WorldWideScience

Sample records for metal stresses incaulobacter

  1. Whole-genome transcriptional analysis of heavy metal stresses inCaulobacter crescentus

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ping; Brodie, Eoin L.; Suzuki, Yohey; McAdams, Harley H.; Andersen, Gary L.

    2005-09-21

    The bacterium Caulobacter crescentus and related stalkbacterial species are known for their distinctive ability to live in lownutrient environments, a characteristic of most heavy metal contaminatedsites. Caulobacter crescentus is a model organism for studying cell cycleregulation with well developed genetics. We have identified the pathwaysresponding to heavy metal toxicity in C. crescentus to provide insightsfor possible application of Caulobacter to environmental restoration. Weexposed C. crescentus cells to four heavy metals (chromium, cadmium,selenium and uranium) and analyzed genome wide transcriptional activitiespost exposure using a Affymetrix GeneChip microarray. C. crescentusshowed surprisingly high tolerance to uranium, a possible mechanism forwhich may be formation of extracellular calcium-uranium-phosphateprecipitates. The principal response to these metals was protectionagainst oxidative stress (up-regulation of manganese-dependent superoxidedismutase, sodA). Glutathione S-transferase, thioredoxin, glutaredoxinsand DNA repair enzymes responded most strongly to cadmium and chromate.The cadmium and chromium stress response also focused on reducing theintracellular metal concentration, with multiple efflux pumps employed toremove cadmium while a sulfate transporter was down-regulated to reducenon-specific uptake of chromium. Membrane proteins were also up-regulatedin response to most of the metals tested. A two-component signaltransduction system involved in the uranium response was identified.Several differentially regulated transcripts from regions previously notknown to encode proteins were identified, demonstrating the advantage ofevaluating the transcriptome using whole genome microarrays.

  2. Stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Kamminga, J.D.

    2004-01-01

    In the absence of thermal stress, tensile stress in hard metal films is caused by grain boundary shrinkage and compressive stress is caused by ion peening. It is shown that the two contributions are additive. Moreover tensile stress generated at the grain boundaries does not relax by ion

  3. Accumulation of Proline under Salinity and Heavy metal stress in ...

    African Journals Online (AJOL)

    Michael Horsfall

    Seed germination and growth parameters of seedlings of cauliflower were observed after 5, 10 and 15 ... Keywords: Abiotic stress, salinity, proline and heavy metals. The responses of ..... induced accumulation of free proline in a metal-tolerant.

  4. Hydrostatic Stress Effects in Metal Plasticity

    Science.gov (United States)

    Wilson, Christopher D.

    1999-01-01

    Since the 1940s, the theory of plasticity has assumed that hydrostatic stress does not affect the yield or postyield behavior of metals. This assumption is based on the early work of Bridgman. Bridgman found that hydrostatic pressure (compressive stress) does not affect yield behavior until a substantial amount of pressure (greater than 100 ksi) is present. The objective of this study was to determine the effect of hydrostatic tension on yield behavior. Two different specimen geometries were examined: an equal-arm bend specimen and a double edge notch specimen. The presence of a notch is sufficient to develop high enough hydrostatic tensile stresses to affect yield. The von Mises yield function, which does not have a hydrostatic component, and the Drucker-Prager yield function, which includes a hydrostatic component, were used in finite element analyses of the two specimen geometries. The analyses were compared to test data from IN 100 specimens. For both geometries, the analyses using the Drucker-Prager yield function more closely simulated the test data. The von Mises yield function lead to 5-10% overprediction of the force-displacement or force-strain response of the test specimens.

  5. Stress relaxation of shear in metals during shock loading

    International Nuclear Information System (INIS)

    Glazyrin, V.P.; Platova, T.M.

    1988-01-01

    Constructed determining equation, taking into account stress relaxation of shear, was used to calculate the evolution of plane shock waves of primary and secondary compression in metals. Values of shear stress and viscosity coefficient were

  6. Traversing the Links between Heavy Metal Stress and Plant Signaling

    Science.gov (United States)

    Jalmi, Siddhi K.; Bhagat, Prakash K.; Verma, Deepanjali; Noryang, Stanzin; Tayyeba, Sumaira; Singh, Kirti; Sharma, Deepika; Sinha, Alok K.

    2018-01-01

    Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling. PMID:29459874

  7. The stress rupture properties of austenitic steel weld metals

    International Nuclear Information System (INIS)

    Wood, D.S.

    Elevated temperature stress rupture data on Mo containing and Mo free austenitic weld metals have been collected from French, Dutch, German and UK sources and the results analysed. The stress rupture strength of Mo containing weld metal is significantly higher than that of Mo free weld metal. At 10,000h the rupture strength of Mo containing weld metal is higher than that of Type 316 steel whereas the Mo free weld metal is about 20% lower than that of Type 304 steel. Austenitic weld metal can give low stress rupture ductility values. It is concluded that there are insufficient data to permit reliable extrapolations to long times and it is recommended that long term tests are performed to overcome this situation

  8. Investigation into stress wave propagation in metal foams

    Directory of Open Access Journals (Sweden)

    Li Lang

    2015-01-01

    Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  9. Tensile stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Dammers, A.J.; Sivel, V.G.M.; Wang, W.R.

    2003-01-01

    Thin films on substrates are usually in a stressed state. An important, but trivial, contribution to that stress stems from the difference in thermal expansion coefficient of substrate and film. Much more interesting are the intrinsic stresses, resulting from the growth and/or microstructure of the

  10. Temperature dependence of critical resolved shear stress for cubic metals

    International Nuclear Information System (INIS)

    Rashid, H.; Fazal-e-Aleem; Ali, M.

    1996-01-01

    The experimental measurements for critical resolved shear stress of various BCC and FCC metals have been explained by using Radiation Model. The temperature dependence of CRSS for different cubic metals is found to the first approximation, to upon the type of the crystal. A good agreement between experimental observations and predictions of the Radiation Model is found. (author)

  11. Stress concentration factor and stress intensity factor on hard metals in connection with the wear characteristics

    International Nuclear Information System (INIS)

    Dawihl, W.; Altmeyer, G.

    1977-01-01

    Description of a method to determine stress intensity factors on hard metals by lapping in notches of different diameter. Dependence of the values of the stress intensity factors on the size of the notch base diameter. For tungsten carbide hard metals with 6% Co, determination of a final value of 250 Nmm -3 / 2 . Characterisation of the stress intensity factor governed by the surface roughness which is decisive for the assessment of the wear-resistant behaviour. (orig.) [de

  12. Electromagnetic Detection of Stress Gradients at the Surfaces of Metals

    International Nuclear Information System (INIS)

    Schmidt, William F.; Zinke, Otto H.

    2004-01-01

    A general, integral expression is developed which relates measurements of the variations of the imaginary component of complex- reluctance with frequency to stress profiles near the surfaces of metals. The technique should yield either applied or residual stress profiles produced, for example, by heat-treating, metal-working, fatigue, or peening. It may even be applicable to carburizing. The technique of measurement cancels out the effects of any pre-treatment residual-stress profile (subject to the assumption of superposition). The general, integral expression is induced from the results of measurements on a steel bar which is subjected to both tensile tests and bending tests

  13. Effectiveness of stress release geometries on reducing residual stress in electroforming metal microstructure

    Science.gov (United States)

    Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai

    2018-04-01

    Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from  -292.4 MPa to  -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the

  14. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    Science.gov (United States)

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  15. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    Science.gov (United States)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  16. Advances in metal-induced oxidative stress and human disease

    International Nuclear Information System (INIS)

    Jomova, Klaudia; Valko, Marian

    2011-01-01

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  17. Solubility of hydrogen isotopes in stressed hydride-forming metals

    International Nuclear Information System (INIS)

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  18. Local microstructure and flow stress in deformed metals

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Nielsen, Chris Valentin

    2017-01-01

    The microstructure and flow stress of metals are related through many well-known strength-structure relationships based on structural parameters, where grain size and dislocation density are examples. In heterogeneous structures, the local stress and strain are important as they will affect...... the bulk properties. A microstructural method is presented which allows the local stress in a deformed metal to be estimated based on microstructural parameters determined by an EBSD analysis. These parameters are the average spacing of deformation introduced boundaries and the fraction of high angle...... boundaries. The method is demonstrated for two heterogeneous structures: (i) a gradient (sub)surface structure in steel deformed by shot peening; (ii) a heterogeneous structure introduced by friction between a tool and a workpiece of aluminum. Flow stress data are calculated based on the microstructural...

  19. Residual stresses in laser direct metal deposited Waspaloy

    International Nuclear Information System (INIS)

    Moat, R.J.; Pinkerton, A.J.; Li, L.; Withers, P.J.; Preuss, M.

    2011-01-01

    Research highlights: → Neutron diffraction and the contour method show good agreement. → Tensile stresses found parallel to the surfaces. → Compressive stresses within the bulk of the structures. → Residual stress weakly dependent on the laser pulse parameters. → Maximum tensile residual stress unaffected across range of pulse parameters used. - Abstract: This paper reports a study into the effect of laser pulse length and duty cycle on the residual stress distributions in multi-track laser direct metal deposits of Waspaloy onto an Inconel 718 substrate. The residual stresses have been evaluated using neutron diffraction and the contour method, while electron microscopy and micro hardness indentation have been used to map the concomitant microstructural variation. In all cases, near the tops of the deposited walls, the longitudinal stresses are tensile towards the mid-length of the wall, while the stresses perpendicular to the substrate are negligible. By contrast near the base of the walls, the stresses along the direction of deposition are small, while the stresses perpendicular to the substrate are compressive at the centre and tensile towards the ends. Consistent with previous observations, the stresses parallel to free surfaces are tensile, balanced by compressive stresses in the interior (an inverse quench stress profile). These profiles have been found to be weakly dependent on the laser pulse parameters, most notably an increase in tensile stress gradient with increasing duty cycle, but the maximum residual stresses are largely unaffected. Furthermore, microstructural analysis has shown that the effect of laser pulse parameters on grain morphology in multi-track thick walls is less marked than previously reported for single-track wall structures.

  20. Residual stresses in laser direct metal deposited Waspaloy

    Energy Technology Data Exchange (ETDEWEB)

    Moat, R.J., E-mail: richard.moat@manchester.ac.uk [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Pinkerton, A.J.; Li, L. [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, M60 1QD (United Kingdom); Withers, P.J.; Preuss, M. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2011-03-15

    Research highlights: {yields} Neutron diffraction and the contour method show good agreement. {yields} Tensile stresses found parallel to the surfaces. {yields} Compressive stresses within the bulk of the structures. {yields} Residual stress weakly dependent on the laser pulse parameters. {yields} Maximum tensile residual stress unaffected across range of pulse parameters used. - Abstract: This paper reports a study into the effect of laser pulse length and duty cycle on the residual stress distributions in multi-track laser direct metal deposits of Waspaloy onto an Inconel 718 substrate. The residual stresses have been evaluated using neutron diffraction and the contour method, while electron microscopy and micro hardness indentation have been used to map the concomitant microstructural variation. In all cases, near the tops of the deposited walls, the longitudinal stresses are tensile towards the mid-length of the wall, while the stresses perpendicular to the substrate are negligible. By contrast near the base of the walls, the stresses along the direction of deposition are small, while the stresses perpendicular to the substrate are compressive at the centre and tensile towards the ends. Consistent with previous observations, the stresses parallel to free surfaces are tensile, balanced by compressive stresses in the interior (an inverse quench stress profile). These profiles have been found to be weakly dependent on the laser pulse parameters, most notably an increase in tensile stress gradient with increasing duty cycle, but the maximum residual stresses are largely unaffected. Furthermore, microstructural analysis has shown that the effect of laser pulse parameters on grain morphology in multi-track thick walls is less marked than previously reported for single-track wall structures.

  1. Residual stresses and mechanical properties of metal matrix composites

    International Nuclear Information System (INIS)

    Persson, Christer.

    1993-01-01

    The large difference in coefficient of thermal expansion of the matrix and particles in a metal matrix composite will introduce residual stresses during cooling from process temperature. These stresses are locally very high, and are known to influence the mechanical behaviour of the material. Changes in the stress state will occur during heat treatments and when the material is loaded due to different elastic, plastic, and creep properties of the constituents. The change of residual stresses in an Al-SiC particulate composite after different degree of plastic straining has been studied. The effect of plastic straining was modelled by an Eshelby model. The model and the measurements both show that the stress in the loading direction decreases for a tensile plastic strain and increases for a compressive plastic strain. By x-ray diffraction the stress response in the matrix and particles can be measured independently. This has been used to determine the stress state under and after heat treatments and under mechanical loading in two Al 15% SiC metal matrix composites. By analysing the line width from x-ray experiment the changes in the microstrains in the material were studied. A finite element model was used to model the generation of thermal residual stresses, stress relaxation during heat treatments, and load sharing during the first load cycle. Calculated stresses and microstrains were found to be in good agreement with the measured values. The elastic behaviour of the composite can be understood largely in terms of elastic load transfer between matrix and particles. However, at higher loads when the matrix becomes plastic residual stresses also become important. 21 refs

  2. Positron beam analysis of polymer/metal interfaces under stress

    NARCIS (Netherlands)

    Escobar Galindo, R.; van Veen, A.; Garcia, A.A.; Schut, H.; de Hosson, J.T.M.; Triftshauser, W; Kogel, G; Sperr, P

    2001-01-01

    The polymers Epoxy and Poly(Methyl MethAcrylate) spin coated on Interstitial Free (IF) steel were subjected to external stresses and studied using the Delft Variable Energy Positron (VEP) beam facility. The polymer/metal interface was identified using an S-W map. After tensile experiments vacancy

  3. Metal stress induces programmed cell death in aquatic fungi

    International Nuclear Information System (INIS)

    Azevedo, Maria-Manuel; Almeida, Bruno; Ludovico, Paula; Cassio, Fernanda

    2009-01-01

    Aquatic hyphomycetes are a group of fungi that play a key role in organic matter turnover in both clean and metal-polluted streams. We examined the ability of Cu or Zn to induce programmed cell death (PCD) in three aquatic hyphomycete species through the evaluation of typical apoptotic markers, namely reactive oxygen species (ROS) accumulation, caspase-like activity, nuclear morphological alterations, and the occurrence of DNA strand breaks assessed by TUNEL assay. The exposure to both metals induced apoptotic events in all tested aquatic fungi. The most tolerant fungi either to Zn (Varicosporium elodeae) or Cu (Heliscussubmersus) exhibited higher levels of PCD markers, suggesting that PCD processes might be linked to fungal resistance/tolerance to metal stress. Moreover, different patterns of apoptotic markers were found, namely a PCD process independent of ROS accumulation in V. elodeae exposed to Cu, or independent of caspase-like activity in Flagellospora curta exposed to Zn, or even without the occurrence of DNA strand breaks in F. curta exposed to Cu. This suggests that a multiplicity of PCD pathways might be operating in aquatic hyphomycetes. The occurrence of a tightly regulated cell death pathway, such as PCD, in aquatic hyphomycetes under metal stress might be a part of the mechanisms underlying fungal acclimation in metal-polluted streams, because it would allow the rapid removal of unwanted or damaged cells sparing nutrients and space for the fittest ones.

  4. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  5. Hydrogen embrittlement and stress corrosion cracking in metals

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-01

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the more

  6. Impact of acute metal stress in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Dagmar Hosiner

    Full Text Available Although considered as essential cofactors for a variety of enzymatic reactions and for important structural and functional roles in cell metabolism, metals at high concentrations are potent toxic pollutants and pose complex biochemical problems for cells. We report results of single dose acute toxicity testing in the model organism S. cerevisiae. The effects of moderate toxic concentrations of 10 different human health relevant metals, Ag(+, Al(3+, As(3+, Cd(2+, Co(2+, Hg(2+, Mn(2+, Ni(2+, V(3+, and Zn(2+, following short-term exposure were analyzed by transcription profiling to provide the identification of early-on target genes or pathways. In contrast to common acute toxicity tests where defined endpoints are monitored we focused on the entire genomic response. We provide evidence that the induction of central elements of the oxidative stress response by the majority of investigated metals is the basic detoxification process against short-term metal exposure. General detoxification mechanisms also comprised the induction of genes coding for chaperones and those for chelation of metal ions via siderophores and amino acids. Hierarchical clustering, transcription factor analyses, and gene ontology data further revealed activation of genes involved in metal-specific protein catabolism along with repression of growth-related processes such as protein synthesis. Metal ion group specific differences in the expression responses with shared transcriptional regulators for both, up-regulation and repression were also observed. Additionally, some processes unique for individual metals were evident as well. In view of current concerns regarding environmental pollution our results may support ongoing attempts to develop methods to monitor potentially hazardous areas or liquids and to establish standardized tests using suitable eukaryotic a model organism.

