docket No. 10-AWP-19] Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will amend Class E airspace at Taylor Airport, Taylor, AZ, to accommodate aircraft using the CAMBO One Departure, and the Area Navigation (RNAV...

  8. Fluid Mechanics of Taylor Bubbles and Slug Flows in Vertical Channels

    International Nuclear Information System (INIS)

    Anglart, Henryk; Podowski, Michael Z.

    2002-01-01

    Fluid mechanics of Taylor bubbles and slug flows is investigated in vertical, circular channels using detailed, three-dimensional computational fluid dynamics simulations. The Volume of Fluid model with the interface-sharpening algorithm, implemented in the commercial CFX4 code, is used to predict the shape and velocity of Taylor bubbles moving along a vertical channel. Several cases are investigated, including both a single Taylor bubble and a train of bubbles rising in water. It is shown that the potential flow solution underpredicts the water film thickness around Taylor bubbles. Furthermore, the computer simulations that are performed reveal the importance of properly modeling the three-dimensional nature of phenomena governing the motion of Taylor bubbles. Based on the present results, a new formula for the evaluation of bubble shape is derived. Both the shape of Taylor bubbles and the bubble rise velocity predicted by the proposed model agree well with experimental observations. Furthermore, the present model shows good promise in predicting the coalescence of Taylor bubbles

  9. Couette flow regimes with heat transfer in rarefied gas

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, A. A., E-mail: alabr54@mail.ru; Butkovskii, A. V., E-mail: albutkov@mail.ru [Zhukovski Central Aerohydrodynamics Institute (Russian Federation)

    2013-06-15

    Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.

  10. The Rayleigh-Taylor instability in the spherical pinch

    International Nuclear Information System (INIS)

    Chen, H.B.; Hilko, B.; Panarella, E.

    1994-01-01

    The spherical pinch (SP) concept is an outgrowth of the inertial confinement model (ICF). Unlike the ICF where instabilities, especially the Rayleigh-Taylor instability, have been studied extensively, the instability study of the spherical pinch has just begun. The Raleigh-Taylor instability is investigated for the first time in the SP in the present work. By using the simple condition for the Rayleigh-Taylor instability ∇p · ∇p < O (density and pressure gradients have opposite direction), we have qualitatively identified the regions for development of instabilities in the SP. It is found that the explosion phase (central discharge) is stable and instabilities take place in the imploding phase. However, the growth rate for the instability is not in exponential form, and the appearance of the Rayleigh-Taylor instability does not prevent the main shock wave from converging to the center of the sphere

  11. Suppression of the Rayleigh-Taylor instability due to self-radiation in a multiablation target

    International Nuclear Information System (INIS)

    Fujioka, Shinsuke; Sunahara, Atsushi; Nishihara, Katsunobu; Johzaki, Tomoyuki; Shiraga, Hiroyuki; Shigemori, Keisuke; Nakai, Mitsuo; Ikegawa, Tadashi; Murakami, Masakatsu; Nagai, Keiji; Norimatsu, Takayoshi; Azechi, Hiroshi; Yamanaka, Tatsuhiko; Ohnishi, Naofumi

    2004-01-01

    A scheme to suppress the Rayleigh-Taylor instability has been investigated for a direct-drive inertial fusion target. In a high-Z doped-plastic target, two ablation surfaces are formed separately--one driven by thermal radiation and the other driven by electron conduction. The growth of the Rayleigh-Taylor instability is significantly suppressed on the radiation-driven ablation surface inside the target due to the large ablation velocity and long density scale length. A significant reduction of the growth rate was observed in simulations and experiments using a brominated plastic target. A new direct-drive pellet was designed using this scheme

  12. G.I. Taylor and the Trinity Test

    Science.gov (United States)

    Deakin, Michael A. B.

    2011-01-01

    The story is often told of the calculation by G.I. Taylor of the yield of the first ever atomic bomb exploded in New Mexico in 1945. It has indeed become a staple of the classroom whenever dimensional analysis is taught. However, while it is true that Taylor succeeded in calculating this figure at a time when it was still classified, most versions…

  13. Analysis of weakly nonlinear three-dimensional Rayleigh--Taylor instability growth

    International Nuclear Information System (INIS)

    Dunning, M.J.; Haan, S.W.

    1995-01-01

    Understanding the Rayleigh--Taylor instability, which develops at an interface where a low density fluid pushes and accelerates a higher density fluid, is important to the design, analysis, and ultimate performance of inertial confinement fusion targets. Existing experimental results measuring the growth of two-dimensional (2-D) perturbations (perturbations translationally invariant in one transverse direction) are adequately modeled using the 2-D hydrodynamic code LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 11, 51 (1975)]. However, of ultimate interest is the growth of three-dimensional (3-D) perturbations such as those initiated by surface imperfections or illumination nonuniformities. Direct simulation of such 3-D experiments with all the significant physical processes included and with sufficient resolution is very difficult. This paper addresses how such experiments might be modeled. A model is considered that couples 2-D linear regime hydrodynamic code results with an analytic model to allow modeling of 3-D Rayleigh--Taylor growth through the linear regime and into the weakly nonlinear regime. The model is evaluated in 2-D by comparison with LASNEX results. Finally the model is applied to estimate the dynamics of a hypothetical 3-D foil

  14. Effects of shock waves on Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Zhang Yongtao; Shu Chiwang; Zhou Ye

    2006-01-01

    A numerical simulation of two-dimensional compressible Navier-Stokes equations using a high-order weighted essentially nonoscillatory finite difference shock capturing scheme is carried out in this paper, to study the effect of shock waves on the development of Rayleigh-Taylor instability. Shocks with different Mach numbers are introduced ahead or behind the Rayleigh-Taylor interface, and their effect on the transition to instability is demonstrated and compared. It is observed that shock waves can speed up the transition to instability for the Rayleigh-Taylor interface significantly. Stronger shocks are more effective in this speed-up process

  15. “What” is Frederick Winslow Taylor

    OpenAIRE

    Andrej Markovic

    2006-01-01

    Raising the issue of Taylor and his scientific management after less than a hundred years seems at first glance to be quite anachronistic. Today we are more likely to find Taylor’s works in antique shops than in the libraries of the schools of management. Has the memory of utilitarian and pragmatic managerial knowledge of a century back faded, or are we in a way ashamed of Taylor, the protagononist of management? How does the research into the origin and nature of management affect the effici...

  16. Bright and durable field emission source derived from refractory taylor cones

    Science.gov (United States)

    Hirsch, Gregory

    2016-12-20

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.

  17. Stability of time dependent and spatially varying flows; Proceedings of the Symposium, Hampton, VA, Aug. 19-23, 1985

    International Nuclear Information System (INIS)

    Dwoyer, D.L.; Hussaini, M.Y.

    1987-01-01

    Papers are presented on the application of stability theory to laminar flow control, secondary instabilities in boundary layers, a Floquet analysis of secondary instability in shear flows, and the generation of Tollmien-Schlichting waves by long wavelength free stream disturbances. Also considered are numerical experiments on boundary-layer receptivity, short-scale inviscid instabilities in the flow past surface-mounted obstacles, wave phenomena in a high Reynolds number compressible boundary layer, and instability of time-periodic flows. Other topics include high frequency Rayleigh instability of Stokes layers, stability and resonance in grooved-channel flows, finite length Taylor Couette flow, and vortical structures in the breakdown stage of transition

  18. Second Law Analysis for a Variable Viscosity Reactive Couette Flow under Arrhenius Kinetics

    Directory of Open Access Journals (Sweden)

    N. S. Kobo

    2010-01-01

    Full Text Available This study investigates the inherent irreversibility associated with the Couette flow of a reacting variable viscosity combustible material under Arrhenius kinetics. The nonlinear equations of momentum and energy governing the flow system are solved both analytically using a perturbation method and numerically using the standard Newton Raphson shooting method along with a fourth-order Runge Kutta integration algorithm to obtain the velocity and temperature distributions which essentially expedite to obtain expressions for volumetric entropy generation numbers, irreversibility distribution ratio, and the Bejan number in the flow field.

  19. Nonlinear transport processes and fluid dynamics: Cylindrical Couette flow of Lennard-Jones fluids

    International Nuclear Information System (INIS)

    Khayat, R.E.; Eu, B.C.

    1988-01-01

    In this paper we report on calculations of flow profiles for cylindrical Couette flow of a Lennard-Jones fluid. The flow is subjected to a temperature gradient and thermoviscous effects are taken into consideration. We apply the generalized fluid dynamic equations which are provided by the modified moment method for the Boltzmann equation reported previously. The results of calculations are in good agreement with the Monte Carlo direct simulation method by K. Nanbu [Phys. Fluids 27, 2632 (1984)] for most of Knudsen numbers for which the simulation data are available

  20. Generation and evolution of turbulence in an annulus between two concentric rotating cylinders

    International Nuclear Information System (INIS)

    Kataoka, K.; Deguchi, T.

    1987-01-01

    The objective of the present work is to observe the generation and spectral evolution of time-dependent wavy disturbances in the Taylor-Couette flow. It is well known that as the Reynolds number Re = R/sub i/Ω d/ν, based on the rotation speed (Ω: angular velocity) of the inner cylinder, is gradually increased, the following five dynamical transitions occur stepwise in sequence: laminar Couette flow → laminar Taylor vortex flow → wavy vortex flow → quasi-periodic wavy vortex flow → weakly turbulent wavy vortex flow → turbulent vortex flow. Time-dependent wavy disturbances appear when the transition to wavy vortex flow occurs as a result of instability of the laminar Taylor vortex flow. The disturbances are regularly periodic because it results from the azimuthally traveling waves. The next transition to the quasi-periodic wavy vortex flow is accompanied by the amplitude modulation of the wave motion. The first fundamental frequency f/sub 1/ comes from the passing frequency of the azimuthally traveling waves and the second fundamental frequency f/sub 2/ from the modulation frequency. When the transition to the weakly turbulent wavy vortex flow occurs, chaotic turbulence first appears, A spectral analysis is made to analyze the temporal variation in the local velocity gradient measured on both the inner and outer cylinder walls by using an electrochemical technique

  1. Centrifugally Driven Rayleigh-Taylor Instability

    Science.gov (United States)

    Scase, Matthew; Hill, Richard

    2017-11-01

    The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.

  2. The friction control of magnetic fluid in the Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Labkovich, O.N., E-mail: olji@tut.by; Reks, A.G.; Chernobai, V.A.

    2017-06-01

    In the work characteristic areas of magnetic fluid flow are experimentally determined in the gap between the cylinders: the area of strong dipole-dipole interaction between magnetite particles 0Taylor vortex flow Ta>41,2. For areas with high flow losses in viscous friction is shown the possibility of reducing the introduction of magnetic fluid of carbon nanotubes and creating a rotating magnetic field. - Highlights: • Typical areas of magnetic fluid flow are determined in the gap. • Influence of dipole-dipole interaction of magnetite particles on the viscous friction. • Features of Taylor vortex flow.

  3. Animating Nested Taylor Polynomials to Approximate a Function

    Science.gov (United States)

    Mazzone, Eric F.; Piper, Bruce R.

    2010-01-01

    The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…

  4. Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities

    International Nuclear Information System (INIS)

    Lau, Yue Ying; Gilgenbach, Ronald

    2013-01-01

    Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed

  5. Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Yue Ying [University of Michigan, Ann Arbor, MI (United States); Gilgenbach, Ronald [University of Michigan, Ann Arbor, MI (United States)

    2013-07-07

    Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed.

  6. Theoretical and numerical studies of Rayleigh-Taylor instabilities in magnetized plasmas

    International Nuclear Information System (INIS)

    Ivanov, A.A.

    2001-06-01

    The instabilities of Rayleigh-Taylor type are considered in the thesis. The topic of the thesis was inspired by recent advances in the physics of plasma compression, especially with the aid of systems like Z-pinch. Rayleigh-Taylor instability (RTI) plays an important role in the evolution of magnetized plasmas in these experiments, as well as in stellar plasmas and classic fluids. For the phenomena concerning the nuclear fusion the RTI is very often the factor limiting the possibility of compression. In the current work we try to examine in detail the characteristic features of the instabilities of this type in order to eliminate their detrimental influence. In this thesis we are studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words, two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external 'pumping' on the instability

  7. Taylor impact of glass rods

    International Nuclear Information System (INIS)

    Willmott, G.R.; Radford, D.D.

    2005-01-01

    The deformation and fracture behavior of soda-lime and borosilicate glass rods was examined during classic and symmetric Taylor impact experiments for impact pressures to 4 and 10 GPa, respectively. High-speed photography and piezoresistive gauges were used to measure the failure front velocities in both glasses, and for impact pressures below ∼2 GPa the failure front velocity increases rapidly with increasing pressure. As the pressure was increased above ∼3 GPa, the failure front velocities asymptotically approached maximum values between the longitudinal and shear wave velocities of each material; at ∼4 GPa, the average failure front velocities were 4.7±0.5 and 4.6±0.5 mm μs -1 for the soda-lime and borosilicate specimens, respectively. The observed mechanism of failure in these experiments involved continuous pressure-dependent nucleation and growth of microcracks behind the incident wave. As the impact pressure was increased, there was a decrease in the time to failure. The density of cracks within the failed region was material dependent, with the more open-structured borosilicate glass showing a larger fracture density

  8. Two-phase alkali-metal experiments in reduced gravity

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity

  9. Repainting, modifying, smashing Taylorism

    NARCIS (Netherlands)

    H.D. Pruijt (Hans)

    2000-01-01

    textabstractAbstract Survey data show that post-Tayloristic production concepts are not developing to the extent that many researchers had originally expected. It also is inadequate to portray post-Taylorism as a development that is happening, but just slower than expected. This is inadequate

  10. Dynamics of helicity transport and Taylor relaxation

    International Nuclear Information System (INIS)

    Diamond, P.H.; Malkov, M.

    2003-01-01

    A simple model of the dynamics of Taylor relaxation is derived using symmetry principles alone. No statistical closure approximations are invoked or detailed plasma model properties assumed. Notably, the model predicts several classes of nondiffusive helicity transport phenomena, including traveling nonlinear waves and superdiffusive turbulent pulses. A universal expression for the scaling of the effective magnetic Reynolds number of a system undergoing Taylor relaxation is derived. Some basic properties of intermittency in helicity transport are examined

  11. Fluid Mechanics Experiments as a Unifying Theme in the Physics Instrumentation Laboratory Course

    Science.gov (United States)

    Borrero-Echeverry, Daniel

    2017-11-01

    We discuss the transformation of a junior-level instrumentation laboratory course from a sequence of cookbook lab exercises to a semester-long, project-based course. In the original course, students conducted a series of activities covering the usual electronics topics (amplifiers, filters, oscillators, logic gates, etc.) and learned basic LabVIEW programming for data acquisition and analysis. Students complained that these topics seemed disconnected and not immediately applicable to ``real'' laboratory work. To provide a unifying theme, we restructured the course around the design, construction, instrumentation of a low-cost Taylor-Couette cell where fluid is sheared between rotating coaxial cylinders. The electronics labs were reworked to guide students from fundamental electronics through the design and construction of a stepper motor driver, which was used to actuate the cylinders. Some of the legacy labs were replaced with a module on computer-aided design (CAD) in which students designed parts for the apparatus, which they then built in the departmental machine shop. Signal processing topics like spectral analysis were introduced in the context of time-series analysis of video data acquired from flow visualization. The course culminated with a capstone project in which students conducted experiments of their own design on a variety of topics in rheology and nonlinear dynamics.

  12. High Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    Science.gov (United States)

    Scott, James R.; Martini, Michael C.

    2008-01-01

    Taylor series integration is implemented in a spacecraft trajectory analysis code-the Spacecraft N-body Analysis Program (SNAP) - and compared with the code s existing eighth-order Runge-Kutta Fehlberg time integration scheme. Nine trajectory problems, including near Earth, lunar, Mars and Europa missions, are analyzed. Head-to-head comparison at five different error tolerances shows that, on average, Taylor series is faster than Runge-Kutta Fehlberg by a factor of 15.8. Results further show that Taylor series has superior convergence properties. Taylor series integration proves that it can provide rapid, highly accurate solutions to spacecraft trajectory problems.

  13. A design of inverse Taylor projectiles using material simulation

    International Nuclear Information System (INIS)

    Tonks, Michael; Harstad, Eric; Maudlin, Paul; Trujillo, Carl

    2008-01-01

    The classic Taylor cylinder test, in which a right circular cylinder is projected at a rigid anvil, exploits the inertia of the projectile to access strain rates that are difficult to achieve with more traditional uniaxial testing methods. In this work we present our efforts to design inverse Taylor projectiles, in which a tapered projectile becomes a right circular cylinder after impact, from annealed copper and show that the self-correcting geometry leads to a uniform compressive strain in the radial direction. We design projectiles using finite element simulation and optimization that deform as desired in tests with minor deviations in the deformed geometry due to manufacturing error and uncertainty in the initial velocity. The inverse Taylor projectiles designed in this manner provide a simple means of validating constitutive models. This work is a step towards developing a general method of designing Taylor projectiles that provide stress–strain behavior relevant to particular engineering problems

  14. Techniques for optimizing nanotips derived from frozen taylor cones

    Science.gov (United States)

    Hirsch, Gregory

    2017-12-05

    Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the laser to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.

  15. Ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion

    International Nuclear Information System (INIS)

    Kilkenny, J.D.

    1994-01-01

    As shown elsewhere an ablatively imploded shell is hydrodynamically unstable, the dominant instability being the well known Rayleigh-Taylor instability with growth rate γ = √Akg where k = 2π/λ is the wave number, g is the acceleration and A the Attwood number (ρ hi - ρ lo )/(ρ hi + ρ lo ) where ρ hi is the density of the heavier fluid and ρ lo is the density of the lighter fluid. A theoretical understanding of ablative stabilization has gradually evolved, confirmed over the last five years by experiments. The linear growth is very well understood with excellent agreement between experiment and simulation for planar geometry with wavelengths in the region of 30--100μm. There is an accurate, albeit phenomenological dispersion relation. The non-linear growth has been measured and agrees with calculations. In this lecture, the authors go into the fundamentals of the Rayleigh-Taylor instability and the experimental measurements that show it is stabilized sufficiently by ablation in regimes relevant to ICF

  16. Measurement of local heat transfer coefficient during gas–liquid Taylor bubble train flow by infra-red thermography

    International Nuclear Information System (INIS)

    Mehta, Balkrishna; Khandekar, Sameer

    2014-01-01

    Highlights: • Infra-red thermographic study of Taylor bubble train flow in square mini-channel. • Design of experiments for measurement of local streamwise Nusselt number. • Minimizing conjugate heat transfer effects and resulting errors in data reduction. • Benchmarking against single-phase flow and three-dimensional computations. • Local heat transfer enhancement up to two times due to Taylor bubble train flow. -- Abstract: In mini/micro confined internal flow systems, Taylor bubble train flow takes place within specific range of respective volume flow ratios, wherein the liquid slugs get separated by elongated Taylor bubbles, resulting in an intermittent flow situation. This unique flow characteristic requires understanding of transport phenomena on global, as well as on local spatio-temporal scales. In this context, an experimental design methodology and its validation are presented in this work, with an aim of measuring the local heat transfer coefficient by employing high-resolution InfraRed Thermography. The effect of conjugate heat transfer on the true estimate of local transport coefficients, and subsequent data reduction technique, is discerned. Local heat transfer coefficient for (i) hydrodynamically fully developed and thermally developing single-phase flow in three-side heated channel and, (ii) non-boiling, air–water Taylor bubble train flow is measured and compared in a mini-channel of square cross-section (5 mm × 5 mm; D h = 5 mm, Bo ≈ 3.4) machined on a stainless steel substrate (300 mm × 25 mm × 11 mm). The design of the setup ensures near uniform heat flux condition at the solid–fluid interface; the conjugate effects arising from the axial back conduction in the substrate are thus minimized. For benchmarking, the data from single-phase flow is also compared with three-dimensional computational simulations. Depending on the employed volume flow ratio, it is concluded that enhancement of nearly 1.2–2.0 times in time

  17. DSM-5 and ADHD - an interview with Eric Taylor.

    Science.gov (United States)

    Taylor, Eric

    2013-09-12

    In this podcast we talk to Prof Eric Taylor about the changes to the diagnosis of Attention Deficit Hyperactivity Disorder (ADHD) in DSM-5 and how these changes will affect clinical practice. The podcast for this interview is available at: http://www.biomedcentral.com/sites/2999/download/Taylor.mp3.

  18. Stochastic characteristics and Second Law violations of atomic fluids in Couette flow

    Science.gov (United States)

    Raghavan, Bharath V.; Karimi, Pouyan; Ostoja-Starzewski, Martin

    2018-04-01

    Using Non-equilibrium Molecular Dynamics (NEMD) simulations, we study the statistical properties of an atomic fluid undergoing planar Couette flow, in which particles interact via a Lennard-Jones potential. We draw a connection between local density contrast and temporal fluctuations in the shear stress, which arise naturally through the equivalence between the dissipation function and entropy production according to the fluctuation theorem. We focus on the shear stress and the spatio-temporal density fluctuations and study the autocorrelations and spectral densities of the shear stress. The bispectral density of the shear stress is used to measure the degree of departure from a Gaussian model and the degree of nonlinearity induced in the system owing to the applied strain rate. More evidence is provided by the probability density function of the shear stress. We use the Information Theory to account for the departure from Gaussian statistics and to develop a more general probability distribution function that captures this broad range of effects. By accounting for negative shear stress increments, we show how this distribution preserves the violations of the Second Law of Thermodynamics observed in planar Couette flow of atomic fluids, and also how it captures the non-Gaussian nature of the system by allowing for non-zero higher moments. We also demonstrate how the temperature affects the band-width of the shear-stress and how the density affects its Power Spectral Density, thus determining the conditions under which the shear-stress acts is a narrow-band or wide-band random process. We show that changes in the statistical characteristics of the parameters of interest occur at a critical strain rate at which an ordering transition occurs in the fluid causing shear thinning and affecting its stability. A critical strain rate of this kind is also predicted by the Loose-Hess stability criterion.

  19. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF.

    Science.gov (United States)

    Martinez, D A; Smalyuk, V A; Kane, J O; Casner, A; Liberatore, S; Masse, L P

    2015-05-29

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130  μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  20. Protein fiber linear dichroism for structure determination and kinetics in a low-volume, low-wavelength couette flow cell.

    Science.gov (United States)

    Dafforn, Timothy R; Rajendra, Jacindra; Halsall, David J; Serpell, Louise C; Rodger, Alison

    2004-01-01

    High-resolution structure determination of soluble globular proteins relies heavily on x-ray crystallography techniques. Such an approach is often ineffective for investigations into the structure of fibrous proteins as these proteins generally do not crystallize. Thus investigations into fibrous protein structure have relied on less direct methods such as x-ray fiber diffraction and circular dichroism. Ultraviolet linear dichroism has the potential to provide additional information on the structure of such biomolecular systems. However, existing systems are not optimized for the requirements of fibrous proteins. We have designed and built a low-volume (200 microL), low-wavelength (down to 180 nm), low-pathlength (100 microm), high-alignment flow-alignment system (couette) to perform ultraviolet linear dichroism studies on the fibers formed by a range of biomolecules. The apparatus has been tested using a number of proteins for which longer wavelength linear dichroism spectra had already been measured. The new couette cell has also been used to obtain data on two medically important protein fibers, the all-beta-sheet amyloid fibers of the Alzheimer's derived protein Abeta and the long-chain assemblies of alpha1-antitrypsin polymers.

  1. Hydraulic performance of a multistage array of advanced centrifugal contactors

    International Nuclear Information System (INIS)

    Hodges, M.E.

    1984-01-01

    The hydraulic characteristics of an advanced design centrifugal contactor array have been determined at the Savannah River Laboratory (SRL). The advanced design utilizes couette mixing (Taylor vortices) in the annulus between the rotating and stationary bowls. Excellent phase separation over a wide range of flow conditions was obtained. Interfaces within an entire eight-stage array were controlled with a single weir air pressure. 2 references, 5 figures

  2. Nonlinear saturation of the Rayleigh endash Taylor instability

    International Nuclear Information System (INIS)

    Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.

    1997-01-01

    A detailed numerical simulation of the nonlinear state of the Rayleigh endash Taylor instability has been carried out. There are three distinct phases of evolution where it is governed by the (i) linear effects, (ii) effects arising from the conventional nonlinear terms and (iii) subtle nonlinear effects arising through the coupling terms. During the third phase of evolution, there is a self-consistent generation of shear flow which saturates the Rayleigh endash Taylor instability even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. The Galerkin approximation is presented to provide an understanding of our numerical findings. Last, there is an attempt to provide a comprehensive understanding of the nonlinear state of the Rayleigh endash Taylor instability by comparing and contrasting this work with earlier studies. copyright 1997 American Institute of Physics

  3. On Using Taylor's Hypothesis for Three-Dimensional Mixing Layers

    Science.gov (United States)

    LeBoeuf, Richard L.; Mehta, Rabindra D.

    1995-01-01

    In the present study, errors in using Taylor's hypothesis to transform measurements obtained in a temporal (or phase) frame onto a spatial one were evaluated. For the first time, phase-averaged ('real') spanwise and streamwise vorticity data measured on a three-dimensional grid were compared directly to those obtained using Taylor's hypothesis. The results show that even the qualitative features of the spanwise and streamwise vorticity distributions given by the two techniques can be very different. This is particularly true in the region of the spanwise roller pairing. The phase-averaged spanwise and streamwise peak vorticity levels given by Taylor's hypothesis are typically lower (by up to 40%) compared to the real measurements.

  4. Shapes of an Air Taylor Bubble in Stagnant Liquids Influenced by Different Surface Tensions

    Science.gov (United States)

    Lertnuwat, B.

    2018-02-01

    The aim of this work is to propose an empirical model for predicting shapes of a Taylor bubble, which is a part of slug flows, under different values of the surface tension in stagnant liquids by employing numerical simulations. The k - Ɛ turbulence model was used in the framework of finite volume method for simulating flow fields in a unit of slug flow and also the pressure distribution on a Taylor bubble surface. Assuming that an air pressure distribution inside the Taylor bubble must be uniform, a grid search method was exploited to find an appropriate shape of a Taylor bubble for six values of surface tension. It was found that the shape of a Taylor bubble would be blunter if the surface tension was increased. This was because the surface tension affected the Froude number, controlling the flow around a Taylor bubble. The simulation results were also compared with the Taylor bubble shape, created by the Dumitrescu-and-Taylor model and former studies in order to ensure that they were consistent. Finally, the empirical model was presented from the simulation results.

  5. Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch

    International Nuclear Information System (INIS)

    He Kaihui; Feng Kaiming; Li Qiang; Gao Chunming

    2000-01-01

    It is important to research into the MHD Rayleigh-Taylor instability developed in Z-pinch implosion. A snowplough model of the single wire Z-pinch is presented. The perturbation amplitude of Rayleigh-Taylor instability in the wire-array Z-pinch is analyzed quantitatively. Sheared axial flow is put forward to mitigate and reduce the Rayleigh-Taylor instability. And other approaches used to mitigate MHD instability in such a super-fast process are explored

  6. A Study of Heat Transfer and Flow Characteristics of Rising Taylor Bubbles

    Science.gov (United States)

    Scammell, Alexander David

    2016-01-01

    Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field

  7. An algorithm for symplectic implicit Taylor-map tracking

    International Nuclear Information System (INIS)

    Yan, Y.; Channell, P.; Syphers, M.

    1992-10-01

    An algorithm has been developed for converting an ''order-by-order symplectic'' Taylor map that is truncated to an arbitrary order (thus not exactly symplectic) into a Courant-Snyder matrix and a symplectic implicit Taylor map for symplectic tracking. This algorithm is implemented using differential algebras, and it is numerically stable and fast. Thus, lifetime charged-particle tracking for large hadron colliders, such as the Superconducting Super Collider, is now made possible

  8. 78 FR 12307 - Taylor, G. Tom; Notice of Filing

    Science.gov (United States)

    2013-02-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ID-5705-001] Taylor, G. Tom; Notice of Filing Take notice that on February 14, 2013, G. Tom Taylor filed an application to hold interlocking positions pursuant to section 305(b) of the Federal Power Act, 16 U.S.C. 825d(b), Part 45 of the...

  9. Taylor dispersion of nanoparticles

    Science.gov (United States)

    Balog, Sandor; Urban, Dominic A.; Milosevic, Ana M.; Crippa, Federica; Rothen-Rutishauser, Barbara; Petri-Fink, Alke

    2017-08-01

    The ability to detect and accurately characterize particles is required by many fields of nanotechnology, including materials science, nanotoxicology, and nanomedicine. Among the most relevant physicochemical properties of nanoparticles, size and the related surface-to-volume ratio are fundamental ones. Taylor dispersion combines three independent phenomena to determine particle size: optical extinction, translational diffusion, and sheer-enhanced dispersion of nanoparticles subjected to a steady laminar flow. The interplay of these defines the apparent size. Considering that particles in fact are never truly uniform nor monodisperse, we rigorously address particle polydispersity and calculate the apparent particle size measured by Taylor dispersion analysis. We conducted case studies addressing aqueous suspensions of model particles and large-scale-produced "industrial" particles of both academic and commercial interest of various core materials and sizes, ranging from 15 to 100 nm. A comparison with particle sizes determined by transmission electron microscopy confirms that our approach is model-independent, non-parametric, and of general validity that provides an accurate account of size polydispersity—independently on the shape of the size distribution and without any assumption required a priori.

