WorldWideScience

Sample records for metal taylor-couette experiment

  1. Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment

    International Nuclear Information System (INIS)

    Nornberg, M. D.; Ji, H.; Schartman, E.; Roach, A.; Goodman, J.

    2010-01-01

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

  2. Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment.

    Science.gov (United States)

    Nornberg, M D; Ji, H; Schartman, E; Roach, A; Goodman, J

    2010-02-19

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

  3. Theory of current-driven instability experiments in magnetic Taylor-Couette flows.

    Science.gov (United States)

    Rüdiger, Günther; Schultz, Manfred; Shalybkov, Dima; Hollerbach, Rainer

    2007-11-01

    We consider the linear stability of dissipative magnetic Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10(-5) , approaching realistic liquid-metal values. The magnetic field destabilizes the flow, except for radial profiles of B(phi)(R) close to the current-free solution. The profile with B(in)=B(out) (the most uniform field) is considered in detail. For weak fields the Taylor-Couette flow is stabilized, until for moderately strong fields the m=1 azimuthal mode dramatically destabilizes the flow again so that a maximum value for the critical Reynolds number exists. For sufficiently strong fields (as measured by the Hartmann number) the toroidal field is always unstable, even for the nonrotating case with Re=0 . The electric currents needed to generate the required toroidal fields in laboratory experiments are a few kA if liquid sodium is used, somewhat more if gallium is used. Weaker currents are needed for wider gaps, so a wide-gap apparatus could succeed even with gallium. The critical Reynolds numbers are only somewhat larger than the nonmagnetic values; hence such experiments would work with only modest rotation rates.

  4. Theory of current instability experiments in magnetic Taylor-Couette flows

    OpenAIRE

    Ruediger, G.; Schultz, M.; Shalybkov, D.; Hollerbach, R.

    2006-01-01

    We consider the linear stability of dissipative MHD Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10-5, approaching realistic liquid-metal values. The magnetic field destabilizes the flow, except for radial profiles of B$_\\phi$(R) close to the current-free solution. The profile with B$_{in}$=B$_{out}$ (the most un...

  5. Pinch instabilities in Taylor-Couette flow.

    Science.gov (United States)

    Shalybkov, Dima

    2006-01-01

    The linear stability of the dissipative Taylor-Couette flow with an azimuthal magnetic field is considered. Unlike ideal flows, the magnetic field is a fixed function of a radius with two parameters only: a ratio of inner to outer cylinder radii, eta, and a ratio of the magnetic field values on outer and inner cylinders, muB. The magnetic field with 0rotation. The unstable modes are located into some interval of the axial wave numbers for the flow stable without magnetic field. The interval length is zero for a critical Hartmann number and increases with an increasing Hartmann number. The critical Hartmann numbers and length of the unstable axial wave number intervals are the same for every rotation law. There are the critical Hartmann numbers for m=0 sausage and m=1 kink modes only. The sausage mode is the most unstable mode close to Ha=0 point and the kink mode is the most unstable mode close to the critical Hartmann number. The transition from the sausage instability to the kink instability depends on the Prandtl number Pm and this happens close to one-half of the critical Hartmann number for Pm=1 and close to the critical Hartmann number for Pm=10(-5). The critical Hartmann numbers are smaller for kink modes. The flow stability does not depend on magnetic Prandtl numbers for m=0 mode. The same is true for critical Hartmann numbers for both m=0 and m=1 modes. The typical value of the magnetic field destabilizing the liquid metal Taylor-Couette flow is approximately 10(2) G.

  6. Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow.

    Science.gov (United States)

    Szklarski, Jacek; Rüdiger, Günther

    2007-12-01

    We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical magnetohydrodynamic (MHD) Taylor-Couette flow at the finite aspect ratio HD=10 . The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed with Hartmann number Ha approximately 10 , and the rotation rates correspond to Reynolds numbers of order 10(2)-10(3). We show that the end plates introduce, besides the well-known Ekman circulation, similar magnetic effects which arise for infinite, rotating plates, horizontally unbounded by any walls. In particular, there exists the Hartmann current, which penetrates the fluid, turns in the radial direction, and together with the applied magnetic field gives rise to a force. Consequently, the flow can be compared with a Taylor-Dean flow driven by an azimuthal pressure gradient. We analyze the stability of such flows and show that the currents induced by the plates can give rise to instability for the considered parameters. When designing a MHD Taylor-Couette experiment, special care must be taken concerning the vertical magnetic boundaries so that they do not significantly alter the rotational profile.

  7. Finite length Taylor Couette flow

    Science.gov (United States)

    Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    Axisymmetric numerical solutions of the unsteady Navier-Stokes equations for flow between concentric rotating cylinders of finite length are obtained by a spectral collocation method. These representative results pertain to two-cell/one-cell exchange process, and are compared with recent experiments.

  8. Taylor-Couette flow stability with toroidal magnetic field

    International Nuclear Information System (INIS)

    Shalybkov, D

    2005-01-01

    The linear stability of the dissipative Taylor-Couette flow with imposed azimuthal magnetic field is considered. Unlike to ideal flow, the magnetic field is fixed function of radius with two parameters only: a ratio of inner to outer cylinder radii and a ratio of the magnetic field values on outer and inner cylinders. The magnetic field with boundary values ratio greater than zero and smaller than inverse radii ratio always stabilizes the flow and called stable magnetic field below. The current free magnetic field is the stable magnetic field. The unstable magnetic field destabilizes every flow if the magnetic field (or Hartmann number) exceeds some critical value. This instability survives even without rotation (for zero Reynolds number). For the stable without the magnetic field flow, the unstable modes are located into some interval of the vertical wave numbers. The interval length is zero for critical Hartmann number and increases with increasing Hartmann number. The critical Hartmann numbers and the length of the unstable vertical wave numbers interval is the same for every rotation law. There are the critical Hartmann numbers for m = 0 sausage and m = 1 kink modes only. The critical Hartmann numbers are smaller for kink mode and this mode is the most unstable mode like to the pinch instability case. The flow stability do not depend on the magnetic Prandtl number for m = 0 mode. The same is true for critical Hartmann numbers for m = 0 and m = 1 modes. The typical value of the magnetic field destabilizing the liquid metal Taylor-Couette flow is order of 100 Gauss

  9. Bubble behavior in a vertical Taylor-Couette flow

    International Nuclear Information System (INIS)

    Murai, Y; Oiwa, H; Takeda, Y

    2005-01-01

    Bubble distributions organized in a vertical Taylor-Couette flow are experimentally investigated. Modification of shear stress due to bubbles is measured with a torque sensor installed on the rotating inner cylinder. The wall shear stress decreases as bubbles are injected in all the tested range of Re from 600 to 4500. The drag reduction ratio per void fraction measured in the present experiment, which indicates net gain of the drag reduction, has been evaluated. The gain was more than unity for Re 4000. The maximum gain achieved was around 10 at Re = 600, at which point the bubbles dispersed widely on the inner cylinder surface and effectively restrict momentum exchange of fluid between the two walls. The expansion of Taylor vortices in the vertical direction by the presence of bubbles was confirmed by flow visualization including particle tracking velocimetry. Such bubble behaviours interacting with Taylor vortices are discussed in detail in this paper

  10. A spherical Taylor-Couette dynamo

    Science.gov (United States)

    Marcotte, Florence; Gissinger, Christophe

    2016-04-01

    We present a new scenario for magnetic field amplification in the planetary interiors where an electrically conducting fluid is confined in a differentially rotating, spherical shell (spherical Couette flow) with thin aspect-ratio. When the angular momentum sufficiently decreases outwards, a primary hydrodynamic instability is widely known to develop in the equatorial region, characterized by pairs of counter-rotating, axisymmetric toroidal vortices (Taylor vortices) similar to those observed in cylindrical Couette flow. We characterize the subcritical dynamo bifurcation due to this spherical Taylor-Couette flow and study its evolution as the flow successively breaks into wavy and turbulent Taylor vortices for increasing Reynolds number. We show that the critical magnetic Reynolds number seems to reach a constant value as the Reynolds number is gradually increased. The role of global rotation on the dynamo threshold and the implications for planetary interiors are finally discussed.

  11. Stability and instability of hydromagnetic Taylor-Couette flows

    Science.gov (United States)

    Rüdiger, Günther; Gellert, Marcus; Hollerbach, Rainer; Schultz, Manfred; Stefani, Frank

    2018-04-01

    Decades ago S. Lundquist, S. Chandrasekhar, P. H. Roberts and R. J. Tayler first posed questions about the stability of Taylor-Couette flows of conducting material under the influence of large-scale magnetic fields. These and many new questions can now be answered numerically where the nonlinear simulations even provide the instability-induced values of several transport coefficients. The cylindrical containers are axially unbounded and penetrated by magnetic background fields with axial and/or azimuthal components. The influence of the magnetic Prandtl number Pm on the onset of the instabilities is shown to be substantial. The potential flow subject to axial fields becomes unstable against axisymmetric perturbations for a certain supercritical value of the averaged Reynolds number Rm bar =√{ Re ṡ Rm } (with Re the Reynolds number of rotation, Rm its magnetic Reynolds number). Rotation profiles as flat as the quasi-Keplerian rotation law scale similarly but only for Pm ≫ 1 while for Pm ≪ 1 the instability instead sets in for supercritical Rm at an optimal value of the magnetic field. Among the considered instabilities of azimuthal fields, those of the Chandrasekhar-type, where the background field and the background flow have identical radial profiles, are particularly interesting. They are unstable against nonaxisymmetric perturbations if at least one of the diffusivities is non-zero. For Pm ≪ 1 the onset of the instability scales with Re while it scales with Rm bar for Pm ≫ 1. Even superrotation can be destabilized by azimuthal and current-free magnetic fields; this recently discovered nonaxisymmetric instability is of a double-diffusive character, thus excluding Pm = 1. It scales with Re for Pm → 0 and with Rm for Pm → ∞. The presented results allow the construction of several new experiments with liquid metals as the conducting fluid. Some of them are described here and their results will be discussed together with relevant diversifications of

  12. Traveling waves in a magnetized Taylor-Couette flow

    International Nuclear Information System (INIS)

    Liu Wei; Ji Hantao; Goodman, Jeremy

    2007-01-01

    We investigate numerically a traveling wave pattern observed in experimental magnetized Taylor-Couette flow at low magnetic Reynolds number. By accurately modeling viscous and magnetic boundaries in all directions, we reproduce the experimentally measured wave patterns and their amplitudes. Contrary to previous claims, the waves are shown to be transiently amplified disturbances launched by viscous boundary layers, rather than globally unstable magnetorotational modes

  13. The Ekman-Hartmann layer in MHD Taylor-Couette flow

    OpenAIRE

    Szklarski, Jacek; Rüdiger, Günther

    2007-01-01

    We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical MHD Taylor-Couette flow at the finite aspect ratio $H/D=10$. The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed $\\Ha \\approx 10$, the rotation rates correspond to $\\Rey$ of order $10^2-10^3$. We show that the end-plates introduce, besides the well known Ekman circulati...

  14. Parametric modulation in the Taylor-Couette ferrofluid flow

    International Nuclear Information System (INIS)

    Singh, Jitender; Bajaj, Renu

    2008-01-01

    A parametric instability of the Taylor-Couette ferrofluid flow excited by a periodically oscillating magnetic field, has been investigated numerically. The Floquet analysis has been employed. It has been found that the modulation of the applied magnetic field affects the stability of the basic flow. The instability response has been found to be synchronous with respect to the frequency of periodically oscillating magnetic field.

  15. Fluid Dynamics And Mass Transfer In Two-Fluid Taylor-Couette Flow

    International Nuclear Information System (INIS)

    Baier, G.; Graham, M.D.

    1998-01-01

    The Taylor-Couette instability of a single liquid phase can be used to enhance mass transfer processes such as filtration and membrane separations. We consider here the possibility of using this instability to enhance interphase transport in a two-fluid systems, with a view toward improved liquid-liquid extractions for biotechnology applications. We investigate the centrifugal instability of a pair of radially stratified immiscible liquids in the annular gap between concentric, corotating cylinders: two-fluid Taylor-Couette flow. Experiments show that a two-layer flow with a well-defined interface and Taylor vortices in each phase can be obtained. The experimental results are in good agreement with predictions of inviscid arguments based on a two-phase extension of Rayleigh's criterion, as well as with detailed linear stability calculations. For a given geometry, the most stable configuration occurs for fluids of roughly (exactly in the inviscid limit) equal dynamic viscosities. A number of preliminary mass transfer experiments have also been performed, in the presence of axial counterflow. The onset of Taylor vortices coincides with a clear decrease in the extent of axial dispersion and an increase in the rate of interphase transport, thus suggesting that this flow geometry may provide an effective means for countercurrent chromatographic separations

  16. Development of a miniature Taylor-Couette extractor column for nuclear solvent extraction

    International Nuclear Information System (INIS)

    Shekhar Kumar; Sivakumar, D.; Bijendra Kumar; Kamachi Mudali, U.; Natarajan, R.

    2012-01-01

    Miniature annular centrifugal contactors are nearly perfect for shielded hot-cell applications during flowsheet evaluation but these contactors require complex maintenance of electrical drive-motors during radioactive experiments. To reduce the number of electrical drives in the shielded cell, an indigenous design of miniature Taylor Couette (TC) mixing based countercurrent differential extraction column has been developed. In this paper, results of mass transfer experiments for an indigenously developed TC column with 30% TBP/aqueous nitric acid solutions are reported. The developed device worked perfectly in counter-current differential mode and demonstrated equivalence to multiple-extraction stages while working with a single electrical drive. The developed TC unit demonstrated operation with a reduced efficiency without flooding even in absence of rotor rotation. This observation is a vital step towards designing of robust contactors, which do not flood during temporary power failure or failure of drive mechanism. (author)

  17. Instabilities with polyacrylamide solution in small and large aspect ratios Taylor-Couette systems

    International Nuclear Information System (INIS)

    Smieszek, M; Egbers, C; Crumeyrolle, O; Mutabazi, I

    2008-01-01

    We have investigated the stability of viscoelastic polyacrylamide solution in Taylor-Couette system with different aspect ratios. The first instability modes observed in a Taylor-Couette system with Γ = 10 were TVF and WVF, as for Newtonian fluid. At higher Taylor numbers moving vortices occur, a wavy mode with non-stationary vortex size. In the Taylor-Couette system with Γ = 45.9 we note a coexistence of various instability modes. In addition to TVF, counterpropagating waves developed at the transition from the base state flow. At higher Taylor number values Taylor vortices of different sizes occurred. Reduced amplitude Wavy vortex flow has also been observed.

  18. Irregular wall roughness in turbulent Taylor-Couette flow

    Science.gov (United States)

    Berghout, Pieter; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef; Stevens, Richard

    2017-11-01

    Many wall bounded flows in nature, engineering and transport are affected by surface roughness. Often, this has adverse effects, e.g. drag increase leading to higher energy costs. A major difficulty is the infinite number of roughness geometries, which makes it impossible to systematically investigate all possibilities. Here we present Direct Numerical Simulations (DNS) of turbulent Taylor-Couette flow. We focus on the transitionally rough regime, in which both viscous and pressure forces contribute to the total wall stress. We investigate the effect of the mean roughness height and the effective slope on the roughness function, ΔU+ . Also, we present simulations of varying Ta (Re) numbers for a constant mean roughness height (kmean+). Alongside, we show the behavior of the large scale structures (e.g. plume ejection, Taylor rolls) and flow structures in the vicinity of the wall.

  19. Inertial migration of particles in Taylor-Couette flows

    Science.gov (United States)

    Majji, Madhu V.; Morris, Jeffrey F.

    2018-03-01

    An experimental study of inertial migration of neutrally buoyant particles in the circular Couette flow (CCF), Taylor vortex flow (TVF) and wavy vortex flow (WVF) is reported. This work considers a concentric cylinder Taylor-Couette device with a stationary outer cylinder and rotating inner cylinder. The device has a radius ratio of η = ri/ro = 0.877, where ri and ro are the inner and outer radii of the flow annulus. The ratio of the annular width between the cylinders (δ = ro - ri) and the particle diameter (dp) is α = δ/dp = 20. For η = 0.877, the flow of a Newtonian fluid undergoes transitions from CCF to TVF and TVF to WVF at Reynolds numbers Re = 120 and 151, respectively, and for the dilute suspensions studied here, these critical Reynolds numbers are almost unchanged. In CCF, particles were observed to migrate, due to the competition between the shear gradient of the flow and the wall interactions, to an equilibrium location near the middle of the annulus with an offset toward the inner cylinder. In TVF, the vortex motion causes the particles to be exposed to the shear gradient and wall interactions in a different manner, resulting in a circular equilibrium region in each vortex. The radius of this circular region grows with increase in Re. In WVF, the azimuthal waviness results in fairly well-distributed particles across the annulus.

  20. Experimental investigation of liquid-liquid system drop size distribution in Taylor-Couette flow and its application in the CFD simulation

    Science.gov (United States)

    Farzad, Reza; Puttinger, Stefan; Pirker, Stefan; Schneiderbauer, Simon

    Liquid-liquid systems are widely used in the several industries such as food, pharmaceutical, cosmetic, chemical and petroleum. Drop size distribution (DSD) plays a key role as it strongly affects the overall mass and heat transfer in the liquid-liquid systems. To understand the underlying mechanisms single drop breakup experiments have been done by several researchers in the Taylor-Couette flow; however, most of those studies concentrate on the laminar flow regime and therefore, there is no sufficient amount of data in the case of in turbulent flows. The well-defined pattern of the Taylor-Couette flow enables the possibility to investigate DSD as a function of the local fluid dynamic properties, such as shear rate, which is in contrast to more complex devices such as stirred tank reactors. This paper deals with the experimental investigation of liquid-liquid DSD in Taylor-Couette flow. From high speed camera images we found a simple correlation for the Sauter mean diameter as a function of the local shear employing image processing. It is shown that this correlation holds for different oil-in-water emulsions. Finally, this empirical correlation for the DSD is used as an input data for a CFD simulation to compute the local breakup of individual droplets in a stirred tank reactor.

  1. Characterising the structure of quasi-periodic mixing events in stratified turbulent Taylor-Couette flow

    Science.gov (United States)

    Singh, Kanwar Nain; Partridge, Jamie; Dalziel, Stuart; Caulfield, C. P.; Mathematical Underpinnings of Stratified Turbulence (MUST) Team

    2017-11-01

    We present results from experiments conducted to study mixing in a two-layer stably-stratified turbulent Taylor-Couette flow. It has previously been observed that there is a quasi-periodic mixing event located at the interface separating the layers. We observe, through conductivity probe measurements, that the power of the mixing event in the frequency spectrum of the density data at the interface is higher when measured near the inner cylinder than in the middle of the annular gap. This is consistent with Oglethorpe's (2014) hypothesis that the mixing structure is triggered near the inner cylinder, and then advects and decays or disperses radially. We also observe that at Ri =g/'Ro (RiΩi)2 7 , where Ri, Ro are the inner and outer cylinder radius, respectively, g ' the reduced gravity characterising the density jump between the layers and Ωi is the rotation rate of the inner cylinder, the power drops significantly at all radial locations, which is reminiscent of the onset of the enhanced flux regime as observed by Oglethorpe et al. (2013). We perform experiments to characterise the spatial extent and dynamics of this mixing structure using particle image velocimetry (PIV) giving further insights into this important mixing process. EPSRC programme Grant EP/K034529/1 & SGPC-CCT Scholarship.

  2. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    Science.gov (United States)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  3. Life stages of wall-bounded decay of Taylor-Couette turbulence

    NARCIS (Netherlands)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Arza, Vamsi Spandan; Verzicco, Roberto; Lohse, Detlef

    2017-01-01

    The decay of Taylor-Couette turbulence, i.e., the flow between two coaxial and independently rotating cylinders, is numerically studied by instantaneously stopping the forcing from an initially statistically stationary flow field at a Reynolds number of Re=3.5×104. The effect of wall friction is

  4. Disentangling the origins of torque enhancement through wall roughness in Taylor-Couette turbulence

    NARCIS (Netherlands)

    Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef

    2017-01-01

    Direct numerical simulations (DNS) are performed to analyse the global transport properties of turbulent Taylor-Couette flow with inner rough wall up to Taylor number Ta = 1010. The dimensionless torque Nuω shows an effective scaling of Nuω ∝ Ta0.42±0.01, which is steeper than the ultimate regime

  5. Enhanced mixing in two-phase Taylor-Couette flows

    International Nuclear Information System (INIS)

    Dherbecourt, Diane

    2015-01-01

    In the scope of the nuclear fuel reprocessing, Taylor-Couette flows between two concentric cylinders (the inner one in rotation and the outer one at rest) are used at laboratory scale to study the performances of new liquid/liquid extraction processes. Separation performances are strongly related to the mixing efficiency, the quantification of the latter is therefore of prime importance. A previous Ph.D. work has related the mixing properties to the hydrodynamics parameters in single-phase flow, using both experimental and numerical investigations. The Reynolds number, flow state and vortices height (axial wavelength) impacts were thus highlighted. This Ph.D. work extends the previous study to two-phase configurations. For experimental simplification, and to avoid droplets coalescence or breakage, spherical solid particles of PMMA from 800 μm to 1500 μm diameter are used to model rigid droplets. These beads are suspended in an aqueous solution of dimethyl sulfoxide (DMSO) and potassium Thiocyanate (KSCN). The experimental setup uses coupled Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) to access simultaneously the hydrodynamic and the mixing properties. Although the two phases are carefully chosen to match in density and refractive index, these precautions are not sufficient to ensure a good measurement quality, and a second PLIF channel is added to increase the precision of the mixing quantification. The classical PLIF channel monitors the evolution of Rhodamine WT concentration, while the additional PLIF channel is used to map a Fluorescein dye, which is homogeneously concentrated inside the gap. This way, a dynamic mask of the bead positions can be created and used to correct the Rhodamine WT raw images. Thanks to this experimental setup, a parametric study of the particles size and concentration is achieved. A double effect of the dispersed phase is evidenced. On one hand, the particles affect the flow hydrodynamic properties

  6. Frictional Torque Reduction in Taylor-Couette Flows with Riblet-Textured Rotors

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth

    2017-11-01

    Inspired by the riblets on the denticles of fast swimming shark species, periodic surface microtextures of different shapes have been studied under laminar and turbulent flow conditions to understand their drag reduction mechanism and to offer guides for designing optimized low-friction bio-inspired surfaces. Various reports over the past four decades have suggested that riblet surfaces can reduce the frictional drag force in high Reynolds number laminar and turbulent flow regimes. Here, we investigate the effect of streamwise riblets on torque reduction in steady flow between concentric cylinders, known as Taylor-Couette Flow. Using 3D printed riblet-textured rotors and a custom-built Taylor-Couette cell which can be mounted on a rheometer we measure the torque on the inner rotor as a function of three different dimensionless parameters; the Reynolds number of the flow, the sharpness of the riblets, and the size of the riblets with respect to the scale of the Taylor-Couette cell. Our experimental results in the laminar viscous flow regime show a reduction in torque up to 10% over a wide range of Reynolds numbers, that is a non-monotonic function of the aspect ratio and independent of Re. However, after transition to the Taylor vortex regime, the modification in torque becomes a function of the Reynolds number, while remaining a non-monotonic function of the aspect ratio. Using finite volume modelling of the geometry we discuss the changes in the Taylor-Couette flow in presence of the riblets compared to the case of smooth rotors and the resulting torque reduction as a function of the parameter space defined above.

  7. Onset of secondary flow in the modulated Taylor-Couette system

    International Nuclear Information System (INIS)

    Wu, X.; Swift, J.B.

    1989-01-01

    The critical Reynolds number for the linear instability of primary flow is calculated for a Taylor-Couette system in which the rotation rate of either cylinder is modulated sinusoidally in time. The method used is based on that of Hall [J. Fluid Mech. 67, 29 (1975)] and is restricted to small amplitudes of modulation but allows for a finite gap. For the case of outer-cylinder modulation, we find that the critical Reynolds number is larger than that for the unmodulated system, while, if the inner cylinder is modulated, it is smaller

  8. Mixing and axial dispersion in Taylor-Couette flow: experimental and numerical study

    International Nuclear Information System (INIS)

    Nemri, M.

    2013-01-01

    Taylor-Couette flows between two concentric cylinders have great potential applications in chemical engineering. They are particularly convenient for two-phase small scale devices enabling solvent extraction operations. An experimental device was designed with this idea in mind. It consists of two concentric cylinders with the inner one rotating and the outer one fixed. Taylor-Couette flows take place in the annular gap between them, and are known to evolve towards turbulence through a sequence of successive instabilities. Macroscopic quantities, such as axial dispersion and mixing index, are extremely sensitive to these flow structures, which may lead to flawed modelling of the coupling between hydrodynamics and mass transfer. This particular point has been studied both experimentally and numerically. The flow and mixing have been characterized by means of flow visualization and simultaneous PIV (Particle Imaging Velocimetry) and PLIF (Planar Laser Induced Fluorescence) measurements. PLIF visualizations showed clear evidences of different transport mechanisms including 'intra-vortex mixing' and 'inter-vortex mixing'. Under WVF and MWVF regimes, intra-vortex mixing is controlled by chaotic advection, due to the 3D nature of the flow, while inter-vortex transport occurs due to the presence of waves between neighboring vortices. The combination of these two mechanisms results in enhanced axial dispersion. We showed that hysteresis may occur between consecutive regimes depending on flow history and this may have a significant effect on mixing for a given Reynolds number. The axial dispersion coefficient Dx evolution along the successive flow states was investigated thanks to dye Residence Time Distribution measurements (RTD) and particle tracking (DNS). Both experimental and numerical results have confirmed the significant effect of the flow structure and history on axial dispersion. Our study confirmed that the commonly used 1-parameter chemical engineering models (e

  9. Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow

    Science.gov (United States)

    Cagney, Neil; Balabani, Stavroula

    2017-11-01

    Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.

  10. Mode transition in bubbly Taylor-Couette flow measured by PTV

    International Nuclear Information System (INIS)

    Yoshida, K; Tasaka, Y; Murai, Y; Takeda, T

    2009-01-01

    The drag acting to the inner cylinder in Taylor-Couette flow system can be reduced by bubble injection. In this research, relationship between drag reduction and change of vortical structure in a Taylor-Couette flow is investigated by Particle Tracking Velocimetry (PTV). The velocity vector field in the r-z cross section and the bubble concentration in the front view (z-θ plane) are measured. This paper describes the change of vortical structures with bubbles, and the mode transition that is sensitively affected by the bubbles is discussed. The bubbles accumulate in the three parts relative to vortex position by the interaction between bubbles and vortices. The status of bubble's distribution is different depending on position. This difference affects mode transition as its trigger significantly. The presence of bubbles affects the transition from toroidal mode to spiral mode but does not induce the transition from spiral mode to toroidal mode. Further we found that Taylor vortex bifurcates and a pair of vortices coalesces when the flow switches between spiral mode and toroidal mode.

  11. An Instability in Stratified Taylor-Couette Flow

    Science.gov (United States)

    Swinney, Harry

    2015-11-01

    In the late 1950s Russell Donnelly began conducting experiments at the University of Chicago on flow between concentric rotating cylinders, and his experiments together with complementary theory by his collaborator S. Chandrasekhar did much to rekindle interest in the flow instability discovered and studied by G.I. Taylor (1923). The present study concerns an instability in a concentric cylinder system containing a fluid with an axial density gradient. In 2005 Dubrulle et al. suggested that a `stratorotational instability' (SRI) in this system could provide insight into instability and angular momentum transport in astrophysical accretion disks. In 2007 the stratorotational instability was observed in experiments by Le Bars and Le Gal. We have conducted an experiment on the SRI in a concentric cylinder system (radius ratio η = 0 . 876) with buoyancy frequency N / 2 π = 0.25, 0.50, or 0.75 Hz. For N = 0.75 Hz we observe the SRI onset to occur for Ωouter /Ωinner > η , contrary to the prediction of Shalybkov and Rüdiger. Research conducted with Bruce Rodenborn and Ruy Ibanez.

  12. Unmixing demonstration with a twist: A photochromic Taylor-Couette device

    Science.gov (United States)

    Fonda, Enrico; Sreenivasan, Katepalli R.

    2017-10-01

    10.1119/1.4996901.1 This article describes an updated version of the famous Taylor-Couette flow reversibility demonstration. The viscous fluid confined between two concentric cylinders is forced to move by the rotating inner cylinder and visualized through the transparent outer cylinder. After a few rotations, a colored blob of fluid appears well mixed. Yet, after reversing the motion for the same number of turns, the blob reappears in the original location as if the fluid has just been unmixed. The use of household supplies makes the device inexpensive and easy to build without specific technical skills. The device can be used for demonstrations in fluid dynamics courses and outreach activities to discuss the concepts of viscosity, creeping flows, the absence of inertia, and time-reversibility.

  13. Numerical investigations of passive scalar transport in Taylor-Couette flows: Counter-rotation effect

    Science.gov (United States)

    Ouazib, Nabila; Salhi, Yacine; Si-Ahmed, El-Khider; Legrand, Jack; Degrez, G.

    2017-07-01

    Numerical methods for solving convection-diffusion-reaction (CDR) scalar transport equation in three-dimensional flow are used in the present investigation. The flow is confined between two concentric cylinders both the inner cylinder and the outer one are allowed to rotate. Direct numerical simulations (DNS) have been achieved to study the effects of the gravitational and the centrifugal potentials on the stability of incompressible Taylor-Couette flow. The Navier-Stokes equations and the uncoupled convection-diffusion-reaction equation are solved using a spectral development in one direction combined together with a finite element discretization in the two remaining directions. The complexity of the patterns is highlighted. Since, it increases as the rotation rates of the cylinders increase. In addition, the effect of the counter-rotation of the cylinders on the mass transfer is pointed out.

  14. Hydrodynamic instabilities and concentration polarization coupled by osmotic pressure in a Taylor-Couette cell

    Science.gov (United States)

    Martinand, Denis; Tilton, Nils

    2016-11-01

    This study addresses analytically and numerically the coupling between hydrodynamic instabilities and osmotic pressure driven by concentration polarization. The configuration consists of a Taylor-Couette cell filled with a Newtonian fluid carrying a passive scalar. Whereas the concentric inner and outer cylinders are membranes permeable to the solvent, they totally reject the scalar. As a radial in- or outflow of solvent is imposed through both cylinders, a concentration boundary layer develops on the cylinder where the solvent exits, until an equilibrium steady state is reached. In addition, the rotation of the inner cylinder is used to drive centrifugal instabilities in the form of toroidal vortices, which interact with the concentration boundary layer. By means of the osmotic pressure, concentration polarization is found to promote or hinder the hydrodynamic instabilities, depending on capacity of the vortices and diffusion to increase the concentration field at the membrane. The results obtained by analytical stability analysis agree with dedicated Direct Numerical Simulations.

  15. Quantitative investigation of the transition process in Taylor-Couette flow

    International Nuclear Information System (INIS)

    Tu, Xin Cheng; Kim, Hyoung Bum Kim; Liu, Dong

    2013-01-01

    The transition process from circular Couette flow to Taylor vortex flow regime was experimentally investigated by measuring the instantaneous velocity vector fields at the annular gap flow region between two concentric cylinders. The proper orthogonal decomposition method, vorticity calculation, and frequency analysis were applied in order to analyze the instantaneous velocity fields to identify the flow characteristics during the transition process. From the results, the kinetic energy and corresponding reconstructed velocity fields were able to detect the onset of the transition process and the alternation of the flow structure. The intermittency and oscillation of the vortex flows during the transition process were also revealed from the analysis of the instantaneous velocity fields. The results can be a measure of identifying the critical Reynolds number of the Taylor-Couette flow from a velocity measurement method.

  16. Superhydrophobic and polymer drag reduction in turbulent Taylor-Couette flow

    Science.gov (United States)

    Rajappan, Anoop; McKinley, Gareth H.

    2017-11-01

    We use a custom-built Taylor-Couette apparatus (radius ratio η = 0.75) to study frictional drag reduction by dilute polymer solutions and superhydrophobic (SH) surfaces in turbulent flows for 15000 analysis. We also investigate drag reduction by dilute polymer solutions, and show that natural biopolymers from plant mucilage can be an inexpensive and effective alternative to synthetic polymers in drag reduction applications, approaching the same maximum drag reduction asymptote. Finally we explore combinations of the two methods - one arising from wall slip and the other due to changes in turbulence dynamics in the bulk flow - and find that the two effects are not additive; interestingly, the effectiveness of polymer drag reduction is drastically reduced in the presence of an SH coating on the wall. This study was financially supported by the Office of Naval Research (ONR) through Contract No. 3002453814.

  17. Quasi-two-dimensional nonlinear evolution of helical magnetorotational instability in a magnetized Taylor-Couette flow

    Science.gov (United States)

    Mamatsashvili, G.; Stefani, F.; Guseva, A.; Avila, M.

    2018-01-01

    Magnetorotational instability (MRI) is one of the fundamental processes in astrophysics, driving angular momentum transport and mass accretion in a wide variety of cosmic objects. Despite much theoretical/numerical and experimental efforts over the last decades, its saturation mechanism and amplitude, which sets the angular momentum transport rate, remains not well understood, especially in the limit of high resistivity, or small magnetic Prandtl numbers typical to interiors (dead zones) of protoplanetary disks, liquid cores of planets and liquid metals in laboratory. Using direct numerical simulations, in this paper we investigate the nonlinear development and saturation properties of the helical magnetorotational instability (HMRI)—a relative of the standard MRI—in a magnetized Taylor-Couette flow at very low magnetic Prandtl number (correspondingly at low magnetic Reynolds number) relevant to liquid metals. For simplicity, the ratio of azimuthal field to axial field is kept fixed. From the linear theory of HMRI, it is known that the Elsasser number, or interaction parameter determines its growth rate and plays a special role in the dynamics. We show that this parameter is also important in the nonlinear problem. By increasing its value, a sudden transition from weakly nonlinear, where the system is slightly above the linear stability threshold, to strongly nonlinear, or turbulent regime occurs. We calculate the azimuthal and axial energy spectra corresponding to these two regimes and show that they differ qualitatively. Remarkably, the nonlinear state remains in all cases nearly axisymmetric suggesting that this HMRI-driven turbulence is quasi two-dimensional in nature. Although the contribution of non-axisymmetric modes increases moderately with the Elsasser number, their total energy remains much smaller than that of the axisymmetric ones.

  18. On the CFD Analysis of a Stratified Taylor-Couette System Dedicated to the Fabrication of Nanosensors

    Directory of Open Access Journals (Sweden)

    Duccio Griffini

    2017-02-01

    Full Text Available Since the pioneering work of Taylor, the analysis of flow regimes of incompressible, viscous fluids contained in circular Couette systems with independently rotating cylinders have charmed many researchers. The characteristics of such kind of flows have been considered for some industrial applications. Recently, Taylor-Couette flows found an innovative application in the production of optical fiber nanotips, to be used in molecular biology and medical diagnostic fields. Starting from the activity of Barucci et al., the present work concerns the numerical analysis of a Taylor-Couette system composed by two coaxial counter-rotating cylinders with low aspect ratio and radius ratio, filled with three stratified fluids. An accurate analysis of the flow regimes is performed, considering both the variation of inner and outer rotational speed and the reduction of fiber radius due to etching process. The large variety of individuated flow configurations provides useful information about the possible use of the Taylor-Couette system in a wide range of engineering applications. For the present case, the final objective is to provide accurate information to manufacturers of fiber nanotips about the expected flow regimes, thus helping them in the setup of the control process that will be used to generate high-quality products.

  19. Taylor-Couette fluid flow with force oscillation in the inner-cylinder using the immersed boundary method

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Jonatas Emmanuel; Lourenco, Marcos Antonio de Souza; Padilla, Elie Luis Martinez; Silveira Neto, Aristeu da [Federal University of Uberlandia , MG (Brazil)], e-mails: lourenco@mecanica.ufu.br, epadilla@mecanica.ufu.br, aristeus@mecanica.ufu.br; Leibsohn, Andre Martins [CENPES/Petrobras, Rio de Janeiro, RJ (Brazil)], e-mail: aleibsohn@petrobras.com

    2010-07-01

    As new challenges arise in the exploration of deep and ultra-deep water oil fields by PETROBRAS more knowledge and research are needed, so that tools could be developed to assist in the critical operations and make things practicable. In the context of the drilling process, the complexity of the fluid flow inside the riser is associated with the nature of the non-Newtonian flow, immersed solid particles, variable eccentricity and the superimposed traveling azimuthal waves on the inflow and outflow boundaries of the Taylor vortices. This work presents the numerical three-dimensional results of the following simplified fluid flows: Taylor-Couette, Taylor-Couette with varying imposed eccentricity and Taylor-Couette with forced oscillation in the inner cylinder. Using the Navier-Stokes equations, a finite volume method discretization with second order accuracy in both time and space was utilized to simulate the Newtonian, single-phase incompressible fluid flow in the three cases. The circular walls of the inner and outer cylinders are represented by the immersed boundary method, with the direct multi-forcing model. The determined results allow to evidence the flow structures in the three cases in a very qualitative way, even so in the presence of the inner cylinder oscillation. (author)

  20. Torque scaling in small-gap Taylor-Couette flow with smooth or grooved wall

    Science.gov (United States)

    Zhu, Bihai; Ji, Zengqi; Lou, Zhengkun; Qian, Pengcheng

    2018-03-01

    The torque in the Taylor-Couette flow for radius ratios η ≥0.97 , with smooth or grooved wall static outer cylinders, is studied experimentally, with the Reynolds number of the inner cylinder reaching up to Rei=2 ×105 , corresponding to the Taylor number up to Ta =5 ×1010 . The grooves are perpendicular to the mean flow, and similar to the structure of a submersible motor stator. It is found that the dimensionless torque G , at a given Rei and η , is significantly greater for grooved cases than smooth cases. We compare our experimental torques for the smooth cases to the fit proposed by Wendt [F. Wendt, Ing.-Arch. 4, 577 (1993), 10.1007/BF02084936] and the fit proposed by Bilgen and Boulos [E. Bilgen and R. Boulos, J Fluids Eng. 95, 122 (1973), 10.1115/1.3446944], which shows both fits are outside their range for small gaps. Furthermore, an additional dimensionless torque (angular velocity flux) N uω in the smooth cases exhibits an effective scaling of N uω˜T a0.39 in the ultimate regime, which occurs at a lower Taylor number, Ta ≈3.5 ×107 , than the well-explored η =0.714 case (at Ta ≈3 ×108 ). The same effective scaling exponent, 0.39, is also evident in the grooved cases, but for η =0.97 and 0.985, there is a peak before this exponent appears.

  1. Bifurcating fronts for the Taylor-Couette problem in infinite cylinders

    Science.gov (United States)

    Hărăguş-Courcelle, M.; Schneider, G.

    We show the existence of bifurcating fronts for the weakly unstable Taylor-Couette problem in an infinite cylinder. These fronts connect a stationary bifurcating pattern, here the Taylor vortices, with the trivial ground state, here the Couette flow. In order to show the existence result we improve a method which was already used in establishing the existence of bifurcating fronts for the Swift-Hohenberg equation by Collet and Eckmann, 1986, and by Eckmann and Wayne, 1991. The existence proof is based on spatial dynamics and center manifold theory. One of the difficulties in applying center manifold theory comes from an infinite number of eigenvalues on the imaginary axis for vanishing bifurcation parameter. But nevertheless, a finite dimensional reduction is possible, since the eigenvalues leave the imaginary axis with different velocities, if the bifurcation parameter is increased. In contrast to previous work we have to use normalform methods and a non-standard cut-off function to obtain a center manifold which is large enough to contain the bifurcating fronts.

  2. Experimental Study on Momentum Transfer of Surface Texture in Taylor-Couette Flow

    Science.gov (United States)

    Xue, Yabo; Yao, Zhenqiang; Cheng, De

    2017-05-01

    The behavior of Taylor-Couette (TC) flow has been extensively studied. However, no suitable torque prediction models exist for high-capacity fluid machinery. The Eckhardt-Grossmann-Lohse (EGL) theory, derived based on the Navier-Stokes equations, is proposed to model torque behavior. This theory suggests that surfaces are the significant energy transfer interfaces between cylinders and annular flow. This study mainly focuses on the effects of surface texture on momentum transfer behavior through global torque measurement. First, a power-law torque behavior model is built to reveal the relationship between dimensionless torque and the Taylor number based on the EGL theory. Second, TC flow apparatus is designed and built based on the CNC machine tool to verify the torque behavior model. Third, four surface texture films are tested to check the effects of surface texture on momentum transfer. A stereo microscope and three-dimensional topography instrument are employed to analyze surface morphology. Global torque behavior is measured by rotating a multi component dynamometer, and the effects of surface texture on the annular flow behavior are observed via images obtained using a high-speed camera. Finally, torque behaviors under four different surface conditions are fitted and compared. The experimental results indicate that surface textures have a remarkable influence on torque behavior, and that the peak roughness of surface texture enhances the momentum transfer by strengthening the fluctuation in the TC flow.

  3. Non-linear dynamics and alternating 'flip' solutions in ferrofluidic Taylor-Couette flow

    Science.gov (United States)

    Altmeyer, Sebastian

    2018-04-01

    This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined between two concentric independently rotating cylinders. We detected alternating 'flip' solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion.

  4. Vortex formation in Taylor-Couette flow with weakly spatial modulation

    International Nuclear Information System (INIS)

    Li, Z.; Khayat, R.E.

    2002-01-01

    The onset of the vortex structure in axisymmetric Taylor-Couette flow with spatially modulated cylinders is examined. The modulation amplitude is assumed to be small for a regular perturbation solution to be sought at small to moderate Taylor numbers. It is found that the presence of a weak modulation of the outer or inner cylinders leads unavoidably to the emergence of steady vortex flow even for a vanishingly small Taylor number. This situation is reminiscent of the onset of an imperfect bifurcation. The vortex structure of the forced TVF is found to have same periodicity when only one cylinder is modulated or the two modulations are commensurate for the Taylor number measured. The vortex structure is quasi-periodic when the two modulations are incommensurate. For a certain Taylor number, there exists a critical wavelength for the presence of the strongest vortex flow when the modulation is in the form of sinusoidal. This critical wavelength tends to the critical value predicted by the linear stability analysis when Ta approaches the supercritical value. (author)

  5. Spontaneous electrorheological effect in nematic liquid crystals under Taylor-Couette flow configuration

    Science.gov (United States)

    Dhar, Jayabrata; Chakraborty, Suman

    2017-09-01

    Electrorheological (ER) characteristics of Nematic Liquid Crystals (NLCs) have been a topic of immense interest in the field of soft matter physics owing to its rheological modulation capabilities. Here we explore the augmentation in rheological characteristics of the nematic fluid confined within the annular region of the concentric cylindrical space with an Electrical Double Layer (EDL) induced at the fluid-substrate interface due to certain physico-chemical interactions. Using a Taylor-Couette flow configuration associated with an EDL induced at the inner cylinder wall, we show that a spontaneous electrorheological effect is generated owing to the intrinsic director anisotropy and structural order of complex nematic fluids. We seek to find the enhancement in torque transfer capability due to the inherent electrorheological nature of the nematic medium, apart from exploiting the innate nature of such homogeneous media to remain free of coagulation, a fact which makes it an excellent candidate for the applications in microfluidic environment. Our analysis reveals that with stronger induced charge density within the EDL, the apparent viscosity enhances, which, in turn, augments torque transfer across the concentric cylinder. The velocity profile tends to flatten in comparison to the classical circular Couette flow in annular geometry as one increases the surface charge density. We further observe a more pronounced ER effect for the nematic medium having larger electrical permittivity anisotropy. Besides the torque transfer qualifications, we also explore the distinct scenarios, wherein the same NLC medium exhibits shear thinning and shear thickening characteristics. The present configuration of the efficient torque transfer mechanism may be proficiently downscaled to micro-level and is relevant in the fabrication of micro-clutch and micro-dampers.

  6. Numerical simulation of turbulent Taylor-Couette flow between conducting cylinders in an axial magnetic field at low magnetic Reynolds number

    Science.gov (United States)

    Leng, Xueyuan; Kolesnikov, Yurii B.; Krasnov, Dmitry; Li, Benwen

    2018-01-01

    The effect of an axial homogeneous magnetic field on the turbulence in the Taylor-Couette flow confined between two infinitely long conducting cylinders is studied by the direct numerical simulation using a periodic boundary condition in the axial direction. The inner cylinder is rotating, and the outer one is fixed. We consider the case when the magnetic Reynolds number Rem ≪ 1, i.e., the influence of the induced magnetic field on the flow is negligible that is typical for industry and laboratory study of liquid metals. Relevance of the present study is based on the similarity of flow characteristics at moderate and high magnetic field for the cases with periodic and end-wall conditions at the large flow aspect ratio, as proven in the earlier studies. Two sets of Reynolds numbers 4000 and 8000 with several Hartmann numbers varying from 0 to 120 are employed. The results show that the mean radial induced electrical current, resulting from the interaction of axial magnetic field with the mean flow, leads to the transformation of the mean flow and the modification of the turbulent structure. The effect of turbulence suppression is dominating at a strong magnetic field, but before reaching the complete laminarization, we capture the appearance of the hairpin-like structures in the flow.

  7. Cultivation of the photosynthesis microorganism in a Taylor-Couette Vortex Flow with a small aspect ratio

    Science.gov (United States)

    Kawai, H.; Yasui, S.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    This study focuses on the dynamics of the Taylor-Couette Vortex Flow (TVF) in a photo-bioreactor in which CO2 is changed to O2 with high efficiency by the photosynthesis ability of micro algae. Stirring by means of a screw propeller is generally used for a simple agitation. However, the problem is that there exists a very high shearing flow region just near the propeller, which causes the destruction of the alga cell by the shearing force. In contrast, the TVF mixing is expected to reduce such a local and random shearing force because of their column of steady and orderly vortices. In this study, the relationship between the microorganism growth rate and the flow structures in dilute suspensions of a TVF is investigated and the flow characteristics are measured by using an ultrasonic velocity profiler with a small aspect ratio of 3.

  8. Cultivation of the photosynthesis microorganism in a Taylor-Couette Vortex Flow with a small aspect ratio

    International Nuclear Information System (INIS)

    Kawai, H; Yasui, S; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    This study focuses on the dynamics of the Taylor-Couette Vortex Flow (TVF) in a photo-bioreactor in which CO 2 is changed to O 2 with high efficiency by the photosynthesis ability of micro algae. Stirring by means of a screw propeller is generally used for a simple agitation. However, the problem is that there exists a very high shearing flow region just near the propeller, which causes the destruction of the alga cell by the shearing force. In contrast, the TVF mixing is expected to reduce such a local and random shearing force because of their column of steady and orderly vortices. In this study, the relationship between the microorganism growth rate and the flow structures in dilute suspensions of a TVF is investigated and the flow characteristics are measured by using an ultrasonic velocity profiler with a small aspect ratio of 3.

  9. Prospects for observing the magnetorotational instability in the plasma Couette experiment

    Science.gov (United States)

    Flanagan, K.; Clark, M.; Collins, C.; Cooper, C. M.; Khalzov, I. V.; Wallace, J.; Forest, C. B.

    2015-08-01

    Many astrophysical disks, such as protoplanetary disks, are in a regime where non-ideal, plasma-specific magnetohydrodynamic (MHD) effects can significantly influence the behaviour of the magnetorotational instability (MRI). The possibility of studying these effects in the plasma Couette experiment (PCX) is discussed. An incompressible, dissipative global stability analysis is developed to include plasma-specific two-fluid effects and neutral collisions, which are inherently absent in analyses of Taylor-Couette flows (TCFs) in liquid metal experiments. It is shown that with boundary driven flows, a ion-neutral collision drag body force significantly affects the azimuthal velocity profile, thus limiting the flows to regime where the MRI is not present. Electrically driven flow (EDF) is proposed as an alternative body force flow drive in which the MRI can destabilize at more easily achievable plasma parameters. Scenarios for reaching MRI relevant parameter space and necessary hardware upgrades are described.

  10. Instrumental Implementation of an Experiment to Demonstrate αω -dynamos in Accretion Disks

    Science.gov (United States)

    Si, Jiahe; Sonnenfeld, Richard; Colgate, Art; Li, Hui; Nornberg, Mark

    2016-10-01

    The New Mexico Liquid Metal αω -dynamo experiment is aimed to demonstrate a galactic dynamo. Our goal is to generate the ω-effect and α-effect by two semi-coherent flows in laboratory. Two coaxial cylinders are used to generate Taylor-Couette flows to simulate the differential rotation of accretion disks. Plumes induced by jets injected into the Couette flows are expected to produce helicities necessary for the α-effect. We have demonstrated an 8-fold poloidal-to-toroidal flux amplification from differential rotation (the ω-effect) by minimizing turbulence in our apparatus. To demonstrate the α-effect, the experimental apparatus is undergoing significant upgrade. We have constructed a helicity injection facility, and are also designing and testing a new data acquisition system capable of transmitting data in a high speed rotating frame. Additional magnetic field diagnostics will also be included. The upgrade is intended to answer the question of whether a self-sustaining αω -dynamo can be constructed with a realistic fluid flow field, as well as to obtain more details to understand dynamo action in highly turbulent Couette flow.

  11. High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment: A Prelude to an α-Ω Dynamo

    International Nuclear Information System (INIS)

    Colgate, Stirling A.; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Cebastian; Klein, Brianna; Schendel, Paul; Scharle, Cletus; McKinney, Travis; Ginanni, Rocky; Bentley, Ian; Mickey, Timothy; Ferrel, Regnar; Li, Hui; Pariev, Vladimir; Finn, John

    2011-01-01

    The Ω phase of the liquid sodium α-Ω dynamo experiment at New Mexico Institute of Mining and Technology in cooperation with Los Alamos National Laboratory has demonstrated a high toroidal field B φ that is ≅8xB r , where B r is the radial component of an applied poloidal magnetic field. This enhanced toroidal field is produced by the rotational shear in stable Couette flow within liquid sodium at a magnetic Reynolds number Rm≅120. Small turbulence in stable Taylor-Couette flow is caused by Ekman flow at the end walls, which causes an estimated turbulence energy fraction of (δv/v) 2 ∼10 -3 .

  12. Characterization of the two-phase Taylor Couette flow

    International Nuclear Information System (INIS)

    Mehel A; Gabillet B; Djeridi H

    2005-01-01

    The focus of the present study concerns the effects of a dispersed phase on the structure of a quasi periodic Couette Taylor flow. The two phase flow patterns are investigated experimentally for the Taylor number Ta=780. Small bubbles (0.035 times as small as the gap) are generated by agitation of the upper free surface. Larger bubbles (0.15 times as small as the gap) are produced by injection at the bottom of the apparatus associated with a pressure drop. Void fraction, bubble size and velocity are measured, as well as the azimuthal and axial velocity components of the liquid. A premature transition to turbulence is pointed out and discussed according to the bubble size and their localization in the gap. (authors)

  13. Experiments with activated metal foils

    Energy Technology Data Exchange (ETDEWEB)

    Malati, M A [Medway and Maidstone Coll. of Tech., Chatham (UK)

    1978-09-01

    Experiments based on the activation of metal foils by slow neutron bombardment which can be used to demonstrate various aspects of artificial radioactivity are described and discussed. Suitable neutron sources and foils are considered.

  14. Exploding metallic fuse physics experiments

    International Nuclear Information System (INIS)

    Goforth, J.H.; Hackett, K.E.; Lindemuth, I.R.; Lopez, E.A.; McCullough, W.F.; Dona, H.; Reinovsky, R.E.

    1986-01-01

    The ultimate practicality of inductive pulse compression systems as drivers for energetic plasma implosions hinges on the development of a suitable opening switch capable of interrupting tons of megamp currents in time scales of a few hundred nanoseconds while withstanding L(dI/dt) voltages of a megavolt or more. 1. Exploding metallic foils (fuses) are a candidate for switching elements in the inductive store pulsed power systems used in the Los Alamos and Air Force Weapons Laboratory foil implosion X-ray source generation programs. To verify or modify new theoretical and computational predictions about the electrical and hydrodynamic behavior of exploding metallic foils used as fuses. The authors have initiated a new series of small scale capacitor bank driven fuse experiments. The experiments represent an extension of previous experiments, but in the new series a foil geometry more amenable to theoretical and computational analysis is used. The metallic foil (aluminum or copper) is laminated between two thin layers of insulating material (mylar or kaptan). Adjacent to one layer of insulation is a much heavier backing insulator (polyethylene) whereas air is adjacent to the other layer. Because of the differing masses on the two sides of the foil, the foil expansion and hydrodynamic motion is essentially one-sided and the layer of insulation on the expanding side becomes a readily-characterizable ''flyer'' which provides a controlled amount of hydrodynamic tamping. In addition to the usual voltage, current, and dI/dt electrical measurements, time-resolved spectrometer measurements are used to determine the temperature of the expanding metallic foil. Post-shot examination of the flyer and the insulation impacted by the flyer gives insight into the experimental behavior

  15. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  16. Turbulent Liquid Metal Dynamo Experiments

    International Nuclear Information System (INIS)

    Forest, Cary

    2007-01-01

    The self-generation of magnetic fields in planets and stars--the dynamo effect--is a long-standing problem of magnetohydrodynamics and plasma physics. Until recently, research on the self-excitation process has been primarily theoretical. In this talk, I will begin with a tutorial on how magnetic fields are generated in planets and stars, describing the 'Standard Model' of self-excitation known as the alpha-omega dynamo. In this model, axisymmetric differential rotation can produce the majority of the magnetic field, but some non-axisymmetric, turbulence driven currents are also necessary. Understanding the conversion of turbulent kinetic energy in the fluid motion into electrical currents and thus magnetic fields, is a major challenge for both experiments and theory at this time. I will then report on recent results from a 1 meter diameter, spherical, liquid sodium dynamo experiment at the University of Wisconsin, in which the first clear evidence for these turbulence driven currents has been observed.