  7. Stress corrosion and corrosion fatigue crack growth monitoring in metals

    International Nuclear Information System (INIS)

    Senadheera, T.; Shipilov, S.A.

    2003-01-01

    Environmentally assisted cracking (including stress corrosion cracking and corrosion fatigue) is one of the major causes for materials failure in a wide variety of industries. It is extremely important to understand the mechanism(s) of environmentally assisted crack propagation in structural materials so as to choose correctly from among the various possibilities-alloying elements, heat treatment of steels, parameters of cathodic protection, and inhibitors-to prevent in-service failures due to stress corrosion cracking and corrosion fatigue. An important step towards understanding the mechanism of environmentally assisted crack propagation is designing a testing machine for crack growth monitoring and that simultaneously provides measurement of electrochemical parameters. In the present paper, a direct current (DC) potential drop method for monitoring crack propagation in metals and a testing machine that uses this method and allows for measuring electrochemical parameters during stress corrosion and corrosion fatigue crack growth are described. (author)

  8. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  9. Boundary element analysis of stress singularity in dissimilar metals by friction welding

    International Nuclear Information System (INIS)

    Chung, N. Y.; Park, C. H.

    2012-01-01

    Friction welded dissimilar metals are widely applied in automobiles, rolling stocks, machine tools, and various engineering fields. Dissimilar metals have several advantages over homogeneous metals, including high strength, material property, fatigue endurance, impact absorption, high reliability, and vibration reduction. Due to the increased use of these metals, understanding their behavior under stress conditions is necessary, especially the analysis of stress singularity on the interface of friction-welded dissimilar metals. To establish a strength evaluation method and a fracture criterion, it is necessary to analyze stress singularity on the interface of dissimilar metals with welded flashes by friction welding under various loads and temperature conditions. In this paper, a method analyzing stress singularity for the specimens with and without flashes set in friction welded dissimilar metals is introduced using the boundary element method. The stress singularity index (λ) and the stress singularity factor (Γ) at the interface edge are computed from the stress analysis results. The shape and flash thickness, interface length, residual stress, and load are considered in the computation. Based on these results, the variations of interface length (c) and the ratio of flash thickness (t2 t1) greatly influence the stress singularity factors at the interface edge of friction welded dissimilar metals. The stress singularity factors will be a useful fracture parameter that considers stress singularity on the interface of dissimilar metals

  10. Stress overshoot in stress-strain curves of Zr65Al10Ni10Cu15 metallic glass

    International Nuclear Information System (INIS)

    Kawamura, Y.; Shibata, T.; Inoue, A.; Masumoto, T.

    1997-01-01

    The essential features of the stress overshoot in the stress-strain curves of Zr 65 Al 10 Ni 10 Cu 15 (at.%) metallic glass that has a wide supercooled liquid region were revealed. The stress overshoot was dependent on temperature, strain rate, and stress relaxation. During the stretch, a change in strain rate gave rise to stress overshoot or undershoot which was sensitive to the variable quantities in the strain rate. copyright 1997 American Institute of Physics

  11. An evaluation of back stress determination techniques in metals

    International Nuclear Information System (INIS)

    Jones, W.B.; Rohde, R.W.

    1983-01-01

    The desire to develop unified creep-plasticity (UCP) models come from the necessity to design advanced nuclear reactor components for service under conditions which include combined creep and low cycle fatigue. These models should also be physically based since they would be used to extrapolate from laboratory data to predict long service lives. An approach to UCP modelling centers on the hypothesis that the inelastic strain rate is determined by a balance between the competing processes of work hardening and recovery. One class of UCP models is characterized by a power law relationship between strain rate and stress. A state variable common to these models characterizes the isotropic hardening and is allowed to evolve with history according to simultaneous work hardening and recovery. In order to treat behaviours unique to unloading or reverse loading conditions, several models also include a kinematic hardening variable which is also allowed to evolve according to a balance of work hardening and recovery. Such a treatment of inelastic deformation can mathematically treat a wide variety of behaviors. The measured response of 316SS and A800 indicates that the kinematic variable must, in steady state, be taken as a constant fraction (about 0.8) of the applied stress. This experimental result makes it impossible for the simple power law type expression to properly predict the commonly observed power law breakdown behavior in most metals and alloys. It is proposed that an expression for total inelastic strain rate involving the sum of two separate strain rate contributions is more appropriate. Acknowledging that separate expressions and separate mechanisms dominate low stress (engineering service) conditions and high stress (laboratory test) conditions requires that more emphasis be placed on long time, low stress laboratory testing. (orig.)

  12. Evaluating Heavy Metal Stress Levels in Rice Based on Remote Sensing Phenology.

    Science.gov (United States)

    Liu, Tianjiao; Liu, Xiangnan; Liu, Meiling; Wu, Ling

    2018-03-14

    Heavy metal pollution of croplands is a major environmental problem worldwide. Methods for accurately and quickly monitoring heavy metal stress have important practical significance. Many studies have explored heavy metal stress in rice in relation to physiological function or physiological factors, but few studies have considered phenology, which can be sensitive to heavy metal stress. In this study, we used an integrated Normalized Difference Vegetation Index (NDVI) time-series image set to extract remote sensing phenology. A phenological indicator relatively sensitive to heavy metal stress was chosen from the obtained phenological periods and phenological parameters. The Dry Weight of Roots (WRT), which directly affected by heavy metal stress, was simulated by the World Food Study (WOFOST) model; then, a feature space based on the phenological indicator and WRT was established for monitoring heavy metal stress. The results indicated that the feature space can distinguish the heavy metal stress levels in rice, with accuracy greater than 95% for distinguishing the severe stress level. This finding provides scientific evidence for combining rice phenology and physiological characteristics in time and space, and the method is useful to monitor heavy metal stress in rice.

  13. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles.

    Science.gov (United States)

    Sarkar, Abhijit; Ghosh, Manoranjan; Sil, Parames Chandra

    2014-01-01

    Metal and metal oxide nanoparticles are often used as industrial catalysts or to improve product's functional properties. Recent advanced nanotechnology have been expected to be used in various fields, ranging from sensors, environmental remediation to biomedicine, medical biology and imaging, etc. However, the growing use of nanoparticles has led to their release into environment and increased levels of these particles at nearby sites or the surroundings of their manufacturing factories become obvious. The toxicity of metal and metal oxide nanoparticles on humans, animals, and certainly to the environment has become a major concern to our community. However, controversies still remain with respect to the toxic effects and the mechanisms of these nanoparticles. The scientific community now feels that an understanding of the toxic effects is necessary to handle these nanoparticles and their use. A new discipline, named nanotoxicology, has therefore been developed that basically refers to the study of the interactions of nanoparticles with biological systems and also measures the toxicity level related to human health. Nanoparticles usually generate reactive oxygen species to a greater extent than micro-sized particles resulting in increased pro-inflammatory reactions and oxidative stress via intracellular signaling pathways. In this review, we mainly focus on the routes of exposure of some metal and metal oxide nanoparticles and how these nanoparticles affect us or broadly the cells of our organs. We would also like to discuss the responsible mechanism(s) of the nanoparticle-induced reactive oxygen species mediated organ pathophysiology. A brief introduction of the characterization and application of these nanoparticles has also been included in the article.

  14. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis

    International Nuclear Information System (INIS)

    Taulavuori, Kari; Prasad, M.N.V.; Taulavuori, Erja; Laine, Kari

    2005-01-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness. - Metal stress may reduce plant frost hardiness

  15. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Taulavuori, Kari [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland)]. E-mail: kari.taulavuori@oulu.fi; Prasad, M.N.V. [Department of Plant Sciences, University of Hyderabad, Hyderabad 500 046, Andhra Pradesh (India); Taulavuori, Erja [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland); Laine, Kari [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland)

    2005-05-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness. - Metal stress may reduce plant frost hardiness.

  16. Stress relaxation insensitive designs for metal compliant mechanism threshold accelerometers

    Directory of Open Access Journals (Sweden)

    Carlos Vilorio

    2015-12-01

    Full Text Available We present two designs for metal compliant mechanisms for use as threshold accelerometers which require zero external power. Both designs rely on long, thin flexures positioned orthogonally to a flat body. The first design involves cutting or stamping a thin spring-steel sheet and then bending elements to form the necessary thin flexors. The second design uses precut spring-steel flexure elements mounted into a mold which is then filled with molten tin to form a bimetallic device. Accelerations necessary to switch the devices between bistable states were measured using a centrifuge. Both designs showed very little variation in threshold acceleration due to stress relaxation over a period of several weeks. Relatively large variations in threshold acceleration were observed for devices of the same design, most likely due to variations in the angle of the flexor elements relative to the main body of the devices. Keywords: Structural health monitoring, Sensor, Accelerometer, Zero power, Shock, Threshold

  17. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects.

    Science.gov (United States)

    Etesami, Hassan

    2018-01-01

    Heavy metal pollution of agricultural soils is one of main concerns causing some of the different ecological and environmental problems. Excess accumulation of these metals in soil has changed microbial community (e.g., structure, function, and diversity), deteriorated soil, decreased the growth and yield of plant, and entered into the food chain. Plants' tolerance to heavy metal stress needs to be improved in order to allow growth of crops with minimum or no accumulation of heavy metals in edible parts of plant that satisfy safe food demands for the world's rapidly increasing population. It is well known that PGPRs (plant growth-promoting rhizobacteria) enhance crop productivity and plant resistance to heavy metal stress. Many recent reports describe the application of heavy metal resistant-PGPRs to enhance agricultural yields without accumulation of metal in plant tissues. This review provides information about the mechanisms possessed by heavy metal resistant-PGPRs that ameliorate heavy metal stress to plants and decrease the accumulation of these metals in plant, and finally gives some perspectives for research on these bacteria in agriculture in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Paint coating characterization for thermoelastic stress analysis of metallic materials

    International Nuclear Information System (INIS)

    Robinson, A F; Dulieu-Barton, J M; Quinn, S; Burguete, R L

    2010-01-01

    In thermoelastic stress analysis (TSA) it is normal practice to coat metallic specimens with black paint to enhance and standardize the surface emissivity. It is assumed that the paint coating has no effect on the thermal emission from the specimen, but it is well known that the response is sensitive to paint coating thickness, particularly at higher frequencies. In this paper the effects of loading frequency and paint coating thickness on the thermoelastic response are investigated. The thermoelastic response is compared to theory, and optimum test conditions and coating characteristics are suggested. The motivation for the work is to develop a TSA-based means of residual stress assessment, where the measurement of much smaller temperature changes than those that are resolved in standard TSA is required; therefore the analysis is much more sensitive to the effects of the paint coating. However, the work presented in this paper is relevant to a wide range of TSA investigations and presents data that will be of interest to all practitioners of TSA

  19. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis.

    Science.gov (United States)

    Taulavuori, Kari; Prasad, M N V; Taulavuori, Erja; Laine, Kari

    2005-05-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness.

  20. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    OpenAIRE

    Ren Penghao; Wang Aimin; Wang Xiaolong; Zhang Yanlin

    2017-01-01

    After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation ...

  1. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview

    Science.gov (United States)

    Tiwari, Shalini; Lata, Charu

    2018-01-01

    Several anthropogenic activities including mining, modern agricultural practices, and industrialization have long-term detrimental effect on our environment. All these factors lead to increase in heavy metal concentration in soil, water, and air. Soil contamination with heavy metals cause several environmental problems and imparts toxic effect on plant as well as animals. In response to these adverse conditions, plants evolve complex molecular and physiological mechanisms for better adaptability, tolerance, and survival. Nowadays conventional breeding and transgenic technology are being used for development of metal stress resistant varieties which, however, are time consuming and labor intensive. Interestingly the use of microbes as an alternate technology for improving metal tolerance of plants is gaining momentum recently. The use of these beneficial microorganisms is considered as one of the most promising methods for safe crop-management practices. Interaction of plants with soil microorganisms can play a vital role in acclimatizing plants to metalliferous environments, and can thus be explored to improve microbe-assisted metal tolerance. Plant-associated microbes decrease metal accumulation in plant tissues and also help to reduce metal bioavailability in soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e., genetically transformed bacteria has been used to increase remediation of heavy metals and stress tolerance in plants. This review takes into account our current state of knowledge of the harmful effects of heavy metal stress, the signaling responses to metal stress, and the role of plant-associated microbes in metal stress tolerance. The review also highlights the challenges and opportunities in this continued area of research on plant–microbe–metal interaction. PMID:29681916

  2. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview

    Directory of Open Access Journals (Sweden)

    Shalini Tiwari

    2018-04-01

    Full Text Available Several anthropogenic activities including mining, modern agricultural practices, and industrialization have long-term detrimental effect on our environment. All these factors lead to increase in heavy metal concentration in soil, water, and air. Soil contamination with heavy metals cause several environmental problems and imparts toxic effect on plant as well as animals. In response to these adverse conditions, plants evolve complex molecular and physiological mechanisms for better adaptability, tolerance, and survival. Nowadays conventional breeding and transgenic technology are being used for development of metal stress resistant varieties which, however, are time consuming and labor intensive. Interestingly the use of microbes as an alternate technology for improving metal tolerance of plants is gaining momentum recently. The use of these beneficial microorganisms is considered as one of the most promising methods for safe crop-management practices. Interaction of plants with soil microorganisms can play a vital role in acclimatizing plants to metalliferous environments, and can thus be explored to improve microbe-assisted metal tolerance. Plant-associated microbes decrease metal accumulation in plant tissues and also help to reduce metal bioavailability in soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e., genetically transformed bacteria has been used to increase remediation of heavy metals and stress tolerance in plants. This review takes into account our current state of knowledge of the harmful effects of heavy metal stress, the signaling responses to metal stress, and the role of plant-associated microbes in metal stress tolerance. The review also highlights the challenges and opportunities in this continued area of research on plant–microbe–metal interaction.

  3. Effect of constraint condition and internal medium on residual stress under overlay welding for dissimilar metal welding

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong; Kim, Jong Sung; Kim, Jin Weon

    2007-01-01

    In nuclear power plants, residual stress of dissimilar metal weld propagates cracks in the weld metal which is susceptible to stress corrosion cracking. Overlay welding is a process widely used to mitigate residual stress replacing inside tensile stress by compression stress. However, according to the result of this study the effect of overlay welding on residual stress depends on both internal medium and constraint condition. The purpose of this study is to maximize the positive effect of overlay welding by finite element analyses

  4. Creep recovery of metallic glass Fe-Ni-B after longtime stress-annealing

    NARCIS (Netherlands)

    Jurikova, A; Csach, K; Miskuf, J; Ocelik, Vaclav

    2004-01-01

    The creep strain recovery of magnetic soft material - amorphous metallic glass Fe-Ni-B after a longtime stress-annealing at different temperatures below the crystallization temperature was described using differential scanning calorimetry and dilatometry. Several deformation energy accumulations

  5. Influence of Heavy Metal Stress on Antioxidant Status and DNA Damage in Urtica dioica

    Directory of Open Access Journals (Sweden)

    Darinka Gjorgieva

    2013-01-01

    Full Text Available Heavy metals have the potential to interact and induce several stress responses in the plants; thus, effects of heavy metal stress on DNA damages and total antioxidants level in Urtica dioica leaves and stems were investigated. The samples are sampled from areas with different metal exposition. Metal content was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES, for total antioxidants level assessment the Ferric-Reducing Antioxidant Power (FRAP assay was used, and genomic DNA isolation from frozen plant samples was performed to obtain DNA fingerprints of investigated plant. It was found that heavy metal contents in stems generally changed synchronously with those in leaves of the plant, and extraneous metals led to imbalance of mineral nutrient elements. DNA damages were investigated by Random Amplified Polymorphic DNA (RAPD technique, and the results demonstrated that the samples exposed to metals yielded a large number of new fragments (total 12 in comparison with the control sample. This study showed that DNA stability is highly affected by metal pollution which was identified by RAPD markers. Results suggested that heavy metal stress influences antioxidant status and also induces DNA damages in U. dioica which may help to understand the mechanisms of metals genotoxicity.