  10. Effect of gas expansion on the front shape of a Taylor bubble: an experimental contribution

    Directory of Open Access Journals (Sweden)

    Santos Laura

    2014-03-01

    Full Text Available An experimental study where an individual Taylor bubble rises through water with different bubble volume expansion rates is presented with the (front bubble shape determination as main objective. A combination of two techniques, Particle Image Velocimetry (PIV and Pulsed Shadowgraphy (PS, was used to collect images for further treatment in order to characterize the liquid flow pattern in front of the bubble and the bubble shape. Processing the images acquired with pulsed illumination from behind the bubble it was possible to define with precision the bubble shape at different stages when it was expanding. The operation conditions used allowed a wide range of volume expansion rates (0 to 28.5 × 10-6 m3/s with a significant effect on the Taylor bubble velocity; increases in bubble velocity up to 21% were observed relatively to constant volume system condition. Nevertheless, it seems that the front shape of Taylor bubbles does not change significantly with the upward liquid flow rates induced by gas expansion, at least for the volume expansion rates used in the experiments.

  11. Electrochemical Analysis of Taylor Vortices.

    Czech Academy of Sciences Publication Activity Database

    Wouahbi, F.; Allaf, K.; Sobolík, Václav

    2007-01-01

    Roč. 37, 1 (2007) , s. 57-62 ISSN 0021-891X Institutional research plan: CEZ:AV0Z40720504 Keywords : electrodiffusion method * taylor vortices * three-segment electrode Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.417, year: 2007

  12. New phenomena in variable-density Rayleigh-Taylor turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Livescu, D; Ristorcelli, J R; Petersen, M R; Gore, R A, E-mail: livescu@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-12-15

    This paper presents several issues related to mixing and turbulence structure in buoyancy-driven turbulence at low to moderate Atwood numbers, A, found from direct numerical simulations in two configurations: classical Rayleigh-Taylor instability and an idealized triply periodic Rayleigh-Taylor flow. Simulations at A up to 0.5 are used to examine the turbulence characteristics and contrast them with those obtained close to the Boussinesq approximation. The data sets used represent the largest simulations to date in each configuration. One of the more remarkable issues explored, first reported in (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80), is the marked difference in mixing between different density fluids as opposed to the mixing that occurs between fluids of commensurate densities, corresponding to the Boussinesq approximation. Thus, in the triply periodic configuration and the non-Boussinesq case, an initially symmetric density probability density function becomes skewed, showing that the mixing is asymmetric, with pure heavy fluid mixing more slowly than pure light fluid. A mechanism producing the mixing asymmetry is proposed and the consequences for the classical Rayleigh-Taylor configuration are discussed. In addition, it is shown that anomalous small-scale anisotropy found in the homogeneous configuration (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80) and Rayleigh-Taylor turbulence at A=0.5 (Livescu et al 2008 J. Turbul. 10 1-32) also occurs near the Boussinesq limit. Results pertaining to the moment closure modelling of Rayleigh-Taylor turbulence are also presented. Although the Rayleigh-Taylor mixing layer width reaches self-similar growth relatively fast, the lower-order terms in the self-similar expressions for turbulence moments have long-lasting effects and derived quantities, such as the turbulent Reynolds number, are slow to follow the self-similar predictions. Since eddy diffusivity in the popular gradient transport hypothesis

  13. Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment

    OpenAIRE

    Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Kozub, Thomas; Berzak, Laura; Hammett, Gregory; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Jacobson, Craig M.; Lucia, Matthew; Jones, Andrew; Lundberg, Daniel; Timberlake, John; Majeski, Richard

    2010-01-01

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas wa...

  14. The Philosophical Genealogy of Taylor's Social Imaginaries: A Complex History of Ideas and Predecessors.

    Science.gov (United States)

    Vanheeswijck, Guido M

    2017-01-01

    The deepest sources of Charles Taylor's use of the concept "social imaginaries" are often related to political philosophy or social anthropology (Anderson, Castoriadis). The purpose of this article is to show that they also form part of Taylor's struggle to overcome the epistemological construal in modern philosophy and culture. Taylor locates the concept "social imaginaries" in the Kantian tradition, identifying their role to that of transcendental schemes. However, there remains a central difference between Kant's transcendental schemes and Taylor's social imaginaries. To elucidate that difference, this article will track the philosophical genealogy of Taylor's concept of "social imaginaries" in three steps.

  15. What is certain and what is not so certain in our knowledge of Rayleigh-Taylor mixing?

    International Nuclear Information System (INIS)

    Anisimov, Sergei I.; Drake, R. Paul; Gauthier, Serge; Meshkov, Evgeny E.; Abarzhi, Snezhana I.

    2013-01-01

    Past decades significantly advanced our understanding of Rayleigh-Taylor (RT) mixing. We briefly review recent theoretical results and numerical modelling approaches and compare them with state of the art experiments focusing the reader's attention on qualitative properties of RT mixing. (authors)

  16. Theoretical and numerical study of Rayleigh-Taylor instabilities in magnetized plasmas; Etude theorique et numerique des instabilites rayleigh-taylor en plasmas magnetises

    Energy Technology Data Exchange (ETDEWEB)

    Andrei, A. Ivanov

    2001-06-15

    In this thesis we're studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words - two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external 'pumping' on the instability. These results can be applied to a wide range of systems, starting from classic hydrodynamics and up to astrophysical plasmas. The scheme of wire arrays has become recently a very popular method to obtain a high power X-radiation or for a high quality implosion in Z-pinches. The experimental studies have demonstrated that the results of implosion are much better for the case of multiple thin wires situated cylindrically than in a usual liner scheme. We have examined the problem modeling the stabilization of Rayleigh-Taylor instability for a wire array system. The reason for instability suppression is the regular spatial modulation of

  17. Exploding metallic fuse physics experiments

    International Nuclear Information System (INIS)

    Goforth, J.H.; Hackett, K.E.; Lindemuth, I.R.; Lopez, E.A.; McCullough, W.F.; Dona, H.; Reinovsky, R.E.

    1986-01-01

    The ultimate practicality of inductive pulse compression systems as drivers for energetic plasma implosions hinges on the development of a suitable opening switch capable of interrupting tons of megamp currents in time scales of a few hundred nanoseconds while withstanding L(dI/dt) voltages of a megavolt or more. 1. Exploding metallic foils (fuses) are a candidate for switching elements in the inductive store pulsed power systems used in the Los Alamos and Air Force Weapons Laboratory foil implosion X-ray source generation programs. To verify or modify new theoretical and computational predictions about the electrical and hydrodynamic behavior of exploding metallic foils used as fuses. The authors have initiated a new series of small scale capacitor bank driven fuse experiments. The experiments represent an extension of previous experiments, but in the new series a foil geometry more amenable to theoretical and computational analysis is used. The metallic foil (aluminum or copper) is laminated between two thin layers of insulating material (mylar or kaptan). Adjacent to one layer of insulation is a much heavier backing insulator (polyethylene) whereas air is adjacent to the other layer. Because of the differing masses on the two sides of the foil, the foil expansion and hydrodynamic motion is essentially one-sided and the layer of insulation on the expanding side becomes a readily-characterizable ''flyer'' which provides a controlled amount of hydrodynamic tamping. In addition to the usual voltage, current, and dI/dt electrical measurements, time-resolved spectrometer measurements are used to determine the temperature of the expanding metallic foil. Post-shot examination of the flyer and the insulation impacted by the flyer gives insight into the experimental behavior

  18. Neo-Taylorism in Educational Administration?

    Science.gov (United States)

    Gronn, Peter C.

    1982-01-01

    Reviews eight recent observational studies of school administrators and criticizes the studies' use of "time and motion" assumptions drawn from Frederick Winslow Taylor's ideas. Outlines an alternate approach based on "thick" description of administrators' work, including their talk, as exemplified in James Boswell's biography…

  19. The Interpretation Of Metaphor Found In 20 Songs Of Taylor Swift

    OpenAIRE

    Desriani, Shella

    2015-01-01

    This paper entitled The interpretation of metaphor found in 20 of taylor swift. this paper discuss the types and meaning of metaphor in the lyrics of the song taylor swift. The purpose of this paper is to analyze types of metaphor in the form of simile, personification and hyperbole contained in the lyrics of the song taylor swift. In this paper the authors wrote the paper used the method of literature, collect some data from some books, and the internet. the lyric which contained metaphors i...

  20. Rapid Calculation of Spacecraft Trajectories Using Efficient Taylor Series Integration

    Science.gov (United States)

    Scott, James R.; Martini, Michael C.

    2011-01-01

    A variable-order, variable-step Taylor series integration algorithm was implemented in NASA Glenn's SNAP (Spacecraft N-body Analysis Program) code. SNAP is a high-fidelity trajectory propagation program that can propagate the trajectory of a spacecraft about virtually any body in the solar system. The Taylor series algorithm's very high order accuracy and excellent stability properties lead to large reductions in computer time relative to the code's existing 8th order Runge-Kutta scheme. Head-to-head comparison on near-Earth, lunar, Mars, and Europa missions showed that Taylor series integration is 15.8 times faster than Runge- Kutta on average, and is more accurate. These speedups were obtained for calculations involving central body, other body, thrust, and drag forces. Similar speedups have been obtained for calculations that include J2 spherical harmonic for central body gravitation. The algorithm includes a step size selection method that directly calculates the step size and never requires a repeat step. High-order Taylor series integration algorithms have been shown to provide major reductions in computer time over conventional integration methods in numerous scientific applications. The objective here was to directly implement Taylor series integration in an existing trajectory analysis code and demonstrate that large reductions in computer time (order of magnitude) could be achieved while simultaneously maintaining high accuracy. This software greatly accelerates the calculation of spacecraft trajectories. At each time level, the spacecraft position, velocity, and mass are expanded in a high-order Taylor series whose coefficients are obtained through efficient differentiation arithmetic. This makes it possible to take very large time steps at minimal cost, resulting in large savings in computer time. The Taylor series algorithm is implemented primarily through three subroutines: (1) a driver routine that automatically introduces auxiliary variables and

  1. Role of parallel flow curvature on the mitigation of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Sarmah, D.; Sen, S.; Cairns, R.A.

    2001-01-01

    The effect of a radially varying parallel equilibrium flow on the stability of the Rayleigh-Taylor (RT) mode is studied analytically in the presence of a sheared magnetic field. It is shown that the parallel flow curvature can completely stabilize the RT mode. The flow curvature also has a robust effect on the radial structure of the mode. Possible implications of these theoretical findings to recent experiments are also discussed

  2. Determination of the diffusion coefficient of salts in non-Newtonian liquids by the Taylor dispersion method

    Energy Technology Data Exchange (ETDEWEB)

    Mey, Paula; Varges, Priscilla R.; Mendes, Paulo R. de Souza [Dept. of Mechanical Engineering. Pontificia Universidade Catolica do RJ (PUC-Rio), RJ (Brazil)], e-mails: prvarges@puc-rio.br, pmendes@puc-rio.br

    2010-07-01

    This research looked for a method to determine the binary diffusion coefficient D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water.D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water. (author)

  3. Photonic arbitrary waveform generator based on Taylor synthesis method

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2016-01-01

    Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme......, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical...... waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large...

  4. Experiments with activated metal foils

    Energy Technology Data Exchange (ETDEWEB)

    Malati, M A [Medway and Maidstone Coll. of Tech., Chatham (UK)

    1978-09-01

    Experiments based on the activation of metal foils by slow neutron bombardment which can be used to demonstrate various aspects of artificial radioactivity are described and discussed. Suitable neutron sources and foils are considered.

  5. VizieR Online Data Catalog: Abundances of late G/K dwarfs in solar neighborhood (Taylor, 1970)

    Science.gov (United States)

    Taylor, B. J.

    2016-02-01

    In this investigation, a technique developed by Spinrad and Taylor for obtaining metal abundances of late-type stars, and used by them in an earlier investigation of evolved stars (see Cat. II/47), is applied to field dwarfs in the solar vicinity and to the Hyades. The colors determined from photoelectric spectrum-scanner observations are listed in the "raw_data.dat" file; the derived blocking factors are given in the "blocking.dat" file. These results were published as the Table 5 of the paper. (2 data files).

  6. Taylor Hydro plant goes live

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The 12.75 MW Taylor Hydroelectric Plant in Magrath, Alberta, synchronized its generator with the Alberta Power Grid and began production in April 2000. The plant is located on Government of Alberta irrigation works and is owned by Canadian Hydro Developers. During the irrigation season the plant will generate approximately 40 million kilowatt hours of zero-emission 'green' power for consumption, enough to power 5,000 homes for a year. The Taylor plant is a joint venture with EPCOR Power Development Corporation, a wholly-owned subsidiary of EPCOR Inc., the City of Edmonton utility. Canadian Hydro Developers also owns a 19 MW wind plant and a 6 MW gas plant in Alberta and five other 'run of river' hydro plants in Ontario and British Columbia. The company is committed to the concept of low-impact power generation; its ownership of wind run-of-river hydro and gas-fired facilities is proof of that commitment

  7. Micromixer based on Taylor dispersion

    International Nuclear Information System (INIS)

    Yang, H; Nguyen, N-T; Huang, X

    2006-01-01

    This paper reports an analytical model, the fabrication and the characterization of a polymeric micromixer based on Taylor dispersion. Due to the distributed velocity field over the channel cross section, the effective dispersion in axial direction in a microchannel is much stronger than the pure molecular diffusion. In our work, squential segmentation was used in the micromixer for improving mixing in a microchannel. The micromixer was designed and fabricated based on lamination of five 100-μm-thick polymer sheets. Rubber valve seats were embedded between the forth and the fifth layers. The polymer layers were machined using a CO 2 laser. The lamination of the five layers was carried out by a commercial hot laminator (Aurora LM-450HC). External solenoid actuators are used for closing the valves at the mixer inlets. The experimental results confirm the effect of Taylor dispersion. Mixing ratio can be adjusted by pulse width modulation of the control signal of the solenoids

  8. Numerical simulation of Rayleigh-Taylor turbulent mixing layers

    International Nuclear Information System (INIS)

    Poujade, O.; Lardjane, N.; Peybernes, M.; Boulet, M.

    2009-01-01

    Accelerations in actual Rayleigh-Taylor instabilities are often variable. This article focuses on a particular class of variable accelerations where g(t) ∝ t n . A reference database is built from high resolution hydrodynamic numerical simulations. The successful comparison with a simple OD analytical model and the statistical 2SFK (2-Structure, 2-Fluid, 2-Turbulence) turbulence model is provided. Moreover, we show the difference between the mechanism at play in the Rayleigh-Taylor turbulent mixing zone and Kolmogorov's in the self similar developed turbulent regime. (authors)

  9. Towards finite density QCD with Taylor expansions

    International Nuclear Information System (INIS)

    Karsch, F.; Schaefer, B.-J.; Wagner, M.; Wambach, J.

    2011-01-01

    Convergence properties of Taylor expansions of observables, which are also used in lattice QCD calculations at non-zero chemical potential, are analyzed in an effective N f =2+1 flavor Polyakov quark-meson model. A recently developed algorithmic technique allows the calculation of higher-order Taylor expansion coefficients in functional approaches. This novel technique is for the first time applied to an effective N f =2+1 flavor Polyakov quark-meson model and the findings are compared with the full model solution at finite densities. The results are used to discuss prospects for locating the QCD phase boundary and a possible critical endpoint in the phase diagram.

  10. Heat transfer in a Couette flow with part of the space between the plates filled with porous medium

    International Nuclear Information System (INIS)

    Carrocci, L.R.; Liu, C.Y.; Ismail, K.A.R.

    1982-01-01

    The effect of various parameters in the temperature profile is shown under boundary conditions for the Couette flow between infinite plates with part of the space filled with porous medium. The parameters observed are: pressure gradient, permeability, the non-dimensional product PE (Prandtl number x Eckert number), the relation between the thermal conductibility coefficient between porous region and pure fluid, and finally the non-dimensional product PR (Prandtl number x Reynolds number). (E.G.) [pt

  11. Development of surface perturbation target and thin silicon foil target used to research Rayleigh-Taylor instability in inertial confinement fusion experiment

    International Nuclear Information System (INIS)

    Zhou Bin; Sun Qi; Huang Yaodong; Shen Jun; Wu Guangming; Wang Jue

    2004-01-01

    The developments of the surface perturbation target and the thin silicon foil target used to research Rayleigh-Taylor instability in the resolved experiments of Inertial Confinement Fusion (ICF) are carried out. Based on the laser interference process combined with the figure-transfer process, the surface perturbation target with sine modulated perturbation is gotten, the wavelength is in the range of 20-100 μm and the amplitude is several micrometers. The thin silicon foil within the thickness about 3-4 μm is prepared by semiconductor process together with heavy-doped self-stop etching. Combined with ion beam etching, the check or the stripe patterns are transferred to the surface of thin silicon foils, and then the silicon grating foil is obtained

  12. Stability of an expanding cylindrical plasma envelope: Rayleigh--Taylor instability

    International Nuclear Information System (INIS)

    Han, S.J.

    1982-01-01

    The stability of a cylindrically symmetric plasma envelope driven outward by blast waves is considered. The plasma fluid is assumed to be a compressible, isentropic gas describable as an ideal gas ( p = arho/sup γ/, γ>1). The stability problem of such an envelope undergoing self-similar motion is solved by considering the initial-value problem. It is shown that in the early phase of an expansion, the envelope is unstable to Rayleigh--Taylor modes which develop at the inner surface. In the later phase of the expansion, the Rayleigh--Taylor modes are weakened due to the geometrical divergence effect. The implications of the time-dependent behavior of the Rayleigh--Taylor instability for plasma switches are discussed

  13. Growth of Rayleigh-Taylor and bulk convective instabilities in dynamics of plasma liners and pinches

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Velikovich, A.L.; Liberman, M.A.; Felber, F.S.

    1989-01-01

    Perturbation growth is studied for the initial, linear stage of an instability development in the course of a cylindrically-symmetric compression and expansion of plasma liners and Z-pinches with a sharp boundary. The hydrodynamic instabilities are Rayleigh-Taylor and bulk convective ones, the former being the most dengerous. Classification of the instability modes developing in accelerated plasmas, inclusing the local and global Rayleigh-Taylor modes, is given. The spectra of the instability growth rates are calculated for plasma liners and Z-pinches. The properties of the spectra appear to explain the filamentation and stratification of plasmas observed in the experiments with liners and Z-pinches. An axial magnetic field is shown to create a window of stability in the space of the flow parameters, where th Rayleigh-Taylor modes are fully suppressed by the magnetic shear, and the bulk convective ones - to a considerable extent. The axial magnetic field required to stabilize the implosion of a liner is estimated as B z0 =(10-30 kG)I(MA)/R 0 (cm), where I is the average current, R 0 - the initial radius of the liner

  14. Turbulent pattern formation in plane Couette flow: modelling and investigation of mechanisms

    International Nuclear Information System (INIS)

    Rolland, Joran; Manneville, Paul

    2011-01-01

    In the transitional range of Reynolds number, plane Couette flow exhibits oblique turbulent bands. We focus on a Kelvin-Helmholtz instability occurring in the intermediate area between turbulent and laminar flow. The instability is characterised by means of Direct Numerical Simulations (DNS): a short wavelength instability, localised and advected in the spanwise direction. The coherent background flow on which the instability develops is extracted from DNS data, and an analytical formulation for the background flow is proposed. Linear stability analysis is performed to investigate its main mechanisms and its convective or absolute nature, depending on the location in the flow. Both DNS and linear stability analysis indicate that the instability takes place in a confined area 'inside' turbulent streaks. This proceeding sums up the results from an article in preparation (Rolland, 2011).

  15. Fluctuation scaling, Taylor's law, and crime.

    Directory of Open Access Journals (Sweden)

    Quentin S Hanley

    Full Text Available Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026 while burglary exhibited a greater exponent (α = 1.292 ± 0.029 indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs to 2.094 ± 0081 (Other Crimes. Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  16. Fluctuation scaling, Taylor's law, and crime.

    Science.gov (United States)

    Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May

    2014-01-01

    Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.

  17. Atomic Power | Taylor | Zede Journal

    African Journals Online (AJOL)

    Zede Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3 (1968) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Atomic Power. D Taylor. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT ...

  18. Theoretical Physics Division progress report

    International Nuclear Information System (INIS)

    1989-01-01

    The research areas covered in this report are solid state and quantum physics, theoretical metallurgy, fuel modelling and reactor materials, statistical physics and the theory of fluids. Attention is drawn to a number of items: (i) the application of theories of aerosol behaviour to the interpretation of conditions in the cover-gas space of a fast reactor; (ii) studies in non-linear dynamics, dynamical instabilities and chaotic behaviour covering for example, fluid behaviour in Taylor-Couette experiments, non-linear behaviour in electronic circuits and reaction-diffusion systems; (iii) the development of finite element computational techniques to describe the periodic behaviour of a system after a Hopf bifurcation and in simulating solidification processes; (iv) safety assessment of disposal concepts for low- and intermediate-level radioactive wastes. (U.K.)

  19. Rayleigh-Taylor instability of cylindrical jets with radial motion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang M. [GE Nuclear, Wilmington, NC (United States); Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to accelleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed.

  20. A Molecular Dynamics Simulation of the Turbulent Couette Minimal Flow Unit

    Science.gov (United States)

    Smith, Edward

    2016-11-01

    What happens to turbulent motions below the Kolmogorov length scale? In order to explore this question, a 300 million molecule Molecular Dynamics (MD) simulation is presented for the minimal Couette channel in which turbulence can be sustained. The regeneration cycle and turbulent statistics show excellent agreement to continuum based computational fluid dynamics (CFD) at Re=400. As MD requires only Newton's laws and a form of inter-molecular potential, it captures a much greater range of phenomena without requiring the assumptions of Newton's law of viscosity, thermodynamic equilibrium, fluid isotropy or the limitation of grid resolution. The fundamental nature of MD means it is uniquely placed to explore the nature of turbulent transport. A number of unique insights from MD are presented, including energy budgets, sub-grid turbulent energy spectra, probability density functions, Lagrangian statistics and fluid wall interactions. EPSRC Post Doctoral Prize Fellowship.

  1. Processo de trabalho e eficiência produtiva: Smith, Marx, Taylor e Lênin

    Directory of Open Access Journals (Sweden)

    Benedito Rodrigues de Moraes Neto

    2009-09-01

    Full Text Available A partir de reflexão sobre uma hipotética transição do capitalismo em sua natureza manufatureira ao socialismo, procura-se deixar marcada a razão pela qual, seguindo a proposta de Marx, essa transição exige que a produção se realize sob a égide da maquinaria. Consegue-se, como parte dessa reflexão, identificar, para o caso da manufatura, um trade-off entre eficiência produtiva e humanização das atividades de trabalho. Procura-se esclarecer que, dada a natureza do taylorismo-fordismo como "reinvenção da manufatura", o exercício de início especulativo passa a ter sentido histórico. Busca-se argumentar que a ampla assimilação do taylorismo-fordismo pela experiência de implantação do socialismo na União Soviética a aprisionou ao mencionado trade-off , fazendo com que a primeira experiência de superação do capitalismo se impregnasse perversamente da mediocridade imanente ao taylorismo-fordismo. Finalmente, são feitos rápidos comentários acerca dos desdobramentos da recente automação de base microeletrônica sobre a natureza de um projeto socialista.From an analysis of a hypothetical transition from manufacture capitalism to socialism, we intend to stress the reason why, according to Marx´s proposition, it is demanded that this transition takes place under machinery´s domain. In the case of manufacture it is possible to identify a trade-off between the productive efficiency and the humanization of the labor activities. We then intend to clarify that the initially hypothetical speculation acquires a historic sense in as much as taylorism-fordism´s nature can be understood as a "reinvention of the manufacturing system". We shall then argue that the wide assimilation of taylorism-fordism in the Soviet Union´s experience of socialism implementation imprisoned it within the mentioned trade-off, which caused the first experience of capitalism´s surmount to be perversely impregnated with the immanent mediocrity of

  2. High-Energy, High-Pulse-Rate Light Sources for Enhanced Time-Resolved Tomographic PIV of Unsteady and Turbulent Flows

    Science.gov (United States)

    2017-07-31

    ultimately, may lead to revolutionary practical methods for the prediction and control of unsteady and turbulent flow. Recent work suggests a class...Recent work suggests a class of exact Navier-Stokes solutions termed “Exact Coherent Structures” (ECS) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] may...velocimetry. In the Taylor-Couette geometry, walls are always in close proximity to the flows of interest; thus, interrogation of fluorescing particles

  3. Rayleigh-Taylor instabilities in indirect laser drive with rugby-shaped hohlraums

    International Nuclear Information System (INIS)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.P.; Richard, A.; Liberatore, S.; Vandenboomgaerde, M.

    2009-01-01

    The mastering of the development of hydrodynamic instabilities like Rayleigh-Taylor instabilities is an important milestone on the way to perform efficient laser implosions. The complexity of these instabilities implies an experimental validation of the theoretical models and their computer simulations. An experimental platform involving the Omega laser has allowed us to perform indirect drive with rugby-shaped hohlraums. The experiments have validated the growth of 2- and 3-dimensional initial defects as predicted by theory. We have shown that the 3-dimensional defect saturates for an higher amplitude than the 2-dimensional one does. The experiments have been made by using a plastic shell doped with Germanium (CH:Ge). (A.C.)

  4. Repainting, modifying, smashing Taylorism

    OpenAIRE

    Pruijt, Hans

    2000-01-01

    textabstractAbstract Survey data show that post-Tayloristic production concepts are not developing to the extent that many researchers had originally expected. It also is inadequate to portray post-Taylorism as a development that is happening, but just slower than expected. This is inadequate because there are counter-tendencies: the resurgence of the assembly line in the highly paradigmatic automobile assembly; the rise of the McDonalds-type organization; and continuing skills-replacing auto...

  5. Rayleigh-Taylor instability of cylindrical jets with radial motion

    International Nuclear Information System (INIS)

    Chen, X.M.; Schrock, V.E.; Peterson, P.F.

    1997-01-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to acceleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of instability for a cylindrical surface with radial motions. The results of the analysis show that, like the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed. (orig.)

  6. Dynamic stabilization of the imploding-shell Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Boris, J.P.

    1977-01-01

    A method for dynamic stabilization of the Rayleigh-Taylor (R-T) instability on the surface of an imploding fusion pellet is discussed. The driving laser beams are modulated in intensity so the ablation layer is subject to a rapidly and strongly oscillating acceleration. A substantial band of the Rayleigh-Taylor instability spectrum can be stabilized by this oscillation even though the time average acceleration vector lies in the destabilizing direction. By adjusting the frequency, structure, and amplitude of the modulation, the band of dynamically stabilized modes can be made to include the most unstable and dangerous modes. Thus considerably higher aspect ratio shells (i.e., thinner shells) could implode successfully than had been previously considered stable enough. Both theory and numerical simulations support this conclusion for the case of laser-driven pellet implosions. Similar modulation via transverse beam oscillations or parallel bunching should also work to stabilize the most dangerous surface Rayleigh-Taylor modes in relativistic electron-, ion- and heavy ion-pellet fusion schemes. (U.K.)

  7. The right versus the good? On the right in the Philosophy of Charles Taylor

    Directory of Open Access Journals (Sweden)

    Javier García Caladín

    2013-05-01

    Full Text Available The aim of this article is to analyze the famous confrontation between the right and the good. We start with the analysis of Charles Taylor about the different significances of the good and his criticism to a procedural and restrictive approach of the moral (such as Habermas and Kymlicka. Secondly, we review in depth the ethics of Taylor and we stress the vague remark of «the just» in the use of Taylor. Finally, we evaluate the deontological deficiencies of the ethics of Taylor and try to find other ways to complement it.

  8. Dynamo generated by the centrifugal instability

    Science.gov (United States)

    Marcotte, Florence; Gissinger, Christophe

    2016-10-01

    We present a scenario for magnetic field amplification where an electrically conducting fluid is confined in a differentially rotating, spherical shell with thin aspect ratio. When the angular momentum sufficiently decreases outwards, a hydrodynamic instability develops in the equatorial region, characterized by pairs of counter-rotating toroidal vortices similar to those observed in cylindrical Couette flow. These spherical Taylor-Couette vortices generate a subcritical dynamo magnetic field dominated by nonaxisymmetric components. We show that the critical magnetic Reynolds number seems to reach a constant value at large Reynolds number and that the global rotation can strongly decrease the dynamo onset. Our numerical results are understood within the framework of a simple dynamical system, and we propose a low-dimensional model for subcritical dynamo bifurcations. Implications for both laboratory dynamos and astrophysical magnetic fields are finally discussed.