  17. Wall Shear Rate in the Taylor-Couette-Poiseuille Flow at Low Axial Reynolds Number

    Czech Academy of Sciences Publication Activity Database

    Dumont, E.; Fayolle, F.; Sobolík, Václav; Legrand, J.

    2002-01-01

    Roč. 45, č. 3 (2002), s. 679-689 ISSN 0017-9310 Institutional research plan: CEZ:AV0Z4072921 Keywords : Taylor vortices * electrodiffusion diagnostics * model fluid s Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.268, year: 2002

  18. The Three-Dimensional Velocity Distribution of Wide Gap Taylor-Couette Flow Modelled by CFD

    Directory of Open Access Journals (Sweden)

    David Shina Adebayo

    2016-01-01

    Full Text Available A numerical investigation is conducted for the flow between two concentric cylinders with a wide gap, relevant to bearing chamber applications. This wide gap configuration has received comparatively less attention than narrow gap journal bearing type geometries. The flow in the gap between an inner rotating cylinder and an outer stationary cylinder has been modelled as an incompressible flow using an implicit finite volume RANS scheme with the realisable k-ε model. The model flow is above the critical Taylor number at which axisymmetric counterrotating Taylor vortices are formed. The tangential velocity profiles at all axial locations are different from typical journal bearing applications, where the velocity profiles are quasilinear. The predicted results led to two significant findings of impact in rotating machinery operations. Firstly, the axial variation of the tangential velocity gradient induces an axially varying shear stress, resulting in local bands of enhanced work input to the working fluid. This is likely to cause unwanted heat transfer on the surface in high torque turbomachinery applications. Secondly, the radial inflow at the axial end-wall boundaries is likely to promote the transport of debris to the junction between the end-collar and the rotating cylinder, causing the build-up of fouling in the seal.

  19. Estimation of mass transfer parameters in a Taylor-Couette-Poiseuille heterogeneous reactor

    Directory of Open Access Journals (Sweden)

    Resende M. M.

    2004-01-01

    Full Text Available A bench-scale, continuous vortex flow reactor (VFR, with a radius ratio, h, equal to 0.48 and an aspect ratio, G, equal to 11.19 was studied. This reactor may be used in the enzymatic hydrolysis of polypeptides obtained from sweet cheese whey with enzymes immobilized on agarose gel. Operational conditions were 2410 < Re q < 11793 and 30-min residence time for glycerol-water, 14% w/w, 27ºC (Re ax = 1.1 and for water, 38ºC (Re ax = 1.5. Residence time distributions (RTDs were obtained after pulse injections of different tracers (including dyed solid particles. Mass transfer coefficients of a lumped-parameter model of the reactor were estimated from these data. Model fitting to experimental data was accurate. Working conditions were selected so that transport properties of the fluids would be similar to the ones in the actual process at the final stages of whey hydrolysis.

  20. Injury experience in metallic mineral mining, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  1. Injury experience in metallic mineral mining, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  2. Experiments on the stability of metal diapirs

    Science.gov (United States)

    Wacheul, J. S.; Le Bars, M.; Aurnou, J. M.; Monteux, J.

    2013-12-01

    In the late stages of their accretions, telluric planets had most likely had a magma ocean because of numerous heat sources such as the important decay of radioactive elements and giant impacts. These giant impacts involved asteroid nearly as big as the moon, which were certainly differentiated. The core of these planetary embryos ultimately merged with the planets, but the amount of heat and chemicals they exchanged with the mantle during its passing through remains a widely open question. The question of the stability of an immiscible iron diapir falling through a magma ocean is essential for our understanding of these events. Thus, we have conducted the first experiments on an analogue system that involves liquid metal; we used liquid gallium as the melted iron and glycerol as the magma ocean. This set up allowed us to reach Reynolds numbers closer to the geophysical problem than other previous studies and accurate viscosity ratios. Using video analysis, we reconstruct the spectra of droplet sizes and velocities, from which we calculate a typical length of equilibration as a function of the diapir's radius. Our preliminary results are in agreement with the scenario of the iron rain concerning the droplet sizes, with a significant influence of the viscosity ratio on the maximal size of the droplets. However, the speed of these droplets seems to be controlled by the inertia of the whole flow in a sense that the relevant concept for the mixing between metal and silicate is turbulent mixing between miscible fluids. The influence of coalescence between droplets on this mixing, involving a significant part of the flow according to our experiment, is still to be quantified.

  3. Fluid Mechanics Experiments as a Unifying Theme in the Physics Instrumentation Laboratory Course

    Science.gov (United States)

    Borrero-Echeverry, Daniel

    2017-11-01

    We discuss the transformation of a junior-level instrumentation laboratory course from a sequence of cookbook lab exercises to a semester-long, project-based course. In the original course, students conducted a series of activities covering the usual electronics topics (amplifiers, filters, oscillators, logic gates, etc.) and learned basic LabVIEW programming for data acquisition and analysis. Students complained that these topics seemed disconnected and not immediately applicable to ``real'' laboratory work. To provide a unifying theme, we restructured the course around the design, construction, instrumentation of a low-cost Taylor-Couette cell where fluid is sheared between rotating coaxial cylinders. The electronics labs were reworked to guide students from fundamental electronics through the design and construction of a stepper motor driver, which was used to actuate the cylinders. Some of the legacy labs were replaced with a module on computer-aided design (CAD) in which students designed parts for the apparatus, which they then built in the departmental machine shop. Signal processing topics like spectral analysis were introduced in the context of time-series analysis of video data acquired from flow visualization. The course culminated with a capstone project in which students conducted experiments of their own design on a variety of topics in rheology and nonlinear dynamics.

  4. Small-load nanoindentation experiments on metals

    Czech Academy of Sciences Publication Activity Database

    Campbellova, A.; Klapetek, P.; Buršíková, V.; Valtr, M.; Buršík, Jiří

    2010-01-01

    Roč. 42, č. 6-7 (2010), s. 766-769 ISSN 0142-2421. [European Conference on Applications of Surface and Interface Analysis /13./. Antalya, 18.10.2010-23.10.2010] Institutional research plan: CEZ:AV0Z20410507 Keywords : nanoindentation * FCC metals * pop-in Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.247, year: 2010

  5. Two-phase alkali-metal experiments in reduced gravity

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity

  6. Natural uranium metallic fuel elements: fabrication and operating experience

    International Nuclear Information System (INIS)

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  7. Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment

    OpenAIRE

    Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Kozub, Thomas; Berzak, Laura; Hammett, Gregory; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Jacobson, Craig M.; Lucia, Matthew; Jones, Andrew; Lundberg, Daniel; Timberlake, John; Majeski, Richard

    2010-01-01

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas wa...

  8. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    International Nuclear Information System (INIS)

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-01-01

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field

  9. The design of a heat transfer liquid metal MHD experiment for ALEX [Argonne Liquid-Metal Experiment

    International Nuclear Information System (INIS)

    Picologlou, B.F.; Reed, C.B.; Hua, T.Q.; Lavine, A.S.

    1988-01-01

    An experiment to study heat transfer in liquid metal MHD flow, under conditions relevant to coolant channels for tokamak first wall and high heat flux devices, is described. The experimental configuration is a rectangular duct in a transverse magnetic field, heated on one wall parallel to the field. The specific objective of the experiment is to resolve important issues related to the presence and heat transfer characteristics of wall jets and flow instabilities in MHD flows in rectangular duct with electrically conducting walls. Available analytical tools for MHD thermal hydraulics have been used in the design of the test article and its instrumentation. Proposed tests will cover a wide range of Peclet and Hartmann numbers and interaction parameters. 14 refs., 3 figs., 1 tab

  10. Artificial ionospheric modification: The Metal Oxide Space Cloud experiment

    Science.gov (United States)

    Caton, Ronald G.; Pedersen, Todd R.; Groves, Keith M.; Hines, Jack; Cannon, Paul S.; Jackson-Booth, Natasha; Parris, Richard T.; Holmes, Jeffrey M.; Su, Yi-Jiun; Mishin, Evgeny V.; Roddy, Patrick A.; Viggiano, Albert A.; Shuman, Nicholas S.; Ard, Shaun G.; Bernhardt, Paul A.; Siefring, Carl L.; Retterer, John; Kudeki, Erhan; Reyes, Pablo M.

    2017-05-01

    Clouds of vaporized samarium (Sm) were released during sounding rocket flights from the Reagan Test Site, Kwajalein Atoll in May 2013 as part of the Metal Oxide Space Cloud (MOSC) experiment. A network of ground-based sensors observed the resulting clouds from five locations in the Republic of the Marshall Islands. Of primary interest was an examination of the extent to which a tailored radio frequency (RF) propagation environment could be generated through artificial ionospheric modification. The MOSC experiment consisted of launches near dusk on two separate evenings each releasing 6 kg of Sm vapor at altitudes near 170 km and 180 km. Localized plasma clouds were generated through a combination of photoionization and chemi-ionization (Sm + O → SmO+ + e-) processes producing signatures visible in optical sensors, incoherent scatter radar, and in high-frequency (HF) diagnostics. Here we present an overview of the experiment payloads, document the flight characteristics, and describe the experimental measurements conducted throughout the 2 week launch window. Multi-instrument analysis including incoherent scatter observations, HF soundings, RF beacon measurements, and optical data provided the opportunity for a comprehensive characterization of the physical, spectral, and plasma density composition of the artificial plasma clouds as a function of space and time. A series of companion papers submitted along with this experimental overview provide more detail on the individual elements for interested readers.

  11. All-metal vacuum chamber for the ZT-40 experiment

    International Nuclear Information System (INIS)

    Dike, R.S.; Downing, J.N.

    1981-10-01

    We discuss the design and fabrication of the all-metal vacuum chamber presently in use in the ZT-40 device. ZT-40 is the current experiment in the Los Alamos Reversed-Field Pinch (RFP) program. The new vessel, which replaces a ceramic one, is made of Inconel 625 and has major and minor diameters of 228 cm and 40 cm, respectively. It consists of 24 convoluted and straight sections welded into a single toroidal geometry. Presented are several design features showing diagnostic and vacuum port tubulations and thermal-electrical insulation isolating the unit from its conducting shell. We also discuss fabrication techniques and our procedure for cleaning and heat treatment designed to eliminate residual gas contamination in the Inconel material

  12. Experiments with liquid metal walls: Status of the lithium tokamak experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, Robert, E-mail: kaita@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Berzak, Laura; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M.; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor; Timberlake, John [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2010-11-15

    Abstarct: Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The lithium tokamak experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the current drive experiment-upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in ohmically heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy (CHERS). Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions.

  13. Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment

    International Nuclear Information System (INIS)

    Kaita, Robert; Berzak, Laura; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M.; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor; Timberlak, John

    2010-01-01

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions.

  14. Liquid metal cooled reactors: Experience in design and operation

    International Nuclear Information System (INIS)

    2007-12-01

    on key fast reactor technology aspects in an integrative sense useful to engineers, scientists, managers, university students and professors. This publication has been prepared to contribute toward the IAEA activity to preserve the knowledge gained in the liquid metal cooled fast reactor (LMFR) technology development. This technology development and experience include aspects addressing not only experimental and demonstration reactors, but also all activities from reactor construction to decommissioning. This publication provides a survey of worldwide experience gained over the past five decades in LMFR development, design, operation and decommissioning, which has been accumulated through the IAEA programmes carried out within the framework of the TWG-FR and the Agency's INIS and NKMS

  15. A homopolar disc dynamo experiment with liquid metal contacts

    OpenAIRE

    Avalos-Zúñiga, R. A.; Priede, J.; Bello-Morales, C. E.

    2017-01-01

    We present experimental results of a homopolar disc dynamo constructed at CICATA-Quer\\'etaro in Mexico. The device consists of a flat, multi-arm spiral coil which is placed above a fast-spinning metal disc and connected to the latter by sliding liquid-metal electrical contacts. Theoretically, self-excitation of the magnetic field is expected at the critical magnetic Reynolds number Rm~45, which corresponds to a critical rotation rate of about 10 Hz. We measured the magnetic field above the di...

  16. Irradiation experience with HT9-clad metallic fuel

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Tsai, H.; Billone, M.C.

    1991-01-01

    The safe and reliable performance of metallic fuel is currently under study and demonstration in the Integral Fast Reactor program. In-reactor tests of HT9-clad metallic fuel have now reached maturity and have all shown good performance characteristics to burnups exceeding 17.5 at. % in the lead assembly. Because this low-swelling tempered martensitic alloy is the cladding of choice for high fluence applications, the experimental observations and performance modelling efforts reported in this paper play an important role in demonstrating reliability

  17. An Experiment on Isomerism in Metal-Amino Acid Complexes.

    Science.gov (United States)

    Harrison, R. Graeme; Nolan, Kevin B.

    1982-01-01

    Background information, laboratory procedures, and discussion of results are provided for syntheses of cobalt (III) complexes, I-III, illustrating three possible bonding modes of glycine to a metal ion (the complex cations II and III being linkage/geometric isomers). Includes spectrophotometric and potentiometric methods to distinguish among the…

  18. Experience with melting beta and gamma contaminated metals

    International Nuclear Information System (INIS)

    Feaugas, J.; Laplante, D.; Puechlong, Y.; Barbusse, R.

    1994-01-01

    Following a description of the melting facility operated for purposes of decommissioning the G2 and G3 gas-cooled reactors at Marcoule, the physical and radiological characteristics of 4070 tonnes of metal processed to date in the furnace are discussed. Considerable data have been recorded regarding operating and measurement procedures; the results show that secondary wastes account for less than 5 wt% of the processed scrap metal, and that all the 137 Cs is transferred to the dust and slag. During the last two months of 1993, the ingot mold line was replaced by rails on which dollies carrying integral work-form molds can be moved into position beneath the casting ladle. (authors). 21 figs

  19. Optical and electrical experiments at some transition-metal oxide foil-electrolyte interfaces

    International Nuclear Information System (INIS)

    Sari, S.O.; Ahlgren, W.L.

    1977-01-01

    Metal-oxide layers formed from transition-metal foils oxidized by heating in air have been examined for their photoelectrolytic response. The metals examined are Y, Ti, Zr, Hf, V, Nb, Ta, Mo, W, and Pt. Weak photoeffects are observed for oxide layers of all of these metals. Sizable light-dependent oxygen gas evolution rates are found in Ti and also in W oxides. The spectral dependence of the oxygen response in these compounds is investigated, and interpretation is given of these experiments

  20. Analysis of metal fuel transient overpower experiments with the SAS4A accident analysis code

    International Nuclear Information System (INIS)

    Tentner, A.M.; Kalimullah; Miles, K.J.

    1990-01-01

    The results of the SAS4A analysis of the M7 TREAT Metal fuel experiment are presented. New models incorporated in the metal fuel version of SAS4A are described. The computational results are compared with the experimental observations and this comparison is used in the interpretation of physical phenomena. This analysis was performed using the integrated metal fuel SAS4A version and covers a wide range of events, providing an increased degree of confidence in the SAS4A metal fuel accident analysis capabilities

  1. Theory meets experiment: Gas-phase chemistry of coinage metals

    Czech Academy of Sciences Publication Activity Database

    Roithová, J.; Schröder, Detlef

    2009-01-01

    Roč. 253, 5/6 (2009), s. 666-677 ISSN 0010-8545 R&D Projects: GA AV ČR KJB400550704; GA ČR GA203/08/1487 Institutional research plan: CEZ:AV0Z40550506 Keywords : catalysis * coinage metals * copper * gold * mass spectrometry Subject RIV: CC - Organic Chemistry Impact factor: 11.225, year: 2009

  2. Radiologic placement of metallic esophageal stents: preliminary experience

    International Nuclear Information System (INIS)

    Good, S.; Asch, M.R.; Jaffer, N.; Casson, A.G.

    1997-01-01

    To assess the usefulness of covered, self expanding metallic stents for alleviating stricture associated with malignant esophageal lesions. Patients and methods: Self-expanding metallic stents were placed in 10 patients with dysphagia related to stricture caused by malignant esophageal lesions. The stents were placed fluoroscopically with local anesthesia, and patency of the esophageal lumen was assessed by barium study after the procedure. The patients were then followed clinically. Results: In all 10 cases patency of the lumen was renewed after stent placement. After the procedure 9 of the patients could tolerate a normal or near-normal diet; in the other patient esophageal perforation occurred, and clinical deterioration prevented oral intake of food. In one patient, 2 stents were needed because of the length of the stricture. Two patients experienced reflux after placement of the stent across the gastro-esophageal junction. Another patient had asymptomatic aspiration after stent placement in the proximal esophagus. In 2 patients, symptoms associated with tracheoesophageal fistula were relieved after placement of the stents. Six of the 10 patients died; mean survival after the procedure was 12 (range 1 to 56) weeks. The other 4 patients were alive at the time of writing, having survived for a mean of 7.5 (range 2 to 13) weeks; all of these patients tolerated a near-normal diet. Conclusions: The placement of covered, self-expanding metallic stents is a quick, effective method of palliating dysphagia related to stricture caused by malignant esophageal lesions. (author)

  3. Metals Are Important Contact Sensitizers: An Experience from Lithuania

    Directory of Open Access Journals (Sweden)

    Kotryna Linauskienė

    2017-01-01

    Full Text Available Background. Metals are very frequent sensitizers causing contact allergy and allergic contact dermatitis worldwide; up-to-date data based on patch test results has proved useful for the identification of a problem. Objectives. In this retrospective study prevalence of contact allergy to metals (nickel, chromium, palladium, gold, cobalt, and titanium in Lithuania is analysed. Patients/Methods. Clinical and patch test data of 546 patients patch tested in 2014–2016, in Vilnius University Hospital Santariskiu Klinikos, was analysed and compared with previously published data. Results. Almost third of tested patients (29.56% were sensitized to nickel. Younger women were more often sensitized to nickel than older ones (36% versus 22.8%, p=0.0011. Women were significantly more often sensitized to nickel than men (33% versus 6.1%, p<0.0001. Younger patients were more often sensitized to cobalt (11.6% versus 5.7%, p=0.0183. Sensitization to cobalt was related to sensitization to nickel (p<0.0001. Face dermatitis and oral discomfort were related to gold allergy (28% versus 6.9% dermatitis of other parts, p<0.0001. Older patients were patch test positive to gold(I sodium thiosulfate statistically significantly more often than younger ones (44.44% versus 21.21%, p=0.0281. Conclusions. Nickel, gold, cobalt, and chromium are leading metal sensitizers in Lithuania. Cobalt sensitization is often accompanied by sensitization to nickel. Sensitivity rate to palladium and nickel indicates possible cross-reactivity. No sensitization to titanium was found.

  4. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment.

    Science.gov (United States)

    Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol

    2015-01-01

    The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.

  5. Control and interpretation of criticality experiments on metallic assemblies

    International Nuclear Information System (INIS)

    Long, J.J.

    1984-01-01

    This paper deals with the principle of criticality experiment control with approach machines; to follow the reactivity evolution, one uses the classical method of the inverses of counting rates, then one shows how it is possible to extrapolate the approach curves that have been obtained [fr

  6. CJSC ECOMET-S facility for reprocessing and utilisation of radioactive metal waste: operating experience

    International Nuclear Information System (INIS)

    Gelbutovsky, A.B.; Kishkin, S.A.; Mochenov, M.I.; Troshev, A.V.; Cheremisin, P.I.; Chernichenko, A.A.

    2006-01-01

    The principal objective of the paper is to present operating experience in management of radioactive metal waste, originating at nuclear power facilities of the Russian Federation. Issues of radioactive metal waste recycling by melting, with the purpose of unrestricted re-use in industry, or restricted re-use within the nuclear industry, have been considered. The necessity for using a method of melting at the final stage of radioactive metal waste recycling has been proved. Priority measures to be taken and results achieved in the implementation of the Governmental purpose-oriented programme 'Radioactive Metal Waste Reprocessing and Utilization' have been considered, the CJSC ECOMET-S being the main contractor on the Programme. Main specifications and results of operating a commercial melting facility, owned by CJSC 'ECOMET-S' and used to recycle low-level radioactive metal waste originated at the Leningrad Nuclear Power Plant, have been presented. (author)

  7. Expandable metallic stent: experimental and clinical experience in tracheobronchial tree

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Young; Lee, Sang Young; Chung, Jin Young; Han, Young Min; Kim, Jong Soo; Choi, Ki Chul; Hong, Ki Whan; Rhee, Yang Kun [Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    1991-05-15

    To maintain or reestablish an adequate airway in a patient with tracheobronchial narrowing coming from various causes, we constructed self-expanding metallic stents the same way Gianturco did, using them in 2 patients after an experimental study with rabbits. Twenty stents (10mm in diameter fully expanded and 20mm in length) were introduced into the trachea or bronchi of 10 Newzealand rabbits (weight, 2.5-3.0kg) through a 8.5 French Teflon sheath. No difficulties were encountered in the placement of the stents. At follow-up (4-12 weeks), no stent showed migration. Three rabbits died of pneumonia or bronchial perforation. Histologically, mucosal inflammation was noted at the sites of stent placement, and stent wires were covered by proliferated epithelium with intact cilia. During the last 4 months, 2 stents were used in 2 patients, one in a patient with endobronchial tuberculosis (3.0cm in length and 1.0cm in diameter fully expanded) and the other (3.0cm in length and 1.5cm in diameter) in a patient with a subglottic mass. In both patients the stents were successfully placed. Just after the placement of the stents dyspnea subsided in both patients, and there was no mortality or morbidity. These stents seem to be effective in the treatment of tracheobronchial stenosis, tracheomalacia, and airway collapse following tracheal reconstruction.

  8. Expandable metallic stent: experimental and clinical experience in tracheobronchial tree

    International Nuclear Information System (INIS)

    Song, Ho Young; Lee, Sang Young; Chung, Jin Young; Han, Young Min; Kim, Jong Soo; Choi, Ki Chul; Hong, Ki Whan; Rhee, Yang Kun

    1991-01-01

    To maintain or reestablish an adequate airway in a patient with tracheobronchial narrowing coming from various causes, we constructed self-expanding metallic stents the same way Gianturco did, using them in 2 patients after an experimental study with rabbits. Twenty stents (10mm in diameter fully expanded and 20mm in length) were introduced into the trachea or bronchi of 10 Newzealand rabbits (weight, 2.5-3.0kg) through a 8.5 French Teflon sheath. No difficulties were encountered in the placement of the stents. At follow-up (4-12 weeks), no stent showed migration. Three rabbits died of pneumonia or bronchial perforation. Histologically, mucosal inflammation was noted at the sites of stent placement, and stent wires were covered by proliferated epithelium with intact cilia. During the last 4 months, 2 stents were used in 2 patients, one in a patient with endobronchial tuberculosis (3.0cm in length and 1.0cm in diameter fully expanded) and the other (3.0cm in length and 1.5cm in diameter) in a patient with a subglottic mass. In both patients the stents were successfully placed. Just after the placement of the stents dyspnea subsided in both patients, and there was no mortality or morbidity. These stents seem to be effective in the treatment of tracheobronchial stenosis, tracheomalacia, and airway collapse following tracheal reconstruction

  9. Experience on the removal of impurities from liquid metal systems by cold-trapping

    Energy Technology Data Exchange (ETDEWEB)

    Bray, J. A.

    1963-10-15

    Experience in impurity removal by cold-trapping, which was obtained on DFR and its associated liquid metal rigs, is reviewed. The development of the present DFR cold-trapping system is outlined, and the operation of the additional pumped loops, which were required in order to control the reactor impurity levels, are described. Operation of the liquid metal rigs ancillary to the reactor project is discussed with particular reference to the control of impurity levels. (auth)

  10. Transport of significant metals recovered in real sea experiment of adsorbents

    International Nuclear Information System (INIS)

    Takeda, Hayato; Tamada, Masao; Kasai, Noboru; Katakai, Akio; Hasegawa, Shin; Seko, Noriaki; Sugo, Takanobu; Kawabata, Yukiya

    2001-10-01

    Real sea experiment for the recovery of significant metals such as uranium and vanadium which dissolved in seawater with extremely low concentration has been carried out at the offing of Mutsu establishment to evaluate the adsorption performance of adsorbent synthesized by radiation-induced graft-polymerization. The significant metals of uranium and vanadium eluted from the adsorbent which was soaked in the real sea were adsorbed onto the conventional chelate resin. The chelate resin which adsorbed the metals was packed in a plastic (PVC) column and further put in a cylindrical stainless transport container. This container was transported to the facility for separation and purification by a truck for the exclusive loading. Then the recovers metals were purified there. The recovered metals contained the uranium of 150g (1.92 MBq) and less in one recovery experiment. The maximum concentration is 60 Bq/g when the uranium is adsorbed on the chelate resin. Transport of recovered metals can be treated as general substance since these amount and concentration are out of legal control. However, the recovered metals were transported in conformity to L type Transport as a voluntary regulation. Though there is no requirements of structural strength for L type package legally, the structural strength of container was designed on that of IP-2 type which is higher transport grade than L type to take its safety measure. Its strength analysis proved the safety under general transport process. The transport was based on the plan made in advance. (author)

  11. Experiments with HEU (93.14 wt.%) metal annuli with internal graphite cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wehmann, Udo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    A variety of critical experiments were constructed of enriched uranium metal (oralloy ) during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, only three experimental configurations are described here. They are internal graphite reflected metal uranium assemblies with three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches). These experiments can be found in Reference 1 and in their associated logbook

  12. Experiments in electron microscopy: from metals to nerves

    International Nuclear Information System (INIS)

    Unwin, Nigel

    2015-01-01

    Electron microscopy has advanced remarkably as a tool for biological structure research since the development of methods to examine radiation-sensitive unstained specimens and the introduction of cryo-techniques. Structures of biological molecules at near-atomic resolution can now be obtained from images of single particles as well as crystalline arrays. It has also become possible to analyze structures of molecules in their functional context, i.e. in their natural membrane or cellular setting, and in an ionic environment like that in living tissue. Electron microscopy is thus opening ways to answer definitively questions about physiological mechanisms. Here I recall a number of experiments contributing to, and benefiting from the technical advances that have taken place. I begin—in the spirit of this crystallography series—with some biographical background, and then sketch the path to an analysis by time-resolved microscopy of the opening mechanism of an ion channel (nicotinic acetylcholine receptor). This analysis illustrates how electron imaging can be combined with freeze-trapping to illuminate a transient biological event: in our case, chemical-to-electrical transduction at the nerve-muscle synapse. (invited comment)

  13. Investigation on cold fusion phenomena using gas-metal loading experiments

    International Nuclear Information System (INIS)

    Lanza, F.; Bertolini, G.; Vocino, V.; Parnisari, E.; Ronsecco, C.

    1992-01-01

    Previous experiments have shown that tritium is produced in deuterated titanium. The data obtained are highly scattered and non reproducible. In order to try to define better the phenomenon a series of tests have been performed using various metals and alloys and different deuterating conditions. Sheets and shavings of titanium, zirconium, hafnium, tantalum, zircaloy 2 and Ti-Zr 5O% alloy have been tested. The tritium production is obtained as a difference of the tritium content in the deuterated metal and the initial content of tritium in the deuterium gas. The amount of tritium produced is low and reproducibility is rather poor. A statistical analysis shows that significant differences are obtained varying the type of metal used. In general the tritium production increases with the atomic number of the metal. Moreover significantly higher productions of tritium have been obtained using materials of technical purity as tantalum, zircaloy 2 and Ti-Zr alloy

  14. 2-D images of the metal-halide lamp obtained by experiment and model

    NARCIS (Netherlands)

    Flikweert, A.J.; Beks, M.L.; Nimalasuriya, T.; Kroesen, G.M.W.; Mullen, van der J.J.A.M.; Stoffels, W.W.

    2008-01-01

    The metal-halide lamp shows color segregation caused by diffusion and convection. Two-dimensional imaging of the arc discharge under varying gravity conditions aids in the understanding of the flow phenomena. In this paper, we show results obtained by experiments and by numerical simulations in

  15. Final results of the XR2-1 BWR metallic melt relocation experiment

    International Nuclear Information System (INIS)

    Gauntt, R.O.; Humphries, L.L.

    1997-08-01

    This report documents the final results of the XR2-1 boiling water reactor (BWR) metallic melt relocation experiment, conducted at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. The objective of this experiment was to investigate the material relocation processes and relocation pathways in a dry BWR core following a severe nuclear reactor accident such as an unrecovered station blackout accident. The imposed test conditions (initial thermal state and the melt generation rates) simulated the conditions for the postulated accident scenario and the prototypic design of the lower core test section (in composition and in geometry) ensured that thermal masses and physical flow barriers were modeled adequately. The experiment has shown that, under dry core conditions, the metallic core materials that melt and drain from the upper core regions can drain from the core region entirely without formation of robust coherent blockages in the lower core. Temporary blockages that suspended pools of molten metal later melted, allowing the metals to continue draining downward. The test facility and instrumentation are described in detail. The test progression and results are presented and compared to MERIS code analyses. 6 refs., 55 figs., 4 tabs

  16. Canonical Models of Geophysical and Astrophysical Flows: Turbulent Convection Experiments in Liquid Metals

    Directory of Open Access Journals (Sweden)

    Adolfo Ribeiro

    2015-03-01

    Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪  Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.

  17. Metal availability and bio-accessibility in water-logged soils: in vitro experiments.

    Science.gov (United States)

    Florido, M. C.; Madrid, F.; Madrid, L.; Ajmone-Marsan, F.

    2010-05-01

    Reducing conditions of submerged soils were simulated in vitro by keeping various soil samples for various times of reaction (between 1 and 15 days) in sealed flasks and N2 atmosphere under an aqueous solution, 0.01 M CaCl2 containing 1 g/l glucose. Surface samples of soils from urban green areas of Ljubljana (LJU), Torino (TOR) and Sevilla, were chosen. In the latter case, two samples of the same soil were included, before (SE-0) and after (SE-8) receiving a composted biosolid (two yearly doses of 80000 kg/ha) obtained from sewage sludge, often used as amendment by the Parks & Gardens Service of the local Government. A fifth soil (QUE) was chosen from the area affected by an accident where 2 million m3 of metal-rich mine tailings were spilled over the Guadiamar river (SW Spain) and its riparian areas. This highly polluted soil was included for comparison. Values of Eh, pH and several metal concentrations were determined in the solution after each time, and metal availability and bio-accessibility were estimated in the soils after treatment. The metals studied were Fe, Mn and some of those called 'urban' metals, namely Cu, Pb and Zn. The solution pH for LJU, TOR and SE-0 was slightly acidified in the first days and increased steadily afterwards. In contrast, QUE and SE-8 show pH increases from the beginning and a constant pH after 4-8 days. This agrees with the expected H+ consumption during reduction. Most soils show strong initial Eh decreases, subsequent slower increases up to 5-8 days and slow decreases afterwards. Solution Fe and Mn showed significant increases throughout the experiment, and Pb showed slight increases only up to 4 days. In contrast, other metals showed non-significant changes, and very low amounts were dissolved during the treatment. However, the amounts of available and, especially, bio-accessible urban metals in the solid phases were significantly increased by the treatment. Such increases may cause a greater leaching of metals to the water

  18. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    Science.gov (United States)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  19. Effects of some heavy metals on oats in pot experiments with three different soil types

    Directory of Open Access Journals (Sweden)

    Asbjørn Sorteberg

    1978-07-01

    Full Text Available An account is given of two pot experiments, of which one has included all combinations of 5 heavy metals (cadmium, cobalt, lead, mercury and nickel, 3 rates of each metal, 2 rates of lime, and 3 types of soil (clay soil, peat soil and sandy soil. The experiment has run for 4 years (1973 —1976. Two parallels have been used for each treatment. A third parallel without crop has been used for soil sampling only. The second experiment has run for 3 years (1974 —1976, and has included the same soil types and lime rates, but only cadmium and mercury of the metals. The crop grown in all years has been oats. 250 mg/pot of all metals except lead have had a distinct yield reducing effect. In the case of mercury, the reducing effect ceases from the third year. It decreases gradually after nickel throughout the experimental period, but not after cadmium and cobalt. Heavy liming (pH 6—7 has almost eliminated the yield reduction after nickel, and has considerably reduced it after cobalt. The contents of cadmium, nickel, cobalt, and mercury in the yield have been multiplied with the application of 250 mg/pot of the metals mentioned. Application of even 0.5 mg/pot of cadmium resulted in a distinct increase of content both in grain and straw. 0.5 and 5 mg mercury, however, had only slight effect. The content of the metals decreased throughout the experimental period. The effect of mercury in the fourth year has been minimal, even after the highest application rate. Lead application led to only moderate increase in the content of the yield. Roughly 45—55 percent of the added rates of cadmium, nickel and cobalt, as a mean value for the soil series, has been recovered as AL-soluble at light liming with pH approximately 5. Heavy liming has reduced the uptake by 3—7 percent for cadmium, by 16—20 percent for nickel, and by 22—24 percent for cobalt. Generally, the amounts of AL-soluble metal in soils have decreased in the order: series peat > sand > clay.

  20. Corrosion experiment in the first liquid metal LiPb loop of China

    International Nuclear Information System (INIS)

    Huang Qunying; Zhang Maolian; Zhu Zhiqiang; Gao Sheng; Wu Yican; Li Yanfen; Song Yong; Li Chunjing; Kong Mingguang

    2007-01-01

    The liquid metal LiPb blanket design is one of the most promising designs for future fusion power reactors and under wide research in the world. The first liquid metal LiPb loop in China named DRAGON-I was built in 2005 in order to do research on characteristics of liquid metal LiPb such as its corrosion to structural materials of the blankets and so on. The first corrosion experiment in flowing LiPb with a speed of 0.08 m/s at 480 deg. C for 500 h was done in October 2005 on CLAM (China low activation martensitic) steel and 316L stainless steel for comparison. The weights and compositions, etc. of the specimens before and after corrosion experiment were tested and analyzed, the microstructures of the specimens were also inspected by SEM. The results show that the corrosion of CLAM steel is relatively slight, while that for 316L is obvious and very serious. Further study on corrosion behavior of CLAM for longer time experiment in liquid LiPb at different temperatures and flow speeds will be carried out in the near future

  1. Benchmark physics experiment of metallic-fueled LMFBR at FCA. 2

    International Nuclear Information System (INIS)

    Iijima, Susumu; Oigawa, Hiroyuki; Ohno, Akio; Sakurai, Takeshi; Nemoto, Tatsuo; Osugi, Toshitaka; Satoh, Kunio; Hayasaka, Katsuhisa; Bando, Masaru.

    1993-10-01

    An availability of data and method for a design of metallic-fueled LMFBR is examined by using the experiment results of FCA assembly XVI-1. Experiment included criticality and reactivity coefficients such as Doppler, sodium void, fuel shifting and fuel expansion. Reaction rate ratios, sample worth and control rod worth were also measured. Analysis was made by using three-dimensional diffusion calculations and JENDL-2 cross sections. Predictions of assembly XVI-1 reactor physics parameters agree reasonably well with the measured values, but for some reactivity coefficients such as Doppler, large zone sodium void and fuel shifting further improvement of calculation method was need. (author)

  2. Required momentum, heat, and mass transport experiments for liquid-metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Sze, D.K.; Abdou, M.A.

    1986-01-01

    Through the effects on fluid flow, many aspects of blanket behavior are affected by magnetohydrodynamic (MHD) effects, including pressure drop, heat transfer, mass transfer, and structural behavior. In this paper, a set of experiments is examined that could be performed in order to reduce the uncertainties in the highly related set of issues dealing with momentum, heat, and mass transport under the influence of a strong magnetic field (i.e., magnetic transport phenomena). By improving our basic understanding and by providing direct experimental data on blanket behavior, these experiments will lead to improved designs and an accurate assessment of the attractiveness of liquid-metal blankets

  3. Investigating Planetesimal Evolution by Experiments with Fe-Ni Metallic Melts: Light Element Composition Effects on Trace Element Partitioning Behavior

    Science.gov (United States)

    Chabot, N. L.

    2017-12-01

    As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into

  4. Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties

    International Nuclear Information System (INIS)

    Ren, Xin; Shen, Jianhu; Ghaedizadeh, Arash; Min Xie, Yi; Tian, Hongqi

    2015-01-01

    Auxetic metamaterials are synthetic materials with microstructures engineered to achieve negative Poisson’s ratios. Auxetic metamaterials are of great interest because of their unusual properties and various potential applications. However, most of the previous research has been focused on auxetic behaviour of elastomers under elastic deformation. Inspired by our recent finding of the loss of auxetic behaviour in metallic auxetic metamaterials, a systematic experimental and numerical investigation has been carried out to explore the mechanism behind this phenomenon. Using an improved methodology of generating buckling-induced auxetic metamaterials, several samples of metallic auxetic metamaterials have been fabricated using a 3D printing technique. The experiments on those samples have revealed the special features of auxetic behaviour for metallic auxetic metamaterials and proved the effectiveness of our structural modification. Parametric studies have been performed through experimentally validated finite element models to explore the auxetic performance of the designed metallic metamaterials. It is found that the auxetic performance can be tuned by the geometry of microstructures, and the strength and stiffness can be tuned by the plasticity of the base material while maintaining the auxetic performance. (paper)

  5. Heavy metal remediation with Ficus microcarpa through transplantation and its environmental risks through field scale experiment.

    Science.gov (United States)

    Luo, Jie; Cai, Limei; Qi, Shihua; Wu, Jian; Gu, Xiaowen Sophie

    2018-02-01

    The phytoremediation efficiency of various metals by Ficus microcarpa was evaluated through a real scale experiment in the present study. The root biomass production of the species varied significantly from 3.68 to 5.43 g because of the spatial heterogeneity of different metals. It would take 4-93 years to purify the excess Cd of the experimental site. Mercury was the most inflexible element which can barely be phytoremediated by F. microcarpa. After the species transplanted from the polluted soil to the clean site, Cd and Cu were transferred to the rhizosphere soil to different extent while the bulk soil was barely influenced. Relative to Cd and Cu, significantly fewer amounts of Pb and Hg were released. The highest concentrations of Cd, Cu, Hg and Pb in the clean soil were far below their corresponding safe thresholds for agricultural land after 3 months of the polluted plants were cultivated and metal concentrations of plant leaves were negligible, both indicated the low ecological risk of transplantation. Results from this study suggested a feasible disposal method for metal rich plants after phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Metamorphosis of helical magnetorotational instability in the presence axial electric current

    OpenAIRE

    Priede, Jānis

    2014-01-01

    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical ...

  7. The Navruz experiment. Cooperative monitoring for radionuclides and metals in Central Asia transboundary rivers

    International Nuclear Information System (INIS)

    Barber, D.S.; Betsill, J.D.; Mohagheghi, A.H.; Passell, H.D.; Yuldashev, B.; Salikhbaev, U.; Djuraev, A.; Vasiliev, I.; Solodukhin, V.

    2005-01-01

    In March of 2000, scientists from four nuclear physics research institutes in the Central Asia Republics of Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan, and the U.S. Sandia National Laboratories embarked on a three-year cooperative transboundary river monitoring experiment. The experiment, named Navruz (meaning 'new beginning'), uses standardized methods to monitor basic water quality parameters, radionuclides, and metals in the Syr Darya and Amu Darya rivers. Overall, the project addresses three main goals: (1) to help increase capabilities in Central Asian nations for sustainable water resources management; (2) to provide a scientific basis for supporting nuclear transparency and non-proliferation in the region; and (3) to help reduce the threat of conflict in Central Asia over water resources. Contamination of these rivers is a result of growing population, urbanization, agricultural uses, and radioactive and metals contamination from a legacy of uranium mining, industry, and other activities of the former Soviet Union. The project focuses on waterborne radionuclides and metals because of the importance of these contaminants to public health and political stability in Central Asia. Moreover, the method of enabling scientists from bordering countries to study a transboundary problem, can lead to a greater scientific understanding, consensus on necessary mitigation steps, and ultimately the political resolution of the issue. The project scope, approach, and preliminary results are presented. (author)

  8. Ion bombardment induced smoothing of amorphous metallic surfaces: Experiments versus computer simulations

    International Nuclear Information System (INIS)

    Vauth, Sebastian; Mayr, S. G.

    2008-01-01

    Smoothing of rough amorphous metallic surfaces by bombardment with heavy ions in the low keV regime is investigated by a combined experimental-simulational study. Vapor deposited rough amorphous Zr 65 Al 7.5 Cu 27.5 films are the basis for systematic in situ scanning tunneling microscopy measurements on the smoothing reaction due to 3 keV Kr + ion bombardment. The experimental results are directly compared to the predictions of a multiscale simulation approach, which incorporates stochastic rate equations of the Langevin type in combination with previously reported classical molecular dynamics simulations [Phys. Rev. B 75, 224107 (2007)] to model surface smoothing across length and time scales. The combined approach of experiments and simulations clearly corroborates a key role of ion induced viscous flow and ballistic effects in low keV heavy ion induced smoothing of amorphous metallic surfaces at ambient temperatures

  9. Magnesio-thermic reduction of UF4 to uranium metal : plant operating experience

    International Nuclear Information System (INIS)

    Mayekar, S.V.; Singh, H.; Meghal, A.M.; Koppiker, K.S.

    1991-01-01

    Uranium Metal Plant has switched over from calcio-thermy to magnesio-thermy for production of uranium ingots. In this paper, the plant operating experience for magnesio-thermic reduction is described. Based on trials, the production has been stepped up from 40 kg ingots to 200 kg ingots. The operating parameters optimised include : heating schedule, UF 4 quality, magnesium quantity and quality, and particle size. The effect of quality of refractory lining has been discussed. Conditions for lining are optimised with regard to type of material used and size. Developmental work has also been carried out on use of pelletised charge and on use of graphite sleeves. Some experience in the machining of ingots for removal of surface slag is also discussed. Impurity problems, occasionally encountered, have been investigated and results are discussed. Based on the experience gained, specifications for operation have been laid down, and areas for further improvement are identified. (author). 5 refs., 1 fig., 1 tab

  10. Irradiation experiment on fast reactor metal fuels containing minor actinides up to 7 at.% burnup

    International Nuclear Information System (INIS)

    Ohta, H.; Yokoo, T.; Ogata, T.; Inoue, T.; Ougier, M.; Glatz, J.P.; Fontaine, B.; Breton, L.

    2007-01-01

    Fast reactor metal fuels containing minor actinides (MAs: Np, Am, Cm) and rare earths (REs) have been irradiated in the fast reactor PHENIX. In this experiment, four types of fuel alloys, U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA-5RE and U-19Pu-10Zr-5MA (wt.%), are loaded into part of standard metal fuel stacks. The postirradiation examinations will be conducted at ∼2.4, ∼7 and ∼11 at.% burnup. As for the low-burnup fuel pins, nondestructive postirradiation tests have already been performed and the fuel integrity was confirmed. Furthermore, the irradiation experiment for the intermediate burnup goal of ∼7 at.% was completed in July 2006. For the irradiation period of 356.63 equivalent full-power days, the neutron flux level remained in the range of 3.5-3.6 x 10 15 n/cm 2 /s at the axial peak position. On the other hand, the maximum linear power of fuel alloys decreased gradually from 305-315 W/cm (beginning of irradiation) to 250-260 W/cm (end of irradiation). The discharged peak burnup was estimated to be 6.59-7.23 at.%. The irradiation behavior of MA-containing metal fuels up to 7 at.% burnup was predicted using the ALFUS code, which was developed for U-Pu-Zr ternary fuel performance analysis. As a result, it was evaluated that the fuel temperature is distributed between ∼410 deg. C and ∼645 deg. C at the end of the irradiation experiment. From the stress-strain analysis based on the preliminarily employed cladding irradiation properties and the FCMI stress distribution history, it was predicted that a cladding strain of not more than 0.9% would appear. (authors)

  11. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von [RD Plasmas with Complex Interactions, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany)

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  12. Detecting Structural Features in Metallic Glass via Synchrotron Radiation Experiments Combined with Simulations

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2015-11-01

    Full Text Available Revealing the essential structural features of metallic glasses (MGs will enhance the understanding of glass-forming mechanisms. In this work, a feasible scheme is provided where we performed the state-of-the-art synchrotron-radiation based experiments combined with simulations to investigate the microstructures of ZrCu amorphous compositions. It is revealed that in order to stabilize the amorphous state and optimize the topological and chemical distribution, besides the icosahedral or icosahedral-like clusters, other types of clusters also participate in the formation of the microstructure in MGs. This cluster-level co-existing feature may be popular in this class of glassy materials.

  13. Exploding metal film active anode source experiments on the LION extractor ion diode

    International Nuclear Information System (INIS)

    Rondeau, G.D.; Bordonaro, G.J.; Greenly, J.B.; Hammer, D.A.

    1989-01-01

    In this paper the authors report results using an extractor geometry magnetically insulated ion diode on the 0.5 TW LION accelerator. Experiments with an exploding metal film active anode plasma source (EMFAAPS) have shown that intense beams with significantly improved turn-on time compared to epoxy-filled-groove anodes can be produced. A new geometry, in which a plasma switch is used to provide the current path that explodes the thin film anode, has improved the ion efficiency (to typically 70%) compared with the previous scheme in which an electron collector on the anode provided this current. Leakage electron current is reduced when no collector is used

  14. Liquid-metal plasma-facing component research on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Jaworski, M A; Khodak, A; Kaita, R

    2013-01-01

    Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m −2 , no macroscopic ejection events were observed. The stability can be understood from a Rayleigh–Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments. (paper)

  15. Liquid-metal plasma-facing component research on the National Spherical Torus Experiment

    Science.gov (United States)

    Jaworski, M. A.; Khodak, A.; Kaita, R.

    2013-12-01

    Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m-2, no macroscopic ejection events were observed. The stability can be understood from a Rayleigh-Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments.

  16. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    International Nuclear Information System (INIS)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel; Kittel, Jean; Grosjean, Francois; Ropital, Francois

    2014-01-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C 4 H 10 + H 2 + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  17. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments.

    Science.gov (United States)

    Zimmermann, Sonja; Wolff, Carolina; Sures, Bernd

    2017-05-01

    Mainly due to automobile traffic, but also due to other sources, the platinum group elements (PGE) platinum (Pt), palladium (Pd) and rhodium (Rh) are introduced into aquatic biotopes where they accumulate in sediments of lakes and rivers. However, the toxicity of these noble metals to aquatic organisms is not well understood and especially toxicity studies under standardized condition are lacking. Thus, the toxicity of Pt, Pd and Rh to Daphnia magna was tested in single metal exposure experiments according to OECD guideline 202. Immobility and lethality was recorded after 24 h and 48 h of exposure and EC 50 and LC 50 , respectively, were determined. As the nominal exposure concentration of Pd differed significantly from the quantified concentration, the control of the real exposure concentration by chemical analysis is mandatory, especially for Pd. The toxicity decreased in the order Pd > Pt ≫ Rh with e.g. LC 50 (48 h) values of 14 μg/L for Pd, 157 μg/L for Pt and 56,800 μg/L for Rh. The exposure period had a clear effect on the toxicity of Pt, Pd and Rh. For Pt and Rh the endpoint immobility was more sensitive than the endpoint lethality whereas Pd toxicity was similar for both endpoints. The Hill slopes, which are a measure for the steepness of the concentration-response curves, showed no significant discrepancies between the different metals. The binary metal exposure to Pt and Pd revealed a more-than-additive, i.e. a synergistic toxicity using the toxic unit approach. The present study is a start to understand the toxicity of interacting PGE. The modes of action behind the synergistic effect are unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparison of laboratory and field experience of PWSCC in Alloy 182 weld metal

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.; Meunier, M.-C.; Steltzlen, F. [AREVA NP, Tour AREVA, Paris La Defense (France); Calonne, O.; Foucault, M. [AREVA NP, Centre Technique, Le Creusot Cedex (France); Combrade, P. [ACXCOR, Saint Etienne (France); Amzallag, C. [EDF, SEPTEN, Villeurbanne (France)

    2007-07-01

    Laboratory studies of stress corrosion cracking of the nickel base weld metal, Alloy 182, in simulated PWR primary water suggest similar resistance to crack initiation and somewhat enhanced propagation rates relative to wrought Alloy 600. By contrast, field experience of cracking in the primary circuits of PWRs shows in general much better performance for Alloy 182 relative to Alloy 600 than would be anticipated from laboratory studies. This paper endeavours to resolve this apparent conundrum. It draws on the conclusions of recent research that has focussed on the role of surface finish, particularly cold work and residual stresses resulting from different fabrication processes, on the risk of initiating IGSCC in nickel base alloys in PWR primary water. It also draws on field experience of stress corrosion cracking that highlights the important role of surface finish for crack initiation. (author)

  19. Metal recycling experience at Los Alamos National Laboratory. Reuse, release, and recycle of metals from radiological control areas

    International Nuclear Information System (INIS)

    Gogol, S.

    1997-01-01

    Approximately 15% of the Low-Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and the modification of existing facilities. To reduce this waste stream, Department of Energy Headquarters, EM-77 Office, sponsored the Reuse, Recycle, and Release of Metals from Radiological Control Areas High Return on Investment (ROI) Project to implement recycle, reuse, and release of scrap metal at the laboratory. The goal of this project was to develop cost effective alternatives to LLW disposal of scrap metal and to avoid the disposal of 2,400 m 3 of scrap metal. The ROI for this project was estimated at 948%. The ROI project was funded in March 1996 and is scheduled for completion by October 1997. At completion, a total of 2,400 m 3 of LLW avoidance will have been accomplished and a facility to continue recycling activities will be operational. This paper will present the approach used to develop effective alternatives for scrap metal at Los Alamos and then discuss the tasks identified in the approach in detail. Current scrap metal inventory, waste projections, alternatives to LLW disposal, regulatory guidance, and efforts to institutionalize the alternatives to LLW disposal will be discussed in detail

  20. Computer simulation of void formation in residual gas atom free metals by dual beam irradiation experiments

    International Nuclear Information System (INIS)

    Shimomura, Y.; Nishiguchi, R.; La Rubia, T.D. de; Guinan, M.W.

    1992-01-01

    In our recent experiments (1), we found that voids nucleate at vacancy clusters which trap gas atoms such as hydrogen and helium in ion- and neutron-irradiated copper. A molecular dynamics computer simulation, which implements an empirical embedded atom method to calculate forces that act on atoms in metals, suggests that a void nucleation occurs in pure copper at six and seven vacancy clusters. The structure of six and seven vacancy clusters in copper fluctuates between a stacking fault tetrahedron and a void. When a hydrogen is trapped at voids of six and seven vacancy, a void can keep their structure for appreciably long time; that is, the void do not relax to a stacking fault tetrahedron and grows to a large void. In order to explore the detailed atomics of void formation, it is emphasized that dual-beam irradiation experiments that utilize beams of gas atoms and self-ions should be carried out with residual gas atom free metal specimens. (author)

  1. Application of noble metals on line in Cofrentes NPP and operation experience; Aplicacion de metales nobles en linea en C.N. Cofrentes y experiencia de operacion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Zapata, J. D.