  6. Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica.

    Science.gov (United States)

    Gjorgieva, Darinka; Kadifkova Panovska, Tatjana; Ruskovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče

    2013-01-01

    Heavy metals have the potential to interact and induce several stress responses in the plants; thus, effects of heavy metal stress on DNA damages and total antioxidants level in Urtica dioica leaves and stems were investigated. The samples are sampled from areas with different metal exposition. Metal content was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), for total antioxidants level assessment the Ferric-Reducing Antioxidant Power (FRAP) assay was used, and genomic DNA isolation from frozen plant samples was performed to obtain DNA fingerprints of investigated plant. It was found that heavy metal contents in stems generally changed synchronously with those in leaves of the plant, and extraneous metals led to imbalance of mineral nutrient elements. DNA damages were investigated by Random Amplified Polymorphic DNA (RAPD) technique, and the results demonstrated that the samples exposed to metals yielded a large number of new fragments (total 12) in comparison with the control sample. This study showed that DNA stability is highly affected by metal pollution which was identified by RAPD markers. Results suggested that heavy metal stress influences antioxidant status and also induces DNA damages in U. dioica which may help to understand the mechanisms of metals genotoxicity.

  7. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng; Wang, Yong; Lee, On On; Tian, Renmao; Cao, Huiluo; Gao, Zhaoming; Li, Yongxin; Yu, Li; Xu, Ying; Qian, Pei-Yuan

    2013-01-01

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  8. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  9. Measurement of residual stress in plasma-sprayed metallic, ceramic and composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Matejicek, J.; Sampath, S. [State Univ. of New York, Stony Brook, NY (United States). Inst. for Mathematical Sciences; Gnaeupel-Herold, T.; Brand, P.C.; Prask, H.J. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1998-12-15

    Residual stresses in plasma-sprayed coatings were studied by three experimental techniques: curvature measurements, neutron diffraction and X-ray diffraction. Two distinct material classes were investigated: (1) single-material coatings (molybdenum) and (2) bi-material composites (nickel+alumina and NiCrAlY+yttria-stabilized zirconia), with and without graded layers. This paper deals with the effects of coating thickness and material properties on the evolution of residual stresses as a function of composition and thickness in both homogeneous and graded coatings. Mathematical analysis of the results allowed in some cases the separation of the quenching stress and thermal stress contributions to the final residual stress, as well as the determination of the through-thickness stress profile from measurements of different thickness specimens. In the ceramic-metal composites, it was found that the quenching stress plays a dominant role in the metallic phase, whereas the stress in the ceramic phase is mostly dominated by thermal mismatch. The respective thermal expansion coefficients and mechanical properties are the most important factors determining the stress sign and magnitude. The three residual stress measurement methods employed here were found to be complementary, in that each can provide unique information about the stress state. The most noteworthy outcomes are the determination of the through-thickness stress profile in graded coatings with high spatial resolution (curvature method) and determination of stress in each phase of a composite separately (neutron diffraction). (orig.) 25 refs.

  10. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    Directory of Open Access Journals (Sweden)

    Ren Penghao

    2017-01-01

    Full Text Available After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation of the workpiece, a linear relationship between initial stress and deformation is found; Through simulative analysis of coupling direction-stress release, the superposing relationship between the deformation caused by coupling direction-stress and the deformation caused by single direction stress is found. The research results provide important theoretical support for the stress threshold setting and deformation controlling of the workpieces in the production practice.

  11. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    International Nuclear Information System (INIS)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-01-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β -SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β -SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni–SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t -test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size. (paper)

  12. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    Science.gov (United States)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-10-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β-SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β-SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni-SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t-test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size.

  13. Improving crop tolerance to heavy metal stress by polyamine application.

    Science.gov (United States)

    Soudek, Petr; Ursu, Marina; Petrová, Šárka; Vaněk, Tomáš

    2016-12-15

    Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    Science.gov (United States)

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  15. Calculation of thermal stress condition in long metal cylinder under heating by continuous laser radiation

    International Nuclear Information System (INIS)

    Uglov, A.A.; Uglov, S.A.; Kulik, A.N.

    1997-01-01

    The method of determination of temperature field and unduced thermal stresses in long metallic cylinder under its heating by cw-laser normally distributed heat flux is offered. The graphically presented results of calculation show the stress maximum is placed behind of center of laser heat sport along its movement line on the cylinder surface

  16. Antioxidant modulation in response to heavy metal induced oxidative stress in Cladophora glomerata.

    Science.gov (United States)

    Murugan, K; Harish, S R

    2007-11-01

    The present investigation was carried out to study the induction of oxidative stress subjected to heavy metal environment. Lipoperoxides showed positive correlation at heavy metal accumulation sites indicating the tissue damage resulting from the reactive oxygen species and resulted in unbalance to cellular redox status. The high activities of ascorbate peroxidase and superoxide dismutase probably counter balance this oxidative stress. Glutathione and soluble phenols decreased, whereas dehydroascorbate content increased in the algae from polluted sites. The results suggested that alga responded to heavy metals effectively by antioxidant compounds and scavenging enzymes.

  17. Stress-enhanced swelling of metal during irradiation

    International Nuclear Information System (INIS)

    Garner, F.A.; Gilbert, E.R.; Porter, D.L.

    1980-04-01

    Data are available which show that stress plays a major role in the development of radiation-induced void growth in AISI 316 and many other alloys. Earlier experiments came to the opposite conclusion and are shown to have investigated stress levels which inadvertantly cold-worked the material. Stress-affected swelling spans the entire temperature range in fast reactor irradiations and accelerates with increasing irradiatin temperature. It also appears to operate in all alloy starting conditions investigated. Two major microstructural mechanisms appear to be causing the enhancement of swelling, which for tensile stresses is manifested primarily as a decrease in the incubation period. These mechanisms are stress-induced changes in the interstitial capture efficiency of voids and stress-induced changes in the vacancy emission rate of various microstructural components. There also appears to be an enhancement of intermetallic phase formation with applied stress and this is shown to increase swelling by accelerating the microchemical evolution that precedes void growth at high temperature. This latter consideration complicates the extrapolation of these data to compressive stress states

  18. Computational modeling applied to stress gradient analysis for metallic alloys

    International Nuclear Information System (INIS)

    Iglesias, Susana M.; Assis, Joaquim T. de; Monine, Vladimir I.

    2009-01-01

    Nowadays composite materials including materials reinforced by particles are the center of the researcher's attention. There are problems with the stress measurements in these materials, connected with the superficial stress gradient caused by the difference of the stress state of particles on the surface and in the matrix of the composite material. Computer simulation of diffraction profile formed by superficial layers of material allows simulate the diffraction experiment and gives the possibility to resolve the problem of stress measurements when the stress state is characterized by strong gradient. The aim of this paper is the application of computer simulation technique, initially developed for homogeneous materials, for diffraction line simulation of composite materials and alloys. Specifically we applied this technique for siluminum fabricated by powder metallurgy. (author)

  19. Residual stress measurements in the dissimilar metal weld in pressurizer safety nozzle of nuclear power plant

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Rabello, Emerson G.; Mansur, Tanius R.; Scaldaferri, Denis H.B.; Paula, Raphael G.; Souto, Joao P.R.S.; Carvalho Junior, Ideir T.

    2013-01-01

    Weld residual stresses have a large influence on the behavior of cracking that could possibly occur under normal operation of components. In case of an unfavorable environment, both stainless steel and nickel-based weld materials can be susceptible to stress-corrosion cracking (SCC). Stress corrosion cracks were found in dissimilar metal welds of some pressurized water reactor (PWR) nuclear plants. In the nuclear reactor primary circuit the presence of tensile residual stress and corrosive environment leads to so-called Primary Water Stress Corrosion Cracking (PWSCC). The PWSCC is a major safety concern in the nuclear power industry worldwide. PWSCC usually occurs on the inner surface of weld regions which come into contact with pressurized high temperature water coolant. However, it is very difficult to measure the residual stress on the inner surfaces of pipes or nozzles because of inaccessibility. A mock-up of weld parts of a pressurizer safety nozzle was fabricated. The mock-up was composed of three parts: an ASTM A508 C13 nozzle, an ASTM A276 F316L stainless steel safe-end, an AISI 316L stainless steel pipe and different filler metals of nickel alloy 82/182 and AISI 316L. This work presents the results of measurements of residual strain from the outer surface of the mock-up welded in base metals and filler metals by hole-drilling strain-gage method of stress relaxation. (author)

  20. Stress Analysis for the Critical Metal Structure of Bridge Crane

    Science.gov (United States)

    Ling, Zhangwei; Wang, Min; Xia, Junfang; Wang, Songhua; Guo, Xiaolian

    2018-01-01

    Based on the type of connection between the main girder and end beam of electrical single beam crane, the finite element analysis model of a full portal crane was established. The stress distribution of the critical structure under different loading conditions was analyzed. The results shown that the maximum Mises stress and deflection of the main girder were within the allowable range. And the connecting location between end beam web and main girder had higher stress than other region, especially at the lower edge and upper edge of the end beam web and the area near the bolt hole of upper wing panel. Therefore it is important to inspect the connection status, the stress condition and the crack situation nearing connection location during the regular inspection process to ensure the safety of the connection between the main girder and end beam.

  1. Metal stress in zooplankton diapause production: post-hatching response.

    Science.gov (United States)

    Aránguiz-Acuña, Adriana; Pérez-Portilla, Pablo

    2017-04-01

    Aquatic organisms commonly respond to harsh conditions by forming diapausing stages, which enable populations to survive adverse periods forming egg banks. Production of diapausing eggs is frequently observed in monogonont rotifers, previously changing from asexual to partial sexual reproduction (mixis). In despite that zooplankton are frequently used in ecotoxicological assessment because of their sensitivity to various toxicants and their important role in the ecosystems, toxicity evaluations often consider the directly exposed population produced by parthenogenetic reproduction, exclusively. We assessed experimentally effects of exposure to metals on mixis delay and fitness of hatchlings of the rotifer Brachionus plicatilis obtained from a brackish water lagoon with high metal content, especially copper. We show that sub-lethal concentrations of copper affected traits related to sexual reproduction and diapausing egg production in the rotifer. Copper addition did not delay the start of mixis, suggesting that rapid initiation of mixis is promoted in risky environments, according to the hypothesis of mixis as an escape strategy. Higher investment in mixis was obtained when individuals were exposed to metal. Addition of copper negatively affected the hatching success of diapausing eggs and performance of hatchlings. Nevertheless, these effects were greater for individuals formed in non-metal conditions, suggesting an adaptive advantage of populations from natural sediments exposed to copper. These results highlight the ecological and evolutionary consequences of the presence of metals in freshwater environments by modulating diapause adaptive efficacy and the selective process in egg banks.

  2. X-ray measurement of residual stress in metals at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Winegar, J.E.

    1980-06-01

    X-ray diffraction is used at CRNL to measure residual stress in metals. This report summarizes the basic principles of stress measurement, and reviews factors affecting accuracy of measurement. The technique and equipment described were developed at CRNL to give reliable measurements. Accuracy of measurement is achieved by using fixed-count step-scanning and by computer analysis of intensity data using a cubic spline curve smoothing routine. Specific reference is made to the measurement of residual stress in Inconel-600 and Incoloy-800 boiler tubing. Because it measures stress in thin surface layers, the X-ray method can also be used to measure the depth profile of stresses. As there are no standardized procedures for measuring residual stress, this report will be useful both to those unfamiliar with the measurement of residual stress and to those already making such measurements in other laboratories. (auth)

  3. Improving crop tolerance to heavy metal stress by polyamine application

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Ursu, Marina; Petrová, Šárka; Vaněk, Tomáš

    2016-01-01

    Roč. 213, DEC 15 (2016), s. 223-229 ISSN 0308-8146 R&D Projects: GA MŠk(CZ) LD13029 Institutional support: RVO:61389030 Keywords : Vegetables * Heavy metal * Accumulation Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.529, year: 2016

  4. Influence of osmotic and metal stresses on nitrogenase activity of ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... metal requirements often absent in other bacteria; copper ... Table 1. The effect of salt concentrations on nitrogenase activity in nitrogen-fixing Anabaena, Nostoc and Nodularia spp. ... as a detoxification mechanism. ..... the critical iron toxicity contents of paddy are above 500 .... Isolation of nickel dependent.

  5. Metals, Metallothioneins and Oxidative Stress in Blood of Autistic Children

    Science.gov (United States)

    Vergani, Laura; Cristina, Lanza; Paola, Rivaro; Luisa, Abelmoschi M.; Shyti, Genti; Edvige, Veneselli; Giuseppe, Minniti; Elena, Grasselli; Laura, Canesi; Adriana, Voci

    2011-01-01

    Many factors have been implicated in autism onset, including excess or deficiency in toxic or essential metals and impaired antioxidant systems. Protection towards the damaging effects of reactive oxygen species (ROS) is afforded by antioxidant enzymes (superoxide dismutase, SOD, catalase, CAT, glutathione peroxidase, GPx), and non-enzymatic…

  6. Transcriptome of barley under three different heavy metal stress reaction

    Czech Academy of Sciences Publication Activity Database

    Kintlová, Martina; Blavet, Nicolas; Cegan, R.; Hobza, Roman

    2017-01-01

    Roč. 13, SEP (2017), s. 15-17 ISSN 2213-5960 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : plants * Barley * RNA-Seq * Transcriptome * Heavy metal * Copper * Zinc * Cadmium Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany

  7. Standard practice for determining cracking susceptibility of metals exposed under stress to a hot salt environment

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1990-01-01

    1.1 This practice covers procedures for testing metals for embrittlement and cracking susceptibility when exposed under stress to a hot salt environment. This practice can be used for testing all metals for which service conditions dictate the need for such information. The test procedures described herein are generally applicable to all metal alloys; required adjustments in environmental variables (temperature, stress) to characterize a given materials system should be made. This practice describes the environmental conditions and degree of control required, and suggests means for obtaining this desired control. 1.2 This practice can be used both for alloy screening for determination of relative susceptibility to embrittlement and cracking, and for the determination of time-temperature-stress threshold levels for onset of embrittlement and cracking. However, certain specimen types are more suitable for each of these two types of characterizations. Note 1 This practice relates solely to the performance of ...

  8. Stress evaluation of metallic material under steady state based on nonlinear critically refracted longitudinal wave

    Science.gov (United States)

    Mao, Hanling; Zhang, Yuhua; Mao, Hanying; Li, Xinxin; Huang, Zhenfeng

    2018-06-01

    This paper presents the study of applying the nonlinear ultrasonic wave to evaluate the stress state of metallic materials under steady state. The pre-stress loading method is applied to guarantee components with steady stress. Three kinds of nonlinear ultrasonic experiments based on critically refracted longitudinal wave are conducted on components which the critically refracted longitudinal wave propagates along x, x1 and x2 direction. Experimental results indicate the second and third order relative nonlinear coefficients monotonically increase with stress, and the normalized relationship is consistent with simplified dislocation models, which indicates the experimental result is logical. The combined ultrasonic nonlinear parameter is proposed, and three stress evaluation models at x direction are established based on three ultrasonic nonlinear parameters, which the estimation error is below 5%. Then two stress detection models at x1 and x2 direction are built based on combined ultrasonic nonlinear parameter, the stress synthesis method is applied to calculate the magnitude and direction of principal stress. The results show the prediction error is within 5% and the angle deviation is within 1.5°. Therefore the nonlinear ultrasonic technique based on LCR wave could be applied to nondestructively evaluate the stress of metallic materials under steady state which the magnitude and direction are included.