  9. Expressing the remainder of the Taylor polynomial when the function lacks smoothness

    Czech Academy of Sciences Publication Activity Database

    Hošek, Radim

    2017-01-01

    Roč. 72, č. 3 (2017), s. 126-130 ISSN 0013-6018 Institutional support: RVO:67985840 Keywords : Taylor polynomial * Taylor theorem Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics http://www.ems-ph.org/doi/10.4171/EM/335

  10. Ablation front rayleigh taylor dispersion curve in indirect drive

    International Nuclear Information System (INIS)

    Budil, K.S.; Lasinski, B.; Edwards, M.J.; Wan, A.S.; Remington, B.A.; Weber, S.V.; Glendinning, S.G.; Suter, L.; Stry, P.

    2000-01-01

    The Rayleigh-Taylor (RT) instability, which occurs when a lower-density fluid accelerates a higher-density layer, is common in nature. At an ablation front a sharp reduction in the growth rate of the instability at short wave-lengths can occur, in marked contrast to the classical case where growth rates are highest at the shortest wavelengths. Theoretical and numerical investigations of the ablative RT instability are numerous and differ considerably on the level of stabilization expected. We present here the results of a series of laser experiments designed to probe the roll-over and cutoff region of the ablation-front RT dispersion curve in indirect drive. Aluminum foils with imposed sinusoidal perturbations ranging in wavelength from 10 to 70 pm were ablatively accelerated with a radiation drive generated in a gold cylindrical hohlraum. A strong shock wave compresses the package followed by an ∼2 ns period of roughly constant acceleration and the experiment is diagnosed via face-on radiography. Perturbations with wavelengths (ge) 20 (micro)m experienced substantial growth during the acceleration phase while shorter wavelengths showed a sharp drop off in overall growth. These experimental results compared favorably to calculations with a 2-D radiation-hydrodynamics code, however, the growth is significantly affected by the rippled shock launched by the drive. We performed numerical simulations to elucidate the influence of the rippled shock wave on the eventual growth of the perturbations, allowing comparisons to the analytic model developed by Betti et al. This combination of experiments, simulations and analytic modeling illustrates the qualitative simplicity yet quantitative complexity of the compressible RT instability. We have measured the Rayleigh-Taylor (RT) dispersion curve for a radiatively-driven sample in a series of experiments on the Nova laser facility. Planar aluminum foils were ablatively-accelerated and the subsequent perturbation growth was

  11. Direct numerical simulation of the Rayleigh-Taylor instability with the spectral element method

    International Nuclear Information System (INIS)

    Zhang Xu; Tan Duowang

    2009-01-01

    A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh-Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh-Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows. (authors)

  12. Critical condition for the transformation from Taylor cone to cone-jet

    International Nuclear Information System (INIS)

    Wei Cheng; Zhao Yang; Gang Tie-Qiang; Chen Li-Jie

    2014-01-01

    An energy method is proposed to investigate the critical transformation condition from a Taylor cone to a cone-jet. Based on the kinetic theorem, the system power allocation and the electrohydrodynamics stability are discussed. The numerical results indicate that the energy of the liquid cone tip experiences a maximum value during the transformation. With the proposed jetting energy, we give the critical transformation condition under which the derivative of jetting energy with respect to the surface area is greater than or equal to the energy required to form a unit of new liquid surface

  13. Rayleigh Taylor instability of two superposed compressible fluids in un-magnetized plasma

    International Nuclear Information System (INIS)

    Sharma, P K; Tiwari, A; Argal, S; Chhajlani, R K

    2014-01-01

    The linear Rayleigh Taylor instability of two superposed compressible Newtonian fluids is discussed with the effect of surface tension which can play important roles in space plasma. As in both the superposed Newtonian fluids, the system is stable for potentially stable case and unstable for potentially unstable case in the present problem also. The equations of the problem are solved by normal mode method and a dispersion relation is obtained for such a system. The behaviour of growth rate is examined in the presence of surface tension and it is found that the surface tension has stabilizing influence on the Rayleigh Taylor instability of two superposed compressible fluids. Numerical analysis is performed to show the effect of sound velocity and surface tension on the growth rate of Rayleigh Taylor instability. It is found that both parameters have stabilizing influence on the growth rate of Rayleigh Taylor instability.

  14. Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki; Akamatsu, Daisuke

    2009-01-01

    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.

  15. Experimental investigation of turbulent mixing by Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Youngs, D.L.

    1992-01-01

    A key feature of compressible turbulent mixing is the generation of vorticity via the ∇px ∇(1/ρ) term. This source of vorticity is also present in incompressible flows involving the mixing of fluids of different density, for example Rayleigh-Taylor unstable flows. This paper gives a summary of an experimental investigation of turbulent mixing at a plane boundary between two fluids, of densities ρ 1 , and ρ 2 . (ρ 1 > ρ 2 ) due to Rayleigh-Taylor instability. The two fluids are near incompressible and mixing occurs when an approximately constant acceleration, g, is applied normal to the interface with direction from fluid 2 to fluid 1. Full details of the experimental programme are given in a set of three reports. Some of the earlier experiments are also described by Read. Previous experimental work and much of the theoretical research has concentrated on studying the growth of the instability from a single wavelength perturbation rather than turbulent mixing. Notable exceptions are published in the Russian literature. A related process, turbulent mixing induced by the passage of shock waves though an interface between fluids of different density is described by Andronov et al. The major purpose of the experiments described here was to study the evolution of the instability from small random perturbations where it is found that large and larger structures appear as time proceeds. A novel technique was used to provide the desired acceleration. The two fluids were enclosed in a rectangular tank, the lighter fluid 2 initially resting on top of the denser fluid 1. One or more rocket motors were then used to drive the tank vertically downwards. The aim of the experimental programme is to provide data for the calibration of a turbulence model used to predict mixing in real situations

  16. Slavnov-Taylor constraints for nontrivial backgrounds

    International Nuclear Information System (INIS)

    Binosi, D.; Quadri, A.

    2011-01-01

    We devise an algebraic procedure for the evaluation of Green's functions in SU(N) Yang-Mills theory in the presence of a nontrivial background field. In the ghost-free sector the dependence of the vertex functional on the background is shown to be uniquely determined by the Slavnov-Taylor identities in terms of a certain 1-PI correlator of the covariant derivatives of the ghost and the antighost fields. At nonvanishing background this amplitude is shown to encode the quantum deformations to the tree-level background-quantum splitting. The approach only relies on the functional identities of the model (Slavnov-Taylor identities, b-equation, antighost equation) and thus it is valid beyond perturbation theory, and, in particular, in a lattice implementation of the background field method. As an example of the formalism we analyze the ghost two-point function and the Kugo-Ojima function in an instanton background in SU(2) Yang-Mills theory, quantized in the background Landau gauge.

  17. Contexto y pensamiento de Charles Taylor sobre el consenso

    Directory of Open Access Journals (Sweden)

    Doris Elena Ospina Muñoz

    2017-01-01

    Full Text Available El artículo sostiene que el consenso no es un tema de primer orden en la filosofía política de Charles Taylor, pero una lectura orientada al problema puede ofrecer los elementos para establecer una teoría sobre dicha noción e identificar los argumentos para su justificación. Además, se enfatiza en el contexto de discusión que permite introducir la filosofía de Taylor como un modo de pensar sobre el consenso, alternativo al constructivismo.

  18. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S., E-mail: shahid.ali@ncp.edu.p [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); IPFN, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ahmed, Z. [COMSATS Institute of Information Technology, Department of Physics, Wah Campus (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, I. [COMSATS Institute of Information Technology, Department of Physics, Islamabad Campus (Pakistan)

    2009-08-10

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  19. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    International Nuclear Information System (INIS)

    Ali, S.; Ahmed, Z.; Mirza, Arshad M.; Ahmad, I.

    2009-01-01

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  20. Isomorph invariance of Couette shear flows simulated by the SLLOD equations of motion

    DEFF Research Database (Denmark)

    Separdar, Leila; Bailey, Nicholas; Schrøder, Thomas

    2013-01-01

    fluctuations of virial and potential energy. Such systems have good isomorphs (curves in the thermodynamic phase diagram along which structural, dynamical, and some thermodynamic quantities are invariant when expressed in reduced units). The SLLOD equations of motion were used to simulate Couette shear flows......Non-equilibrium molecular dynamics simulations were performed to study the thermodynamic, structural, and dynamical properties of the single-component Lennard-Jones and the Kob-Andersen binary Lennard-Jones liquids. Both systems are known to have strong correlations between equilibrium thermal...... of the two systems. We show analytically that these equations are isomorph invariant provided the reduced strain rate is fixed along the isomorph. Since isomorph invariance is generally only approximate, a range of strain rates were simulated to test for the predicted invariance, covering both the linear...

  1. ORSPHERE: CRITICAL, BARE, HEU(93.2)-METAL SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2013-09-01

    In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.

  2. Direct Numerical Simulation of the Rayleigh−Taylor Instability with the Spectral Element Method

    International Nuclear Information System (INIS)

    Xu, Zhang; Duo-Wang, Tan

    2009-01-01

    A novel method is proposed to simulate Rayleigh−Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier–Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh−Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh–Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh−Taylor instabilities of turbulent flows. (fundamental areas of phenomenology (including applications))

  3. An Attempt to Extend Taylor-Spence Drive Theory to Vocational Choice Behavior

    Science.gov (United States)

    Sharf, Richard S.

    1972-01-01

    Predictions were made from Taylor-Spence drive theory about vocational choice behavior. Although the results did not specifically support the predictions made from Taylor-Spence theory, they indicated the potential usefulness of certain concepts in this theory and suggested several lines of inquiry for further research. (Author)

  4. Reconnaissance study of the Taylor Mountains pluton, southwestern Alaska

    Science.gov (United States)

    Hudson, Travis L.; Miller, Marti L.; Klimasauskas, Edward P.; Layer, Paul W.

    2010-01-01

    The Taylor Mountains pluton is a Late Cretaceous to early Tertiary (median age 65 + or ? 2 Ma) epizonal, composite biotite granite stock located about 235 km (145 mi) northeast of Dillingham in southwestern Alaska. This 30 km2 (12 mi2) pluton has sharp and discordant contacts with hornfels that developed in Upper Cretaceous clastic sedimentary rocks of the Kuskokwim Group. The three intrusive phases in the Taylor Mountains pluton, in order of emplacement, are (1) porphyritic granite containing large K-feldspar phenocrysts in a coarse-grained groundmass, (2) porphyritic granite containing large K-feldspar and smaller, but still coarse, plagioclase, quartz, and biotite phenocrysts in a fine-grained groundmass, and (3) fine-grained, leucocratic, equigranular granite. The porphyritic granites have different emplacement histories, but similar compositions; averages are 69.43 percent SiO2, 1.62 percent CaO, 5.23 percent FeO+MgO, 3.11 percent Na2O, and 4.50 percent K2O. The fine-grained, equigranular granite is distinctly felsic compared to porphyritic granite; it averages 75.3 percent SiO2, 0.49 percent CaO, 1.52 percent FeO+MgO, 3.31 percent Na2O, and 4.87 percent K2O. Many trace elements including Ni, Cr, Sc, V, Ba, Sr, Zr, Y, Nb, La, Ce, Th, and Nd are strongly depleted in fine-grained equigranular granite. Trace elements are not highly enriched in any of the granites. Known hydrothermal alteration is limited to one tourmaline-quartz replacement zone in porphyritic granite. Mineral deposits in the Taylor Mountains area are primarily placer gold (plus wolframite, cassiterite, and cinnabar); sources for these likely include scattered veins in hornfels peripheral to the Taylor Mountain pluton. The granite magmas that formed the Taylor Mountains pluton are thought to represent melted continental crust that possibly formed in response to high heat flow in the waning stage of Late Cretaceous subduction beneath interior Alaska.

  5. A cosmological Slavnov-Taylor identity

    Science.gov (United States)

    Collins, Hael; Holman, R.; Vardanyan, Tereza

    2014-12-01

    We develop a method for treating the consistency relations of inflation that includes the full time-evolution of the state. This approach relies only on the symmetries of the inflationary setting, in particular a residual conformal symmetry in the spatial part of the metric, along with general properties which hold for any quantum field theory. As a result, the consistency relations that emerge, which are essentially the Slavnov-Taylor identities associated with this residual conformal symmetry, apply very generally: they are true of the full Green's functions, hold largely independently of the particular inflationary model, and can be used for arbitrary states. We illustrate these techniques by showing the form assumed by the standard consistency relation between the two and three-point functions for the primordial scalar fluctuations when they are in a Bunch-Davies state. But because we have included the full evolution of the state, this approach works for a general initial state as well and does not need to have assumed that inflation began in the Bunch-Davies state. We explain how the Slavnov-Taylor identity is modified for these more general states.

  6. Measurements of wall shear stress in a planar turbulent Couette flow with porous walls

    Science.gov (United States)

    Beuther, Paul

    2013-11-01

    Measurements of drag on a moving web in a multi-span festoon show a stronger than expected dependency on the porosity of the web. The experiments suggest a wall shear stress 3-4 times larger than non-porous webs or historical Couette flow data for solid walls. Previous DNS studies by Jimenez et al. (JFM Vol 442) of boundary layers with passive porous surfaces predict a much smaller increase in wall shear stress for a porous wall of only 40%. Other DNS studies by Quadrio et al. (JFM Vol 576) of porous walls with periodic transpiration do show a large increase in drag under certain periodic conditions of modest amplitude. Although those results are aligned in magnitude with this study, the exact reason for the observed high drag for porous webs in this present study is not understood because there was no external disturbance applied to the web. It can be hypothesized that natural flutter of the web results in a similar mechanism shown in the periodic DNS study, but when the natural flutter was reduced by increasing web tension, there was only a small decrease of the drag. A key difference in this study is that because of the multiple parallel spans in a festoon, any transpiration in one layer must act in the opposite manner on the adjacent span.

  7. Quantum effects on the Rayleigh-Taylor instability in a horizontal inhomogeneous rotating plasma

    International Nuclear Information System (INIS)

    Hoshoudy, G. A.

    2009-01-01

    The Rayleigh-Taylor instability is studied analytically in inhomogeneous plasma rotating uniformly in an external transverse magnetic field. The influence of the quantum mechanism is considered. For a stratified layer the linear growth rate is obtained. Some special cases that isolate the effect of various parameters on the growth rate of the Rayleigh-Taylor instability are discussed. It is shown that for some cases, the presence of the external transverse magnetic field beside the quantum effect will bring about more stability on the Rayleigh-Taylor instability.

  8. Effects of thermal conduction and compressibility on Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Takabe, Hideaki; Mima, Kunioki.

    1980-01-01

    In order to study the stability of the ablation front in laser driven implosion, the thermal conduction and compressibility effects on the Rayleigh-Taylor instability are considered. It is found that the thermal conduction effect cannot stabilize the Rayleigh-Taylor mode, but reduce the growth rate in the short wavelength case. But, the growth rate is found not to differ from the classical value √gk in the long wavelength limit, where the compressibility is essential. (author)

  9. Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casner, A., E-mail: alexis.casner@cea.fr; Masse, L.; Liberatore, S.; Loiseau, P.; Masson-Laborde, P. E.; Jacquet, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Martinez, D.; Moore, A. S.; Seugling, R.; Felker, S.; Haan, S. W.; Remington, B. A.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Farrell, M.; Giraldez, E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States)

    2015-05-15

    Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF laser beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (≃1.4 mm) and longer time periods (≃12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front.

  10. Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    International Nuclear Information System (INIS)

    Riccardo Bonazza

    2006-01-01

    The present research program is centered on the experimental and numerical study of two instabilities that develop at the interface between two different fluids when the interface experiences an impulsive or a constant acceleration. The instabilities, called the Richtmyer-Meshkov and Rayleigh-Taylor instability, respectively (RMI and RTI), adversely affect target implosion in experiments aimed at the achievement of nuclear fusion by inertial confinement by causing the nuclear fuel contained in a target and the ablated shell material to mix, leading to contamination of the fuel, yield reduction or no ignition at all. Specifically, our work is articulated in three main directions: study of impulsively accelerated spherical gas inhomogeneities; study of impulsively accelerated 2-D interfaces; study of a liquid interface under the action of gravity. The objectives common to all three activities are to learn some physics directly from our experiments and calculations; and to develop a database at previously untested conditions to be used to calibrate and verify some of the computational tools being developed within the RTI/RMI community at the national laboratories and the ASCI centers

  11. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    Science.gov (United States)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. On generalizations of the series of Taylor, Lagrange, Laurent and Teixeira

    Directory of Open Access Journals (Sweden)

    L. M. B. C. Campos

    1990-01-01

    Full Text Available The classical theorems of Taylor, Lagrange, Laurent and Teixeira, are extended from the representation of a complex function F(z, to its derivative F(ν(z of complex order ν, understood as either a ‘Liouville’ (1832 or a ‘Rieman (1847’ differintegration (Campos 1984, 1985; these results are distinct from, and alternative to, other extensions of Taylor's series using differintegrations (Osler 1972, Lavoie & Osler & Tremblay 1976. We consider a complex function F(z, which is analytic (has an isolated singularity at ζ, and expand its derivative of complex order F(ν(z, in an ascending (ascending-descending series of powers of an auxiliary function f(z, yielding the generalized Teixeira (Lagrange series, which includes, for f(z=z−ζ, the generalized Taylor (Laurent series. The generalized series involve non-integral powers and/or coefficients evaluated by fractional derivatives or integrals, except in the case ν=0, when the classical theorems of Taylor (1715, Lagrange (1770, Laurent (1843 and Teixeira (1900 are regained. As an application, these generalized series can be used to generate special functions with complex parameters (Campos 1986, e.g., the Hermite and Bessel types.

  13. Dominant Taylor Spectrum and Invariant Subspaces

    Czech Academy of Sciences Publication Activity Database

    Ambrozie, Calin-Grigore; Müller, Vladimír

    2009-01-01

    Roč. 61, č. 1 (2009), s. 101-111 ISSN 0379-4024 R&D Projects: GA ČR(CZ) GA201/06/0128 Institutional research plan: CEZ:AV0Z10190503 Keywords : Taylor spectrum * Scott-Brown technique * dominant spectrum Subject RIV: BA - General Mathematics Impact factor: 0.580, year: 2009

  14. Poiseuille, thermal transpiration and Couette flows of a rarefied gas between plane parallel walls with nonuniform surface properties in the transverse direction and their reciprocity relations

    Science.gov (United States)

    Doi, Toshiyuki

    2018-04-01

    Slow flows of a rarefied gas between two plane parallel walls with nonuniform surface properties are studied based on kinetic theory. It is assumed that one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary whose accommodation coefficient varies periodically in the direction perpendicular to the flow. The time-independent Poiseuille, thermal transpiration and Couette flows are considered. The flow behavior is numerically studied based on the linearized Bhatnagar-Gross-Krook-Welander model of the Boltzmann equation. The flow field, the mass and heat flow rates in the gas, and the tangential force acting on the wall surface are studied over a wide range of the gas rarefaction degree and the parameters characterizing the distribution of the accommodation coefficient. The locally convex velocity distribution is observed in Couette flow of a highly rarefied gas, similarly to Poiseuille flow and thermal transpiration. The reciprocity relations are numerically confirmed over a wide range of the flow parameters.

  15. A numerical study of Taylor vortex flow in a finite length tapered annulus

    International Nuclear Information System (INIS)

    Noui-Mehidi, M N; Ohmura, N; Wu, J

    2005-01-01

    The transient evolution and steady state analysis of Taylor vortex flow in a tapered annulus was conducted by numerical experiments in the case where the inner cylinder was rotated and the outer one fixed. The gap between the cylinders was linearly tapered from a supercritical value at the upper base to the critical value at the lower base. The wavelength adjustment depended on the variation of Reynolds number in the spatially ramped gap. The axisymmetric conservative governing equations were solved by the use of an simplified marker and cell (SMAC) algorithm. A coordinate transformation function allowed us to numerically solve the problem in a rectangular computational domain. The results have shown that Taylor vortices growth was sensitive to the spatial ramp of the gap even with tapering angle values less than one degree. The interaction between the inflow and outflow boundaries could be clearly seen as the taper angle was increased. The investigation of the transient dynamics related to the flow system also revealed a characteristic dependence on the taper angle

  16. Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders

    International Nuclear Information System (INIS)

    Paoletti, M. S.; Lathrop, D. P.

    2011-01-01

    We present measurements of the angular momentum flux (torque) in Taylor-Couette flow of water between independently rotating cylinders for all regions of the (Ω 1 , Ω 2 ) parameter space at high Reynolds numbers, where Ω 1 (Ω 2 ) is the inner (outer) cylinder angular velocity. We find that the Rossby number Ro=(Ω 1 -Ω 2 )/Ω 2 fully determines the state and torque G as compared to G(Ro=∞)≡G ∞ . The ratio G/G ∞ is a linear function of Ro -1 in four sections of the parameter space. For flows with radially increasing angular momentum, our measured torques greatly exceed those of previous experiments [Ji et al., Nature (London), 444, 343 (2006)], but agree with the analysis of Richard and Zahn [Astron. Astrophys. 347, 734 (1999)].

  17. Theoretical and numerical study of Rayleigh-Taylor instabilities in magnetized plasmas

    International Nuclear Information System (INIS)

    Andrei, A. Ivanov

    2001-06-01

    In this thesis we're studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words - two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external 'pumping' on the instability. These results can be applied to a wide range of systems, starting from classic hydrodynamics and up to astrophysical plasmas. The scheme of wire arrays has become recently a very popular method to obtain a high power X-radiation or for a high quality implosion in Z-pinches. The experimental studies have demonstrated that the results of implosion are much better for the case of multiple thin wires situated cylindrically than in a usual liner scheme. We have examined the problem modeling the stabilization of Rayleigh-Taylor instability for a wire array system. The reason for instability suppression is the regular spatial modulation of the surface plasma

  18. ORALLOY (93.15 235U) METAL ANNULI WITH BERYLLIUM CORE

    International Nuclear Information System (INIS)

    Bess, John D.; Montierth, Leland M.; Reed, Raymond L.; Mihalczo, John T.

    2010-01-01

    A variety of critical experiments were constructed of enriched uranium metal during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, two were performed that consisted of uranium metal annuli with a solid beryllium metal core. The outer diameter of the annuli was approximately 13 or 15 inches with an inner diameter of 7 inches. The diameter of the core was approximately 7 inches. The critical height of the configurations was approximately 5 and 4 inches, respectively. The uranium annuli consisted of multiple stacked rings with diametral thicknesses of approximately 2 inches apiece and varying heights. The 15-inch experiment was performed on June 4, 1963, and the 13-inch experiment on July 12, 1963 by J. T. Mihalczo and R. G. Taylor (Ref. 1) with accompanying logbook. Both detailed and simplified model specifications are provided in this evaluation. Both of these fast-spectra experiments were determined to represent acceptable benchmarks. The calculated eigenvalues for both the detailed and simple models are within approximately 0.6% of the benchmark values, but significantly greater than 3s from the benchmark value because the uncertainty in the benchmark is very small: eff of ∼0.67%. Unreflected and unmoderated experiments with the same highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in HEU MET

  19. Samuel Taylor Coleridge’s

    Directory of Open Access Journals (Sweden)

    Aslı TEKİNAY

    2000-01-01

    Full Text Available There is a dark strain which can be traced in the poetry of all the major nineteenth century English romantic poets: a scepticism about the ultimate purpose of man's life, a sense of having lost a metaphysical certainty and faith in the presence of a benevolent power who maintains harmony and order in the universe. Samuel Taylor Coleridge is one of them. In "The Rime of the Ancient Mariner" and "Christabel", he reveals a nightmarish vision of the universe where moral order seems to be replaced by a cosmic "hap".

  20. Applicability of Taylor's hypothesis in thermally driven turbulence

    Science.gov (United States)

    Kumar, Abhishek; Verma, Mahendra K.

    2018-04-01

    In this paper, we show that, in the presence of large-scale circulation (LSC), Taylor's hypothesis can be invoked to deduce the energy spectrum in thermal convection using real-space probes, a popular experimental tool. We perform numerical simulation of turbulent convection in a cube and observe that the velocity field follows Kolmogorov's spectrum (k-5/3). We also record the velocity time series using real-space probes near the lateral walls. The corresponding frequency spectrum exhibits Kolmogorov's spectrum (f-5/3), thus validating Taylor's hypothesis with the steady LSC playing the role of a mean velocity field. The aforementioned findings based on real-space probes provide valuable inputs for experimental measurements used for studying the spectrum of convective turbulence.

  1. Effect of FLR correction on Rayleigh -Taylor instability of quantum and stratified plasma

    International Nuclear Information System (INIS)

    Sharma, P.K.; Tiwari, Anita; Argal, Shraddha; Chhajlani, R.K.

    2013-01-01

    The Rayleigh Taylor instability of stratified incompressible fluids is studied in presence of FLR Correction and quantum effects in bounded medium. The Quantum magneto hydrodynamic equations of the problem are solved by using normal mode analysis method. A dispersion relation is carried out for the case where plasma is bounded by two rigid planes z = 0 and z = h. The dispersion relation is obtained in dimensionless form to discuss the growth rate of Rayleigh Taylor instability in presence of FLR Correction and quantum effects. The stabilizing or destabilizing behavior of quantum effect and FLR correction on the Rayleigh Taylor instability is analyzed. (author)

  2. Rayleigh-Taylor convective overturn in stellar collapse

    International Nuclear Information System (INIS)

    Bruenn, S.W.; Buchler, J.R.; Livio, M.

    1979-01-01

    Rayleigh--Taylor convective overturn in collapsing stellar cores is modeled with a one-dimensional parametrization. The results of a numerical hydrodynamic study are very encouraging and indicate that such an overturn could well be a dominant feature in the supernova explosion mechanism

  3. Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor

    Science.gov (United States)

    Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.

    2017-10-01

    The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.

  4. Ethics, organ donation and tax: a reply to Quigley and Taylor.

    Science.gov (United States)

    Lippert-Rasmussen, Kasper; Petersen, Thomas Søbirk

    2012-08-01

    A national opt-out system of post-mortem donation of scarce organs is preferable to an opt-in system. Unfortunately, the former system is not always feasible, and so in a recent JME article we canvassed the possibility of offering people a tax break for opting-in as a way of increasing the number of organs available for donation under an opt-in regime. Muireann Quigley and James Stacey Taylor criticize our proposal. Roughly, Quigley argues that our proposal is costly and, hence, is unlikely to be implemented, while Taylor contests our response to a Titmuss-style objection to our scheme. In response to Quigley, we note that our proposal's main attraction lies in gains not reflected in the figures presented by Quigley and that the mere fact that it is costly does not imply that it is unfeasible. In response to Taylor, we offer some textual evidence in support of our interpretation of Taylor and responds to his favoured interpretation of the Titmuss-style objection that many people seem to want to donate to charities even if they can deduct their donations from their income tax. Finally, we show why our views do not commit us to endorsing a free organ-market.

  5. Numerical study of Taylor bubbles with adaptive unstructured meshes

    Science.gov (United States)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  6. 3 CFR - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Science.gov (United States)

    2010-01-01

    ... to the Former Liberian Regime of Charles Taylor Presidential Documents Other Presidential Documents... of Charles Taylor On July 22, 2004, by Executive Order 13348, the President declared a national... to the former Liberian regime of Charles Taylor, pursuant to the International Emergency Economic...

  7. Three-dimensional fluctuating Couette flow through the porous plates with heat transfer

    Directory of Open Access Journals (Sweden)

    M. Guria

    2006-06-01

    Full Text Available Unsteady Couette flow of a viscous incompressible fluid between two horizontal porous flat plates is considered. The stationary plate is subjected to a periodic suction and the plate in uniform motion is subjected to uniform injection. Approximate solutions have been obtained for the velocity and the temperature fields, skin friction by using perturbation technique. The heat transfer characteristic has also been studied on taking viscous dissipation into account. It is found that the main flow velocity decreases with increase in frequency parameter. On the other hand, the magnitude of the cross-flow velocity increases with increase in frequency parameter. It is seen that the amplitude of the shear stress due to main flow decreases while that due to cross-flow increases with increase in frequency parameter. It is also seen that the tangent of phase shifts both due to the main and cross-flows decrease with increase in frequency parameter. It is observed that the temperature increases with increase in frequency parameter.