    2015-07-01

    Cofrentes NPP implemented in 2010 the Noble Metal Chemistry as a mitigation technique for the Primary System materials protection against IGSCC. the paper describes briefly the technology fundamentals, the implementation of the specific project, the initial application and the operating experience along the last 3 cycles of the plant. (Author)

  2. Influence of a step-change in metal exposure (Cd, Cu, Zn) on metal accumulation and subcellular partitioning in a freshwater bivalve, Pyganodon grandis: A long-term transplantation experiment between lakes with contrasting ambient metal levels

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Sophie [INRS-Eau, Terre et Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); Bonneris, Emmanuelle [INRS-Eau, Terre et Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9 (Canada) and Bayer S.A.S., Bayer CropScience, 16 Rue Jean-Marie Leclair, CP 90106, F 69266 Lyon Cedex 09 (France); Michaud, Annick [INRS-Eau, Terre et Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9 (Canada) and Direction des Évaluations environnementales, Ministère du Développement durable, de l’Environnement et des Parcs, 675, boul. René-Lévesque Est, 6e étage, Québec, QC G1R 5V7 (Canada); Pinel-Alloul, Bernadette [Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Montréal, QC H3C 3J7 (Canada); Campbell, Peter G.C., E-mail: peter.campbell@ete.inrs.ca [INRS-Eau, Terre et Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9 (Canada)

    2013-05-15

    Highlights: ? We transferred freshwater bivalves from a reference lake to a Cd and Zn contaminated lake. ? Changes in metal accumulation and subcellular partitioning were followed over time (up to 860 d). ? Metal detoxification strategies differed between target organs (gills vs. digestive gland). ? The ability to handle Cd is inherent in P. grandis, not a trait acquired after long-term adaptation. -- Abstract: The objective of the present field experiment was to identify detoxification responses in the gills and digestive gland of a freshwater unionid bivalve, Pyganodon grandis, subjected to a step-change in metal exposure. Adult bivalves were transferred from a reference site (Lake Opasatica) and a metal-contaminated lake (Lake Héva) to a second contaminated lake (Lake Vaudray) in northwestern Quebec, Canada. Changes in organ metal concentrations, in the subcellular distribution of metals and in metallothionein concentrations were followed over time (t = 0, 132, (400) and 860 days). At each collection time and for each bivalve, the gills and digestive gland were excised and gently homogenized; six sub-cellular fractions were separated by differential centrifugation and analyzed for their Cd, Cu and Zn content, and metallothionein was quantified independently. Metal detoxification strategies were shown to differ between target organs: in the gills, incoming metals were sequestered largely in the granules, whereas in the digestive gland the same metals primarily accumulated in the cytosol, in the metallothionein-like protein fraction. These metal-handling strategies, as employed by the metal-naïve bivalves originating in the reference lake, closely resemble those identified in free-living P. grandis chronically exposed in the metal-contaminated lake, suggesting that the ability to handle incoming metals (Cd in particular) is inherent in P. grandis and is not a trait acquired after long-term adaptation of the bivalve to metal-contaminated environments. The

  3. A Discovery-Based Experiment Illustrating How Iron Metal Is Used to Remediate Contaminated Groundwater

    Science.gov (United States)

    Balko, Barbara A.; Tratnyek, Paul G.

    2001-12-01

    In this article, we describe an experiment for undergraduate general chemistry in which students investigate the chemistry behind iron-permeable reactive barriers (iron PRBs), a new technology that is widely used to remediate contaminated groundwater. Contaminant remediation involving iron PRBs is a redox process: the iron metal undergoes oxidative dissolution while the contaminant is reduced. The reaction is complicated, however, by the fact that it involves a surface that changes owing to the development of a layer of rust (iron oxide) on the iron. In this experiment, students examine the iron PRB-contaminant reaction by characterizing the kinetics of the degradation of a dye (the model contaminant) in the presence of granular iron under various experimental conditions. Students can be asked to design their own experiments to investigate aspects of the degradation reaction that are of particular interest to them. The material covered in the lab includes oxidation-reduction reactions, pseudo first-order kinetics, spectrophotometry, and the application of chemistry to solving environmental problems. The experiment can also be used as a vehicle to introduce more advanced topics in chemistry such as heterogeneous reactions, corrosion, passive film growth, and mass transport.

  4. Nernst effect in metals and superconductors: a review of concepts and experiments

    International Nuclear Information System (INIS)

    Behnia, Kamran; Aubin, Hervé

    2016-01-01

    The Nernst effect is the transverse electric field produced by a longitudinal thermal gradient in the presence of a magnetic field. At the beginning of this century, Nernst experiments on cuprates were analyzed assuming that: (i) the contribution of quasi-particles to the Nernst signal is negligible; and (ii) Gaussian superconducting fluctuations cannot produce a Nernst signal well above the critical temperature. Both these assumptions were contradicted by subsequent experiments. This paper reviews experiments documenting multiple sources of a Nernst signal, which, according to the Bridgman relation, measures the flow of transverse entropy caused by a longitudinal particle flow. Along the lines of Landauer’s approach to transport phenomena, the magnitude of the transverse magneto-thermoelectric response is linked to the quantum of thermoelectric conductance and a number of material-dependent length scales: the mean free path, the Fermi wavelength, the de Broglie thermal wavelength and the superconducting coherence length. Extremely mobile quasi-particles in dilute metals generate a widely-documented Nernst signal. Fluctuating Cooper pairs in the normal state of superconductors have been found to produce a detectable Nernst signal with an amplitude conforming to the Gaussian theory, first conceived by Ussishkin, Sondhi and Huse. In addition to these microscopic sources, mobile Abrikosov vortices, mesoscopic objects simultaneously carrying entropy and magnetic flux, can produce a sizeable Nernst response. Finally, in metals subject to a magnetic field strong enough to truncate the Fermi surface to a few Landau tubes, each exiting tube generates a peak in the Nernst response. The survey of these well-established sources of the Nernst signal is a helpful guide to identify the origin of the Nernst signal in other controversial cases. (review)

  5. Mixing Experiments with Natural Shoshonitic and Trachytic Melts

    Science.gov (United States)

    de Campos, C. P.; Perugini, D.; Kolzenburg, S.; Petrelli, M.; Dorfman, A.; Dingwell, D. B.

    2010-12-01

    Evidence of cyclic replenishment of the shallow magmatic reservoir with deeper alkali basaltic (shoshonitic) magma (Campi Flegrei, in Italy; e.g. Arienzo et al., 2008, Bull. Volc.) motivated this study. Based on previous isotopic data, Agnano-Monte Spina trachyte and Minopoli shoshonite have been chosen as the most suitable end-member melts for simulating magma mixing in this system. Results from different mixing experiments with natural volcanic samples from this region will be presented. For this purpose time series using two different techniques have been performed: 1) a high-temperature centrifuge and 2) a viscometer. For the centrifuge experiments the rotating speed was 1850 revolutions per minute and the acceleration 1000 g. This way, dynamic conditions closer to those calculated for magma chambers (Reynolds Numbers [Re] around 100) could be simulated. For every experiment, a 4 mm thick disk of previously homogenized crystal free shoshonitic glass and an 8 mm thick disk of homogenized crystal free trachytic glass were loaded in a 5mm diameter Pt capsule. The capsule was then sealed on both sides, but for a small opening on the upper end, allowing intersticial degassing during the acceleration. Samples were arranged in a buoyantly unstable geometry, where the denser material is placed at the inner side of the rotating circle (basaltic trachyandesite, ρ=2.63 g/cm3 at 1169° C) and the lighter material at the external side (trachyte, ρ=2.45 g/cm3 at ~1000°C). Temperature has been kept constant at 1,200° during all experimental runs, with a negligible thermal gradient (centrifugal acceleration and density instabilities. Results from three experimental runs with the centrifuge: after 5, 20 and 120 min will be presented and discussed. The second set of experiments consisted of two runs (25- and 168-hours duration) under Taylor-Couette flow, according to De Campos et al. (2008, Chem. Geol.). Higher amounts of the same end-members, in different proportions, have

  6. Fabrication of Metallic Fuel Slugs for Irradiation Experiments in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arun; Prasad, G.J.

    2013-01-01

    Advantages of Metallic fuels for future FBR: → High heavy metal atom density; → Higher thermal conductivity at room temperature that increases with temperature; → Metal fuels can be relatively easily fabricated with close dimensional tolerances; → They have excellent compatibility with liquid metal coolants

  7. German experience in recycling of ferrous metallic residues from nuclear decommissioning by melting

    International Nuclear Information System (INIS)

    Quade, U.; Kluth, Th.

    2008-01-01

    Due to the delay of commissioning of final depositories for nuclear waste on the one hand and the increasing amount of steel scrap resulting from operation and decommissioning of nuclear facilities on the other hand, recycling of ferrous metal scrap to packagings made of ductile cast iron becomes more and more economical. A pool of know-how from waste managers, radiation protection experts, metallurgists and foundry experts and their teamwork is required to run this recycling path successfully. Siempelkamp provides this combination of experience by operating a melting facility for slightly radioactive contaminated scrap as well as a foundry for manufacturing of ductile cast iron products for the nuclear industry, both licensed by the German Radiation Protection Ordinance. In 1989, the CARLA plant (Centrale Anlage zum Rezyklieren von leichtradioaktiven Abfollen) started operation. A medium frequency induction furnace with a capacity of 3,2 t is core of the plant. Tools for dismantling and cutting components to chargeable sizes are available. From the total of 23000 t of melted scrap, 12000 t have been recycled to the manufacturing of containers for transport and storage of medium- and high active waste and for shielding plates. Manufacture of the castings takes place in the Siempelkamp foundry located at the same site. 8000 t of melted scrap could be released for industrial recycling. Scrap metal which does not meet the metallurgical specification for cast iron, is converted into iron granules. Up to now more than 2000 t of iron granules have been recycled as additive for heavy concrete containers. This production is in cooperation with an external partner. With regard to the German situation, the cost for recycling is only half compared to high pressure compaction, long-term interim storage and final disposal. The advantage of recycling is approx. 90 % less volume compared to the volume resulting from other disposal paths. It can be concluded that the German

  8. Alkali Metal Coolants. Proceedings of the Symposium on Alkali Metal Coolants - Corrosion Studies and System Operating Experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-06-15

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 28 November - 2 December 1966. The meeting was attended by 107 participants from 16 countries and two international organizations. Contents: Review papers (2 papers); Corrosion of steels and metal alloys (6 papers); Mass transfer in alkali metal systems, behaviour of carbon (5 papers); Effects of sodium environment on mechanical properties of materials (3 papers); Effect of water leakage into sodium systems (2 papers); Design-and operation of testing apparatus (6 papers); Control, measurements and removal of impurities (13 papers); Corrosion by other alkali metals: NaK, K, Li, Cs (6 papers); Behaviour of fission products (3 papers). Each paper is in its original language (32 English, 6 French and 8 Russian) and is preceded by an abstract in English and one in the original language if this is not English. Discussions are in English. (author)

  9. Alkali Metal Coolants. Proceedings of the Symposium on Alkali Metal Coolants - Corrosion Studies and System Operating Experience

    International Nuclear Information System (INIS)

    1967-01-01

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 28 November - 2 December 1966. The meeting was attended by 107 participants from 16 countries and two international organizations. Contents: Review papers (2 papers); Corrosion of steels and metal alloys (6 papers); Mass transfer in alkali metal systems, behaviour of carbon (5 papers); Effects of sodium environment on mechanical properties of materials (3 papers); Effect of water leakage into sodium systems (2 papers); Design-and operation of testing apparatus (6 papers); Control, measurements and removal of impurities (13 papers); Corrosion by other alkali metals: NaK, K, Li, Cs (6 papers); Behaviour of fission products (3 papers). Each paper is in its original language (32 English, 6 French and 8 Russian) and is preceded by an abstract in English and one in the original language if this is not English. Discussions are in English. (author)

  10. HF propagation results from the Metal Oxide Space Cloud (MOSC) experiment

    Science.gov (United States)

    Joshi, Dev; Groves, Keith M.; McNeil, William; Carrano, Charles; Caton, Ronald G.; Parris, Richard T.; Pederson, Todd R.; Cannon, Paul S.; Angling, Matthew; Jackson-Booth, Natasha

    2017-06-01

    With support from the NASA sounding rocket program, the Air Force Research Laboratory launched two sounding rockets in the Kwajalein Atoll, Marshall Islands in May 2013 known as the Metal Oxide Space Cloud experiment. The rockets released samarium metal vapor at preselected altitudes in the lower F region that ionized forming a plasma cloud. Data from Advanced Research Project Agency Long-range Tracking and Identification Radar incoherent scatter radar and high-frequency (HF) radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. The HF radio wave ray-tracing toolbox PHaRLAP along with ionospheric models constrained by electron density profiles measured with the ALTAIR radar have been used to successfully model the effects of the cloud on HF propagation. Up to three new propagation paths were created by the artificial plasma injections. Observations and modeling confirm that the small amounts of ionized material injected in the lower F region resulted in significant changes to the natural HF propagation environment.

  11. Experiments of a 100 kV-level pulse generator based on metal-oxide varistor

    Science.gov (United States)

    Cui, Yan-cheng; Wu, Qi-lin; Yang, Han-wu; Gao, Jing-ming; Li, Song; Shi, Cheng-yu

    2018-03-01

    This paper introduces the development and experiments of a 100 kV-level pulse generator based on a metal-oxide varistor (MOV). MOV has a high energy handling capacity and nonlinear voltage-current (V-I) characteristics, which makes it useful for high voltage pulse shaping. Circuit simulations based on the measured voltage-current characteristics of MOV verified the shaping concept and showed that a circuit containing a two-section pulse forming network (PFN) will result in better defined square pulse than a simple L-C discharging circuit. A reduced-scale experiment was carried out and the result agreed well with simulation prediction. Then a 100 kV-level pulse generator with multiple MOVs in a stack and a two-section pulse forming network (PFN) was experimented. A pulse with a voltage amplitude of 90 kV, rise time of about 50 ns, pulse width of 500 ns, and flat top of about 400 ns was obtained with a water dummy load of 50 Ω. The results reveal that the combination of PFN and MOV is a practical way to generate high voltage pulses with better flat top waveforms, and the load voltage is stable even if the load's impedance varies. Such pulse generator can be applied in many fields such as surface treatment, corona plasma generation, industrial dedusting, and medical disinfection.

  12. Numerical analysis of experiments with gas injection into liquid metal coolant

    International Nuclear Information System (INIS)

    Usov, E V; Lobanov, P D; Pribaturin, N A; Mosunova, N A; Chuhno, V I; Kutlimetov, A E

    2016-01-01

    Presented paper contains results of a numerical analysis of experiments with gas injection in water and liquid metal which have been performed at the Institute of Thermophysics Russian Academy of Science (IT RAS). Obtained experimental data are very important to predict processes that take place in the BREST-type reactor during the hypothetical accident with damage of the steam generator tubes, and may be used as a benchmark to validate thermo-hydraulic codes. Detailed description of models to simulate transport of gas phase in a vertical liquid column is presented in a current paper. Two-fluid model with closing relation for wall friction and interface friction coefficients was used to simulate processes which take place in a liquid during injection of gaseous phase. It has being shown that proposed models allow obtaining a good agreement between experimental data and calculation results. (paper)

  13. First Look at Results from the Metal Oxide Space Cloud (MOSC) Experiment

    Science.gov (United States)

    Caton, R. G.; Pedersen, T. R.; Parris, R. T.; Groves, K. M.; Bernhardt, P. A.; Cannon, P. S.

    2013-12-01

    During the moon down period from 28 April to 10 May 2013, the NASA Sounding Rocket Program successfully completed a series of two launches from the Kwajalein Atoll for the Air Force Research Laboratory's Metal Oxide Space Cloud (MOSC) experiment. Payloads on both Terrier Improved Orion rockets flown during the mission included two 5 kg of canisters of Samarium (Sm) powder in a thermite mix for immediate expulsion and vaporization and a two-frequency Coherent Electromagnetic Radio Tomography (CERTO) beacon provided by the Naval Research Laboratory. The launches were carefully timed for dusk releases of Sm vapor at preselected altitudes creating artificially generated layers lasting several hours. A host of ground sensors were deployed to fully probe and characterize the localized plasma cloud produced as a result of charge exchange with the background oxygen (Sm + O → SmO+ + e-). In addition to incoherent scatter probing of the ionization cloud with the ALTAIR radar, ground diagnostics included GPS and CERTO beacon receivers at five locations in the Marshall Islands. Researchers from QinetiQ and the UK MOD participated in the MOSC experiment with the addition of an HF transmitting system and an array of receivers distributed across multiple islands to examine the response of the HF propagation environment to the artificially generated layer. AFRL ground equipment included a pair of All-Sky Imagers, optical spectrographs, and two DPS-4D digisondes spaced ~200 km apart providing vertical and oblique soundings. As the experimental team continues to evaluate the data, this paper will present a first look at early results from the MOSC experiment. Data collected will be used to improve existing models and tailor future experiments targeted at demonstrating the ability to temporarily control the RF propagation environment through an on-demand modification of the ionosphere. Funding for the launch was provided by the DoD Space Test Program.

  14. Metallic stent in the treatment of ureteral obstruction: Experience of single institute

    Directory of Open Access Journals (Sweden)

    Chien-Chang Li

    2011-10-01

    Conclusion: Patients with ureteral obstructions can be treated sufficiently with the Resonance® metallic stent. Patients who had gynecological malignancies and received radiotherapy had a higher failure rate after Resonance® metallic stent insertion.

  15. The experiment and research on the migration of the heavy metal

    International Nuclear Information System (INIS)

    He Zhijie; Le Renchang; Jia Wenyi; Fang Fang

    2007-01-01

    A device available to observe the heavy metal's migration is designed. We discovered that mixed with α-radioactive source such as U, Th etc., the heavy metal processes the obvious upward migration ability because of α-disintegration. The heavy metals and He nuclei can come into being Cluster. When the specific gravity of Clusters is smaller than that of the air, the Clusters of the heavy metal have the ability of upward migration. (authors)

  16. Alkaline phosphatase activity in the subtropical ocean: insights from nutrient, dust and trace metal addition experiments

    Directory of Open Access Journals (Sweden)

    Claire eMahaffey

    2014-12-01

    Full Text Available Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low and limit primary productivity and nitrogen fixation. In these regions, organisms produce hydrolytic enzymes, such as alkaline phosphatase (AP, that enable them to utilize the more replete dissolved organic phosphorus (DOP pool to meet their cellular phosphorus demands. In this study, we synthesized data from 14 published studies and present our own findings from two research cruises (D326 and D361 in the eastern subtropical Atlantic to explore the relationship between AP activity (APA and nutrients, Saharan dust and trace metals. We found that below a threshold phosphate concentration of ~ 30 nM, APA increased with an inverse hyperbolic relationship with phosphate concentration. Meanwhile, DOP concentrations decreased with enhanced APA, indicating utilization of the DOP pool. We found APA rates were significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM. While the phosphate concentration may have a first order control on the APA rates, we speculate that other factors influence this basin scale contrast. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increased the rate of APA. To our knowledge, our results are the first direct field-based evidence that APA is limited by zinc in the subtropical ocean. Further work is required to explore the relationship between trace metals such as iron and zinc, which are co-factors of phosphohydrolytic enzymes, specifically PhoX and PhoA, respectively, and APA in the ocean.

  17. Theory Meets Experiment: Metal Ion Effects in HCV Genomic RNA Kissing Complex Formation

    Directory of Open Access Journals (Sweden)

    Li-Zhen Sun

    2017-12-01

    Full Text Available The long-range base pairing between the 5BSL3. 2 and 3′X domains in hepatitis C virus (HCV genomic RNA is essential for viral replication. Experimental evidence points to the critical role of metal ions, especially Mg2+ ions, in the formation of the 5BSL3.2:3′X kissing complex. Furthermore, NMR studies suggested an important ion-dependent conformational switch in the kissing process. However, for a long time, mechanistic understanding of the ion effects for the process has been unclear. Recently, computational modeling based on the Vfold RNA folding model and the partial charge-based tightly bound ion (PCTBI model, in combination with the NMR data, revealed novel physical insights into the role of metal ions in the 5BSL3.2-3′X system. The use of the PCTBI model, which accounts for the ion correlation and fluctuation, gives reliable predictions for the ion-dependent electrostatic free energy landscape and ion-induced population shift of the 5BSL3.2:3′X kissing complex. Furthermore, the predicted ion binding sites offer insights about how ion-RNA interactions shift the conformational equilibrium. The integrated theory-experiment study shows that Mg2+ ions may be essential for HCV viral replication. Moreover, the observed Mg2+-dependent conformational equilibrium may be an adaptive property of the HCV genomic RNA such that the equilibrium is optimized to the intracellular Mg2+ concentration in liver cells for efficient viral replication.

  18. Best practices in energy management: Experience with IAC assessments in the metals fabrication industry

    International Nuclear Information System (INIS)

    Clark, W.J.; Birkmire, L.K.

    1999-01-01

    The Industrial Technology and Energy Management (ITEM) division of the University City Science Center played a managerial role in founding and establishing the Energy Analysis and Diagnostic Center (EADC) program, now known as the Industrial Assessment Center (IAC) program. ITEM is responsible for the field management of 15 IACs in the western US. This DOE funded program utilizes teams of engineering faculty and students to conduct assessments of small to medium-size plants to identify cost savings by conserving energy, minimizing waste, and improving productivity. These assessments are provided at no direct cost to participating manufacturers, who are under no obligation to act on any recommendations. Centers managed by ITEM have conducted assessments in more than 700 plants in the metals fabrication industry (SIC 34). Recommendations made have the potential to reduce energy costs by about 10% on average. The average metals fabrication plant served achieved a 5.7% reduction in annual energy costs. These cost savings are accompanied by a reduction in energy usage of about 1.2 x 10 12 Btu/yr. Another benefit of the program is that it provides hands-on industrial experience and energy efficiency training for engineering students who will take these skills into industry. Since the program began more than 20 years ago, IACs have served less than 2% of the plants in this industry. To provide an effective means for plant managers to access and utilize the knowledge gained over the years ITEM has summarized recommendations that identify specific actions that plant management can take to save money

  19. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    Science.gov (United States)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  20. Experiment Analysis and Modelling of Compaction Behaviour of Ag60Cu30Sn10 Mixed Metal Powders

    Science.gov (United States)

    Zhou, Mengcheng; Huang, Shangyu; Liu, Wei; Lei, Yu; Yan, Shiwei

    2018-03-01

    A novel process method combines powder compaction and sintering was employed to fabricate thin sheets of cadmium-free silver based filler metals, the compaction densification behaviour of Ag60Cu30Sn10 mixed metal powders was investigated experimentally. Based on the equivalent density method, the density-dependent Drucker-Prager Cap (DPC) model was introduced to model the powder compaction behaviour. Various experiment procedures were completed to determine the model parameters. The friction coefficients in lubricated and unlubricated die were experimentally determined. The determined material parameters were validated by experiments and numerical simulation of powder compaction process using a user subroutine (USDFLD) in ABAQUS/Standard. The good agreement between the simulated and experimental results indicates that the determined model parameters are able to describe the compaction behaviour of the multicomponent mixed metal powders, which can be further used for process optimization simulations.

  1. Metal accumulation and oxidative stress responses in Ulva spp. in the presence of nocturnal pulses of metals from sediment: A field transplantation experiment under eutrophic conditions

    KAUST Repository

    Pereira, Patrícia M R

    2014-03-01

    In aquatic systems under eutrophic conditions, remobilization of metals from sediment to the overlying water may occur. Consequently, adaptive responses of local organisms could result from the accumulation of metals intermittently released from the sediment. In summer 2007, a field transplantation experiment was performed in the Óbidos lagoon (Portugal) with Ulva spp. comprising three short-term exposures (between 15:30-23:30; 23:30-07:30; 07:30-15:30) during a 24-h period. In each period, Ulva spp. was collected at a reference site located in the lower lagoon (LL) and transplanted to a eutrophic site located at the Barrosa branch (BB), characterized by moderate metal contamination. For comparison purposes, macroalgae samples were simultaneously exposed at LL under the same conditions. Both sites were surveyed in short-time scales (2-4 h) for the analysis of the variability of physical-chemical parameters in the water and metal levels in suspended particulate matter. The ratios to Al of particulate Mn, Fe, Cu and Pb increased during the period of lower water oxygenation at the eutrophic site, reaching 751 × 10-4, 0.67, 12 × 10-4, 9.9 × 10-4, respectively, confirming the release of metals from the sediment to water during the night. At the reference site, dissolved oxygen oscillated around 100%, Mn/Al ratios were considerably lower (81 × 10-4-301 × 10-4) compared to BB (234 × 10-4-790 × 10-4), and no increases of metal/Al ratios were found during the night. In general, algae uptake of Mn, Cu, Fe, Pb and Cd was significantly higher at the eutrophic site compared to the reference site. The results confirmed the potential of Ulva spp. as bioindicator of metal contamination and its capability to respond within short periods. An induction of SOD, an inhibition of CAT and the increase of LPO were recorded in Ulva spp. exposed at BB (between 23:30 and 7:30) probably as a response to the higher incorporation of Mn, Fe and Pb in combination with the lack of

  2. Light-ion irradiation experiments in National Research Institute for Metals

    International Nuclear Information System (INIS)

    Kishimoto, Naoki; Nagakawa, Johsei; Shiraishi, Haruki

    1987-01-01

    National Research Institute for Metals (NRIM) has primarily focused in the mechanical testings under ion bombardment. (creep, fatigue, and fracture toughness are planned). For the purpose of carrying out those objectives, light ion cyclotron is thought one of the most suitable as an accelerator. NRIM installed AVF-type cyclotron with some modification accomodating to the irradiation testing. From the characteristics of produced particles, NRIM's cyclotron is expected to simulate fusion irradiation environment properly. Irradiation creep experiment was started in 1986. An important and difficult point for the creep measurement is the control of specimen temperature under flucturing beam heating. The problem of this fluctuation was solved by employing forced convection of helium and DC. heating. Fe-25Ni-15Cr and 316 SS have been preliminarily investigated concerning mechanism of the phase stability and the post-helium-implantation creep, etc. Fe-25Ni-15Cr was made into platelets of 0.087 x 2.5 x 20 mm 3 and 316 SS was drawn into wire of 0.8 mm in diameter. Results of preliminary experiments are as follows. For Fe-25Ni-15Cr, 1) Ni of 25 % does not improve creep resistance, 2) Minor element like Ti is important in suppressing the creep, 3) SIPA and PAG model explain the stress dependence of creep qualitatively, and for 316 SS, 4) 0.025 dpa is required to reach steady-state creep, at 2.5 x 10 -7 dpa/s, 300 deg C and 50 MPa, 5) The evolution of irradiation creep is sensitive to the damage rate, particularly in the low dpa range. (Ishimitsu, A.)

  3. New Mexico Liquid Metal αω -dynamo experiment: Most Recent Progress

    Science.gov (United States)

    Si, Jiahe; Sonnenfeld, Richard; Colgate, Art; Li, Hui

    2017-10-01

    The goal of the New Mexico Liquid Metal αω -dynamo experiment is to demonstrate a galactic dynamo can be generated through two phases, the ω-phase and α-phase by two semi-coherent flows in laboratory. We have demonstrated an 8-fold poloidal-to-toroidal flux amplification from differential rotation (the ω-effect) by minimizing turbulence in our apparatus. To demonstrate the α-effect, major upgrades are needed. The upgrades include building a helicity injection facility, mounting new 100hp motors and new sensors, designing a new data acquisition system capable of transmitting data from about 80 sensors in a high speed rotating frame with an overall 200kS/sec sampling rate. We hope the upgrade can be utilized to answer the question of whether a self-sustaining αω -dynamo can be implemented with a realistic lab fluid flow field, as well as to obtain more details to understand dynamo action in highly turbulent Couette flow.

  4. The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation.

    Science.gov (United States)

    Tian, Yang; Liu, Zhilin; Li, Xiaoqian; Zhang, Lihua; Li, Ruiqing; Jiang, Ripeng; Dong, Fang

    2018-05-01

    Ultrasonic sonotrodes play an essential role in transmitting power ultrasound into the large-scale metallic casting. However, cavitation erosion considerably impairs the in-service performance of ultrasonic sonotrodes, leading to marginal microstructural refinement. In this work, the cavitation erosion behaviour of ultrasonic sonotrodes in large-scale castings was explored using the industry-level experiments of Al alloy cylindrical ingots (i.e. 630 mm in diameter and 6000 mm in length). When introducing power ultrasound, severe cavitation erosion was found to reproducibly occur at some specific positions on ultrasonic sonotrodes. However, there is no cavitation erosion present on the ultrasonic sonotrodes that were not driven by electric generator. Vibratory examination showed cavitation erosion depended on the vibration state of ultrasonic sonotrodes. Moreover, a finite element (FE) model was developed to simulate the evolution and distribution of acoustic pressure in 3-D solidification volume. FE simulation results confirmed that significant dynamic interaction between sonotrodes and melts only happened at some specific positions corresponding to severe cavitation erosion. This work will allow for developing more advanced ultrasonic sonotrodes with better cavitation erosion-resistance, in particular for large-scale castings, from the perspectives of ultrasonic physics and mechanical design. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The role of metallic impurities in oxide semiconductors: first-principles calculations and PAC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Errico, L.A.; Fabricius, G.; Renteria, M. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina)

    2004-08-01

    We report an ab-initio comparative study of the electric-field-gradient tensor (EFG) and structural relaxations introduced by acceptor (Cd) and donor (Ta) impurities when they replace cations in a series of binary oxides: TiO{sub 2}, SnO{sub 2}, and In{sub 2}O{sub 3}. Calculations were performed with the Full-Potential Linearized-Augmented Plane Waves method that allows us to treat the electronic structure and the atomic relaxations in a fully self-consistent way. We considered different charge states for each impurity and studied the dependence on these charge states of the electronic properties and the structural relaxations. Our results are compared with available data coming from PAC experiments and previous calculations, allowing us to obtain a new insight on the role that metal impurities play in oxide semiconductors. It is clear from our results that simple models can not describe the measured EFGs at impurities in oxides even approximately. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    Science.gov (United States)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  7. HECLA experiments on interaction between metallic melt and hematite-containing concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sevon, Tuomo, E-mail: tuomo.sevon@vtt.f [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Kinnunen, Tuomo; Virta, Jouko; Holmstroem, Stefan; Kekki, Tommi; Lindholm, Ilona [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland)

    2010-10-15

    In a hypothetical severe accident in a nuclear power plant, molten materials may come into contact with concrete, causing concrete ablation. In five HECLA experiments the interaction between metallic melt and concrete was investigated by pouring molten stainless steel at almost 1800 {sup o}C into cylindrical concrete crucibles. The tests were transient, i.e. no decay heat simulation was used. The main objective was to test the behavior of the FeSi concrete, containing hematite (Fe{sub 2}O{sub 3}) and siliceous aggregates. This special concrete type is used as a sacrificial layer in the Olkiluoto 3 EPR reactor pit, and very scarce experimental data is available about its behavior at high temperatures. It is concluded that no clear differences between the ablation of FeSi concrete and ordinary siliceous concrete were observed. The ablation depths were small, 25 mm at maximum. No dramatic effects, such as cracking of large pieces of concrete due to the thermal shock, took place. An important side result of the test series was gaining knowledge of the properties of the special concrete type. Chemical analyses were conducted and mechanical properties were measured.

  8. Analysis of material flow in metal forming processes by using computer simulation and experiment with model material

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dong Won

    1993-01-01

    The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behaviour in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method. (Author)

  9. Operating experience in processing of differently sourced deeply depleted uranium oxide and production of deeply depleted uranium metal ingots

    International Nuclear Information System (INIS)

    Manna, S.; Ladola, Y.S.; Sharma, S.; Chowdhury, S.; Satpati, S.K.; Roy, S.B.

    2009-01-01

    Uranium Metal Plant (UMP) of BARC had first time experience on production of three Depleted Uranium Metal (DUM) ingots of 76kg, 152kg and 163kg during March 1991. These ingots were produced by processing depleted uranyl nitrate solution produced at Plutonium Plant (PP), Trombay. In recent past Uranium Metal Plant (UMP), Uranium Extraction Division (UED), has been assigned to produce tonnage quantity of Deeply DUM (DDUM) from its oxide obtained from PP, PREFRE and RMP, BARC. This is required for shielding the high radioactive source of BHABHATRON Tele-cobalt machine, which is used for cancer therapy. The experience obtained in processing of various DDU oxides is being utilized for design of large scale DDU-metal plant under XIth plan project. The physico- chemical characteristics like morphology, density, flowability, reactivity, particle size distribution, which are having direct effect on reactivity of the powders of the DDU oxide powder, were studied and the shop-floor operational experience in processing of different oxide powder were obtained and recorded. During campaign trials utmost care was taken to standardized all operating conditions using the same equipment which are in use for natural uranium materials processing including safety aspects both with respect to radiological safety and industrial safety. Necessary attention and close monitoring were specially arranged and maintained for the safety aspects during the trial period. In-house developed pneumatic transport system was used for powder transfer and suitable dust arresting system was used for reduction of powder carry over

  10. The sensitizing phenomenon of X-ray film in the experiment of metals loaded with deuterium

    International Nuclear Information System (INIS)

    Chen Suhe; Wang Dalun; Chen Wenjang; Li Yijun; Fu Yibei; Zhang Xinwei

    1993-01-01

    The sensitizing phenomenon of X-ray film was studied, in metals loaded with deuterium, by a cycle method of temperature and pressure (CMTP). The experimental results showed that the sensitization of X-ray film was derived from the chemical reaction and the anomalous effect of metals loaded with deuterium. (author)

  11. Experiences of the Use of Bio monitors for Heavy Metal Pollution Control in Almendares River

    International Nuclear Information System (INIS)

    Olivares- Rieumont, S.; Lima, L.; De la Rosa, D.; Martinez, F.; Borroto, J.; Columbie, I.; Sanchez, M.J.

    2003-01-01

    Full Text: This work is the first approach to establish a monitoring system for heavy metals in the Almendares Vento Basin. This basin is the most important watershed of Havana City, which main river is the Almendares River, that with 42 km of length goes through 5 municipalities, where live more than 500,000 inhabitants. The river receives a large pollution loads from more than 50 pollution sources of Havana City. Inputs of toxic substances like heavy metals come from the industries located along the river and tributaries, the urban discharges and from important speedways in both shores of the river. In the work, concentrations of Cd, Pb, Zn, Cu, Ni, Co and Cr in sediments, water, gastropod species Tarebia granifera Lamarck, macrophyte Eichhornia Crassipes and fish from the specie Gambusia were evaluated at 14 stations during the dry season of 2003. Concentrations of copper and lead in water samples exceeded applicable guidelines for many of the sites monitored in the river basin. Heavy metals in sediments were analysed using three-stage sequential extraction procedure. In sediments high contents of studied metals were found in the bioavailable fraction. Some stations were highly polluted with all elements. Two main sources of pollution with heavy metals could be identified in the basin due to the higher concentration of most of the studied metals in the analized sampling stations. Pb concentrations were high in almost all the stations. Similar behaviour was found for the metal concentration in Eichhornia Crassipes roots, that appear to have an interesting potential as bio monitor of the pollution with heavy metals. Tarebia granifera Lamarck only could be found in 5 of the 14 stations monitored, and it presence is related with the quality of the river water. The magnitude of contamination was estimated by the comparison between local backgrounds and concentration of metals measured. Only high concentration of Zn were found in the Gambusia tissue, and no

  12. Experiments and numerical modeling of fast flowing liquid metal thin films under spatially varying magnetic field conditions

    Science.gov (United States)

    Narula, Manmeet Singh

    Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the

  13. Linking experiment and theory for three-dimensional networked binary metal nanoparticle–triblock terpolymer superstructures

    KAUST Repository

    Li, Zihui; Hur, Kahyun; Sai, Hiroaki; Higuchi, Takeshi; Takahara, Atsushi; Jinnai, Hiroshi; Gruner, Sol M.; Wiesner, Ulrich

    2014-01-01

    the intimate coupling of synthesis, in-depth electron tomographic characterization and theory enables exquisite control of superstructure in highly ordered porous three-dimensional continuous networks from single and binary mixtures of metal nanoparticles

  14. Facilitation drives the positive effects of plant richness on trace metal removal in a biodiversity experiment.

    Directory of Open Access Journals (Sweden)

    Jiang Wang

    Full Text Available BACKGROUND: Phytoextraction is an environmentally acceptable and inexpensive technique for mine tailing rehabilitation that uses metallophyte plants. These plants reduce the soil trace metal contents to environmentally acceptable levels by accumulating trace metals. Recently, whether more trace metals can be removed by species-rich communities of these plants received great attention, as species richness has been reported having positive effects on ecosystem functions. However, how the species richness affects trace metals removal of plant communities of mine tailing is rarely known. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects of species richness on soil trace metal removal in both natural and experimental plant communities. The root lengths and stem heights of each plant species were measured in order to calculate the functional diversity indices. Our results showed that trace metal (Cu, Cd, Pb and Zn concentrations in mine tailing soil declined as species richness increased in both the natural and experimental plant communities. Species richness, rather than functional diversity, positively affected the mineralomass of the experimental plant communities. The intensity of plant-plant facilitation increased with the species richness of experimental communities. Due to the incremental role of plant-plant facilitation, most of the species had higher biomasses, higher trace metal concentrations in their plant tissues and lower malondialdehyde concentrations in their leaves. Consequently, the positive effects of species richness on mineralomass were mostly attributable to facilitation among plants. CONCLUSIONS/SIGNIFICANCE: Our results provide clear evidence that, due to plant-plant facilitation, species richness positively affects the removal of trace metals from mine tailing soil through phytoextraction and provides further information on diversity conservation and environmental remediation in a mine tailing environment.

  15. Validation of the ABBN/CONSYST constants system. Part 1: Validation through the critical experiments on compact metallic cores

    International Nuclear Information System (INIS)

    Ivanova, T.T.; Manturov, G.N.; Nikolaev, M.N.; Rozhikhin, E.V.; Semenov, M.Yu.; Tsiboulia, A.M.

    1999-01-01

    Worldwide compilation of criticality safety benchmark experiments, evaluated due to an activity of the International Criticality Safety Benchmark Evaluation Project (ICSBEP), discovers new possibilities for validation of the ABBN-93.1 cross section library for criticality safety analysis. Results of calculations of small assemblies with metal-fuelled cores are presented in this paper. It is concluded that ABBN-93.1 predicts criticality of such systems with required accuracy

  16. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    Science.gov (United States)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  17. Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

    Science.gov (United States)

    Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.

    2014-07-01

    A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied.

  18. Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

    International Nuclear Information System (INIS)

    Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.

    2014-01-01

    A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied

  19. Investigating the experiences of New Zealand MRI technologists: Exploring intra-orbital metallic foreign body safety practices

    International Nuclear Information System (INIS)

    Jacobs, Philippa K; Henwood, Suzanne

    2013-01-01

    Qualitative research is lacking regarding the experiences of magnetic resonance imaging (MRI) technologists and their involvement in workplace safety practices. This article provides a gateway to explore, describe and document experiences of MRI technologists in New Zealand (NZ) pertaining to intra-orbital metallic foreign body (IMFB) safety practices. This phenomenological study describes the experiences of seven MRI technologists all with a minimum of 5 years' NZ work experience in MRI. The MRI technologists were interviewed face-to-face regarding their professional IMFB workplace experiences in order to explore historical, current and potential issues. Findings demonstrated that aspects of organization and administration are fundamentally important to MRI technologists. Varying levels of education and knowledge, as well as experience and skills gained, have significantly impacted on MRI technologists’ level of confidence and control in IMFB practices. Participants’ descriptions of their experiences in practice regarding decision-making capabilities further highlight the complexity of these themes. A model was developed to demonstrate the interrelated nature of the themes and the complexity of the situation in totality. Findings of this study have provided insight into the experiences of MRI technologists pertaining to IMFB safety practices and highlighted inconsistencies. It is hoped that these findings will contribute to and improve the level of understanding of MRI technologists and the practices and protocols involved in IMFB safety screening. The scarcity of available literature regarding IMFB safety practices highlights that more research is required to investigate additional aspects that could improve MRI technologists’ experiences

  20. Investigating the experiences of New Zealand MRI technologists: Exploring intra-orbital metallic foreign body safety practices

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Philippa K [River Radiology, Victoria Clinic, 750 Victoria Street, Hamilton, Waikato (New Zealand); Henwood, Suzanne [Unitec - Medical Imaging, Unitec Ratanui Street Henderson, Auckland (New Zealand); River Radiology, Victoria Clinic, 750 Victoria Street, Hamilton, Waikato (New Zealand)

    2013-12-15

    Qualitative research is lacking regarding the experiences of magnetic resonance imaging (MRI) technologists and their involvement in workplace safety practices. This article provides a gateway to explore, describe and document experiences of MRI technologists in New Zealand (NZ) pertaining to intra-orbital metallic foreign body (IMFB) safety practices. This phenomenological study describes the experiences of seven MRI technologists all with a minimum of 5 years' NZ work experience in MRI. The MRI technologists were interviewed face-to-face regarding their professional IMFB workplace experiences in order to explore historical, current and potential issues. Findings demonstrated that aspects of organization and administration are fundamentally important to MRI technologists. Varying levels of education and knowledge, as well as experience and skills gained, have significantly impacted on MRI technologists’ level of confidence and control in IMFB practices. Participants’ descriptions of their experiences in practice regarding decision-making capabilities further highlight the complexity of these themes. A model was developed to demonstrate the interrelated nature of the themes and the complexity of the situation in totality. Findings of this study have provided insight into the experiences of MRI technologists pertaining to IMFB safety practices and highlighted inconsistencies. It is hoped that these findings will contribute to and improve the level of understanding of MRI technologists and the practices and protocols involved in IMFB safety screening. The scarcity of available literature regarding IMFB safety practices highlights that more research is required to investigate additional aspects that could improve MRI technologists’ experiences.

  1. Small cell experiments for electrolytic reduction of uranium oxides to uranium metal using fluoride salts

    International Nuclear Information System (INIS)

    Haas, P.A.; Adcock, P.W.; Coroneos, A.C.; Hendrix, D.E.

    1994-01-01

    Electrolytic reduction of uranium oxide was proposed for the preparation of uranium metal feed for the atomic vapor laser isotope separation (AVLIS) process. A laboratory cell of 25-cm ID was operated to obtain additional information in areas important to design and operation of a pilot plant cell. Reproducible test results and useful operating and control procedures were demonstrated. About 20 kg of uranium metal of acceptable purity were prepared. A good supply of dissolved UO 2 feed at the anode is the most important controlling requirement for efficient cell operation. A large fraction of the cell current is nonproductive in that it does not produce a metal product nor consume carbon anodes. All useful test conditions gave some reduction of UF 4 to produce CF 4 in addition to the reduction of UO 2 , but the fraction of metal from the reduction of UF 4 can be decreased by increasing the concentration of dissolved UO 2 . Operation of large continuous cells would probably be limited to current efficiencies of less than 60 pct, and more than 20 pct of the metal would result from the reduction of UF 4

  2. Gained experiences concerning the treatment of radioactive metal scrap from German NPP'S in Studsvik - Gained experience concerning the treatment of radioactive metal scrap from German nuclear power plants

    International Nuclear Information System (INIS)

    Westerwinter, Boris; Buckanie, Niemma

    2014-01-01

    The company Gesellschaft fuer Nuklear-Service mbH, Essen/Germany (GNS), operates on behalf of the utilities E.ON, RWE, EnBW and VENE since the nineteen-nineties - amongst its other duties - on the waste management of metal scrap which originates from German nuclear power plants. The main objective within this responsibility is to maximize the value of recyclable fractions for re-use while minimizing the resulting radioactive waste. To achieve the aforementioned objective, melting of metallic scrap proved to be an outstanding choice. The use of this technique combined with all accompanying processes and regulations is accepted by the competent authorities and independent experts as a qualified treatment method over the entire time period. The motivation of this paper is to reflect on the experiences gained concerning the planning, implementation and results, acquired by GNS by using the Studsvik service. The focus will be on characteristics within processing of such campaigns. (authors)

  3. Spectrometric analyses in comparison to the physiological condition of heavy metal stressed floodplain vegetation in a standardised experiment

    Science.gov (United States)

    Götze, Christian; Jung, András; Merbach, Ines; Wennrich, Rainer; Gläßer, Cornelia

    2010-06-01

    Floodplain ecosystems are affected by flood dynamics, nutrient supply as well as anthropogenic activities. Heavy metal pollution poses a serious environmental challenge. Pollution transfer from the soil to vegetation is still present at the central location of Elbe River, Germany. The goal of this study was to assess and separate the current heavy metal contamination of the floodplain ecosystem, using spectrometric field and laboratory measurements. A standardized pot experiment with floodplain vegetation in differently contaminated soils provided the basis for the measurements. The dominant plant types of the floodplains are: Urtica dioica, Phalaris arundinacea and Alopecurus pratensis, these were also chemically analysed. Various vegetation indices and methods were used to estimate the red edge position, to normalise the spectral curve of the vegetation and to investigate the potential of different methods for separating plant stress in floodplain vegetation. The main task was to compare spectral bands during phenological phases to find a method to detect heavy metal stress in plants. A multi-level algorithm for the curve parameterisation was developed. Chemo-analytical and ecophysiological parameters of plants were considered in the results and correlated with spectral data. The results of this study show the influence of heavy metals on the spectral characteristics of the focal plants. The developed method (depth CR1730) showed significant relationship between the plants and the contamination.

  4. Defense by-products production and utilization program: noble metal recovery screening experiments

    International Nuclear Information System (INIS)

    Hazelton, R.F.; Jensen, G.A.; Raney, P.J.

    1986-03-01

    Isotopes of the platinum metals (rutheium, rhodium, and palladium) are produced during uranium fuel fission in nuclear reactors. The strategic values of these noble metals warrant considering their recovery from spent fuel should the spent fuel be processed after reactor discharge. A program to evaluate methods for ruthenium, rhodium, and palladium recovery from spent fuel reprocessing liquids was conducted at Pacific Northwest Laboratory (PNL). The purpose of the work reported in this docuent was to evaluate several recovery processes revealed in the patent and technical literature. Beaker-scale screening tests were initiated for three potential recovery processes: precipitation during sugar denitration of nitric acid reprocessing solutions after plutonium-uranium solvent extraction, adsorption using nobe metal selective chelates on active carbon, and reduction forming solid noble metal deposits on an amine-borane reductive resin. Simulated reprocessing plant solutions representing typical nitric acid liquids from defense (PUREX) or commercial fuel reprocessing facilities were formulated and used for evaluation of the three processes. 9 refs., 3 figs., 9 tabs

  5. Uranium fluoride and metallic uranium as target materials for heavy-element experiments at SHIP

    Energy Technology Data Exchange (ETDEWEB)

    Kindler, Birgit [Gesellschaft fuer Schwerionenforschung (GSI), Planckstrasse 1, D-64291 Darmstadt (Germany)], E-mail: b.kindler@gsi.de; Ackermann, Dieter; Hartmann, Willi; Hessberger, Fritz Peter; Hofmann, Sigurd; Huebner, Annett; Lommel, Bettina; Mann, Rido; Steiner, Jutta [Gesellschaft fuer Schwerionenforschung (GSI), Planckstrasse 1, D-64291 Darmstadt (Germany)

    2008-06-01

    In this contribution we describe the production and application of uranium targets for synthesis of heavy elements. The targets are prepared from uranium fluoride (UF{sub 4}) and from metallic uranium with thin carbon foils as backing. Targets of UF{sub 4} were produced by thermal evaporation in a similar way as the frequently applied targets out of Bi, Bi{sub 2}O{sub 3}, Pb, PbS, SmF{sub 3}, and NdF{sub 3,} prepared mostly from isotopically enriched material [Birgit Kindler, et al., Nucl. Instr. and Meth. A 561 (2006) 107; Bettina Lommel, et al., Nucl. Instr. and Meth. A 561 (2006) 100]. In order to use more intensive beams and to avoid scattering of the reaction products in the target, metallic uranium is favorable. However, evaporation of metallic uranium is not feasible at a sustainable yield. Therefore, we established magnetron sputtering of metallic uranium. We describe production and properties of these targets. First irradiation tests show promising results.

  6. Experience of contact charge application in the separation of metal structures at the Chernobyl' NPP

    International Nuclear Information System (INIS)

    Volgin, L.A.; Bushtedt, Yu.P.; Derevitskij, V.K.; Batanov, A.F.; Vorob'ev, V.V.; Kulekin, V.S.

    1989-01-01

    When decontaminating the 3rd power unit roofing it was necessary to dismantle the fire dry tube (length of 24 m) by means of explosive remote cutting. The conclusion is made that for the first time it was successfully tested the remote technology of metal structure cutting in zones, eliminating presence of operating staft. 6 figs

  7. Behaviour of TEM metal grids during in-situ heating experiments.

    Science.gov (United States)

    Zhang, Zaoli; Su, Dangsheng

    2009-05-01

    The stability of Ni, Cu, Mo and Au transmission electron microscope (TEM) grids coated with ultra-thin amorphous carbon (alpha-C) or silicon monoxide film is examined by in-situ heating up to a temperature in the range 500-850 degrees C in a transmission electron microscope. It is demonstrated that some grids can generate nano-particles either due to the surface diffusion of metal atoms on amorphous film or due to the metal evaporation/redeposition. The emergence of nano-particles can complicate experimental observations, particularly in in-situ heating studies of dynamic behaviours of nano-materials in TEM. The most widely used Cu grid covered with amorphous carbon is unstable, and numerous Cu nano-particles start to form once the heating temperature reaches 600 degrees C. In the case of Ni grid covered with alpha-C film, a large number of Ni nano-crystals occur immediately when the temperature approaches 600 degrees C, accompanied by the graphitization of amorphous carbon. In contrast, both Mo and Au grids covered with alpha-C film exhibit good stability at elevated temperature, for instance, up to 680 and 850 degrees C for Mo and Au, respectively, and any other metal nano-particles are detected. Cu grid covered Si monoxide thin film is stable up to 550 degrees C, but Si nano-crystals appear under intensive electron beam. The generated nano-particles are well characterized by spectroscopic techniques (EDXS/EELS) and high-resolution TEM. The mechanism of nano-particle formation is addressed based on the interactions between the metal grid and the amorphous carbon film and on the sublimation of metal.

  8. An in-vitro animal experiment on metal implants’ thermal effect on radiofrequency ablation

    Science.gov (United States)

    2013-01-01

    Background To explore metal implants’ thermal effect on radiofrequency ablation (RFA) and ascertain distance-thermal relationship between the metal implants and radiofrequency (RF) electrode. Methods Metal implants models were established in seven in-vitro porcine livers using silver clips or 125I seeds. RFA were conducted centering the RF electrode axis1 cm away from them, with one side containing a metal implants model the test group and the other side the control group. The thermometric needles were used to measure multi-point temperatures in order to compare the time-distance-temperature difference between the two groups. The gross scopes of the ablation of the two groups were measured and the tissues were analyzed for microscopic histology. Results At the ablation times of 8, 12, and 15 min, the average multi-point temperatures of the test group and the control group were 48.2±18.07°C, 51.5±19.57°C, 54.6±19.75°C, and 48.6±17.69°C, 52.2±19.73°C, 54.9±19.24°C, respectively, and the differences were not statistically significant (n=126, P>0.05). At the ablation times of 12 and 15 min, the ablation scopes of the test group and the control group were (horizontal/longitudinal diameter) 1.55/3.48 cm, 1.89/3.72 cm, and 1.56/3.48 cm, 1.89/3.72 cm, respectively, and the differences were not statistically significant (n=14, P>0.05). The two groups had the same manifestations in microscopy. Conclusions Metal implants do not cause significant thermal effect on RFA. PMID:23799942

  9. Laboratory Experiments on the Electrochemical Remediation of the Environment. Part 9: Microscale Recovery of a Soil Metal Pollutant and Its Extractant

    Science.gov (United States)

    Ibanez, Jorge G.; Balderas-Hernandez, Patricia; Garcia-Pintor, Elizabeth; Barba-Gonzalez, Sandy Nohemi; Doria-Serrano, Ma. del Carmen; Hernaiz-Arce, Lorena; Diaz-Perez, Armando; Lozano-Cusi, Ana

    2011-01-01

    Many soils throughout the world are contaminated with metal salts of diverse toxicity. We have developed an experiment to demonstrate the removal of a metal from an insoluble surrogate soil pollutant, CuCO[subscript 3] multiplied by Cu(OH)[subscript 2], by complexation followed by the simultaneous electrochemical recovery of the ligand (i.e.,…

  10. Metal mixture toxicity to aquatic biota in laboratory experiments: Application of the WHAM-F{sub TOX} model

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E., E-mail: et@ceh.ac.uk; Lofts, S.

    2013-10-15

    Highlights: •Metal accumulation by living organisms is successfully simulated with WHAM. •Modelled organism-bound metal provides a measure of toxic exposure. •The toxic potency of individual bound metals is quantified by fitting toxicity data. •Eleven laboratory mixture toxicity data sets were parameterised. •Relatively little variability amongst individual test organisms is indicated. -- Abstract: The WHAM-F{sub TOX} model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (F{sub TOX}), a linear combination of the products of organism-bound cation and a toxic potency coefficient (α{sub i}) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r{sup 2} = 0.89, root mean squared deviation = 0.44), supporting the use of HA binding as a proxy. Calculated loadings of H{sup +}, Al, Cu, Zn, Cd, Pb and UO{sub 2} were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-F{sub TOX} gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of α{sub i}, the toxicity of bound cations can tentatively be ranked in the order: H < Al < (Zn–Cu–Pb–UO{sub 2}) < Cd. The WHAM-F{sub TOX} analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to

  11. Influence of Strain Rate on Heat Release under Quasi-Static Stretching of Metals. Experiment

    Science.gov (United States)

    Zimin, B. A.; Sventitskaya, V. E.; Smirnov, I. V.; Sud'enkov, Yu. V.