  9. Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium.

    Science.gov (United States)

    Gupta, Pratishtha; Kumar, Vipin

    2017-01-01

    The presence of heavy metals in the soil is a matter of growing concern due to their toxic and non-biodegradable nature. Lack of effectiveness of various conventional methods due to economic and technical constraints resulted in the search for an eco-friendly and cost-effective biological techniques for heavy metal removal from the environment. Until now, phytoremediation has emerged as an innovative technique to address the problem. However, the efficiency of phytoremediation process is hindered under the high metal concentration conditions. Hence, phosphate solubilizing microbes (PSM) assisted phytoremediation technique is gaining more insight as it can reduce the contamination load even under elevated metal stressed conditions. These microbes convert heavy metals into soluble and bioavailable forms, which consequently facilitate phytoremediation. Several studies have reported that the use of microbial consortium for remediation is considered more effective as compared to single strain pure culture. Therefore, this review paper focuses on the current trends in research related to PSM mediated uptake of heavy metal by plants. The efficiency of PSM consortia in enhancing the phytoremediation process has also been reviewed. Moreover, the role of phosphatase enzymes in the mineralization of organic forms of phosphate in soil is further discussed. Biosurfactant mediated bioremediation of metal polluted soils is a matter of extensive research nowadays. Hence, the recent advancement of using biosurfactants in enhanced phytoremediation of metal stressed soils is also described.

  10. Characterization and evaluation of stress and heavy metal tolerance ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... mol purpurogallin formed/mg protein/min) using ε 2.47/mM/cm at. 230 nm for purpurogallin. The ascorbate .... Hydrogen sulphide test ..... stress tolerant Bacillus thuringiensis, in partially anaerobic rice field soils during post ...

  11. Evaluation of Package Stress during Temperature Cycling using Metal Deformation Measurement and FEM Simulation

    International Nuclear Information System (INIS)

    Hoeglauer, J.; Bohm, C.; Otremba, R.; Maerz, J.; Nelle, P.; Stecher, M.; Alpern, P.

    2006-01-01

    Plastic encapsulated devices that are exposed to Temperature Cycling (TC) tests undergo an excessive mechanical stress due to different Coefficients of Thermal Expansion (CTE) of the various materials used in the system. Especially in the corners of the die, passivation cracks and shifted metal lines can be observed, which demonstrates an increasing mechanical stress from chip center to the corners of the die. This effect has been known for a long time. This paper presents a simple measurement technique to quantify the mechanical shear stress at the chip-Mold Compound (MC) interface by measuring the deformation of a periodical metal structure. Based on this deformation measurement, we evaluated the stress distribution within the package, and the influence of different parameters such as number of cycles and chip size. Furthermore, these experimental results were compared with FEM simulation, and showed good agreement but could not account in all cases for the total amount of observed shift

  12. Mitochondrial Dysfunctions and Altered Metals Homeostasis: New Weapons to Counteract HCV-Related Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Mario Arciello

    2013-01-01

    Full Text Available The hepatitis C virus (HCV infection produces several pathological effects in host organism through a wide number of molecular/metabolic pathways. Today it is worldwide accepted that oxidative stress actively participates in HCV pathology, even if the antioxidant therapies adopted until now were scarcely effective. HCV causes oxidative stress by a variety of processes, such as activation of prooxidant enzymes, weakening of antioxidant defenses, organelle damage, and metals unbalance. A focal point, in HCV-related oxidative stress onset, is the mitochondrial failure. These organelles, known to be the “power plants” of cells, have a central role in energy production, metabolism, and metals homeostasis, mainly copper and iron. Furthermore, mitochondria are direct viral targets, because many HCV proteins associate with them. They are the main intracellular free radicals producers and targets. Mitochondrial dysfunctions play a key role in the metal imbalance. This event, today overlooked, is involved in oxidative stress exacerbation and may play a role in HCV life cycle. In this review, we summarize the role of mitochondria and metals in HCV-related oxidative stress, highlighting the need to consider their deregulation in the HCV-related liver damage and in the antiviral management of patients.

  13. Analysis of residual stress state in sheet metal parts processed by single point incremental forming

    Science.gov (United States)

    Maaß, F.; Gies, S.; Dobecki, M.; Brömmelhoff, K.; Tekkaya, A. E.; Reimers, W.

    2018-05-01

    The mechanical properties of formed metal components are highly affected by the prevailing residual stress state. A selective induction of residual compressive stresses in the component, can improve the product properties such as the fatigue strength. By means of single point incremental forming (SPIF), the residual stress state can be influenced by adjusting the process parameters during the manufacturing process. To achieve a fundamental understanding of the residual stress formation caused by the SPIF process, a valid numerical process model is essential. Within the scope of this paper the significance of kinematic hardening effects on the determined residual stress state is presented based on numerical simulations. The effect of the unclamping step after the manufacturing process is also analyzed. An average deviation of the residual stress amplitudes in the clamped and unclamped condition of 18 % reveals, that the unclamping step needs to be considered to reach a high numerical prediction quality.

  14. Local Stress States and Microstructural Damage Response Associated with Deformation Twins in Hexagonal Close Packed Metals

    Directory of Open Access Journals (Sweden)

    Indranil Basu

    2017-12-01

    Full Text Available The current work implements a correlative microscopy method utilizing electron back scatter diffraction, focused ion beam and digital image correlation to accurately determine spatially resolved stress profiles in the vicinity of grain/twin boundaries and tensile deformation twin tips in commercially pure titanium. Measured local stress gradients were in good agreement with local misorientation values. The role of dislocation-boundary interactions on the buildup of local stress gradients is elucidated. Stress gradients across the twin-parent interface were compressive in nature with a maximum stress magnitude at the twin boundary. Stress profiles near certain grain boundaries initially display a local stress minimum, followed by a typically observed “one over square root of distance” variation, as was first postulated by Eshelby, Frank and Nabarro. The observed trends allude to local stress relaxation mechanisms very close to the grain boundaries. Stress states in front of twin tips showed tensile stress gradients, whereas the stress state inside the twin underwent a sign reversal. The findings highlight the important role of deformation twins and their corresponding interaction with grain boundaries on damage nucleation in metals.

  15. Metal balance shift induced in small fresh water fish by several environmental stresses

    International Nuclear Information System (INIS)

    Yukawa, Masae; Iso, Hiroyuki; Kodama, Kumiko; Imaseki, Hitoshi; Aoki, Kazuko; Ishikawa, Yuji

    2005-01-01

    Balance of essential elements in organisms might be changed by environmental stresses. Small fresh water fish, Medaka, was burdened with X-ray irradiation (total dose: 17 Gy), keeping in salty water (70% NaCl of sea water) and keeping in metal containing water (10 ppm of Cr and Co). These stresses are not lethal doses. Essential elements in liver, gall bladder, kidney, spleen, heart and brain in the stress-loaded fish were measured by PIXE method and compared with a control fish to determine the effect of the stresses. Various changes of the elemental contents were observed. Effect of X-ray irradiation was the smallest among the stresses. Relatively high content elements such as P, S, Cl and K were hardly affected with the stresses examined in this work. The effect of Cr on the metal balance seems to be larger than the other stresses. As PIXE method can analyze many elements in a small sample simultaneously, change of elemental distribution in small organisms induced by environmental stresses can be determined readily. (author)

  16. The Responses of Antioxidant System against the Heavy Metal-Induced Stress in Tomato

    Directory of Open Access Journals (Sweden)

    Dursun KISA

    2017-12-01

    Full Text Available Plants maintain their life cycles under the various environmental conditions such as oxidative stress induced by heavy metals. Accumulation of metal ions in plants causes the formation of free radicals and stimulates the antioxidative defense systems. In this study, the activities of APX, POD, and SOD are investigated in the leaves and roots of tomato cultivated under the heavy metal-induced stress. The activities of APX, POD, and SOD exhibited remarkable induction with the treatment of Cd, Cu and Pb (10, 20 and 50 ppm in the leaves of tomato compared to control plants except for 50 ppm Pb. In roots, APX activity changed depending on the heavy metal types and concentrations, while Cd clearly increased it with stress conditions, but Cu decreased in tomato compared to control. The activity of POD clearly exhibited that the all doses of heavy metals reduced the enzyme activity in roots polluted with heavy metals. The treatment of Cd (10, 20 and 50 ppm significantly increased the activity of SOD, however, Cu showed the opposite effect which significantly decreased with increasing doses in roots compared to uncontaminated plants. Also, roots from plants grown on the high concentration of Pb (20 and 50 ppm induced the activity of SOD. Briefly, it is clear responses which Cd significantly raised the activities of APX and SOD in leaves and roots of tomato. The decreases caused by these metals in the activity of POD and Cu in the activities of APX and SOD in roots of tomato can be clarified by the result of heavy metal-induced the over production of free radical.

  17. Residual stress in TI6AL4V objects produced by direct metal laser sintering

    Directory of Open Access Journals (Sweden)

    Van Zyl, Ian

    2016-12-01

    Full Text Available Direct Metal Laser Sintering produces 3D objects using a layer-by- layer method in which powder is deposited in thin layers. Laser beam scans over the powder fusing powder particles as well as the previous layer. High-concentration of laser energy input leads to high thermal gradients which induce residual stress within the as- built parts. Ti6Al4V (ELI samples have been manufactured by EOSINT M280 system at prescribed by EOS process-parameters. Residual stresses were measured by XRD method. Microstructure, values and directions of principal stresses inTi6Al4V DMLS samples were analysed.

  18. Non-newtonian deformation of co-based metallic glass at low stresses

    NARCIS (Netherlands)

    Fursova, YV; Khonik, VA; Csach, K; Ocelik, Vaclav

    2000-01-01

    The results of precision measurements of creep in Co-based metallic glass are presented. It is shown that, in spite of generally accepted concepts, plastic flow at low stresses under intense structural relaxation conditions is of a non-Newtonian type. Consequences of this fact are considered. (C)

  19. Release of metal in vivo from stressed and nonstressed maxillofacial fracture plates and screws.

    Science.gov (United States)

    Matthew, I R; Frame, J W

    2000-07-01

    To analyze the release of metal into the adjacent tissues from stressed and nonstressed titanium and stainless steel miniplates and screws. Two miniplates were inserted into the cranial vaults of 12 beagle dogs while they were under general endotracheal anesthesia. One miniplate was shaped to fit the curvature of the skull (control). Another miniplate, made of the same material, was bent in a curve until the midpoint was raised 3 mm above the ends. Screws were inserted and tightened until the plate conformed to the skull curvature, creating stresses in the system. Four animals (2 each, having titanium or stainless steel plates and screws) were killed after 4, 12, and 24 weeks. Metallosis of adjacent soft tissues was assessed qualitatively. Miniplates and screws were removed, and adjacent soft tissue and bone was excised. Titanium, iron, chromium, nickel, and aluminum levels were assayed by ultraviolet/visible light and atomic absorption spectrophotometry. Nonparametric statistical methods were used for data analysis. There was no clear relationship between pigmentation of soft tissue adjacent to the miniplates and screws and the concentrations of metal present. The data did not demonstrate any consistent differences in the concentrations of metallic elements next to stressed and nonstressed (control) miniplates and screws of either material. Stresses arising through poor contouring of miniplates do not appear to influence the extent of release of metal into the adjacent tissues.

  20. Residual stress determination of direct metal laser sintered (DMLS) inconel specimens and parts

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Thomas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maziasz, Philip J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bunn, Jeffrey R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fancher, Christopher M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peralta, Alonso [Honeywell Aerospace, Phoenix, AZ (United States); Sundarraj, Suresh [Honeywell Aerospace, Phoenix, AZ (United States); Neumann, James [Honeywell Aerospace, Phoenix, AZ (United States)

    2018-01-01

    Residual stress determinations and microstructural studies were performed on a series of Inconel 718Plus prisms built using Direct Metal Laser Sintering (DMLS) at Honeywell Aerospace (hereafter also referred to as Honeywell). The results are being used to validate and improve existing models at Honeywell, and ultimately will expedite the implementation of DMLS throughout various industrial sectors (automotive, biomedical, etc.).

  1. Relaxation of thermal stress by dislocation motion in passivated metal interconnects

    NARCIS (Netherlands)

    Nicola, L; Van der Giessen, E; Needleman, A

    The development and relaxation of stress in metal interconnects strained by their surroundings (substrate and passivation layers) is predicted by a discrete dislocation analysis. The model is based on a two-dimensional plane strain formulation, with deformation fully constrained in the line

  2. Oxidative stress in pied flycatcher (Ficedula hypoleuca) nestlings from metal contaminated environments in northern Sweden

    International Nuclear Information System (INIS)

    Berglund, A.M.M.; Sturve, J.; Foerlin, L.; Nyholm, N.E.I.

    2007-01-01

    Metals have been shown to induce oxidative stress in animals. One of the most metal polluted terrestrial environments in Sweden is the surroundings of a sulfide ore smelter plant located in the northern part of the country. Pied flycatcher nestlings (Ficedula hypoleuca) that grew up close to the industry had accumulated amounts of arsenic, cadmium, mercury, lead, iron and zinc in their liver tissue. The aim of this study was to investigate if pied flycatcher nestlings in the pollution gradient of the industry were affected by oxidative stress using antioxidant molecules and enzyme activities. The antioxidant assays were also evaluated in search for useful biomarkers in pied flycatchers. This study indicated that nestlings in metal contaminated areas showed signs of oxidative stress evidenced by up regulated hepatic antioxidant defense given as increased glutathione reductase (GR) and catalase (CAT) activities and slightly but not significantly elevated lipid peroxidation and glutathione-S-transferase (GST) activities. Stepwise linear regression indicated that lipid peroxidation and CAT activities were influenced mostly by iron, but iron and lead influenced the CAT activity to a higher degree. Positive relationships were found between GST and lead as well as GR activities and cadmium. We conclude that GR, CAT, GST activities and lipid peroxidation levels may function as useful biomarkers for oxidative stress in free-living pied flycatcher nestlings exposed to metal contaminated environments

  3. Computer finite element analysis of stress derived from particular units of torsionally flexible metal coupling

    Directory of Open Access Journals (Sweden)

    Mariusz KUCZAJ

    2010-01-01

    Full Text Available In this article the results of Finite Element Analysis (FEA results of stresses derived from chosen units of torsionally flexible metal coupling are presented. As model and simulation tool for particular component loads is used the Autodesk Inventor Professional 2009 program.

  4. Non-Newtonian plastic flow of a Ni-Si-B metallic glass at low stresses

    International Nuclear Information System (INIS)

    Csach, K.; Fursova, Y.V.; Khonik, V.A.; Ocelik, V.