  8. Effect of Substrate Friction in a Two-Dimensional Granular Couette Shearing Cell

    Science.gov (United States)

    Templeman, Chris; Garg, Shila

    2001-03-01

    An investigation of the effect of substrate friction on the kinematics of rigid granular material in a two-dimensional granular Couette shearing cell was conducted. Cylindrical disks resting on a substrate were packed between a stationary outer ring and a rotating inner wheel. Previous work reports the velocity and particle rotation rates as a function of packing fraction and shearing rates [1]. The authors report the existence of a stick-slip condition of the disks in contact with the shearing wheel. The focus of our study is to investigate the impact of the substrate friction on the stick-slip condition as well as the kinematics of the system in general. [1] C.T. Veje, Daniel W. Howell, and R.P Behringer, Phys. Rev. E 59, 739 (1999). This research was partially supported by the Copeland Fund, administered by The College of Wooster. C.T. received support from NASA GRC LERCIP internship program.

  9. Student understanding of Taylor series expansions in statistical mechanics

    Directory of Open Access Journals (Sweden)

    Trevor I. Smith

    2013-08-01

    Full Text Available One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency in creating and using a Taylor series appropriately, despite previous exposures in both calculus and physics courses.

  10. Student understanding of Taylor series expansions in statistical mechanics

    Science.gov (United States)

    Smith, Trevor I.; Thompson, John R.; Mountcastle, Donald B.

    2013-12-01

    One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency in creating and using a Taylor series appropriately, despite previous exposures in both calculus and physics courses.

  11. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Yan, R.; Aluie, H.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.

    2016-01-01

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume

  12. Sixth International Symposium on Bifurcations and Instabilities in Fluid Dynamics (BIFD2015)

    DEFF Research Database (Denmark)

    Bar-Yoseph, P. Z.; Brøns, Morten; Gelfgat, A.

    2016-01-01

    dynamics and remain a challenge for experimental, theoretical and computational studies. Examples of prototypical hydrodynamic instabilities are the Rayleigh–Bénard, Taylor–Couette, Bénard–Marangoni, Rayleigh–Taylor, and Kelvin–Helmholtz instabilities. A fundamental understanding of bifurcation patterns...... diseases, such as atherosclerotic and vulnerable plaques, abdominal aortic aneurisms, carotid artery disease, and pulmonary embolisms and implications for vascular interventions such as grafting and stenting. The collection of papers in this issue is a selection of the presentations given at the Sixth...

  13. Low-dimensional chaos in a hydrodynamic system

    International Nuclear Information System (INIS)

    Brandstater, A.; Swift, J.; Swinney, H.L.; Wolf, A.; Farmer, J.D.; Jen, E.; Crutchfield, J.P.

    1983-01-01

    Evidence is presented for low-dimensional strange attractors in Couette-Taylor flow data. Computations of the largest Lyapunov exponent and metric entropy show that the system displays sensitive dependence on initial conditions. Although the phase space is very high dimensional, analysis of experimental data shows that motion is restricted to an attractor of dimension less than 5 for Reynolds numbers up to 30% above the onset of chaos. The Lyapunov exponent, entropy, and dimension all generally increase with Reynolds number

  14. Rayleigh-Taylor instability in the deceleration phase of spherical implosion experiments

    International Nuclear Information System (INIS)

    Smalyuk, V.A.; Delettrez, J.A.; Goncharov, V.N.; Marshall, F.J.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Town, R.P.J.; Yaakobi, B.

    2002-01-01

    The temporal evolution of inner-shell modulations, unstable during the deceleration phase of a laser-driven spherical implosion, has been measured through K-edge imaging [B. Yaakobi et al., Phys. Plasmas 7, 3727 (2000)] of shells with titanium-doped layers. The main study was based on the implosions of 1 mm diam, 20 μm thick shells filled with either 18 atm or 4 atm of D 3 He gas driven with 23 kJ, 1 ns square laser pulses on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. These targets have similar modulation levels at the beginning of the deceleration phase due to similar modulation growths in the acceleration phase, but different modulation growths throughout the deceleration phase due to different fill pressures (convergence ratios). At peak compression, the measured inner surface, areal-density nonuniformity σ rms levels were 23±5 % for more-stable 18 atm fill targets and 53±11 % for less-stable 4 atm fill targets. The inner-surface modulations grow throughout the deceleration phase due to Rayleigh-Taylor instability and Bell-Plesset convergence effects. The nonuniformity at peak compression is sensitive to the initial perturbation level as measured in implosions with different laser-smoothing conditions

  15. Ultrasonic velocity profiling rheometry based on a widened circular Couette flow

    International Nuclear Information System (INIS)

    Shiratori, Takahisa; Tasaka, Yuji; Oishi, Yoshihiko; Murai, Yuichi

    2015-01-01

    We propose a new rheometry for characterizing the rheological properties of fluids. The technique produces flow curves, which represent the relationship between the fluid shear rate and shear stress. Flow curves are obtained by measuring the circumferential velocity distribution of tested fluids in a circular Couette system, using an ultrasonic velocity profiling technique. By adopting a widened gap of concentric cylinders, a designed range of the shear rate is obtained so that velocity profile measurement along a single line directly acquires flow curves. To reduce the effect of ultrasonic noise on resultant flow curves, several fitting functions and variable transforms are examined to best approximate the velocity profile without introducing a priori rheological models. Silicone oil, polyacrylamide solution, and yogurt were used to evaluate the applicability of this technique. These substances are purposely targeted as examples of Newtonian fluids, shear thinning fluids, and opaque fluids with unknown rheological properties, respectively. We find that fourth-order Chebyshev polynomials provide the most accurate representation of flow curves in the context of model-free rheometry enabled by ultrasonic velocity profiling. (paper)

  16. Application of the Asymptotic Taylor Expansion Method to Bistable Potentials

    Directory of Open Access Journals (Sweden)

    Okan Ozer

    2013-01-01

    Full Text Available A recent method called asymptotic Taylor expansion (ATEM is applied to determine the analytical expression for eigenfunctions and numerical results for eigenvalues of the Schrödinger equation for the bistable potentials. Optimal truncation of the Taylor series gives a best possible analytical expression for eigenfunctions and numerical results for eigenvalues. It is shown that the results are obtained by a simple algorithm constructed for a computer system using symbolic or numerical calculation. It is observed that ATEM produces excellent results consistent with the existing literature.

  17. A numerical and analytical investigation of Rayleigh-Taylor instability in a solid tungsten plate

    International Nuclear Information System (INIS)

    Robinson, A.C.; Swegle, J.W.

    1987-07-01

    The Rayleigh-Taylor instability response of an elastic-plastic tungsten plate is investigated by numerical experiments and an approximate modal analysis. The so-called ''minimum amplitude'' instability criteria derived from plasticity analyses is shown to be incomplete as a general indicator of instability or stability at very large driving pressures. Model equations are derived which are able to reproduce the basic qualitative features of the observed instability response given by the numerical calculations. 11 refs., 29 figs

  18. Two-dimensional simulation of the hydromagnetic Rayleigh-Taylor instability in an imploding foil plasma

    International Nuclear Information System (INIS)

    Roderick, N.F.; Hussey, T.W.; Faehl, R.J.; Boyd, R.W.

    1978-01-01

    Two-dimensional (r-z) magnetohydrodynamic simulations of the electromagnetic implosion of metallic foil plasmas show, for certain initial configurations, a tendency to develop large-amplitude perturbations characteristic of the hydromagnetic Rayleigh-Taylor instability. These perturbations develop at the plasma magnetic field interface for plasma configurations where the density gradient scale length, the characteristic dimension for the instability, is short. The effects on the plasma dynamics of the implosion will be discussed for several initial foil configurations. In general, the growth rates and linear mode structure are found to be influenced by the plasma shell thickness and density gradient scale length, in agreement with theory. The most destructive modes are found to be those with wavelengths of the order of the plasma shell thickness

  19. Developpement of a numerical method for Navier-Stokes equations in anelastic approximation: application to Rayleigh-Taylor instabilities

    International Nuclear Information System (INIS)

    Hammouch, Z.

    2012-01-01

    The 'anelastic' approximation allows us to filter the acoustic waves thanks to an asymptotic development of the Navier-Stokes equations, so increasing the averaged time step, during the numerical simulation of hydrodynamic instabilities development. So, the anelastic equations for a two fluid mixture in case of Rayleigh-Taylor instability are established.The linear stability of Rayleigh-Taylor flow is studied, for the first time, for perfect fluids in the anelastic approximation. We define the Stokes problem resulting from Navier-Stokes equations without the non linear terms (a part of the buoyancy is considered); the ellipticity is demonstrated, the Eigenmodes and the invariance related to the pressure are detailed. The Uzawa's method is extended to the anelastic approximation and shows the decoupling speeds in 3D, the particular case k = 0 and the spurious modes of pressure. Passing to multi-domain allowed to establish the transmission conditions.The algorithms and the implementation in the existing program are validated by comparing the Uzawa's operator in Fortran and Mathematica languages, to an experiment with incompressible fluids and results from anelastic and compressible numerical simulations. The study of the influence of the initial stratification of both fluids on the development of the Rayleigh-Taylor instability is initiated. (author) [fr

  20. Approximate expressions for the period of a simple pendulum using a Taylor series expansion

    International Nuclear Information System (INIS)

    Belendez, Augusto; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi; Arribas, Enrique

    2011-01-01

    An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the oscillation amplitude as the variable, without considering that if they change the variable (in this paper to the new variable m), a different Taylor series expansion may be performed which is in addition more accurate than previously published ones. Students tend to believe that there is one and only one way of performing a Taylor series expansion of a specific function. The approximate analytical formula for the period is obtained by means of a Taylor expansion of the exact frequency taking into account the Kidd-Fogg formula for the period. This approach based on the Taylor expansion of the frequency about a suitable value converges quickly even for large amplitudes. We believe that this method may be very useful for teaching undergraduate courses on classical mechanics and helping students understand nonlinear oscillations of a simple pendulum.

  1. Approximate expressions for the period of a simple pendulum using a Taylor series expansion

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, Augusto; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Arribas, Enrique, E-mail: a.belendez@ua.es [Departamento de Fisica Aplicada, Escuela Superior de IngenierIa Informatica, Universidad de Castilla-La Mancha, Avda de Espana, s/n, E-02071 Albacete (Spain)

    2011-09-15

    An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the oscillation amplitude as the variable, without considering that if they change the variable (in this paper to the new variable m), a different Taylor series expansion may be performed which is in addition more accurate than previously published ones. Students tend to believe that there is one and only one way of performing a Taylor series expansion of a specific function. The approximate analytical formula for the period is obtained by means of a Taylor expansion of the exact frequency taking into account the Kidd-Fogg formula for the period. This approach based on the Taylor expansion of the frequency about a suitable value converges quickly even for large amplitudes. We believe that this method may be very useful for teaching undergraduate courses on classical mechanics and helping students understand nonlinear oscillations of a simple pendulum.

  2. Advection and Taylor-Aris dispersion in rivulet flow

    Science.gov (United States)

    Al Mukahal, F. H. H.; Duffy, B. R.; Wilson, S. K.

    2017-11-01

    Motivated by the need for a better understanding of the transport of solutes in microfluidic flows with free surfaces, the advection and dispersion of a passive solute in steady unidirectional flow of a thin uniform rivulet on an inclined planar substrate driven by gravity and/or a uniform longitudinal surface shear stress are analysed. Firstly, we describe the short-time advection of both an initially semi-infinite and an initially finite slug of solute of uniform concentration. Secondly, we describe the long-time Taylor-Aris dispersion of an initially finite slug of solute. In particular, we obtain the general expression for the effective diffusivity for Taylor-Aris dispersion in such a rivulet, and discuss in detail its different interpretations in the special case of a rivulet on a vertical substrate.

  3. Constructions of legitimacy: the Charles Taylor trial

    NARCIS (Netherlands)

    Glasius, M.; Meijers, T.

    2012-01-01

    This article examines the discourses of the prosecution and the defence in the case of Charles Taylor before the Special Court for Sierra Leone. It contributes to current debates about the legitimacy and utility of international criminal justice, which have tended to neglect the examination of

  4. The Rayleigh–Taylor Instability Among the Stars

    Indian Academy of Sciences (India)

    The Rayleigh–Taylor Instability Among the Stars. Rajaram Nityananda. Rajaram Nityananda works at the School of Liberal. Studies, Azim Premji. University, Bengaluru. Earlier, he spent a decade at the National Centre for Radio. Astrophysics in Pune, and more than two decades at the. Raman Research Institute in.

  5. A new algorithm for the simulation of the Boltzmann equation using the direct simulation monte-carlo method

    International Nuclear Information System (INIS)

    Ganjaei, A. A.; Nourazar, S. S.

    2009-01-01

    A new algorithm, the modified direct simulation Monte-Carlo (MDSMC) method, for the simulation of Couette- Taylor gas flow problem is developed. The Taylor series expansion is used to obtain the modified equation of the first order time discretization of the collision equation and the new algorithm, MDSMC, is implemented to simulate the collision equation in the Boltzmann equation. In the new algorithm (MDSMC) there exists a new extra term which takes in to account the effect of the second order collision. This new extra term has the effect of enhancing the appearance of the first Taylor instabilities of vortices streamlines. In the new algorithm (MDSMC) there also exists a second order term in time step in the probabilistic coefficients which has the effect of simulation with higher accuracy than the previous DSMC algorithm. The appearance of the first Taylor instabilities of vortices streamlines using the MDSMC algorithm at different ratios of ω/ν (experimental data of Taylor) occurred at less time-step than using the DSMC algorithm. The results of the torque developed on the stationary cylinder using the MDSMC algorithm show better agreement in comparison with the experimental data of Kuhlthau than the results of the torque developed on the stationary cylinder using the DSMC algorithm

  6. Experimental investigation of thermal processes in the multi-ring Couette system with counter rotation of cylinders

    Science.gov (United States)

    Mamonov, V. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2016-01-01

    The effect of parameters of the multi-ring Couette system with counter rotating coaxial cylinders on the process of thermal energy release in a viscous liquid filling this system is considered with regard to the problem of determining the possibility of creating the high-performance wind heat generator. The multi-cylinder rotor design allows directly conversion of the mechanical power of a device consisting of two "rotor" wind turbines with a common axis normal to the air flow into the thermal energy in a wide range of rotational speed of the cylinders. Experimental results on the measurement of thermal power released in the pilot heat generator at different relative angular speeds of cylinder rotation are presented.

  7. A Taylor weak-statement algorithm for hyperbolic conservation laws

    Science.gov (United States)

    Baker, A. J.; Kim, J. W.

    1987-01-01

    Finite element analysis, applied to computational fluid dynamics (CFD) problem classes, presents a formal procedure for establishing the ingredients of a discrete approximation numerical solution algorithm. A classical Galerkin weak-statement formulation, formed on a Taylor series extension of the conservation law system, is developed herein that embeds a set of parameters eligible for constraint according to specification of suitable norms. The derived family of Taylor weak statements is shown to contain, as special cases, over one dozen independently derived CFD algorithms published over the past several decades for the high speed flow problem class. A theoretical analysis is completed that facilitates direct qualitative comparisons. Numerical results for definitive linear and nonlinear test problems permit direct quantitative performance comparisons.

  8. Influence of velocity shear on the Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Satyanarayana, P.; Huba, J.D.; Ossakow, S.L.

    1982-01-01

    The influence of a transverse velocity shear on the Rayleigh-Taylor instability is investigated. It is found that a sheared velocity flow can substantially reduce the growth rate of the Rayleigh-Taylor instability in short wavelength regime (i.e., kL>1 where L is the scale length of the density inhomogeneity), and causes the growth rate to maximize at kL<1.0. Applications of this result to ionospheric phenomena [equatorial spread F (ESF) and ionospheric plasma clouds] are discussed. In particular, the effect of shear could account for, at times, the 100's of km modulation observed on the bottomside of the ESF ionosphere and the km scale size wavelengths observed in barium cloud prompt striation phenomena

  9. Comparison of transverse wires and half pins in Taylor Spatial Frame: A biomechanical study

    OpenAIRE

    Khurana, Ashish; Byrne, Carlton; Evans, Sam; Tanaka, Hiro; Haraharan, Kartik

    2010-01-01

    Abstract Background The aim of this study was to compare the stiffness characteristics of Taylor Spatial Frame (TSF) fixed with transverse wires and half pins. Design & Methods Experiments were carried out at the biomechanics laboratory at Cardiff University. All mechanical testing was performed with a servo hydraulic test frame (MTS 858 Mini Bionix II(R), MTS Corp., Mineapolis, USA). Custom built mounts were used to attach the bone rigidly to the one end of machine and the TSF ring to the ot...

  10. Determination of accelerated factors in gradient descent iterations based on Taylor's series

    Directory of Open Access Journals (Sweden)

    Petrović Milena

    2017-01-01

    Full Text Available In this paper the efficiency of accelerated gradient descent methods regarding the way of determination of accelerated factor is considered. Due to the previous researches we assert that the use of Taylor's series of posed gradient descent iteration in calculation of accelerated parameter gives better final results than some other choices. We give a comparative analysis of efficiency of several methods with different approaches in obtaining accelerated parameter. According to the achieved results of numerical experiments we make a conclusion about the one of the most optimal way in defining accelerated parameter in accelerated gradient descent schemes.

  11. Taylor Series-Based Long-Term Creep-Life Prediction of Alloy 617

    International Nuclear Information System (INIS)

    Yin, Song Nan; Kim, Woo Gon; Kim, Yong Wan; Park, Jae Young; Kim, Soen Jin

    2010-01-01

    In this study, a Taylor series (T-S) model based on the Arrhenius, McVetty, and Monkman-Grant equations was developed using a mathematical analysis. In order to reduce fitting errors, the McVetty equation was transformed by considering the first three terms of the Taylor series equation. The model parameters were accurately determined by a statistical technique of maximum likelihood estimation, and this model was applied to the creep data of alloy 617. The T-S model results showed better agreement with the experimental data than other models such as the Eno, exponential, and L-M models. In particular, the T-S model was converted into an isothermal Taylor series (IT-S) model that can predict the creep strength at a given temperature. It was identified that the estimations obtained using the converted ITS model was better than that obtained using the T-S model for predicting the long-term creep life of alloy 617

  12. Normalization of the parameterized Courant-Snyder matrix for symplectic factorization of a parameterized Taylor map

    International Nuclear Information System (INIS)

    Yan, Y.T.

    1991-01-01

    The transverse motion of charged particles in a circular accelerator can be well represented by a one-turn high-order Taylor map. For particles without energy deviation, the one-turn Taylor map is a 4-dimensional polynomials of four variables. The four variables are the transverse canonical coordinates and their conjugate momenta. To include the energy deviation (off-momentum) effects, the map has to be parameterized with a smallness factor representing the off-momentum and so the Taylor map becomes a 4-dimensional polynomials of five variables. It is for this type of parameterized Taylor map that a mehtod is presented for converting it into a parameterized Dragt-Finn factorization map. Parameterized nonlinear normal form and parameterized kick factorization can thus be obtained with suitable modification of the existing technique

  13. Jet-like long spike in nonlinear evolution of ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Ye Wenhua; He Xiantu; Wang Lifeng

    2010-01-01

    We report the formation of jet-like long spike in the nonlinear evolution of the ablative Rayleigh-Taylor instability (ARTI) experiments by numerical simulations. A preheating model κ(T) = κ SH [1 + f(T)], where κ SH is the Spitzer-Haerm (SH) electron conductivity and f(T) interprets the preheating tongue effect in the cold plasma ahead of the ablative front [Phys. Rev. E 65 (2002) 57401], is introduced in simulations. The simulation results of the nonlinear evolution of the ARTI are in general agreement with the experiment results. It is found that two factors, i.e., the suppressing of ablative Kelvin-Helmholtz instability (AKHI) and the heat flow cone in the spike tips, contribute to the formation of jet-like long spike in the nonlinear evolution of the ARTI. (authors)

  14. Predicting chaotic time series

    International Nuclear Information System (INIS)

    Farmer, J.D.; Sidorowich, J.J.

    1987-01-01

    We present a forecasting technique for chaotic data. After embedding a time series in a state space using delay coordinates, we ''learn'' the induced nonlinear mapping using local approximation. This allows us to make short-term predictions of the future behavior of a time series, using information based only on past values. We present an error estimate for this technique, and demonstrate its effectiveness by applying it to several examples, including data from the Mackey-Glass delay differential equation, Rayleigh-Benard convection, and Taylor-Couette flow

  15. A depositional model for the Taylor coal bed, Martin and Johnson counties, eastern Kentucky

    Science.gov (United States)

    Andrews, W.M.; Hower, J.C.; Ferm, J.C.; Evans, S.D.; Sirek, N.S.; Warrell, M.; Eble, C.F.

    1996-01-01

    This study investigated the Taylor coal bed in Johnson and Martin counties, eastern Kentucky, using field and petrographic techniques to develop a depositional model of the coal bed. Petrography and chemistry of the coal bed were examined. Multiple benches of the Taylor coal bed were correlated over a 10 km distance. Three sites were studied in detail. The coal at the western and eastern sites were relatively thin and split by thick clastic partings. The coal at the central site was the thickest and unsplit. Two major clastic partings are included in the coal bed. Each represents a separate and distinct fluvial splay. The Taylor is interpreted to have developed on a coastal plain with periodic flooding from nearby, structurally-controlled fluvial systems. Doming is unlikely due to the petrographic and chemical trends, which are inconsistent with modern Indonesian models. The depositional history and structural and stratigraphic setting suggest contemporaneous structural influence on thickness and quality of the Taylor coal bed in this area.

  16. 76 FR 24479 - In the Matter of the Taylor Lumber and Treating Superfund Site, Sheridan, Oregon, Amendment to...

    Science.gov (United States)

    2011-05-02

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9300-9] In the Matter of the Taylor Lumber and Treating... Taylor Lumber and Treating Site, which PWPO was acquiring, in exchange for several obligations related to...-553- 0705. Comments should reference the Taylor Lumber and Treating Superfund Site in Sheridan, Oregon...

  17. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    Science.gov (United States)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  18. Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability

    Energy Technology Data Exchange (ETDEWEB)

    Henry de Frahan, M. T., E-mail: marchdf@umich.edu; Johnsen, E. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Belof, J. L.; Cavallo, R. M.; Ancheta, D. S.; El-dasher, B. S.; Florando, J. N.; Gallegos, G. F.; LeBlanc, M. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808 (United States); Raevsky, V. A.; Ignatova, O. N.; Lebedev, A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188 (Russian Federation)

    2015-06-14

    We present a set of high explosive driven Rayleigh-Taylor strength experiments for beryllium to produce data to distinguish predictions by various strength models. Design simulations using existing strength model parameterizations from Steinberg-Lund and Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between not just different strength models, but different parameters sets of the PTW model. Application of the models to the post-shot results, however, suggests growth consistent with little material strength. We focus mostly on efforts to simulate the data using published strength models as well as the more recent RING relaxation model developed at VNIIEF. The results of the strength experiments indicate weak influence of strength in mitigating the growth with the RING model coming closest to predicting the material behavior. Finally, we present shock and ramp-loading recovery experiments.

  19. Design and implementation plan for indirect-drive highly nonlinear ablative Rayleigh-Taylor instability experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Casner, A.; Masse, L.; Delorme, B.; Jacquet, L.; Liberatore, S.; Smalyuk, V.; Martinez, D.; Seugling, R.; Park, H.S.; Remington, B.A.; Moore, A.; Igumenshev, I.; Chicanne, C.

    2013-01-01

    In the context of National Ignition Facility Basic Science program we propose to study on the NIF ablative Rayleigh-Taylor (RT) instability in transition from weakly nonlinear to highly nonlinear regimes. Based on the analogy between flame front and ablation front, highly nonlinear RT instability measurements at the ablation front can provide important insights into the initial deflagration stage of thermonuclear supernovae of type Ia. NIF provides a unique platform to study the rich physics of nonlinear and turbulent mixing flows in High Energy Density plasmas because it can accelerate targets over much larger distances and longer time periods than previously achieved on the NOVA and OMEGA lasers. In one shot, growth of RT modulations can be measured from the weakly nonlinear stage near nonlinear saturation levels to the highly nonlinear bubble-competition, bubble-merger regimes and perhaps into a turbulent-like regime. The role of ablation on highly-nonlinear RT instability evolution will be comprehensively studied by varying ablation velocity using indirect and direct-drive platforms. We present a detailed hydro-code design of the indirect-drive platform and discuss the implementation plan for these experiments which only use NIF diagnostics already qualified. (authors)

  20. 75 FR 42281 - Continuation of the National Emergency With Respect To the Former Liberian Regime of Charles Taylor

    Science.gov (United States)

    2010-07-21

    ... National Emergency With Respect To the Former Liberian Regime of Charles Taylor On July 22, 2004, by... Taylor, pursuant to the International Emergency Economic Powers Act (50 U.S.C. 1701-1706). The President... States constituted by the actions and policies of former Liberian President Charles Taylor and other...

  1. Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability

    Energy Technology Data Exchange (ETDEWEB)

    Henry de Frahan, M. T. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA; Belof, J. L. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Cavallo, R. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Raevsky, V. A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Ignatova, O. N. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Lebedev, A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Ancheta, D. S. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; El-dasher, B. S. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Florando, J. N. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Gallegos, G. F. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Johnsen, E. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA; LeBlanc, M. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA

    2015-06-14

    A recent collaboration between LLNL and VNIIEF has produced a set of high explosive driven Rayleigh-Taylor strength data for beryllium. Design simulations using legacy strength models from Steinberg-Lund and Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between not just different strength models, but different parameters sets of the PTW model. Application of the models to the post-shot results, however, shows close to classical growth. We characterize the material properties of the beryllium tested in the experiments. We also discuss recent efforts to simulate the data using the legacy strength models as well as the more recent RING relaxation model developed at VNIIEF. Finally, we present shock and ramp-loading recovery experiments conducted as part of the collaboration.

  2. Ruptured peroneal aneurysm after infrapopliteal prosthetic bypass with Taylor patch

    Directory of Open Access Journals (Sweden)

    Florian Enzmann

    Full Text Available Introduction: A 45-year-old mailman underwent an implantation of a femoro-peroneal polytetrafluoroethylene (PTFE bypass with a distal Taylor patch six years prior to admission after two failed autologous reconstructions and extensive fasciotomy. The initial pathology was an acute ischemia due to popliteal entrapment with subsequent popliteal thrombectomy. Report: The patient was examined because of pain, reduction of walking distance and development of a palpable mass at the medial fasciotomy site. A 6-cm pseudoaneurysm with complete disruption of the suture line of the vein patch was discovered and resected. Arterial continuity with a vein interposition graft was established using non-reversed cephalic vein. Conclusion: The etiology of the aneurysm is not entirely clear. One may argue that the fourth revascularization could have been performed with an arm vein instead of a prosthetic graft with the probability of a better long term patency in a young patient. 15 months after the procedure the bypass is patent and the patient is without any symptoms. This complication of a Taylor patch has not been reported before. Keywords: Taylor patch, Pseudoaneurysm, Infrapopliteal bypass

  3. Editorial: Howard Taylor Ricketts

    Directory of Open Access Journals (Sweden)

    Facultad de Medicina Revista

    1941-05-01

    Full Text Available Howard Taylor Ricketts nació en Findlay (Ohio el 9 de febrero de 1871. Pasó su niñez en Nebraska, recibió su título de bachiller en la Universidad de ese Estado, en 1894 y se graduó de médico en Northwestern University, en 1897. Hizo su internado en el Cook-County de Chicago. Practicó estdios especiales de dermatología en el Rush Medical College durante dos años. En 1900 contrajo matrimonio con Myra Tubbs, inteligente mujer que colaboró en sus trabajos con rara devoción, ardiente interés y constante estímulo.

  4. Spread F bubbles - Nonlinear Rayleigh-Taylor mode in two dimensions

    Science.gov (United States)

    Hudson, M. K.

    1978-01-01

    The paper discusses long-wavelength developed bottomside spread F which has been attributed to the Rayleigh-Taylor instability. The nonlinear saturation amplitude and the k spectrum of the inertia-dominated Rayleigh-Taylor instability is found in two directions: east-west and vertical. As in the collisional case (Chaturvedi and Ossakow, 1977), the dominant nonlinearity is found to be two-dimensional. It is found that the linearly most unstable modes, which are primarily horizontal, saturate by the nonlinear generation of vertical spatial harmonics. The harmonics are damped by diffusion or recombination. The resulting amplitude spectrum indicates that bubbles are vertically elongated in both inertial and collisional regimes.

  5. Observation of Rayleigh-Taylor-like structures in a laser-accelerated foil

    International Nuclear Information System (INIS)

    Whitlock, R.R.; Emery, M.H.; Stamper, J.A.; McLean, E.A.; Obenschain, S.P.; Peckerar, M.C.