    2018-04-01

    The paper presents the results of experimental studies of energy dissipation during a quasi-static stretching of metals and alloys at room temperature. The strain rates varied in the range of 10-3-10-2 s-1. Samples of M1 copper, AZ31B magnesium alloy, BT6 titanium, 12Cr18Ni10Ti steel, and D16AM aluminum alloy were analyzed. The experimental results demonstrated a significant dependence of the heat release on the strain rate in the absence of its influence on stress-strain diagrams for all the metals studied in this range of strain rates. The correlation of the changes in the character of heat release with the processes of structural transformations at various stages of plastic flow is shown on the qualitative level. A difference in the nature of the processes of heat release in materials with different ratios of the plasticity and strength is noted.

  12. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  13. Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory

    DEFF Research Database (Denmark)

    Valdes, Alvaro; Brillet, Jeremie; Graetzel, Michael

    2012-01-01

    An overview of a collaborative experimental and theoretical effort toward efficient hydrogen production via photoelectrochemical splitting of water into di-hydrogen and di-oxygen is presented here. We present state-of-the-art experimental studies using hematite and TiO2 functionalized with gold n...... nanoparticles as photoanode materials, and theoretical studies on electro and photo-catalysis of water on a range of metal oxide semiconductor materials, including recently developed implementation of self-interaction corrected energy functionals....

  14. MR imaging near metallic implants using MAVRIC SL: initial clinical experience at 3T.

    Science.gov (United States)

    Gutierrez, Luis B; Do, Bao H; Gold, Garry E; Hargreaves, Brian A; Koch, Kevin M; Worters, Pauline W; Stevens, Kathryn J

    2015-03-01

    To compare the effectiveness of multiacquisition with variable resonance image combination selective (MAVRIC SL) with conventional two-dimensional fast spin-echo (2D-FSE) magnetic resonance (MR) techniques at 3T in imaging patients with a variety of metallic implants. Twenty-one 3T MR studies were obtained in 19 patients with different types of metal implants. Paired MAVRIC SL and 2D-FSE sequences were reviewed by two radiologists and compared for in-plane and through-plane metal artifact, visualization of the bone implant interface and surrounding soft tissues, blurring, and overall image quality using a two-tailed Wilcoxon signed rank test. The area of artifact on paired images was measured and compared using a paired Wilcoxon signed rank test. Changes in patient management resulting from MAVRIC SL imaging were documented. Significantly less in-plane and through-plane artifact was seen with MAVRIC SL, with improved visualization of the bone-implant interface and surrounding soft tissues, and superior overall image quality (P = .0001). Increased blurring was seen with MAVRIC SL (P = .0016). MAVRIC SL significantly decreased the image artifact compared to 2D-FSE (P = .0001). Inclusion of MAVRIC SL to the imaging protocol determined the need for surgery or type of surgery in five patients and ruled out the need for surgery in 13 patients. In three patients, the area of interest was well seen on both MAVRIC SL and 2D-FSE images, so the addition of MAVRIC had no effect on patient management. Imaging around metal implants with MAVRIC SL at 3T significantly improved image quality and decreased image artifact compared to conventional 2D-FSE imaging techniques and directly impacted patient management. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  15. MRI Near Metallic Implants Using MAVRIC SL: Initial Clinical Experience at 3T

    Science.gov (United States)

    Gutierrez, Luis B.; Do, Bao H.; Gold, Garry E.; Hargreaves, Brian A.; Koch, Kevin M.; Worters, Pauline W.; Stevens, Kathryn J.

    2014-01-01

    Rationale and Objectives To compare the effectiveness of MAVRIC SL with conventional 2D-FSE MR techniques at 3T in imaging patients with a variety of metallic implants. Materials and Methods Twenty-one 3T MR studies were obtained in 19 patients with different types of metal implants. Paired MAVRIC SL and 2D-FSE sequences were reviewed by 2 radiologists, and compared for in-plane and through-plane metal artifact, visualization of the bone implant interface and surrounding soft tissues, blurring, and overall image quality using a 2-tailed Wilcoxon signed rank test. The area of artifact on paired images was measured and compared using a paired Wilcoxon signed rank test. Changes in patient management resulting from MAVRIC SL imaging were documented. Results Significantly less in-plane and through-plane artifact was seen with MAVRIC SL, with improved visualization of the bone-implant interface and surrounding soft tissues, and superior overall image quality (p = 0.0001). Increased blurring was seen with MAVRIC SL (p=0.0016). MAVRIC SL significantly decreased the image artifact compared to 2D-FSE (p=0.0001). Inclusion of MAVRIC SL to the imaging protocol determined the need for surgery or type of surgery in 5 patients, and ruled out the need for surgery in 13 patients. In 3 patients the area of interest was well seen on both MAVRIC SL and 2D-FSE images, so the addition of MAVRIC had no effect on patient management. Conclusion Imaging around metal implants with MAVRIC SL at 3T significantly improved image quality and decreased image artifact compared to conventional 2D-FSE imaging techniques, and directly impacted patient management. PMID:25435186

  16. Self-expendable metallic stents for palliative treatment of malignant esophagogastric strictures: experiences in 103 patients

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ah; Do, Young Soo; Lee, Byung Hee; Oh, Hoon Il; Kim, Soo Ah; Kim, Ki Soo; Chin, Soo Yil [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1995-10-15

    To evaluate the effects and complication of self-expandable metallic stent for the treatment of malignant esophagogastric strictures. From September 1991 to March 1995, 110 stents were placed under fluoroscopic guidance in 103 patients. Of the 103 patients, there were 73 patients with esophageal cancer, 14 patients with gastric cancer, 12 patients with recurrence after surgery, three patients with esophageal compression by metastatic mediastinal lymphadenopathy, and one patient with esophageal invasion by lung cancer. Seventeen patients had esophagorespiratory fistulas. Under fluoroscopic guidance, 113 self-expandable metallic stents (99 Song stents, 14 Strecker stents) were placed in 103 patients. After stent placement, 68 (66%) of the patients could ingest solid food, 26 (25.2%) could ingest soft food whereas three (2.9%) were not able to have food. Esophagorespiratory fistulas were occluded immediately after stent insertion. All stents were placed without any technical failures or procedural morbidity or mortality. Complications included restenosis in 13, gastroesophageal reflux in 11, stent tube migration in eight, massive bleeding in four, delayed esophageal perforation in one, stent obstruction by food impaction in one patient. Self-expandable metallic stent seems to be relatively safe and effective procedure in the palliative treatment of malignant esophagogastric stricture.

  17. Chapter 3: Exponential experiments on graphite-moderated lattices fuelled with near-natural uranium metal rods

    International Nuclear Information System (INIS)

    McCulloch, D.B.; Clarke, W.G.; Ashworth, F.P.O.; Hoskins, T.A.

    1963-01-01

    Exponential experiments have been carried out on graphite lattices fuelled by 1.2 in. diameter uranium metal rods at three near-natural U 235 compositions, 0.6 Co, 1.3 Co and 1.6 Co. The results, together with those already existing from earlier exponential or critical measurements on these and similar natural uranium rods, have been correlated with the theory of Syrett (1961) and also with the modified form of this theory given in Vol.1, Ch. 7. (author)

  18. Laser-generated shock-wave experiments in metals above 1 TPa

    International Nuclear Information System (INIS)

    Trainor, R.J.; Shaner, J.W.; Auerbach, J.M.; Phillion, D.W.

    1978-01-01

    Some initial experiments are described which form part of a new program aimed at significantly extending the range of high pressures and densities which may be explored in laboratory equation-of-state (EOS) experiments. These experiments will utilize high-energy lasers, such as those employed in the Laser Fusion Program at Lawrence Livermore Laboratory (LLL), to generate intense shock waves in materials of interest

  19. Reduction experiment of FeO-bearing amorphous silicate: application to origin of metallic iron in GEMS

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, Junya; Tsuchiyama, Akira; Miyake, Akira [Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502 (Japan); Noguchi, Ryo [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Ichikawa, Satoshi, E-mail: jmatsuno@kueps.kyoto-u.ac.jp [Institute for Nano-science Design, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-09-10

    Glass with embedded metal and sulfides (GEMS) are amorphous silicates included in anhydrous interplanetary dust particles (IDPs) and can provide information about material evolution in our early solar system. Several formation processes for GEMS have been proposed so far, but these theories are still being debated. To investigate a possible GEMS origin by reduction of interstellar silicates, we synthesized amorphous silicates with a mean GEMS composition and performed heating experiments in a reducing atmosphere. FeO-bearing amorphous silicates were heated at 923 K and 973 K for 3 hr, and at 1023 K for 1-48 hr at ambient pressure in a reducing atmosphere. Fe grains formed at the interface between the silicate and the reducing gas through a reduction. In contrast, TEM observations of natural GEMS show that metallic grains are uniformly embedded in amorphous silicates. Therefore, the present study suggests that metallic inclusions in GEMS could not form as reduction products and that other formation process such as condensation or irradiation are more likely.

  20. Dry hyperbaric gas metal arc welding of subsea pipelines: experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Amin S.

    2012-07-01

    Ambitions in exploration of oil and gas fields at deeper water depth require continuous investigation and maintenance. The transportation pipelines laid in deep waters are both subjected to corrosion and buckling due to environmental phenomena. They may also often undergo branching (namely hot tapping) to redirect (or add to) the transportation paths. Mechanical joints and welding are both considered as available alternatives when sectioning and replacement of the pipes at shallow waters is necessary, yet, welding is more promising for deep waters where remote operation is central. Fusion welding on the other hand comprises several technological detractions for sound operations under high ambient pressures disregarding its low cost and flexibility. The foremost detracting phenomenon in the arc welding is called 'arc root constriction', which is defined as arc geometry shrinkage under the increased pressure. Consequently, the power delivery to the weld pool at different pressure levels is a major worry. Effects of ionization and dissociation energies of different gases and mixtures, partial pressure of environmental gases including hydrogen and oxygen, gasification and degasification of the weld metal, inclusions that affect the phase transformation, absorption and desorption kinetics, oxidation and deoxidation reactions and many more are the phenomena that can possibly be altered by the gas type and ambient pressure level. Spattering and fume generation is a problematic issue since the arc is rather unstable under high pressure. Thus, seeking the effect of different chamber gas mixtures on welding parameters, final microstructure and mechanical properties is the main objective of this work.Statistical analysis of the collected voltage and current waveforms is carried out to identify the source of arc misbehavior and instability (discussed in Paper I). The stochastic parameters is related to the electrical stability and resolved into a number of varying

  1. The Phenomenology of Metal Detecting: Insights from a Unique Type of Landscape Experience

    Directory of Open Access Journals (Sweden)

    Felicity Winkley

    2016-01-01

    Full Text Available Metal detecting is a unique way of experiencing the historic landscape, allowing many amateurs to access heritage hands-on in a way that would otherwise be impossible, locating and unearthing their own fragment of the archaeological record. With a conservative estimate of 15,000 people currently detecting in the UK, and 1,122,998 objects recorded to date (October 2015 on the Portable Antiquities Scheme database since its inception in 1997, England’s historic places are being walked, searched and mapped by a significantly-sized population whose enthusiasm would be better off integrated into heritage programming, than rebuffed by it and misdirected elsewhere. Achieving this would not only have potential financial benefits for the sector, where cuts are prevalent, but also see the kind of community engagement that is regularly discussed but not often arrived at. Research by the author has shown that the majority of metal detectorists operating in the UK are members of clubs or societies with a local focus; 86% of detectorists (club members, or independent report that they detect close to home. With a strong attachment to their home area and a good understanding of local history, the conscientious amongst them have been searching the same area for decades, building up a unique resource of artefactual and spatial data that informs a complex milieu of perception. These detectorists generate a unique attachment to the landscape on which they search – producing links between their own experienced version of the landscape and their perceived version of how it was experienced in the past, thus creating a very particular type of place-making. This paper begins by setting out the phenomenological method and the implications of this for studying the perception of landscape, before using qualitative and quantitative data from the author’s research into the attitudes of metal detectorists to consider what this means for metal detecting within a perceived

  2. METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY

    International Nuclear Information System (INIS)

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.; Gilmore, Gerard F.; Grebel, Eva K.; Bienaymé, Olivier; Siebert, Arnaud; Bland-Hawthorn, Joss; Freeman, Ken C.; Gibson, Brad K.; Munari, Ulisse; Navarro, Julio F.; Parker, Quentin A.; Watson, Fred G.; Reid, Warren; Seabroke, George M.; Siviero, Alessandro; Steinmetz, Matthias; Williams, Mary; Zwitter, Tomaz

    2011-01-01

    We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] 7 Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) 7 Be (which burns to 7 Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.

  3. Control of Springback in Sheet Metal U-bending Through Design Experiment

    International Nuclear Information System (INIS)

    Chirita, Bogdan; Brabie, Gheorghe

    2007-01-01

    For the U-bending of sheet metals, springback represents the most important failure mode that is affecting the parts. The purpose of this study was to develop a method for the reduction or the elimination of springback from the designing stage of the forming process. This paper describes a numerical procedure that combines simulation of springback by finite element method with a fractional factorial design and proposes the optimization of the forming parameters and tools geometry for the reduction of springback intensity. At the end of the study we were able to obtain an important improvement of part precision using the parameters predicted by the factorial design

  4. Development of a new scintillation-trigger detector for the MTV experiment using aluminum-metallized film tape

    Science.gov (United States)

    Sakamoto, Yuko; Ozaki, Sachi; Tanaka, Saki; Tanuma, Ryosuke; Yoshida, Tatsuru; Murata, Jiro

    2014-09-01

    A new type of trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, using aluminum-metallized film tape for wrapping. The MTV experiment aims to perform the finest precision test of time reversal symmetry in nuclear beta decay. In that purpose, we search non-zero T-Violating transverse polarization of electrons emitted from polarized Li-8 nuclei. It uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The trigger-scintillation counter consists of 12-segmented 1 mm thick 300 mm long thin plastic scintillation counters. This counter is placed inside the CDC to generate a trigger signal. The required assembling precision of +-0.5 mm was a tricky point when we tried to use conventional total reflection mode. Indeed, produce an air-layer surrounding the scintillating bar to keep good light transmission was the main issue. For this reason, we tried to use a new wrapping material made of metallized-aluminum tape, which has a good mirror-like reflecting surface on both sides of the tape. Through this report, we will compare detection efficiency and light attenuation between conventional and new wrapping materials.

  5. Crack path in liquid metal embrittlement: experiments with steels and modeling

    Directory of Open Access Journals (Sweden)

    T. Auger

    2016-01-01

    Full Text Available We review the recent experimental clarification of the fracture path in Liquid Metal Embrittlement with austenitic and martensitic steels. Using state of the art characterization tools (Focused Ion Beam and Transmission Electron Microscopy a clear understanding of crack path is emerging for these systems where a classical fractographic analysis fails to provide useful information. The main finding is that most of the cracking process takes place at grain boundaries, lath or mechanical twin boundaries while cleavage or plastic flow localization is rarely the observed fracture mode. Based on these experimental insights, we sketch an on-going modeling strategy for LME crack initiation and propagation at mesoscopic scale. At the microstructural scale, crystal plasticity constitutive equations are used to model the plastic deformation in metals and alloys. The microstructure used is either extracted from experimental measurements by 3D-EBSD (Electron Back Scattering Diffraction or simulated starting from a Voronoï approach. The presence of a crackwithin the polycrystalline aggregate is taken into account in order to study the surrounding plastic dissipation and the crack path. One key piece of information that can be extracted is the typical order of magnitude of the stress-strain state at GB in order to constrain crack initiation models. The challenges of building predictive LME cracking models are outlined.

  6. Performance Analysis of a Liquid Metal Heat Pipe Space Shuttle Experiment

    National Research Council Canada - National Science Library

    Dickinson, Timothy

    1996-01-01

    .... The objectives of the experiment were characterization of the frozen startup and restart transients, comparison of flight and ground test data to establish a performance baseline for analytical model...

  7. Experiments for liquid metal embrittlement of fusion reactor materials by liquid lithium

    International Nuclear Information System (INIS)

    Grundmann, M.; Borgstedt, H.U.

    1984-10-01

    The liquid metal embrittlement behaviour of two martensitic-ferritic steels [X22CrMoV121 (Nr. 1.4923) and X18CrMoVNb 121 (Nr. 1,4914)] and one austenite chromium-nickel-steel X5CrNi189 (Nr. 1.4301) was investigated. Tensile tests in liquid lithium at 200 and 250 0 C with two different strain rates on precorroded samples (1000 h at 550 0 C in lithium) were carried out. Reference values were gained from tensile tests in air (RT, 250 0 C). It is concluded that there is sufficient compatibility of the austenitic steel with liquid lithium. The use of the ferritic-martensitic steels in liquid lithium on the other hand, especially at temperatures of about 550 0 C, seems to be problematic. The experimental results led to a better understanding of LME, applying the theory of this material failure. (orig./IHOE) [de

  8. Analysis and experiment on a self-sensing ionic polymer–metal composite actuator

    International Nuclear Information System (INIS)

    Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan

    2014-01-01

    An ionic polymer–metal composite (IPMC) actuator is an electro-active polymer (EAP) that bends in response to a small applied electrical field as a result of the mobility of cations in the polymer network. This paper aims to develop a self-sensing actuator for practical use, since current sensing methods generally face limitations due to the compact size and mobility of the IPMC actuator. Firstly, the variation of surface resistance during bending operations is investigated. Then, the behavior of IPMC corresponding to the variation of surface resistance is mathematically analyzed. Based on the analysis results, a simple configuration to realize the self-sensing behavior is introduced. In this technique, the bending curvature of an IPMC can be obtained accurately by employing several feedback voltage signals along with the IPMC length. Finally, experimental evaluations proved the ability of the proposed scheme to estimate the bending behavior of IPMC actuators. (paper)

  9. Linking experiment and theory for three-dimensional networked binary metal nanoparticle–triblock terpolymer superstructures

    KAUST Repository

    Li, Zihui

    2014-02-21

    © 2014 Macmillan Publishers Limited. Controlling superstructure of binary nanoparticle mixtures in three dimensions from self-assembly opens enormous opportunities for the design of materials with unique properties. Here we report on how the intimate coupling of synthesis, in-depth electron tomographic characterization and theory enables exquisite control of superstructure in highly ordered porous three-dimensional continuous networks from single and binary mixtures of metal nanoparticles with a triblock terpolymer. Poly(isoprene-block-styrene-block-(N,N-dimethylamino)ethyl methacrylate) is synthesized and used as structure-directing agent for ligand-stabilized platinum and gold nanoparticles. Quantitative analysis provides insights into short-and long-range nanoparticle-nanoparticle correlations, and local and global contributions to structural chirality in the networks. Results provide synthesis criteria for next-generation mesoporous network superstructures from binary nanoparticle mixtures for potential applications in areas including catalysis.

  10. Hydrogen and helium in metals: positron lifetime experiments. Quarterly report 3. quarter 1987

    International Nuclear Information System (INIS)

    Rajainmaeki, Hannu.

    1987-09-01

    This thesis reviews a new approach to studying the role of hydrogen and helium in defect recovery of metals by the positron lifetime technique. A cryostat has been built at the University of Jyvaeskylae for irradiating and/or implaning solids by high-energy proton or helium beams from the MC-20 cyclotron. The samples can be kept continuously below 20 K and the isochronal annealings and the subsequent positron lifetime measurements are carried ou in the same cryostat after the irradiations. During the implantations below 20 K both impuities (H or He) and Frenkel pairs are produced simultaneously. By measuring positron lifetimes during the annealing detailed information is obtained about radiation damage, impurity-defect interactions, lattice defect annealing, void nucleation and formation of helium bubbles. In this work positron lifetime spectroscopy has been utilized for the first time to study defect recovery below the liquid nitrogen temperature (77 K). The annealing stages are investigated in aluminium, nickel and molybdenum in the temperature range 20-700 K. Hydrogen is found to get trapped at vacancies in all the studied metals with binding energies 0.53+-0.04 and 1.6+-0.1 eV, respectively. Trapped hydrogen retards the vacancy migration in Al and Mo, while H-vancancy pairs dissociate in Ni below the free vacancy migration stage. helium gets deeply trapped at vacancies in Al and migrates substitutionally with the activation energy of 1.3+-0.1 eV. Helium-vacancy pairs are observed to nucleate into clusters and form helium bubbles which are stable up to the Al melting temperature. The growth mechanisms for the bubbles are established as thermal vacancy absorption and bubble migration/coalescence

  11. Heavy metal incorporation in foraminiferal calcite: results from multi-element enrichment culture experiments with Ammonia tepida

    Directory of Open Access Journals (Sweden)

    G.-J. Reichart

    2010-08-01

    Full Text Available The incorporation of heavy metals into carbonate tests of the shallow water benthic foraminifer Ammonia tepida was investigated under controlled laboratory conditions. Temperature, salinity, and pH of the culture solutions were kept constant throughout the duration of this experiment, while trace metal concentrations were varied. Concentrations of Ni, Cu, and Mn were set 5-, 10-, and 20 times higher than levels found in natural North Sea water; for reference, a control experiment with pure filtered natural North Sea water was also analysed. The concentrations of Cu and Ni from newly grown chambers were determined by means of both μ-synchrotron XRF and Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS. The results of both independent analytical techniques agreed within the analytical uncertainty. In general, the concentration of the analysed elements in the tests increased in line with their concentration in the culture solutions. Potential toxic and/or chemical competition effects might have resulted in the decreased incorporation of Ni and Cu into the calcite of the specimens exposed to the highest elemental concentrations. Mn incorporation exhibited large variability in the experiment with the 20-fold increased element concentrations, potentially due to antagonistic effects with Cu. The partition coefficients of Cu and Ni were calculated to be 0.14 ± 0.02 and 1.0 ± 0.5, respectively, whereas the partition coefficient of Mn was estimated to be least 2.4. These partition coefficients now open the way for reconstructing past concentrations for these elements in sea water.

  12. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target

    International Nuclear Information System (INIS)

    Bauer, G.S.; Salvatores, M.; Heusener, G.

    2001-01-01

    MEGAPIE (Megawatt Pilot Target Experiment) is an initiative launched by Commissariat a l'Energie Atomique, Cadarache (France) and Forschungszentrum Karlsruhe (Germany) in collaboration with Paul Scherrer Institut (Switzerland), to demonstrate, in an international collaboration, the feasibility of a liquid lead bismuth target for spallation facilities at a beam power level of 1 MW. Such a target is under consideration for various concepts of accelerator driven systems (ADS) to be used in transmutation of nuclear waste and other applications world-wide. It also has the potential of increasing significantly the thermal neutron flux available at the spallation neutron source (SINQ) for neutron scattering. SINQ's beam power being close to 1 MW already, this facility offers a unique opportunity to realize such an experiment with a reasonably small number of new ancillary systems. The paper describes the basic features of the experiment and its boundary conditions, the technical concept of the target and underlying research carried out at participating laboratories. (author)

  13. X447 EBR-II Experiment Benchmark for Verification of Audit Code of SFR Metal Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Won; Bae, Moo-Hoon; Shin, Andong; Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    In KINS (Korea Institute of Nuclear Safety), to prepare audit calculation of PGSFR licensing review, the project has been started to develop the regulatory technology for SFR system including a fuel area. To evaluate the fuel integrity and safety during an irradiation, the fuel performance code must be used for audit calculation. In this study, to verify the new code system, the benchmark analysis is performed. In the benchmark, X447 EBR-II experiment data are used. Additionally, the sensitivity analysis according to mass flux change of coolant is performed. In case of LWR fuel performance modeling, various and advanced models have been proposed and validated based on sufficient in-reactor test results. However, due to the lack of experience of SFR operation, the current understanding of SFR fuel behavior is limited. In this study, X447 EBR-II Experiment data are used for benchmark. The fuel composition of X447 assembly is U-10Zr and PGSFR also uses this composition in initial phase. So we select X447 EBR-II experiment for benchmark analysis. Due to the lack of experience of SFR operation and data, the current understanding of SFR fuel behavior is limited. However, in order to prepare the licensing of PGSFR, regulatory audit technologies of SFR must be secured. So, in this study, to verify the new audit fuel performance analysis code, the benchmark analysis is performed using X447 EBR-II experiment data. Also, the sensitivity analysis with mass flux change of coolant is performed. In terms of verification, it is considered that the results of benchmark and sensitivity analysis are reasonable.

  14. X447 EBR-II Experiment Benchmark for Verification of Audit Code of SFR Metal Fuel

    International Nuclear Information System (INIS)

    Choi, Yong Won; Bae, Moo-Hoon; Shin, Andong; Suh, Namduk

    2016-01-01

    In KINS (Korea Institute of Nuclear Safety), to prepare audit calculation of PGSFR licensing review, the project has been started to develop the regulatory technology for SFR system including a fuel area. To evaluate the fuel integrity and safety during an irradiation, the fuel performance code must be used for audit calculation. In this study, to verify the new code system, the benchmark analysis is performed. In the benchmark, X447 EBR-II experiment data are used. Additionally, the sensitivity analysis according to mass flux change of coolant is performed. In case of LWR fuel performance modeling, various and advanced models have been proposed and validated based on sufficient in-reactor test results. However, due to the lack of experience of SFR operation, the current understanding of SFR fuel behavior is limited. In this study, X447 EBR-II Experiment data are used for benchmark. The fuel composition of X447 assembly is U-10Zr and PGSFR also uses this composition in initial phase. So we select X447 EBR-II experiment for benchmark analysis. Due to the lack of experience of SFR operation and data, the current understanding of SFR fuel behavior is limited. However, in order to prepare the licensing of PGSFR, regulatory audit technologies of SFR must be secured. So, in this study, to verify the new audit fuel performance analysis code, the benchmark analysis is performed using X447 EBR-II experiment data. Also, the sensitivity analysis with mass flux change of coolant is performed. In terms of verification, it is considered that the results of benchmark and sensitivity analysis are reasonable

  15. A new electrothermal-chemical method for metals, carbides, and ceramics hard coating: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Zoler, D.; Bruma, C.; Cuperman, S.

    1999-07-01

    A new method and an experimental device for powders of metals, carbides and ceramics coating of various substrates are presented. The powder-particles are accelerated and heated by a mixture of plasma and gases resulted from the burning of an energetic (propellant). The operating prototype already allows one to obtain coatings of metals, carbides and ceramics. Some of the coatings obtained, especially those by carbides powders, indicate even at the present stage of research, properties (as hardness, porosity) which are comparable to those provided by the presently industrial methods in use. The accelerating-heating agent in the device (the plasma-gas mixture) is characterized by very high densities (up to 120 kg/m{sup 3}), temperatures (up to 20,000 K) and velocities (more than 1,500 m/s). Due to these characteristics, the powder particles are accelerated to velocities significantly higher than those reached in other coating devices as, for example, the detonation (D) gun. Some preliminary experimental data show that the accelerated particle can reach velocities higher than 1,000 m/s. In parallel, in order to better understand the phenomena taking place inside the device and to determine the optimal process parameters leading to high quality coatings an appropriate theoretical model was developed. The model is able to describe the complex processes of plasma-gas-propellant interaction, gas flow and powder particles heating and acceleration. The model gives a detailed description of the gas, propellant and accelerated particle parameters, their spatial distribution and temporal evolution; predicts their dependence on the values of some input quantities such as: the plasma energy, propellant characteristics and accelerated particles type and geometry. The computational results the authors obtained show that, indeed, during the acceleration process the particles are heated, melted and eventually vaporized. One of the most interesting theoretical results is that the

  16. Possibilities of assessing trace metal pollution using Betula pendula Roth. leaf and bark - experience in Serbia

    Directory of Open Access Journals (Sweden)

    Pavlović Dragana

    2017-01-01

    Full Text Available In this study, both seasonal and spatial variations in trace metal uptake, as well as concentration of photosynthetic pigments in Silver birch (Betula pendula Roth. trees in five urban parks in Pančevo, Smederevo, Obrenovac and Belgrade (Serbia affected by different anthropogenic activities were studied. The characteristics of soil were assessed in terms of texture, pH and trace element content. Concentrations of boron, strontium and zinc in both leaves and bark showed an increasing temporal trend, however, copper showed an opposite seasonal trend. A higher accumulation of trace elements was noticed in leaves compared to bark. The obtained results for photosynthetic pigments showed low sensitivity of birch to B, Cu, Sr and Zn contamination, indicating that birch tolerates pollution and climate stress by increasing the amount of pigments. Analysis of the effects on soil chemistry of trace element accumulation in plant tissues proved that soil chemistry poorly explains the variability of elements in bark (27.6 % compared to leaves (82.99 %. Discriminant analysis showed that Belgrade and Smederevo are clearly separated from the other three sites. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 173018

  17. Experimental and design experience with passive safety features of liquid metal reactors

    International Nuclear Information System (INIS)

    Lucoff, D.M.; Waltar, A.E.; Sackett, J.I.; Salvatores, M.; Aizawa, K.

    1992-10-01

    Liquid metal cooled reactors (LMRs) have already been demonstrated to be robust machines. Many reactor designers now believe that it is possible to include in this technology sufficient passive safety that LMRs would be able to survive loss of flow, loss of heat sink, and transient overpower events, even if the plant protective system fails completely and do so without damage to the core. Early whole-core testing in Rapsodie, EBR-II. and FFTF indicate such designs may be possible. The operational safety testing program in EBR-II is demonstrating benign response of the reactor to a full range of controls failures. But additional testing is needed if transient core structural response under major accident conditions is to be properly understood. The proposed international Phase IIB passive safety tests in FFTF, being designed with a particular emphasis on providing, data to understand core bowing extremes, and further tests planned in EBR-11 with processed IFR fuel should provide a substantial and unique database for validating the computer codes being used to simulate postulated accident conditions

  18. New airtight transfer box for SEM experiments: Application to lithium and sodium metals observation and analyses.

    Science.gov (United States)

    Stephant, Nicolas; Grissa, Rabeb; Guillou, Fanch; Bretaudeau, Mickaël; Borjon-Piron, Yann; Guillet, Jacques; Moreau, Philippe

    2018-04-18

    The surface of some materials reacts very quickly on contact with air, either because it is oxidized or because it gets humidity from the air. For the sake of original surface observation by scanning electron microscopy (SEM), we conceived an airtight transfer box to keep the samples under vacuum from the place of manufacturing to the SEM chamber. This object is designed to fit in all the models of SEM including those provided with an airlock chamber. The design is voluntarily simplified to allow the manufacturing of the object by a standard mechanical workshop. The transfer box can be easily opened by gravity inside the SEM and allows the preservation of the best vacuum inside, before opening. SEM images and energy dispersive spectroscopy (EDX) analyses of metallic lithium and sodium samples are presented prior and after exposure to the air. X-ray Photoelectron Spectroscopy (XPS) analyses of all samples are also discussed in order to investigate the chemical environments of the detected elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Novel temperature-controlled RFA probe for treatment of blocked metal biliary stents in patients with pancreaticobiliary cancers: initial experience.

    Science.gov (United States)

    Nayar, Manu K; Oppong, Kofi W; Bekkali, Noor L H; Leeds, John S

    2018-05-01

     Radiofrequency ablation (RFA) is used to treat blocked biliary stents in patients with pancreaticobiliary (PB) tumors with varying results. We report our experience with a novel temperature-controlled probe for treatment of blocked metal stents.  Patients with histologically proven PB cancers and a blocked biliary stents were treated using ELRATM electrode (Taewoong Medical) under fluoroscopic guidance. Demographics, clinical outcome, stricture diameter improvements, complications and mortality at 30 days were prospectively recorded.  Nine procedures were performed on seven patients (4 male, 3 female); mean age 65.33 (range 56 - 82 years). Mean stricture diameter prior to RFA was 1.13 mm (SD ± 0.54) and 4.42 mm (SD ± 1.54) following RFA ( P  drainage. There were no procedure-related complications. Mean follow-up was 193.55 days (range 31 - 540) and three of nine patients (33 %) died due to terminal cancer. These are the first reported data on use of a temperature-controlled RFA catheter in humans to treat blocked metal biliary stents. The device is safe but further randomized trials are required to establish the efficacy and survival benefits of this probe.

  20. Gas shielded metal arc welding with fusible electrode wire. First returns on experience and opportunities in nuclear maintenance and fabrication

    International Nuclear Information System (INIS)

    Huguet, Fr.; Joly, P.; Leconte, F.; Baritaux, S.; Prin, C.

    2013-06-01

    In a brief text and a Power Point Presentation, the authors report a return on experience for the implementation of two applications using gas shielded metal arc welding process (GMAW): the on-site welding of the final joint of steam generators, and the coating of a tubing flare. In the first case, the authors analyze not only the compliance with specified technical requirements, but also outline the need to support the process with new verification methods in real time, associated development and validation efforts, and organisational and decisional measures to guarantee a good implementation of the process on site. In the second case, they analyze the process ability to meet technical specifications requiring dilution control, a perfect reproducibility, as well a good control of the welding bath. The authors outline that these two applications which are both using the same term (gas shielded metal arc welding with fusible electrode wire), implement two different transfer regimes and processes. They also discuss operational constraints, and technical opportunities and constraints of fusible electrode wire

  1. High Frequency Propagation modeling in a disturbed background ionosphere: Results from the Metal Oxide Space Cloud (MOSC) experiment

    Science.gov (United States)

    Joshi, D. R.; Groves, K. M.

    2015-12-01

    The Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud. A host of diagnostic instruments were used to probe and characterize the cloud including the ALTAIR incoherent scatter radar, multiple GPS and optical instruments, satellite radio beacons, and a dedicated network of high frequency (HF) radio links. Data from ALTAIR incoherent scatter radar and HF radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. During the first release the ionosphere was disturbed, rising rapidly and spread F formed within minutes after the release. To address the disturbed conditions present during the first release, we have developed a new method of assimilating oblique ionosonde data to generate the background ionosphere that can have numerous applications for HF systems. The link budget analysis of the received signals from the HF transmitters explains the missing low frequencies in the received signals along the great circle path. Observations and modeling confirm that the small amounts of ionized material injected in the lower-F region resulted in significant changes to the natural propagation environment.

  2. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Institut, Spallation Neutron Source Division, Villigen-PSI (Switzerland); Salvatores, M. [CEA Cadarache, Direction des Reacteurs Nucleaires, Saint-Paul-lez-Durance Cedex (France); Heusener, G. [Forschungszentrum Karlsruhe, Projekt Nukleare Sicherheitsforschung, Karlsruhe (Germany)

    2001-03-01

    MEGAPIE (Megawatt Pilot Target Experiment) is an initiative launched by Commissariat a l'Energie Atomique, Cadarache (France) and Forschungszentrum Karlsruhe (Germany) in collaboration with Paul Scherrer Institut (Switzerland), to demonstrate, in an international collaboration, the feasibility of a liquid lead bismuth target for spallation facilities at a beam power level of 1 MW. Such a target is under consideration for various concepts of accelerator driven systems (ADS) to be used in transmutation of nuclear waste and other applications world-wide. It also has the potential of increasing significantly the thermal neutron flux available at the spallation neutron source (SINQ) for neutron scattering. SINQ's beam power being close to 1 MW already, this facility offers a unique opportunity to realize such an experiment with a reasonably small number of new ancillary systems. The paper describes the basic features of the experiment and its boundary conditions, the technical concept of the target and underlying research carried out at participating laboratories. (author)

  3. Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals

    International Nuclear Information System (INIS)

    Xu Donghua; Wirth, Brian D.; Li Meimei; Kirk, Marquis A.

    2012-01-01

    We present a combinatorial approach that integrates state-of-the-art transmission electron microscopy (TEM) in situ irradiation experiments and high-performance computing techniques to study irradiation defect dynamics in metals. Here, we have studied the evolution of visible defect clusters in nanometer-thick molybdenum foils under 1 MeV krypton ion irradiation at 80 °C through both cluster dynamics modeling and in situ TEM experiments. The experimental details are reported elsewhere; we focus here on the details of model construction and comparing the model with the experiments. The model incorporates continuous production of point defects and/or small clusters, and the accompanying interactions, which include clustering, recombination and loss to the surfaces that result from the diffusion of the mobile defects. To account for the strong surface effect in thin TEM foils, the model includes one-dimensional spatial dependence along the foil depth, and explicitly treats the surfaces as black sinks. The rich amount of data (cluster number density and size distribution at a variety of foil thickness, irradiation dose and dose rate) offered by the advanced in situ experiments has allowed close comparisons with computer modeling and permitted significant validation and optimization of the model in terms of both physical model construct (damage production mode, identities of mobile defects) and parameterization (diffusivities of mobile defects). The optimized model exhibits good qualitative and quantitative agreement with the in situ TEM experiments. The combinatorial approach is expected to bring a unique opportunity for the study of radiation damage in structural materials.

  4. Fundamentals of and experiences with forming by rolling of sintered rods of the high-melting metals molybdenum and tungsten

    International Nuclear Information System (INIS)

    Kohlstrung, G.; Marx, H.; Bresch, J.; Leich, M.; Kalning, I.

    1986-01-01

    An efficient and economical technique for rolling sintered rods of the high-melting metals molybdenum and tungsten which comprises only a minimum of processing steps and provides crucial advantages in comparison with the conventional hammering procedure has been developed for application in medium-sized powder-metallurgical plants. The advantages are, in particular, given with the favourable structure development and the elimination of pores from the sintered bar as a result of the higher degree of deformation, increased labour productivity, savings of electrical energy and consumables, as well as a reduction of the working inconveniencies. Experiences gained in test series as well as in industrial practice indicate that final wire diameters can be obtained with a high material economy, provided that the preceding and subsequent process stages are adapted in the optimum manner dependent on the physical and chemical parameters of the starting material and the strain-hardening behaviour in the process of forming by rolling. (orig.) [de

  5. Quantifying differences in responses of aquatic insects to trace metal exposure in field studies and short-term stream mesocosm experiments

    Science.gov (United States)

    Iwasaki, Yuichi; Schmidt, Travis S.; Clements, William H.

    2018-01-01

    Characterizing macroinvertebrate taxa as either sensitive or tolerant is of critical importance for investigating impacts of anthropogenic stressors in aquatic ecosystems and for inferring causality. However, our understanding of relative sensitivity of aquatic insects to metals in the field and under controlled conditions in the laboratory or mesocosm experiments is limited. In this study, we compared the response of 16 lotic macroinvertebrate families to metals in short-term (10-day) stream mesocosm experiments and in a spatially extensive field study of 154 Colorado streams. Comparisons of field and mesocosm-derived EC20 (effect concentration of 20%) values showed that aquatic insects were generally more sensitive to metals in the field. Although the ranked sensitivity to metals was similar for many families, we observed large differences between field and mesocosm responses for some groups (e.g., Baetidae and Heptageniidae). These differences most likely resulted from the inability of short-term experiments to account for factors such as dietary exposure to metals, rapid recolonization in the field, and effects of metals on sensitive life stages. Understanding mechanisms responsible for differences among field, mesocosm, and laboratory approaches would improve our ability to predict contaminant effects and establish ecologically meaningful water-quality criteria.

  6. Some experiments on cold fusion by deuterium hydrogen gas infusion in titanium metal alloy

    International Nuclear Information System (INIS)

    Mestnik Filho, J.; Geraldo, L.P.; Pugliese, R.; Saxena, R.N.; Morato, S.P.; Fulfaro, R.

    1990-05-01

    New results on cold fusion are reported where three different experimental situations have been tried: a) deuterium gas loaded titanium; b) deuterium gas loaded Ti 0.8 Zr 0.2 CrMn alloy and c) titanium and the Ti 0.8 Zr 0.2 CrMn alloy loaded with a mixture of deuterium and hydrogen gases. With these experiments, new thermodynamical non equilibrium conditions were achieved and the possibility of cold fusion between protons and deuterons was also tested. Three independent neutron detectors and one NaI(Tl) were utilized. Despite some large values reported in the literature for the fusion rate, an upper limit of only 8 x 10 -24 fusions/sper deuterium pair or per deuterium-hydrogen pair was determined within the attained accuracy. (author) [pt

  7. Sensor Placement via Optimal Experiment Design in EMI Sensing of Metallic Objects

    Directory of Open Access Journals (Sweden)

    Lin-Ping Song

    2016-01-01

    Full Text Available This work, under the optimal experimental design framework, investigates the sensor placement problem that aims to guide electromagnetic induction (EMI sensing of multiple objects. We use the linearized model covariance matrix as a measure of estimation error to present a sequential experimental design (SED technique. The technique recursively minimizes data misfit to update model parameters and maximizes an information gain function for a future survey relative to previous surveys. The fundamental process of the SED seeks to increase weighted sensitivities to targets when placing sensors. The synthetic and field experiments demonstrate that SED can be used to guide the sensing process for an effective interrogation. It also can serve as a theoretic basis to improve empirical survey operation. We further study the sensitivity of the SED to the number of objects within the sensing range. The tests suggest that an appropriately overrepresented model about expected anomalies might be a feasible choice.

  8. Effect of Miscanthus cultivation on metal fractionation and human bioaccessibility in metal-contaminated soils: comparison between greenhouse and field experiments.

    Science.gov (United States)

    Pelfrêne, Aurélie; Kleckerová, Andrea; Pourrut, Bertrand; Nsanganwimana, Florien; Douay, Francis; Waterlot, Christophe

    2015-02-01

    The in situ stabilization of metals in soils using plants with great biomass value is a promising, cost-effective, and ecologically friendly alternative to manage metal-polluted sites. The goal of phytostabilization is to reduce the bioavailable concentrations of metals in polluted soil and thus reduce the risk to the environment and human health. In this context, this study aimed at evaluating Miscanthus × giganteus efficiency in phytostabilizing metals on three contaminated agricultural sites after short-term exposure under greenhouse conditions and after long-term exposure under field conditions. Particular attention was paid to the influence of Miscanthus cultivation on (i) Cd, Pb, and Zn fractionation using sequential extractions and (ii) metal bioaccessibility using an in vitro gastrointestinal digestion test. Data gave evidence of (i) different behaviors between the greenhouse and the field; (ii) metal redistribution in soils induced by Miscanthus culture, more specifically under field conditions; (iii) higher environmental availability for Cd than for Pb and Zn was found in both conditions; and (iv) overall, a higher bioaccessible fraction for Pb (about 80 %) and Cd (65-77 %) than for Zn (36-52 %) was recorded in the gastric phase, with a sharp decrease in the intestinal phase (18-35 % for Cd, 5-30 % for Pb, and 36-52 % for Zn). Compared to soils without culture, the results showed that phytostabilization using Miscanthus culture provided evidence for substantial effects on oral bioaccessibility of Cd, Pb, and Zn.

  9. Joining strength performances of metal skin and CFRP core laminate structures realized by compression-curing process, with supporting experiments

    Science.gov (United States)

    Quagliato, Luca; Jang, Changsoon; Kim, Naksoo

    2018-05-01

    In the recent years, the trend of lightening vehicles and structures of every kind has become an ever-growing issue, both for university and industrial researchers. As demonstrated in previous authors' works, laminate structures made of metal skin (MS) and carbon fiber reinforced polymer (CFRP) core show high specific bending strength properties while granting considerable weight reduction but, so far, no investigations have been carried out on the hole sensitivity and joinability of these hybrid structures. In the present research work, the hole size sensitivity of MS-CFRP structure has been studied by means of uniaxial tensile test on 160mm (length), 25mm (width), 2.0mm (average thickness) specimens bored with Ø06mm, Ø9mm, and Ø12mm holes. The specimen thickness is composed of two metal skins of 0.4mm thickness each, 8×0.2mm CFRP stacked layers and two thin epoxy-based adhesive layers. The specimens have been manufactured by means of a compression-curing process in which the different materials are stacked and, thanks to die pressure and temperature, the curing process is completed in a relatively short time (15˜20 minutes). The specimens have been tested by means of simple tension test showing that, for the MS-CFRP material, the smaller the hole the smaller the maximum bearable load. Moreover, specimens with the same hole sizes have been bolted together with class 12 resistance bolts and tested by means of tensile test, allowing to determine the maximum transferable load between the two MS-CFRP plates. Aiming to prove the improvement in the specific transferable load, experiments on only-steel specimens with the same weight of the MS-CFRP ones and joined with the same method and bolts have been carried out, allowing to conclude that, for the 9mm hole bolted plates, the proposed material has a specific maximum transferable 27% higher than that of the steel composing their skins.

  10. Radiation damage in metals, and amorphous silica in inertial fusion reactors: Modeling and experiments

    International Nuclear Information System (INIS)

    Perlado, J.M.; Victoria, M.; Arevalo, C.; Martinez, E.; Mota, F.; Velarde, M.; Velarde, G.; Cepas, P.; Caturla, M.J.; Marian, J.; Gamez, M.L.

    2006-01-01

    We have simulated in order to compare with experiments, ultra-high pure α-iron with 20 appm of impurities irradiated with 150 keV Fe + ions at a temperature of 573 K. The dose rate was 4.0 10 11 ions/cm 2 .s. We have compared 50 nm depth simulations with 100 nm depth ones and we have obtained results concerning concentration and sizes versus dose. We can conclude that the higher the depth of the sample the larger the diameter of the loops. The accumulation damage in iron is largely influenced by the 3 parameters studied: sample depth, impurity concentration and minimum transition size. Concerning the long-term behaviour of irradiated Zr and Ti, we have studied irradiation of Zr under different conditions with a kinetic Monte-Carlo model and with input data from molecular dynamics simulations on defect energetics and cascade damage. The result show that the total concentration of vacancies in the bulk is larger than the concentration of interstitials when clusters of all sizes are accounted for. The average cluster size of interstitials is independent of dose, due to their stability. As for the molecular dynamics simulations of the formation of oxygen vacancies in SiO 2 by atomic silicon and oxygen collisions, it appears clearly that the probability of creating a stable ODC (oxygen deficient center) increases with the initial energy of the recoil for both Si and O atoms. The probability of creating a stable oxygen vacancy when the initial energetic atom is oxygen is, as expected much higher than for the case when the initial energetic atom is silicon

  11. Stability of time dependent and spatially varying flows; Proceedings of the Symposium, Hampton, VA, Aug. 19-23, 1985

    International Nuclear Information System (INIS)

    Dwoyer, D.L.; Hussaini, M.Y.

    1987-01-01

    Papers are presented on the application of stability theory to laminar flow control, secondary instabilities in boundary layers, a Floquet analysis of secondary instability in shear flows, and the generation of Tollmien-Schlichting waves by long wavelength free stream disturbances. Also considered are numerical experiments on boundary-layer receptivity, short-scale inviscid instabilities in the flow past surface-mounted obstacles, wave phenomena in a high Reynolds number compressible boundary layer, and instability of time-periodic flows. Other topics include high frequency Rayleigh instability of Stokes layers, stability and resonance in grooved-channel flows, finite length Taylor Couette flow, and vortical structures in the breakdown stage of transition

  12. Laboratory Study of Magnetorotational Instability and Hydrodynamic Stability at Large Reynolds Numbers

    Science.gov (United States)

    Ji, H.; Burin, M.; Schartman, E.; Goodman, J.; Liu, W.

    2006-01-01

    Two plausible mechanisms have been proposed to explain rapid angular momentum transport during accretion processes in astrophysical disks: nonlinear hydrodynamic instabilities and magnetorotational instability (MRI). A laboratory experiment in a short Taylor-Couette flow geometry has been constructed in Princeton to study both mechanisms, with novel features for better controls of the boundary-driven secondary flows (Ekman circulation). Initial results on hydrodynamic stability have shown negligible angular momentum transport in Keplerian-like flows with Reynolds numbers approaching one million, casting strong doubt on the viability of nonlinear hydrodynamic instability as a source for accretion disk turbulence.

  13. Hydrothermal Synthesis and Characterization of a Metal-Organic Framework by Thermogravimetric Analysis, Powder X-Ray Diffraction, and Infrared Spectroscopy: An Integrative Inorganic Chemistry Experiment

    Science.gov (United States)

    Crane, Johanna L.; Anderson, Kelly E.; Conway, Samantha G.

    2015-01-01

    This advanced undergraduate laboratory experiment involves the synthesis and characterization of a metal-organic framework with microporous channels that are held intact via hydrogen bonding of the coordinated water molecules. The hydrothermal synthesis of Co[subscript 3](BTC)[subscript 2]·12H[subscript 2]O (BTC = 1,3,5-benzene tricarboxylic acid)…

  14. Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Banks, Joanne L., E-mail: jlbanks@student.unimelb.edu.au [Department of Zoology, University of Melbourne, Victoria, 3010 Australia (Australia); Ross, D. Jeff, E-mail: Jeff.Ross@utas.edu.au [Institute of Marine and Antarctic Studies, Nubeena Crescent, Taroona, Tasmania, 7053 Australia (Australia); Keough, Michael J., E-mail: mjkeough@unimelb.edu.au [Department of Zoology, University of Melbourne, Victoria, 3010 Australia (Australia); Eyre, Bradley D., E-mail: bradley.eyre@scu.edu.au [Centre for Coastal Biogeochemistry, School of Environmental Science and Management, Southern Cross University, PO Box 157, Lismore, NSW, 2480 Australia (Australia); Macleod, Catriona K., E-mail: Catriona.Macleod@utas.edu.au [Institute of Marine and Antarctic Studies, Nubeena Crescent, Taroona, Tasmania, 7053 Australia (Australia)

    2012-03-15

    Nutrient inputs to estuarine and coastal waters worldwide are increasing and this in turn is increasing the prevalence of eutrophication and hypoxic and anoxic episodes in these systems. Many urbanised estuaries are also subject to high levels of anthropogenic metal contamination. Environmental O{sub 2} levels may influence whether sediments act as sinks or sources of metals. In this study we investigated the effect of an extended O{sub 2} depletion event (40 days) on fluxes of trace metals (and the metalloid As) across the sediment-water interface in sediments from a highly metal contaminated estuary in S.E. Tasmania, Australia. We collected sediments from three sites that spanned a range of contamination and measured total metal concentration in the overlying water using sealed core incubations. Manganese and iron, which are known to regulate the release of other divalent cations from sub-oxic sediments, were released from sediments at all sites as hypoxia developed. In contrast, the release of arsenic, cadmium, copper and zinc was comparatively low, most likely due to inherent stability of these elements within the sediments, perhaps as a result of their refractory origin, their association with fine-grained sediments or their being bound in stable sulphide complexes. Metal release was not sustained due to the powerful effect of metal-sulphide precipitation of dissolved metals back into sediments. The limited mobilisation of sediment bound metals during hypoxia is encouraging, nevertheless the results highlight particular problems for management in areas where hypoxia might occur, such as the release of metals exacerbating already high loads or resulting in localised toxicity. - Highlights: Black-Right-Pointing-Pointer Metal contaminated sediments exposed to long-term hypoxia released Mn and Fe pulses. Black-Right-Pointing-Pointer As flux increased under anoxic conditions Cd, Cu and Zn fluxes occurred only during the first week of hypoxia. Black

  15. Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40 day laboratory incubation experiment

    International Nuclear Information System (INIS)

    Banks, Joanne L.; Ross, D. Jeff; Keough, Michael J.; Eyre, Bradley D.; Macleod, Catriona K.

    2012-01-01

    Nutrient inputs to estuarine and coastal waters worldwide are increasing and this in turn is increasing the prevalence of eutrophication and hypoxic and anoxic episodes in these systems. Many urbanised estuaries are also subject to high levels of anthropogenic metal contamination. Environmental O 2 levels may influence whether sediments act as sinks or sources of metals. In this study we investigated the effect of an extended O 2 depletion event (40 days) on fluxes of trace metals (and the metalloid As) across the sediment–water interface in sediments from a highly metal contaminated estuary in S.E. Tasmania, Australia. We collected sediments from three sites that spanned a range of contamination and measured total metal concentration in the overlying water using sealed core incubations. Manganese and iron, which are known to regulate the release of other divalent cations from sub-oxic sediments, were released from sediments at all sites as hypoxia developed. In contrast, the release of arsenic, cadmium, copper and zinc was comparatively low, most likely due to inherent stability of these elements within the sediments, perhaps as a result of their refractory origin, their association with fine-grained sediments or their being bound in stable sulphide complexes. Metal release was not sustained due to the powerful effect of metal-sulphide precipitation of dissolved metals back into sediments. The limited mobilisation of sediment bound metals during hypoxia is encouraging, nevertheless the results highlight particular problems for management in areas where hypoxia might occur, such as the release of metals exacerbating already high loads or resulting in localised toxicity. - Highlights: ► Metal contaminated sediments exposed to long-term hypoxia released Mn and Fe pulses. ► As flux increased under anoxic conditions Cd, Cu and Zn fluxes occurred only during the first week of hypoxia. ► Flux of these metals from 3 sites was not related to total sediment metal

  16. Azimuthal Current Density Distribution Resulting from a Power Feed Vacuum Gap in Metallic Liner Experiments at 1 MA

    Science.gov (United States)

    Bott-Suzuki, Simon; Cordaro, S. W.; Caballero Bendixsen, L. S.; Atoyan, L.; Byvank, T.; Potter, W.; Kusse, B. R.; Greenly, J. B.; Hammer, D. A.; Chittenden, J. P.; Jennings, C. A.