    1998-01-01

    The problem of the rheological behavior of metallic glasses (MGs) is quite important both from theoretical and practical viewpoints. Early experiments carried out on MGs at temperatures T > 300 K using low shear stress levels revealed plastic flow to be Newtonian while measurements at relative high shear stresses (more than 200 to 400 MPa, depending on temperature, thermal prehistory of samples and chemical composition) indicated a non-linear behavior with 1 < m < 12. Numerous investigations performed later both on as-cast and relaxed MGs of various chemical compositions using a number of testing methods (tensile creep, tensile and bend stress relaxation) showed that a transition from Newtonian behavior at low stresses to a non-linear flow at high stresses was observed. At present, such a situation is considered to be generally accepted. The authors performed precise creep measurements of a Ni-Si-B metallic glass. The results obtained indicate that plastic flow in this case at low tensile stress (12 le σ le 307 MPa) is clearly non-Newtonian and, consequently, the viscosity is stress dependent

  5. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Moreno, António; Zhang, Chang; Freitas, Helena

    2017-10-01

    This study evaluates the potential of serpentine endophytic bacterium to foster phytoremediation efficiency of Trifolium arvense grown on multi-metal (Cu, Zn and Ni) contaminated soils under drought stress. A drought resistant endophytic bacterial strain ASS1 isolated from the leaves of Alyssum serpyllifolium grown in serpentine soils was identified as Pseudomonas azotoformans based on biochemical tests and partial 16S rRNA gene sequencing. P. azotoformans ASS1 possessed abiotic stress resistance (heavy metals, drought, salinity, antibiotics and extreme temperature) and plant growth promoting (PGP) properties (phosphate solubilization, nitrogen fixation, production of 1-aminocyclopropane-1-carboxylate deaminase, siderophore and ammonia). Inoculation of T. arvense with ASS1 considerably increased the plant biomass and leaf relative water content in both roll towel assay and pot experiments in the absence and presence of drought stress (DS). In the pot experiments, ASS1 greatly enhanced chlorophyll content, catalase, peroxidase, superoxide dismutase activities, and proline content (only in the absence of drought) in plant leaves, whereas they decreased the concentrations of malondialdehyde. Irrespective of water stress, ASS1 significantly improved accumulation, total removal, bio-concentration factor and biological accumulation coefficient of metals (Cu, Zn and Ni), while decreased translocation factors of Cu. The effective colonization and survival in the rhizosphere and tissue interior assured improved plant growth and successful metal phytoremediation under DS. These results demonstrate the potential of serpentine endophytic bacterium ASS1 for protecting plants against abiotic stresses and helping plants to thrive in semiarid ecosystems and accelerate phytoremediation process in metal polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Stress corrosion crack growth rate in dissimilar metal welds

    International Nuclear Information System (INIS)

    Fernandez, M. P.; Lapena, J.; Lancha, A. M.; Perosanz, F. J.; Navas, M.

    2000-01-01

    Dissimilar welds, used to join different sections in light water reactors, are potentially susceptible to stress corrosion cracking (SCC) in aqueous mediums characteristic of nuclear plants. However, the study of these The ma has been limited to evaluating the weld material susceptibility in these mediums. Little scarce data are available on crack growth rates due, fundamentally, to inadequate testing techniques. In order to address this lack of information the crack growth rate at the interface of ferritic SA 533 B-1 alloy and alloy I-82, in a dissimilar weld (SA533B-1/I-82/316L), was studied. Experiments were conducted in water at 288 degree centigrade, 8 ppm of O 2 and 1 μS/cm conductivity. (Author) 33 refs

  7. Virtual Institute of Microbial Stress and Survival: Deduction of Stress Response Pathways in Metal and Radionuclide Reducing Microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-04-17

    The projects application goals are to: (1) To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites; (2) To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation; (3) To implement proposed policies in the field and compare results to model predictions; and (4) Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models. The projects science goals are to: (1) Compare physiological and molecular response of three target microorganisms to environmental perturbation; (2) Deduce the underlying regulatory pathways that control these responses through analysis of phenotype, functional genomic, and molecular interaction data; (3) Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways; (4) From this analysis derive an understanding of the mechanisms of pathway evolution in the environment; and (5) Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites.

  8. Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.).

    Science.gov (United States)

    de Silva, Nayana Dilini Gardiyehewa; Cholewa, Ewa; Ryser, Peter

    2012-10-01

    The effects of heavy metal stress, drought stress, and their combination on xylem structure in red maple (Acer rubrum) seedlings were investigated in an outdoor pot experiment. As metal-contaminated substrate, a mixture of 1.5% slag with sand was used, with Ni, Cu, Co, and Cr as the main contaminants. Plants grown on contaminated substrate had increased leaf metal concentrations. The two stresses reduced plant growth in an additive manner. The effects of metal and drought stresses on xylem characteristics were similar to each other, with a reduced proportion of xylem tissue, reduced conduit density in stems, and reduced conduit size in the roots. This resulted, in both stems and roots, in reductions in hydraulic conductance, xylem-specific conductivity, and leaf-specific conductivity. The similarity of the responses to the two stresses suggests that the plants' response to metals was actually a drought response, probably due to the reduced water uptake capacity of the metal-exposed roots. The only plant responses specific to metal stress were decreasing trends of stomatal density and chlorophyll content. In conclusion, the exposure to metals aggravates water stress in an additive manner, making the plants more vulnerable to drought.

  9. Stress and Reliability Analysis of a Metal-Ceramic Dental Crown

    Science.gov (United States)

    Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.

    1996-01-01

    Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.

  10. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress

    Science.gov (United States)

    Faucher, Giulia; Hoffmann, Linn; Bach, Lennart T.; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf

    2017-07-01

    The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.

  11. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress

    Directory of Open Access Journals (Sweden)

    G. Faucher

    2017-07-01

    Full Text Available The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae, intermediate- (E. huxleyi and G. oceanica and least-tolerant (C. pelagicus taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.

  12. Immunoelectron microscopic studies on metallothionein induction in Nile cichlid due to heavy metal stress

    International Nuclear Information System (INIS)

    Chatterjee, S.; Singh, L.; Das, T.K.; Mukhopadhyay, S.K.

    2010-01-01

    Heavy metals are important environmental pollutants and many of them are toxic even in low concentrations. The uncontrolled input of such elements in milieu is undesirable because once accumulated, are hard to remove. The release of toxic metals in biologically available forms by human activity may damage or alter both natural and man-made ecosystems. The cellular adaptation to toxicity of metals is one of the important factors for organisms living in the stressful conditions. The major type of cellular effect at the cytoplasmic level involves binding of metals through specific metal binding proteins. One of these metalloproteins is metallothionein (MT), MT is a low-molecular-weight (6-7 kDa) cysteine rich protein ubiquitous in the animal kingdom and can bind with essential (Cu + and Zn 2+ ) and nonessential (Cd 2+ , Hg 2+ and Ag + ) metals with a high thermodynamic and low kinetic stability. Again, the induction of MT by other heavy metals such as Cr, Mn and Pb was also reported by several workers

  13. Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms.

    Science.gov (United States)

    Mishra, Jitendra; Singh, Rachna; Arora, Naveen K

    2017-01-01

    Increasing concentration of heavy metals (HM) due to various anthropogenic activities is a serious problem. Plants are very much affected by HM pollution particularly in contaminated soils. Survival of plants becomes tough and its overall health under HM stress is impaired. Remediation of HM in contaminated soil is done by physical and chemical processes which are costly, time-consuming, and non-sustainable. Metal-microbe interaction is an emerging but under-utilized technology that can be exploited to reduce HM stress in plants. Several rhizosphere microorganisms are known to play essential role in the management of HM stresses in plants. They can accumulate, transform, or detoxify HM. In general, the benefit from these microbes can have a vast impact on plant's health. Plant-microbe associations targeting HM stress may provide another dimension to existing phytoremediation and rhizoremediation uses. In this review, applied aspects and mechanisms of action of heavy metal tolerant-plant growth promoting (HMT-PGP) microbes in ensuring plant survival and growth in contaminated soils are discussed. The use of HMT-PGP microbes and their interaction with plants in remediation of contaminated soil can be the approach for the future. This low input and sustainable biotechnology can be of immense use/importance in reclaiming the HM contaminated soils, thus increasing the quality and yield of such soils.

  14. Thermal Stress and Heat Transfer Coefficient for Ceramics Stalk Having Protuberance Dipping into Molten Metal

    Science.gov (United States)

    Noda, Nao-Aki; Hendra; Li, Wenbin; Takase, Yasushi; Ogura, Hiroki; Higashi, Yusuke

    Low pressure die casting is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The low pressure die casting process plays an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. In the low pressure die casting process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal, by means of a pressurized gas, to rise into a ceramic tube having protuberance, which connects the die to the furnace. The ceramics tube, called stalk, has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk having protuberance is dipped into the molten aluminum. It is important to reduce the risk of fracture that may happen due to the thermal stresses. In this paper, thermo-fluid analysis is performed to calculate surface heat transfer coefficient. The finite element method is applied to calculate the thermal stresses when the stalk having protuberance is dipped into the crucible with varying dipping speeds. It is found that the stalk with or without protuberance should be dipped into the crucible slowly to reduce the thermal stress.

  15. Influence of cold rolling and fatigue on the residual stress state of a metal matrix composite

    International Nuclear Information System (INIS)

    Hanus, E.; Ericsson, T.; Lu, J.; Decomps, F.

    1993-01-01

    The large difference in the coefficient of thermal expansion between the matrix alloy and the particle in a metal matrix composite gives rise to residual stresses in the material. In the present work the effect of cold rolling and four-point bending fatigue on the residual stress state of a silicon carbide particle reinforced aluminium alloy (AA 2014) has been investigated. The three dimensional stress state measured in both phases: matrix and reinforcement, has been determined by using an X-ray diffraction technique. It was found that cold rolling induces surface compressive macrostresses of about -250 MPa, with a penetration depth around 2 mm. The absolute values of the pseudomacrostresses in both phases are significantly reduced due to the single track rolling. Stress relaxation occurs during four-point bending fatigue. (orig.)

  16. Assessment of Cadmium and Chromium Stress on Growth, Physiology and Metal Uptake Using Mirabilis Jalapa

    OpenAIRE

    S. A. Shahanaz Begum; Tharakeswar Yadamari; Kalyan Yakkala; Sreevani Parvathareddy; Ramakrishna Naidu Gurijala

    2015-01-01

    Phytoextraction potential of Mirabilis jalapa, with tuberous root having high ecological adoptability was studied in the present work . Different levels of cadmium and chromium stress on growth, physiology and metal uptake were studied using pot experiments. The experiment comprised of 5 dosages of cadmium and chromium with different test concentrations (TC) viz, TC1(0), TC2(25), TC3(50), TC4(75) and TC5(100) ppm, for the period of 45 days. Growth, physiological parameters and metal accumulat...

  17. Effect Of Heavy Metals Stress On Enzyme Activities And Chlorophyll Content Of Pea (Pisum Sativum) And Tomato Plants

    International Nuclear Information System (INIS)

    Ahmed, B.M.; El Maghrabi, G.; Hashem, M.F.

    2013-01-01

    The effects of heavy metal stress on the chlorophyll in addition to catalase and peroxidase activities were studied in the leaves and roots of tomato and pea plants. Four groups were studied; the control group and other three groups treated with heavy metals. Group 1HM was treated with 1.0 mg CuSO 4 /l + 0.2 mg CdSO 4 /l + 0.1 mg ZnNO 3 /l every 10 days while in group 5 HM and group 10 HM, the doses were 5 and 10 folds the 1 HM, respectively. Leaves and roots of control and heavy metal-stressed plants were harvested after 10 weeks for chlorophyll determination. The chlorophyll content, especially chlo. b, was significantly decreased with the increase in heavy metals stress in both plants. In leaves of heavy metal-stressed plants, the peroxidase level in different stress levels was increased with increasing stress levels in tomato and pea while catalase was unchanged in leaves of tomato in comparison with the control. The activities of catalase and peroxidase in roots of heavy metal-stressed plants were increased in group 5 HM then decreased in case of group 10 HM. The increase in enzyme activities demonstrated that tomato is more tolerant to heavy metals than pea

  18. Transcriptional response of stress genes to metal exposure in zebra mussel larvae and adults

    International Nuclear Information System (INIS)

    Navarro, Anna; Faria, Melissa; Barata, Carlos; Pina, Benjamin

    2011-01-01

    Development of stress markers for the invader freshwater zebra mussel (Dreissena polymorpha) is of great interest for both conservation and biomonitoring purposes. Gene expression profiles of several putative or already established gene expression stress markers (Metallothionein, Superoxide dismutase, Catalase, Glutathione S transferase, Glutathione peroxidase, Cytochrome c oxidase, the multixenobiotic resistance P-gp1, and heat shock proteins HSP70 and HSP90) were analyzed by quantitative Real-Time PCR in adults and pediveliger larvae after exposure to metals (Hg, Cu, Cd). A defined pattern of coordinated responses to metal exposure and, presumably, to oxidative stress was observed in gills and digestive gland from adults. A similar, albeit partial response was observed in larvae, indicating an early development of stress-related gene responses in zebra mussel. The tools developed in this study may be useful both for future control strategies and for the use of zebra mussel as sentinel species in water courses with stable populations. - Coordinated expression of stress genes in zebra mussel.

  19. Transcriptional response of stress genes to metal exposure in zebra mussel larvae and adults

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Anna; Faria, Melissa; Barata, Carlos [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona (Spain); Pina, Benjamin, E-mail: bpcbmc@cid.csic.e [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona (Spain)

    2011-01-15

    Development of stress markers for the invader freshwater zebra mussel (Dreissena polymorpha) is of great interest for both conservation and biomonitoring purposes. Gene expression profiles of several putative or already established gene expression stress markers (Metallothionein, Superoxide dismutase, Catalase, Glutathione S transferase, Glutathione peroxidase, Cytochrome c oxidase, the multixenobiotic resistance P-gp1, and heat shock proteins HSP70 and HSP90) were analyzed by quantitative Real-Time PCR in adults and pediveliger larvae after exposure to metals (Hg, Cu, Cd). A defined pattern of coordinated responses to metal exposure and, presumably, to oxidative stress was observed in gills and digestive gland from adults. A similar, albeit partial response was observed in larvae, indicating an early development of stress-related gene responses in zebra mussel. The tools developed in this study may be useful both for future control strategies and for the use of zebra mussel as sentinel species in water courses with stable populations. - Coordinated expression of stress genes in zebra mussel.

  20. Effect of stress at dosing on organophosphate and heavy metal toxicity

    International Nuclear Information System (INIS)

    Jortner, Bernard S.

    2008-01-01

    This paper reviews recent studies assessing the effect of well-defined, severe, transient stress at dosing on two classical models of toxicity. These are the acute (anticholinesterase) toxicity seen following exposure to the organophosphate insecticide chlorpyrifos, and the nephrotoxicity elicited by the heavy metal depleted uranium, in rats. Stress was induced by periods of restraint and forced swimming in days to weeks preceding toxicant exposure. Forced swimming was far more stressful, as measured by marked, if transient, elevation of plasma corticosterone. This form of stress was administered immediately prior to administration of chlorpyrifos or depleted uranium. Chlorpyrifos (single 60 mg/kg subcutaneously) elicited marked inhibition of brain acetylcholinesterase 4-day post-dosing. Depleted uranium (single intramuscular doses of 0.1, 0.3 or 1.0 mg/kg uranium) elicited dose-dependent increase in kidney concentration of the metal, with associated injury to proximal tubular epithelium and increases in serum blood urea nitrogen and creatinine during the 30-day post-dosing period. Stress at dosing had no effect on these toxicologic endpoints

  1. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G., E-mail: wrcc@cdtn.br, E-mail: camilarezende.cr@gmail.com, E-mail: egr@cdtn.br, E-mail: vladimirsoler@hotmail.com, E-mail: ahfv02@outlook.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  2. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G.

    2017-01-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  3. Stress Analysis of Non-Ferrous Metals Welds by Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Kravarikova Helena

    2017-01-01

    Full Text Available Thermal energy welded material unevenly heated and thus supports the creation of tension. During the fusing process welding transient tensions generated in the welded material. Generation of the transient tensions depends on the thermal expansion and fixed permanently welded parts. Tensions are the result of the interaction of material particles. For welded parts and constructions it is necessary to know the size and direction of application of tensions. The emerging tensions can cause local change or a total deformation of welded materials. Deformations and residual stresses impair the performance of a welded construction, reduces the stability of the parts. To reduce or eliminate of action or a screening direction stresses and strains it is necessary to know the mechanism of their emergence. It is now possible to examine the emergence of tensions numerical experiments on any model using numerical simulation using FEM. Results of numerical experiment is the analysis of stress and deformation course. In the plane the tension it divided into normal σ and τ tangential folders. Decomposition stress on components simplifies the stress analysis. The results obtained from numerical analysis are correct to predict the stress distribution and size. The paper presents the results of numerical experiments stress analysis solutions fillet welds using FEM numerical simulation of welding of non-ferrous metals.