    1984-01-01

    Laser-accelerated targets have been predicted to be subject to the Rayleigh-Taylor hydrodynamic instability. The development of the instability was studied by introducing mass thickness variations in foil targets and observing the development of the target nonuniformities by side-on flash x radiography. Observations were made of target structures and mass redistribution effects which resemble Rayleigh-Taylor bubbles and spikes, including not only advanced broadening of the spike tips on the laser-irradiated side of the foil but also projections of mass on the unirradiated side. The observations compare well with numerical simulations

  6. 78 FR 43751 - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Science.gov (United States)

    2013-07-19

    ... National Emergency With Respect to the Former Liberian Regime of Charles Taylor On July 22, 2004, by... regime of Charles Taylor pursuant to the International Emergency Economic Powers Act (50 U.S.C. 1701-1706... constituted by the actions and policies of former Liberian President Charles Taylor and other persons, in...

  7. Rayleigh-Taylor mixing with time-dependent acceleration

    Science.gov (United States)

    Abarzhi, Snezhana

    2016-10-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  8. Generalized Couette Poiseuille flow with boundary mass transfer

    Science.gov (United States)

    Marques, F.; Sanchez, J.; Weidman, P. D.

    1998-11-01

    A generalized similarity formulation extending the work of Terrill (1967) for Couette Poiseuille flow in the annulus between concentric cylinders of infinite extent is given. Boundary conditions compatible with the formulation allow a study of the effects of inner and outer cylinder transpiration, rotation, translation, stretching and twisting, in addition to that of an externally imposed constant axial pressure gradient. The problem is governed by [eta], the ratio of inner to outer radii, a Poiseuille number, and nine Reynolds numbers. Single-cylinder and planar problems can be recovered in the limits [eta][rightward arrow]0 and [eta][rightward arrow]1, respectively. Two coupled primary nonlinear equations govern the meridional motion generated by uniform mass flux through the porous walls and the azimuthal motion generated by torsional movement of the cylinders; subsidiary equations linearly slaved to the primary flow govern the effects of cylinder translation, cylinder rotation, and an external pressure gradient. Steady solutions of the primary equations for uniform source/sink flow of strength F through the inner cylinder are reported for 0[less-than-or-eq, slant][eta][less-than-or-eq, slant]1. Asymptotic results corroborating the numerical solutions are found in different limiting cases. For F0 is more complex in that unique solutions are found at low Reynolds numbers, a region of triple solutions exists at moderate Reynolds numbers, and a two-cell solution prevails at large Reynolds numbers. The subsidiary linear equations are solved at [eta]=0.5 to exhibit the effects of cylinder translation, rotation, and an axial pressure gradient on the source/sink flows.

  9. Drag Measurements over Embedded Cavities in a Low Reynolds Number Couette Flow

    Science.gov (United States)

    Gilmer, Caleb; Lang, Amy; Jones, Robert

    2010-11-01

    Recent research has revealed that thin-walled, embedded cavities in low Reynolds number flow have the potential to reduce the net viscous drag force acting on the surface. This reduction is due to the formation of embedded vortices allowing the outer flow to pass over the surface via a roller bearing effect. It is also hypothesized that the scales found on butterfly wings may act in a similar manner to cause a net increase in flying efficiency. In this experimental study, rectangular embedded cavities were designed as a means of successfully reducing the net drag across surfaces in a low Reynolds number flow. A Couette flow was generated via a rotating conveyor belt immersed in a tank of high viscosity mineral oil above which the plates with embedded cavities were placed. Drag induced on the plate models was measured using a force gauge and compared directly to measurements acquired over a flat plate. Various cavity aspect ratios and gap heights were tested in order to determine the conditions under which the greatest drag reductions occurred.

  10. 76 FR 43799 - Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor

    Science.gov (United States)

    2011-07-21

    ...--Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor #0; #0; #0... Continuation of the National Emergency With Respect to the Former Liberian Regime of Charles Taylor On July 22... of Charles Taylor, pursuant to the International Emergency Economic Powers Act (50 U.S.C. 1701-1706...

  11. Experimental study of single taylor bubbles rising in stagnant liquid mixtures inside of vertical tubes

    International Nuclear Information System (INIS)

    Azevedo, Marcos B. de; Faccini, Jose L.H.; Su, Jian

    2015-01-01

    The present work reports an experimental study of single Taylor bubbles rising in vertical tubes filled with water-glycerin mixtures by using the pulse-echo ultrasonic technique. A 2m long acrylic tube with inner diameter of 24 mm was used in the experiments. Initially, the tube was sealed at the ends and filled partially with the liquid mixtures to leave an air pocket of length L 0 at the top end. A Taylor bubble was formed by the inversion of the tube. The rising bubbles were detected by ultrasonic transducers located at the upper part of the tube. The velocity, the length and the pro le of the bubbles and the thickness of the liquid lm around them were obtained from the ultrasonic signals processing. The liquid lm thickness in the vertical tube was also determined by a graphic method that relates the bubble length L b with the initial length of the air pocket L 0 . It was observed that the bubble velocity decreased with increasing viscosity, while the lm thickness increased. It was shown that the liquid lm thickness determined by the graphic method fitted well the higher viscosities data, but overestimated the lower viscosities data. Additionally, the results indicated that some correlations developed to estimate the thickness of liquid films falling down inside/outside of tubes and down a plane surface could be applied to estimate the thickness of liquid films falling around Taylor bubbles in an Inverse Viscosity Number (N f ) range different to those considered in the literature. (author)

  12. Identification of Dynamic Loads Based on Second-Order Taylor-Series Expansion Method

    OpenAIRE

    Li, Xiaowang; Deng, Zhongmin

    2016-01-01

    A new method based on the second-order Taylor-series expansion is presented to identify the structural dynamic loads in the time domain. This algorithm expresses the response vectors as Taylor-series approximation and then a series of formulas are deduced. As a result, an explicit discrete equation which associates system response, system characteristic, and input excitation together is set up. In a multi-input-multi-output (MIMO) numerical simulation study, sinusoidal excitation and white no...

  13. Effect of magnetic field on Rayleigh-Taylor instability of two superposed fluids

    International Nuclear Information System (INIS)

    Sharma, P K; Tiwari, Anita; Chhajlani, R K

    2012-01-01

    The effect of two dimensional magnetic field on the Rayleigh-Taylor (R-T) instability in an incompressible plasma is investigated to include simultaneously the effects of suspended particles and the porosity of the medium. The relevant linearized perturbation equations have been solved. The explicit expression of the linear growth rate is obtained in the presence of fixed boundary conditions. A stability criterion for the medium is derived and discussed the Rayleigh Taylor instabilities in different configurations. It is found that the basic Rayleigh-Taylor instability condition is modified by the presence of magnetic field, suspended particles and porosity of the medium. In case of an unstable R-T configuration, the magnetic field has a stabilizing effect on the system. It is also found that the growth rate of an unstable R-T mode decreases with increasing relaxation frequency thereby showing a stabilizing influence on the R-T configuration.

  14. ORALLOY (93.2 235U) METAL CYLINDER WITH BERYLLIUM TOP REFLECTOR

    International Nuclear Information System (INIS)

    Bess, John D.; Montierth, Leland M.; Reed, Raymond L.; Mihalczo, John T.

    2010-01-01

    A variety of critical experiments were constructed of enriched uranium metal during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, one experiment was comprised of a stack of approximately 7-inch-diameter metal discs. The bottom of the stack consisted of uranium with an approximate height of 4-1/8 inches. The top of the stack consisted of beryllium with an approximate height of 5-9/16 inches. This experiment was performed on August 20, 1963 by J. T. Mihalczo and R. G. Taylor (Ref. 1) with accompanying logbook. Both detailed and simplified model specifications are provided in this evaluation. This fast-spectra experiment was determined to represent an acceptable benchmark. The calculated eigenvalues for both the detailed and simple models are within approximately 0.5% of the benchmark values, but significantly greater than 3s from the benchmark value because the uncertainty in the benchmark is very small: ±0.0002 (1s). There is significant variability between results using different neutron cross section libraries, the greatest being a k eff of ∼0.65% . Unreflected and unmoderated experiments with the same highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in HEU MET FAST 051. Thin graphite reflected (2 inches or less) experiments also using the same highly enriched uranium metal parts are evaluated

  15. Reliability, validity and description of timed performance of the Jebsen-Taylor Test in patients with muscular dystrophies.

    Science.gov (United States)

    Artilheiro, Mariana Cunha; Fávero, Francis Meire; Caromano, Fátima Aparecida; Oliveira, Acary de Souza Bulle; Carvas, Nelson; Voos, Mariana Callil; Sá, Cristina Dos Santos Cardoso de

    2017-12-08

    The Jebsen-Taylor Test evaluates upper limb function by measuring timed performance on everyday activities. The test is used to assess and monitor the progression of patients with Parkinson disease, cerebral palsy, stroke and brain injury. To analyze the reliability, internal consistency and validity of the Jebsen-Taylor Test in people with Muscular Dystrophy and to describe and classify upper limb timed performance of people with Muscular Dystrophy. Fifty patients with Muscular Dystrophy were assessed. Non-dominant and dominant upper limb performances on the Jebsen-Taylor Test were filmed. Two raters evaluated timed performance for inter-rater reliability analysis. Test-retest reliability was investigated by using intraclass correlation coefficients. Internal consistency was assessed using the Cronbach alpha. Construct validity was conducted by comparing the Jebsen-Taylor Test with the Performance of Upper Limb. The internal consistency of Jebsen-Taylor Test was good (Cronbach's α=0.98). A very high inter-rater reliability (0.903-0.999), except for writing with an Intraclass correlation coefficient of 0.772-1.000. Strong correlations between the Jebsen-Taylor Test and the Performance of Upper Limb Module were found (rho=-0.712). The Jebsen-Taylor Test is a reliable and valid measure of timed performance for people with Muscular Dystrophy. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  16. Liz Taylor : minu van Gogh pole natsidele kuulunud

    Index Scriptorium Estoniae

    2004-01-01

    Elizabeth Taylor palus kohtult otsust, et talle kuuluvat 15 miljonit dollarit maksvat Vincent van Goghi maali "Vaade Saint-Remy varjupaigale" pole natsid Margarete Mauthneri juudiperekonna käest vägivaldselt ära võtnud. E. Taylori isa ostis maali 1963. a. Londonis oksjonilt

  17. Taylor vortices in the flow between two coaxial cylinders one of which has a step change in radius

    International Nuclear Information System (INIS)

    Raju, V R K

    2014-01-01

    A numerical study of the flow between two coaxial cylinders, where one of the cylinders has a step change in radius, is carried out. The inner cylinder rotates and the outer cylinder is stationary. Computation is restricted to axisymmetric motion since instability in flow between coaxial cylinders is found to first occur in the form of axisymmetric Taylor vortices. In the presence of a step, Taylor vortices are found to appear first in the region where the gap between the cylinders is larger and approximately when the local Taylor number in this region reaches the critical Taylor number for onset of instability. Subsequently, Taylor vortices appear in the region where the gap is narrower, and when the local Taylor number in that region exceeds the critical Taylor number. The Taylor vortices have inward flow at a stationary end plate, and outward flow at an end plate which rotates with the same angular velocity as the inner cylinder. Similar results were obtained by Sprague et al (2008 Phys. Fluids 20 014102) for a step on inner cylinder configuration. The step functions as another end plate, if the step size is large. Whereas, it has no effect, if the step size is small. In most situations, these determine whether the number of Taylor vortices in the wide and narrow gap regions is even or odd. When the end plates rotate synchronously, but at a different speed from the inner cylinder, a change from even to odd or odd to even number of vortices in each region occurs at certain rotation rates of the end plates by sudden appearance or disappearance of a vortex at the end of the column. For a certain range of rotation rates of the end plates, the total number of vortices in the entire fluid column is odd, although the end conditions are symmetrical. (paper)

  18. Taylorism, Tylerism, and Performance Indicators: Defending the Indefensible?

    Science.gov (United States)

    Helsby, Gill; Saunders, Murray

    1993-01-01

    Explores the antecedents to the growing interest in the use of educational performance indicators. Discusses this issue in relation to the work of economist F. W. Taylor and evaluator Ralph Tyler. Describes a five-year project that demonstrates the promise of teacher-developed performance indicators. (CFR)

  19. Taylor dispersion of colloidal particles in narrow channels

    NARCIS (Netherlands)

    Sane, J.; Padding, J.T.; Louis, A.A.

    2015-01-01

    Special issue in Honor of Jean-Pierre Hansen We use a mesoscopic particle-based simulation technique to study the classic convection-diffusion problem of Taylor dispersion for colloidal discs in confined flow. When the disc diameter becomes non-negligible compared to the diameter of the pipe, there

  20. On the validity of Taylor's hypothesis for wall-bounded flows

    International Nuclear Information System (INIS)

    Piomelli, U.; Balint, J.; Wallace, J.M.

    1989-01-01

    The results of large eddy simulation (LES) of the Navier--Stokes equations are used to evaluate the validity of Taylor's hypothesis of frozen turbulence, which states that the time derivative of some instantaneous quantity is proportional to its derivative in the streamwise direction, for incompressible plane channel flow. Time and space derivatives in the streamwise direction of the velocity components are, in fact, found to be well correlated. Root-mean-square fluctuations of the terms in Taylor's hypothesis also support the validity of this hypothesis above the buffer layer. The good agreement between LES and experimental results indicates that errors in the evaluation of derivatives in the streamwise direction are due mostly to insufficient resolution

  1. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Stephan [Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Fluid Dynamics, P.O. Box 510119, Dresden (Germany); Santos Rolo, Tomy dos; Baumbach, Tilo [Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS), Eggenstein-Leopoldshafen (Germany); Hampel, Uwe [Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Fluid Dynamics, P.O. Box 510119, Dresden (Germany); Technische Universitaet Dresden (TUD), AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering, Dresden (Germany)

    2014-07-15

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-μm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations. (orig.)

  2. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    Science.gov (United States)

    Boden, Stephan; dos Santos Rolo, Tomy; Baumbach, Tilo; Hampel, Uwe

    2014-07-01

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-µm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations.

  3. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    International Nuclear Information System (INIS)

    Boden, Stephan; Santos Rolo, Tomy dos; Baumbach, Tilo; Hampel, Uwe

    2014-01-01

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-μm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations. (orig.)

  4. The Contribution of F.W. Taylor to Industrial and Organizational Psychology

    Directory of Open Access Journals (Sweden)

    E. C. Thomas

    1982-11-01

    In die artikel word getoon dat F.W. Taylor die erkende "vader van wetenskaplike bestuur" ook erkenning behoort te geniet as grondlegger van die Bedryf en -organisasiesielkunde. Sy werk op die terreine van prestasiemotivering en tevredenheid, opleiding, plasing van werkers, bestuurs- en organisasieontwikkeling en arbeidsverhoudinge het waarskynlik die werk van erkende sielkundiges op hierdie gebiede vooruitgeloop, of grondslag daarvoor gelê. Daar word tot die slotsom gekom dat alhoewel Taylor nie 'n opgeleide sielkundige was nie, hy en sy kollegas erkenning moet kry vir die praktiese implimentering van die beginsels en teorieë van die moderne Bedryf- en Organisasiesielkunde.

  5. Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density

    Science.gov (United States)

    Scott, James R.

    2011-01-01

    Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.

  6. Macro-Micro Simulation for Polymer Crystallization in Couette Flow

    Directory of Open Access Journals (Sweden)

    Chunlei Ruan

    2017-12-01

    Full Text Available Polymer crystallization in manufacturing is a process where quiescent crystallization and flow-induced crystallization coexists, and heat/mass transfer on a macroscopic level interacts with crystal morphology evolution on a microscopic level. Previous numerical studies on polymer crystallization are mostly concentrated at a single scale; they only calculate macroscale parameters, e.g., temperature and relative crystallinity, or they only predict microstructure details, e.g., crystal morphology and mean size of crystals. The multi-scale numerical works that overcome these disadvantages are unfortunately based on quiescent crystallization, in which flow effects are neglected. The objective of this work is to build up a macro-micro model and a macro-micro algorithm to consider both the thermal and flow effects on the crystallization. Our macro-micro model couples two parts: mass and heat transfer of polymeric flow at the macroscopic level, and nucleation and growth of spherulites and shish-kebabs at the microscopic level. Our macro-micro algorithm is a hybrid finite volume/Monte Carlo method, in which the finite volume method is used at the macroscopic level to calculate the flow and temperature fields, while the Monte Carlo method is used at the microscopic level to capture the development of spherulites and shish-kebabs. The macro-micro model and the macro-micro algorithm are applied to simulate polymer crystallization in Couette flow. The effects of shear rate, shear time, and wall temperature on the crystal morphology and crystallization kinetics are also discussed.

  7. Kinetic model for mechanical twinning and its application for intensive loading of metals

    Directory of Open Access Journals (Sweden)

    Mayer Alexander

    2015-01-01

    Full Text Available In this report, we present our twinning model intended for simulation of the dynamic deformation of metals with low values of the stacking fault energy, as well as the results of application of the model to numerical simulation of intensive loading of metals. Generation of a twin is described as an appearance of a stacking fault with size more than some critical value, while growth of a twin is considered as a cooperative movement of partial dislocation along the stacking fault. The twin nucleation rate is expressed through the energy released due to annihilation of dislocations. Movement of partial dislocations in the course of twin growth passes under the action of elastic stress field and phonon drag. The surface energy of the growing twin continuously increases which leads to the appearance of an additional force. Application of this model allows us to investigate plastic response of metals at various dynamic loading conditions and initial defect structures. Influence of twinning at Taylor rod compaction experiments is analyzed including formation of the shape of the lateral surface.

  8. Insulin diffusion and self-association characterized by real-time UV imaging and Taylor dispersion analysis

    DEFF Research Database (Denmark)

    Jensen, Sabrine S; Jensen, Henrik; Cornett, Claus

    2014-01-01

    , self-association, and apparent size of insulin were further characterized by Taylor dispersion analysis, size exclusion chromatography, and dynamic light scattering. At low insulin concentrations and pH 3.0, the hydrodynamic radius of insulin was determined by Taylor dispersion analysis to 1.5±0.1nm...

  9. Effect of magnetic field on the Rayleigh Taylor instability of rotating and stratified plasma

    International Nuclear Information System (INIS)

    Sharma, PK; Tiwari, Anita; Argal, Shraddha

    2017-01-01

    In the present study the effect of magnetic field and rotation have been carried out on the Rayleigh Taylor instability of conducting and rotating plasma, which is assumed to be incompressible and confined between two rigid planes z = 0 and z = h. The dispersion relation of the problem is obtained by solving the basic MHD equations of the problem with the help normal mode technique and appropriate boundary conditions. The dispersion relation of the medium is analysed and the effect of magnetic field and angular velocity (rotation effect) have been examined on the growth rate of Rayleigh Taylor instability. It is found that the magnetic field and angular velocity (rotation effect) have stabilizing influence on the Rayleigh Taylor instability. (paper)

  10. Modeling Taylor series approximations for prompt neutron kinetics with lab view simulations

    International Nuclear Information System (INIS)

    Adzri, E. P.

    2012-09-01

    The reactor point kinetics equations have been subjected to intense research in an effort to find simple yet accurate numerical solutions methods. The equations are very stiff numerically, meaning that there is a wide variation in the decay constants, so that using a particular time step in the numerical solution may provide sufficient accuracy for the group, but not for another. Several solutions techniques have been presented on the point kinetics equations with varying degrees of complexity. These include Power Series Solutions, CORE, PCA, Genapol and Taylor series methods. In this research, algorithms were developed based on the first and second order Taylor series expansion and simulated in LabVIEW to solve the Reactor Point Kinetics equations using block diagram nodes implemented within stacked sequences. The algorithms developed were fast,accurate and simple to code. Several reactivity insertions were used to simulate the change in neutron population with time. The LabVIEW- Taylor series solutions were compared with other solution techniques such as Power Series Solutions, CORE, PCA, Genapol and McMahon and Pierson's Taylor series approximation. The results of LabVIEW-Taylor series technique used by McMahon and Pearson The LabVIEW-implemented techniques were found to agree very well with these other methods. At 1x10 -8 s the neutron population was 1.000220 neutrons / cm 3 , at 1 x 10 -2 s it was 2.007681 neutrons / cm 3 and at 1x10 -1 s it was 2.075317 neutrons / cm 3 ; same results reported by Genapol for a fast reactor, it produced good and accurate results and compared very favorably with other methods found in the literature. Using much smaller time steps to the order or 10 -8 s commensurate with fast reactor parameters also produced very satisfactory results, indicating that the LabVIEW-based Taylor series technique is suitable for simulating the kinetics of fast reactors as well as thermal reactors. Algorithms developed that included second order terms

  11. Rayleigh-Taylor mixing with space-dependent acceleration

    Science.gov (United States)

    Abarzhi, Snezhana

    2016-11-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  12. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia

    2016-06-17

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field\\'s metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field\\'s metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  13. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia; Li, Erqiang; Thoroddsen, Sigurdur T

    2016-01-01

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field's metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field's metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  14. Using Taylor Expansions to Prepare Students for Calculus

    Science.gov (United States)

    Lutzer, Carl V.

    2011-01-01

    We propose an alternative to the standard introduction to the derivative. Instead of using limits of difference quotients, students develop Taylor expansions of polynomials. This alternative allows students to develop many of the central ideas about the derivative at an intuitive level, using only skills and concepts from precalculus, and…

  15. Metamorphosis of helical magnetorotational instability in the presence of axial electric current.

    Science.gov (United States)

    Priede, Jānis

    2015-03-01

    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical magnetorotational instability (HMRI) indefinitely by transforming it into a purely electromagnetic instability. Two different electromagnetic instability mechanisms are identified. The first is an internal pinch-type instability, which is due to the interaction of the electric current with its own magnetic field. Axisymmetric mode of this instability requires a free-space component of the azimuthal magnetic field. When the azimuthal component of the magnetic field is purely rotational and the axial component is nonzero, a new kind of electromagnetic instability emerges. The latter, driven by the interaction of electric current with a weak collinear magnetic field in a quiescent fluid, gives rise to a steady meridional circulation coupled with azimuthal rotation.

  16. Taylor dispersion on a fractal

    International Nuclear Information System (INIS)

    Mazo, R.M.

    1998-01-01

    Taylor dispersion is the greatly enhanced diffusion in the direction of a fluid flow caused by ordinary diffusion in directions orthogonal to the flow. It is essential that the system be bounded in space in the directions orthogonal to the flow. We investigate the situation where the medium through which the flow occurs has fractal properties so that diffusion in the orthogonal directions is anomalous and non-Fickian. The effective diffusion in the flow direction remains normal; its width grows proportionally with the time. However, the proportionality constant depends on the fractal dimension of the medium as well as its walk dimension. (author)

  17. Estimation of mass transfer parameters in a Taylor-Couette-Poiseuille heterogeneous reactor

    Directory of Open Access Journals (Sweden)

    Resende M. M.

    2004-01-01

    Full Text Available A bench-scale, continuous vortex flow reactor (VFR, with a radius ratio, h, equal to 0.48 and an aspect ratio, G, equal to 11.19 was studied. This reactor may be used in the enzymatic hydrolysis of polypeptides obtained from sweet cheese whey with enzymes immobilized on agarose gel. Operational conditions were 2410 < Re q < 11793 and 30-min residence time for glycerol-water, 14% w/w, 27ºC (Re ax = 1.1 and for water, 38ºC (Re ax = 1.5. Residence time distributions (RTDs were obtained after pulse injections of different tracers (including dyed solid particles. Mass transfer coefficients of a lumped-parameter model of the reactor were estimated from these data. Model fitting to experimental data was accurate. Working conditions were selected so that transport properties of the fluids would be similar to the ones in the actual process at the final stages of whey hydrolysis.

  18. Study of three-dimensional Rayleigh--Taylor instability in compressible fluids through level set method and parallel computation

    International Nuclear Information System (INIS)

    Li, X.L.

    1993-01-01

    Computation of three-dimensional (3-D) Rayleigh--Taylor instability in compressible fluids is performed on a MIMD computer. A second-order TVD scheme is applied with a fully parallelized algorithm to the 3-D Euler equations. The computational program is implemented for a 3-D study of bubble evolution in the Rayleigh--Taylor instability with varying bubble aspect ratio and for large-scale simulation of a 3-D random fluid interface. The numerical solution is compared with the experimental results by Taylor

  19. Beryllium-10 in the Taylor Dome ice core: Applications to Antarctic glaciology and paleoclimatology

    Energy Technology Data Exchange (ETDEWEB)

    Steig, E.J.

    1996-12-31

    An ice core was drilled at Taylor dome, East Antarctica, reaching to bedrock at 554 meters. Oxygen-isotope measurements reveal climatic fluctuations through the last interglacial period. To facilitate comparison of the Taylor Dome paleoclimate record with geologic data and results from other deep ice cores, several glaciological issues need to be addressed. In particular, accumulation data are necessary as input for numerical ice-flow-models, for determining the flux of chemical constituents from measured concentrations, and for calculation of the offset in age between ice and trapped air in the core. The analysis of cosmogenic beryllium-10 provides a geochemical method for constraining the accumulation-rate history at Taylor Dome. High-resolution measurements were made in shallow firn cores and snow pits to determine the relationship among beryllium-10 concentrations, wet and dry deposition mechanisms, and snow-accumulation rates. Comparison between theoretical and measured variations in deposition over the last 75 years constrains the relationship between beryllium-10 deposition and global average production rates. The results indicate that variations in geomagnetically-modulated production-rate do not strongly influence beryllium-10 deposition at Taylor Dome. Although solar modulation of production rate is important for time scales of years to centuries, snow-accumulation rate is the dominant control on ice-core beryllium-10 concentrations for longer periods. Results show that the Taylor Dome core can be used to provide new constraints on regional climate over the last 130,000 years, complementing the terrestrial and marine geological record from the Dry Valley, Transantarctic Mountains and western Ross Sea.

  20. Measuring Nominal and Real Convergence of Selected CEE Countries by the Taylor Rule

    Directory of Open Access Journals (Sweden)

    Böing Tobias

    2016-12-01

    Full Text Available We propose using a simple Taylor rule to evaluate business cycle convergence of the Czech Republic, Hungary, and Poland with the Eurozone. Our findings indicate an ongoing convergence of those CEE countries to the Eurozone, but with instabilities and heterogeneity between the countries. Especially Poland has shown a high degree of convergence in recent years. But there are still relevant differences in Taylor rates of each country to the Eurozone of about two percentage points.

  1. Liquidity Traps with Global Taylor Rules

    OpenAIRE

    Stephanie Schmitt-Grohe; Martin Uribe

    2000-01-01

    A key result of a recent literature that focuses on the global consequences of Taylor-type interest rate feedback rules is that such rules, in combination with the zero-bound on nominal interest rates, can lead to unintended liquidity traps. An immediate question posed by this result is whether the government could avoid liquidity traps by ignoring the zero-bound, that is, by threatening to set the nominal interest rate at a negative value should the inflation rate fall below a certain thresh...

  2. Heat transfer characteristics of liquid-gas Taylor flows incorporating microencapsulated phase change materials

    International Nuclear Information System (INIS)

    Howard, J A; Walsh, P A

    2014-01-01

    This paper presents an investigation on the heat transfer characteristics associated with liquid-gas Taylor flows in mini channels incorporating microencapsulated phase change materials (MPCM). Taylor flows have been shown to result in heat transfer enhancements due to the fluid recirculation experienced within liquid slugs which is attributable to the alternating liquid slug and gas bubble flow structure. Microencapsulated phase change materials (MPCM) also offer significant potential with increased thermal capacity due to the latent heat required to cause phase change. The primary aim of this work was to examine the overall heat transfer potential associated with combining these two novel liquid cooling technologies. By investigating the local heat transfer characteristics, the augmentation/degradation over single phase liquid cooling was quantified while examining the effects of dimensionless variables, including Reynolds number, liquid slug length and gas void fraction. An experimental test facility was developed which had a heated test section and allowed MPCM-air Taylor flows to be subjected to a constant heat flux boundary condition. Infrared thermography was used to record high resolution experimental wall temperature measurements and determine local heat transfer coefficients from the thermal entrance point. 30.2% mass particle concentration of the MPCM suspension fluid was examined as it provided the maximum latent heat for absorption. Results demonstrate a significant reduction in experimental wall temperatures associated with MPCM-air Taylor flows when compared with the Graetz solution for conventional single phase coolants. Total enhancement in the thermally developed region is observed to be a combination of the individual contributions due to recirculation within the liquid slugs and also absorption of latent heat. Overall, the study highlights the potential heat transfer enhancements that are attainable within heat exchange devices employing MPCM

  3. The Bible and mission in faith perspective: J.Hudson Taylor and the early China Inland Mission

    NARCIS (Netherlands)

    Wigram, C.E.M.