    2015-11-01

    We present a study investigating the initiation of plasma in solid, metallic liners where the liner thickness is large compared to the collisionless skin depth. A vacuum gap is introduced in the power feed and we investigate the effect of this on the azimuthal initiation of plasma in the liner. We present optical emission data from aluminum liners on the 1 MA, 100ns COBRA generator. We use radial and axial gated imaging and streak photography, which show a dependence of onset of emission with the size of a small power-feed vacuum gap. The evolution of ``hot-spots'' generated from breakdown vacuum gap evolves relatively slowly and azimuthal uniformity is not observed on the experimental time-scale. We also show measurements of the B-field both outside and inside the liner, using miniature Bdot probes, which show a dependence on the liner diameter and thickness, and a correlation to the details of the breakdown. These data will be compared to magneto-hydrodynamic simulations to infer how such non-uniformities may affect full liner implosion experiments.

  17. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments

    Science.gov (United States)

    Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri

    2015-10-01

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can

  18. Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: Field experiments.

    Science.gov (United States)

    Guo, Xiaofang; Wei, Zebin; Wu, Qitang; Li, Chunping; Qian, Tianwei; Zheng, Wei

    2016-03-01

    In a field experiment on multi-metal contaminated soil, we investigated the efficiency of Cd, Pb, Zn, and Cu removal by only mixture of chelators (MC) or combining with FeCl3. After washing treatment, a co-cropping system was performed for heavy metals to be extracted by Sedum alfredii and to produce safe food from Zea mays. We analyzed the concentration of heavy metals in groundwater to evaluate the leashing risk of soil washing with FeCl3 and MC. Results showed that addition of FeCl3 was favorable to the removal of heavy metals in the topsoil. Metal leaching occurred mainly in rain season during the first co-cropping. The removal rates of Cd, Zn, Pb, and Cu in topsoil were 28%, 53%, 41%, and 21% with washing by FeCl3+MC after first harvest. The application of FeCl3 reduced the yield of S. alfredii and increased the metals concentration of Z. mays in first harvest. However, after amending soil, the metals concentration of Z. mays in FeCl3+MC treatment were similar to that only washing by MC. The grains and shoots of Z. mays were safe for use in feed production. Soil washing did not worsen groundwater contamination during the study period. But the concentration of Cd in groundwater was higher than the limit value of Standard concentrations for Groundwater IV. This study suggests that soil washing using FeCl3 and MC for the remediation of multi-metal contaminated soil is potential feasibility. However, the subsequent measure to improve the washed soil environment for planting crop is considered. Copyright © 2016. Published by Elsevier Ltd.

  19. Turbulent heat mixing of a heavy liquid metal flow in the MEGAPIE target geometry-The heated jet experiment

    International Nuclear Information System (INIS)

    Stieglitz, Robert; Daubner, Markus; Batta, A.; Lefhalm, C.-H.

    2007-01-01

    The MEGAPIE target installed at the Paul-Scherrer Institute is an example of a spallation target using eutectic liquid lead-bismuth (Pb 45 Bi 55 ) both as coolant and neutron source. An adequate cooling of the target requires a conditioning of the flow, which is realized by a main flow transported in an annular gap downwards, u-turned at a hemispherical shell into a cylindrical riser tube. In order to avoid a stagnation point close to the lowest part of the shell a jet flow is superimposed to the main flow, which is directed towards to the stagnation point and flows tangentially along the shell. The heated jet experiment conducted in the THEADES loop of the KALLA laboratory is nearly 1:1 representation of the lower part of the MEGAPIE target. It is aimed to study the cooling capability of this specific geometry in dependence on the flow rate ratio (Q main /Q jet ) of the main flow (Q main ) to the jet flow (Q jet ). Here, a heated jet is injected into a cold main flow at MEGAPIE relevant flow rate ratios. The liquid metal experiment is accompanied by a water experiment in almost the same geometry to study the momentum field as well as a three-dimensional turbulent numerical fluid dynamic simulation (CFD). Besides a detailed study of the envisaged nominal operation of the MEGAPIE target with Q main /Q jet = 15 deviations from this mode are investigated in the range from 7.5 ≤ Q main /Q jet ≤ 20 in order to give an estimate on the safe operational threshold of the target. The experiment shows that, the flow pattern establishing in this specific design and the turbulence intensity distribution essentially depends on the flow rate ratio (Q main /Q jet ). All Q main /Q jet -ratios investigated exhibit an unstable time dependent behavior. The MEGAPIE design is highly sensitive against changes of this ratio. Mainly three completely different flow patterns were identified. A sufficient cooling of the lower target shell, however, is only ensured if Q main /Q jet ≤ 12

  20. Stable chromium isotopic composition of meteorites and metal-silicate experiments: Implications for fractionation during core formation

    Science.gov (United States)

    Bonnand, P.; Williams, H. M.; Parkinson, I. J.; Wood, B. J.; Halliday, A. N.

    2016-02-01

    We present new mass independent and mass dependent Cr isotope compositions for meteorites measured by double spike thermal ionisation mass spectrometry. Small differences in both mass independent 53Cr and 54Cr relative to the Bulk Silicate Earth are reported and are very similar to previously published values. Carbonaceous chondrites are characterised by an excess in 54Cr compared to ordinary and enstatite chondrites which make mass independent Cr isotopes a useful tool for distinguishing between meteoritic groups. Mass dependent stable Cr isotope compositions for the same samples are also reported. Carbonaceous and ordinary chondrites are identical within uncertainty with average δ53 Cr values of - 0.118 ± 0.040 ‰ and - 0.143 ± 0.074 ‰ respectively. The heaviest isotope compositions are recorded by an enstatite chondrite and a CO carbonaceous chondrite, both of which have relatively reduced chemical compositions implying some stable Cr isotope fractionation related to redox processes in the circumstellar disk. The average δ53 Cr values for chondrites are within error of the estimate for the Bulk Silicate Earth (BSE) also determined by double spiking. The lack of isotopic difference between chondritic material and the BSE provides evidence that Cr isotopes were not fractionated during core formation on Earth. A series of high-pressure experiments was also carried out to investigate stable Cr isotope fractionation between metal and silicate and no demonstrable fractionation was observed, consistent with our meteorites data. Mass dependent Cr isotope data for achondrites suggest that Cr isotopes are fractionated during magmatic differentiation and therefore further work is required to constrain the Cr isotopic compositions of the mantles of Vesta and Mars.

  1. METALS (Minority Education Through Traveling and Learning in the Sciences) and the Value of Collaborative Field-centered Experiences in the Geosciences (Invited)

    Science.gov (United States)

    White, L. D.

    2013-12-01

    METALS (Minority Education Through Traveling and Learning in the Sciences) is a field-based, geoscience diversity program developed by a collaborative venture among San Francisco State University, the University of Texas at El Paso, the University of New Orleans, and Purdue University. Since 2010, this program has created meaningful geoscience experiences for underrepresented minorities by engaging 30 high school students in experiential learning opportunities each year. During METALS field trips, the primarily urban students observe natural landforms, measure water quality, conduct beach profiles, and interpret stratigraphic and structural features in locations that have included southern Utah, southern Louisiana, central Wyoming, and northern California. In these geological settings participants are also able to focus on societally relevant, community-related issues. Results from program evaluation suggest that student participants view METALS as: (1) opening up new opportunities for field-based science not normally available to them, (2) engaging in a valuable science-based field experience, (3) an inspirational, but often physically challenging, undertaking that combines high-interest geology content with an exciting outdoor adventure, and (4) a unique social experience that brings together people from various parts of the United States. Further evaluation findings from the four summer trips completed thus far demonstrate that active learning opportunities through direct interaction with the environment is an effective way to engage students in geoscience-related learning. Students also seem to benefit from teaching strategies that include thoughtful reflection, journaling, and teamwork, and mentors are positive about engaging with these approaches. Participants appear motivated to explore geoscience topics further and often discuss having new insights and new perspectives leading to career choices in geosciences. Additionally, students who had a prior and

  2. Corrosion mechanisms for metal alloy waste forms: experiment and theory Level 4 Milestone M4FT-14LA0804024 Fuel Cycle Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taylor, Christopher D. [The Ohio State Univ., Columbus, OH (United States). Fontana Corrosion Center; Kim, Eunja [Univ. of Nevada, Las Vegas, NV (United States); Goff, George Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kolman, David Gary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-31

    This document meets Level 4 Milestone: Corrosion mechanisms for metal alloy waste forms - experiment and theory. A multiphysics model is introduces that will provide the framework for the quantitative prediction of corrosion rates of metallic waste forms incorporating the fission product Tc. The model requires a knowledge of the properties of not only the metallic waste form, but also the passive oxide films that will be generated on the waste form, and the chemistry of the metal/oxide and oxide/environment interfaces. in collaboration with experimental work, the focus of this work is on obtaining these properties from fundamental atomistic models. herein we describe the overall multiphysics model, which is based on MacDonald's point-defect model for passivity. We then present the results of detailed electronic-structure calculations for the determination of the compatibility and properties of Tc when incorporated into intermetallic oxide phases. This work is relevant to the formation of multi-component oxides on metal surfaces that will incorporate Tc, and provide a kinetic barrier to corrosion (i.e. the release of Tc to the environment). Atomistic models that build upon the electronic structure calculations are then described using the modified embedded atom method to simulate metallic dissolution, and Buckingham potentials to perform classical molecular dynamics and statics simulations of the technetium (and, later, iron-technetium) oxide phases. Electrochemical methods were then applied to provide some benchmark information of the corrosion and electrochemical properties of Technetium metal. The results indicate that published information on Tc passivity is not complete and that further investigation is warranted.

  3. Effectiveness of percutaneous metal stent placement in cholangiocarcinoma patients with midterm follow-up: Single center experience

    International Nuclear Information System (INIS)

    Kose, Fatih; Oguzkurt, Levent; Besen, Ayberk; Sumbul, Taner; Sezer, Ahmet; Karadeniz, Cemile; Disel, Umut; Mertsoylu, Huseyin; Ozyilkan, Ozgur

    2012-01-01

    Purpose: Patients with advanced cholangiocarcinoma present with high rate of local complications. The primary aim of this study is to report clinical course of advanced cholangiocarcinoma patients those who were presented with biliary obstruction and treated with percutaneous biliary stenting. Material and methods: Patients with unresectable locally advanced or metastatic cholangiocarcinoma followed by our center for a period of 4 years were analyzed. For statistical analysis demographic and clinical characteristics of patients, primary biliary drainage method, metal stent occlusion rate, time to stent occlusion, and overall survival rates were recorded. Results: A total of 34 eligible patients were analyzed. 27 patients had metal stent placement. These 27 patients formed the basis of this study. Median overall survival (OS) was 6.0 months. After metal stent deployment bilurubin levels were normalized within a mean of 10 days. During the follow-up period, 13 patients were experienced metal stent occlusion. Median TtSO was 10 weeks. Cytotoxic chemotherapy was administered to 14 (52%) patients. Patients without stent dysfunction had significantly higher rate of chemotherapy exposure rate (p = 0.021). Statistical analysis, however, failed to exhibit significant effect of stent dysfunction on OS. Conclusion: In advanced cholangiocarcinoma, relief of bile duct obstruction is an important part of the initial patient management. This study therefore described the clinical value of percutaneous metal stent in cholangiocarcinoma patients and raises the question about patency of metal stent in cholangiocarcinoma whether we can expect success similar to the success achieved in pancreas carcinoma.

  4. Effectiveness of percutaneous metal stent placement in cholangiocarcinoma patients with midterm follow-up: Single center experience

    Energy Technology Data Exchange (ETDEWEB)

    Kose, Fatih, E-mail: fatihkose@gmail.com [Baskent University Faculty of Medicine, Department of Medical Oncology, Adana (Turkey); Oguzkurt, Levent [Department of Interventional Radiology, Adana (Turkey); Besen, Ayberk; Sumbul, Taner; Sezer, Ahmet; Karadeniz, Cemile; Disel, Umut; Mertsoylu, Huseyin; Ozyilkan, Ozgur [Baskent University Faculty of Medicine, Department of Medical Oncology, Adana (Turkey)

    2012-08-15

    Purpose: Patients with advanced cholangiocarcinoma present with high rate of local complications. The primary aim of this study is to report clinical course of advanced cholangiocarcinoma patients those who were presented with biliary obstruction and treated with percutaneous biliary stenting. Material and methods: Patients with unresectable locally advanced or metastatic cholangiocarcinoma followed by our center for a period of 4 years were analyzed. For statistical analysis demographic and clinical characteristics of patients, primary biliary drainage method, metal stent occlusion rate, time to stent occlusion, and overall survival rates were recorded. Results: A total of 34 eligible patients were analyzed. 27 patients had metal stent placement. These 27 patients formed the basis of this study. Median overall survival (OS) was 6.0 months. After metal stent deployment bilurubin levels were normalized within a mean of 10 days. During the follow-up period, 13 patients were experienced metal stent occlusion. Median TtSO was 10 weeks. Cytotoxic chemotherapy was administered to 14 (52%) patients. Patients without stent dysfunction had significantly higher rate of chemotherapy exposure rate (p = 0.021). Statistical analysis, however, failed to exhibit significant effect of stent dysfunction on OS. Conclusion: In advanced cholangiocarcinoma, relief of bile duct obstruction is an important part of the initial patient management. This study therefore described the clinical value of percutaneous metal stent in cholangiocarcinoma patients and raises the question about patency of metal stent in cholangiocarcinoma whether we can expect success similar to the success achieved in pancreas carcinoma.

  5. The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates.

    Science.gov (United States)

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-02-11

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 10(9)) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 10(7) and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones.

  6. The effect of metals on condition and pathologies of European eel (Anguilla anguilla): in situ and laboratory experiments.

    Science.gov (United States)

    Esteve, Consuelo; Alcaide, Elena; Ureña, Rocio

    2012-03-01

    Forty-nine wild eels (Anguilla anguilla) caught in the Albufera Lake (Spain), measuring 24.0-75.0 cm in length and 25.0-637.7 g in weight, were examined for metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb, Se and Zn), condition (CI and HSI indices), as well as for diseases (Anguillicola infestation; bacterial infections). Total metal load significantly increased in eel liver tissue parallel to total length and body weight (log), while silvering females (W(B) > 200 g; L ≥ 500 mm) exhibited the highest amounts of Co, Cu, Hg, Se and Zn. Diverse effects may be expected in these big eels due to long-term metal exposure. In fact, IMBI (individual mean (multi-metal) bioaccumulation index) and copper load (Ln) in particular, were significantly related with a decrease in the HSI, reflecting lower eel fitness. In addition, most silvering females (75%) showed a CI below 0.2, and this size group presented the highest prevalence of chronic diseases, at significant levels, that are non-lethal in the short term, but degenerative in the long term. Amounts of hepatic iron were not correlated with eel size; however, a significant, strong negative correlation between this metal (Ln) and HSI and CI was found for wild eels suffering from diseases of any aetiology. This also included small eels (W(B) <67 g; L < 350 mm), as this size group presented a significant prevalence of acute diseases caused by single virulent bacterial pathogens (i.e. Edwardsiella tarda and Vibrio vulnificus biotype 2). To assess the effect of metals on susceptibility to disease, yellow eels were maintained and exposed to iron, copper, and pathogens, in captivity under laboratory conditions. Co-exposure of eels to iron (9 μg of Fe/g of fish) and bacterial pathogens by intraperitoneal injection (IP), yielded a hundred-fold reduction in the LD50 of all bacteria assayed (i.e. E. tarda, V. vulnificus, and motile Aeromonas), and also the time taken to cause eel death. Short-term aqueous exposure of eels to 0.4, 0.7, 1.7 and

  7. Heavy metal pollutionof soil and new approch to its remediation: Research experiences in arid region in Morocco

    International Nuclear Information System (INIS)

    El Hari, A.; Lekouch, N.; Chaik, M.; El Fadeli, S.; Sedki, A.

    2012-01-01

    Full text: With climate change and water scarcity remarkable for agricultural soils in the countries of North Africa, pollution with heavy metals represent a great danger for aquatic as well as terrestrial ecosystems. Indeed, they are persistent and non-biodegradable in the environment. When in excess, these metals may influence the soil's biochemical and physico-chemical characteristics, or disturb plants' physiology and contaminate alimentary chains. Therefore, a possible action for rehabilitation of contaminated sites would be an original approach: phytostabilisation. This technique, which is used in Europe but not yet in Morocco, consists of using plants in order to stop soil contaminant migration towards the aquifer. The objective of this study is to try to find vegetal species that are both adapted to the arid climate of Marrakech and capable of purifying the soil and the ground water. In addition, we have chosen to study waters and soils of two sites with different sources of contamination, both located in the surroundings of Marrakech, one representing the used water zone, namely the region of El Azzouzia and the other being the mining zone called D raa Lasfar . On the other hand, thanks to germination and growing tests, we have tried to apply the phytostabilisation technique on different soils by selecting varieties, among 15 vegetal species, which can resist the presence of heavy metals the most, especially Cadmium, and accumulate heavy metals in order to play a purifying role. Our study results have shown that among these 15 vegetal species, only three show the highest growth and most important resistance to Cadmium. The three vegetal species in question are Corn, Wheat and Trigonella. The study has also been able to demonstrate that among these three species, Trigonella is the most hyper accumulative of Zinc and Cadmium. It could therefore be suggested to be a means of phytostabilisation on polluted soils of the city and surroundings of Marrakech

  8. Experience in the development of metal uranium-base nuclear fuel for heavy-water gas-cooled reactors

    International Nuclear Information System (INIS)

    Ashikhmin, V.P.; Vorob'ev, M.A.; Gusarov, M.S.; Davidenko, A.S.; Zelenskij, V.F.; Ivanov, V.E.; Krasnorutskij, V.S.; Petel'guzov, I.A.; Stukalov, A.I.

    1978-01-01

    Investigations were carried out to solve the problem of making the development of radiation-resistant uranium fuel for power reactors including the heavy-water gas-cooled KS-150 reactor. Factors are considered that limit the lifetime of uranium fuel elements, and the ways of suppressing them are discussed. Possible reasons of the insufficient radiation resistance of uranium rod fuel element and the progress attained are analyzed. Some general problems on the fuel manufacture processes are discussed. The main results are presented on the operation of the developed fuel in research reactor loops and the commercial heavy-water KS-150 reactor. The results confirm an exceptionally high radiation resistance of fuel to burn-ups of 1.5-2%. The successful solution of a large number of problems associated with the development of metal uranium fuel provides for new possibilities of using metal uranium in power reactors

  9. Initial liquid metal magnetohydrodynamic thin film flow experiments in the MeGA-loop facility at UCLA

    International Nuclear Information System (INIS)

    Morley, N.B.; Gaizer, A.A.; Tillack, M.S.; Abdou, M.A.

    1995-01-01

    Free surface thin film flows of liquid metal were investigated experimentally in the presence of a coplanar magnetic field. This investigation was performed in a new magnetohydrodynamic (MHD) flow facility, the MeGA-loop, utilizing a low melting temperature lead-bismuth alloy as the working metal. Owing to the relatively low magnetic field produced by the present field coil system, the ordinary hydrodynamic and low MHD interaction regimes only were investigated. At the high flow speeds necessary for self cooling, the importance of a well designed and constructed channel becomes obvious. Partial MHD drag, increasing the film height, is observed as Haβ 2 becomes greater than unity. MHD laminarization of the turbulent film flows is observed when Haβ/Re>0.002, but fully laminar flow was not reached. Suggestions for facility upgrades to achieve greater MHD interaction are presented in the context of these initial results. (orig.)

  10. Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V.I.; Garkusha, I.E. E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlaj, V.A.; Solyakov, D.G.; Wuerz, H

    2003-03-01

    Melt layer erosion of metal targets under pulsed high heat loads is discussed. Tungsten, copper, aluminum, and titanium targets were exposed to perpendicular and inclined plasma impact in the quasi-steady-state plasma accelerator QSPA Kh-50. Melt layer motion results in erosion crater formation with rather large mountains of the resolidified material at the crater edge. It is shown that macroscopic motion of the melt layer and surface cracking are the main factors responsible for tungsten erosion.

  11. Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments

    International Nuclear Information System (INIS)

    Tereshin, V.I.; Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlaj, V.A.; Solyakov, D.G.; Wuerz, H.

    2003-01-01

    Melt layer erosion of metal targets under pulsed high heat loads is discussed. Tungsten, copper, aluminum, and titanium targets were exposed to perpendicular and inclined plasma impact in the quasi-steady-state plasma accelerator QSPA Kh-50. Melt layer motion results in erosion crater formation with rather large mountains of the resolidified material at the crater edge. It is shown that macroscopic motion of the melt layer and surface cracking are the main factors responsible for tungsten erosion

  12. Boundary effects and the onset of Taylor vortices

    Science.gov (United States)

    Rucklidge, A. M.; Champneys, A. R.

    2004-05-01

    It is well established that the onset of spatially periodic vortex states in the Taylor-Couette flow between rotating cylinders occurs at the value of Reynolds number predicted by local bifurcation theory. However, the symmetry breaking induced by the top and bottom plates means that the true situation should be a disconnected pitchfork. Indeed, experiments have shown that the fold on the disconnected branch can occur at more than double the Reynolds number of onset. This leads to an apparent contradiction: why should Taylor vortices set in so sharply at the Reynolds number predicted by the symmetric theory, given such large symmetry-breaking effects caused by the boundary conditions? This paper offers a generic explanation. The details are worked out using a Swift-Hohenberg pattern formation model that shares the same qualitative features as the Taylor-Couette flow. Onset occurs via a wall mode whose exponential tail penetrates further into the bulk of the domain as the driving parameter increases. In a large domain of length L, we show that the wall mode creates significant amplitude in the centre at parameter values that are O( L-2) away from the value of onset in the problem with ideal boundary conditions. We explain this as being due to a Hamiltonian Hopf bifurcation in space, which occurs at the same parameter value as the pitchfork bifurcation of the temporal dynamics. The disconnected anomalous branch remains O(1) away from the onset parameter since it does not arise as a bifurcation from the wall mode.

  13. Understanding and Modelling the Effect of Dissolved Metals on Solvent Degradation in Post Combustion CO2 Capture Based on Pilot Plant Experience

    Directory of Open Access Journals (Sweden)

    Sanjana Dhingra

    2017-05-01

    Full Text Available Oxidative degradation is a serious concern for upscaling of amine-based carbon capture technology. Different kinetic models have been proposed based on laboratory experiments, however the kinetic parameters included are limited to those relevant for a lab-scale system and not a capture plant. Besides, most of the models fail to recognize the catalytic effect of metals. The objective of this work is to develop a representative kinetic model based on an apparent auto-catalytic reaction mechanism between solvent degradation, corrosion and ammonia emissions. Measurements from four different pilot plants: (i EnBW’s plant at Heilbronn, Germany (ii TNO’s plant at Maasvlakte, The Netherlands; (iii CSIRO’s plants at Loy Yang and Tarong, Australia and (iv DONG Energy’s plant at Esbjerg, Denmark are utilized to propose a degradation kinetic model for 30 wt % ethanolamine (MEA as the capture solvent. The kinetic parameters of the model were regressed based on the pilot plant campaign at EnBW. The kinetic model was validated by comparing it with the measurements at the remaining pilot campaigns. The model predicted the trends of ammonia emissions and metal concentration within the same order of magnitude. This study provides a methodology to establish a quantitative approach for predicting the onset of unacceptable degradation levels which can be further used to devise counter-measure strategies such as reclaiming and metal removal.

  14. Benthic metal fluxes and sediment diagenesis in a water reservoir affected by acid mine drainage: A laboratory experiment and reactive transport modeling

    Science.gov (United States)

    Torres, E.; Ayora, C.; Jiménez-Arias, J. L.; García-Robledo, E.; Papaspyrou, S.; Corzo, A.

    2014-08-01

    Reservoirs are one of the primary water supply sources. Knowledge of the metal fluxes at the water-sediment interfaces of reservoirs is essential for predicting their ecological quality. Redox oscillations in the water column are promoted by stratification; turnover events may significantly alter metal cycling, especially in reservoirs impacted by acid mine drainage (AMD). To study this phenomenon, an experiment was performed under controlled laboratory conditions. Sediment cores from an AMD-affected reservoir were maintained in a tank with reservoir water for approximately two months and subjected to alternating oxic-hypoxic conditions. A detailed metal speciation in solid phases of the sediment was initially performed by sequential extraction, and pore water was analyzed at the end of each redox period. Tank water metals concentrations were systematically monitored throughout the experiment. The experimental results were then used to calibrate a diffusion-reaction model and quantify the reaction rates and sediment-water fluxes. Under oxic conditions, pH, Fe and As concentrations decreased in the tank due to schwertmannite precipitation, whereas the concentrations of Al, Zn, Cu, Ni, and Co increased due to Al(OH)3 and sulfide dissolution. The reverse trends occurred under hypoxic conditions. Under oxic conditions, the fluxes calculated by applying Fick’s first law to experimental concentration gradients contradicted the fluxes expected based on the evolution of the tank water. According to the reactive transport calculations, this discrepancy can be attributed to the coarse resolution of sediment sampling. The one-cm-thick slices failed to capture effectively the notably narrow (1-2 mm) concentration peaks of several elements in the shallow pore water resulting from sulfide and Al(OH)3 dissolution. The diffusion-reaction model, extended to the complete year, computed that between 25% and 50% of the trace metals and less than 10% of the Al that precipitated under

  15. Novel corrosion experiments using the wire beam electrode: (III) Measuring electrochemical corrosion parameters from both the metallic and electrolytic phases

    International Nuclear Information System (INIS)

    Tan, Yong-Jun; Liu, Tie; Aung, Naing Naing

    2006-01-01

    The wire beam electrode (WBE) and the scanning reference electrode technique (SRET) have been applied in a novel combination to measure, for the first time, electrochemical parameters simultaneously from both the metallic and electrolytic phases of a corroding metal surface. The objective of this work is to demonstrate the application of this combined WBE-SRET method in obtaining unique information on localised corrosion mechanism, by investigating typical corrosion processes occurring over a mild steel WBE surface exposed to the classic Evans solution. The WBE method was used to map current and potential distributions in the metallic phase, and the SRET was used to map current or potential distribution in the electrolytic phase. It has been found that the combined WBE-SRET method is able to gain useful information on macro-cell electrochemical corrosion processes that involve macro-scale separation of anodes and cathodes. In such macro-cell corrosion systems, maps measured using WBE and SRET were found to correlate with each other and both methods were able to detect the locations of anodic sites. However the movement of the scanning probe during SRET measurements was found to affect the SRET detection of cathodic sites. In micro-cell corrosion systems where the separation of anodic and cathodic sites were less distinct, SRET measurement was found to be insensitive in detecting anodic and cathodic sites, while the WBE method was still able to produce results that correlated well with observed corrosion behaviour. Results obtained from this work suggest that the WBE-SRET method is applicable for understanding the initiation, propagation and electrochemical behaviour of localised corrosion anodes and cathodes, and also their dependence on externally controllable variables, such as solution pH changes and the existence of surface coatings

  16. Photoinduced charge transfer in a transition metal complex investigated by time-resolved X-ray absorption fine structure spectroscopy. Setup and experiment

    International Nuclear Information System (INIS)

    Goeries, Dennis

    2015-02-01

    In the framework of this thesis the development of a time-resolved X-ray absorption spectroscopy experiment and its application to fac-Ir(ppy) 3 is described. Such experiments require a very stable setup in terms of spatial and temporal accuracy. Therefore, the stability properties of the present installation were investigated in detail and continuously improved, in particular the synchronization of the ultrashort pulse laser system to the storage ring as well as the spatial stability of both X-ray and laser beam. Experiments utilizing the laser pump and X-ray probe configuration were applied on the green phosphorescence emitter complex fac-Ir(ppy) 3 dissolved in dimethyl sulfoxide. Structural and electronic changes were triggered by photoexcitation of the metal-to-ligand charge transfer band with ultrashort laser pulses at a wavelength of 343 nm. The excited triplet state spectrum was extracted from the measured pump-probe X-ray absorption spectrum using an ionic approximation. The results con rm the anticipated metal-to-ligand charge transfer as shown by an ionization potential shift of the iridium atom. The symmetry of the complex was found to be pseudo-octahedral. This allowed the first experimental determination of the bond length of fac-Ir(ppy) 3 in an octahedral approximation and revealed a decrease of bond length of the first coordination shell in the triplet state. The first and second-order decay kinetics of the triplet state were investigated in a combination of X-ray and laser based experiments and revealed self-quenching as well as triplet-triplet annihilation rate constants.

  17. Demonstration of surface plasmons in metal island films and the effect of the surrounding medium--An undergraduate experiment

    Energy Technology Data Exchange (ETDEWEB)

    Orfanides, P. [Department of Physics, The University of Memphis, Memphis, Tennessee 38152 (United States); Buckner, T. F. [Department of Physics, The University of Memphis, Memphis, Tennessee 38152 (United States); Buncick, M. C. [Department of Physics, The University of Memphis, Memphis, Tennessee 38152 (United States); Meriaudeau, F. [LE21, 12 rue de la fonderie, 71200 Le Creusot, (France); Ferrell, T. L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2000-10-01

    We present a demonstration of the surface plasmon phenomenon as it occurs in thin metal island films. The metal films are deposited on glass microscope slides. The effect of the surface plasmon resonance may be observed visually on the slide without further apparatus. Heating the film changes the shape of the islands and therefore the resonant frequency of the surface plasmon and changes the color of the film. Placing the film in a dielectric medium changes the resonance condition for the surface plasmon again and changes the color again. We show this by coating the slides with commercially available liquids with different indices of refraction. We present a theoretical model that assumes the islands are oblate spheroids. There are enough details given so that the equations can be programed and the theoretical optical absorbance can be reproduced. We also present a modification to the theory so that the shift in resonant frequency can be calculated when the spheroids are immersed in the index fluids. We describe our apparatus for making thin films and our optical spectrometer system. We then present optical absorbance measurements of thin films of both Ag and Au in air and in two liquids with different indices of refraction. (c) 2000 American Association of Physics Teachers.

  18. Drawing the geometry of 3d transition metal-boron pairs in silicon from electron emission channeling experiments

    CERN Document Server

    Silva, Daniel; Wahl, Ulrich; Martins Correia, Joao; Augustyns, Valerie; De Lemos Lima, Tiago Abel; Granadeiro Costa, Angelo Rafael; David Bosne, Eric; Castro Ribeiro Da Silva, Manuel; Esteves De Araujo, Araujo Joao Pedro; Da Costa Pereira, Lino Miguel

    2016-01-01

    Although the formation of transition metal-boron pairs is currently well established in silicon processing, the geometry of these complexes is still not completely understood. We investigated the lattice location of the transition metals manganese, iron, cobalt and nickel in n- and p+-type silicon by means of electron emission channeling. For manganese, iron and cobalt, we observed an increase of sites near the ideal tetrahedral interstitial position by changing the doping from n- to p+-type Si. Such increase was not observed for Ni. We ascribe this increase to the formation of pairs with boron, driven by Coulomb interactions, since the majority of iron, manganese and cobalt is positively charged in p+-type silicon while Ni is neutral. We propose that breathing mode relaxation around the boron ion within the pair causes the observed displacement from the ideal tetrahedral interstitial site. We discuss the application of the emission channeling technique in this system and, in particular, how it provides insi...

  19. Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview

    Directory of Open Access Journals (Sweden)

    Katsnelson BA

    2015-04-01

    Full Text Available Boris A Katsnelson,1 Larisa I Privalova,1 Marina P Sutunkova,1 Vladimir B Gurvich,1 Nadezhda V Loginova,1 Ilzira A Minigalieva,1 Ekaterina P Kireyeva,1 Vladimir Y Shur,2 Ekaterina V Shishkina,2 Ya B Beikin,3 Oleg H Makeyev,4 Irene E Valamina4 1The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; 2The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg, Russia; 3The City Clinical Diagnostics Centre, Ekaterinburg, Russia; 4The Ural State Medical University, Ekaterinburg, Russia Abstract: The purpose of this paper is to overview and summarize previously published results of our experiments on white rats exposed to either a single intratracheal instillation or repeated intraperitoneal injections of silver, gold, iron oxide, copper oxide, nickel oxide, and manganese oxide nanoparticles (NPs in stable water suspensions without any chemical additives. Based on these results and some corroborating data of other researchers we maintain that these NPs are much more noxious on both cellular and systemic levels as compared with their 1 µm or even submicron counterparts. However, within the nanometer range the dependence of systemic toxicity on particle size is intricate and non-unique due to complex and often contra-directional relationships between the intrinsic biological aggressiveness of the specific NPs, on the one hand, and complex mechanisms that control their biokinetics, on the other. Our data testify to the high activity of the pulmonary phagocytosis of NPs deposited in airways. This fact suggests that safe levels of exposure to airborne NPs are possible in principle. However, there are no reliable foundations for establishing different permissible exposure levels for particles of different size within the nanometric range. For workroom air, such permissible exposure levels of metallic NP can be proposed at this stage, even if tentatively, based on a sufficiently

  20. The origin of magnetism in transition metal-doped ZrO2 thin films: Experiment and theory

    KAUST Repository

    Hong, Nguyenhoa

    2013-10-04

    We have investigated the magnetic properties of Fe/Co/Ni-doped ZrO 2 laser ablated thin films in comparison with the known results of Mn-doped ZrO2, which is thought to be a promising material for spintronics applications. It is found that doping with a transition metal can induce room temperature ferromagnetism in \\'fake\\' diamond. Theoretical analysis based on density functional theory confirms the experimental measurements, by revealing that the magnetic moments of Mn- and Ni-doped ZrO2 thin films are much larger than that of Fe- or Co-doped ZrO2 thin films. Most importantly, our calculations confirm that Mn- and Ni-doped ZrO2 show a ferromagnetic ground state in comparison to Co- and Fe-doped ZrO 2, which favor an antiferromagnetic ground state. © 2013 IOP Publishing Ltd.

  1. Hydrogen adsorption strength and sites in the metal organic framework MOF5: Comparing experiment and model calculations

    Science.gov (United States)

    Mulder, F. M.; Dingemans, T. J.; Schimmel, H. G.; Ramirez-Cuesta, A. J.; Kearley, G. J.

    2008-07-01

    Hydrogen adsorption in porous, high surface area, and stable metal organic frameworks (MOF's) appears a novel route towards hydrogen storage materials [N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Science 300 (2003) 1127; J.L.C. Rowsell, A.R. Millward, K. Sung Park, O.M. Yaghi, J. Am. Chem. Soc. 126 (2004) 5666; G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Chem. Commun. (2003) 2976; T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 10 (2004) 1373]. A prerequisite for such materials is sufficient adsorption interaction strength for hydrogen adsorbed on the adsorption sites of the material because this facilitates successful operation under moderate temperature and pressure conditions. Here we report detailed information on the geometry of the hydrogen adsorption sites, based on the analysis of inelastic neutron spectroscopy (INS). The adsorption energies for the metal organic framework MOF5 equal about 800 K for part of the different sites, which is significantly higher than for nanoporous carbon materials (˜550 K) [H.G. Schimmel, G.J. Kearley, M.G. Nijkamp, C.T. Visser, K.P. de Jong, F.M. Mulder, Chem. Eur. J. 9 (2003) 4764], and is in agreement with what is found in first principles calculations [T. Sagara, J. Klassen, E. Ganz, J. Chem. Phys. 121 (2004) 12543; F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113]. Assignments of the INS spectra is realized using comparison with independently published model calculations [F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113] and structural data [T. Yildirim, M.R. Hartman, Phys. Rev. Lett. 95 (2005) 215504].

  2. Development and testing of high-performance fuel pin simulators for boiling experiments in liquid metal flow

    International Nuclear Information System (INIS)

    Casal, V.

    1976-01-01

    There are unknown phenomena, about local and integral boiling events in the core of sodium cooled fast breeder reactors. Therefore at GfK depend out-of-pile boiling experiments have been performed using electrically heated dummies of fuel element bundles. The success of these tests and the amount of information derived from them depend exclusively on the successful simulation of the fuel pins by electrically heated rods as regards the essential physical properties. The report deals with the development and testing of heater rods for sodium boiling experiments in bundles including up to 91 heated pins

  3. Feeble magnetic fields generated by thermal charge fluctuations in extended metallic conductors: Implications for electric-dipole moment experiments

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.

    1999-01-01

    A simple formulation for calculating the magnetic field external to an extended nonpermeable conducting body due to thermal current fluctuations within the body is developed, and is applied to a recent experimental search for the atomic electric-dipole moment (EDM) of 199 Hg. It is shown that the thermal fluctuation field is only slightly smaller in magnitude than other noise sources in that experiment. The formulation is extended to permeable bodies, and the implications for general EDM experiments are discussed. copyright 1999 The American Physical Society

  4. The Quantitative Resolution of a Mixture of Group II Metal Ions by Thermometric Titration with EDTA. An Analytical Chemistry Experiment.

    Science.gov (United States)

    Smith, Robert L.; Popham, Ronald E.

    1983-01-01

    Presents an experiment in thermometric titration used in an analytic chemistry-chemical instrumentation course, consisting of two titrations, one a mixture of calcium and magnesium, the other of calcium, magnesium, and barium ions. Provides equipment and solutions list/specifications, graphs, and discussion of results. (JM)

  5. Synthesis and Metalation of a Ligand: An Interdisciplinary Laboratory Experiment for Second-Year Organic and Introductory Inorganic Chemistry Students

    Science.gov (United States)

    Kasting, Benjamin J.; Bowser, Andrew K.; Anderson-Wile, Amelia M.; Wile, Bradley M.

    2015-01-01

    An interdisciplinary laboratory experiment involving second-year undergraduate organic chemistry and introductory inorganic chemistry undergraduate students is described. Organic chemistry students prepare a series of amine-bis(phenols) via a Mannich reaction, and characterize their products using melting point; FTIR; and [superscript 1]H,…

  6. Laser Shock Peening on Zr-based Bulk Metallic Glass and Its Effect on Plasticity: Experiment and Modeling

    Science.gov (United States)

    Cao, Yunfeng; Xie, Xie; Antonaglia, James; Winiarski, Bartlomiej; Wang, Gongyao; Shin, Yung C.; Withers, Philip J.; Dahmen, Karin A.; Liaw, Peter K.

    2015-05-01

    The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and good wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via the micro-slot cutting method, and then predict them using a three-dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analyses of serrated flows reveal plentiful and useful information of the underlying deformation process. Our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.

  7. Comparison of Conventional Deep Drawing, Hydromechanical Deep-Drawing and High Pressure Sheet Metal Forming by Numerical Experiments

    International Nuclear Information System (INIS)

    Oender, I. Erkan; Tekkaya, A. Erman

    2005-01-01

    Increasing use of new technologies in automotive and aircraft applications requires intensive research and developments on sheet metal forming processes. This study focuses on the assessment of sheet hydroforming, hydro-mechanical deep drawing and conventional deep-drawing processes by performing a systematic analysis by numerical simulations. Circular, elliptic, rectangular and square cross-section cups have been selected for the geometry spectrum. Within the range of each cross section, depth, drawing ratio and fillet radii have been altered systematically. St14 stainless steel has been used as the material throughout the study. The deformation behavior has been described by an elasto-plastic material model and all numerical simulations have been carried out by using a dynamic-explicit commercial finite element code. During the analyses each workpiece is produced by the three competing processes. The analyses results such as sheet thickness distribution, necking, forming of radii etc., are used for assessing the success of each forming process alternative. The analyses revealed that depending on the workpiece geometry and dimensional properties certain processes are preferable for obtaining satisfactory products. The process windows for each process have been established based on the analyzed parameters of the three different product geometries. This data is expected to be useful for selecting the appropriate production process for a given workpiece geometry

  8. Accumulation of Trace Metal Elements (Cu, Zn, Cd, and Pb in Surface Sediment via Decomposed Seagrass Leaves: A Mesocosm Experiment Using Zostera marina L.

    Directory of Open Access Journals (Sweden)

    Shinya Hosokawa

    Full Text Available Accumulation of Cu, Zn, Cd, and Pb in the sediment of seagrass ecosystems was examined using mesocosm experiments containing Zostera marina (eelgrass and reference pools. Lead was approximately 20-fold higher in the surface sediment in the eelgrass pool than in eelgrass leaves and epiphytes on the eelgrass leaves, whereas zinc and cadmium were significantly lower in the surface sediment than in the leaves, with intermediate concentrations in epiphytes. Copper concentrations were similar in both the surface sediment and leaves but significantly lower in epiphytes. Carbon and nitrogen contents increased significantly with increasing δ13C in surface sediments of both the eelgrass and reference pools. Copper, Zn, Cd, and Pb also increased significantly with increasing δ13C in the surface sediment in the eelgrass pool but not in the reference pool. By decomposition of eelgrass leaves with epiphytes, which was examined in the eelgrass pool, copper and lead concentrations increased more than 2-fold and approximately a 10-fold, whereas zinc and cadmium concentrations decreased. The high copper and lead concentrations in the surface sediment result from accumulation in decomposed, shed leaves, whereas zinc and cadmium remobilized from decomposed shed leaves but may remain at higher concentrations in the leaves than in the original sediments. The results of our mesocosm study demonstrate that whether the accumulation or remobilization of trace metals during the decomposition of seagrass leaves is trace metal dependent, and that the decomposed seagrass leaves can cause copper and lead accumulation in sediments in seagrass ecosystems.

  9. Removal of Retrievable Self-Expandable Metallic Tracheobronchial Stents: An 18-Year Experience in a Single Center

    International Nuclear Information System (INIS)

    Park, Jung-Hoon; Kim, Pyeong Hwa; Shin, Ji Hoon; Tsauo, Jiaywei; Kim, Min Tae; Cho, Young Chul; Kim, Jin Hyoung; Song, Ho-Young

    2016-01-01

    PurposeThe purpose of the study was to retrospectively evaluate the technical outcomes of removal of retrievable self-expandable metallic stents (REMSs) and identify predictors of technical failure in 81 patients with benign and malignant tracheobronchial strictures.Materials and MethodsA total of 98 REMSs were removed under fluoroscopic guidance in 81 patients with benign (n = 48) or malignant (n = 33) tracheobronchial strictures. Primary and secondary technical success rates and complication rate were evaluated. Technical outcomes with regard to underlying diseases were also evaluated. Logistic regression models were constructed to identify predictors of primary technical success.ResultsPrimary and secondary technical success rates were 86.7 and 94.9 %, respectively. Stent removal-related complication rate was 7.1 % (7/98) and all were bleeding after stent removal. All bleeding complications were minor and managed conservatively. Primary technical success rate for benign strictures was significantly lower compared with that for malignant strictures (80.9 vs. 97.1 %, P = 0.029), but secondary technical success rate (93.7 vs. 97.1 %, P = 0.652) did not differ between the two groups. Granulation tissue formation was identified as an independent predictor of primary technical success (odds ratio 0.249, 95 % CI 0.071–0.874, P = 0.030).ConclusionRemoval of REMSs in patients with benign and malignant tracheobronchial strictures is safe and technically feasible. Bronchoscopic guidance may be required when the removal using a hook wire fails. The presence of granulation tissue was the negative predictor of primary technical success.

  10. Removal of Retrievable Self-Expandable Metallic Tracheobronchial Stents: An 18-Year Experience in a Single Center

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hoon; Kim, Pyeong Hwa; Shin, Ji Hoon, E-mail: jhshin@amc.seoul.kr; Tsauo, Jiaywei; Kim, Min Tae; Cho, Young Chul; Kim, Jin Hyoung; Song, Ho-Young [University of Ulsan College of Medicine, Departments of Radiology and Research Institute of Radiology, Asan Medical Center (Korea, Republic of)

    2016-11-15

    PurposeThe purpose of the study was to retrospectively evaluate the technical outcomes of removal of retrievable self-expandable metallic stents (REMSs) and identify predictors of technical failure in 81 patients with benign and malignant tracheobronchial strictures.Materials and MethodsA total of 98 REMSs were removed under fluoroscopic guidance in 81 patients with benign (n = 48) or malignant (n = 33) tracheobronchial strictures. Primary and secondary technical success rates and complication rate were evaluated. Technical outcomes with regard to underlying diseases were also evaluated. Logistic regression models were constructed to identify predictors of primary technical success.ResultsPrimary and secondary technical success rates were 86.7 and 94.9 %, respectively. Stent removal-related complication rate was 7.1 % (7/98) and all were bleeding after stent removal. All bleeding complications were minor and managed conservatively. Primary technical success rate for benign strictures was significantly lower compared with that for malignant strictures (80.9 vs. 97.1 %, P = 0.029), but secondary technical success rate (93.7 vs. 97.1 %, P = 0.652) did not differ between the two groups. Granulation tissue formation was identified as an independent predictor of primary technical success (odds ratio 0.249, 95 % CI 0.071–0.874, P = 0.030).ConclusionRemoval of REMSs in patients with benign and malignant tracheobronchial strictures is safe and technically feasible. Bronchoscopic guidance may be required when the removal using a hook wire fails. The presence of granulation tissue was the negative predictor of primary technical success.

  11. Removal of Retrievable Self-Expandable Metallic Tracheobronchial Stents: An 18-Year Experience in a Single Center.

    Science.gov (United States)

    Park, Jung-Hoon; Kim, Pyeong Hwa; Shin, Ji Hoon; Tsauo, Jiaywei; Kim, Min Tae; Cho, Young Chul; Kim, Jin Hyoung; Song, Ho-Young

    2016-11-01

    The purpose of the study was to retrospectively evaluate the technical outcomes of removal of retrievable self-expandable metallic stents (REMSs) and identify predictors of technical failure in 81 patients with benign and malignant tracheobronchial strictures. A total of 98 REMSs were removed under fluoroscopic guidance in 81 patients with benign (n = 48) or malignant (n = 33) tracheobronchial strictures. Primary and secondary technical success rates and complication rate were evaluated. Technical outcomes with regard to underlying diseases were also evaluated. Logistic regression models were constructed to identify predictors of primary technical success. Primary and secondary technical success rates were 86.7 and 94.9 %, respectively. Stent removal-related complication rate was 7.1 % (7/98) and all were bleeding after stent removal. All bleeding complications were minor and managed conservatively. Primary technical success rate for benign strictures was significantly lower compared with that for malignant strictures (80.9 vs. 97.1 %, P = 0.029), but secondary technical success rate (93.7 vs. 97.1 %, P = 0.652) did not differ between the two groups. Granulation tissue formation was identified as an independent predictor of primary technical success (odds ratio 0.249, 95 % CI 0.071-0.874, P = 0.030). Removal of REMSs in patients with benign and malignant tracheobronchial strictures is safe and technically feasible. Bronchoscopic guidance may be required when the removal using a hook wire fails. The presence of granulation tissue was the negative predictor of primary technical success.

  12. Instrumented anvil-on-rod impact experiments for validating constitutive strength model for simulating transient dynamic deformation response of metals

    International Nuclear Information System (INIS)

    Martin, M.; Shen, T.; Thadhani, N.N.

    2008-01-01

    Instrumented anvil-on-rod impact experiments were performed to access the applicability of this approach for validating a constitutive strength model for dynamic, transient-state deformation and elastic-plastic wave interactions in vanadium, 21-6-9 stainless steel, titanium, and Ti-6Al-4V. In addition to soft-catching the impacted rod-shaped samples, their transient deformation states were captured by high-speed imaging, and velocity interferometry was used to record the sample back (free) surface velocity and monitor elastic-plastic wave interactions. Simulations utilizing AUTODYN-2D hydrocode with Steinberg-Guinan constitutive equation were used to generate simulated free surface velocity traces and final/transient deformation profiles for comparisons with experiments. The simulations were observed to under-predict the radial strain for bcc vanadium and fcc steel, but over-predict the radial strain for hcp titanium and Ti-6Al-4V. The correlations illustrate the applicability of the instrumented anvil-on-rod impact test as a method for providing robust model validation based on the entire deformation event, and not just the final deformed state

  13. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  14. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  15. Localized atomic segregation in the spalled area of a Zr50Cu40Al10 bulk metallic glasses induced by laser-shock experiment

    Science.gov (United States)

    Jodar, B.; Loison, D.; Yokoyama, Y.; Lescoute, E.; Nivard, M.; Berthe, L.; Sangleboeuf, J.-C.

    2018-02-01

    Laser-shock experiments were performed on a ternary {Zr50{Cu}40{Al}10} bulk metallic glass. A spalling process was studied through post-mortem analyses conducted on a recovered sample and spall. Scanning electron microscopy magnification of fracture surfaces revealed the presence of a peculiar feature known as cup-cone. Cups are found on sample fracture surface while cones are observed on spall. Two distinct regions can be observed on cups and cones: a smooth viscous-like region in the center and a flat one with large vein-pattern in the periphery. Energy dispersive spectroscopy measurements conducted on these features emphasized atomic distribution discrepancies both on the sample and spall. We propose a mechanism for the initiation and the growth of these features but also a process for atomic segregation during spallation. Cup and cones would originate from cracks arising from shear bands formation (softened paths). These shear bands result from a quadrupolar-shaped atomic disorder engendered around an initiation site by shock wave propagation. This disorder turns into a shear band when tensile front reaches spallation plane. During the separation process, temperature gain induced by shock waves and shear bands generation decreases material viscosity leading to higher atomic mobility. Once in a liquid-like form, atomic clusters migrate and segregate due to inertial effects originating from particle velocity variation (interaction of release waves). As a result, a high rate of copper is found in sample cups and high zirconium concentration is found on spall cones.

  16. The New Nitinol Conformable Self-Expandable Metal Stents for Malignant Colonic Obstruction: A Pilot Experience as Bridge to Surgery Treatment

    Directory of Open Access Journals (Sweden)

    Roberto Di Mitri

    2014-01-01

    Full Text Available Introduction. Self-expandable metal stents (SEMS are a nonsurgical option for treatment of malignant colorectal obstruction also as a bridge to surgery approach. The new nitinol conformable stent has improved clinical outcomes in these kinds of patients. We report a pilot experience with nitinol conformable SEMS placement as bridge to surgery treatment in patients with colorectal obstruction. Materials and Methods. Between April and August 2012, we collected data on colonic nitinol conformable SEMS placement in a cohort of consecutive symptomatic patients, with malignant colorectal obstruction, who were treated as a bridge to surgery. Technical success, clinical success, and adverse events were recorded. Results. Ten patients (7 male (70%, with a mean age of 69.2 ± 10.1, were evaluated. The mean length of the stenosis was 3.6 ± 0.6 cm. Five patients (50% were treated on an emergency basis. The median time from stent placement to surgery was 16 days (interquartile range 7–21. Technical and clinical success was achieved in all patients with a significant early improvement of symptoms. No adverse events due to the SEMS placement were observed. Conclusion. This pilot study confirmed the important role of nitinol conformable SEMS as a bridge to surgery option in the treatment of symptomatic malignant colorectal obstruction.

  17. Unravelling the role of zooxanthellae in the uptake and depuration of an essential metal in Exaiptasia pallida; an experiment using a model cnidarian

    International Nuclear Information System (INIS)

    Hardefeldt, Jannah M.; Reichelt-Brushett, Amanda J.

    2015-01-01

    Highlights: • We examined zooxanthellae and tissue zinc partitioning in Exaiptasia pallida. • Zooxanthellae density has a strong influence on whole organism metal loading. • Zooxanthellae loss through stress is likely to result in metal depuration. • There are implications for interpreting studies of metal loads in symbiotic organisms. • Studies of metal loads in symbiotic organisms must consider zooxanthellae density. - Abstract: Coral skeletons record historical trace metal levels in the environment, however, the use of coral skeletal records for biomonitoring studies mostly fail to consider the influence of metal regulation by the living components of coral and subsequent incorporation into the skeleton. This study presents Exaiptasia pallida as a representative of the living components of coral and shows metal partitioning between the tissue and zooxanthellae after chronic exposure to Zn. A strong tendency for preferential accumulation in the zooxanthellae occurred after 32 days exposure and Zn concentrations in tissue and zooxanthellae were 123.3 ± 0.7 mg kg −1 and 294.9 ± 8.5 respectively. This study shows zooxanthellae density plays an important role in controlling Zn loading in whole anemones and must be considered when investigating metal uptake and loading in zooxanthellate organisms. Further studies that investigate links between aragonite deposition rates and zooxanthellae density and incorporation pathways of metals into skeleton are warranted

  18. Heavy metals

    OpenAIRE

    Adriano, Domy; VANGRONSVELD, Jaco; Bolan, N.S.; Wenzel, W.W.