  4. Feasibility of ultrasonic and eddy current methods for measurement of residual stress in shot peened metals

    International Nuclear Information System (INIS)

    Lavrentyev, Anton I.; Stucky, Paul A.; Veronesi, William A.

    2000-01-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing compressive residual stresses near their surfaces. The capability to nondestructively evaluate the near surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper presents preliminary results from a feasibility study examining the use of ultrasonic and eddy current NDE methods for residual stress measurement in components where the stress has been introduced by shot peening. With an ultrasonic method, a variation of ultrasonic surface wave speed with shot peening intensity was measured. Near surface conductivity was measured by eddy current methods. Since the effective penetration depth of both methods employed is inversely related to the excitation frequency, by making measurements at different frequencies, each method has the potential to provide the stress-depth profile. Experiments were conducted on aluminum specimens (alloy 7075-T7351) peened within the Almen peening intensity range of 4C to 16C. The experimental results obtained demonstrate a correlation between peening intensity and Rayleigh wave velocity and between peening intensity and conductivity. The data suggests either of the methods may be suitable, with limitations, for detecting unsatisfactory levels of shot peening. Several factors were found to contribute to the measured responses: surface roughness, near surface plastic deformation (cold work) and residual stress. The contribution of each factor was studied experimentally. The feasibility of residual stress determination from the measured data is discussed

  5. Initial stresses in two-layer metal domes due to imperfections of their production and assemblage

    Directory of Open Access Journals (Sweden)

    Lebed Evgeniy Vasil’evich

    2015-04-01

    Full Text Available The process of construction of two-layer metal domes is analyzed to illustrate the causes of initial stresses in the bars of their frames. It has been noticed that it is impossible to build such structures with ideal geometric parameters because of imperfections caused by objective reasons. These imperfections cause difficulties in the process of connection of the elements in the joints. The paper demonstrates the necessity of fitting operations during assemblage that involve force fitting and yield initial stresses due to imperfections. The authors propose a special method of computer modeling of enforced elimination of possible imperfections caused by assemblage process and further confirm the method by an analysis of a concrete metal dome.

  6. Equation of limiting plasticity of the metal upon complex stress state

    International Nuclear Information System (INIS)

    Tin'gaev, A.K.

    2002-01-01

    A method for evaluation of the limiting plasticity of the metal in the zones of complex 3D stress state is presented. An analytic equation is derived for limiting plasticity. Parameters of the equation are expresses through the standard characteristics of the mechanical properties determined upon static tension of the smooth sample. Introduced into the obtained analytical equation is a universal fracture constant which indirectly characterizes the state of the material from the point of view of its capacity for elastic overstrain relaxation in the form of plastic flow or fracture. The new equation makes it possible to estimate the limiting plasticity of the metal in a state of complex stress on the basis of traditional characteristics of mechanical properties, which are not difficult to determine [ru

  7. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    Science.gov (United States)

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms

    OpenAIRE

    Mishra, Jitendra; Singh, Rachna; Arora, Naveen K.

    2017-01-01

    Increasing concentration of heavy metals (HM) due to various anthropogenic activities is a serious problem. Plants are very much affected by HM pollution particularly in contaminated soils. Survival of plants becomes tough and its overall health under HM stress is impaired. Remediation of HM in contaminated soil is done by physical and chemical processes which are costly, time-consuming, and non-sustainable. Metal–microbe interaction is an emerging but under-utilized technology that can be ex...

  9. Correlation of transcriptomic responses and metal bioaccumulation in Mytilus edulis L. reveals early indicators of stress

    Energy Technology Data Exchange (ETDEWEB)

    Poynton, Helen C., E-mail: helen.poynton@umb.edu; Robinson, William E.; Blalock, Bonnie J.; Hannigan, Robyn E.

    2014-10-15

    Highlights: • Gene expression and metal tissue concentrations were compared in Mytilus edulis. • Expression levels of several transcripts correlated with metal concentrations. • Transcripts involved in the unfolded protein response (UPR) were induced. • Integration of transcriptomics and tissue levels provides insight to toxicity. - Abstract: Marine biomonitoring programs in the U.S. and Europe have historically relied on monitoring tissue concentrations of bivalves to monitor contaminant levels and ecosystem health. By integrating ‘omic methods with these tissue residue approaches we can uncover mechanistic insight to link tissue concentrations to potential toxic effects. In an effort to identify novel biomarkers and better understand the molecular toxicology of metal bioaccumulation in bivalves, we exposed the blue mussel, Mytilus edulis L., to sub-lethal concentrations (0.54 μM) of cadmium, lead, and a Cd + Pb mixture. Metal concentrations were measured in gill tissues at 1, 2, and 4 weeks, and increased linearly over the 4 week duration. In addition, there was evidence that Pb interfered with Cd uptake in the mixture treatment. Using a 3025 sequence microarray for M. edulis, we performed transcriptomic analysis, identifying 57 differentially expressed sequences. Hierarchical clustering of these sequences successfully distinguished the different treatment groups demonstrating that the expression profiles were reproducible among the treatments. Enrichment analysis of gene ontology terms identified several biological processes that were perturbed by the treatments, including nucleoside phosphate biosynthetic processes, mRNA metabolic processes, and response to stress. To identify transcripts whose expression level correlated with metal bioaccumulation, we performed Pearson correlation analysis. Several transcripts correlated with gill metal concentrations including mt10, mt20, and contig 48, an unknown transcript containing a wsc domain. In addition

  10. Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots.

    Science.gov (United States)

    Hippler, Franz Walter Rieger; Petená, Guilherme; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Azevedo, Ricardo Antunes; Mattos-Jr, Dirceu

    2018-05-01

    Nutritional disorders caused by copper (Cu) have affected citrus orchards. Since Cu is foliar sprayed as a pesticide to control citrus diseases, this metal accumulates in the soil. Thereby, we evaluated the effects of Cu leaf absorption after spray of different metal sources, as well as roots absorption on growth, nutritional status, and oxidative stress of young sweet orange trees. Two experiments were carried out under greenhouse conditions. The first experiment was set up with varying Cu levels to the soil (nil Cu, 0.5, 2.0, 4.0 and 8.0 g of Cu per plant as CuSO 4 .5H 2 O), whereas the second experiment with Cu application via foliar sprays (0.5 and 2.0 g of Cu per plant) and comparing two metal sources (CuSO 4 .5H 2 O or Cu(OH) 2 ). Copper was mainly accumulated in roots with soil supply, but an increase of oxidative stress levels was observed in leaves. On the other hand, Cu concentrations were higher in leaves that received foliar sprays, mainly as Cu(OH) 2 . However, when sulfate was foliar sprayed, plants exhibited more symptoms of injuries in the canopy with decreased chlorophyll contents and increased hydrogen peroxide and lipid peroxidation levels. Copper toxicity was characterized by sap leakage from the trunk and twigs, which is the first report of this specific Cu excess symptom in woody trees. Despite plants with 8.0 g of Cu soil-applied exhibiting the sap leakage, growth of new plant parts was more vigorous with lower oxidative stress levels and injuries compared to those with 4.0 g of Cu soil-applied (without sap leakage). With the highest level of Cu applied via foliar as sulfate, Cu was eliminated by plant roots, increasing the rhizospheric soil metal levels. Despite citrus likely exhibiting different mechanisms to reduce the damages caused by metal toxicity, such as responsive enzymatic antioxidant system, metal accumulation in the roots, and metal exclusion by roots, excess Cu resulted in damages on plant growth and metabolism when the

  11. Numerical Analysis of Thermal Stresses around Fasteners in Composite Metal Foils

    Science.gov (United States)

    Nammi, S. K.; Butt, J.; –L Mauricette, J.; Shirvani, H.

    2017-12-01

    The process of composite metal foil manufacturing (CMFM) has reduced a number of limitations associated with commercial additive manufacturing (AM) methods. The existing metal AM machines are restricted by their build envelope and there is a growing market for the manufacture of large parts using AM. These parts are subsequently manufactured in fragments and are fastened together. This paper analyses the thermal stresses around cylindrical fasteners for three layered metal composite parts consisting of aluminium foil, brazing paste and copper foil layers. The investigation aims to examine the mechanical integrity of the metallurgically bonded aluminium/copper foils of 100 micron thickness manufactured in a disc shape. A cylindrical fastener set at an elevated temperature of 100 °C is fitted in the middle of the disc which results in a steady-state thermal distribution. Radial and shear stresses are computed using finite element method which shows that non-zero shear stresses developed by the copper layer inhibit the axial slippage of the fastener and thereby establishing the suitability of rivet joints for CMFM parts.

  12. Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms

    Directory of Open Access Journals (Sweden)

    Jitendra Mishra

    2017-09-01

    Full Text Available Increasing concentration of heavy metals (HM due to various anthropogenic activities is a serious problem. Plants are very much affected by HM pollution particularly in contaminated soils. Survival of plants becomes tough and its overall health under HM stress is impaired. Remediation of HM in contaminated soil is done by physical and chemical processes which are costly, time-consuming, and non-sustainable. Metal–microbe interaction is an emerging but under-utilized technology that can be exploited to reduce HM stress in plants. Several rhizosphere microorganisms are known to play essential role in the management of HM stresses in plants. They can accumulate, transform, or detoxify HM. In general, the benefit from these microbes can have a vast impact on plant’s health. Plant–microbe associations targeting HM stress may provide another dimension to existing phytoremediation and rhizoremediation uses. In this review, applied aspects and mechanisms of action of heavy metal tolerant-plant growth promoting (HMT-PGP microbes in ensuring plant survival and growth in contaminated soils are discussed. The use of HMT-PGP microbes and their interaction with plants in remediation of contaminated soil can be the approach for the future. This low input and sustainable biotechnology can be of immense use/importance in reclaiming the HM contaminated soils, thus increasing the quality and yield of such soils.

  13. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    International Nuclear Information System (INIS)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-01-01

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane

  14. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  15. Joining of molybdenum disilicide to stainless steel using amorphous metal brazes - residual stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, R.U.; Gallegos, D.E.; Kautz, D.D. [Los Alamos National Lab. (United States)

    2007-07-01

    Molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L joints were produced by high temperature brazing using a cobalt-based metallic-glass (METGLAS trademark 2714A). Successful joining was completed in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainless steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Residual stress measurements were completed on these joints. Indentation results show higher tensile residual stresses in the stainless steel for the joint with the external constraint, in comparison to the unconstrained state. In contrast, the compressive residual stresses in the MoSi{sub 2} (as measured by X-ray diffraction) were lower in the constrained state relative to the unconstrained state. These results and a lack of residual stress balance indicate that the stress state in the braze is significantly different under the two joining conditions and the volume of the braze plays an important role in the development of the residual stresses. Push-out tests carried out on these joints gave higher joint strengths in the unconstrained as compared to the constrained condition. The results of this study have important implications on the selection of the appropriate joining process (use of constraint versus extra braze). (orig.)

  16. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths.

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diebold, Thomas Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bencoe, Denise N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has been designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.

  17. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component & Systems Analysis; Strong, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Diebold, Thomas Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Bencoe, Denise N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electronic, Optical and Nano; Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Organic Materials Science; Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Transportation System Analysis

    2017-08-01

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has been designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.

  18. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones

    Science.gov (United States)

    2014-01-01

    Background Silicon (Si) application has been known to enhance the tolerance of plants against abiotic stresses. However, the protective mechanism of Si under heavy metals contamination is poorly understood. The aim of this study was to assess the role of Si in counteracting toxicity due to cadmium (Cd) and copper (Cu) in rice plants (Oryza sativa). Results Si significantly improved the growth and biomass of rice plants and reduced the toxic effects of Cd/Cu after different stress periods. Si treatment ameliorated root function and structure compared with non-treated rice plants, which suffered severe root damage. In the presence of Si, the Cd/Cu concentration was significantly lower in rice plants, and there was also a reduction in lipid peroxidation and fatty acid desaturation in plant tissues. The reduced uptake of metals in the roots modulated the signaling of phytohormones involved in responses to stress and host defense, such as abscisic acid, jasmonic acid, and salicylic acid. Furthermore, the low concentration of metals significantly down regulated the mRNA expression of enzymes encoding heavy metal transporters (OsHMA2 and OsHMA3) in Si-metal-treated rice plants. Genes responsible for Si transport (OsLSi1 and OsLSi2), showed a significant up-regulation of mRNA expression with Si treatment in rice plants. Conclusion The present study supports the active role of Si in the regulation of stresses from heavy metal exposure through changes in root morphology. PMID:24405887

  19. The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics

    International Nuclear Information System (INIS)

    Henkler, Frank; Brinkmann, Joep; Luch, Andreas

    2010-01-01

    In addition to a wide range of adverse effects on human health, toxic metals such as cadmium, arsenic and nickel can also promote carcinogenesis. The toxicological properties of these metals are partly related to generation of reactive oxygen species (ROS) that can induce DNA damage and trigger redox-dependent transcription factors. The precise mechanisms that induce oxidative stress are not fully understood. Further, it is not yet known whether chronic exposures to low doses of arsenic, cadmium or other metals are sufficient to induce mutations in vivo, leading to DNA repair responses and/or tumorigenesis. Oxidative stress can also be induced by environmental xenobiotics, when certain metabolites are generated that lead to the continuous release of superoxide, as long as the capacity to reduce the resulting dions (quinones) into hydroquinones is maintained. However, the specific significance of superoxide-dependent pathways to carcinogenesis is often difficult to address, because formation of DNA adducts by mutagenic metabolites can occur in parallel. Here, we will review both mechanisms and toxicological consequences of oxidative stress triggered by metals and dietary or environmental pollutants in general. Besides causing DNA damage, ROS may further induce multiple intracellular signaling pathways, notably NF-κB, JNK/SAPK/p38, as well as Erk/MAPK. These signaling routes can lead to transcriptional induction of target genes that could promote proliferation or confer apoptosis resistance to exposed cells. The significance of these additional modes depends on tissue, cell-type and is often masked by alternate oncogenic mechanisms being activated in parallel

  20. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells

    Directory of Open Access Journals (Sweden)

    Ohayon-Courtès Céline

    2011-03-01

    Full Text Available Abstract Background Some manufactured nanoparticles are metal-based and have a wide variety of applications in electronic, engineering and medicine. Until now, many studies have described the potential toxicity of NPs on pulmonary target, while little attention has been paid to kidney which is considered to be a secondary target organ. The objective of this study, on human renal culture cells, was to assess the toxicity profile of metallic nanoparticles (TiO2, ZnO and CdS usable in industrial production. Comparative studies were conducted, to identify whether particle properties impact cytotoxicity by altering the intracellular oxidative status. Results Nanoparticles were first characterized by size, surface charge, dispersion and solubility. Cytotoxicity of NPs was then evaluated in IP15 (glomerular mesangial and HK-2 (epithelial proximal cell lines. ZnO and CdS NPs significantly increased the cell mortality, in a dose-dependent manner. Cytotoxic effects were correlated with the physicochemical properties of NPs tested and the cell type used. Analysis of reactive oxygen species and intracellular levels of reduced and oxidized glutathione revealed that particles induced stress according to their composition, size and solubility. Protein involved in oxidative stress such as NF-κb was activated with ZnO and CdS nanoparticles. Such effects were not observed with TiO2 nanoparticles. Conclusion On glomerular and tubular human renal cells, ZnO and CdS nanoparticles exerted cytotoxic effects that were correlated with metal composition, particle scale and metal solubility. ROS production and oxidative stress induction clearly indicated their nephrotoxic potential.

  1. Influence of thermal residual stress on behaviour of metal matrix composites reinforced with particles

    Science.gov (United States)

    Guzmán, R. E.; Hernández Arroyo, E.

    2016-02-01

    The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.

  2. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress.

    Directory of Open Access Journals (Sweden)

    Des Raj Kashyap

    2014-07-01

    Full Text Available Mammalian Peptidoglycan Recognition Proteins (PGRPs are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS, a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria.