    2007-01-01

    The thesis 'The Bible and Mission in Faith Perspective: J.Hudson Taylor and the Early China Inland Mission' by Christopher E.M. Wigram analysis the hermeneutical assumptions that underlay Hudson Taylor's approach to biblical interpretation, and the significance of his approach for the mission which

  4. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    International Nuclear Information System (INIS)

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-01-01

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field

  5. A crítica de Charles Taylor ao naturalismo na Ciência Política

    Directory of Open Access Journals (Sweden)

    Tiago Losso

    2011-06-01

    Full Text Available Os mais recentes esforços de revitalização do enfoque interpretativo na Ciência Política têm sua gênese na década de 1960, quando vários autores passaram a advogar a centralidade do estudo dos significados lingüístico e hermenêutico dos fenômenos políticos. Dentre tais autores, destaca-se o filósofo e politólogo Charles Taylor, cujos textos dos anos 1960 e 1970 desferem críticas contundentes ao naturalismo subjacente ao mainstream da Ciência Política da época. Meu objetivo é explorar a crítica de Taylor ao naturalismo, pensadas no contexto de uma proposta de abordagem interpretativa para a Ciência Política. Primeiramente, contextualizarei as contribuições de Taylor no âmbito mais amplo do interpretive turn nas Ciências Sociais. Em seguida, sumarizarei as reservas que Quentin Skinner e Clifford Geertz apresentam à crítica de Taylor.

  6. Pediatric and adolescent applications of the Taylor Spatial Frame.

    Science.gov (United States)

    Paloski, Michael; Taylor, Benjamin C; Iobst, Christopher; Pugh, Kevin J

    2012-06-01

    Limb deformity can occur in the pediatric and adolescent populations from multiple etiologies: congenital, traumatic, posttraumatic sequelae, oncologic, and infection. Correcting these deformities is important for many reasons. Ilizarov popularized external fixation to accomplish this task. Taylor expanded on this by designing an external fixator in 1994 with 6 telescoping struts that can be sequentially manipulated to achieve multiaxial correction of deformity without the need for hinges or operative frame alterations. This frame can be used to correct deformities in children and has shown good anatomic correction with minimal morbidity. The nature of the construct and length of treatment affects psychosocial factors that the surgeon and family must be aware of prior to treatment. An understanding of applications of the Taylor Spatial Frame gives orthopedic surgeons an extra tool to correct simple and complex deformities in pediatric and adolescent patients. Copyright 2012, SLACK Incorporated.

  7. Interaction of equal-size bubbles in shear flow.

    Science.gov (United States)

    Prakash, Jai; Lavrenteva, Olga M; Byk, Leonid; Nir, Avinoam

    2013-04-01

    The inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds number, for the case when the bubbles are within each other's inner viscous region, are calculated making use of the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume an ordered string with equal separation distances between all neighbors. We report on experiments showing the dynamic evolution of various numbers of bubbles. The results of the theory are in good agreement with the experimental observations.

  8. The design of a heat transfer liquid metal MHD experiment for ALEX [Argonne Liquid-Metal Experiment

    International Nuclear Information System (INIS)

    Picologlou, B.F.; Reed, C.B.; Hua, T.Q.; Lavine, A.S.

    1988-01-01

    An experiment to study heat transfer in liquid metal MHD flow, under conditions relevant to coolant channels for tokamak first wall and high heat flux devices, is described. The experimental configuration is a rectangular duct in a transverse magnetic field, heated on one wall parallel to the field. The specific objective of the experiment is to resolve important issues related to the presence and heat transfer characteristics of wall jets and flow instabilities in MHD flows in rectangular duct with electrically conducting walls. Available analytical tools for MHD thermal hydraulics have been used in the design of the test article and its instrumentation. Proposed tests will cover a wide range of Peclet and Hartmann numbers and interaction parameters. 14 refs., 3 figs., 1 tab

  9. Taylor-Made Education: The Influence of the Efficiency Movement on the Testing of Reading Skills.

    Science.gov (United States)

    Allen, JoBeth

    Much of what has developed in the testing of reading harkens back to the days of the "Cult of Efficiency" movement in education that can be largely attributed to Frederick Winslow Taylor. Taylor spent most of his productive years studying time and motion in an attempt to streamline industrial production so that people could work as…

  10. Study of the Rayleigh-Taylor instability at the ablation front

    International Nuclear Information System (INIS)

    Salvatore, Patricia

    2000-01-01

    Inertial confinement fusion in indirect drive consists in irradiating with ultra powerful laser beams the internal wall of a heating cavity which contains a capsule enclosing the thermonuclear fuel. During laser-matter interaction, laser light is converted into x-rays onto the hohlraum walls. The x-rays capsule heating produces a matter expansion, this one induces a pressure accelerating the capsule wall which implodes and compresses the fuel. The limit between the expanded plasma and the accelerated one is named ablation front. A light fluid (the ablated plasma) accelerating a heavy one (the shell) seeds Rayleigh-Taylor instability. To perform experiments, we used the Phebus facility at Limeil-Valenton CEA (the most powerful laser in Europe). After frequency conversion, each laser beam can deliver onto a target an energy up to 3 kJ at 0.35μm wavelength. In the United States of America and in France, more powerful laser facilities are planned to deliver an energy about 1 MJ: the National Ignition Facility (Lawrence Livermore National Laboratory, California) and the Laser MegaJoule (CEA, Bordeaux). Hydrodynamic instabilities take an important part in the definition of these facilities. Two main experiments were carried out on the Phebus laser. We studied the Rayleigh-Taylor instability at the ablation front with a modulated CHBr plane target stuck on the gold hohlraum wall. During the september-october 1996 experiment, a x-ray device was used. We observed the temporal evolution of the target modulations by x-ray imaging cinematography which recorded face-on radiographs. The second experiment was performed with collaboration of the Imperial College of London. Two high spatial resolution devices (less than 5 μm) were used in order to study short wavelengths modulations. The first diagnostic recorded side-on observations of target acceleration, the second one was used to measure the instability growth with face-on radiography. We studied this growth in a modulation

  11. Rayleigh-Taylor instability in multi-structured spherical targets

    International Nuclear Information System (INIS)

    Gupta, N.K.; Lawande, S.V.

    1986-01-01

    An eigenvalue equation for the exponential growth rate of the Rayleigh-Taylor instability is derived in spherical geometry. The free surface and jump boundary conditions are obtained from the eigenvalue equation. The eigenvalue equation is solved in the cases where the initial fluid density profile has a step function or exponential variation in space and analytical formulae for growth rate of the instability are obtained. The solutions for the step function are generalized for any number N of spherical zones forming an arbitrary fluid density profile. The results of the numerical calculations for N spherical zones are compared with the exact analytical results for exponential fluid density profile with N=10 and a good agreement is observed. The formalism is further used to study the effects of density gradients on Rayleigh-Taylor instability in spherical geometry. Also analytical formulae are presented for a particular case of N=3 and shell targets. The formalism developed here can be used to study the growth of the instability in present day multi-structured shell targets. (author)

  12. Nonlinear interaction of Rayleigh--Taylor and shear instabilities

    International Nuclear Information System (INIS)

    Finn, J.M.

    1993-01-01

    Results on the nonlinear behavior of the Rayleigh--Taylor instability and consequent development of shear flow by the shear instability [Phys. Fluids B 4, 488 (1992)] are presented. It is found that the shear flow is generated at sufficient amplitude to reduce greatly the convective transport. For high viscosity, the time-asymptotic state consists of an equilibrium with shear flow and vortex flow (with islands, or ''cat's eyes''), or a relaxation oscillation involving an interplay between the shear instability and the Rayleigh--Taylor instability in the presence of shear. For low viscosity, the dominant feature is a high-frequency nonlinear standing wave consisting of convective vortices localized near the top and bottom boundaries. The localization of these vortices is due to the smaller shear near the boundary regions. The convective transport is largest around these convective vortices near the boundary and there is a region of good confinement near the center. The possible relevance of this behavior to the H mode and edge-localized modes (ELM's) in the tokamak edge region is discussed

  13. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions

    DEFF Research Database (Denmark)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco

    2016-01-01

    solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative......Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins...

  14. Autenticitet og kritisk sprogfællesskab hos Charles Taylor

    DEFF Research Database (Denmark)

    Crone, Manni

    2002-01-01

    Lever vi i individualistiske samfund, hvor autenticitet og selvrealisering er blevet de højeste værdier? Den canadiske kommunitarist Charles Taylor argumenterer for, at selv om autenticitet og selvrealisering er vigtige værdier for det moderne menneske, kan en excessiv individualisme alligevel...

  15. Impurity in a granular gas under nonlinear Couette flow

    International Nuclear Information System (INIS)

    Vega Reyes, Francisco; Garzó, Vicente; Santos, Andrés

    2008-01-01

    We study in this work the transport properties of an impurity immersed in a granular gas under stationary nonlinear Couette flow. The starting point is a kinetic model for low-density granular mixtures recently proposed by the authors (Vega Reyes et al 2007 Phys. Rev. E 75 061306). Two routes have been considered. First, a hydrodynamic or normal solution is found by exploiting a formal mapping between the kinetic equations for the gas particles and for the impurity. We show that the transport properties of the impurity are characterized by the ratio between the temperatures of the impurity and gas particles and by five generalized transport coefficients: three related to the momentum flux (a nonlinear shear viscosity and two normal stress differences) and two related to the heat flux (a nonlinear thermal conductivity and a cross-coefficient measuring a component of the heat flux orthogonal to the thermal gradient). Second, by means of a Monte Carlo simulation method we numerically solve the kinetic equations and show that our hydrodynamic solution is valid in the bulk of the fluid when realistic boundary conditions are used. Furthermore, the hydrodynamic solution applies to arbitrarily (inside the continuum regime) large values of the shear rate, of the inelasticity, and of the rest of the parameters of the system. Preliminary simulation results of the true Boltzmann description show the reliability of the nonlinear hydrodynamic solution of the kinetic model. This shows again the validity of a hydrodynamic description for granular flows, even under extreme conditions, beyond the Navier–Stokes domain

  16. Clinical utility of the Taylor spatial frame for limb deformities

    Directory of Open Access Journals (Sweden)

    Keshet D

    2017-05-01

    Full Text Available Doron Keshet, Mark Eidelman Pediatric Orthopedics Unit, Rambam Health Care Center, Haifa, Israel Abstract: The Taylor spatial frame (TSF is a hexapod external fixator that can correct six-axis deformities. The mathematical base of all hexapod systems is projective geometry, which describes complex repositioning of an object in space. The Taylor brothers developed one of the first six-axis correction systems, which is known today as TSF. Over the years, this system has become the most used six-axis deformity correction device. In this review, we describe the history behind TSF development, and describe the principles and clinical utility for application of the TSF in different settings, such as acute trauma, malunions, and various deformities of the lower and upper limb. Keywords: external fixator, deformity correction, hexapod

  17. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment.

    Science.gov (United States)

    Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol

    2015-01-01

    The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.

  18. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.

    2015-02-23

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  19. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.; McCue, Scott W.; Dallaston, Michael C.; Moroney, Timothy J.

    2015-01-01

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  20. Monetary Policy and the Taylor Principle in Open Economies

    NARCIS (Netherlands)

    Linnemann, L.; Schabert, A.

    2006-01-01

    Nowadays, central banks mostly conduct monetary policy by setting nominal interest rates. A widely held view is that central banks can stabilize inflation if they follow the Taylor principle, which requires raising the nominal interest rate more than one-for-one in response to higher inflation. Is

  1. Coherent structures in ablatively compressed ICF targets and Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Pant, H.C.; Desai, T.

    1996-01-01

    One of the major issues in laser induced inertial confinement fusion (ICF) is a stable ablative compression of spherical fusion pellets. The main impediment in achievement of this objective is Rayleigh-Taylor instability at the pellet's ablation front. Under sufficiently high acceleration this instability can grow out of noise. However, it can also arise either due to non-uniform laser intensity distribution over the pellet surface or due to pellet wall areal mass irregularity. Coherent structures in the dense target behind the ablation front can be effectively utilised for stabilisation of the Rayleigh-Taylor phenomenon. Such coherent structures in the form of a super lattice can be created by doping the pellet pusher with high atomic number (Z) micro particles. A compressed-cool pusher under laser irradiation behaves like a strongly correlated non ideal plasma when compressed to sufficiently high density such that the non ideality parameter exceeds unity. Moreover, the nonideality parameter for high Z microinclusions may exceed a critical value of 180 and as a consequence they remain in the form of intact clusters, maintaining the superlattice intact during ablative acceleration. Micro-hetrogeneity and its superlattice plays an important role in stabilization of Rayleigh-Taylor instability, through a variety of mechanisms. (orig.)

  2. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    Energy Technology Data Exchange (ETDEWEB)

    Smitherman, D.P.

    1998-04-01

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}m aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.

  3. Stochastic model of Rayleigh-Taylor turbulent mixing

    International Nuclear Information System (INIS)

    Abarzhi, S.I.; Cadjan, M.; Fedotov, S.

    2007-01-01

    We propose a stochastic model to describe the random character of the dissipation process in Rayleigh-Taylor turbulent mixing. The parameter alpha, used conventionally to characterize the mixing growth-rate, is not a universal constant and is very sensitive to the statistical properties of the dissipation. The ratio between the rates of momentum loss and momentum gain is the statistic invariant and a robust parameter to diagnose with or without turbulent diffusion accounted for

  4. A taylor series approach to survival analysis

    International Nuclear Information System (INIS)

    Brodsky, J.B.; Groer, P.G.

    1984-09-01

    A method of survival analysis using hazard functions is developed. The method uses the well known mathematical theory for Taylor Series. Hypothesis tests of the adequacy of many statistical models, including proportional hazards and linear and/or quadratic dose responses, are obtained. A partial analysis of leukemia mortality in the Life Span Study cohort is used as an example. Furthermore, a relatively robust estimation procedure for the proportional hazards model is proposed. (author)

  5. Taylor Law in Wind Energy Data

    Directory of Open Access Journals (Sweden)

    Rudy Calif

    2015-10-01

    Full Text Available The Taylor power law (or temporal fluctuation scaling, is a scaling relationship of the form σ ~  (Pλ where !! is the standard deviation and hPi the mean value of a sample of a time series has been observed for power output data sampled at 5 min and 1 s and from five wind farms and a single wind turbine, located at different places. Furthermore, an analogy with the turbulence field is performed, consequently allowing the establishment of a scaling relationship between the turbulent production IP and the mean value (P.

  6. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    International Nuclear Information System (INIS)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    2014-01-01

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.

  7. Injury experience in metallic mineral mining, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  8. Injury experience in metallic mineral mining, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  9. Development of Rayleigh-Taylor and bulk convection instabilities in the dynamics of plasma liners and pinches

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Velikovich, A.L.; Liberman, M.A.; Felber, F.S.

    1989-01-01

    A solution is derived for the problem of the initial, linear stage of the growth of small perturbations in the course of the cylindrically symmetric compression and expansion of a plasma liner and a Z-pinch with a sharp boundary. In these systems, Rayleigh-Taylor instabilities localized near the plasma boundaries are the most dangerous. Bulk convective instabilities develop in addition to these Rayleigh-Taylor instabilities. The various instability modes, including local and global Rayleigh-Taylor modes, which grown in an accelerated plasma with distributed profiles of hydrodynamic variables, are classified. The spectra of the instability growth rates are calculated for plasma liners and Z-pinches. The shape of these spectra reveals an explanation of the stratification and filamentation of the plasma observed experimentally in pinches and liners. The imposition of a longitudinal magnetic field gives rise to a stability window in the space of the flow parameters. In this window, the Rayleigh-Taylor modes are suppressed completely by magnetic shear, while the bulk convective modes are suppressed to a significant extent

  10. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number

    International Nuclear Information System (INIS)

    Ye Wenhua; He, X.T.; Zhang Weiyan

    2002-01-01

    Recent experiment [S.G. Glendinning et al., Phys. Rev. Lett. 78, 3318 (1997)] showed that the measured growth rate of laser ablative Rayleigh-Taylor (RT) instability with preheating is about 50% of the classic value and is reduced by about 18% compared with the simulated value obtained with the computer code LASNEX. By changing the temperature variation of the electron thermal conductivity at low temperatures, the density profile from the Bhatnagar-Gross-Krook approximation is recovered in the simulation, and the simulated RT growth rate is in good agreement with the experimental value from Glendinning et al. The preheated density profile on ablative RT stablization is studied numerically. A change of the Atwood number in the preheating case also leads to RT stabilization. The RT growth formula γ=√(Akg/(1+AkL))-2kV a agrees well with experiment and simulation, and is appropriate for the preheating case

  11. Effect of magnetic field on Rayleigh-Taylor instability of quantum and stratified plasma in porous medium

    International Nuclear Information System (INIS)

    Sharma, P.K.; Tiwari, Anita; Argal, Shraddha; Chhajlani, R.K.

    2013-01-01

    This paper is devoted to an investigation of Quantum effects and magnetic field effects on the Rayleigh Taylor instability of two superposed incompressible fluids in bounded porous medium. The Quantum magneto hydrodynamic equations are solved by using normal mode method and a dispersion relation is obtained. The dispersion relation is derived for the case where plasma is bounded by two rigid planes z = 0 and z = h. The Rayleigh Taylor instability growth rate and stability condition of the medium is discussed in the presence of quantum effect, magnetic field, porosity and permeability. It is found that the magnetic field and medium porosity have stabilizing influence while permeability has destabilizing influence on the Rayleigh Taylor instability. (author)

  12. Energy balance in a Z pinch with suppressed Rayleigh-Taylor instability

    Science.gov (United States)

    Baksht, R. B.; Oreshkin, V. I.; Rousskikh, A. G.; Zhigalin, A. S.

    2018-03-01

    At present Z-pinch has evolved into a powerful plasma source of soft x-ray. This paper considers the energy balance in a radiating metallic gas-puff Z pinch. In this type of Z pinch, a power-law density distribution is realized, promoting suppression of Rayleigh-Taylor (RT) instabilities that occur in the pinch plasma during compression. The energy coupled into the pinch plasma, is determined as the difference between the total energy delivered to the load from the generator and the magnetic energy of the load inductance. A calibrated voltage divider and a Rogowski coil were used to determine the coupled energy and the load inductance. Time-gated optical imaging of the pinch plasma showed its stable compression up to the stagnation phase. The pinch implosion was simulated using a 1D two-temperature radiative magnetohydrodynamic code. Comparison of the experimental and simulation results has shown that the simulation adequately describes the pinch dynamics for conditions in which RT instability is suppressed. It has been found that the proportion of the Ohmic heating in the energy balance of a Z pinch with suppressed RT instability is determined by Spitzer resistance and makes no more than ten percent.

  13. From Taylor to Drucker: Management and Managing

    OpenAIRE

    Primoz Turk

    2008-01-01

    The article discusses the question of management and managing, focusing on the changes which took place in the period from Taylor to Drucker. In this period two turning points dramatically changed the nature of management. Management which started within the organization was at first concerned with the organization’s inner workings. This concern with the organization’s ‘inside’ is gradually projected to the outside, to society as a whole. Simultaneously, changes occur in managing. Managing wh...

  14. Liquidity Trap and Stability of Taylor Rules

    OpenAIRE

    Le Riche , Antoine; Magris , Francesco; Parent , Antoine

    2016-01-01

    We study a productive economy with fractional cash-in-advance constraint on consumption expenditures. Government issues safe bonds and levies taxes to finance public expenditures, while the Central Bank follows a feedback Taylor rules by pegging the nominal interest rate. We show that when the nominal interest rate is bound to be non-negative, under active policy rules a Liquidity Trap steady state does emerge besides the Leeper (1991) equilibrium. The stability of the two steady states depen...

  15. Direct numerical simulations of type Ia supernovae flames II: The Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

    2004-01-01

    A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10e7 gm/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition

  16. Asymptotic theory of neutral stability of the Couette flow of a vibrationally excited gas

    Science.gov (United States)

    Grigor'ev, Yu. N.; Ershov, I. V.

    2017-01-01

    An asymptotic theory of the neutral stability curve for a supersonic plane Couette flow of a vibrationally excited gas is developed. The initial mathematical model consists of equations of two-temperature viscous gas dynamics, which are used to derive a spectral problem for a linear system of eighth-order ordinary differential equations within the framework of the classical linear stability theory. Unified transformations of the system for all shear flows are performed in accordance with the classical Lin scheme. The problem is reduced to an algebraic secular equation with separation into the "inviscid" and "viscous" parts, which is solved numerically. It is shown that the thus-calculated neutral stability curves agree well with the previously obtained results of the direct numerical solution of the original spectral problem. In particular, the critical Reynolds number increases with excitation enhancement, and the neutral stability curve is shifted toward the domain of higher wave numbers. This is also confirmed by means of solving an asymptotic equation for the critical Reynolds number at the Mach number M ≤ 4.

  17. Measurement of the Rayleigh-Taylor instability in targets driven by optically smoothed laser beams

    International Nuclear Information System (INIS)

    Desselberger, M.; Willi, O.; Savage, M.; Lamb, M.J.

    1990-01-01

    Growth rates of the Rayleigh-Taylor instability were measured in targets with imposed sinusoidal modulations irradiated by optically smoothed 0.53-μm laser beams. A hybrid optical smoothing technique utilizing induced-spatial-incoherence and random-phase-plate technology was used for the first time. The wave-number dependence and the nonlinear behavior of Rayleigh-Taylor growth were investigated by using targets with a range of modulation periodicities and depths. The results are compared to 2D hydrodynamic-code simulations

  18. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  19. Experiments with liquid metal walls: Status of the lithium tokamak experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, Robert, E-mail: kaita@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Berzak, Laura; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M.; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor; Timberlake, John [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2010-11-15

    Abstarct: Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The lithium tokamak experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the current drive experiment-upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in ohmically heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy (CHERS). Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions.

  20. Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment

    International Nuclear Information System (INIS)

    Kaita, Robert; Berzak, Laura; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M.; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor; Timberlak, John

    2010-01-01

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions.

  1. Taylor-expansion Monte Carlo simulations of classical fluids in the canonical and grand canonical ensemble

    International Nuclear Information System (INIS)

    Schoen, M.

    1995-01-01

    In this article the Taylor-expansion method is introduced by which Monte Carlo (MC) simulations in the canonical ensemble can be speeded up significantly, Substantial gains in computational speed of 20-40% over conventional implementations of the MC technique are obtained over a wide range of densities in homogeneous bulk phases. The basic philosophy behind the Taylor-expansion method is a division of the neighborhood of each atom (or molecule) into three different spatial zones. Interactions between atoms belonging to each zone are treated at different levels of computational sophistication. For example, only interactions between atoms belonging to the primary zone immediately surrounding an atom are treated explicitly before and after displacement. The change in the configurational energy contribution from secondary-zone interactions is obtained from the first-order term of a Taylor expansion of the configurational energy in terms of the displacement vector d. Interactions with atoms in the tertiary zone adjacent to the secondary zone are neglected throughout. The Taylor-expansion method is not restricted to the canonical ensemble but may be employed to enhance computational efficiency of MC simulations in other ensembles as well. This is demonstrated for grand canonical ensemble MC simulations of an inhomogeneous fluid which can be performed essentially on a modern personal computer

  2. Optical and electrical experiments at some transition-metal oxide foil-electrolyte interfaces

    International Nuclear Information System (INIS)

    Sari, S.O.; Ahlgren, W.L.

    1977-01-01

    Metal-oxide layers formed from transition-metal foils oxidized by heating in air have been examined for their photoelectrolytic response. The metals examined are Y, Ti, Zr, Hf, V, Nb, Ta, Mo, W, and Pt. Weak photoeffects are observed for oxide layers of all of these metals. Sizable light-dependent oxygen gas evolution rates are found in Ti and also in W oxides. The spectral dependence of the oxygen response in these compounds is investigated, and interpretation is given of these experiments

  3. Suppression of turbulent resistivity in turbulent Couette flow

    Science.gov (United States)

    Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe

    2015-07-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  4. Suppression of turbulent resistivity in turbulent Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  5. Suppression of turbulent resistivity in turbulent Couette flow

    International Nuclear Information System (INIS)

    Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.

    2015-01-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations

  6. Final results of the XR2-1 BWR metallic melt relocation experiment

    International Nuclear Information System (INIS)

    Gauntt, R.O.; Humphries, L.L.

    1997-08-01

    This report documents the final results of the XR2-1 boiling water reactor (BWR) metallic melt relocation experiment, conducted at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. The objective of this experiment was to investigate the material relocation processes and relocation pathways in a dry BWR core following a severe nuclear reactor accident such as an unrecovered station blackout accident. The imposed test conditions (initial thermal state and the melt generation rates) simulated the conditions for the postulated accident scenario and the prototypic design of the lower core test section (in composition and in geometry) ensured that thermal masses and physical flow barriers were modeled adequately. The experiment has shown that, under dry core conditions, the metallic core materials that melt and drain from the upper core regions can drain from the core region entirely without formation of robust coherent blockages in the lower core. Temporary blockages that suspended pools of molten metal later melted, allowing the metals to continue draining downward. The test facility and instrumentation are described in detail. The test progression and results are presented and compared to MERIS code analyses. 6 refs., 55 figs., 4 tabs

  7. Taylor Principle Supplements the Fisher Effect: Empirical Investigation under the US Context

    Directory of Open Access Journals (Sweden)

    Mohammed Saiful ISLAM

    2012-06-01

    Full Text Available This paper reviews the short- and long-run dynamics of interest rate and inflation of the United States. Basing upon quarterly as well as monthly data over the period 1957 to 2010, we find evidence that interest rate behaviour of the Federal Reserve is consistent with the Taylor principle in short run and with the Fisher hypothesis in long run. Entire sample justifies the existence of a long run cointegrating relationship between federal funds rate and inflation characterised as the Fisher effect. When data are split into different subsamples, the cointegrating relationship disappears. Interest rate dynamics of pre-1980 and post-2001 neither track Fisher hypothesis nor Taylor principle, rather represent substantial discretion.

  8. Wall roughness induces asymptotic ultimate turbulence

    Science.gov (United States)

    Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-04-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.

  9. Finite plate thickness effects on the Rayleigh-Taylor instability in elastic-plastic materials

    Science.gov (United States)

    Polavarapu, Rinosh; Banerjee, Arindam

    2017-11-01

    The majority of theoretical studies have tackled the Rayleigh-Taylor instability (RTI) problem in solids using an infinitely thick plate. Recent theoretical studies by Piriz et al. (PRE 95, 053108, 2017) have explored finite thickness effects. We seek to validate this recent theoretical estimate experimentally using our rotating wheel RTI experiment in an accelerated elastic-plastic material. The test section consists of a container filled with air and mayonnaise (a non-Newtonian emulsion) with an initial perturbation between two materials. The plate thickness effects are studied by varying the depth of the soft-solid. A set of experiments is run by employing different initial conditions with different container dimensions. Additionally, the effect of acceleration rate (driving pressure rise time) on the instability threshold with reference to the finite thickness will also be inspected. Furthermore, the experimental results are compared to the analytical strength models related to finite thickness effects on RTI. Authors acknowledge financial support from DOE-SSAA Grant # DE-NA0003195 and LANL subcontract #370333.

  10. Transport of significant metals recovered in real sea experiment of adsorbents

    International Nuclear Information System (INIS)

    Takeda, Hayato; Tamada, Masao; Kasai, Noboru; Katakai, Akio; Hasegawa, Shin; Seko, Noriaki; Sugo, Takanobu; Kawabata, Yukiya

    2001-10-01

    Real sea experiment for the recovery of significant metals such as uranium and vanadium which dissolved in seawater with extremely low concentration has been carried out at the offing of Mutsu establishment to evaluate the adsorption performance of adsorbent synthesized by radiation-induced graft-polymerization. The significant metals of uranium and vanadium eluted from the adsorbent which was soaked in the real sea were adsorbed onto the conventional chelate resin. The chelate resin which adsorbed the metals was packed in a plastic (PVC) column and further put in a cylindrical stainless transport container. This container was transported to the facility for separation and purification by a truck for the exclusive loading. Then the recovers metals were purified there. The recovered metals contained the uranium of 150g (1.92 MBq) and less in one recovery experiment. The maximum concentration is 60 Bq/g when the uranium is adsorbed on the chelate resin. Transport of recovered metals can be treated as general substance since these amount and concentration are out of legal control. However, the recovered metals were transported in conformity to L type Transport as a voluntary regulation. Though there is no requirements of structural strength for L type package legally, the structural strength of container was designed on that of IP-2 type which is higher transport grade than L type to take its safety measure. Its strength analysis proved the safety under general transport process. The transport was based on the plan made in advance. (author)

  11. Orsphere: Physics Measurments For Bare, HEU(93.2)-Metal Sphere

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); White, Christine E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dyrda, James P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tancock, Nigel P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files” (Reference 1). While performing the ORSphere experiments care was taken to accurately document component dimensions (±0.0001 inches), masses (±0.01 g), and material data. The experiment was also set up to minimize the amount of structural material in the sphere proximity. Two, correlated spheres were evaluated and judged to be acceptable as criticality benchmark experiments. This evaluation is given in HEU-MET-FAST-100. The second, smaller sphere was used for additional reactor physics measurements. Worth measurements (Reference 1, 2, 3 and 4), the delayed neutron fraction (Reference 3, 4 and 5) and surface material worth coefficient (Reference 1 and 2) are all measured and judged to be acceptable as benchmark data. The prompt neutron decay (Reference 6), relative fission density (Reference 7) and relative neutron importance (Reference 7) were measured, but are not evaluated. Information for the evaluation was compiled from References 1 through 7, the experimental logbooks 8 and 9 ; additional drawings and notes provided by the experimenter; and communication with the lead experimenter, John T. Mihalczo.