    2005-01-01

    - Sources of Metals in the Environment - Environmental Contamination - Retention and Dynamics of Metals in Soils - Adsorption - Complexation - Precipitation - Bioavailability–Natural Attenuation Interactions - Biological Response to Metals - Soil Remediation

  19. Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment

    Science.gov (United States)

    Weyens, Nele; Beckers, Bram; Schellingen, Kerim; Ceulemans, Reinhart; Croes, Sarah; Janssen, Jolien; Haenen, Stefan; Witters, Nele; Vangronsveld, Jaco

    2013-01-01

    Phytoextraction has been reported as an economically and ecologically sound alternative for the remediation of metal-contaminated soils. Willow is a metal phytoextractor of interest because it allows to combine a gradual contaminant removal with production of biomass that can be valorized in different ways. In this work two willow clones growing on a metal-contaminated site were selected: ‘Belgisch Rood’ (BR) with a moderate metal extraction capacity and ‘Tora’ (TO) with a twice as high metal accumulation. All cultivable bacteria associated with both willow clones were isolated and identified using 16SrDNA ARDRA analysis followed by 16SrDNA sequencing. Further all isolated bacteria were investigated for characteristics that might promote plant growth (production of siderophores, organic acids and indol acetic acid) and for their metal resistance. The genotypic and phenotypic characterization of the isolated bacteria showed that the TO endophytic bacterial population is more diverse and contains a higher percentage of metal-resistant plant growth promoting bacteria than the endophytic population associated with BR. We hypothesize that the difference in the metal accumulation capacity between BR and TO clones might be at least partly related to differences in characteristics of their associated bacterial population. PMID:23425076

  20. Development of a Couette-Taylor flow device with active minimization of secondary circulation

    International Nuclear Information System (INIS)

    Schartman, Ethan

    2009-01-01

    A novel Taylor-Couette experiment has been developed to produce rotating shear flows for the study of hydrodynamic and magnetohydrodynamic instabilities which are believed to drive angular momentum transport in astrophysical accretion disks. High speed, concentric, corotating cylinders generate the flow where the height of the cylinders is twice the radial gap width. Ekman pumping is controlled and minimized by splitting the vertical boundaries into pairs of nested, differentially rotating rings. The end rings and cylinders comprise four independently driven rotating components which provide exibility in developing flow profiles. The working fluids of the experiment are water, a water-glycerol mix, or a liquid gallium alloy. The mechanical complexity of the apparatus and large dynamic pressures generated by high speed operation with the gallium alloy presented unique challenges. The mechanical implementation of the experiment and some representative results obtained with Laser Doppler Velocimetry in water are discussed

  1. Development of a Couette-Taylor flow device with active minimization of secondary circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ethan Schartman

    2009-01-27

    A novel Taylor-Couette experiment has been developed to produce rotating shear ows for the study of hydrodynamic and magnetohydrodynamic instabilities which are believed to drive angular momentum transport in astrophysical accretion disks. High speed, concentric, corotating cylinders generate the flow where the height of the cylinders is twice the radial gap width. Ekman pumping is controlled and minimized by splitting the vertical boundaries into pairs of nested, differentially rotating rings. The end rings and cylinders comprise four independently driven rotating components which provide exibility in developing flow profiles. The working fluids of the experiment are water, a water-glycerol mix, or a liquid gallium alloy. The mechanical complexity of the apparatus and large dynamic pressures generated by high speed operation with the gallium alloy presented unique challenges. The mechanical implementation of the experiment and some representative results obtained with Laser Doppler Velocimetry in water are discussed.

  2. Management of pancreatic collections with a novel endoscopically placed fully covered self-expandable metal stent: a national experience (with videos).

    Science.gov (United States)

    Chandran, Sujievvan; Efthymiou, Marios; Kaffes, Arthur; Chen, John Wei; Kwan, Vu; Murray, Michael; Williams, David; Nguyen, Nam Quoc; Tam, William; Welch, Christine; Chong, Andre; Gupta, Saurabh; Devereaux, Ben; Tagkalidis, Peter; Parker, Frank; Vaughan, Rhys

    2015-01-01

    Recent medical literature on novel lumen-apposing stents for the treatment of pancreatic fluid collections (PFCs) is limited by small numbers, solo operators, and single-center experience. To evaluate a recently developed lumen-apposing, fully covered self-expandable metal stent (FCSEMS) in the management of PFCs. Retrospective case series. Thirteen tertiary and private health care centers across Australia. Forty-seven patients (median age 51 years) who underwent endoscopic management of PFCs. Insertion of FCSEMS after PFC puncture under EUS guidance. A subgroup of 9 patients underwent direct endoscopic necrosectomy. Technical and clinical success rate, adverse event rate. The technical success rate was 53 of 54 patients (98.1%), and the initial clinical success rate was 36 of 47 (76.6%), which was sustained for more than 6 months in 34 of 36 (94.4%). Early adverse events included 4 cases (7.4%) of stent migration during direct endoscopic necrosectomy, 4 cases (7.4%) of sepsis, 1 case (1.9%) of bleeding, and 1 case (1.9%) of stent migration into the fistula tract. Late adverse events were 6 (11.1%) spontaneous stent migrations, 3 (5.6%) recurrent stent occlusions, 3 (5.6%) tissue ingrowth/overgrowth, and 2 (3.7%) bleeding into PFC. The majority of stents inserted (48 of 54, 88.9%) and removed (31 of 35, 88.6%) in our study were described by the operator as superior to pigtail stents with regard to ease of use. Retrospective study. Although FCSEMSs are technically easier to insert and remove compared with traditional pigtail stents, there are significant limitations to the widespread use of FCSEMSs in the management of PFCs. These include cost, adverse events, and lower-than-expected resolution rates. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  3. Crack growth rates in thick materials of alloy 600 and weld metals of alloy 182 in laboratory primary water comparison with field Experience

    Energy Technology Data Exchange (ETDEWEB)

    Vaillant, F.; Moulart, P.; Boursier, J.M. [Electricite de France (EDF), 75 - Paris (France). Region d' Equipement; Amzallag, C. [Electricite de France (EDF), DIS/SEPTEN, 75 - Paris (France); Daret, J. [CEA Saclay, Dept. de Physico-Chimie DPC/SCCME, 91 - Gif sur Yvette (France)

    2002-07-01

    Since 1991, when a first leakage occurred on the vessel head of Bugey 3 RPV, an important investigation program was undertaken in laboratory in order to assess crack growth rates (CGRs) of vessel head penetrations (VHPs) in alloy 600 and weld metal in alloy 182 in primary environments. SCC (stress corrosion cracking) tests were performed between 290 C and 360 C on pre-cracked specimens under static loading. Alloy 600: On VHPs with YS{sub 20} ranging from 300 MPa to 468 MPa, it was found that the upper bound for CGRs were dependant on (K(T initial)-K(iscc)){sup 0.3}, in accordance with field experience. In laboratory condition, the activation energy was 130 {+-} 20 kJ/mol, the yield stress increased significantly CGRs but some coupling effects were noted with the microstructure. Cold work increased slightly CGRs on a VHP with initial YS = 468 MPa. Additional tests were performed at 290 C and 325 C on rolled bars, rolled plates and forged plates representative of the other components in alloy 600 of the primary circuit: products with low YS and high GBC had low sensitivity to SCC but it could be significantly increased with cold work raising at the level of 468 MPa, the highest YS investigated on VHPs. Stress relief treatment did not significantly modify SCC resistance. On ten products from the various components, the measured CGRs were strongly correlated to the material susceptibility index for SCC initiation. Alloy 182: Some comparisons were performed in laboratory, with different orientations. Similar trends to alloy 600 were found for the influences of K and temperature on CGRs. 10% cold work increased and stress relief treatment decreased CGRs by a factor 2. CGRs of cracks propagating in the direction of dendrites were 2 to 5 times higher than for cracks propagating in the perpendicular direction. For both alloys 600 and 182, a model is proposed to account for the effects of the main parameters on CGRs and the relevance to field experience is discussed

  4. Crack growth rates in thick materials of alloy 600 and weld metals of alloy 182 in laboratory primary water comparison with field Experience

    International Nuclear Information System (INIS)

    Vaillant, F.; Moulart, P.; Boursier, J.M.; Daret, J.

    2002-01-01

    Since 1991, when a first leakage occurred on the vessel head of Bugey 3 RPV, an important investigation program was undertaken in laboratory in order to assess crack growth rates (CGRs) of vessel head penetrations (VHPs) in alloy 600 and weld metal in alloy 182 in primary environments. SCC (stress corrosion cracking) tests were performed between 290 C and 360 C on pre-cracked specimens under static loading. Alloy 600: On VHPs with YS 20 ranging from 300 MPa to 468 MPa, it was found that the upper bound for CGRs were dependant on (K(T initial)-K(iscc)) 0.3 , in accordance with field experience. In laboratory condition, the activation energy was 130 ± 20 kJ/mol, the yield stress increased significantly CGRs but some coupling effects were noted with the microstructure. Cold work increased slightly CGRs on a VHP with initial YS = 468 MPa. Additional tests were performed at 290 C and 325 C on rolled bars, rolled plates and forged plates representative of the other components in alloy 600 of the primary circuit: products with low YS and high GBC had low sensitivity to SCC but it could be significantly increased with cold work raising at the level of 468 MPa, the highest YS investigated on VHPs. Stress relief treatment did not significantly modify SCC resistance. On ten products from the various components, the measured CGRs were strongly correlated to the material susceptibility index for SCC initiation. Alloy 182: Some comparisons were performed in laboratory, with different orientations. Similar trends to alloy 600 were found for the influences of K and temperature on CGRs. 10% cold work increased and stress relief treatment decreased CGRs by a factor 2. CGRs of cracks propagating in the direction of dendrites were 2 to 5 times higher than for cracks propagating in the perpendicular direction. For both alloys 600 and 182, a model is proposed to account for the effects of the main parameters on CGRs and the relevance to field experience is discussed. (authors)

  5. Phytoremediation of soils polluted by heavy metals and metalloids using crops: (ii early results from the in situ experiment of torviscosa (udine

    Directory of Open Access Journals (Sweden)

    Luca Marchiol

    Full Text Available Two annual high biomass yield crops – Sorghum bicolor and Helianthus annuus – were grown in a soil polluted by pyrite cinders. Specific aims of this work were: to observe the concentration of metals in plants during the crop cycle and to establish the amount of metal removal by the crops. The field trial was arranged in a randomized block design. The concentrations of heavy metals in the soil were: As 309, Cd 4.90, Co 50.9, Cu 1527, Pb 233 and Zn 980 mg kg-1. The crops received respectively mineral fertilization and organic amendment while plants in control soil did not receive any input. The phytoextraction potential of crops was estimated during the whole growth cycle; the concentration of the metals in the plant roots and in the harvestable biomass and two bioconcentration factors are reported. The amelioration of the nutritive status of soil resulted highly effective for the biomass yield but not in the concentration of metals in plant fractions. The evaluation of the potential of phytoremediation of our plants compared to other crops in terms of metal removal, was positive. Sorghum performed better than sunflower removing from the soil 220 g ha-1 of As, 5.6 g ha-1 of Cd, 30.2 g ha-1 of Co, 820 g ha-1 of Cu, 107 g ha-1 of Pb and 1944 g ha-1 of Zn.

  6. Phytoremediation of soils polluted by heavy metals and metalloids using crops: (ii early results from the in situ experiment of torviscosa (udine

    Directory of Open Access Journals (Sweden)

    Giuseppe Zerbi

    2011-02-01

    Full Text Available Two annual high biomass yield crops – Sorghum bicolor and Helianthus annuus – were grown in a soil polluted by pyrite cinders. Specific aims of this work were: to observe the concentration of metals in plants during the crop cycle and to establish the amount of metal removal by the crops. The field trial was arranged in a randomized block design. The concentrations of heavy metals in the soil were: As 309, Cd 4.90, Co 50.9, Cu 1527, Pb 233 and Zn 980 mg kg-1. The crops received respectively mineral fertilization and organic amendment while plants in control soil did not receive any input. The phytoextraction potential of crops was estimated during the whole growth cycle; the concentration of the metals in the plant roots and in the harvestable biomass and two bioconcentration factors are reported. The amelioration of the nutritive status of soil resulted highly effective for the biomass yield but not in the concentration of metals in plant fractions. The evaluation of the potential of phytoremediation of our plants compared to other crops in terms of metal removal, was positive. Sorghum performed better than sunflower removing from the soil 220 g ha-1 of As, 5.6 g ha-1 of Cd, 30.2 g ha-1 of Co, 820 g ha-1 of Cu, 107 g ha-1 of Pb and 1944 g ha-1 of Zn.

  7. Triticale (XTriticosecale W.) Heavy Metal Upptake as a Possibility of Food Chain Pollution in a Long-Term Field Experiment in Hungary

    Science.gov (United States)

    László Phd, M., ,, Dr.

    2009-04-01

    mixes and crackers due to a savory, nutty flavor. Etanol plants will pay a premium for triticale over barley since it has more starch and no hull, making alcohol production more efficient. Germany, France, China, Poland and Hungary account for nearly 90 percent of world triticale production (Donald et al. 2001). Heavy metals are dangerous because they tend to bioaccumulate in food chain. Bioaccumulation means an increase in the concentration of a chemical in a biological organism over time, compared to the chemical`s concentration in they environment. Compounds accumulate in living things any time they are taken up and stored faster han they are broken down (metabolize) or extreted. Crops have ability to heavy metal accumulation from fertilizers such as Cd, Pb, Cu, Zn etc. to a different degree (Lee et al. 2001, Scholz and Ellerbrock 2004). The main purposes of this study was to determine the triticale toxic element upptake by the soil, triticale leaf+straw and grain element concentrations on acid sandy soil in a long-term field fertilization experiment at Nyirlugos, Hungary in 1998. Material and Methods: Field experiments were carried out on an acidic sandy brown forest soil at Nyírlugos in East-Hungary from 1962 to 2005. Soil geochemical parameters were as follow: humus 0.6%, pH (H2O) 5.8, pH (KCl) 4.6, total N 32.8 mg/kg, AL (ammonium lactate soluble)- P2O5 43 mg/kg, AL-K2O 52 mg/kg. The experiments involved 32 NPKCaMg treatments in 4 replications giving a total of 128 plots. N levels were 0, 50, 100, 150 kg/ha/yr, P2O5 and K2O 0, 60, 120, 180 kg/ha/yr, CaCO3 0, 250, 500, 1000 kg/ha/yr and MgCO3 doses were 0, 140, 280 kg/ha/yr. Plot brutto size was 50 m2. Composite soil samples consisting of 25 subsamples collected at before flowering time from the ploughed layer of each plot. The so-called "mobile" fraction was extracted by ammonium-acetate+EDTA (AAc+EDTA, Lakanen and Ervio 1971) and the heavy metal determination by ICP-AES technic. Plant leaf+straw and seed

  8. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  9. New metals

    International Nuclear Information System (INIS)

    Bergqvist, U.

    1983-12-01

    The aim of this report is to estimate the exposure to various metals and metal compounds and discuss the available information of the possible toxic effects of these metals and compounds. In the first section, some metals are defined as those with either a large or a fast increasing exposure to living organisms. The available information on toxicity is discussed in the second section. In the third section interesting metals are defined as compounds having a large exposure and an apparent insufficient knowledge of their possible toxic effects. Comments on each of these metals are also to be found in the third section. (G.B.)

  10. Unravelling the role of zooxanthellae in the uptake and depuration of an essential metal in Exaiptasia pallida; an experiment using a model cnidarian.

    Science.gov (United States)

    Hardefeldt, Jannah M; Reichelt-Brushett, Amanda J

    2015-07-15

    Coral skeletons record historical trace metal levels in the environment, however, the use of coral skeletal records for biomonitoring studies mostly fail to consider the influence of metal regulation by the living components of coral and subsequent incorporation into the skeleton. This study presents Exaiptasia pallida as a representative of the living components of coral and shows metal partitioning between the tissue and zooxanthellae after chronic exposure to Zn. A strong tendency for preferential accumulation in the zooxanthellae occurred after 32 days exposure and Zn concentrations in tissue and zooxanthellae were 123.3±0.7 mg kg(-1) and 294.9±8.5 respectively. This study shows zooxanthellae density plays an important role in controlling Zn loading in whole anemones and must be considered when investigating metal uptake and loading in zooxanthellate organisms. Further studies that investigate links between aragonite deposition rates and zooxanthellae density and incorporation pathways of metals into skeleton are warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks.

    Science.gov (United States)

    Rüdel, Heinz; Díaz Muñiz, Cristina; Garelick, Hemda; Kandile, Nadia G; Miller, Bradley W; Pantoja Munoz, Leonardo; Peijnenburg, Willie J G M; Purchase, Diane; Shevah, Yehuda; van Sprang, Patrick; Vijver, Martina; Vink, Jos P M

    2015-05-01

    After the scientific development of biotic ligand models (BLMs) in recent decades, these models are now considered suitable for implementation in regulatory risk assessment of metals in freshwater bodies. The BLM approach has been described in many peer-reviewed publications, and the original complex BLMs have been applied in prospective risk assessment reports for metals and metal compounds. BLMs are now also recommended as suitable concepts for the site-specific evaluation of monitoring data in the context of the European Water Framework Directive. However, the use is hampered by the data requirements for the original BLMs (about 10 water parameters). Recently, several user-friendly BLM-based bioavailability software tools for assessing the aquatic toxicity of relevant metals (mainly copper, nickel, and zinc) became available. These tools only need a basic set of commonly determined water parameters as input (i.e., pH, hardness, dissolved organic matter, and dissolved metal concentration). Such tools seem appropriate to foster the implementation of routine site-specific water quality assessments. This work aims to review the existing bioavailability-based regulatory approaches and the application of available BLM-based bioavailability tools for this purpose. Advantages and possible drawbacks of these tools (e.g., feasibility, boundaries of validity) are discussed, and recommendations for further implementation are given.

  12. Theoretical Physics Division progress report

    International Nuclear Information System (INIS)

    1989-01-01

    The research areas covered in this report are solid state and quantum physics, theoretical metallurgy, fuel modelling and reactor materials, statistical physics and the theory of fluids. Attention is drawn to a number of items: (i) the application of theories of aerosol behaviour to the interpretation of conditions in the cover-gas space of a fast reactor; (ii) studies in non-linear dynamics, dynamical instabilities and chaotic behaviour covering for example, fluid behaviour in Taylor-Couette experiments, non-linear behaviour in electronic circuits and reaction-diffusion systems; (iii) the development of finite element computational techniques to describe the periodic behaviour of a system after a Hopf bifurcation and in simulating solidification processes; (iv) safety assessment of disposal concepts for low- and intermediate-level radioactive wastes. (U.K.)

  13. Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders

    International Nuclear Information System (INIS)

    Paoletti, M. S.; Lathrop, D. P.

    2011-01-01

    We present measurements of the angular momentum flux (torque) in Taylor-Couette flow of water between independently rotating cylinders for all regions of the (Ω 1 , Ω 2 ) parameter space at high Reynolds numbers, where Ω 1 (Ω 2 ) is the inner (outer) cylinder angular velocity. We find that the Rossby number Ro=(Ω 1 -Ω 2 )/Ω 2 fully determines the state and torque G as compared to G(Ro=∞)≡G ∞ . The ratio G/G ∞ is a linear function of Ro -1 in four sections of the parameter space. For flows with radially increasing angular momentum, our measured torques greatly exceed those of previous experiments [Ji et al., Nature (London), 444, 343 (2006)], but agree with the analysis of Richard and Zahn [Astron. Astrophys. 347, 734 (1999)].

  14. Evaluation of Orthopedic Metal Artifact Reduction Application in Three-Dimensional Computed Tomography Reconstruction of Spinal Instrumentation: A Single Saudi Center Experience.

    Science.gov (United States)

    Ali, Amir Monir

    2018-01-01

    The aim of the study was to evaluate the commercially available orthopedic metal artifact reduction (OMAR) technique in postoperative three-dimensional computed tomography (3DCT) reconstruction studies after spinal instrumentation and to investigate its clinical application. One hundred and twenty (120) patients with spinal metallic implants were included in the study. All had 3DCT reconstruction examinations using the OMAR software after obtaining the informed consents and approval of the Institution Ethical Committee. The degree of the artifacts, the related muscular density, the clearness of intermuscular fat planes, and definition of the adjacent vertebrae were qualitatively evaluated. The diagnostic satisfaction and quality of the 3D reconstruction images were thoroughly assessed. The majority (96.7%) of 3DCT reconstruction images performed were considered satisfactory to excellent for diagnosis. Only 3.3% of the reconstructed images had rendered unacceptable diagnostic quality. OMAR can effectively reduce metallic artifacts in patients with spinal instrumentation with highly diagnostic 3DCT reconstruction images.

  15. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  16. Experience Of Using Metal-and-Concrete Cask TUK-108/1 For Storage And Transportation Of Spent Nuclear Fuel Of Decommissioned NPS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, E.; Dyer, R. [Environmental Protection Agency, Ronald Reagan Bldg. 3rd Floor 1200 Pennsylvania Av., NW Washington, D.C. 20024 (United States); Snipes, R. [Oak Ridge National Laboratories, VA (United States); Dolbenkov, V.G.; Guskov, V.D.; Korotkov, G.V. [Joint Stock Company ' KBSM' , 64 Lesnoy Av., St.Petersburg 194100 (Russian Federation); Makarchuk, T.F. [Joint Stock Company ' Atomstroyexport' , Potapovskiy str. 5, bld. 4, Moscow, 101990 (Russian Federation); Zakharchev, A.A. [State Corporation ' Rosatom' , 24-26 Ordinka St., Moscow, 100000 (Russian Federation)

    2009-06-15

    In past 10 years in Russia an intensive development of a new technology of management of spent nuclear fuel (SNF) has taken place. This technology is based on the concept of using a shielded cask which provides safety of its content (SNF) and meeting all other safety requirements to storage and transportation of SNF. Radiation protection against emission and non-propagation of activity outside the cask is ensured by the physical barriers such as all-metal or composite body, face work, inner structures to accommodate spent fuel assemblies (SFA), lids with sealing systems. Residual heat buildup is off-taken to the environment by natural way: emission and convection of surrounding air. The necessity in development of the cask technology of SNF management was conditioned by the situation at hand with defueling of Russian decommissioned nuclear-powered submarines (NPS) as the existed transport infrastructure and enterprises involved in fuel processing could not meet the demand for transportation and processing of SNF neither from reactors of all dismantled NPS, nor from reactors of NPS waiting for decommissioning. The US and Norway actively participated in the trilateral joint project with the Russian Federation aimed at creation of a cask prototype for interim storage and transportation of SNF of dismantled NPS. The 1.1 Project is a part of the Arctic Military Environmental Cooperation (AMEC) Program. In December 2000 the project was successfully completed by issuance of the certificate-permit for design and transportation of NP Submarine SNF. It was a first certified dual-purpose TUK from the MMC family. In these years 106 TUK-108/1 casks have been manufactured and supplied to PO Mayak, JSC CS Zvezda, JSC CS Zvezdochka and FSUE DalRAO. The storage pads for interim storage of TUK-108/1 have been built and currently are in operation on sites of SNF unloading from submarine reactors and SNF cask-loading such as JSC CS Zvezda, JSC CS Zvezdochka and FSUE DalRAO. In

  17. Experience of the metal condition examination after 200 thousand hours of operation in view of an opportunity of service life extension

    International Nuclear Information System (INIS)

    Abagyan, A.; Bakirov, M.; Kamyshnikov, O.; Potapov, V.; Ivanenko, I.; Frolov, I.; Zabruskov, N.

    2002-01-01

    In the report the methods and technologies for non-destructive testing of mechanical properties are considered, used by the VNIIAES for the examination of metal condition of elements after 200 thousand hours of operation and within the Program for Life Extension of the units 3 and 4 of the Novo Voronezh NPP and units 1 and 2 of the Kola NPP. The results of the experimental investigations od metal of piping and components by destructive and specimen-free non-destructive methods with the purpose to assess the variation of physical and mechanical properties of steel during extended period after long-term operation are also discussed. The results of the non-destructive analysis allow to expand essentially the scope of examined elements and to obtain data for the assessment of the technical condition and the residual lifetime of piping and components and the investigated units

  18. Performance of metal compound on thermolysis and electrolysis on sugar industries waste water treatment: COD and color removal with sludge analysis (batch-experiment)

    Science.gov (United States)

    Sahu, Omprakash

    2017-10-01

    The sugar cane industry is one of the most water demanding industries. Sugar industries consume and generate excess amount of water. The generated water contains organic compounds, which would cause pollution. The aim of this research work is to study the effectiveness of metal compound for treatment of sugar industry waste water by thermolysis and electrolysis process. The result shows ferrous metal catalyst shows 80 and 85 % chemical oxygen demand and color removal at pH 6, optimum mass loading 4 kg/m3, treatment temperature 85 °C and treatment time 9 h. When ferrous material was used as electrode, maximum 81 % chemical oxygen demand and 84 % color removal at pH 6, current density 156 Am-2, treatment time 120 min and anode consumption 0.7 g for 1.5 L wastewater were obtained.

  19. Self-expandable metal stent for palliation of malignant dysphagia & quality of life improvement in advanced cancer esophagus: Upper Egypt experience

    OpenAIRE

    Mohamed Abdelshafy; Mohammed A. Omar; Mohamed Abdel Bary; Mohamed Mostafa Wahaman; Rafaat Abd elaal Bakheet

    2017-01-01

    Background: In advanced cancer esophagus patients, self-expandable metallic stents (SEMS) are utilized to relieve malignant difficulty in swallowing and improve their quality of the life. Retrospectively, we evaluated the efficacy, feasibility, and outcomes of SEMS in palliation of malignant dysphagia in advanced cancer esophagus and its' complications. Methods: We retrospectively reviewed data of 350 patients with malignant dysphagia due to advanced cancer esophagus from December 2012 to ...

  20. Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: a comprehensive comparison with many-body GW and experiments

    Science.gov (United States)

    Gerosa, M.; E Bottani, C.; Di Valentin, C.; Onida, G.; Pacchioni, G.

    2018-01-01

    Understanding the electronic structure of metal oxide semiconductors is crucial to their numerous technological applications, such as photoelectrochemical water splitting and solar cells. The needed experimental and theoretical knowledge goes beyond that of pristine bulk crystals, and must include the effects of surfaces and interfaces, as well as those due to the presence of intrinsic defects (e.g. oxygen vacancies), or dopants for band engineering. In this review, we present an account of the recent efforts in predicting and understanding the optoelectronic properties of oxides using ab initio theoretical methods. In particular, we discuss the performance of recently developed dielectric-dependent hybrid functionals, providing a comparison against the results of many-body GW calculations, including G 0 W 0 as well as more refined approaches, such as quasiparticle self-consistent GW. We summarize results in the recent literature for the band gap, the band level alignment at surfaces, and optical transition energies in defective oxides, including wide gap oxide semiconductors and transition metal oxides. Correlated transition metal oxides are also discussed. For each method, we describe successes and drawbacks, emphasizing the challenges faced by the development of improved theoretical approaches. The theoretical section is preceded by a critical overview of the main experimental techniques needed to characterize the optoelectronic properties of semiconductors, including absorption and reflection spectroscopy, photoemission, and scanning tunneling spectroscopy (STS).

  1. Metallization of some simple systems

    International Nuclear Information System (INIS)

    Ross, M.; McMahan, A.K.

    1981-01-01

    We discuss the metallization of Xe, Ar, He, I 2 , H 2 , and N 2 in terms of some recent theoretical work and shock-wave experiments. New shock-wave data on liquid hydrogen and deuterium leads to a predicted pressure above 3 Mbar for the appearance of a monatomic metal phase. We expect CsI to become metallic near 0.8 Mbar

  2. Metallic nanomesh

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Sun, Tianyi; Guo, Chuanfei

    2018-02-20

    A transparent flexible nanomesh having at least one conductive element and sheet resistance less than 300.OMEGA./.quadrature. when stretched to a strain of 200% in at least one direction. The nanomesh is formed by depositing a sacrificial film, depositing, etching, and oxidizing a first metal layer on the film, etching the sacrificial film, depositing a second metal layer, and removing the first metal layer to form a nanomesh on the substrate.

  3. Metal-ligand interactions

    Science.gov (United States)

    Ervin, Kent M.

    Experimental studies of the interactions of small transition-metal cluster anions with carbonyl ligands are reviewed and compared with neutral and cationic clusters. Under thermal conditions, the reaction rates of transition-metal clusters with carbon monoxide are measured as a function of cluster size. Saturation limits for carbon monoxide addition can be related to the geometric structures of the clusters. Both energy-resolved threshold collision-induced dissociation experiments and time-resolved photodissociation experiments are used to measure metal-carbonyl binding energies. For platinum and palladium trimer anions, the carbonyl binding energies are assigned to different geometric binding sites. Platinum and palladium cluster anions catalyse the oxidation of carbon monoxide to carbon dioxide in a full catalytic cycle at thermal energies.

  4. A Retrospective on Modulated Wavy Vortex Flow

    OpenAIRE

    Gorman, Michael; Swinney, Harry

    2009-01-01

    A fluid dynamics video of the Modulated Wavy Vortex Flow state of Taylor-Couette flow with the outer cylinder fixed is presented. This state precedes the transition to turbulence, which is more gradual than that for other fluid systems.

  5. "Greening" a Familiar General Chemistry Experiment: Coffee Cup Calorimetry to Determine the Enthalpy of Neutralization of an Acid-Base Reaction and the Specific Heat Capacity of Metals

    Science.gov (United States)

    Bopegedera, A. M. R. P.; Perera, K. Nishanthi R.

    2017-01-01

    Coffee cup calorimetry, performed with calorimeters made with styrofoam coffee cups, is a familiar experiment in the general chemistry laboratory. These calorimeters are inexpensive, easy to use, and provide good insulation for most thermodynamics experiments. This paper presents the successful substitution of paper coffee cups for styrofoam cups…

  6. Buckling and reaction rate experiments in plutonium/uranium metal fuelled, graphite moderated lattices at temperatures up to 400 deg. C. Part I: Experimental techniques and results

    Energy Technology Data Exchange (ETDEWEB)

    Carter, D H; Clarke, W G; Gibson, M; Hobday, R; Hunt, C; Marshall, J; Puckett, B J; Symons, C R; Wass, T [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1964-07-15

    This report presents experimental measurements of bucklings, flux fine structure and fission rate distributions in graphite moderated lattices fuelled with plutonium/uranium metal at temperatures up to 400 deg. C in the sub-critical assemblies SCORPIO I and SCORPIO II. The experimental techniques employed are described in some detail. The accuracy of the experimental measurements appears to be adequate for testing methods of calculation being developed for the calculation of reactivity and temperature coefficient of reactivity for power reactors containing plutonium and uranium. (author) 26 refs, 17 tabs, 17 figs

  7. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments

    Science.gov (United States)

    Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.

    2016-09-01

    We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.

  8. X-ray M4,5 Resonant Raman Scattering from La metal with final 4p hole: Calculations with 4p-4d-4f configuration interaction in the final state and comparison with the experiment

    International Nuclear Information System (INIS)

    Taguchi, M.; Braicovich, L.; Tagliaferri, A.; Dallera, C.; Giarda, K.; Ghiringhelli, G.; Brookes, N.B.; Borgatti, F.

    2001-03-01

    We consider the X-Ray Resonant Raman Scattering (RRS) in La in the whole M 4,5 region ending with a state with a 4p hole, along the sequence 3d 10 4f 0 →3d 9 4f 1 →3d 10 4p 5 4f 1 . The final state configuration mixes with that with two 4d holes i.e. 3d 10 4d 8 4f n+2 having almost the same energy. Thus RRS must be described by introducing final state Configuration Interaction (CI) between states with one 4p hole and with two 4d holes. This approach allows detailed experimental data on La-metal to be interpreted on the basis of a purely ionic approach. It is shown that the inclusion of CI is crucial and has very clear effects. The calculations with the Kramers-Heisenberg formula describe all measured spectral features appearing in the strict Raman regime i.e. dispersing with the incident photon energy. In the experiment also a nondispersive component is present when the excitation energy is greater than about 2 eV above the M 5 peak. The shape and position of this component is well accounted for by a model based on all possible partitions of the excitation energy between localised and extended states. However, the intensity of the nondispersive component is greater in the measurements, suggesting a rearrangement in the intermediate excited state. The comparison of ionic calculations with the metal measurements is legitimate, as shown by the comparison between the measurements on La-metal and on LaF 3 with M 5 excitation, giving the same spectrum within the experimental accuracy. Moreover, the experiment shows that the final lifetime broadening is much greater in the final states corresponding to lower outgoing photon energies than in the states corresponding to higher outgoing photon energies. (author)

  9. Preoperative Computed Tomography-Guided Percutaneous Hookwire Localization of Metallic Marker Clips in the Breast with a Radial Approach: Initial Experience

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, T.; Kasami, M.; Uchida, Y.; Sanuki, J.; Kimura, K.; Tanaka, K.; Takahashi, K. [Dept. of Diagnostic Radiology, Dept. of Pathology, and Dept. of Breast Surgery, Shizuoka Cancer Center Hospital, Naga-izumi, Shizuoka (Japan)

    2007-07-15

    Background: Hookwire localization is the current standard technique for radiological marking of nonpalpable breast lesions. Stereotactic directional vacuum-assisted breast biopsy (SVAB) is of sufficient sensitivity and specificity to replace surgical biopsy. Wire localization for metallic marker clips placed after SVAB is needed. Purpose: To describe a method for performing computed tomography (CT)-guided hookwire localization using a radial approach for metallic marker clips placed percutaneously after SVAB. Material and Methods: Nineteen women scheduled for SVAB with marker-clip placement, CT-guided wire localization of marker clips, and, eventually, surgical excision were prospectively entered into the study. CT-guided wire localization was performed with a radial approach, followed by placement of a localizing marker-clip surgical excision. Feasibility and reliability of the procedure and the incidence of complications were examined. Results: CT-guided wire localization surgical excision was successfully performed in all 19 women without any complications. The mean total procedure time was 15 min. The median distance on CT image from marker clip to hookwire was 2 mm (range 0-3 mm). Conclusion: CT-guided preoperative hookwire localization with a radial approach for marker clips after SVAB is technically feasible.

  10. Preoperative computed tomography-guided percutaneous hookwire localization of metallic marker clips in the breast with a radial approach: initial experience.

    Science.gov (United States)

    Uematsu, T; Kasami, M; Uchida, Y; Sanuki, J; Kimura, K; Tanaka, K; Takahashi, K

    2007-06-01

    Hookwire localization is the current standard technique for radiological marking of nonpalpable breast lesions. Stereotactic directional vacuum-assisted breast biopsy (SVAB) is of sufficient sensitivity and specificity to replace surgical biopsy. Wire localization for metallic marker clips placed after SVAB is needed. To describe a method for performing computed tomography (CT)-guided hookwire localization using a radial approach for metallic marker clips placed percutaneously after SVAB. Nineteen women scheduled for SVAB with marker-clip placement, CT-guided wire localization of marker clips, and, eventually, surgical excision were prospectively entered into the study. CT-guided wire localization was performed with a radial approach, followed by placement of a localizing marker-clip surgical excision. Feasibility and reliability of the procedure and the incidence of complications were examined. CT-guided wire localization surgical excision was successfully performed in all 19 women without any complications. The mean total procedure time was 15 min. The median distance on CT image from marker clip to hookwire was 2 mm (range 0-3 mm). CT-guided preoperative hookwire localization with a radial approach for marker clips after SVAB is technically feasible.

  11. Management of malignant biliary obstruction: Technical and clinical results using an expanded polytetrafluoroethylene fluorinated ethylene propylene (ePTFE/FEP)-covered metallic stent after 6-year experience

    Energy Technology Data Exchange (ETDEWEB)

    Fanelli, Fabrizio; Orgera, Gianluigi; Bezzi, Mario; Rossi, Plinio; Allegritti, Massimiliano; Passariello, Roberto [University of Rome, Department of Radiological Sciences, Rome (Italy)

    2008-05-15

    To evaluate the efficacy and safety of an expanded polytetrafluoroethylene-fluorinated ethylene-propylene (ePTFE/FEP)-covered metallic stent in the management of malignant biliary obstruction. Eighty consecutive patients with malignant common bile duct strictures were treated by placement of 83 covered metallic stents. The stent-graft consists of an inner ePTFE/FEP lining and an outer supporting structure of nitinol wire. Clinical evaluation, assessment of serum bilirubin and liver enzyme levels were analyzed before biliary drainage, before stent-graft placement and during the follow-up period at 1, 3, 6, 9 and 12 months. Technical success was obtained in all cases. After a mean follow-up of 6.9{+-}4.63 months, the 30-day mortality rate was 14.2%. Survival rates were 40% and 20.2% at 6 and 12 months, respectively. Stent-graft patency rates were 95.5%, 92.6% and 85.7% at 3, 6 and 12 months, respectively. Complications occurred in five patients (6.4%); among these, acute cholecystitis was observed in three patients (3.8%). A stent-graft occlusion rate of 9% was observed. The percentage of patients undergoing lifetime palliation (91%) and the midterm patency rate suggest that placement of this ePTFE/FEP-covered stent-graft is safe and highly effective in achieving biliary drainage in patients with malignant strictures of the common bile duct. (orig.)

  12. [The application of Y-shaped self-expandable covered metal stents in the thoracostomach-airway fistula: a single center, 11 years experience].

    Science.gov (United States)

    Fang, Yi; Li, Tengfei; Han, Xinwei; Wu, Gang; Ren, Jianzhuang; Ren, Kewei; Lu, Huibin; Zhang, Quanhui; Li, Zongming

    2015-08-01

    To investigate the clinical feasibility and efficacy of Y-shaped self-expandable covered metal stents (Y-stents) in the management of thoracostomach-airway fistula. Retrospective analysis was performed for 108 patients treated for thoracostomach-airway fistula with Y-shaped self-expandable coated metal stents between April 2003 and October 2014. Y-stents were designed based on the dimensions of trachea and bronchus and sites of the fistula and then were inserted under DSA monitoring. There were 65 cases with single big Y-stent placement, 26 cases with single small Y-stent placement, 23 cases with double Y-stents placement, and 1 case with 3 Y-stents placement. Stent implantation was successfully accomplished with single manipulation in all patients. Complete occlusion of the fistula was obtained in 104 patients after the primary manipulation, and 4 patients required a secondary manipulation where a double Y-stents was inserted because of failure of primary manipulate. Ninety-two patients completed the follow-up , while 16 were lost. Fifty-nine patients died while 33 were alive with marked improvement in their quality of life. The placement of Y-stents can effectively occlude the thoracostomach-airway fistula in patients who had had the esophageal tumors resected. The technique is not only feasible but reliable to improve the quality of life of the patients.

  13. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  14. Recent materials compatibility studies in refractory metal-alkali metal systems for space power applications.

    Science.gov (United States)

    Harrison, R. W.; Hoffman, E. E.; Davies, R. L.

    1972-01-01

    Advanced Rankine and other proposed space power systems utilize refractory metals in contact with both single-phase and two-phase alkali metals at elevated temperatures. A number of recent compatibility experiments are described which emphasize the excellent compatibility of refractory metals with the alkali metals, lithium, sodium, and potassium, under a variety of environmental conditions. The alkali metal compatibilities of tantalum-, columbium-, molybdenum-, and tungsten-base alloys are discussed.

  15. The integrated place of tracheobronchial stents in the multidisciplinary management of large post-pneumonectomy fistulas: our experience using a novel customised conical self-expandable metallic stent.

    Science.gov (United States)

    Dutau, Hervé; Breen, David Patrick; Gomez, Carine; Thomas, Pascal Alexandre; Vergnon, Jean-Michel

    2011-02-01

    Stump dehiscence after pneumonectomy is a cause of morbidity and mortality in patients treated for non-small-cell lung carcinoma. Surgical repair remains the treatment of choice but can be postponed or contraindicated. Bronchoscopic techniques may be an option with curative intent or as a bridge towards definitive surgery. The aim of the study is to evaluate the efficacy and the outcome of a new customised covered conical self-expandable metallic stent in the management of large bronchopleural fistulas complicating pneumonectomies. A case series using chart review of non-operable patients presenting with large bronchopleural fistulas (>6mm) post-pneumonectomies as a definitive treatment with curative intent for non-small-cell lung carcinomas and requiring the use of a dedicated conical shaped stent in two tertiary referral centres. Seven patients presenting large post-pneumonectomy fistulas (between 6 and 12 mm) were included. Cessation of the air leak and clinical improvement was achieved in all the patients after stent placement. Stent-related complications (two migrations and one stent rupture) were successfully managed using bronchoscopic techniques in two patients and surgery in one. Mortality, mainly related to overwhelming sepsis, was 57%. Delayed definitive surgery was achieved successfully in three patients (43%). This case series assesses the short-term clinical efficacy of a new customised covered conical self-expandable metallic stent in the multidisciplinary management of large bronchopleural fistulas complicating pneumonectomies in patients deemed non-operable. Long-term benefits are jeopardised by infectious complications. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  16. Metallic coating of microspheres

    International Nuclear Information System (INIS)

    Meyer, S.F.

    1980-01-01

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  17. Treatment of Benign and Malignant Tracheobronchial Obstruction with Metal Wire Stents: Experience with a Balloon-Expandable and a Self-Expandable Stent Type

    International Nuclear Information System (INIS)

    Rieger, Johannes; Hautmann, Hubert; Linsenmaier, Ulrich; Weber, Cristoph; Treitl, Markus; Huber, R.M.; Pfeifer, Klaus-Juergen

    2004-01-01

    Over the last few years various types of metal wire stents have been increasingly employed in the treatment of both malignant and benign tracheobronchial obstruction. To date, however, few studies have investigated the in vivo properties of different stent types. We implanted 26 balloon-expandable tantalum Strecker stents (18 patients) and 18 self-expandable Wallstents (16 patients) into the tracheobronchial system of 30 patients with combined stenting in 4 patients. Mean age was 51 years (range: 0.5-79 years). Malignant disease was present in 23 patients, benign disease in seven patients. Both patients and individual stents were monitored clinically and radiographically. The probability of stents remaining within the tracheobronchial system, and of their remaining undislocated and uncompressed was calculated using Kaplan-Meier analysis for both stent types. Average stent follow-up time was 112 days until explantation and 115 days until patients' death or discharge. Kaplan-Meier analysis revealed a higher probability for the Wallstent to remain within the tracheobronchial system. Dislocation and compression occurred more rarely. Explantation, however, if desired, was more difficult compared to the Strecker stent. The Wallstent also led to the formation of granulation tissue, especially at the proximal stent end, frequently requiring reintervention. Both stent types proved to be effective therapeutic options in the management of obstructive tracheobronchial disease. The mechanical properties of the Strecker stent seem to be less favorable compared to the Wallstent but removal is easy. For benign disease, however, the Wallstent reveals limitations due to significant side effects

  18. Self and transport diffusivity of CO2 in the metal-organic framework MIL-47(V) explored by quasi-elastic neutron scattering experiments and molecular dynamics simulations.

    Science.gov (United States)

    Salles, Fabrice; Jobic, Hervé; Devic, Thomas; Llewellyn, Philip L; Serre, Christian; Férey, Gérard; Maurin, Guillaume

    2010-01-26

    Quasi-elastic neutron scattering measurements are combined with molecular dynamics simulations to determine the self-diffusivity, corrected diffusivity, and transport diffusivity of CO(2) in the metal-organic framework MIL-47(V) (MIL = Materials Institut Lavoisier) over a wide range of loading. The force field used for describing the host/guest interactions is first validated on the thermodynamics of the MIL-47(V)/CO(2) system, prior to being transferred to the investigations of the dynamics. A decreasing profile is then deduced for D(s) and D(o) whereas D(t) presents a non monotonous evolution with a slight decrease at low loading followed by a sharp increase at higher loading. Such decrease of D(t) which has never been evidenced in any microporous systems comes from the atypical evolution of the thermodynamic correction factor that reaches values below 1 at low loading. This implies that, due to intermolecular interactions, the CO(2) molecules in MIL-47(V) do not behave like an ideal gas. Further, molecular simulations enabled us to elucidate unambiguously a 3D diffusion mechanism within the pores of MIL-47(V).

  19. Fluoroscopic removal of retrievable self-expandable metal stents in patients with malignant oesophageal strictures: Experience with a non-endoscopic removal system.

    Science.gov (United States)

    Kim, Pyeong Hwa; Song, Ho-Young; Park, Jung-Hoon; Zhou, Wei-Zhong; Na, Han Kyu; Cho, Young Chul; Jun, Eun Jung; Kim, Jun Ki; Kim, Guk Bae

    2017-03-01

    To evaluate clinical outcomes of fluoroscopic removal of retrievable self-expandable metal stents (SEMSs) for malignant oesophageal strictures, to compare clinical outcomes of three different removal techniques, and to identify predictive factors of successful removal by the standard technique (primary technical success). A total of 137 stents were removed from 128 patients with malignant oesophageal strictures. Primary overall technical success and removal-related complications were evaluated. Logistic regression models were constructed to identify predictive factors of primary technical success. Primary technical success rate was 78.8 % (108/137). Complications occurred in six (4.4 %) cases. Stent location in the upper oesophagus (P=0.004), stricture length over 8 cm (P=0.030), and proximal granulation tissue (Pstent location in the upper oesophagus, and stricture length over 8 cm were negative predictive factors for primary technical success by standard extraction and may require a modified removal technique. • Fluoroscopic retrievable SEMS removal is safe and effective. • Standard removal technique by traction is effective in the majority of patients. • Three negative predictive factors of primary technical success were identified. • Caution should be exercised during the removal in those situations. • Eversion technique is effective in cases of proximal granulation tissue.

  20. How to design the optimal self-expandable oesophageal metallic stents: 22 years of experience in 645 patients with malignant strictures.

    Science.gov (United States)

    Na, Han Kyu; Song, Ho-Young; Kim, Jin Hyoung; Park, Jung-Hoon; Kang, Min Kyoung; Lee, Jongjin; Oh, Se Jin

    2013-03-01

    To evaluate the clinical efficacy and safety of self-expandable metallic stent (SEMS) placement for malignant oesophageal strictures and their relationship with stent designs. Seven generations of SEMS were used to treat 645 consecutive patients with oesophageal strictures. Logistic regression models were constructed to identify predictive factors associated with complications. Stent placement was technically successful in 641 of 645 patients (99.4%). The clinical success rate was 95.5%. There were 260 (40.3%) complications after stent placement. Due to complications, 68 stents were removed; 66 of 68 stents (97.1%) were removed successfully. Stainless steel (SS) stents (odds ratio [OR] 4.18; 95% confidence interval [CI] 2.10, 8.32) and radiation therapy (RT) before stent placement (OR 4.23; CI 2.02, 8.83) were significantly associated with severe pain. Flared ends (OR 9.63; CI 3.38, 27.43), stricture length stent diameter stent migration. Polyurethane membranes were associated with more frequent tumour ingrowth than polytetrafluoroethylene (PTFE) membranes (P = 0.002). Despite the relatively high complication rate, retrievable self-expandable PTFE-covered nitinol stents equipped with a head and a tail appeared to be an effective treatment for malignant oesophageal strictures.

  1. Casimir Repulsion between Metallic Objects in Vacuum

    International Nuclear Information System (INIS)

    Levin, Michael; McCauley, Alexander P.; Rodriguez, Alejandro W.; Reid, M. T. Homer; Johnson, Steven G.

    2010-01-01

    We give an example of a geometry in which two metallic objects in vacuum experience a repulsive Casimir force. The geometry consists of an elongated metal particle centered above a metal plate with a hole. We prove that this geometry has a repulsive regime using a symmetry argument and confirm it with numerical calculations for both perfect and realistic metals. The system does not support stable levitation, as the particle is unstable to displacements away from the symmetry axis.

  2. Experiments on the Haeffner effect i. e. isotope enrichment on passage of high current densities through metallic melts. [Lithium]. Versuche zum Haeffner-Effekt (Isotopenanreicherung beim Durchgang von Gleichstrom hoher Stromdichte durch Metallschmelzen)

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G

    1962-01-01

    The Haeffner effect (E. Haeffner 1953) found first with mercury and later confirmed with several other metals consists in an enrichment of the lighter isotopes at the anode end, and of the heavier isotopes at the cathode end. In the present work measurements were made on molten lithium. To keep current intenisities within reasonable limits the experiments were done in steel capillaries of 0.6 mm inner diameter and lengths 22-43 cm. Current densities were 6000-7400 A/cm/sup 2/ and the duration 150 h. Neutron activation was used as isotope analysis method. Surprisingly and in contrast to previous measurements an enrichment of Li/sub 6/ of about 1% was found at the ends of the capillary relative to its middle. This was independent of the current direction. No explanation of the effect is given.

  3. Long-term safety and outcome of a temporary self-expanding metallic stent for achalasia: a prospective study with a 13-year single-center experience

    International Nuclear Information System (INIS)

    Zhao, Jun-Gong; Li, Yong-Dong; Li, Ming-Hua; Shang, Ke-Zhong; Cheng, Ying-Sheng; Chen, Ni-Wei; Chen, Wei-Xiong

    2009-01-01

    To prospectively evaluate the long-term clinical safety and efficacy of a newly designed self-expanding metallic stent (SEMS) in the treatment of patients with achalasia. Seventy-five patients with achalasia were treated with a temporary SEMS with a 30-mm diameter. The SEMSs were placed under fluoroscopic guidance and removed by gastroscopy 4-5 days after stent placement. Follow-up data focused on dysphagia score, technique and clinical success, clinical remissions and failures, and complications and was performed at 6 months, 1 year, and within 3 to 5 years, 5 to 8 years, 8 to 10 years, and >10 years postoperatively. Stent placement was technically successful in all patients. Complications included stent migration (n=4, 5.33%), chest pain (n=28, 38.7%), reflux (n=15, 20%), and bleeding (n=9, 12%). No perforation or 30-day mortality occurred. Clinical success was achieved in all patients 1 month after stent removal. The overall remission rates at 6 months, 1, 1-3, 3-5, 5-8, 8-10, and >10 year follow-up periods were 100%, 96%, 93.9%, 90.9%, 100%, 100%, and 83.3%, respectively. Stent treatment failed in six patients, and the overall remission rate in our series was 92%. The median and mean primary patencies were 2.8 ± 0.28 years (95% CI: 2.25-3.35) and 4.28 ± 0.40 years (95% CI: 3.51-5.05), respectively. The use of temporary SEMSs with 30-mm diameter proved to be a safe and effective approach for managing achalasia with a long-term satisfactory clinical remission rate. (orig.)

  4. Long-term safety and outcome of a temporary self-expanding metallic stent for achalasia: a prospective study with a 13-year single-center experience

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun-Gong; Li, Yong-Dong; Li, Ming-Hua; Shang, Ke-Zhong [Shanghai Tong Ji University, Department of Radiology, Tenth Affiliated People' s Hospital, Shanghai (China); Cheng, Ying-Sheng [Shanghai Tong Ji University, Department of Radiology, Tenth Affiliated People' s Hospital, Shanghai (China); Shanghai Jiao Tong University, Department of Radiology, Sixth Affiliated People' s Hospital, Shanghai (China); Chen, Ni-Wei; Chen, Wei-Xiong [Shanghai Jiao Tong University, Department of Gastroenterology, Sixth Affiliated People' s Hospital, Shanghai (China)

    2009-08-15

    To prospectively evaluate the long-term clinical safety and efficacy of a newly designed self-expanding metallic stent (SEMS) in the treatment of patients with achalasia. Seventy-five patients with achalasia were treated with a temporary SEMS with a 30-mm diameter. The SEMSs were placed under fluoroscopic guidance and removed by gastroscopy 4-5 days after stent placement. Follow-up data focused on dysphagia score, technique and clinical success, clinical remissions and failures, and complications and was performed at 6 months, 1 year, and within 3 to 5 years, 5 to 8 years, 8 to 10 years, and >10 years postoperatively. Stent placement was technically successful in all patients. Complications included stent migration (n=4, 5.33%), chest pain (n=28, 38.7%), reflux (n=15, 20%), and bleeding (n=9, 12%). No perforation or 30-day mortality occurred. Clinical success was achieved in all patients 1 month after stent removal. The overall remission rates at 6 months, 1, 1-3, 3-5, 5-8, 8-10, and >10 year follow-up periods were 100%, 96%, 93.9%, 90.9%, 100%, 100%, and 83.3%, respectively. Stent treatment failed in six patients, and the overall remission rate in our series was 92%. The median and mean primary patencies were 2.8 {+-} 0.28 years (95% CI: 2.25-3.35) and 4.28 {+-} 0.40 years (95% CI: 3.51-5.05), respectively. The use of temporary SEMSs with 30-mm diameter proved to be a safe and effective approach for managing achalasia with a long-term satisfactory clinical remission rate. (orig.)

  5. Ageing of metallic gaskets for spent fuel casks: Century-long life forecast from 25,000-h-long experiments

    International Nuclear Information System (INIS)

    Sassoulas, H.; Morice, L.; Caplain, P.; Rouaud, C.; Mirabel, L.; Beal, F.