  3. Stress corrosion crack initiation of alloy 182 weld metal in primary coolant - Influence of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, O.; Foucault, M.; Steltzlen, F. [AREVA (France); Amzallag, C. [EDF SEPTEN (France)

    2011-07-01

    Nickel-base alloys 182 and 82 have been used extensively for dissimilar metal welds. Typical applications are the J-groove welds of alloy 600 vessel head penetrations, pressurizer penetrations, heater sleeves and bottom mounted instrumented nozzles as well as some safe end butt welds. While the overall performance of these weld metals has been good, during the last decade, an increasing number of cases of stress corrosion cracking of Alloy 182 weld metal have been reported in PWRs. In this context, the role of weld defects has to be examined. Their contribution in the crack initiation mechanism requires laboratory investigations with small scale characterizations. In this study, the influence of both alloy composition and weld defects on PWSCC (Stress Corrosion Cracking in Primary Water) initiation was investigated using U-bend specimens in simulated primary water at 320 C. The main results are the following: -) the chemical compositions of the weld deposits leading to a large propensity to hot cracking are not the most susceptible to PWSCC initiation, -) macroscopically, superficial defects did not evolve during successive exposures. They can be included in large corrosion cracks but their role as 'precursors' is not yet established. (authors)

  4. Phenomena of the ionic transport in the stress corrosion of metals

    International Nuclear Information System (INIS)

    Gravano, S.M.

    1986-07-01

    For the study of electrochemical conditions of propagation, a model which calculates the concentrations and potential profiles inside cracks or localized corrosion cavities, was developed. Considering transport by difussion and migration it was applied to pure metals (Zn, Fe) in solutions where pitting occurs (NaCl or Na2SO4, with borate buffer), and also extended to systems where stress corrosion cracking is present, such as Cu and yellow brass in NaNO2. Physical bases of the 'constant intermediate elongation rate technique' to predict stress corrosion cracking susceptibility was analized, studying by mathematical models: 1) dissolution current, that should be the result of superposition of repassivation transients on the fresh metal, exposed to corrosive medium by strain, with the same rate of that of a static specimen; 2) ohmic drop, that in some systems could be quite important and it must be considered in the overpotential evaluation; and 3) metallic ion concentration that, instead of what happens in a crack, never attains saturation in the analized cases. For repassivation transient according to the crak propagation models proposed by Scully and Ford it was found that, at the tip of the crack, it is unlikely that the same repassivation transients occur as in the constant intermediate elongation rate experiments. (M.E.L.)

  5. Corrosion of metals exposed to 25% magnesium chloride solution and tensile stress: Field and laboratory studies

    Directory of Open Access Journals (Sweden)

    Xianming Shi

    2017-12-01

    Full Text Available The use of chemicals for snow and ice control operations is a common practice for improving the safety and mobility of roadways in cold climate, but brings significant concerns over their risks including the corrosive effects on transportation infrastructure and motor vehicles. The vast majority of existing studies and methods to test the deicer corrosivity have been restricted to laboratory environments and unstressed metals, which may not reliably simulate actual service conditions. As such, we report a case study in which stainless steel SS 304 (unstressed and externally tensile stressed, aluminum (Al 1100 and low carbon steel (C1010 coupons were exposed to 25% MgCl2 under field conditions for six weeks. A new corrosion test-bed was developed in Montana to accelerate the field exposure to this deicer. To further investigate the observed effect of tensile stress on the corrosion of stainless steel, SS 304 (unstressed and externally stressed coupons were exposed to 25% MgCl2 solution under the laboratory conditions. The C 1010 exhibited the highest percentage of rust area and suffered the most weight loss as a result of field exposure and MgCl2 sprays. In terms of ultimate tensile strength, the Al 1100 coupons saw the greatest reduction and the unstressed and externally stressed SS 304 coupons saw the least. The ability of MgCl2 to penetrate deep into the matrix of aluminum alloy poses great risk to such structural material. Tensile stressed SS 304 suffered more corrosion than unstressed SS 304 in both the field and laboratory conditions. Results from this case study may shed new light on the deicer corrosion issue and help develop improved field testing methods to evaluate the deicer corrosivity to metals in service.

  6. A Study on the Residual Stress Improvement of PWSCC(Primary Water Stress Corrosion Cracking) in DMW(Dissimilar Metal Weld)

    International Nuclear Information System (INIS)

    Kang, Sung Sik; Kim, Seok Hun; Lee, Seung Gun; Park, Heung Bae

    2010-01-01

    Since 2000s, most of the cracks are found in welds, especially in (DMW) dissimilar metal welds such as pressurizer safety relief nozzle, reactor head penetration, reactor bottom mounted instrumentation (BMI), and reactor nozzles. Even the cracks are revealed as a primary water stress corrosion cracking (PWSCC), it is difficult to find the cracks by current non destructive examination. The PWSCC is occurred by three incident factors, such as susceptible material, environmental corrosive condition, and welding residual stress. If one of the three factors can be erased or decreased, the PWSCC could be prevented. In this study, we performed residual stress analysis for DMW and several residual stress improvement methods. As the preventive methods of PWSCC, we used laser peening(IP) method, inlay weld(IW) method, and induction heating stress improvement(IHSI) method. The effect of residual stress improvement for preventive methods was compared and discussed by finite element modeling and residual stress of repaired DMW

  7. Residual stress measurement inside a dissimilar metal weld mock-up of the pressurizer safety and relief nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Rabello, Emerson G.; Silva, Luiz L.; Mansur, Tanius R., E-mail: wrcc@cdtn.br, E-mail: egr@cdtn.br, E-mail: silvall@cdtn.br, E-mail: tanius@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte (Brazil). Servico de Integridade Estrutural; Martins, Ketsia S., E-mail: ketshinoda@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Nelo Horizonte (Brazil). Departamento de Engenharia Metalurgica

    2015-07-01

    Residual stresses are present in materials or structural component in the absence of external loads or changes in temperatures. The most common causes of residual stresses being present are the manufacturing or assembling processes. All manufacturing processes, such as casting, welding, machining, molding, heat treatment, among others, introduces residual stresses into the manufactured object. The residual stresses effects could be beneficial or detrimental, depending on its distribution related to the component or structure, its load service and if it is compressive or tensile. In this work, the residual strains and stresses inside a mock-up that simulates the safety and relief nozzle of Angra 1 Nuclear Power Plant pressurizer were studied. The current paper presents a blind hole-drilling method residual stress measurements both at the inner surface of dissimilar metal welds of dissimilar metal weld nozzle mock-up. (author)

  8. Residual stress measurement inside a dissimilar metal weld mock-up of the pressurizer safety and relief nozzle

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Rabello, Emerson G.; Silva, Luiz L.; Mansur, Tanius R.; Martins, Ketsia S.

    2015-01-01

    Residual stresses are present in materials or structural component in the absence of external loads or changes in temperatures. The most common causes of residual stresses being present are the manufacturing or assembling processes. All manufacturing processes, such as casting, welding, machining, molding, heat treatment, among others, introduces residual stresses into the manufactured object. The residual stresses effects could be beneficial or detrimental, depending on its distribution related to the component or structure, its load service and if it is compressive or tensile. In this work, the residual strains and stresses inside a mock-up that simulates the safety and relief nozzle of Angra 1 Nuclear Power Plant pressurizer were studied. The current paper presents a blind hole-drilling method residual stress measurements both at the inner surface of dissimilar metal welds of dissimilar metal weld nozzle mock-up. (author)

  9. Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances.

    Science.gov (United States)

    Cassier-Chauvat, Corinne; Chauvat, Franck

    2014-12-31

    Cyanobacteria, the only known prokaryotes that perform oxygen-evolving photosynthesis, are receiving strong attention in basic and applied research. In using solar energy, water, CO2 and mineral salts to produce a large amount of biomass for the food chain, cyanobacteria constitute the first biological barrier against the entry of toxics into the food chain. In addition, cyanobacteria have the potential for the solar-driven carbon-neutral production of biofuels. However, cyanobacteria are often challenged by toxic reactive oxygen species generated under intense illumination, i.e., when their production of photosynthetic electrons exceeds what they need for the assimilation of inorganic nutrients. Furthermore, in requiring high amounts of various metals for growth, cyanobacteria are also frequently affected by drastic changes in metal availabilities. They are often challenged by heavy metals, which are increasingly spread out in the environment through human activities, and constitute persistent pollutants because they cannot be degraded. Consequently, it is important to analyze the protection against oxidative and metal stresses in cyanobacteria because these ancient organisms have developed most of these processes, a large number of which have been conserved during evolution. This review summarizes what is known regarding these mechanisms, emphasizing on their crosstalk.

  10. Effect of co-existing plant specie on soil microbial activity under heavy metal stress

    International Nuclear Information System (INIS)

    Nwuche, C. O.; Ugoji, E. O.

    2010-01-01

    The influence of plant primary compounds on the activity of soil microbial communities under heavy metal stress was studied in a pot-culture field experiment conducted in a green house. Amaranthus spinosus was cultivated in an agricultural soil previously amended in the laboratory with solutions of different trace elements in two separate treatment modes: singly and in combination. Culture-independent metabolism based indices such as the rate of carbon and nitrogen mineralization, microbial biomass carbon and soil basal respiration were monitored fortnightly over a period of six weeks. Result shows that plant detritus have significant modifying effect on soil microbe-metal interactions. Data on microbial and biochemical processes in the respective mesocosms did not vary from control; not even in mesocosms containing very high concentrations of copper, zinc and nickel. The soil microbial biomass carbon and the rate of carbon and nitrogen cycling were not impeded by the respective metal treatment while the respiration responses increased as a result of increase in metabolic activity of the soil microbes. The plant based substrates enabled the soil microflora to resist high metal contamination because of its tendency to absorb large amounts of inorganic cations.

  11. Development of the ultra-microhardness technique for evaluating stress-strain properties of metals

    International Nuclear Information System (INIS)

    Yasuda, K.; Shinohara, K.; Kinoshita, C.; Yamada, M.; Arai, M.

    1994-01-01

    A method is proposed for evaluating the strain-hardening exponent (n) and the 0.2% yield stress (σ 0.2 ) for fcc metals solely through the ultra-microhardness technique. To this end, ultra-microhardness (H um ) and Vickers hardness (H v ) measurements together with tensile tests were carried out for Ni and Al with various n and σ 0.2 . The value of H v is proportional to H um at the load P, and the proportional constant depends on P but scarcely on metals. The ratio of H um (P)/H um 0 (P) is scaled solely by n as a linear function independent of the specific metal, where H um 0 (P) is the value of H um (P) of specimens which show no strain-hardening. Based on the results and Cahoon's relation which relates H v , σ 0.2 and n, the values of n and σ 0.2 are evaluated solely through the ultra-microhardness technique. The proposed equation can be explained in terms of a constitutive equation for polycrystalline metals. ((orig.))

  12. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila.

    Science.gov (United States)

    Puente-Sánchez, Fernando; Díaz, Silvia; Penacho, Vanessa; Aguilera, Angeles; Olsson, Sanna

    2018-07-01

    To better understand heavy metal tolerance in Chlamydomonas acidophila, an extremophilic green alga, we assembled its transcriptome and measured transcriptomic expression before and after Cd exposure in this and the neutrophilic model microalga Chlamydomonas reinhardtii. Genes possibly related to heavy metal tolerance and detoxification were identified and analyzed as potential key innovations that enable this species to live in an extremely acid habitat with high levels of heavy metals. In addition we provide a data set of single orthologous genes from eight green algal species as a valuable resource for comparative studies including eukaryotic extremophiles. Our results based on differential gene expression, detection of unique genes and analyses of codon usage all indicate that there are important genetic differences in C. acidophila compared to C. reinhardtii. Several efflux family proteins were identified as candidate key genes for adaptation to acid environments. This study suggests for the first time that exposure to cadmium strongly increases transposon expression in green algae, and that oil biosynthesis genes are induced in Chlamydomonas under heavy metal stress. Finally, the comparison of the transcriptomes of several acidophilic and non-acidophilic algae showed that the Chlamydomonas genus is polyphyletic and that acidophilic algae have distinctive aminoacid usage patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus.

    Science.gov (United States)

    Kim, Bo-Mi; Rhee, Jae-Sung; Jeong, Chang-Bum; Seo, Jung Soo; Park, Gyung Soo; Lee, Young-Mi; Lee, Jae-Seong

    2014-11-01

    Heat shock proteins (hsps) are induced by a wide range of environmental stressors including heavy metals in aquatic organisms. However, the effect of heavy metals on zooplankton at the molecular level remains still unclear. In this study, we measured the intracellular reactive oxygen species (ROS) level and the antioxidant enzyme activities for 96 h after exposure to five heavy metals: arsenic (As), cadmium (Cd), copper (Cu), silver (Ag), and zinc (Zn) in the intertidal copepod Tigriopus japonicus. Activities of the antioxidant enzymes were highly elevated in metal-exposed copepods, indicating that heavy metals can induce oxidative stress by generating ROS, and stimulate the involvement of antioxidant enzymes as cellular defense mechanisms. Subsequently, transcriptional changes in hsp gene families were further investigated in the metal-exposed groups for 96 h. The ROS level and glutathione (GSH) content were significantly increased in Ag-, As-, and Cu-exposed copepods, while they were only slightly elevated in Cd- and Zn-exposed groups. Based on the numbers of significantly modulated hsp genes and their expression levels for 96 h, we measured the effect of heavy metals to stress genes of T. japonicus in the following order: Cu > Zn > Ag > As > Cd, implying that Cu acts as a stronger oxidative stress inducer than other heavy metals. Of them, the expression of hsp20 and hsp70 genes was substantially modulated by exposure to heavy metals, indicating that these genes would provide a sensitive molecular biomarker for aquatic monitoring of heavy metal pollution. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Proposed Testing to Assess the Accuracy of Glass-To-Metal Seal Stress Analyses.

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, Robert S.; Emery, John M; Tandon, Rajan; Antoun, Bonnie R.; Stavig, Mark E.; Newton, Clay S.; Gibson, Cory S; Bencoe, Denise N.

    2014-09-01

    The material characterization tests conducted on 304L VAR stainless steel and Schott 8061 glass have provided higher fidelity data for calibration of material models used in Glass - T o - Metal (GTM) seal analyses. Specifically, a Thermo - Multi - Linear Elastic Plastic ( thermo - MLEP) material model has be en defined for S S304L and the Simplified Potential Energy Clock nonlinear visc oelastic model has been calibrated for the S8061 glass. To assess the accuracy of finite element stress analyses of GTM seals, a suite of tests are proposed to provide data for comparison to mo del predictions.

  15. Estimation of metallic structure durability for a known law of stress variation

    Science.gov (United States)

    Mironov, V. I.; Lukashuk, O. A.; Ogorelkov, D. A.

    2017-12-01

    Overload of machines working in transient operational modes leads to such stresses in their bearing metallic structures that considerably exceed the endurance limit. The estimation of fatigue damages based on linear summation offers a more accurate prediction in terms of machine durability. The paper presents an alternative approach to the estimation of the factors of the cyclic degradation of a material. Free damped vibrations of the bridge girder of an overhead crane, which follow a known logarithmical decrement, are studied. It is shown that taking into account cyclic degradation substantially decreases the durability estimated for a product.

  16. Constitutive modeling of stress-driven grain growth in nanocrystalline metals

    KAUST Repository

    Gürses, Ercan

    2013-02-08

    In this work, we present a variational multiscale model for grain growth in face-centered cubic nanocrystalline (nc) metals. In particular, grain-growth-induced stress softening and the resulting relaxation phenomena are addressed. The behavior of the polycrystal is described by a conventional Taylor-type averaging scheme in which the grains are treated as two-phase composites consisting of a grain interior phase and a grain boundary-affected zone. Furthermore, a grain-growth law that captures the experimentally observed characteristics of the grain coarsening phenomena is proposed. To this end, the grain size is not taken as constant and varies according to the proposed stress-driven growth law. Several parametric studies are conducted to emphasize the influence of the grain-growth rule on the overall macroscopic response. Finally, the model is shown to provide a good description of the experimentally observed grain-growth-induced relaxation in nc-copper. © 2013 IOP Publishing Ltd.