  12. Identità e riconoscimento in Charles Taylor

    Directory of Open Access Journals (Sweden)

    Francesca Caputo

    2013-06-01

    Full Text Available The model of the politic of difference, proposed by Charles Taylor, in the wake of a conception of liberalism ‘hospitable’, unfolds in a journey aimed to comply with the ontological dimensions of the dignity of different cultures, of cultural traditions and ways of life. Being a self, constructed in terms of dialogue and dialectic of mutual recognition between cultures, refers, in the Charles Taylor’s reflection, to the safeguarding of single, intersubjective or common meanings of specific social, moral, narrative spaces.

  13. Hydromagnetic Rayleigh-Taylor instability in cylindrical implosions

    International Nuclear Information System (INIS)

    Hwang, C.S.; Roderick, N.F.; Wu, M.W.

    1986-01-01

    Rayleigh-Taylor Instability in the (r,Θ) plane has been solved by the variational approach. Results are compared to the analytical solutions of two-region and three-region problems at the infinite radius. They show the magnetic stabilization effect. Growth rates in this plane are decreased by the effects of plasma shell thickness, plasma shell radius, magnetic tension, magnetic diffusion and finite density gradient of the plasma magnetic field interface. The most unstable mode number decreases when the radius of the plasma shell decreases

  14. The solution of the point kinetics equations via converged accelerated Taylor series (CATS)

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, B.; Picca, P. [Dept. of Aerospace and Mechanical Engineering, Univ. of Arizona (United States); Previti, A.; Mostacci, D. [Laboratorio di Montecuccolino, Alma Mater Studiorum - Universita di Bologna (Italy)

    2012-07-01

    This paper deals with finding accurate solutions of the point kinetics equations including non-linear feedback, in a fast, efficient and straightforward way. A truncated Taylor series is coupled to continuous analytical continuation to provide the recurrence relations to solve the ordinary differential equations of point kinetics. Non-linear (Wynn-epsilon) and linear (Romberg) convergence accelerations are employed to provide highly accurate results for the evaluation of Taylor series expansions and extrapolated values of neutron and precursor densities at desired edits. The proposed Converged Accelerated Taylor Series, or CATS, algorithm automatically performs successive mesh refinements until the desired accuracy is obtained, making use of the intermediate results for converged initial values at each interval. Numerical performance is evaluated using case studies available from the literature. Nearly perfect agreement is found with the literature results generally considered most accurate. Benchmark quality results are reported for several cases of interest including step, ramp, zigzag and sinusoidal prescribed insertions and insertions with adiabatic Doppler feedback. A larger than usual (9) number of digits is included to encourage honest benchmarking. The benchmark is then applied to the enhanced piecewise constant algorithm (EPCA) currently being developed by the second author. (authors)

  15. Evidence for mate guarding behavior in the Taylor's checkerspot butterfly

    Science.gov (United States)

    Victoria J. Bennett; Winston P. Smith; Matthew G. Betts

    2011-01-01

    Discerning the intricacies of mating systems in butterflies can be difficult, particularly when multiple mating strategies are employed and are cryptic and not exclusive. We observed the behavior and habitat use of 113 male Taylor's checkerspot butterflies (Euphydryas editha taylori). We confirmed that two distinct mating strategies were...

  16. Horizontally viscous effects in a tidal basin: extending Taylor's problem

    NARCIS (Netherlands)

    Roos, Pieter C.; Schuttelaars, H.M.

    2009-01-01

    The classical problem of Taylor (Proc. Lond. Math. Soc., vol. 20, 1921, pp. 148–181) of Kelvin wave reflection in a semi-enclosed rectangular basin of uniform depth is extended to account for horizontally viscous effects. To this end, we add horizontally viscous terms to the hydrodynamic model

  17. The verification of the Taylor-expansion moment method in solving aerosol breakage

    Directory of Open Access Journals (Sweden)

    Yu Ming-Zhou

    2012-01-01

    Full Text Available The combination of the method of moment, characterizing the particle population balance, and the computational fluid dynamics has been an emerging research issue in the studies on the aerosol science and on the multiphase flow science. The difficulty of solving the moment equation arises mainly from the closure of some fractal moment variables which appears in the transform from the non-linear integral-differential population balance equation to the moment equations. Within the Taylor-expansion moment method, the breakage-dominated Taylor-expansion moment equation is first derived here when the symmetric fragmentation mechanism is involved. Due to the high efficiency and the high precision, this proposed moment model is expected to become an important tool for solving population balance equations.

  18. The dependence of the Taylor-Quinney coefficient on the dynamic loading mode

    Science.gov (United States)

    Rittel, D.; Zhang, L. H.; Osovski, S.

    2017-10-01

    The efficiency of the thermomechanical conversion, expressed as the Taylor-Quinney coefficient (TQC) is seldom reported in the literature and generally assumed to be equal to 0.9. Moreover, an eventual dependence of this coefficient on the dynamic loading mode has not been investigated so far. This work presents a systematic characterization of the TQC for seven different metals and alloys loaded in dynamic tension, compression and dominant shear. The results show that the TQC varies greatly with the investigated material, instead of its assumed constant value of 0.9. Likewise, until final collapse of the specimen, the overall temperature rise remains quite modest. Moreover, we clearly observe that for commercially pure Titanium, which exhibits an asymmetric mechanical response in tension and compression, the measured TQC values are mode dependent too. Microstructural characterization reveals profuse twinning in compression and shear, as opposed to tension. Twinning is related to heat generation in accord with previous studies. In addition to reporting a wide database of TQC values, this study reveals a new correlation between the thermomechanical characteristics of a material and its deformation micromechanisms, that should find its way into constitutive models.

  19. Rayleigh-Taylor instability of a self-similar spherical expansion

    International Nuclear Information System (INIS)

    Bernstein, I.B.; Book, D.L.

    1978-01-01

    The self-similar motion of a spherically symmetric isentropic cloud of ideal gas driven outward by an expanding low-density medium (e.g., radiation pressure from a pulsar) is shown to be unstable to Rayleigh-Taylor modes which develop in the neighborhood of the interface. A complete solution of the linearized equations of motion is obtained. The implications for astrophysical phenomena are discussed

  20. Natural uranium metallic fuel elements: fabrication and operating experience

    International Nuclear Information System (INIS)

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  1. On stabilization of the Rayleigh-Taylor instability for the imploding liner on account of ion-ion collisions

    International Nuclear Information System (INIS)

    Gordeev, Alexander V.

    2002-01-01

    The stabilization of the Rayleigh-Taylor instability for the imploding cylindrical liner in the limit of a low plasma density Π ω pi 2 δ2/c2 << 1 (δ -- the characteristic size of the current layer) is investigated, when the electron currents are much greater than the ion currents. The stabilization of the Rayleigh-Taylor instability for the parameter diapason νii/ωBi < (Z2M/m)1/2 is considered, when the plasma dissipation connected with the ion-ion collisions considerably superior the usual dissipation due to the electron-ion collisions. For the electric conductivity, caused by the ion-ion collisions and resulted in the minimum value σ ∼ enc/B, the effect of the partial stabilization of the Rayleigh-Taylor instability is demonstrated

  2. RADIATIVE RAYLEIGH-TAYLOR INSTABILITIES

    International Nuclear Information System (INIS)

    Jacquet, Emmanuel; Krumholz, Mark R.

    2011-01-01

    We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such systems and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime, where the discontinuity is chemical in nature (e.g., at the boundary of a radiation pressure-driven H II region), radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume toward the interface overcomes that away from it. In the optically thick a diabaticregime where the total (gas plus radiation) specific entropy of a Lagrangian fluid element is conserved, for example at the edge of radiation pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state and derive a generalized version of the classical Rayleigh-Taylor stability condition.

  3. Taylorism given a helping hand

    DEFF Research Database (Denmark)

    Tolsby, June

    2000-01-01

    of the IT system was perceived by some of the employees. Shows how, instead of increasing employees' work engagement, the IT system had the opposite effect. Demonstrates that the new It system contributed to a deskilling of the employees, to a more task-oriented approach to their work, and to increased employees......Illustrates how th implementation of a major information technology (IT) system within the Norwegian Army affected the way the employees perceived their flexibility and personal involvement in their work. By employing Taylor's initial works, this paper illustrates how the introduction......' interdependence. Instead of increasing employees' personal flexibility and involvement in their jobs, the research shows how the new IT system in fact contributed to a reduction in the freedom to choose when and how quickly to do their jobs....

  4. Local Nusselt number enhancement during gas-liquid Taylor bubble flow in a square mini-channel: An experimental study

    International Nuclear Information System (INIS)

    Majumder, Abhik; Mehta, Balkrishna; Khandekar, Sameer

    2013-01-01

    Taylor bubble flow takes place when two immiscible fluids (liquid-liquid or gas-liquid) flow inside a tube of capillary dimensions within specific range of volume flow ratios. In the slug flows where gas and liquid are two different phases, liquid slugs are separated by elongated Taylor bubbles. This singular flow pattern is observed in many engineering mini-/micro-scale devices like pulsating heat pipes, gas-liquid-solid monolithic reactors, micro-two-phase heat exchangers, digital micro-fluidics, micro-scale mass transfer process, fuel cells, etc. The unique and complex flow characteristics require understanding on local, as well as global, spatio-temporal scales. In the present work, the axial stream-wise profile of the fluid and wall temperature for air-water (i) isolated single Taylor bubble and, (ii) a train of Taylor bubbles, in a horizontal square channel of size 3.3 mm x 3.3 mm x 350 mm, heated from the bottom (heated length = 175 mm), with the other three sides kept insulated, are reported at different gas volume flow ratios. The primary aim is to study the enhancement of heat transfer due to the Taylor bubble train flow, in comparison with thermally developing single-phase flows. Intrusion of a bubble in the liquid flow drastically changes the local temperature profiles. The axial distribution of time-averaged local Nusselt number (Nu z ) shows that Taylor bubble train regime increases the transport of heat up to 1.2-1.6 times more as compared with laminar single-phase liquid flow. In addition, for a given liquid flow Reynolds number, the heat transfer enhancement is a function of the geometrical parameters of the unit cell, i.e., the length of adjacent gas bubble and water plug. (authors)

  5. Rayleigh-Taylor instability in a visco-plastic fluid

    International Nuclear Information System (INIS)

    Demianov, A Yu; Doludenko, A N; Son, E E; Inogamov, N A

    2010-01-01

    The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.

  6. Rayleigh-Taylor instability in a visco-plastic fluid

    Science.gov (United States)

    Demianov, A. Yu; Doludenko, A. N.; Inogamov, N. A.; Son, E. E.

    2010-12-01

    The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.

  7. Adult-onset epilepsy in focal cortical dysplasia of Taylor type

    NARCIS (Netherlands)

    Siegel, A. M.; Cascino, G. D.; Elger, C. E.; Devinsky, O.; Laff, R.; Najjar, S.; Sperling, M. R.; LoRusso, G.; Cossu, M.; Urbach, H.; Aronica, E.; Meyer, F. B.; Scheithauer, B. W.; Dubeau, F.; Andermann, F.

    2005-01-01

    Focal cortical dysplasia of Taylor type (FCDT) usually presents with seizures at an early age, whereas adult onset of epilepsy is uncommon. We reviewed the medical records of 213 patients with FCDT. In 21 patients (10%), age at seizure onset ranged from 18 to 55 years (mean 25.3). The outcome of

  8. Rayleigh-Taylor and wind-driven instabilities of the nighttime equatorial ionosphere

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Straus, J.M.

    1979-01-01

    We have made a thorough re-examination of the Rayleigh-Taylor instability in the nighttime equatorial ionosphere from approx.100 km to the bottomside F region. We have taken into account explicitly the following effects which have been ignored by other workers in various combinations: (1) The eastward drift of the ionosphere caused by the nighttime polarization electric field, (2) the eastward nighttime neutral wind, and (3) recombination in the F and E regions. We found that, well below the bottomside F region, the Rayleigh-Taylor mode can be unstable and is driven by an eastward neutral wind rather than by gravitational drift. Formation of ionospheric bubbles below the bottomside F region is consistent with the observation of lower ionospheric ions in F region ionospheric holes; furthermore, seasonal and shorter term variations in spread-F occurrence may be associated with variations in the neutral wind and polarization electric field

  9. Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows

    Science.gov (United States)

    Pereira, Anselmo S.; Mompean, Gilmar; Thompson, Roney L.; Soares, Edson J.

    2017-11-01

    In the present paper, we investigate the polymer-turbulence interaction by discriminating between the mechanical responses of this system to three different subdomains: elliptical, parabolic, and hyperbolic, corresponding to regions where the magnitude of vorticity is greater than, equal to, or less than the magnitude of the rate of strain, respectively, in accordance with the Q-criterion. Recently, it was recognized that hyperbolic structures play a crucial role in the drag reduction phenomenon of viscoelastic turbulent flows, thanks to the observation that hyperbolic structures, as well as vortical ones, are weakened by the action of polymers in turbulent flows in a process that can be referred to as flow parabolization. We employ direct numerical simulations of a viscoelastic finite extensible nonlinear elastic model with the Peterlin approximation to examine the transient evolution and statistically steady regimes of a plane Couette flow that has been perturbed from a laminar flow at an initial time and developed a turbulent regime as a result of this perturbation. We have found that even more activity is located within the confines of the hyperbolic structures than in the elliptical ones, which highlights the importance of considering the role of hyperbolic structures in the drag reduction mechanism.

  10. Experiments with HEU (93.14 wt.%) metal annuli with internal graphite cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wehmann, Udo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    A variety of critical experiments were constructed of enriched uranium metal (oralloy ) during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, only three experimental configurations are described here. They are internal graphite reflected metal uranium assemblies with three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches). These experiments can be found in Reference 1 and in their associated logbook

  11. Identification of Dynamic Loads Based on Second-Order Taylor-Series Expansion Method

    Directory of Open Access Journals (Sweden)

    Xiaowang Li

    2016-01-01

    Full Text Available A new method based on the second-order Taylor-series expansion is presented to identify the structural dynamic loads in the time domain. This algorithm expresses the response vectors as Taylor-series approximation and then a series of formulas are deduced. As a result, an explicit discrete equation which associates system response, system characteristic, and input excitation together is set up. In a multi-input-multi-output (MIMO numerical simulation study, sinusoidal excitation and white noise excitation are applied on a cantilever beam, respectively, to illustrate the effectiveness of this algorithm. One also makes a comparison between the new method and conventional state space method. The results show that the proposed method can obtain a more accurate identified force time history whether the responses are polluted by noise or not.

  12. Effect of resistivity on the Rayleigh-Taylor instability in an accelerated plasma

    International Nuclear Information System (INIS)

    Castillo, J.L.; Huerta, M.A.

    1993-01-01

    We study the Rayleigh-Taylor instability in finite-conductivity accelerated plasma arcs of the type found in electromagnetic rail launchers. For a plasma of length l, acceleration a, and thermal speed v T we consider the case where v T 2 /al much-gt 1, which is valid when the projectile mass is large compared to the plasma mass. The conductivity σ enters via a magnetic Reynolds number R=σμ(al 3 ) 1/2 . The fourth-order mode equation is solved analytically using an asymptotic WKB expansion in 1/R. We find the first-order 1/R correction to the classical Rayleigh-Taylor dispersion relation for large wave number K but with K much-lt R 2 /l. The analytical results show good agreement with previous numerical calculations

  13. James Taylor (1859-1946): favourite disciple of Hughlings Jackson and William Gowers.

    Science.gov (United States)

    Eadie, M J

    2013-01-01

    In neurological circles today the name James Taylor (1859-1946) is probably remembered mainly for his role in editing the Selected Writings of John Hughlings Jackson, the most readily available source of Jackson's contributions to neurological knowledge. Taylors' own neurological achievements are largely or entirely forgotten, but in his day he was an influential figure whose career linked the great figures of the golden era of late nineteenth century British neurology to the neurology of the first half of the twentieth century. Not only was he a junior professional colleague and close friend of both John Hughlings Jackson and William Gowers, he also produced a substantial corpus of neurological writings in his own right, including a textbook of child neurology and the first English language account of subacute combined degeneration of the spinal cord.

  14. The Rayleigh-Taylor instability in a self-gravitating two-layer viscous sphere

    Science.gov (United States)

    Mondal, Puskar; Korenaga, Jun

    2018-03-01

    The dispersion relation of the Rayleigh-Taylor instability in the spherical geometry is of profound importance in the context of the Earth's core formation. Here we present a complete derivation of this dispersion relation for a self-gravitating two-layer viscous sphere. Such relation is, however, obtained through the solution of a complex transcendental equation, and it is difficult to gain physical insights directly from the transcendental equation itself. We thus also derive an empirical formula to compute the growth rate, by combining the Monte Carlo sampling of the relevant model parameter space with linear regression. Our analysis indicates that the growth rate of Rayleigh-Taylor instability is most sensitive to the viscosity of inner layer in a physical setting that is most relevant to the core formation.

  15. The mitigation effect of sheared axial flow on the rayleigh-taylor instability in Z-pinch plasma

    International Nuclear Information System (INIS)

    Zhang Yang

    2005-01-01

    A magnetohydrodynamic formulation is derived to investigate the mitigation effects of the sheared axial flow on the Rayleigh-Taylor (RT) instability in Z-pinch plasma. The dispersion relation of the compressible model is given. The mitigation effects of sheared axial flow on the Rayleigh-Taylor instability of Z-pinch plasma in the compressible and incompressible models are compared respectively, and the effect of compressible on the instability of system with sheared axial flow is discussed. It is found that, compressibility effects can stabilize the Rayleigh-Taylor/Kelvin-Helmholtz (RT/KH) instability, and this allows the sheared axial flow mitigate the RT instability far more effectively. The authors also find that, at the early stage of the implosion, if the temperature of the plasma is not very high, the compressible model is much more suitable to describing the state of system than the incompressible one. (author)

  16. Investigation on cold fusion phenomena using gas-metal loading experiments

    International Nuclear Information System (INIS)

    Lanza, F.; Bertolini, G.; Vocino, V.; Parnisari, E.; Ronsecco, C.

    1992-01-01

    Previous experiments have shown that tritium is produced in deuterated titanium. The data obtained are highly scattered and non reproducible. In order to try to define better the phenomenon a series of tests have been performed using various metals and alloys and different deuterating conditions. Sheets and shavings of titanium, zirconium, hafnium, tantalum, zircaloy 2 and Ti-Zr 5O% alloy have been tested. The tritium production is obtained as a difference of the tritium content in the deuterated metal and the initial content of tritium in the deuterium gas. The amount of tritium produced is low and reproducibility is rather poor. A statistical analysis shows that significant differences are obtained varying the type of metal used. In general the tritium production increases with the atomic number of the metal. Moreover significantly higher productions of tritium have been obtained using materials of technical purity as tantalum, zircaloy 2 and Ti-Zr alloy

  17. Bias Correction with Jackknife, Bootstrap, and Taylor Series

    OpenAIRE

    Jiao, Jiantao; Han, Yanjun; Weissman, Tsachy

    2017-01-01

    We analyze the bias correction methods using jackknife, bootstrap, and Taylor series. We focus on the binomial model, and consider the problem of bias correction for estimating $f(p)$, where $f \\in C[0,1]$ is arbitrary. We characterize the supremum norm of the bias of general jackknife and bootstrap estimators for any continuous functions, and demonstrate the in delete-$d$ jackknife, different values of $d$ may lead to drastically different behavior in jackknife. We show that in the binomial ...

  18. Slavnov-Taylor1.0: A Mathematica package for computation in BRST formalism

    CERN Document Server

    Picariello, Marco; Picariello, Marco; Torrente-Lujan, Emilio

    2004-01-01

    Slavnov-Taylor1.0 is a Mathematica package which allows us to perform automatic simbolic computation in BRST formalism. This article serves as a self-contained guide to prospective users, and indicates the conventions and approximations used.

  19. On Taylor-Series Approximations of Residual Stress

    Science.gov (United States)

    Pruett, C. David

    1999-01-01

    Although subgrid-scale models of similarity type are insufficiently dissipative for practical applications to large-eddy simulation, in recently published a priori analyses, they perform remarkably well in the sense of correlating highly against exact residual stresses. Here, Taylor-series expansions of residual stress are exploited to explain the observed behavior and "success" of similarity models. Until very recently, little attention has been given to issues related to the convergence of such expansions. Here, we re-express the convergence criterion of Vasilyev [J. Comput. Phys., 146 (1998)] in terms of the transfer function and the wavenumber cutoff of the grid filter.

  20. Nonlinear saturation of the Rayleigh Taylor instability

    International Nuclear Information System (INIS)

    Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.

    1997-01-01

    The problem of the nonlinear saturation of the 2 dimensional Rayleigh Taylor instability is re-examined to put various earlier results in a proper perspective. The existence of a variety of final states can be attributed to the differences in the choice of boundary conditions and initial conditions in earlier numerical modeling studies. Our own numerical simulations indicate that the RT instability saturates by the self consistent generation of shear flow even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. Such final states can be achieved for suitable values of the Prandtl number. (author)

  1. Method of generalized coordinates and an application to Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Dienes, J.K.

    1978-01-01

    The method of generalized coordinates is extended to the analysis of continuous bodies for which the degrees of freedom are independent velocity distributions in the spatial coordinates. The corresponding Lagrange equations contain generalized convective terms as well as the usual generalized forces and masses. Since the existence of a potential is not assumed, the equations of motion can be applied to media with arbitrary (possible dissipative) constitutive laws. Material deformation is characterized by the rate of strain, which is taken as the symmetric part of the velocity gradient, making the approach valid for arbitrarily large deformations. As an example, infinitesimal Rayleigh-Taylor instability is considered by analytic methods. Then, large amplitude Rayleigh-Taylor instability is represented with a single-degree-of-freedom analysis that shows the development (by numerical integration) of the known spike-and-bubble configuration of the unstable interface. The infinitesimal stability of a plastically deforming solid and the growth of the instability to large amplitudes are also considered

  2. Solution of the agglomerate Brownian coagulation using Taylor-expansion moment method.

    Science.gov (United States)

    Yu, Mingzhou; Lin, Jianzhong

    2009-08-01

    The newly proposed Taylor-expansion moment method (TEMOM) is extended to solve agglomerate coagulation in the free-molecule regime and in the continuum regime, respectively. The moment equations with respect to fractal dimension are derived based on 3rd Taylor-series expansion technique. The validation of this method is done by comparing its result with the published data at each limited size regime. By comparing with analytical method, sectional method (SM) and quadrature method of moments (QMOMs), this new approach is shown to produce the most efficiency without losing much accuracy. At each limited size regime, the effect of fractal dimension on the decay of particle number and particle size growth is mainly investigated, and especially in the continuum regime the relation of mean diameters of size distributions with different fractal dimensions is first proposed. The agglomerate size distribution is found to be sensitive to the fractal dimension and the initial geometric mean deviation before the self-preserving size distribution is achieved in the continuum regime.

  3. Taylor's Theorem: The Elusive "c" Is Not So Elusive

    Science.gov (United States)

    Kreminski, Richard

    2010-01-01

    For a suitably nice, real-valued function "f" defined on an open interval containing [a,b], f(b) can be expressed as p[subscript n](b) (the nth Taylor polynomial of f centered at a) plus an error term of the (Lagrange) form f[superscript (n+1)](c)(b-a)[superscript (n+1)]/(n+1)! for some c in (a,b). This article is for those who think that not…

  4. Interpreted Modernity. Weber and Taylor on Values and Modernity

    OpenAIRE

    Reckling, Falk

    2001-01-01

    The writings of Weber and Taylor have some strong affinities. Both start from the anthropological idea that man evaluates his position in the world and constitutes the social world by values. Their analyses of values aim at an understanding of those intersubjective meanings that have constituted western modernity. But, at the same time, their anthropological starting point leads to different interpretations of modernity. Historically, both argue that rationalization (as instrumental rationali...

  5. Stagnation morphology in Magnetized Liner Inertial Fusion experiments

    Science.gov (United States)

    Gomez, M. R.; Harding, E. C.; Ampleford, D. J.; Jennings, C. A.; Awe, T. J.; Chandler, G. A.; Glinsky, M. E.; Hahn, K. D.; Hansen, S. B.; Jones, B.; Knapp, P. F.; Martin, M. R.; Peterson, K. J.; Rochau, G. A.; Ruiz, C. L.; Schmit, P. F.; Sinars, D. B.; Slutz, S. A.; Weis, M. R.; Yu, E. P.

    2017-10-01

    In Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z facility, an axial current of 15-20 MA is driven through a thick metal cylinder containing axially-magnetized, laser-heated deuterium fuel. The cylinder implodes, further heating the fuel and amplifying the axial B-field. Instabilities, such as magneto-Rayleigh-Taylor, develop on the exterior of the liner and may feed through to the inner surface during the implosion. Monochromatic x-ray emission at stagnation shows the stagnation column is quasi-helical with axial variations in intensity. Recent experiments demonstrated that the stagnation emission structure changed with modifications to the target wall thickness. Additionally, applying a thick dielectric coating to the exterior of the target modified the stagnation column. A new version of the x-ray self-emission diagnostic has been developed to investigate stagnation with higher resolution. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  6. Investigation of liquid phase axial dispersion in Taylor bubble flow by radiotracer residence time distribution analysis

    Directory of Open Access Journals (Sweden)

    Jin J.H.

    2013-05-01

    Full Text Available A gas-liquid Taylor bubble flow occurs in small diameter channels in which gas bubbles are separated by slugs of pure liquid. This type of flow regime is well suited for solid catalyzed gas-liquid reactors in which the reaction efficiency is a strong function of axial dispersion in the regions of pure liquid. This paper presents an experimental study of liquid phase axial dispersion in a Taylor bubble flow developed in a horizontal tube using high speed photography and radiotracer residence time distribution (RTD analysis. A parametric dependence of axial dispersion on average volume fraction of gas phase was also investigated by varying the relative volumetric flow rates of the two phases. 137mBa produced from a 137Cs/137mBa radionuclide generator was used as radiotracer and measurements were made using the NaI(Tl scintillation detectors. Validation of 137mBa in the form of barium chloride as aqueous phase radiotracer was also carried out. Axial Dispersion Model (ADM was used to simulate the hydrodynamics of the system and the results of the experiment are presented. It was observed that the system is characterized by very high values of Peclet Number (Pe∼102 which reveals an approaching plug type flow. The experimental and model estimated values of mean residence times were observed in agreement with each other.

  7. An integral equation-based numerical solver for Taylor states in toroidal geometries

    Science.gov (United States)

    O'Neil, Michael; Cerfon, Antoine J.

    2018-04-01

    We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

  8. Corrosion experiment in the first liquid metal LiPb loop of China

    International Nuclear Information System (INIS)

    Huang Qunying; Zhang Maolian; Zhu Zhiqiang; Gao Sheng; Wu Yican; Li Yanfen; Song Yong; Li Chunjing; Kong Mingguang

    2007-01-01

    The liquid metal LiPb blanket design is one of the most promising designs for future fusion power reactors and under wide research in the world. The first liquid metal LiPb loop in China named DRAGON-I was built in 2005 in order to do research on characteristics of liquid metal LiPb such as its corrosion to structural materials of the blankets and so on. The first corrosion experiment in flowing LiPb with a speed of 0.08 m/s at 480 deg. C for 500 h was done in October 2005 on CLAM (China low activation martensitic) steel and 316L stainless steel for comparison. The weights and compositions, etc. of the specimens before and after corrosion experiment were tested and analyzed, the microstructures of the specimens were also inspected by SEM. The results show that the corrosion of CLAM steel is relatively slight, while that for 316L is obvious and very serious. Further study on corrosion behavior of CLAM for longer time experiment in liquid LiPb at different temperatures and flow speeds will be carried out in the near future

  9. Taylor-series method for four-nucleon wave functions

    International Nuclear Information System (INIS)

    Sandulescu, A.; Tarnoveanu, I.; Rizea, M.