    2006-01-01

    An experimental programme is being carried out that aims at quantifying the relaxation of four types of metallic HELICOFLEX[reg] seals during their use in spent nuclear fuel storage casks. Two types of lining are taken into account: aluminium and silver. Tests longer than 10,000 h are implemented only for silver. For each type of lining, two different section diameters are investigated. The work aims at evaluating the minimum residual linear load that can be guaranteed for a seal after a particular time of relaxation. This relaxation depends on the evolution of the seal temperature with time. Therefore, holds of seals tightened between two flanges have been performed at several constant temperatures, including 100 and 200 deg. C. Residual load and 'useful' recovery have been measured after the holds. Results are interpreted according to two methods: a time extrapolation, and a time-temperature equivalence parameter. Both methods are based on linear relationships and are assessed through a statistical analysis (calculation of scatter) which is also used to determine a minimum guaranteed residual load. Finite element simulations of the relaxation of a seal have also been performed in order to justify qualitatively that the time extrapolation method is safe. For silver lining seals, the use of a time-temperature equivalence parameter equal to T (11 + log 1 (t)) appears justified and this enables us to assess the maximum temperature at which seals can be 'safely' used 'up to a century'. Using the available ageing results (longest holds: 25,000 h), and the proposed prediction method, it can be proven that the two types of silver lining seals which are evaluated will retain a residual linear load of at least 100 N mm -1 of seal perimeter after one century of use in a cask, if the initial temperature of the seal after closing the cask is less than or equal to 100 deg. C

  6. Elucidating the breathing of the metal-organic framework MIL-53(Sc) with ab initio molecular dynamics simulations and in situ X-ray powder diffraction experiments.

    Science.gov (United States)

    Chen, Linjiang; Mowat, John P S; Fairen-Jimenez, David; Morrison, Carole A; Thompson, Stephen P; Wright, Paul A; Düren, Tina

    2013-10-23

    Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal-organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100-623 K and adsorption of CO2 at 0-0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P2(1)/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.

  7. Unifying theory of low-energy nuclear reaction and transmutation processes in deuterated/hydrogenated metals, acoustic cavitation, glow discharge, and deuteron beam experiments

    International Nuclear Information System (INIS)

    Kim, Yeong E.; Zubarev, Alexander L.

    2006-01-01

    The most basic theoretical challenge for understanding low-energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which the large Coulomb barrier between fusing nuclei can be overcome. A unifying theory of LENR and LETR has been developed to provide possible mechanisms for the LENR and LETR processes in matters based on high-density nano-scale and micro-scale quantum plasmas. It is shown that recently developed theoretical models based on Bose-Einstein Fusion (BEF) mechanism and Quantum Plasma Nuclear Fusion (QPNF) mechanism are applicable to the results of many different types of LENR and LETR experiments. (author)

  8. Unifying Theory of Low-Energy Nuclear Reaction and Transmutation Processes in Deuterated/hydrogenated Metals, Acoustic Cavitation, Glow Discharge, and Deuteron Beam Experiments

    Science.gov (United States)

    Kim, Yeong E.; Zubarev, Alexander L.

    The most basic theoretical challenge for understanding low-energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which the large Coulomb barrier between fusing nuclei can be overcome. A unifying theory of LENR and LETR has been developed to provide possible mechanisms for the LENR and LETR processes in matters based on high-density nano-scale and micro-scale quantum plasmas. It is shown that recently developed theoretical models based on Bose-Einstein Fusion (BEF) mechanism and Quantum Plasma Nuclear Fusion (QPNF) mechanism are applicable to the results of many different types of LENR and LETR experiments.

  9. Metal cyanides

    International Nuclear Information System (INIS)

    Wells, A.F.

    1988-01-01

    From the biewpoint of general crystal T chemistry principles and on the basis of modern data the structural chemistry of metal cyanites is presented. The features of the structure of the following compounds are considered: simple ionic alkali cyanides (Li-Cs) containing CN - ions; molybdenum (4,5), tungsten (4,5), rhenium (5,6) complexes etc, where-CN group is only connected with one metal atom; covalent cyanides of cadmium and other elements in which the CN-group serves as a bridge

  10. Trace metals in mussel shells and corresponding soft tissue samples: a validation experiment for the use of Perna perna shells in pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bellotto, V.R. [Vale do Itajai University (UNIVALI), CTTMAR (Center for Technology Earth and Ocean Science), Itajai (Brazil); Miekeley, N. [Pontifical Catholic University (PUC-Rio), Department of Chemistry, Rio de Janeiro (Brazil)

    2007-10-15

    The uptake of Cr, Mn, Ni, Cu, Zn, Cd and Pb in soft tissue of Perna perna mussels and their shells has been studied in aquarium experiments in which mussels were exposed for 30 or 60 days to seawater spiked with different concentrations of these contaminants (125 and 500 {mu}g L{sup -1}). Tissue samples were analyzed after acid digestion by conventional solution nebulization ICP-MS. Laser ablation ICP-MS was used for the quantitative determination of trace elements in different areas of the corresponding shells. With the exception of Mn and Zn, all other elements studied showed a significant concentration enhancements in soft tissue, with the magnitude of this enhancement following the order: Cr > Ni > Cd > Cu > Pb. A corresponding increase in most contaminants, although less pronounced, was also observed in the newly formed growth rings of mussel shells, contributing to the validation of Perna perna mussel shell as a bioindicator of toxic elements. (orig.)

  11. heavy metals

    African Journals Online (AJOL)

    NICO

    aDepartment of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, 0007, South Africa. bSchool of Health Systems and Public Health, Faculty of Health Sciences, ... ing the levels of toxic metals in food.15,19 Compared to ET-AAS or .... mum pressure 350 psi and maximum temperature 210 °C. The.

  12. Metal decontamination for waste minimization using liquid metal refining technology

    International Nuclear Information System (INIS)

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-01-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species

  13. Oxygen influence on ceramics wettability by liquid metals: Ag/{alpha}-Al{sub 2}O{sub 3}-Experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Muolo, M.L.; Valenza, F. [Institute for Energetics and Interphases - IENI CNR, via de Marini 6, 16149 Genova (Italy); Passerone, A. [Institute for Energetics and Interphases - IENI CNR, via de Marini 6, 16149 Genova (Italy)], E-mail: a.passerone@ge.ieni.cnr.it; Passerone, D. [Swiss Federal Lab. for Mater. Testing and Res. (EMPA) - Uberlandstrasse 129, 8600 Duebendorf (Switzerland)

    2008-11-15

    A renewed interest in the effects of oxygen on the wetting of solid oxides has recently risen in connection to the development of the technique of 'air brazing' which makes use of the strong effect of oxygen to increase the wettability of oxides by means of processes running in air or in atmospheres with high oxygen content. Adsorption of oxygen not only at the liquid-vapour surface but also at the solid-liquid interface has been postulated by many previous researches, mainly on the basis of thermodynamic considerations. Along the same line, new results of the wetting behaviour in the system Ag/{alpha}-Al{sub 2}O{sub 3} as a function of oxygen partial pressure are presented, with the simultaneous measurement of the liquid surface tension. These results are compared with the existing ones, and discussed on the basis of thermodynamic principles. The resulting work of adhesion is compared with the 'work of separation' computed by the density functional theory (DFT) approach. DFT calculations are also employed, at variance with previous models, to investigate the structures that are formed at the interface upon addition of oxygen in different sites energetics, atomic and electronic properties of this oxygen-rich interface are discussed together with the connection with experiments.

  14. Nanodisturbances in deformed Gum Metal

    International Nuclear Information System (INIS)

    Gutkin, Mikhail Yu.; Ishizaki, Toshitaka; Kuramoto, Shigeru; Ovid'ko, Ilya A.

    2006-01-01

    Systematic experiments have been performed to characterize defect structures in deformed Gum Metal, a special titanium alloy with high strength, low Young's modulus, excellent cold workability and low resistance to shear in certain crystallographic planes. Results from high-resolution transmission electron microscopy characterization reveal nanodisturbances (planar nanoscopic areas of local shear) as typical elements of defect structures in deformed Gum Metal. A theoretical model is suggested describing nanodisturbances as nanoscale dipoles of non-conventional partial dislocations with arbitrary, non-quantized Burgers vectors. It is shown theoretically that the homogeneous generation of nanodisturbances is energetically favorable in Gum Metal, where they effectively carry plastic flow

  15. Metal chemistry of the transactinides

    International Nuclear Information System (INIS)

    Eichler, B.

    2000-12-01

    The elements with atomic numbers between 104 and 116 are expected to behave as metals. Their interaction with metal surfaces is of uppermost importance both to design experimental separation procedures as well as for their chemical characterization. This interaction is quantified by the net adsorption enthalpy. The determination of the net adsorption enthalpy requires the calculation of the solution enthalpy of transactinides in the bulk-phases of the solid adsorbent metals. These solution enthalpies have been calculated with the Miedema-model. For that purpose the necessary parameters of the transactinides: the metal radius, the molar volume, the electronic density at the Wigner-Seitz-Cell boundary and the electronegativity (Miedema Scale) have been obtained on the basis of empirical correlations starting from the entropies of solid transactinides. These entropies were estimated by extrapolations as a function of atomic masses along the groups of the periodic table. The results of the calculations show a strong dependence on the cohesion energy of the solid adsorbent metals as well as on the solution enthalpies of transactinides in the bulk-phase of these metals. The enthalpies of segregation of transactinides from the metallic bulk-phases as the 'driving forces' of the surface enrichment process were calculated. The calculated data allow the selection of the best suitable materials for the gas phase transport as well as of the adsorbent metal for chromatographic separations, for sampling and for electrochemical deposition in experiments with the transactinides. (author)

  16. Corrosion of valve metals

    International Nuclear Information System (INIS)

    Draley, J.E.

    1976-01-01

    A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized

  17. Impact of repeated single-metal and multi-metal pollution events on soil quality.

    Science.gov (United States)

    Burges, Aritz; Epelde, Lur; Garbisu, Carlos

    2015-02-01

    Most frequently, soil metal pollution results from the occurrence of repeated single-metal and, above all, multi-metal pollution events, with concomitant adverse consequences for soil quality. Therefore, in this study, we evaluated the impact of repeated single-metal and multi-metal (Cd, Pb, Cu, Zn) pollution events on soil quality, as reflected by the values of a variety of soil microbial parameters with potential as bioindicators of soil functioning. Specifically, parameters of microbial activity (potentially mineralizable nitrogen, β-glucosidase and acid phosphatase activity) and biomass (fungal and bacterial gene abundance by RT-qPCR) were determined, in the artificially metal-polluted soil samples, at regular intervals over a period of 26 weeks. Similarly, we studied the evolution over time of CaCl2-extractable metal fractions, in order to estimate metal bioavailability in soil. Different metals showed different values of bioavailability and relative bioavailability ([metal]bio/[metal]tot) in soil throughout the experiment, under both repeated single-metal and multi-metal pollution events. Both repeated Zn-pollution and multi-metal pollution events led to a significant reduction in the values of acid phosphatase activity, and bacterial and fungal gene abundance, reflecting the negative impact of these repeated events on soil microbial activity and biomass, and, hence, soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Glassy metals

    CERN Document Server

    Russew, Krassimir

    2016-01-01

    The topics discussed in this book focus on fundamental problems concerning the structural relaxation of amorphous metallic alloys, above all the possibility of studying it on the basis of viscous flow behavior and its relation to rheological anomalies, such as bend stress relaxation, thermal expansion, specific heat, density changes, and crystallization. Most relaxation studies deal with the relaxation changes of a single definite material property, and not with a wider spectrum of physical properties integrated into a common framework. This book shows that it is possible to describe these property changes on the basis of a more comprehensive theoretical understanding of their mechanism.

  19. Modeling of microwave heating of metallic powders

    International Nuclear Information System (INIS)

    Buchelnikov, V.D.; Louzguine-Luzgin, D.V.; Anzulevich, A.P.; Bychkov, I.V.; Yoshikawa, N.; Sato, M.; Inoue, A.

    2008-01-01

    As it is known from the experiment that bulk metallic samples reflect microwaves while powdered samples can absorb such a radiation and be heated efficiently. In the present paper we investigate theoretically the mechanisms of penetration of a layer of metallic powder by microwave radiation and microwave heating of such a system

  20. Progress in MOSFET double-layer metalization

    Science.gov (United States)

    Gassaway, J. D.; Trotter, J. D.; Wade, T. E.

    1980-01-01

    Report describes one-year research effort in VLSL fabrication. Four activities are described: theoretical study of two-dimensional diffusion in SOS (silicon-on-sapphire); setup of sputtering system, furnaces, and photolithography equipment; experiments on double layer metal; and investigation of two-dimensional modeling of MOSFET's (metal-oxide-semiconductor field-effect transistors).

  1. Heavy metals in Oxisols amended with biosolids and cropped with maize in a long-term experiment Metais pesados em latossolos tratados com biossólido e cultivados com milho em experimento de longa duração

    Directory of Open Access Journals (Sweden)

    Katarzyna Wójcik Oliveira

    2005-08-01

    Full Text Available Biosolids comprise organic matter and plant nutrients, but are also a source of heavy metals hazardous to soils, plants and humans. The aim of this work was to evaluate accumulation, movement in the soil profile and availability to maize plants of heavy metals in two oxisols amended with biosolids for five years. The experiment was carried out in Jaboticabal, SP, Brazil, under field conditions, using a split-plot design. Biosolids were added to the soils at four different rates, 0.0 (control with mineral fertilization, 2.5; 5.0 and 10.0 t ha-1, dry weight basis, annualy for three years. In the fourth and fifth years, the 2.5 t ha-1 treatment rate was increased to 20.0 t ha-1. In the fifth year, soil samples were collected at 0-20 and 20-40 cm depths and analyzed for Cu, Ni, Mn, Pb and Zn total and extractable (Mehlich 1 contents. Biosolids increased the concentration of Ni and Zn in the Typic Eutrorthox, and of Ni, Pb, Zn and Cu in the Typic Haplorthox, but values did not exceed critical limits established by legislation. The elements generally accumulated in the 0-20 cm depth. Lead and Ni concentrations in grains were below detection limits. In general, heavy metals contents in maize plants were not affected by application of biosolids. Mehlich 1 extractant was not efficient in predicting the availability of Ni, Mn, and Pb to maize plants.O biossólido contém em sua composição matéria orgânica e nutrientes das plantas, mas também metais pesados danosos para solos, plantas e a saúde humana. O objetivo deste trabalho foi avaliar o acúmulo de metais pesados e sua mobilidade no perfil do solo, assim como a disponibilidade para plantas de milho cultivadas em Latossolo Vermelho distrófico (LVd e Latossolo Vermelho eutroférrico (LVef tratados com doses crescentes de biossólido durante cinco anos. O experimento foi conduzido em Jaboticabal, SP, Brasil, em condições de campo, utilizando-se delineamento de parcelas subdivididas com cinco

  2. Electron energies in metals

    International Nuclear Information System (INIS)

    Mahan, G.D.; Tennessee Univ., Knoxville, TN

    1991-01-01

    The modern era of electron-electron interactions began a decade ago. Plummer's group initiated a program of using angular resolved photoemission to examine the band structure of the simple metals. Beginning with aluminum, and carrying on to sodium and potassium, they always found that the occupied energy bands were much narrower than expected. For example, the compressed energy bands for metallic potassium suggest a band effective mass of m* = 1.33m e . This should be compared to the band mass found from optical conductivity m*/m e = 1.01 ± 0.01. The discrepancy between these results is startling. It was this great difference which started my group doing calculations. Our program was two-fold. On one hand, we reanalyzed the experimental data, in order to see if Plummer's result was an experimental artifact. On the other hand, we completely redid the electron-electron self-energy calculations for simple metals, using the most modern choices of local-field corrections and vertex corrections. Our results will be reported in these lectures. They can be summarized as following: Our calculations give the same effective masses as the older calculations, so the theory is relatively unchanged; Our analysis of the experiments suggests that the recent measurements of band narrowing are an experimental artifact. 38 refs., 9 figs

  3. Extracting metals directly from metal oxides

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of β-diketones, halogenated β-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs

  4. Metal and nutrient dynamics in decomposing tree litter on a metal contaminated site

    International Nuclear Information System (INIS)

    Van Nevel, Lotte; Mertens, Jan; Demey, Andreas; De Schrijver, An; De Neve, Stefaan; Tack, Filip M.G.; Verheyen, Kris

    2014-01-01

    In a forest on sandy, metal polluted soil, we examined effects of six tree species on litter decomposition rates and accompanied changes in metal (Cd, Zn) and nutrient (base cations, N, C) amounts. Decomposition dynamics were studied by means of a litterbag experiment lasting for 30 months. The decomposition peak occurred within the first year for all tree species, except for aspen. During litter decomposition, high metal litter types released part of their accumulated metals, whereas low metal litter types were characterized by a metal enrichment. Base cations, N and C were released from all litter types. Metal release from contaminated litter might involve risks for metal dispersion towards the soil. On the other hand, metal enrichment of uncontaminated litter may be ecologically relevant as it can be easily transported or serve as food source. - Highlights: • Litter decomposition peak occurred within the first year for all tree species, except for aspen. • Base cations, N and C were released from all litter types during decomposition. • Cd and Zn were released from the high metal litter types. • Low metal litter types were characterized by a net Cd and Zn enrichment. • Metal and nutrient releases were reflected in topsoil characteristics. - Litter decomposition rates, as well as enrichment and release dynamics of metals and nutrients in decomposing litter were divergent under the different tree species

  5. Metals production

    Science.gov (United States)

    Beck, Theodore S.

    1992-01-01

    Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.

  6. Decontaminaion of metals containing plutonium and americium

    International Nuclear Information System (INIS)

    Seitz, M.G.; Gerding, T.J.; Steindler, M.J.

    1979-06-01

    Melt-slagging (melt-refining) techniques were evaluated as a decontamination and consolidation step for metals contaminated with oxides of plutonium and americium. Experiments were performed in which mild steel, stainless steel, and nickel contaminated with oxides of plutonium and americium were melted in the presence of silicate slags of various compositions. The metal products were low in contamination, with the plutonium and americium strongly fractionated to the slags. Partition coefficients (plutonium in slag/plutonium in steel) of 7 x 10 6 were measured with boro-silicate slag and of 3 x 10 6 with calcium, magnesium silicate slag. Decontamination of metals containing as much as 14,000 ppM plutonium appears to be as efficient as for metals with plutonium levels of 400 ppM. Staged extraction, that is, a remelting of processed metal with clean slag, results in further decontamination of the metal. The second extraction is effective with either resistance-furnace melting or electric-arc melting. Slag adhering to the metal ingots and in defects within the ingots is in the important contributors to plutonium retained in processed metals. If these sources of plutonium are controlled, the melt-refining process can be used on a large scale to convert highly contaminated metals to homogeneous and compact forms with very low concentrations of plutonium and americium. A conceptual design of a melt-refining process to decontaminate plutonium- and americium-contaminated metals is described. The process includes single-stage refining of contaminated metals to produce a metal product which would have less than 10 nCi/g of TRU-element contamination. Two plant sizes were considered. The smaller conceptual plant processes 77 kg of metal per 8-h period and may be portable.The larger one processes 140 kg of metal per 8-h period, is stationary, and may be near te maximum size that is practical for a metal decontamination process

  7. CORRELATION AMONG FLUORIDE AND METALS IN IRRIGATION ...

    African Journals Online (AJOL)

    Preferred Customer

    emissions from volcanoes and in marine aerosols. The main natural ... acetylene flame was used for the determination of the metals in soil and water samples. .... The method validation was established by spiking experiments (recovery test).

  8. Dark excitations in monolayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Thygesen, Kristian Sommer

    2017-01-01

    Monolayers of transition metal dichalcogenides (TMDCs) possess unique optoelectronic properties, including strongly bound excitons and trions. To date, most studies have focused on optically active excitations, but recent experiments have highlighted the existence of dark states, which are equally...

  9. The Sounds of Metal

    DEFF Research Database (Denmark)

    Grund, Cynthia M.

    2015-01-01

    Two, I propose that this framework allows for at least a theoretical distinction between the way in which extreme metal – e.g. black metal, doom metal, funeral doom metal, death metal – relates to its sound as music and the way in which much other music may be conceived of as being constituted...

  10. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  11. Actively convected liquid metal divertor

    International Nuclear Information System (INIS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-01-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem. (letter)

  12. AI applications in sheet metal forming

    CERN Document Server

    Hussein, Hussein

    2017-01-01

    This book comprises chapters on research work done around the globe in the area of artificial intelligence (AI) applications in sheet metal forming. The first chapter offers an introduction to various AI techniques and sheet metal forming, while subsequent chapters describe traditional procedures/methods used in various sheet metal forming processes, and focus on the automation of those processes by means of AI techniques, such as KBS, ANN, GA, CBR, etc. Feature recognition and the manufacturability assessment of sheet metal parts, process planning, strip-layout design, selecting the type and size of die components, die modeling, and predicting die life are some of the most important aspects of sheet metal work. Traditionally, these activities are highly experience-based, tedious and time consuming. In response, researchers in several countries have applied various AI techniques to automate these activities, which are covered in this book. This book will be useful for engineers working in sheet metal industri...

  13. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films ...

  14. Possibilities Of Metals Extracton From Spent Metallic Automotive Catalytic Converters By Using Biometallurgical Method

    Directory of Open Access Journals (Sweden)

    Willner J.

    2015-09-01

    Full Text Available The main task of automotive catalytic converters is reducing the amount of harmful components of exhaust gases. Metallic catalytic converters are an alternative to standard ceramic catalytic converters. Metallic carriers are usually made from FeCrAl steel, which is covered by a layer of Precious Group Metals (PGMs acting as a catalyst. There are many methods used for recovery of platinum from ceramic carriers in the world, but the issue of platinum and other metals recovery from metallic carriers is poorly described. The article presents results of preliminary experiments of metals biooxidation (Fe, Cr and Al from spent catalytic converters with metallic carrier, using bacteria of the Acidithiobacillus genus.

  15. Metallic taste from electrical and chemical stimulation.

    Science.gov (United States)

    Lawless, Harry T; Stevens, David A; Chapman, Kathryn W; Kurtz, Anne

    2005-03-01

    A series of three experiments investigated the nature of metallic taste reports after stimulation with solutions of metal salts and after stimulation with metals and electric currents. To stimulate with electricity, a device was fabricated consisting of a small battery affixed to a plastic handle with the anode side exposed for placement on the tongue or oral tissues. Intensity of taste from metals and batteries was dependent upon the voltage and was more robust in areas dense in fungiform papillae. Metallic taste was reported from stimulation with ferrous sulfate solutions, from metals and from electric stimuli. However, reports of metallic taste were more frequent when the word 'metallic' was presented embedded in a list of choices, as opposed to simple free-choice labeling. Intensity decreased for ferrous sulfate when the nose was occluded, consistent with a decrease in retronasal smell, as previously reported. Intensity of taste evoked by copper metal, bimetallic stimuli (zinc/copper) or small batteries (1.5-3 V) was not affected by nasal occlusion. This difference suggests two distinct mechanisms for evocation of metallic taste reports, one dependent upon retronasal smell and a second mediated by oral chemoreceptors.

  16. Melting metal waste for volume reduction and decontamination

    International Nuclear Information System (INIS)

    Copeland, G.L.; Heshmatpour, B.; Heestand, R.L.

    1980-01-01

    Melt-slagging was investigated as a technique for volume reduction and decontamination of radioactively contaminated scrap metals. Experiments were conducted using several metals and slags in which the partitioning of the contaminant U or Pu to the slag was measured. Concentrations of U or Pu in the metal product of about 1 ppM were achieved for many metals. A volume reduction of 30:1 was achieved for a typical batch of mixed metal scrap. Additionally, the production of granular products was demonstrated with metal shot and crushed slag

  17. PREFACE: Half Metallic Ferromagnets

    Science.gov (United States)

    Dowben, Peter

    2007-08-01

    metallicity remains fascinating and much insight is still needed including both experiment and improvements to band structure calculations. References [1] de Groot R A, Mueller F M, Van Engen P G and Buschow K H J 1984 Phys. Rev. Lett.50 2024 [2] paraphrase of remarks by Hathaway K, private communication, U.S. Office of Naval Research [3] Mazin I I 1999 Phys. Rev. Lett. 83 1427

  18. Heavy metal jako subkultura

    OpenAIRE

    KOUTNÁ, Daniela

    2016-01-01

    This bachelor thesis deals with heavy metal subculture. Its aim is to introduce the most important branches and to show broadness of heavy metal. This bachelor thesis describes development and history, briefly shows Czech heavy metal history alongside with the biggest and most popular Czech heavy metal festivals. It shows the most dressing concerns of society against this style.

  19. METAL PRODUCTION AND CASTING

    Science.gov (United States)

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  20. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    Science.gov (United States)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  1. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  2. Metallic hydrogen research

    International Nuclear Information System (INIS)

    Burgess, T.J.; Hawke, R.S.

    1978-01-01

    Theoretical studies predict that molecular hydrogen can be converted to the metallic phase at very high density and pressure. These conditions were achieved by subjecting liquid hydrogen to isentropic compression in a magnetic-flux compression device. Hydrogen became electrically conducting at a density of about 1.06 g/cm 3 and a calculated pressure of about 2 Mbar. In the experimental device, a cylindrical liner, on implosion by high explosive, compresses a magnetic flux which in turn isentropically compresses a hydrogen sample; coaxial conical anvils prevent escape of the sample during compression. One anvil contains a coaxial cable that uses alumina ceramic as an insulator; this probe allows continuous measurement of the electrical conductivity of the hydrogen. A flash x-ray radiograph exposed during the experiment records the location of the sample-tube boundaries and permits calculation of the sample density. The theoretical underpinnings of the metallic transition of hydrogen are briefly summarized, and the experimental apparatus and technique, analytical methods, and results are described. 9 figures

  3. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  4. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  5. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  6. Metallic insulation transport and strainer clogging tests

    International Nuclear Information System (INIS)

    Hyvaerinen, J.; Hongisto, O.

    1994-06-01

    Experiments to probe the transport and clogging properties of metallic (metal reflective) insulation have been carried out in order to provide data for evaluation of their influence on the emergency core cooling and containment spray systems of the Finnish boiling water reactors in the event of a design basis accident. The specific metallic insulation tested was DARMET, provided by Darchem Engineering Ltd. The inner foils of Darmet are dimped. Available literature on the metallic insulation performance under design basis accident conditions has been reviewed. On the basis of the review a parametric approach has been chosen for the transport and clogging experiments. This approach involves testing a wide size range of various shapes of foil pieces. Five sets of experiments have been carried out. The first three sets investigate transport properties of the foil pieces, starting from sedimentation in stagnant waste pool and proceeding to transport in horizontal and vertically circulating flows. The clogging experiments have been addressed the differential pressures obtained due to accumulation of both pure and metallic and a mixture of metallic and fibrous (mineral wool) depris. (4 refs., 24 figs., 2 tabs.)

  7. Detection of gas entrainment into liquid metals

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, T., E-mail: t.vogt@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany); Boden, S. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany); Andruszkiewicz, A. [Faculty of Mechanical and Power Engineering, Wroclaw University of Technology (Poland); Eckert, K. [Technische Universität Dresden, Institute of Fluid Mechanics, 01062 Dresden (Germany); Eckert, S.; Gerbeth, G. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany)

    2015-12-01

    Highlights: • We present liquid metal experiments dedicated to gas entrainment on the free surface. • Ultrasonic and X-ray attenuation techniques have been used to study the mechanisms of gas entrainment. • A comparison between bubbly flow in water and GaInSn showed substantial differences. • Our results emphasize the importance of liquid metal experiments which are able to provide a suitable data base for numerical code validation. - Abstract: Entrainment of cover gas into the liquid metal coolant is one of the principal safety issues in the design of innovative liquid metal-cooled fast reactors. We present generic experimental studies of this phenomenon in low-melting metals. Ultrasonic and X-ray diagnostic tools were considered for a visualization of gas entrainment at the free surface of the melt. Laboratory experiments were conducted using the eutectic alloy GaInSn, which is liquid at room temperature. Vortex-activated entrainment of air at the free surface of a rotating flow was revealed by ultrasonic techniques. X-ray radioscopy was used to visualize the behavior of argon bubbles inside a slit geometry. The measurements reveal distinct differences between water and GaInSn, especially with respect to the process of bubble formation and the coalescence and breakup of bubbles. Our results emphasize the importance of liquid metal experiments which are able to provide a suitable data base for numerical code validation.

  8. Alkali metals and group IIA metals

    International Nuclear Information System (INIS)

    Fenton, D.E.

    1987-01-01

    This chapter on the coordination complexes of the alkali metals of group IIA starts with a historical perspective of their chemistry, from simple monodentate ligands, metal-β-diketonates to the macrocyclic polyethers which act as ligands to the alkali and akaline earth metals. Other macrocyclic ligands include quarterenes, calixarenes, porphyrins, phthalocyanines and chlorophylls. A section on the naturally occurring ionophores and carboxylic ionophores is included. (UK)

  9. Predicting dietborne metal toxicity from metal influxes

    Science.gov (United States)

    Croteau, M.-N.; Luoma, S.N.

    2009-01-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (kuf) were, respectively, 3.3 and 2.3 times higher than that for Cu. Detoxification rate constants (k detox) were similar among metals and appeared 100 times higher than efflux rate constants (ke). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity; i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g-1 day-1. L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed.

  10. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  11. Nissei incas system (FP-Plan) which databased the skilled sense and experiences in molding metal design. Kanagata sekkei ni okeru kan ya keiken wo data base kashita Nissei incas system (FP-plan)

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, K. (Nissei Plastic Industrial Co. Ltd., Nagano (Japan))

    1992-01-01

    Mold System Department of Nissei Resin Industies Co. has developed NISSEI INCAS SYSTEM, which is a CAD/CAM/CAE system specially for injection metal molding. Generally, high analysis methods such as flow analysis method have been considered for CAE, though, when making it to be linked with designing works for injection molding metals, economic conditions will not make a balance. Since authors have judged that to make an accurate mold metal drawing more quickly, before adopting such kind of flow analysis, more inportant and fundamental problems might be remained, they have started to develope their own system called FP-PLAN. This system, for example, is a software, which paying mainly attention to the most important and common problems for molding metal design to be solved, such as setting of shrinking factor, gate and runner design, estimation of cavity inside pressure, etc. Specially, they have developed only small molding products (product volume shall be under 200 cm {sup 3}). In this report, outlines of FP-PLAN such as the characteristics and programs have been intrduced. 4 figs., 2 tabs.

  12. Analyses of cavitation instabilities in ductile metals

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    Cavitation instabilities have been predicted for a single void in a ductile metal stressed under high triaxiality conditions. In experiments for a ceramic reinforced by metal particles a single dominant void has been observed on the fracture surface of some of the metal particles bridging a crack......, and also tests for a thin ductile metal layer bonding two ceramic blocks have indicated rapid void growth. Analyses for these material configurations are discussed here. When the void radius is very small, a nonlocal plasticity model is needed to account for observed size-effects, and recent analyses......, while the surrounding voids are represented by a porous ductile material model in terms of a field quantity that specifies the variation of the void volume fraction in the surrounding metal....

  13. Precipitation of metal nitrides from chloride melts

    International Nuclear Information System (INIS)

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-01-01

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts

  14. One parameter model potential for noble metals

    International Nuclear Information System (INIS)

    Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.

    1981-08-01

    A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)

  15. Emerging Science and Research Opportunities for Metals and Metallic Nanostructures

    Science.gov (United States)

    Handwerker, Carol A.; Pollock, Tresa M.

    2014-07-01

    During the next decade, fundamental research on metals and metallic nanostructures (MMNs) has the potential to continue transforming metals science into innovative materials, devices, and systems. A workshop to identify emerging and potentially transformative research areas in MMNs was held June 13 and 14, 2012, at the University of California Santa Barbara. There were 47 attendees at the workshop (listed in the Acknowledgements section), representing a broad range of academic institutions, industry, and government laboratories. The metals and metallic nanostructures (MMNs) workshop aimed to identify significant research trends, scientific fundamentals, and recent breakthroughs that can enable new or enhanced MMN performance, either alone or in a more complex materials system, for a wide range of applications. Additionally, the role that MMN research can play in high-priority research and development (R&D) areas such as the U.S. Materials Genome Initiative, the National Nanotechnology Initiative, the Advanced Manufacturing Initiative, and other similar initiatives that exist internationally was assessed. The workshop also addressed critical issues related to materials research instrumentation and the cyberinfrastructure for materials science research and education, as well as science, technology, engineering, and mathematics (STEM) workforce development, with emphasis on the United States but with an appreciation that similar challenges and opportunities for the materials community exist internationally. A central theme of the workshop was that research in MMNs has provided and will continue to provide societal benefits through the integration of experiment, theory, and simulation to link atomistic, nanoscale, microscale, and mesoscale phenomena across time scales for an ever-widening range of applications. Within this overarching theme, the workshop participants identified emerging research opportunities that are categorized and described in more detail in the

  16. Metal-on-metal hip joint tribology.

    Science.gov (United States)

    Dowson, D; Jin, Z M

    2006-02-01

    The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.

  17. Nanochemistry of metals

    International Nuclear Information System (INIS)

    Sergeev, Gleb B

    2001-01-01

    The results of studies on the nanochemistry of metals published in recent years are generalised. Primary attention is centred on the methods for the synthesis of nanoparticles and their chemical reactions. The means of stabilisation of nanoparticles which involve individual metals and incorporate atoms of several metals are considered as well as their physicochemical properties. Self-assembling processes of nanoparticles are described. The prospects of using metal nanoparticles in semiconductor devices, catalysis, biology and medicine are discussed. The bibliography includes 165 references.

  18. Marks of Metal Copenhell

    DEFF Research Database (Denmark)

    2015-01-01

    Planchebaseret udendørs udstilling på musikfestivalen Copenhell 18-20/6 2015. En mindre udgave af udstillingen Marks of Metal - Logodesign og visualitet i heavy metal. Udarbejdet i samarbejde med Mediemuseet.......Planchebaseret udendørs udstilling på musikfestivalen Copenhell 18-20/6 2015. En mindre udgave af udstillingen Marks of Metal - Logodesign og visualitet i heavy metal. Udarbejdet i samarbejde med Mediemuseet....

  19. Cryochemistry of Metal Nanoparticles

    International Nuclear Information System (INIS)

    Sergeev, Gleb B.

    2003-01-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia

  20. Cryochemistry of Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, Gleb B. [Moscow State University, Laboratory of Low Temperature Chemistry, Chemistry Department (Russian Federation)], E-mail: gbs@kinet.chem.msu.ru

    2003-12-15

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  1. Cryochemistry of Metal Nanoparticles

    Science.gov (United States)

    Sergeev, Gleb B.

    2003-12-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  2. Fungitoxicity of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Somers, E

    1961-01-01

    The in vitro fungistatic activity of some twenty-four metal cations has been determine against Alternaria tenuis and Botrytis fabae. The metal salts, mainly nitrates, were tested in aqueous solution without added spore germination stimulant. The logarithm of the metal ion concentration at the ED 50 value has been found to conform to the exponenttial relationship with electronegativity proposed by Danielli and Davies (1951). These results are discussed in relation to the site of action of metal cations on the fungal cell.

  3. Liquid metal thermal-hydraulics

    International Nuclear Information System (INIS)

    Kottowski-Duemenil, H.M.

    1994-01-01

    This textbook is a report of the 26 years activity of the Liquid Metal Boiling Working Group (LMBWG). It summarizes the state of the art of liquid metal thermo-hydraulics achieved through the collaboration of scientists concerned with the development of the Fast Breeder Reactor. The first chapter entitled ''Liquid Metal Boiling Behaviour'', presents the background and boiling mechanisms. This section gives the reader a brief but thorough survey on the superheat phenomena in liquid metals. The second chapter of the text, ''A Review of Single and Two-Phase Flow Pressure Drop Studies and Application to Flow Stability Analysis of Boiling Liquid Metal Systems'' summarizes the difficulty of pressure drop simulation of boiling sodium in core bundles. The third chapter ''Liquid Metal Dry-Out Data for Flow in Tubes and Bundles'' describes the conditions of critical heat flux which limits the coolability of the reactor core. The fourth chapter dealing with the LMFBR specific topic of ''Natural Convection Cooling of Liquid Metal Systems''. This chapter gives a review of both plant experiments and out-of-pile experiments and shows the advances in the development of computing power over the past decade of mathematical modelling ''Subassembly Blockages Suties'' are discussed in chapter five. Chapter six is entitled ''A Review of the Methods and Codes Available for the Calculation on Thermal-Hydraulics in Rod-Cluster and other Geometries, Steady state and Transient Boiling Flow Regimes, and the Validation achieves''. Codes available for the calculation of thermal-hydraulics in rod-clusters and other geometries are reviewed. Chapter seven, ''Comparative Studies of Thermohydraulic Computer Code Simulations of Sodium Boiling under Loss of Flow Conditions'', represents one of the key activities of the LMBWG. Several benchmark exercises were performed with the aim of transient sodium boiling simulation in single channels and bundle blockages under steady state conditions and loss of

  4. Metallization of uranium oxide powders by lithium reduction

    International Nuclear Information System (INIS)

    Kim, I. S.; Seo, J. S.; Oh, S. C.; Hong, S. S.; Lee, W. K.

    2002-01-01

    Laboratory scale experiments on the reduction of uranium oxide powders into metal by lithium were performed in order to determine the equipment setup and optimum operation conditions. The method of filtration using the porous magnesia filter was introduced to recover uranium metal powders produced. Based on the laboratory scale experimental results, mock-up scale (20 kg U/batch) metallizer was designed and made. The applicability to the metallization process was estimated with respect to the thermal stability of the porous magnesia filter in the high temperature molten salt, the filtration of the fine uranium metal powders, and the operability of the equipment

  5. Metallic DFB lasers

    NARCIS (Netherlands)

    Marell, M.J.H.; Nötzel, R.; Smit, M.K.; Hill, M.T.; Pozo, J.; Mortensen, M.; Urbach, P.; Leijtens, X.; Yousefi, M.

    2010-01-01

    In this paper we present our latest results on the design, fabrication and characterization of metal coated DFB lasers. These devices are based on a specialform of the metal-insulator-metal waveguides, which support plasmon gap modes. The distributed feedback provides control over the laser ~

  6. The metal borohydrides

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2004-01-01

    Publications on borohydrides of metals are systematized in the monograph. Special attention is paid to investigation in the field of synthesis and properties of borohydrides of rare-earth metals, which were carried out under author's supervision. The monograph reviews the basic types of chemical reactions, which are inherent to borohydrides of metals, and structural principles account for their molecular and crystal structures

  7. Intoxication with metallic mercury

    International Nuclear Information System (INIS)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-01-01

    Intoxications by metallic mercury are extremely rare. Report of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism. (orig.) [de

  8. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Ritzau, F.; Assmann, H.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  9. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  10. Liquid metal cold trap

    International Nuclear Information System (INIS)

    Hundal, R.

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal is described. A hole between the incoming impure liquid metal and purified outgoing liquid metal acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly

  11. Reduction of metal oxides in metal carbide fusion superheated with plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hedai, L

    1981-01-01

    A significant part of metals is capable of binding a high quantity of carbon in the form of carbide. The carbide fusion produced as a result of smelting and superheating, metal carbides with the use of plasma might be a medium to be utilized for the reduction of different metal oxides, whilst also the original carbide structure of the metal carbides will be reduced to metallic structure. The experiments conducted by making use of plasma equipment, of 20, 55 and 100 kW performances are described. On the basis of the results of the experiments performed, the following statements are to be made. The oxide reductions taking place in the metal carbide fusion might also be carried out in open-hearth furnaces, because reducing atmosphere is not necessitated during this procedure. The quantity of energy required is basically defined by the energy needed for smelting and superheating the metal carbide. The method for producing the metal described may be mainly applied for the allied production of high-purity steels as well as for that of ferro-alloys.

  12. Thermal Conductivity of Metallic Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Hin, Celine

    2018-03-10

    This project has developed a modeling and simulation approaches to predict the thermal conductivity of metallic fuels and their alloys. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Both methods were complementary. The models incorporated both phonon and electron contributions. Good agreement with experimental data over a wide temperature range were found. The models also provided insight into the different physical factors that govern the thermal conductivity under different temperatures. The models were general enough to incorporate more complex effects like additional alloying species, defects, transmutation products and noble gas bubbles to predict the behavior of complex metallic alloys like U-alloy fuel systems under burnup. 3 Introduction Thermal conductivity is an important thermal physical property affecting the performance and efficiency of metallic fuels [1]. Some experimental measurement of thermal conductivity and its correlation with composition and temperature from empirical fitting are available for U, Zr and their alloys with Pu and other minor actinides. However, as reviewed in by Kim, Cho and Sohn [2], due to the difficulty in doing experiments on actinide materials, thermal conductivities of metallic fuels have only been measured at limited alloy compositions and temperatures, some of them even being negative and unphysical. Furthermore, the correlations developed so far are empirical in nature and may not be accurate when used for prediction at conditions far from those

  13. Conducting metal oxide and metal nitride nanoparticles

    Science.gov (United States)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  14. Metamorphosis of helical magnetorotational instability in the presence of axial electric current.

    Science.gov (United States)

    Priede, Jānis

    2015-03-01

    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical magnetorotational instability (HMRI) indefinitely by transforming it into a purely electromagnetic instability. Two different electromagnetic instability mechanisms are identified. The first is an internal pinch-type instability, which is due to the interaction of the electric current with its own magnetic field. Axisymmetric mode of this instability requires a free-space component of the azimuthal magnetic field. When the azimuthal component of the magnetic field is purely rotational and the axial component is nonzero, a new kind of electromagnetic instability emerges. The latter, driven by the interaction of electric current with a weak collinear magnetic field in a quiescent fluid, gives rise to a steady meridional circulation coupled with azimuthal rotation.

  15. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  16. Semi-metallic polymers

    DEFF Research Database (Denmark)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui

    2014-01-01

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report...... that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being...... a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics....

  17. Extraction process for removing metallic impurities from alkalide metals

    Science.gov (United States)

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  18. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  19. Mobile heavy metal fractions in soils

    International Nuclear Information System (INIS)

    Horak, O.; Kamel, A.A.; Ecker, S.; Benetka, E.; Rebler, R.; Lummerstorfer, E.; Kandeler, E.

    1994-01-01

    A long term outdoor experiment was conducted in plastic containers (50 litres) with three soils, contaminated by increasing concentrations of zinc, copper, nickel, cadmium and vanadium. The aim of the study was to investigate the influence of heavy metal contamination on soil microbial processes as well as the accumulation of heavy metals in plants. Spring barley, followed by winter endive were grown as experimental crops in a first vegetation period, while spring wheat was grown during the second year. The soil microbial activities, indicated by arylsulfatase, dehydrogenase, and substrate-induced respiration, decreased with increasing heavy metal contamination. Significant correlations were observed between the inhibition of soil microorganisms and the easily mobilizable heavy metal fractions of soils, extracted by a solution of 1 M ammoniumacetate at pH = 7. The heavy metal accumulation in vegetative and generative parts of the crop plants also showed a good agreement with mobilizable soil fractions. The results of the experiment indicate, that the extraction with ammoniumacetate can be used as a reference method for determination of tolerable heavy metal concentrations in soils. (authors)

  20. Study on 95 alumina ceramic metallizing and glazing technique

    International Nuclear Information System (INIS)

    Zhou Qun; Wang Wei

    2007-12-01

    Electric heater is a component of pressurizer in NPP. So the connector of heater must suit for special requirement with high reliability. It need join 95% alumina ceramic and special metal together. Traditional technique is to glazing ceramic at first, then sintering metal powder on ceramic. It result in melting glaze when metallizing at high temperature. The research on high temperature glaze hasn't got ideal result. In another way, the experiments prove low temperature metallizing couldn't get enough strength. Base on present conditions, a new technique is introduced. It is first metallizing then glazing. It can not only provide high strength with high temperature metallizing , but also avoid melting glaze at high temperature. Compared with other ways, the experiments prove it is feasible. The test data can satisfy requirement. This research has been put into production. (authors)

  1. Stretchable and Soft Electronics using Liquid Metals.

    Science.gov (United States)

    Dickey, Michael D

    2017-07-01

    The use of liquid metals based on gallium for soft and stretchable electronics is discussed. This emerging class of electronics is motivated, in part, by the new opportunities that arise from devices that have mechanical properties similar to those encountered in the human experience, such as skin, tissue, textiles, and clothing. These types of electronics (e.g., wearable or implantable electronics, sensors for soft robotics, e-skin) must operate during deformation. Liquid metals are compelling materials for these applications because, in principle, they are infinitely deformable while retaining metallic conductivity. Liquid metals have been used for stretchable wires and interconnects, reconfigurable antennas, soft sensors, self-healing circuits, and conformal electrodes. In contrast to Hg, liquid metals based on gallium have low toxicity and essentially no vapor pressure and are therefore considered safe to handle. Whereas most liquids bead up to minimize surface energy, the presence of a surface oxide on these metals makes it possible to pattern them into useful shapes using a variety of techniques, including fluidic injection and 3D printing. In addition to forming excellent conductors, these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials. The properties of these materials, their applications within soft and stretchable electronics, and future opportunities and challenges are considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  3. Metal non-metal transitions in doped semiconductors

    International Nuclear Information System (INIS)

    Brezini, A.

    1989-12-01

    A disordered Hubbard model with diagonal disorder is used to examine the electron localization effects associated with both disorder and electron-electron interaction. Extensive results are reported on the ground state properties and compared with other theories. In particular two regimes are observed; when the electron-electron interaction U is greater than the disorder parameter and when is smaller. Furthermore the effect of including conduction-band minima into the calculation of metal-insulator transitions in doped Si and Ge is investigated with use of Berggren approach. Good agreement with experiments are found when both disorder and interactions are included. (author). 37 refs, 7 figs, 3 tabs

  4. Uranium Metal Analysis via Selective Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  5. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  6. Turbulent convection in liquid metal with and without rotation

    OpenAIRE

    King, Eric M.; Aurnou, Jonathan M.

    2013-01-01

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, . Most analog models of planetary dynamos, however, use moderate fluids, and the systematic influence of reducing is not well understood. We perform rotating Rayleigh–Bénard convection experiments in the liquid metal gallium over a range of nondimensional bu...

  7. Metal Borohydrides synthesized from metal borides and metal hydrides

    DEFF Research Database (Denmark)

    Sommer, Sanna

    2014-01-01

    Aarhus C, Denmark email: gallafogh@hotmail.com / sanna-sommer@hotmail.com Magnesium boride, MgB2, ball milled with MH (M = Li, Na, Ca) followed by hydrogenation under high hydrogen pressure, readily forms the corresponding metal borohydrides, M(BH4)x (M = Li, Na, Ca) and MgH2 according to reaction scheme...

  8. Light metal production

    Science.gov (United States)

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  9. Liquid metal steam generator

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1975-01-01

    A liquid metal heated steam generator is described which in the event of a tube failure quickly exhausts out of the steam generator the products of the reaction between the water and the liquid metal. The steam is generated in a plurality of bayonet tubes which are heated by liquid metal flowing over them between an inner cylinder and an outer cylinder. The inner cylinder extends above the level of liquid metal but below the main tube sheet. A central pipe extends down into the inner cylinder with a centrifugal separator between it and the inner cylinder at its lower end and an involute deflector plate above the separator so that the products of a reaction between the liquid metal and the water will be deflected downwardly by the deflector plate and through the separator so that the liquid metal will flow outwardly and away from the central pipe through which the steam and gaseous reaction products are exhausted. (U.S.)

  10. Mesostructured metal germanium sulfides

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, M.J.; Coombs, N.; Bedard, R.L.; White, S.; Thompson, L.K.; Ozin, G.A.

    1999-12-29

    A new class of mesostructured metal germanium sulfide materials has been prepared and characterized. The synthesis, via supramolecular assembly of well-defined germanium sulfide anionic cluster precursors and transition-metal cations in formamide, represents a new strategy for the formation of this class of solids. A variety of techniques were employed to examine the structure and composition of the materials. Structurally, the material is best described as a periodic mesostructured metal sulfide-based coordination framework akin to periodic hexagonal mesoporous silica, MCM-41. At the molecular scale, the materials strongly resemble microstructured metal germanium sulfides, in which the structure of the [Ge{sub 4}S{sub 10}]{sup 4{minus}} cluster building-blocks are intact and linked via {mu}-S-M-S bonds. Evidence for a metal-metal bond in mesostructured Cu/Ge{sub 4}S{sub 10} is also provided.

  11. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  12. Metal atom oxidation laser

    International Nuclear Information System (INIS)

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-01-01

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides

  13. Alkali metal hydride formation

    International Nuclear Information System (INIS)

    1976-01-01

    The present invention relates to a method of producing alkali metal hydrides by absorbing hydrogen gas under pressure into a mixture of lower alkyl mono amines and alkali metal alkyl amides selected from sodium and potassium amides formed from said amines. The present invention also includes purification of a mixture of the amines and amides which contain impurities, such as is used as a catalytic exchange liquid in the enrichment of deuterium, involving the formation of the alkali metal hydride

  14. Tritium in metals

    International Nuclear Information System (INIS)

    Schober, T.

    1990-01-01

    In this Chapter a review is given of some of the important features of metal tritides as opposed to hydrides and deuterides. After an introduction to the topics of tritium and tritium in metals information will be presented on a variety of metal-tritium systems. Of main interest here are the differences from the classic hydrogen behavior; the so called isotope effect. A second important topic is that of aging effects produced by the accumulation of 3 He in the samples. (orig.)

  15. Ion implantation in metals

    International Nuclear Information System (INIS)

    Vook, F.L.

    1977-02-01

    The application of ion beams to metals is rapidly emerging as a promising area of research and technology. This report briefly describes some of the recent advances in the modification and study of the basic properties of metals by ion implantation techniques. Most of the research discussed illustrates some of the new and exciting applications of ion beams to metals which are under active investigation at Sandia Laboratories, Albuquerque

  16. Liquid Metal Transformers

    OpenAIRE

    Sheng, Lei; Zhang, Jie; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series...

  17. Economics of Metal Markets

    OpenAIRE

    Tilton, J.E.

    1984-01-01

    Simple economic principles can provide useful insights into the behavior of metal markets. In applying these principles, however, the analyst must take into account technology, market structure, government policies, and other institutional factors influencing the nature of metal supply and demand. Knowledge of both economics and the metal markets is essential. One without the other is likely to lead to sterile or even misleading results. In support of the above conclusion, this study exa...

  18. Hydrogen-metal systems

    International Nuclear Information System (INIS)

    Wenzl, H.; Springer, T.

    1976-01-01

    A survey is given on the alloys of metal crystals with hydrogen. The system niobium-hydrogen and its properties are especially dealt with: diffusion and heat of solution of hydrogen in the host crystal, phase diagram, coherent and incoherent phase separation, application of metal-hydrogen systems in technology. Furthermore, examples from research work in IFF (Institut fuer Festkoerperforschung) of the Nuclear Research Plant, Juelich, in the field of metal-H systems are given in summary form. (GSC) [de

  19. Honeycomb metal panel

    International Nuclear Information System (INIS)

    1979-01-01

    Product constituted by a honeycomb metal panel that can be employed to advantage for manufacturing lagging by sandwiching it between two plane sheets, utilized in particular in the nuclear industry where lagging has to have a very long life strength. The honeycomb metal panel is made of an expanded metal extrusion previously cut so as to form, after additional drawing, a honeycomb structure with square or rectangular cells with a plane surface [fr

  20. Short-term uptake of heavy metals by periphyton algae

    Energy Technology Data Exchange (ETDEWEB)

    Vymazal, J.

    1984-12-31

    The utilization of periphyton for the removal of heavy metals from enriched small streams has been examined. By means of short-term batch laboratory experiments the courses of metal uptake have been studied. For uptake study naturally growing periphyton community and periphytic filamentous algae Cladophora glomerata and Oedogonium rivulare have been used. Uptakes of nine heavy metals (Pb, Cd, Cu, Co, Cr, Ni, Zn, Fe and Mn) have been determined during four hours exposure. In addition the influence of humic substances on heavy metals uptake has been determined. Uptake of all metals increased during four hours exposure but not in the same way. Some metals were removed continuously (Ni, Cr, Fe and Mn), other metals were removed more rapidly during the first hour or first two hours of exposure and then only slight removal continued (Cu, Pb, Cd, Co). Uptake of Zn was rather unambiguous. Results of these experiments suggest that the course of uptake for individual metals could be similar for most periphyton algae. It was established that humic substances significantly reduce heavy metals uptake. The highest decrease of uptake was observed in Cu, Cr, Co and Cd. The results of model experiments are being tested in a pilot scale with respect to the demands of engineering practice. (J.R.)