    1977-09-01

    Taylor-series method for transforming the infinite or finite well two-nucleon wave functions from individual coordinates to relative and c.m. coordinates, by expanding the single particle shell model wave functions around c.m. of the system, is generalized to four-nucleon wave functions. Also the connections with the Talmi-Moshinsky method for two and four harmonic oscillator wave functions are deduced. For both methods Fortran IV programs for the expansion coefficients have been written and the equivalence of corresponding expressions numerically proved. (author)

  10. Resurrecting Democracies : Secularity Recast in Charles Taylor, Paul Valadier, and Joseph Ratzinger

    NARCIS (Netherlands)

    Ossewaarde-Lowtoo, Roshnee

    In this article, the alternative conception of secularity of Charles Taylor, Paul Valadier and Joseph Ratzinger (former Benedict XVI) is explored. A secularized society, which they take as an established condition, does not necessarily exclude religion, Christianity or Christian transcendence, in

  11. Taylor-plasticity-based analysis of length scale effects in void growth

    KAUST Repository

    Liu, Junxian

    2014-09-25

    We have studied the void growth problem by employing the Taylor-based strain gradient plasticity theories, from which we have chosen the following three, namely, the mechanism-based strain gradient (MSG) plasticity (Gao et al 1999 J. Mech. Phys. Solids 47 1239, Huang et al 2000 J. Mech. Phys. Solids 48 99-128), the Taylor-based nonlocal theory (TNT; 2001 Gao and Huang 2001 Int. J. Solids Struct. 38 2615) and the conventional theory of MSG (CMSG; Huang et al 2004 Int. J. Plast. 20 753). We have addressed the following three issues which occur when plastic deformation at the void surface is unconstrained. (1) Effects of elastic deformation. Elasticity is essential for cavitation instability. It is therefore important to guarantee that the gradient term entering the Taylor model is the effective plastic strain gradient instead of the total strain gradient. We propose a simple elastic-plastic decomposition method. When the void size approaches the minimum allowable initial void size related to the maximum allowable geometrically necessary dislocation density, overestimation of the flow stress due to the negligence of the elastic strain gradient is on the order of lεY/R0 near the void surface, where l, εY and R0 are, respectively, the intrinsic material length scale, the yield strain and the initial void radius. (2) MSG intrinsic inconsistency, which was initially mentioned in Gao et al (1999 J. Mech. Phys. Solids 47 1239) but has not been the topic of follow-up studies. We realize that MSG higher-order stress arises due to the linear-strain-field approximation within the mesoscale cell with a nonzero size, lε. Simple analysis shows that within an MSG mesoscale cell near the void surface, the difference between microscale and mesoscale strains is on the order of (lε/R0)2, indicating that when lε/R0 ∼ 1.0, the higher-order stress effect can make the MSG result considerably different from the TNT or CMSG results. (3) Critical condition for cavitation instability

  12. High-Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    Science.gov (United States)

    Scott, James R.; Martini, Michael C.

    2010-01-01

    It has been known for some time that Taylor series (TS) integration is among the most efficient and accurate numerical methods in solving differential equations. However, the full benefit of the method has yet to be realized in calculating spacecraft trajectories, for two main reasons. First, most applications of Taylor series to trajectory propagation have focused on relatively simple problems of orbital motion or on specific problems and have not provided general applicability. Second, applications that have been more general have required use of a preprocessor, which inevitably imposes constraints on computational efficiency. The latter approach includes the work of Berryman et al., who solved the planetary n-body problem with relativistic effects. Their work specifically noted the computational inefficiencies arising from use of a preprocessor and pointed out the potential benefit of manually coding derivative routines. In this Engineering Note, we report on a systematic effort to directly implement Taylor series integration in an operational trajectory propagation code: the Spacecraft N-Body Analysis Program (SNAP). The present Taylor series implementation is unique in that it applies to spacecraft virtually anywhere in the solar system and can be used interchangeably with another integration method. SNAP is a high-fidelity trajectory propagator that includes force models for central body gravitation with N X N harmonics, other body gravitation with N X N harmonics, solar radiation pressure, atmospheric drag (for Earth orbits), and spacecraft thrusting (including shadowing). The governing equations are solved using an eighth-order Runge-Kutta Fehlberg (RKF) single-step method with variable step size control. In the present effort, TS is implemented by way of highly integrated subroutines that can be used interchangeably with RKF. This makes it possible to turn TS on or off during various phases of a mission. Current TS force models include central body

  13. Charles Taylor na Haia: limites da justiça internacional?

    Directory of Open Access Journals (Sweden)

    IZADORA XAVIER DO MONTE

    2010-11-01

    Full Text Available Recentemente o julgamento de Charles Taylor, um dos protagonistas no conflito civil na Libéria, atraiu a corte internacional em Haia para o foco da comunidade internacional. Assim, o presente artigo busca delimitar as conseqüências políticas e jurídicas que advirão desse processo para a comunidade internacional como um todo.

  14. Mixing Experiments with Natural Shoshonitic and Trachytic Melts

    Science.gov (United States)

    de Campos, C. P.; Perugini, D.; Kolzenburg, S.; Petrelli, M.; Dorfman, A.; Dingwell, D. B.

    2010-12-01

    Evidence of cyclic replenishment of the shallow magmatic reservoir with deeper alkali basaltic (shoshonitic) magma (Campi Flegrei, in Italy; e.g. Arienzo et al., 2008, Bull. Volc.) motivated this study. Based on previous isotopic data, Agnano-Monte Spina trachyte and Minopoli shoshonite have been chosen as the most suitable end-member melts for simulating magma mixing in this system. Results from different mixing experiments with natural volcanic samples from this region will be presented. For this purpose time series using two different techniques have been performed: 1) a high-temperature centrifuge and 2) a viscometer. For the centrifuge experiments the rotating speed was 1850 revolutions per minute and the acceleration 1000 g. This way, dynamic conditions closer to those calculated for magma chambers (Reynolds Numbers [Re] around 100) could be simulated. For every experiment, a 4 mm thick disk of previously homogenized crystal free shoshonitic glass and an 8 mm thick disk of homogenized crystal free trachytic glass were loaded in a 5mm diameter Pt capsule. The capsule was then sealed on both sides, but for a small opening on the upper end, allowing intersticial degassing during the acceleration. Samples were arranged in a buoyantly unstable geometry, where the denser material is placed at the inner side of the rotating circle (basaltic trachyandesite, ρ=2.63 g/cm3 at 1169° C) and the lighter material at the external side (trachyte, ρ=2.45 g/cm3 at ~1000°C). Temperature has been kept constant at 1,200° during all experimental runs, with a negligible thermal gradient (centrifugal acceleration and density instabilities. Results from three experimental runs with the centrifuge: after 5, 20 and 120 min will be presented and discussed. The second set of experiments consisted of two runs (25- and 168-hours duration) under Taylor-Couette flow, according to De Campos et al. (2008, Chem. Geol.). Higher amounts of the same end-members, in different proportions, have

  15. Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states

    Science.gov (United States)

    Eakins, D. E.; Thadhani, N. N.

    2006-10-01

    Instrumented Taylor anvil-on-rod impact tests have been conducted on oxygen-free electronic copper to validate the accuracy of current strength models for predicting transient states during dynamic deformation events. The experiments coupled the use of high-speed digital photography to record the transient deformation states and laser interferometry to monitor the sample back (free surface) velocity as a measure of the elastic/plastic wave propagation through the sample length. Numerical continuum dynamics simulations of the impact and plastic wave propagation employing the Johnson-Cook [Proceedings of the Seventh International Symposium on Ballistics, 1983, The Netherlands (Am. Def. Prep. Assoc. (ADPA)), pp. 541-547], Zerilli-Armstrong [J. Appl. Phys. C1, 1816 (1987)], and Steinberg-Guinan [J. Appl. Phys. 51, 1498 (1980)] constitutive equations were used to generate transient deformation profiles and the free surface velocity traces. While these simulations showed good correlation with the measured free surface velocity traces and the final deformed sample shape, varying degrees of deviations were observed between the photographed and calculated specimen profiles at intermediate deformation states. The results illustrate the usefulness of the instrumented Taylor anvil-on-rod impact technique for validating constitutive equations that can describe the path-dependent deformation response and can therefore predict the transient and final deformation states.

  16. Equilibrium of the kink source experiment

    International Nuclear Information System (INIS)

    Marklin, G.

    1985-01-01

    The kink source experiment (KSX) was conceived of as a method of injecting helicity into a spheromak making special use of the m = 1 helical Taylor state. It has a Z pinch as a helicity generating source, connected to a flux conserver through an entrance region. Since the entrance region is a long (length > diameter) cyclinder, the magnetic field should be close to the helical Taylor state, which is the minimum energy configuration of a magnetized plasma in an infinite cylinder with no net flux. This paper will be concerned with modeling the actual fields in the entrance region of the KSX using zero-beta ideal MHD equilibrium theory

  17. Rayleigh-Taylor instability in accelerated elastic-solid slabs

    Science.gov (United States)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-12-01

    We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ2, shear modulus G , and thickness h , placed over a semi-infinite ideal fluid of density ρ110.1007/s000330050121] to arbitrary values of AT and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ2g h /G ≤2 (1 -AT) /AT .

  18. The Psychological Concepts in Taylor Swift's "Blank Space"

    OpenAIRE

    Anindhita, Novia Putri

    2016-01-01

    “Blank Space” is a song that is sung by a singer, Taylor Swift. The lyrics tell about the lonely woman who dates a lot but always fails to manage her relationship. However, it does not make her worry to start a new relationship. The purpose of this study is to analyze the elements of the poetry in the lyrics and to show the readers the psychological contents as portrayed in the music video. The study uses intrinsic and extrinsic theories to analyze the data and library research to compile the...

  19. Changing Course: Thurgood Marshall College Fund President Johnny Taylor Seeks New Partnerships and Avenues of Support for Public HBCUs

    Science.gov (United States)

    Stuart, Reginald

    2011-01-01

    When veteran educator Dr. N. Joyce Payne handed the reins of the organization she founded, the Thurgood Marshall College Fund, to entertainment lawyer and board member Johnny Taylor, Taylor began pursuing a remake of the prestigious group that has turned it on its head in just a matter of months. Today, with just more than a year of leading the…

  20. Cyclic and seasonal features in the behaviour of linear growth increment of Rayleigh-Taylor instability in equatorial F-region

    International Nuclear Information System (INIS)

    Farkullin, M.N.; Nikitin, M.A.; Kashchenko, N.M.

    1989-01-01

    Calculations of linear increment of the Rayleigh-Taylor instability for various geophysical conditions are presented. It is shwn that space-time characteristics of increment depend strongly on conditions of solar activity and seasons. The calculation results are in a good agreement with statistical regularities of F-scattering observation in equatorial F-area, which points to the Rayleigh-Taylor natur of the penomena

  1. Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow

    Science.gov (United States)

    Colbourne, A. A.; Blythe, T. W.; Barua, R.; Lovett, S.; Mitchell, J.; Sederman, A. J.; Gladden, L. F.

    2018-01-01

    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1 H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter > 200 μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument.

  2. Solar repowering/industrial retrofit systems study: Gulf Mt. Taylor Uranium Mill solar retrofit. Final technical report

    International Nuclear Information System (INIS)

    1980-06-01

    This report covers the efforts in a nine month study to develop a site-specific conceptual design for solar industrial process heat retrofit of the Gulf Mt. Taylor Uranium Mill. This has resulted in preparation of a System Requirements Specification, conduct of trade studies leading to selection of a system concept, and conceptual design, performance, cost estimating and economic analysis of the selected concept. A baseline system with no storage and an alternative system with extended storage were evaluated. The baseline system with no storage was selected because it provides the best overall opportunity for fuel displacement, operating experience in industrial application and successful demonstration in the near term for both DOE and the user

  3. The Taylor relation in compression deformed Ge single crystals

    International Nuclear Information System (INIS)

    Nyilas, K; Ungar, T; Dupas, C; Martin, J L; Kruml, T

    2010-01-01

    Ge single crystals are deformed in compression at 850K and the same strain rate to various extents of strains. In each sample, the internal stress is measured through stress reduction tests and the dislocation densities by X-ray measurements. Data about these two parameters follow fairly well the Taylor-Saada relation, provided a correction term is added. It probably corresponds to dislocations which are seen by X-rays, though they do not contribute to crystal hardening.

  4. Omega experiments and preparation for moderate-gain direct-drive experiments on Nif

    International Nuclear Information System (INIS)

    Mr Crory, R.L.; Bahr, R.E.; Boehly, T.R.

    2000-01-01

    Direct-drive laser-fusion ignition experiments rely on detailed understanding and control of irradiation uniformity, Rayleigh-Taylor instability, and target fabrication. LLE is investigating various theoretical aspects of a direct-drive NIF ignition target based on an 'all-DT' design: a spherical target of ∼ 3.5 mm diameter, 1 to 2 μm if CH wall thickness, and a ∼ 350 μm DT-ice layer near the triple point of DT (μ19K). OMEGA experiments are designed to address the critical issues related to direct-drive laser fusion and to provide the necessary data to validate the predictive capability of LLE computer codes. The future cryogenic targets used on OMEGA are hydrodynamically equivalent to those planned for the NIF. The current experimental studies on OMEGA address all of the essential components of direct-drive laser fusion: irradiation uniformity and laser imprinting, Rayleigh-Taylor growth and saturation, compressed core performance and shell-fuel mixing, laser-plasma interactions and their effect on target performance, and cryogenic target fabrication and handling. (authors)

  5. Two-equation and multi-fluid turbulence models for Rayleigh–Taylor mixing

    International Nuclear Information System (INIS)

    Kokkinakis, I.W.; Drikakis, D.; Youngs, D.L.; Williams, R.J.R.

    2015-01-01

    Highlights: • We present a new improved version of the K–L model. • The improved K–L is found in good agreement with the multi-fluid model and ILES. • The study concerns Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. - Abstract: This paper presents a new, improved version of the K–L model, as well as a detailed investigation of K–L and multi-fluid models with reference to high-resolution implicit large eddy simulations of compressible Rayleigh–Taylor mixing. The accuracy of the models is examined for different interface pressures and specific heat ratios for Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. It is shown that the original version of the K–L model requires modifications in order to provide comparable results to the multi-fluid model. The modifications concern the addition of an enthalpy diffusion term to the energy equation; the formulation of the turbulent kinetic energy (source) term in the K equation; and the calculation of the local Atwood number. The proposed modifications significantly improve the results of the K–L model, which are found in good agreement with the multi-fluid model and implicit large eddy simulations with respect to the self-similar mixing width; peak turbulent kinetic energy growth rate, as well as volume fraction and turbulent kinetic energy profiles. However, a key advantage of the two-fluid model is that it can represent the degree of molecular mixing in a direct way, by transferring mass between the two phases. The limitations of the single-fluid K–L model as well as the merits of more advanced Reynolds-averaged Navier–Stokes models are also discussed throughout the paper.

  6. Stability of force-free Taylor states in a new version of magnetic flux-averaged magnetohydrodynamics

    International Nuclear Information System (INIS)

    Pfirsch, D.; Sudan, R.N.

    1996-01-01

    It is observed that the recently developed magnetic flux-averaged magnetohydrodynamics (AMHD) [Phys. Plasmas 1, 2488 (1994)] is incompatible with Taylor close-quote s theorem, which states that the lowest-energy state of force-free equilibria based on the conservation of the helicity integral is absolutely stable for vanishingly small resistivity. By a modification of the Lagrangian from which AMHD is derived, a modified version of AMHD that is compatible with Taylor close-quote s theorem is obtained. It also provides an energy principle for examining the linear instability of resistive equilibria, which has a great advantage over resistive MHD. copyright 1996 American Institute of Physics

  7. LES of turbulent flow in a concentric annulus with rotating outer wall

    International Nuclear Information System (INIS)

    Hadžiabdić, M.; Hanjalić, K.; Mullyadzhanov, R.

    2013-01-01

    Highlights: • High rotation up to N = 2 dampens progressively the turbulence near the rotating outer wall. • At 2 2.8, while tending to laminarize, the flow exhibits distinct Taylor-Couette vortical rolls. -- Abstract: Fully-developed turbulent flow in a concentric annulus, r 1 /r 2 = 0.5, Re h = 12,500, with the outer wall rotating at a range of rotation rates N = U θ,wall /U b from 0.5 up to 4 is studied by large-eddy simulations. The focus is on the effects of moderate to very high rotation rates on the mean flow, turbulence statistics and eddy structure. For N up to ∼2, an increase in the rotation rate dampens progressively the turbulence near the rotating outer wall, while affecting only mildly the inner-wall region. At higher rotation rates this trend is reversed: for N = 2.8 close to the inner wall turbulence is dramatically reduced while the outer wall region remains turbulent with discernible helical vortices as the dominant turbulent structure. The turbulence parameters and eddy structures differ significantly for N = 2 and 2.8. This switch is attributed to the centrifuged turbulence (generated near the inner wall) prevailing over the axial inertial force as well as over the counteracting laminarizing effects of the rotating outer wall. At still higher rotation, N = 4, the flow gets laminarized but with distinct spiralling vortices akin to the Taylor–Couette rolls found between the two counter-rotating cylinders without axial flow, which is the limiting case when N approaches to infinity. The ratio of the centrifugal to axial inertial forces, Ta/Re 2 ∝ N 2 (where Ta is the Taylor number) is considered as a possible criterion for defining the conditions for the above regime change

  8. Detection of Life Threatening Ventricular Arrhythmia Using Digital Taylor Fourier Transform.

    Science.gov (United States)

    Tripathy, Rajesh K; Zamora-Mendez, Alejandro; de la O Serna, José A; Paternina, Mario R Arrieta; Arrieta, Juan G; Naik, Ganesh R

    2018-01-01

    Accurate detection and classification of life-threatening ventricular arrhythmia episodes such as ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) from electrocardiogram (ECG) is a challenging problem for patient monitoring and defibrillation therapy. This paper introduces a novel method for detection and classification of life-threatening ventricular arrhythmia episodes. The ECG signal is decomposed into various oscillatory modes using digital Taylor-Fourier transform (DTFT). The magnitude feature and a novel phase feature namely the phase difference (PD) are evaluated from the mode Taylor-Fourier coefficients of ECG signal. The least square support vector machine (LS-SVM) classifier with linear and radial basis function (RBF) kernels is employed for detection and classification of VT vs. VF, non-shock vs. shock and VF vs. non-VF arrhythmia episodes. The accuracy, sensitivity, and specificity values obtained using the proposed method are 89.81, 86.38, and 93.97%, respectively for the classification of Non-VF and VF episodes. Comparison with the performance of the state-of-the-art features demonstrate the advantages of the proposition.

  9. Turnerellina, a new name for Turnerella Taylor & McKinney, 2006 (Bryozoa, Cheilostomata)

    NARCIS (Netherlands)

    Taylor, P.D.; McKinney, F.K.

    2007-01-01

    Turnerella Taylor & McKinney, 2006, p. 164, introduced for a new genus of cribrimorph Cheilostomata (Bryozoa), is preoccupied by Turnerella Cockerell, 1910, a genus of Hymenoptera, and two other introductions of the same name for new insect genera. We propose Turnerellina as a new name to replace

  10. Civil-Military Relations and Gen. Maxwell Taylor: Getting It Right and Getting It Wrong

    National Research Council Canada - National Science Library

    Tart, Randal

    1997-01-01

    ... are paid. In the first situation, Taylor got his civil-military relations right, even though he fought a losing battle with President Eisenhower over Ike's dangerous defense strategy of 'massive retaliation...

  11. Progress in understanding turbulent mixing induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    International Nuclear Information System (INIS)

    Zhou Ye; Remington, B.A.; Robey, H.F.; Cook, A.W.; Glendinning, S.G.; Dimits, A.; Buckingham, A.C.; Zimmerman, G.B.; Burke, E.W.; Peyser, T.A.; Cabot, W.; Eliason, D.

    2003-01-01

    Turbulent hydrodynamic mixing induced by the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities occurs in settings as varied as exploding stars (supernovae), inertial confinement fusion (ICF) capsule implosions, and macroscopic flows in fluid dynamics facilities such as shock tubes. Turbulence theory and modeling have been applied to RT and RM induced flows and developed into a quantitative description of turbulence from the onset to the asymptotic end-state. The treatment, based on a combined approach of theory, direct numerical simulation (DNS), and experimental data analysis, has broad generality. Three areas of progress will be reported. First, a robust, easy to apply criteria will be reported for the mixing transition in a time-dependent flow. This allows an assessment of whether flows, be they from supernova explosions or ICF experiments, should be mixed down to the molecular scale or not. Second, through DNS, the structure, scaling, and spectral evolution of the RT instability induced flow will be inspected. Finally, using these new physical insights, a two-scale, dynamic mix model has been developed that can be applied to simulations of ICF experiments and astrophysics situations alike

  12. A numerical study of bubble interactions in Rayleigh--Taylor instability for compressible fluids

    International Nuclear Information System (INIS)

    Glimm, J.; Li, X.L.; Menikoff, R.; Sharp, D.H.; Zhang, Q.

    1990-01-01

    The late nonlinear and chaotic stage of Rayleigh--Taylor instability is characterized by the evolution of bubbles of the light fluid and spikes of the heavy fluid, each penetrating into the other phase. This paper is focused on the numerical study of bubble interactions and their effect on the statistical behavior and evolution of the bubble envelope. Compressible fluids described by the two-fluid Euler equations are considered and the front tracking method for numerical simulation of these equations is used. Two major phenomena are studied. One is the dynamics of the bubbles in a chaotic environment and the interaction among neighboring bubbles. Another one is the acceleration of the overall bubble envelope, which is a statistical consequence of the interactions of bubbles. The main result is a consistent analysis, at least in the approximately incompressible case of these two phenomena. The consistency encompasses the analysis of experiments, numerical simulation, simple theoretical models, and variation of parameters. Numerical simulation results that are in quantitative agreement with laboratory experiment for one-and-one-half (1 1/2) generations of bubble merger are presented. To the authors' knowledge, computations of this accuracy have not previously been obtained

  13. Firm-specific investment, sticky prices and the Taylor principle

    OpenAIRE

    Sveen, Tommy; Weinke, Lutz

    2005-01-01

    According to the Taylor principle a central bank should adjust the nominal interest rate by more than one-for-one in response to changes in current inflation. Most of the existing literature supports the view that by following this simple recommendation a central bank can avoid being a source of unnecessary fluctuations in economic activity. The present paper shows that this conclusion is not robust with respect to the modelling of capital accumulation. We use our insights to discuss the desi...

  14. Mode coupling in nonlinear Rayleigh--Taylor instability

    International Nuclear Information System (INIS)

    Ofer, D.; Shvarts, D.; Zinamon, Z.; Orszag, S.A.

    1992-01-01

    This paper studies the interaction of a small number of modes in the two-fluid Rayleigh--Taylor instability at relatively late stages of development, i.e., the nonlinear regime, using a two-dimensional hydrodynamic code incorporating a front-tracking scheme. It is found that the interaction of modes can greatly affect the amount of mixing and may even reduce the width of the mixing region. This interaction is both relatively long range in wave-number space and also acts in both directions, i.e., short wavelengths affect long wavelengths and vice versa. Three distinct stages of interaction have been identified, including substantial interaction among modes some of which may still be in their classical (single mode) ''linear'' phase

  15. Experiments on the stability of metal diapirs

    Science.gov (United States)

    Wacheul, J. S.; Le Bars, M.; Aurnou, J. M.; Monteux, J.

    2013-12-01

    In the late stages of their accretions, telluric planets had most likely had a magma ocean because of numerous heat sources such as the important decay of radioactive elements and giant impacts. These giant impacts involved asteroid nearly as big as the moon, which were certainly differentiated. The core of these planetary embryos ultimately merged with the planets, but the amount of heat and chemicals they exchanged with the mantle during its passing through remains a widely open question. The question of the stability of an immiscible iron diapir falling through a magma ocean is essential for our understanding of these events. Thus, we have conducted the first experiments on an analogue system that involves liquid metal; we used liquid gallium as the melted iron and glycerol as the magma ocean. This set up allowed us to reach Reynolds numbers closer to the geophysical problem than other previous studies and accurate viscosity ratios. Using video analysis, we reconstruct the spectra of droplet sizes and velocities, from which we calculate a typical length of equilibration as a function of the diapir's radius. Our preliminary results are in agreement with the scenario of the iron rain concerning the droplet sizes, with a significant influence of the viscosity ratio on the maximal size of the droplets. However, the speed of these droplets seems to be controlled by the inertia of the whole flow in a sense that the relevant concept for the mixing between metal and silicate is turbulent mixing between miscible fluids. The influence of coalescence between droplets on this mixing, involving a significant part of the flow according to our experiment, is still to be quantified.

  16. Equation of state at finite net-baryon density using Taylor coefficients up to sixth order

    International Nuclear Information System (INIS)

    Huovinen, Pasi; Petreczky, Péter; Schmidt, Christian

    2014-01-01

    We employ the lattice QCD data on Taylor expansion coefficients up to sixth order to construct an equation of state at finite net-baryon density. When we take into account how hadron masses depend on lattice spacing and quark mass, the coefficients evaluated using the p4 action are equal to those of hadron resonance gas at low temperature. Thus the parametrised equation of state can be smoothly connected to the hadron resonance gas equation of state. We see that the equation of state using Taylor coefficients up to second order is realistic only at low densities, and that at densities corresponding to s/n B ≳40, the expansion converges by the sixth order term

  17. A survey of high explosive-induced damage and spall in selected metals using proton radiography

    International Nuclear Information System (INIS)

    Holtkamp, D.B.; Clark, D.A.; Ferm, E.N.; Gallegos, R.A.; Hammon, D.; Hemsing, W.F.; Hogan, G.E.; Holmes, V.H.; King, N.S.P.; Lopez, R.P.; Merrill, F.E.; Morris, C.L.; Morley, K.B.; Murray, M.M.; Pazuchanics, P.D.; Prestridge, K.P.; Quintana, J.P.; Saunders, A.; Shinas, M.A.; Stacy, H.L.

    2004-01-01

    Multiple spall and damage layers can be created in metal when the free surface reflects a Taylor wave generated by high explosives. These phenomena have been explored in different thicknesses of several metals (tantalum, copper, 6061 T6-aluminum, and tin) using high-energy proton radiography. Multiple images (up to 21) can be produced of the dynamic evolution of damaged material on the microsecond time scale with a <50 ns 'shutter' time. Movies and multiframe still images of areal and (Abel inverted) volume densities are presented. An example of material that is likely melted on release (tin) is also presented

  18. Compressibility and rarefaction effects on entropy and entropy generation in micro/nano Couette flow using DSMC

    International Nuclear Information System (INIS)

    Ejtehadi, Omid; Esfahani, Javad Abolfazli; Roohi, Ehsan

    2012-01-01

    In the present work, compressible flow of argon gas in the famous problem of Couette flow in micro/nano-scale is considered and numerically analyzed using the direct simulation Monte Carlo (DSMC) method. The effects of compressibility and rarefaction on entropy and entropy generation in terms of viscous dissipation and thermal diffusion are studied in a wide range of Mach and Knudsen numbers and the observed physics are discussed. In this regard, we computed entropy by using its kinetic theory formulation in a microscopic way while the entropy generation distribution is achieved by applying a semi-microscopic approach and thoroughly free from equilibrium assumptions. The results of our simulations demonstrated that the entropy profiles are in accordance with the temperature profiles. It is also illustrated that the increase of Mach number will result in non-uniform entropy profiles with increase in the vicinity of the central regions of the channel. Moreover, generation of entropy in all regions of the domain stages clear growth. By contrast, increasing the Knudsen number has inverse effects such as: uniform entropy profiles and a falling off in entropy generation amount throughout the channel.

  19. Self-consistent model of the Rayleigh--Taylor instability in ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bychkov, V.V.; Golberg, S.M.; Liberman, M.A.

    1994-01-01

    A self-consistent approach to the problem of the growth rate of the Rayleigh--Taylor instability in laser accelerated targets is developed. The analytical solution of the problem is obtained by solving the complete system of the hydrodynamical equations which include both thermal conductivity and energy release due to absorption of the laser light. The developed theory provides a rigorous justification for the supplementary boundary condition in the limiting case of the discontinuity model. An analysis of the suppression of the Rayleigh--Taylor instability by the ablation flow is done and it is found that there is a good agreement between the obtained solution and the approximate formula σ = 0.9√gk - 3u 1 k, where g is the acceleration, u 1 is the ablation velocity. This paper discusses different regimes of the ablative stabilization and compares them with previous analytical and numerical works

  20. Chebyshev-Taylor Parameterization of Stable/Unstable Manifolds for Periodic Orbits: Implementation and Applications

    Science.gov (United States)

    Mireles James, J. D.; Murray, Maxime

    2017-12-01

    This paper develops a Chebyshev-Taylor spectral method for studying stable/unstable manifolds attached to periodic solutions of differential equations. The work exploits the parameterization method — a general functional analytic framework for studying invariant manifolds. Useful features of the parameterization method include the fact that it can follow folds in the embedding, recovers the dynamics on the manifold through a simple conjugacy, and admits a natural notion of a posteriori error analysis. Our approach begins by deriving a recursive system of linear differential equations describing the Taylor coefficients of the invariant manifold. We represent periodic solutions of these equations as solutions of coupled systems of boundary value problems. We discuss the implementation and performance of the method for the Lorenz system, and for the planar circular restricted three- and four-body problems. We also illustrate the use of the method as a tool for computing cycle-to-cycle connecting orbits.