  1. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  2. Method of producing homogeneous mixed metal oxides and metal--metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution to leave a molten urea solution containing the metal values. The molten urea solution is heated to above about 180 0 C, whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles

  3. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  4. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound......Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  5. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  6. Purification of uranium metal

    International Nuclear Information System (INIS)

    Suzuki, Kenji; Shikama, Tatsuo; Ochiai, Akira.

    1993-01-01

    We developed the system for purifying uranium metal and its metallic compounds and for growing highly pure uranium compounds to study their intrinsic physical properties. Uranium metal was zone refined under low contamination conditions as far as possible. The degree of the purity of uranium metal was examined by the conventional electrical resistivity measurement and by the chemical analysis using the inductive coupled plasma emission spectrometry (ICP). The results show that some metallic impurities evaporated by the r.f. heating and other usual metallic impurities moved to the end of a rod with a molten zone. Therefore, we conclude that the zone refining technique is much effective to the removal of metallic impurities and we obtained high purified uranium metal of 99.99% up with regarding to metallic impurities. The maximum residual resistivity ratio, the r.r.r., so far obtained was about 17-20. Using the purified uranium, we are attempting to grow a highly pure uranium-titanium single crystals. (author)

  7. Conceptual design studies for the liquid metal target META:LIC

    International Nuclear Information System (INIS)

    Class, A.G.; Fazio, C.; Fetzer, J.R.; Gordeev, S.

    2014-01-01

    When the construction of ESS (European Spallation Source) in Sweden was initiated, the target station concept selection group decided to reevaluate a variety of target designs to respect new developments in their selection process. The META:LIC (MEgawatt TArget:Lead bIsmuth Cooled) target concept was developed following an extensive analysis of existing and new proposed designs and reached the level of proof of principle within only 2 years. ESS selected META:LIC as comparative target option for licensing purposes during the design update phase of ESS. The present work describes the design motivation of META:LIC referring to properties and design features of other targets. Therefore, META:LIC design is an evolutionary target which incorporates the extensive experience of liquid metal targets. The modular LBE (Lead Bismuth Eutectic) target concept with focus on the target module is introduced. Both, a window target option for the start of operation and a windowless option with extended lifetime are foreseen. Thermohydraulic simulations show that adequate window cooling can be realized. The stability of the free surface in the windowless option has been shown. Robust target module instrumentation based on free surface levels and the MEGAPIE experience is proposed for target control. Since the META:LIC concept foresees a horizontal extraction for both moderators and target from the monolith a safety concept based on the SNS and JSNS experience is proposed

  8. The NASA Experience

    Science.gov (United States)

    Ramos, Alberto

    2011-01-01

    Projects assigned to: (1) Testing, fixing, and procuring enclosure systems and components for Kennedy Ground Controls Systems at launch pad B. (2) Organizational spreadsheets for all subsystems involved in the project. (Procurement, parts lists, drawings, purchase requests, etc) (3) Resolve is a project devoted to the lunar rover that will sample lunar soil in an effort to remove the moister and separate the metal from the oxygen to produce drinkable water. I helped with the humidity environmental generator for the experiment (moister detector).

  9. Nuclear orientation of rare earth impurities in ferromagnetic host metals

    International Nuclear Information System (INIS)

    Keus, H.E.

    1981-01-01

    Experiments are described investigating the behaviour of the metals Nd and Lu as impurities in a ferromagnetic host metal - iron, cobalt and nickel. The systems have been studied with the aid of nuclear orientation, making use of the interactions between the atom nuclei and the electrons - the so called hyperfine interactions. (C.F.)

  10. Evaluation of heavy metal uptake and translocation by Acacia ...

    African Journals Online (AJOL)

    Many organic and inorganic pollutants, including heavy metals are being transported and mixed with the cultivated soils and water. Heavy metals are the most dangerous pollutants as they are nondegradable and accumulate and become toxic to plants and animals. An experiment was conducted in the glasshouse to ...

  11. Technology development for producing nickel metallic filters

    International Nuclear Information System (INIS)

    Hubler, C.H.

    1990-01-01

    A technology to produce metallic filters by Instituto de Engenharia Nuclear (IEN-Brazilian CNEN) providing the Instituto de Pesquisas Energeticas e Nucleares (IPEN-Brazilian CNEN) in obtaining nickel alloy filters used for filtration process of uranium hexafluoride, was developed. The experiences carried out for producing nickel conical trunk filters from powder metallurgy are related. (M.C.K.)

  12. Structural investigations of some metallic glasses

    International Nuclear Information System (INIS)

    Sietsma, J.

    1987-03-01

    Metallic glasses were prepared by the melt spinning technique from iron and nickel alloys (Fe-Ni-P; Fe-B; Ni-Nb; Ni-B). Structure investigations were made by means of neutron diffraction experiments. Distribution functions and range orders were determined. (Auth.)

  13. Cutting agents for special metals

    International Nuclear Information System (INIS)

    Sugito, Seiji; Sakakibara, Fumi

    1979-01-01

    The quantity of use of special metals has increased year after year in the Plasma Research Institute, Nagoya University, with the development of researches on plasma and nuclear fusion. Most of these special metals are hard to cut, and in order to secure the surface smoothness and dimensional accuracy, considerable efforts are required. The method of experiment is as follows: cutting agents salt water and acetone, rape-seed oil, sulfide and chloride oil and water soluble cutting oil W grade 3; metals to be cut niobium, molybdenum, tantalum, titanium and tungsten; cutting conditions cutting speed 4.7 to 90 m/min, feed 0.07 to 0.2 mm/rev, depth of cut 0.1 to 0.4 mm, tool cemented carbide bit. Chemicals such as tetrachloromethane and trichloroethane give excellent cutting performance, but the toxicity is intense and the stimulative odor exists, accordingly they are hard to use practically. Cutting was easier when the salt water added with acetone was used than the case of rape-seed oil, but salt water is corrosive. Recently, the machining of molybdenum has been often carried out, and the water soluble cutting oil was the best. It is also good for cutting stainless steel, and its lubricating property is improved by adding some additives such as sulfur, chlorine, phosphorus and molybdenum disulfide. However after cutting with it, washing is required. (Kako, I.)

  14. Wall roughness induces asymptotic ultimate turbulence

    Science.gov (United States)

    Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-04-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.

  15. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  16. Intercomparison of liquid metal fast reactor seismic analysis codes. V.1: Validation of seismic analysis codes using reactor core experiments. Proceedings of a research co-ordination meeting held in Vienna, 16-17 November 1993

    International Nuclear Information System (INIS)

    1995-05-01

    The Research Co-ordination Meeting held in Vienna, 16-17 November 1993, was attended by participants from France, India, Italy, Japan and the Russian Federation. The meeting was held to discuss and compare the results obtained by various organizations for the analysis of Italian tests on PEC mock-up. The background paper by A. Martelli, et al., Italy, entitled Fluid-Structure Interaction Experiments of PEC Core Mock-ups and Numerical Analysis Performed by ENEA presented details on the Italian PEC (Prova Elementi di Combustibile, i.e. Fuel Element Test Facility) test data for the benchmark. Several papers were presented on the analytical investigations of the PEC reactor core experiments. The paper by M. Morishita, Japan, entitled Seismic Response Analysis of PEC Reactor Core Mock-up, gives a brief review of the Japanese data on the Monju mock-up core experiment which had been distributed to the participating countries through the IAEA. Refs, figs and tabs

  17. Experimental and Numerical Investigation of Metal Type and Thickness Effects on the Impact Resistance of Fiber Metal Laminates

    NARCIS (Netherlands)

    Sadighi, M.; Pärnänen, T.; Alderliesten, R.C.; Sayeaftabi, M.; Benedictus, R.

    2012-01-01

    The impact response of fiber metal laminates (FMLs), has been investigated with experiments and numerical simulations, which is reported in this article. Low-velocity impacts were carried out to study the effects of metal type and thickness within FMLs. Glare5-3/2 laminates with two aluminum layer

  18. Sorption of Heavy Metal Ions from Mine Wastewater by Activated ...

    African Journals Online (AJOL)

    Michael

    2016-12-02

    Dec 2, 2016 ... assess their heavy metal ions adsorption potential. The results show that the .... De-ionised water obtained from the Mineral. Engineering Laboratory of ... Batch adsorption experiment for each of the derived activated carbons ...

  19. Metal borohydrides and derivatives

    DEFF Research Database (Denmark)

    Paskevicius, Mark; Haarh Jepsen, Lars; Schouwink, Pascal

    2017-01-01

    major classes of metal borohydride derivatives have also been discovered: anion-substituted compounds where the complex borohydride anion, BH4 -, is replaced by another anion, i.e. a halide or amide ion; and metal borohydrides modified with neutral molecules, such as NH3, NH3BH3, N2H4, etc. Here, we...

  20. Explosion metal welding

    International Nuclear Information System (INIS)

    Popoff, A.A.

    1976-01-01

    Process parameters pertaining to welding similar and dissimilar metals using explosives are reviewed. The discussion centers on the interrelationship of physical parameters which play a part in achieving desirable metallurgical results. Present activities in explosion metal welding at LASL are presented and shown how they related to the interests of the ERDA community

  1. Ion implantation of metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1976-01-01

    In this part of the paper descriptions are given of the effects of ion implantation on (a) friction and wear in metals; and (b) corrosion of metals. In the study of corrosion, ion implantation can be used either to introduce a constituent that is known to convey corrosion resistance, or more generally to examine the parameters which control corrosion. (U.K.)

  2. Marks of Metal

    DEFF Research Database (Denmark)

    2015-01-01

    Udstilling på Mediemuseet med fokus på den visuelle side af heavy metal: Logoer, pladecovers og lignende.......Udstilling på Mediemuseet med fokus på den visuelle side af heavy metal: Logoer, pladecovers og lignende....

  3. Liquid metals pumping

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1984-01-01

    Pumps used to pump liquid metals depend on the liquid metal and on the type of application concerned. One deals more particularly with electromagnetic pumps, the main pumps used with mechanical pumps. To pump sodium in the nuclear field, these two types of pumps are used; the pumps of different circuits of Super Phenix are presented and described [fr

  4. PRODUCTION OF PLUTONIUM METAL

    Science.gov (United States)

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  5. Liquid metal monitor

    International Nuclear Information System (INIS)

    Caldwell-Nichols, C.J.; Roach, P.F.

    1982-01-01

    A liquid metal monitor of the by-pass plugging meter kind described in British Patent 1,308,466, is further provided with a pump arranged to oppose flow through a by-pass thereby to provide a constant pressure difference across an orifice and improve the sensitivity of the instrument. The monitor estimates the impurity content in a liquid metal stream. (author)

  6. Extraction of metal values

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, R F

    1988-10-19

    Metal values (especially uranium values) are extracted from aqueous solutions of metal oxyions in the absence of halogen ion using an imidazole of defined formula. Especially preferred extractants are 1-alkyl imidazoles and benzimidazoles having from 7 to 25 carbon atoms in the alkyl group.

  7. Liquid metal purification device

    International Nuclear Information System (INIS)

    Sakai, Takao; Shimoyashiki, Shigehiro.

    1992-01-01

    The device of the present invention concerns a liquid metal purification device for removing and purifying impuries in liquid metal sodium used as coolants of an FBR type reactor. A vessel having a group of pipes made of hydrogen permeable metal at the inside thereof is disposed to the inlet pipeline of a cold trap. The group of hydrogen permeable metal pipes is connected to an exhaust pipe and a vacuum pump, so that the inside of the pipes is exhausted. Liquid metal sodium branched from the main pipeline of a coolant system passes through the outer side of the group of the hydrogen permeable metal pipes. In this cae, hydrogen contained as impurities in the liquid metal sodium diffuses and permeates the hydrogen permeation metal pipes and enters into the pipe group and is discharged out of the system by the vacuum pump. This can mitigate the hydrogen removing burden of the cold trap, to extend the device life time. (I.N.)

  8. Superconductivity in bad metals

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is argued that many synthetic metals, including high temperature superconductors are ''bad metals'' with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described

  9. Metals and Neurodegeneration

    Science.gov (United States)

    Chen, Pan; Miah, Mahfuzur Rahman; Aschner, Michael

    2016-01-01

    Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration. PMID:27006759

  10. Production of magnesium metal

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  11. Chelation in Metal Intoxication

    Directory of Open Access Journals (Sweden)

    Swaran J.S. Flora

    2010-06-01

    Full Text Available Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

  12. Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541.

    Science.gov (United States)

    El Aafi, N; Brhada, F; Dary, M; Maltouf, A Filali; Pajuelo, E

    2012-03-01

    The aim of this work was to test Lupinus luteus plants, inoculated with metal resistant rhizobacteria, in order to phytostabilise metals in contaminated soils. The resistance to heavy metals of strains isolated from nodules of Lupinus plants was evaluated. The strain MSMC541 showed multi-resistance to several metals (up to 13.3 mM As, 2.2 mM Cd, 2.3 mM Cu, 9 mM Pb and 30 mM Zn), and it was selected for further characterization. Furthermore, this strain was able to biosorb great amounts of metals in cell biomass. 16S rDNA sequencing positioned this strain within the genus Serratia. The presence of arsenic resistance genes was confirmed by southern blot and PCR amplification. A rhizoremediation pot experiment was conducted using Lupinus luteus grown on sand supplemented with heavy metals and inoculated with MSMC541. Plant growth parameters and metal accumulation were determined in inoculated vs. non-inoculated Lupinus luteus plants. The results showed that inoculation with MSMC541 improved the plant tolerance to metals. At the same time, metal translocation to the shoot was significantly reduced upon inoculation. These results suggest that Lupinus luteus plants, inoculated with the metal resistant strain Serratia sp. MSMC541, have a great potential for phytostabilization of metal contaminated soils.

  13. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    A method for preparing particulate metal or metal oxide of controlled partile size comprises contacting an an aqueous solution containing dissolved metal values with excess urea at a temperature sufficient to cause urea to react with water to provide a molten urea solution containing the metal values; heating the molten urea solution to cause the metal values to precipitate, forming a mixture containing precipitated metal values; heating the mixture containing precipitated metal values to evaporate volatile material leaving a dry powder containing said metal values. The dry powder can be calcined to provide particulate metal oxide or reduced to provide particulate metal. Oxide mixtures are provided when the aqueous solution contains values of more than one metal. Homogeneousmetal-metal oxide mistures for preparing cermets can be prepared by selectively reducing at least one of the metal oxides. (auth)

  14. Nanoporous metal-carbon composite

    Science.gov (United States)

    Worsley, Marcus A.; Satcher, Joe; Kucheyev, Sergei; Charnvanichborikarn, Supakit; Colvin, Jeffrey; Felter, Thomas; Kim, Sangil; Merrill, Matthew; Orme, Christine

    2017-12-19

    Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm.sup.3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.

  15. Method for producing metallic nanoparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  16. Method for producing metallic microparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-06-29

    Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify.

  17. A double metal process

    International Nuclear Information System (INIS)

    Hawley, F.; Vasche, G.; Caywood, J.M.; Houck, B.; Boyce, J.; Tso, L.

    1988-01-01

    A dual layer metallization process is studied using a Tungsten 10% Titanium/Molybdenum sandwich (TiW/Mo) first metal with an Al/.5% Cu for the second metal. This metallization process has: 1) very reliable shallow junction contacts without junction spiking, 2) very high electromigration resistance and (3) A very smooth defect free surface throughout the process. Contact resistance of 50 and 30 ohm-um2 for P and N type silicon respectively is achieved. The TiW/Mo film stress is studied and an optimum condition for low compressive stress is defined. The TiW/Mo is etched using a corrosion free etch process. Electromigration data is presented showing TiW/Mo to be at least an order of magnitude better than Al/Si. The intermetal oxide layer is a planarized sandwich of LTO/SOG/LTO providing a smooth positive slope surface for the Metal 2. Metal l/Metal 2 via resistances are studied with 1.25 ohm-um2 values obtained

  18. Adsorption of heavy metals ions on portulaca oleracea plants

    International Nuclear Information System (INIS)

    Naqvi, R.R.

    2005-01-01

    The aim of this study is to report the ability of portulaca oleracea (Fershi in Urdu) biomass grown in uncontaminated soils to adsorb or uptake lead, cadmium, arsenic, cobalt and copper from aqueous solutions. In order to help understand the metal binding mechanism, laboratory experiments performance to determine optimal binding, and binding capacity for each of the above mentioned metals. These experiments were carried out for the mass of crushed portulaca stems. Portulaca is a plant that grows abundantly in temperature climate in the area of Quetta Balochistan. It has reddish stem and thick succulent leaves. This plant has been found to be good adsorbent for heavy metals ions. (author)

  19. Metallic Carbon Nanotubes and Ag Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis E

    2014-03-04

    The goal of this DOE solar energy research was to understand how visible light interacts with matter, and how to make electric excitations evolve into separated electrons and holes in photovoltaic cells, especially in nanoparticles and nanowires. Our specific experiments focused on A) understanding plasmon enhanced spectroscopy and charge-transfer (metal-to-molecule) photochemistry on the surface of metallic particles and B) the spectroscopy and photochemistry of carbon nanotubes and graphene. I also worked closely with R. Friesner on theoretical studies of photo-excited electrons near surfaces of titanium dioxide nanoparticles; this process is relevant to the Gratzel photovoltaic cell.

  20. Intestinal excretion of metals by rats

    International Nuclear Information System (INIS)

    Schaefer, S.G.

    1979-01-01

    The excretion of 65 Zn, sup(115m)Cd, 203 Hg, 207 Bi, 210 Pb, 60 Co, 64 Cu, 85 Sr and 86 Rb in the perfused sections of the intestinal tract in vivo was investigated by the pendular perfusion method. After intravenous administration the excretion of metals was investigated in the jejunum, in the colon and in some experiments also in the ileum. The fluid net movement in the jejunum and colon was measured in dependency on the energy spectrum of the applied metal isotope by means of 14 C or 3 H-polyethylene glycol 2000. (orig./MG) [de

  1. Carrier scattering in metals and semiconductors

    CERN Document Server

    Gantmakher, VF

    1987-01-01

    The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental

  2. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  3. Microstructured liquid metal electron and ion sources (MILMES/MILMIS)

    Energy Technology Data Exchange (ETDEWEB)

    Mitterauer, J [Technische Universitaet Wien (Austria). Institut fuer Allgemeine Elektrotechnik und Elektronik

    1997-12-31

    Ion or electron beams can be emitted from liquid metal wetted needles, or from capillaries or slits into which the liquid metal is allowed to flow. Large-area liquid metal field emission sources have been proposed recently, using either two-dimensional, regular arrays of cones or capillaries, or even a substrate with an intrinsically microstructured surface covered by a liquid metal film. This latter concept has been realized in a pilot experiment by in situ wicking and wetting of a porous sintered metal disc. Microstructured liquid metal ion or electron sources are capable of operating in a pulsed mode at a current level which is orders of magnitude above that for steady-state operation. (author). 3 figs., 10 refs.

  4. Actinide metal processing

    International Nuclear Information System (INIS)

    Sauer, N.N.; Watkin, J.G.

    1992-01-01

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage

  5. Metal recovery via geobiotechnology

    International Nuclear Information System (INIS)

    Hedrich, Sabrina; Schippers, Axel

    2017-01-01

    Specialized acidophilic bacteria and archaea are able to extract valuable metals such as copper, gold, cobalt, nickel, zinc, and uranium from sulfide ores. This process is known as bioleaching and its application in the mining industry as biomining. Laboratory studies also demonstrated bioleaching of oxide ores such as laterites and of mining residues such as mine tailings as well as metal recycling from waste (secondary mining). Metals being leached have to be recovered from acidic polymetallic solutions (mine and process waters) which is possible via biosorption or biomineralisation.

  6. Metal Detecting in Denmark

    DEFF Research Database (Denmark)

    Dobat, A.S.

    2016-01-01

    questions: 1) Why does the liberal model work in Denmark, 2) which downsides of the liberal model of metal detector archaeology in Denmark can be identified, 30 years after its inception the beginning, and 3) what are possible solutions to these problems. It will be argued that a user-driven national...... all of the spectacular and ground-breaking discoveries of the past decades are owed to metal detectors in the hands of amateur archaeologists. In order to serve as a contribution to the discussion on the upsides and downsides of liberal metal detector archaeology, this article addresses mainly three...

  7. Turbulent magnetohydrodynamics in liquid metals

    International Nuclear Information System (INIS)

    Berhanu, Michael

    2008-01-01

    In electrically conducting fluids, the electromagnetic field is coupled with the fluid motion by induction effects. We studied different magnetohydrodynamic phenomena, using two experiments involving turbulent flows of liquid metal. The first mid-sized uses gallium. The second, using sodium, is conducted within the VKS (Von Karman Sodium) collaboration. It has led to the observation of the dynamo effect, namely converting a part of the kinetic energy of the fluid into magnetic energy. We have shown that, depending on forcing conditions, a statistically stationary dynamo, or dynamical regimes of magnetic field can be generated. In particular, polarity reversals similar to those of Earth's magnetic field were observed. Meanwhile, experiment with Gallium has been developed to study the effects of electromagnetic induction by turbulent flows in a more homogeneous and isotropic configuration than in the VKS experiment. Using data from these two experiments, we studied the advection of magnetic field by a turbulent flow and the induced fluctuations. The development of probes measuring electrical potential difference allowed us to further highlight the magnetic braking of a turbulent flow of Gallium by Lorentz force. This mechanism is involved in the saturation of the dynamo instability. (author) [fr

  8. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  9. Metalcasting: Filtering Molten Metal

    International Nuclear Information System (INIS)

    Lauren Poole; Lee Recca

    1999-01-01

    A more efficient method has been created to filter cast molten metal for impurities. Read about the resulting energy and money savings that can accrue to many different industries from the use of this exciting new technology

  10. Micro metal forming

    CERN Document Server

    2013-01-01

    Micro Metal Forming, i. e. forming of parts and features with dimensions below 1 mm, is a young area of research in the wide field of metal forming technologies, expanding the limits for applying metal forming towards micro technology. The essential challenges arise from the reduced geometrical size and the increased lot size. In order to enable potential users to apply micro metal forming in production, information about the following topics are given: tribological behavior: friction between tool and work piece as well as tool wear mechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processes tool making methods numerical modeling of processes and process chains quality assurance and metrology All topics are discussed with respect to the questions relevant to micro...

  11. Ferrous Metal Processing Plants

    Data.gov (United States)

    Department of Homeland Security — This map layer includes ferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  12. Nonferrous Metal Processing Plants

    Data.gov (United States)

    Department of Homeland Security — This map layer includes nonferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  13. Coating of metals

    International Nuclear Information System (INIS)

    Smith, F.

    1978-01-01

    A method is described for coating the surface of an article of Ti, Zr or Ta, or an alloy thereof, with a tinning metal or alloy, the article having a shape other than that of a sheet. The method comprises contacting the surface of the article at an elevated temperature with the molten tinning metal and moving an ultrasonically excited probe over the surface to be coated, the probe being in contact with the surface of the article and with the tinning metal. The tinning metal may be Sn or Zn or a binary alloy of Sn with Zn, Cd or Bi at a temperature of 300 0 to 450 0 C. The head of the probe may be shaped to conform with the surface of the article. The method may be used to form composite articles, and may be applied to a pre-tinned steel article. (U.K.)

  14. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  15. Crystalline structure of metals

    International Nuclear Information System (INIS)

    Holas, A.

    1972-01-01

    An attempt is made to find the crystalline structure of metals on the basis of the existing theory of metals. The considerations are limited to the case of free crystals, that is, not subjected to any stresses and with T=0. The energy of the crystal lattice has been defined and the dependence of each term on structures and other properties of metals has been described. The energy has been used to find the values of crystalline structure parameters as the values at which the energy has an absolute minimum. The stability of the structure has been considered in cases of volume changes and shearing deformations. A semiqualitative description has been obtained which explains characteristic properties of one-electron metals. (S.B.)

  16. Plutonium metal burning facility

    International Nuclear Information System (INIS)

    Hausburg, D.E.; Leebl, R.G.

    1977-01-01

    A glove-box facility was designed to convert plutonium skull metal or unburned oxide to an oxide acceptable for plutonium recovery and purification. A discussion of the operation, safety aspects, and electrical schematics are included

  17. Genotoxicity of metal nanoparticles.

    Science.gov (United States)

    Xie, Hong; Mason, Michael M; Wise, John Pierce

    2011-01-01

    Nanotechnology is currently used in industry, medicine, and military applications, as well as in more than 300 commercial products. Yet, the same properties that make these particles exciting for technology also make them daunting public health concerns because their toxicity is unknown and relatively unexplored. Increased attention is being placed on the study of metal particle genotoxicity; however, a lot of unknowns remain about their effects and the mechanisms. In this article, we highlight some metal and metal oxide nanoparticles of interest and discuss the current in vivo and in vitro studies of genotoxic effects. Many metal nanoparticles were found to cause chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. Inconsistencies are found in the literature, however, thus drawing conclusions is difficult due to a variety of factors. Therefore, the areas requiring further attention are highlighted and recommendations to improve our understanding of the genotoxic potential are addressed.

  18. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils

    International Nuclear Information System (INIS)

    Keller, Catherine; Hammer, Daniel

    2004-01-01

    Metal phytoextraction with hyperaccumulating plants could be a useful method to decontaminate soils, but it is not fully validated yet. In order to quantify the efficiency of Cd and Zn extraction from a calcareous soil with and without Fe amendment and an acidic soil, we performed a pot experiment with three successive croppings of Thlaspi caerulescens followed by 3 months without plant and 7 weeks with lettuce. We used a combined approach to assess total extraction efficiency (2 M HNO 3 -extractable metals), changes in metal bio/availability (0.1 M NaNO 3 -extractable metals and lettuce uptake) and toxicity (lettuce biomass and the BIOMETreg] biosensor). The soil solution was monitored over the whole experiment. In the calcareous soil large Cu concentrations were probably responsible for chlorosis symptoms observed on T. caerulescens. When this soil was treated with Fe, the amount of extracted metal by T. caerulescens increased and metal availability and soil toxicity decreased when compared to the untreated soil. In the acidic soil, T. caerulescens was most efficient: Cd and Zn concentrations in plants were in the range of hyperaccumulation and HNO 3 -extractable Cd and Zn, metal bio/availability, soil toxicity, and Cd and Zn concentrations in the soil solution decreased significantly. However, a reduced Cd concentration measured in the third T. caerulescens cropping indicated a decrease in metal availability below a critical threshold, whereas the increase of dissolved Cd and Zn concentrations after the third cropping may be the early sign of soil re-equilibration. This indicates that phytoextraction efficiency must be assessed by different approaches in order not to overlook any potential hazard and that an efficient phytoextraction scheme will have to take into account the different dynamics of the soil-plant system

  19. Novel Metals and Metal Complexes as Platforms for Cancer Therapy

    OpenAIRE

    Frezza, Michael; Hindo, Sarmad; Chen, Di; Davenport, Andrew; Schmitt, Sara; Tomco, Dajena; Dou, Q. Ping

    2010-01-01

    Metals are essential cellular components selected by nature to function in several indispensable biochemical processes for living organisms. Metals are endowed with unique characteristics that include redox activity, variable coordination modes, and reactivity towards organic substrates. Due to their reactivity, metals are tightly regulated under normal conditions and aberrant metal ion concentrations are associated with various pathological disorders, including cancer. For these reasons, coo...

  20. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  1. PRODUCTION OF HAFNIUM METAL

    Science.gov (United States)

    Elger, G.W.; Boubel, R.W.

    1963-01-01

    This patent deals with a process of producing pure Hf metal from oxygen- contaminated gaseous Hf chloride. The oxygen compounds in the chioride gas are halogenated by contacting the gas at elevated temperature with Cl/sub 2/ in the presence of C. The Hf chloride, still in gaseous form, is contacted with molten Mg whereby Hf metal is formed and condensed on the Mg. (AEC)

  2. Radiation effects in metals

    International Nuclear Information System (INIS)

    Leteurtre Jean.

    1978-01-01

    The current understanding of radiation damage in metals is reviewed, simplifying the actual complexity of the effects by considering some aspects separately. The production of point defects in metals, the primary damage state are first studied. The second part of the lecture is devoted to the evolution of this primary damage state as a function of temperature and dose: the steady state concentration of point defects, the nucleation of secondary defects and their growth are successively considered

  3. Leachability of heavy metals from scrap dirt sampled at two scrap iron and metal recycling facilities

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Holm, Peter Engelund; Christensen, Thomas Højlund

    2000-01-01

    Column and batch leaching experiments were performed to quantify leaching of heavy metals (Pb, Cu, Cd and Zn) from scrap dirt representing different activities at two iron scrap and metal recycling facilities. The scrap dirt is often found directly upon the bare unprotected soil at recycling...... battery salvage locations was different, showing lower pH and signi®cant leaching of lead (up to 8000 mg Pb l±1), cadmium (up to 40 mg Cd l±1), and zinc (up to 2000 mg Zn l±1). The column and batch leaching experiments gave comparable results at the order of magnitude level, and both approaches are......, at that level, useful for evaluation of leaching potentials from scrap dirt. The experiments showed that scrap dirt at recycling facilities constitutes only a modest leaching problem, but a long-term soil pollution problem from a land-use perspective. Leaching experiments with compost solution indicated...

  4. Direct electrical heating of irradiated metal fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Emerson, J.E.; Savoie, F.E.; Johanson, E.W.

    1985-01-01

    The Integral Fast Reactor (IFR) concept proposed by Argonne National Laboratory utilizes a metal fuel core. Reactor safety analysis requires information on the potential for fuel axial expansion during severe thermal transients. In addition to a comparatively large thermal expansion coefficient, metallic fuel has a unique potential for enhanced pre-failure expansion driven by retained fission gas and ingested bond sodium. In this paper, the authors present preliminary results from three direct electrical heating (DEH) experiments performed on irradiated metal fuel to investigate axial expansion behavior. The test samples were from Experimental Breeder Reactor II (EBR-II) driver fuel ML-11 irradiated to 8 at.% burnup. Preliminary analysis of the results suggest that enhanced expansion driven by trapped fission gas can occur

  5. Ampere-Neumann electrodynamics of metals

    International Nuclear Information System (INIS)

    Graneau, P.

    1985-01-01

    Maxwell described Ampere's force law as the cardinal formula of electrodynamics. This law predicts longitudinal mechanical forces along current streamlines in metallic conductors. The Ampere forces set up tension in wires and busbars and compression in liquid metal. At normal current densities they are negligible but, increasing with the square of current, they become dominant in pulse power circuits. Ampere tension and compression have been revealed by exploding wire experiments, in liquid metal jets at solid - liquid interfaces, and with an electrodynamic pendulum. Ampere stresses are already playing an important role in the development of railguns, fuses, current limiters, opening switches, pulse magnets, and a host of other pulse-power devices. This book outlines the electrodynamic action-at-a-distance theory developed by Ampere, Neumann, Weber and, to some extent, by Maxwell. One chapter describes the 20th century extensions of the theory by Graneau and others

  6. Electronic structure of hcp transition metals

    DEFF Research Database (Denmark)

    Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.

    1975-01-01

    Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... of hybridization, relativistic band shifts, and spin-orbit coupling by the example of Os. By making use of parameters derived from the muffin-tin potential, we discuss trends in the positions and widths of the energy bands, especially the d bands, as a function of the location in the periodic table. The densities...... of states of the four metals are presented, and the calculated heat capacities compared with experiment. The Fermi surfaces of both Ru and Os are found to be in excellent quantitative agreement with de Haas-van Alphen measurements, indicating that the calculated d-band position is misplaced by less than 10...

  7. Additive Manufacturing: Reproducibility of Metallic Parts

    Directory of Open Access Journals (Sweden)

    Konda Gokuldoss Prashanth

    2017-02-01

    Full Text Available The present study deals with the properties of five different metals/alloys (Al-12Si, Cu-10Sn and 316L—face centered cubic structure, CoCrMo and commercially pure Ti (CP-Ti—hexagonal closed packed structure fabricated by selective laser melting. The room temperature tensile properties of Al-12Si samples show good consistency in results within the experimental errors. Similar reproducible results were observed for sliding wear and corrosion experiments. The other metal/alloy systems also show repeatable tensile properties, with the tensile curves overlapping until the yield point. The curves may then follow the same path or show a marginal deviation (~10 MPa until they reach the ultimate tensile strength and a negligible difference in ductility levels (of ~0.3% is observed between the samples. The results show that selective laser melting is a reliable fabrication method to produce metallic materials with consistent and reproducible properties.

  8. Magnetic susceptibility of 244Cm metal and 249Cf metal

    International Nuclear Information System (INIS)

    Fujita, D.K.; Parsons, T.C.; Edelstein, N.; Noe, M.; Peterson, J.R.

    1975-07-01

    The first magnetic susceptibility measurements made on the expanded fcc phase of 249 Cf metal are reported. Further measurements are needed on other Cf metal phases. Another measurement of the magnetic susceptibility of 244 Cm metal in a limited temperature range has been reported. The result does not agree with previously reported values. Further work is continuing on the synthesis of 244 Cm metal and 248 Cm metal and magnetic measurements on these samples. (auth)

  9. Half-metallicity in 2D organometallic honeycomb frameworks

    Science.gov (United States)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  10. Half-metallicity in 2D organometallic honeycomb frameworks

    International Nuclear Information System (INIS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-01-01

    Half-metallic materials with a high Curie temperature (T C ) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d – p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. (paper)

  11. Porous metal for orthopedics implants

    OpenAIRE

    Matassi, Fabrizio; Botti, Alessandra; Sirleo, Luigi; Carulli, Christian; Innocenti, Massimo

    2013-01-01

    Porous metal has been introduced to obtain biological fixation and improve longevity of orthopedic implants. The new generation of porous metal has intriguing characteristics that allows bone healing and high osteointegration of the metallic implants. This article gives an overview about biomaterials properties of the contemporary class of highly porous metals and about the clinical use in orthopaedic surgery.

  12. Metallic materials for medical use

    OpenAIRE

    Illarionov Anatoly; Belikov Sergey; Grib Stella; Yurovskikh Artem

    2017-01-01

    This article provides a brief overview of the metallic materials used as implants in orthopedics, the alloying system and a complex of the physical-mechanical properties for metallic materials certified for medical use, as well as the advantages and drawbacks of using metallic materials as implants. Approaches to improve the quality of an implant made of metallic materials are noted.

  13. Metal-insulator transitions

    Science.gov (United States)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  14. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    van der Veen, Roeland

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study

  15. A non-self-adjoint quadratic eigenvalue problem describing a fluid-solid interaction Part II : analysis of convergence

    NARCIS (Netherlands)

    Bourne, D.P.; Elman, H.; Osborn, J.E.

    2009-01-01

    This paper is the second part of a two-part paper treating a non-self-adjoint quadratic eigenvalue problem for the linear stability of solutions to the Taylor-Couette problem for flow of a viscous liquid in a deformable cylinder, with the cylinder modelled as a membrane. The first part formulated

  16. Drag and power-loss in rowing due to velocity fluctuations

    NARCIS (Netherlands)

    Greidanus, A.J.; Delfos, R.; Westerweel, J.; Jansen, A.J.

    2016-01-01

    The flow motions in the turbulent boundary layer between water and a rowing boat initiate a turbulent skin friction. Reducing this skin friction results in better rowing performances. A Taylor-Couette (TC) facility was used to verify the power losses due to velocity fluctuations PV′ in

  17. Wall Shear Rates in Taylor Vortex Flow

    Czech Academy of Sciences Publication Activity Database

    Sobolík, V.; Jirout, T.; Havlica, Jaromír; Kristiawan, M.

    2011-01-01

    Roč. 4, č. 3 (2011), s. 25-31 ISSN 1735-3572 Grant - others:ANR:(FR) ANR-08-BLAN-0184-01 Institutional research plan: CEZ:AV0Z40720504 Keywords : taylor-couette flow * electrodiffusion diagnostics * membrane reactors Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.jafmonline.net/modules/journal/journal_browse.php?EJjid=13

  18. High Rate Plastic Deformation and Failure of Tungsten-Sintered Metals

    National Research Council Canada - National Science Library

    Bjerke, Todd

    2004-01-01

    The competition between plastic deformation and brittle fracture during high rate loading of a tungsten-sintered metal is examined through impact experiments, post-experiment microscopy, and numerical simulation...

  19. Mechanical behaviour of dissimilar metal welds

    International Nuclear Information System (INIS)

    Escaravage, C.

    1990-01-01

    This report addresses the problems of dissimilar metal welds connecting an austenitic stainless steel component to a ferritic steel component. In LMFBRs such welds appear at the junction of the austenitic stainless steel vessel with the ferritic steel roof and in sodium and water or steam pipes. The latter are exposed to high temperatures in the creep range. A wide range of austenitic stainless steels and ferritic steels (carbon steels, low allow steels and alloy steels) are covered; the study encompasses more than 20 different weld metals (austenitic stainless steels and nickel base alloys). The report begins with a presentation of the materials, geometries and welding procedures treated in the study, followed by a review of service experience from examinations of dissimilar metal welds after elevated temperature service, in particular failed welds. Results of laboratory tests performed for reproducing service failures are then discussed. A further section is devoted to a review of test results on fatigue behaviour and impact toughness for dissimilar metal welded joints when creep is not significant. Finally, the problem of residual life assessment is addressed. A set of recommendations concludes the report. They concern the material selection, welding procedure, life prediction and testing of dissimilar metal welds. 84 refs

  20. Heavy Metal Poisoning and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Eman M. Alissa

    2011-01-01

    Full Text Available Cardiovascular disease (CVD is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed.

  1. Phase stability of transition metals and alloys

    International Nuclear Information System (INIS)

    Hixson, R.S.; Schiferl, D.; Wills, J.M.; Hill, M.A.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project was focused on resolving unexplained differences in calculated and measured phase transition pressures in transition metals. Part of the approach was to do new, higher accuracy calculations of transmission pressures for group 4B and group 6B metals. Theory indicates that the transition pressures for these baseline metals should change if alloyed with a d-electron donor metal, and calculations done using the Local Density Approximation (LDA) and the Virtual Crystal Approximation (VCA) indicate that this is true. Alloy systems were calculated for Ti, Zr and Hf based alloys with various solute concentrations. The second part of the program was to do new Diamond Anvil Cell (DAC) measurements to experimentally verify calculational results. Alloys were prepared for these systems with grain size suitable for Diamond Anvil Cell experiments. Experiments were done on pure Ti as well as Ti-V and Ti-Ta alloys. Measuring unambiguous transition pressures for these systems proved difficult, but a new technique developed yielded good results

  2. Metal ion transporters and homeostasis.

    OpenAIRE

    Nelson, N

    1999-01-01

    Transition metals are essential for many metabolic processes and their homeostasis is crucial for life. Aberrations in the cellular metal ion concentrations may lead to cell death and severe diseases. Metal ion transporters play a major role in maintaining the correct concentrations of the various metal ions in the different cellular compartments. Recent studies of yeast mutants revealed key elements in metal ion homeostasis, including novel transport systems. Several of the proteins discover...

  3. Peroxotitanates for Biodelivery of Metals

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.

  4. Separations chemistry of toxic metals

    International Nuclear Information System (INIS)

    Smith, P.; Barr, M.; Barrans, R.

    1996-01-01

    Sequestering and removing toxic metal ions from their surroundings is an increasingly active area of research and is gaining importance in light of current environmental contamination problems both within the DOE complex and externally. One method of separating metal ions is to complex them to a molecule (a ligand or chelator) which exhibits specific binding affinity for a toxic metal, even in the presence of other more benign metals. This approach makes use of the sometimes subtle differences between toxic and non-toxic metals resulting from variations in size, charge and shape. For example, toxic metals such as chromium, arsenic, and technetium exist in the environment as oxyanions, negatively charged species with a characteristic tetrahedral shape. Other toxic metals such as actinides and heavy metals are positively charged spheres with specific affinities for particular donor atoms such as oxygen (for actinides) and nitrogen (for heavy metals). In most cases the toxic metals are found in the presence of much larger quantities of less toxic metals such as sodium, calcium and iron. The selectivity of the chelators is critical to the goal of removing the toxic metals from their less toxic counterparts. The approach was to build a ligand framework that complements the unique characteristics of the toxic metal (size, charge and shape) while minimizing interactions with non-toxic metals. The authors have designed ligands exhibiting specificity for the target metals; they have synthesized, characterized and tested these ligands; and they have shown that they exhibit the proposed selectivity and cooperative binding effects

  5. Exploring multi-metal biosorption by indigenous metal-hyperresistant Enterobacter sp. J1 using experimental design methodologies

    International Nuclear Information System (INIS)

    Lu, W.-B.; Kao, W.-C.; Shi, J.-J.; Chang, J.-S.

    2008-01-01

    A novel experimental design, combining mixture design and response surface methodology (RSM), was developed to investigate the competitive adsorption behavior of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 able to tolerate high concentrations of a variety of heavy metals. Using the proposed combinative experimental design, two different experiment designs in a ternary metal biosorption system can be integrated to a succinct experiment and the number of experimental trials was markedly reduced from 38 to 26 by reusing the mutual experimental data. Triangular contour diagrams and triangular three-dimensional surface plots were generated to describe the ternary metal biosorption equilibrium data in mixture design systems. The results show that the preference of metal sorption of Enterobacter sp. J1 decreased in the order of Pb 2+ > Cu 2+ > Cd 2+ . The presence of other metals resulted in a competitive effect. The influence of the other two metals in ternary metal biosorption system can be easily determined by comparing the stray distance from the single metal biosorption. The behavior of competitive biosorption was successfully described and predicted using a combined Langmuir-Freundlich model along with new three-dimensional contour-surface plots

  6. Exploring multi-metal biosorption by indigenous metal-hyperresistant Enterobacter sp. J1 using experimental design methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W.-B. [Department of Cosmetic Science, Chung Hwa University of Medical Technology, Tainan, Taiwan (China); Kao, W.-C.; Shi, J.-J. [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Chang, J.-S. [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China)], E-mail: changjs@mail.ncku.edu.tw

    2008-05-01

    A novel experimental design, combining mixture design and response surface methodology (RSM), was developed to investigate the competitive adsorption behavior of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 able to tolerate high concentrations of a variety of heavy metals. Using the proposed combinative experimental design, two different experiment designs in a ternary metal biosorption system can be integrated to a succinct experiment and the number of experimental trials was markedly reduced from 38 to 26 by reusing the mutual experimental data. Triangular contour diagrams and triangular three-dimensional surface plots were generated to describe the ternary metal biosorption equilibrium data in mixture design systems. The results show that the preference of metal sorption of Enterobacter sp. J1 decreased in the order of Pb{sup 2+} > Cu{sup 2+} > Cd{sup 2+}. The presence of other metals resulted in a competitive effect. The influence of the other two metals in ternary metal biosorption system can be easily determined by comparing the stray distance from the single metal biosorption. The behavior of competitive biosorption was successfully described and predicted using a combined Langmuir-Freundlich model along with new three-dimensional contour-surface plots.

  7. Operation experience at the UWTF

    International Nuclear Information System (INIS)

    Ueno, Kazuhiro; Inada, Kameji; Ohmori, Kouji; Usui, Kazuya; Irinouchi, Sigenori; Asami, Makoto; Tohchi, Katsunori

    2003-01-01

    This report describes the operation experience on the volume reduction of metal wastes and used air filters contaminated with uranium at the Uranium contaminated Waste Treatment Facility (UWTF) in JNC Tokai Works. The UWTF consists of the metal waste treatment system and the filter-waste treatment system. The former treats metal wastes, the latter treats used air filters. Metal wastes are unpacked from drums, cut, and then compacted. Used air filters are separated into filter media and frames. Then the filter media are compacted and the frames are crushed. The operation of the UWTF was started in June 1998. The following volumes of wastes had been treated at the UWTF from the beginning of the operation to March 2003 (for about 5 years). (1) 1,524 drums of the metal wastes had been reduced to 410 drums. The volume reduction factor was 3.7. (2) 372 drums of the used air filters had been reduced to 39 drums. The volume reduction factor was 9.5. These systems have been operated without trouble for 5 years and have demonstrated to be able to reduce the volumes of the wastes to designed values. The volume reduction technologies for metal wastes and used air filters contaminated with uranium were successfully demonstrated at the UWTF. (author)

  8. Liquid metal-organic frameworks

    Science.gov (United States)

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier

    2017-11-01

    Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including `defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  9. Polyamorphism in metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  10. Metals in edible seaweed.

    Science.gov (United States)

    Rubio, C; Napoleone, G; Luis-González, G; Gutiérrez, A J; González-Weller, D; Hardisson, A; Revert, C

    2017-04-01

    The concentration levels of 20 metals were analyzed by ICP-OES in edible seaweed (Chondrus, Eisenia, Gelidium, Himanthalia, Laminaria, Palmaria, Porphyra, Undaria), from two origins (Asia vs EU) according to their cultivation practices (conventional vs organic). Red seaweed showed higher concentrations of trace and toxic elements. Porphyra may be used as a potential bioindicator for metals. Significant differences were found between the Asian vs European mean contents. The mean Cd level from the conventional cultivation (0.28 mg/kg) was two points higher than the organic cultivation (0.13 mg/kg). A daily consumption of seaweed (4 g/day) contributes to the dietary intake of metals, mainly Mg and Cr. The average intakes of Al, Cd and Pb were 0.064, 0.001 and 0.0003 mg/day, respectively. Based on obtained results, this study suggests that exposure to the toxic metals analyzed (Al, Cd and Pb) through seaweed consumption does not raise serious health concerns, but other toxic metals should be monitored. Copyright © 2017. Published by Elsevier Ltd.

  11. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    , it cannot store hydrogen reversibly. Recently, the first ammonium metal borohydride, NH4Ca(BH4)3 was published, which may be considered as substitution of K+ by NH4+ in KCa(BH4)3, due to the similar sizes of NH4+ and K+[1]. This compound successfully stabilizes NH4BH4. In the present work, a series of novel...... halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed......, and the crystal structures and thermal decompositions are investigated. Mixtures of NH4BH4 - NaBH4 do not react, while solid solutions, K1-x(NH4)xBH4, are formed for NH4BH4 - KBH4. For the other composites, novel ammonium metal borohydrides are formed. Several of these structures have been solved from high...

  12. An 'artificial mussel' for monitoring heavy metals in marine environments

    International Nuclear Information System (INIS)

    Wu, Rudolf S.S.; Lau, T.C.; Fung, Wendy K.M.; Ko, P.H.; Leung, Kenneth M.Y.

    2007-01-01

    A new chemical sampling device, artificial mussel (AM), has been developed for monitoring metals in marine environments. This device consists of a polymer ligand suspended in artificial seawater within a Perspex tubing, and enclosed with semi-permeable gel at both ends. Laboratory and field experiments were carried out to examine the uptake of five metals (Cd, Cr, Cu, Pb and Zn) by the AM. Uptake of metals by AM was proportional to the exposure metal concentrations, and the AM was able to accumulate the ASV labile fractions of metals. Uptake and release of the metals of AM are similar to those of the mussel Perna viridis, but less affected by salinity and temperature. Field studies demonstrated that the AM can not only provide a time-integrated estimate of metals concentrations, but also allows comparisons of metal levels in different environments and geographical areas beyond the natural distribution limits of biomonitors. - A new monitoring device to provide a time-integrated estimate for monitoring metals in marine environments

  13. Measuring the Specific Heat of Metals by Cooling

    Science.gov (United States)

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2010-01-01

    Three in one? Yes, three standard undergraduate thermodynamics experiments in one, not an oval can of lubricating oil. Previously it has been shown that the PASCO scientific apparatus for measuring coefficients of thermal expansion of metals can also be used to illustrate Newton's law of cooling in the same experiment. Now it will be shown that by…

  14. Large lithium loop experience

    International Nuclear Information System (INIS)

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed

  15. In-situ cyclic stress experiment at the Clinton P. Anderson Meson Physics Facility (LAMPF) for determining the effect of dislocation vibration on void growth in metals during irradiation

    International Nuclear Information System (INIS)

    Green, W.V.; Sommer, W.F.; Coulter, C.A.

    1979-01-01

    Experience is reported with the first in-situ cyclic-stress irradiation at LAMPF. A proton beam ion current of 3 to 6 μA of 800 MeV protons was utilized for 24 days irradiation. Radiation damage effects of 800 MeV protons incident on a 1-cm thick Cu target were calculated using the nucleon-meson transport code to determine the nuclear reactions produced by the protons, the theory of Lindhard to evaluate the resultant damage energy deposited in the target. These calculations have been extended to Al. Damage effects were nearly uniform through a 1-cm target thickness, and the results obtained can be expressed in cross section form. The calculation yielded a damage energy cross section of about 63 barn-keV, a nuclear transmutation cross section of 0.44 barns, and indicated copious hydrogen, helium, and neutron production. Analysis of the effect of dislocation vibration on the efficiency of a dislocation line as a sink for point defects predicted that dislocation vibration should suppress void growth. The effect results from the fact that the dislocation will sweep up vacancies, which diffuse less rapidly than interstitials. The growth rate of voids in Al under simultaneous proton irradiation and cyclic stressing are compared to that of samples irradiated at the same time but without any stressing. The samples are placed one behind the other along the proton path so that identical irradiation histories can be achieved. The temperature of the samples is controlled, known and uniform. The initial preirradiation state is a prestrained state of a few hundred stress cycles. The samples are irradiated without stress through the incubation period for void nucleation before the cyclic stress is applied

  16. Additive manufacturing of metals

    International Nuclear Information System (INIS)

    Herzog, Dirk; Seyda, Vanessa; Wycisk, Eric; Emmelmann, Claus

    2016-01-01

    Additive Manufacturing (AM), the layer-by layer build-up of parts, has lately become an option for serial production. Today, several metallic materials including the important engineering materials steel, aluminium and titanium may be processed to full dense parts with outstanding properties. In this context, the present overview article describes the complex relationship between AM processes, microstructure and resulting properties for metals. It explains the fundamentals of Laser Beam Melting, Electron Beam Melting and Laser Metal Deposition, and introduces the commercially available materials for the different processes. Thereafter, typical microstructures for additively manufactured steel, aluminium and titanium are presented. Special attention is paid to AM specific grain structures, resulting from the complex thermal cycle and high cooling rates. The properties evolving as a consequence of the microstructure are elaborated under static and dynamic loading. According to these properties, typical applications are presented for the materials and methods for conclusion.

  17. Functional memory metals

    International Nuclear Information System (INIS)

    Dunne, D.P.

    2000-01-01

    The field of shape memory phenomena in metals and alloys has developed in a sporadic fashion from a scientific curiosity to a vigorously growing niche industry, over a period close to a full working lifetime. Memory metal research and development is replete with scientist and engineer 'true believers', who can finally feel content that their longstanding confidence in the potential of these unusual functional materials has not been misplaced. This paper reviews the current range of medical and non-medical systems and devices which are based on memory metals and attempts to predict trends in applications over the next decade. The market is dominated by Ni Ti alloys which have proved to exhibit the best and most reproducible properties for application in a wide range of medical and non-medical devices

  18. Theory of normal metals

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    The organizers requested that I give eight lectures on the theory of normal metals, ''with an eye on superconductivity.'' My job was to cover the general properties of metals. The topics were selected according to what the students would need to known for the following lectures on superconductivity. My role was to prepare the ground work for the later lectures. The problem is that there is not yet a widely accepted theory for the mechanism which pairs the electrons. Many mechanisms have been proposed, with those of phonons and spin fluctuations having the most followers. So I tried to discuss both topics. I also introduced the tight-binding model for metals, which forms the basis for most of the work on the cuprate superconductors

  19. Extinction of metal fires

    International Nuclear Information System (INIS)

    Mellottee, H.

    1977-01-01

    The main points of a large bibliography on liquid and solid metal fires are set out. The various methods used to fight these fires are presented; covering by powders is specially emphasized. Since this method has promising results, the various possible techniques, extinction by cooling the metal, by blanketing, by formation of a continuous insulating layer (by fusion or pyrolysis of a powder) or by a surface reaction between powder and metal are studied. The conditions of conservation and use of powders are outlined, then the various powders are described: inert powders, powders undergoing a physical transformation (fusion or vitrification of an organic compound, fusion of eutectic inorganic mixtures), multiple effect powders. Precise examples are quoted [fr

  20. Metal fuel safety performance

    International Nuclear Information System (INIS)

    Miles, K.J. Jr.; Tentner, A.M.

    1988-01-01

    The current development of breeder reactor systems has lead to the renewed interest in metal fuels as the driver material. Modeling efforts were begun to provide a mechanistic description of the metal fuel during anticipated and hypothetical transients within the context of the SAS4A accident analysis code system. Through validation exercises using experimental results of metal fuel TREAT tests, confidence is being developed on the nature and accuracy of the modeling and implementation. Prefailure characterization, transient pin response, margins to failure, axial in-pin fuel relocation prior to cladding breach, and molten fuel relocation after cladding breach are considered. Transient time scales ranging from milliseconds to many hours can be studied with all the reactivity feedbacks evaluated