  17. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Rossoll, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)], E-mail: andreas.rossoll@epfl.ch; Weber, L. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Bourke, M.A.M. [Los Alamos National Laboratory (LANL), LANSCE-12, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States); Dunand, D.C. [Northwestern University, Department of Materials Science and Engineering, Evanston, IL 60208 (United States); Mortensen, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)

    2008-10-15

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments.

  18. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    International Nuclear Information System (INIS)

    Mueller, R.; Rossoll, A.; Weber, L.; Bourke, M.A.M.; Dunand, D.C.; Mortensen, A.

    2008-01-01

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments

  19. Comparative Analysis of Stress Induced Gene Expression in Caenorhabditis elegans following Exposure to Environmental and Lab Reconstituted Complex Metal Mixture.

    Directory of Open Access Journals (Sweden)

    Ranjeet Kumar

    Full Text Available Metals are essential for many physiological processes and are ubiquitously present in the environment. However, high metal concentrations can be harmful to organisms and lead to physiological stress and diseases. The accumulation of transition metals in the environment due to either natural processes or anthropogenic activities such as mining results in the contamination of water and soil environments. The present study used Caenorhabditis elegans to evaluate gene expression as an indicator of physiological response, following exposure to water collected from three different locations downstream of a Swedish mining site and a lab reconstituted metal mixture. Our results indicated that the reconstituted metal mixture exerted a direct stress response in C. elegans whereas the environmental waters elicited either a diminished or abrogated response. This suggests that it is not sufficient to use the biological effects observed from laboratory mixtures to extrapolate the effects observed in complex aquatic environments and apply this to risk assessment and intervention.

  20. Cardiac Light Chain Amyloidosis: The Role of Metal Ions in Oxidative Stress and Mitochondrial Damage.

    Science.gov (United States)

    Diomede, Luisa; Romeo, Margherita; Rognoni, Paola; Beeg, Marten; Foray, Claudia; Ghibaudi, Elena; Palladini, Giovanni; Cherny, Robert A; Verga, Laura; Capello, Gian Luca; Perfetti, Vittorio; Fiordaliso, Fabio; Merlini, Giampaolo; Salmona, Mario

    2017-09-20

    The knowledge of the mechanism underlying the cardiac damage in immunoglobulin light chain (LC) amyloidosis (AL) is essential to develop novel therapies and improve patients' outcome. Although an active role of reactive oxygen species (ROS) in LC-induced cardiotoxicity has already been envisaged, the actual mechanisms behind their generation remain elusive. This study was aimed at further dissecting the action of ROS generated by cardiotoxic LC in vivo and investigating whether transition metal ions are involved in this process. In the absence of reliable vertebrate model of AL, we used the nematode Caenorhabditis elegans, whose pharynx is an "ancestral heart." LC purified from patients with severe cardiac involvement intrinsically generated high levels of ROS and when administered to C. elegans induced ROS production, activation of the DAF-16/forkhead transcription factor (FOXO) pathway, and expression of proteins involved in stress resistance and survival. Profound functional and structural ROS-mediated mitochondrial damage, similar to that observed in amyloid-affected hearts from AL patients, was observed. All these effects were entirely dependent on the presence of metal ions since addition of metal chelator or metal-binding 8-hydroxyquinoline compounds (chelex, PBT2, and clioquinol) permanently blocked the ROS production and prevented the cardiotoxic effects of amyloid LC. Innovation and Conclusion: Our findings identify the key role of metal ions in driving the ROS-mediated toxic effects of LC. This is a novel conceptual advance that paves the way for new pharmacological strategies aimed at not only counteracting but also totally inhibiting the vicious cycle of redox damage. Antioxid. Redox Signal. 27, 567-582.

  1. Proline accumulation in lemongrass (Cymbopogon flexuosus Stapf.) due to heavy metal stress.

    Science.gov (United States)

    Handique, G K; Handique, A K

    2009-03-01

    Toxic heavy metals viz. lead, mercury and cadmium induced differential accumulation of proline in lemongrass (Cymbopogon flexuosus Stapf.) grown in soil amended with 50, 100, 200, 350 and 500 mg kg(-1) of the metals have been studied. Proline accumulation was found to be metal specific, organ specific and linear dose dependant. Further, proline accumulation following short term exposure (two months after transplantation) was higher than long term exposure (nine months after transplantation). Proline accumulation following short term exposure was 2.032 to 3.839 micro moles g(-1) for cadmium (50-200 mg kg(-1)); the corresponding range for mercury was 1.968 to 5.670 micro moles g(-1) and 0.830 to 4.567 micro moles g(-1) for lead (50-500 mg kg(-1) for mercury and lead). Proline accumulation was consistently higher in young tender leaf than old leaf, irrespective of the metal or duration of exposure. For cadmium treatment proline level was 2.032 to 3.839 micro moles g(-1) for young leaves while the corresponding value for old leaf was 1.728 to 2.396 micro moles g(-1) following short term exposure. The same trend was observed for the other two metals and duration of exposure. For control set proline accumulation in root was 0.425 micro moles g(-1) as against 0.805 and 0.533 micro moles g(-1) in young and old leaves respectively indicating that proline accumulation in root are lower than leaves, under both normal and stressed condition.

  2. Heavy metal stress in alders: Tolerance and vulnerability of the actinorhizal symbiosis.

    Science.gov (United States)

    Bélanger, Pier-Anne; Bellenger, Jean-Philippe; Roy, Sébastien

    2015-11-01

    Alders have already demonstrated their potential for the revegetation of both mining and industrial sites. These actinorhizal trees and shrubs and the actinobacteria Frankia associate in a nitrogen-fixing symbiosis which could however be negatively affected by the presence of heavy metals, and accumulate them. In our hydroponic assay with black alders, quantification of the roots and shoots metal concentrations showed that, in the absence of stress, symbiosis increases Mo and Ni root content and simultaneously decreases Mo shoot content. Interestingly, the Mo shoot content also decreases in the presence of Ni, Cu, Pb, Zn and Cd for symbiotic alders. In symbiotic alders, Pb shoot translocation was promoted in presence of Pb. On the other hand, Cd exclusion in symbiotic root tissues was observed with Pb and Cd. In the presence of symbiosis, only Cd and Pb showed translocation into aerial tissues when present in the nutrient solution. Moreover, the translocation of Ni to shoot was prevented by symbiosis in the presence of Cd, Ni and Pb. The hydroponic experiment demonstrated that alders benefit from the symbiosis, producing more biomass (total, root and shoot) than non nodulated alders in control condition, and in the presence of metals (Cu, Ni, Zn, Pb and Cd). Heavy metals did not reduce the nodule numbers (SNN), but the presence of Zn or Cd did reduce nodule allocation. Our study suggests that the Frankia-alder symbiosis is a promising (and a compatible) plant-microorganism association for the revegetation of contaminated sites, with minimal risk of metal dispersion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Utilization of ultrasonic tomography for the mapping of residual stress fields in thick metal sections. Final report

    International Nuclear Information System (INIS)

    Hildebrand, B.P.; Hufferd, D.E.

    1977-01-01

    It is well known that the velocity of sound propagation through a solid is altered when a stress is applied. The velocity change is small, and dependent upon the type of wave being propagated as well as the magnitude of the stress. Sensitivity is greatest to shear wave sound with the polarization vector parallel to the direction of stress. In this case, velocity changes as great as 0.6 percent were measured. Preliminary work is described aimed at evaluating computerized reconstruction of velocity fields from velocity profiles to map residual stress concentrations in thick metal sections. Experimental results with liquid and solid models are described. One could image velocity anomalies of 0.2 percent and estimate that 0.05 percent is technically feasible. It is concluded that this technique has great potential for finding and mapping residual stress in thick metal sections

  4. Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

    Science.gov (United States)

    Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang

    2018-01-01

    In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

  5. Growth of Ag micro/nanoparticles using stress migration from multilayered metallic structure

    International Nuclear Information System (INIS)

    Lu, Yebo; Li, Yuan; Saka, Masumi

    2015-01-01

    Highlights: • A multilayered metallic structure was proposed to fabricate Ag micro/nanoparticles via stress migration. • Both ductile Pt and brittle TiN films can be used as the passivation layer by providing pathways for atomic migration. • The diameter of the formed Ag particle can be controlled using different material for passivation layer and changing the heating temperature. - Abstract: A multilayered metallic structure, consisting of Cu foil and subsequently deposited Ag thin film covered with a passivation layer, was proposed to fabricate Ag micro/nanoparticles by stress migration. With employing a ductile Pt or brittle TiN thin film as passivation, Ag micro/nanoparticles were successfully fabricated by annealing the corresponding multilayered structure. The relationship between characteristics (average diameter, number and volume) of the formed Ag micro/nanoparticles and the annealing temperature was discussed. On this basis, the growth mechanism was developed, which indicates that the dimension of Ag particles was mainly dominated by the different pathways for the migration of diffused Ag atoms in the passivation layers of Pt and TiN and the annealing temperature

  6. Two-step method to evaluate equibiaxial residual stress of metal surface based on micro-indentation tests

    International Nuclear Information System (INIS)

    Nishikawa, Masaaki; Soyama, Hitoshi

    2011-01-01

    Highlights: → The sensitivity to residual stress was improved by selecting the depth parameter. → Residual stress could be obtained while determining the effect of unknown parameters. → The estimated residual stress agreed well with those of X-ray diffraction. -- Abstract: The present study proposed a method to evaluate the equibiaxial compressive residual stress of a metal surface by means of a depth-sensing indentation method using a spherical indenter. Inverse analysis using the elastic-plastic finite-element model for an indentation test was established to evaluate residual stress from the indentation load-depth curve. The proposed inverse analysis utilizes two indentation test results for a reference specimen whose residual stress is already known and for a target specimen whose residual stress is unknown, in order to exclude the effect of other unknown mechanical properties, such as Young's modulus and yield stress. Residual stress estimated by using the indentation method is almost identical to that measured by X-ray diffraction for indentation loads of 0.49-0.98 N. Therefore, it can be concluded that the proposed method can effectively evaluate residual stress on metal surface.

  7. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review.

    Science.gov (United States)

    Shahzad, Babar; Tanveer, Mohsin; Che, Zhao; Rehman, Abdul; Cheema, Sardar Alam; Sharma, Anket; Song, He; Rehman, Shams Ur; Zhaorong, Dong

    2018-01-01

    Industrialization and urbanization have posed serious threats to the environment. Excessive release of heavy metals from industrial effluents and overuse of pesticides in modern agriculture are limiting crop production by polluting environment and deteriorating food quality. Sustaining food quality under heavy metals and pesticide stress is crucial to meet the increasing demands for food. 24-Epibrassinolide (EBL), a ubiquitously occurring plant growth hormone shows great potential to alleviate heavy metals and pesticide stress in plants. This review sums up the potential role of EBL in ameliorating heavy metals and pesticide toxicity in plants extensively. EBL application increases plant's overall growth, biomass accumulation and photosynthetic efficiency by the modulation of numerous biochemical and physiological processes under heavy metals and pesticide stress. In addition, EBL scavenges reactive oxygen species (ROS) by triggering the production of antioxidant enzymes such as SOD, CAT, POX etc. EBL also induces the production of proline and soluble proteins that helps in maintaining osmotic potential and osmo-protection under both heavy metals and pesticide stress. At the end, future needs of research about the application of 24-epibrassinolide have also been discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Residual Stress Induced Mechanical Property Enhancement in Steel Encapsulated Light Metal Matrix Composites

    Science.gov (United States)

    Fudger, Sean James

    Macro hybridized systems consisting of steel encapsulated light metal matrix composites (MMCs) were produced with the goal of creating a low cost/light weight composite system with enhanced mechanical properties. MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient ductility for many structural applications. The macro hybridized systems take advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Furthermore, a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress method is utilized as a means of improving the ductility of the MMCs and overall efficiency of the macro hybridized systems. Systems consisting of an A36, 304 stainless steel, or NitronicRTM 50 stainless steel shell filled with an Al-SiC, Al-Al2O3, or Mg-B4C MMC are evaluated in this work. Upon cooling from processing temperatures, residual strains are generated due to a CTE mismatch between each of the phases. The resulting systems offer higher specific properties and a more structurally efficient system can be attained. Mechanical testing was performed and improvements in yield stress, ultimate tensile stress, and ductility were observed. However, the combination of these dissimilar materials often results in the formation of intermetallic compounds. In certain loading situations, these typically brittle intermetallic layers can result in degraded performance. X-ray Diffraction (XRD), X-ray Energy Dispersive Spectroscopy (EDS), and Electron Backscatter Diffraction (EBSD) are utilized to characterize the intermetallic layer formation at the interface between the steel and MMC. As the residual stress condition in each phase has a large impact on the mechanical property improvement, accurate quantification of these strains/stresses is

  9. Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vetor regression

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Young Do; Yoo, Kwae Hwan; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2017-06-15

    Residual stress is a critical element in determining the integrity of parts and the lifetime of welded structures. It is necessary to estimate the residual stress of a welding zone because residual stress is a major reason for the generation of primary water stress corrosion cracking in nuclear power plants. That is, it is necessary to estimate the distribution of the residual stress in welding of dissimilar metals under manifold welding conditions. In this study, a cascaded support vector regression (CSVR) model was presented to estimate the residual stress of a welding zone. The CSVR model was serially and consecutively structured in terms of SVR modules. Using numerical data obtained from finite element analysis by a subtractive clustering method, learning data that explained the characteristic behavior of the residual stress of a welding zone were selected to optimize the proposed model. The results suggest that the CSVR model yielded a better estimation performance when compared with a classic SVR model.

  10. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Saou-Hsing; Wu, Wei-Te; Liao, Hui-Yi [National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China); Chen, Chao-Yu; Tsai, Cheng-Yen; Jung, Wei-Ting [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China); Lee, Hui-Ling, E-mail: huilinglee3573@gmail.com [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China)

    2017-06-05

    Highlights: • Global methylation and oxidative DNA damage levels in nanomaterial handling workers were assessed. • 8-isoprostane in exhaled breath condensate of workers exposed to nanoparticles was higher. • 8-OHdG was negatively correlated with global methylation. • Exposure to metal oxide nanoparticles may lead to global methylation and DNA oxidative damage. - Abstract: This is the first study to assess global methylation, oxidative DNA damage, and lipid peroxidation in workers with occupational exposure to metal oxide nanomaterials (NMs). Urinary and white blood cell (WBC) 8-hydroxydeoxyguanosine (8-OHdG), and exhaled breath condensate (EBC) 8-isoprostane were measured as oxidative stress biomarkers. WBC global methylation was measured as an epigenetic alteration. Exposure to TiO{sub 2}, SiO{sub 2,} and indium tin oxide (ITO) resulted in significantly higher oxidative biomarkers such as urinary 8-OHdG and EBC 8-isoprostane. However, significantly higher WBC 8-OHdG and lower global methylation were only observed in ITO handling workers. Significant positive correlations were noted between WBC and urinary 8-OHdG (Spearman correlation r = 0.256, p = 0.003). Furthermore, a significant negative correlation was found between WBC 8-OHdG and global methylation (r = −0.272, p = 0.002). These results suggest that exposure to metal oxide NMs may lead to global methylation, DNA oxidative damage, and lipid peroxidation.

  11. Effects of heavy metals on biomarkers for oxidative stress in Griffon vulture (Gyps fulvus)

    International Nuclear Information System (INIS)

    Espín, Silvia; Martínez-López, Emma; Jiménez, Pedro; María-Mojica, Pedro; García-Fernández, Antonio J.

    2014-01-01

    Metals are involved in the formation of reactive oxygen species (ROS) which may result in metal-related oxidative stress that can lead to oxidative damage to lipids, DNA and proteins. It is necessary to understand the mechanisms of metal toxicity in wild birds, and the concentrations that cause effects on oxidative stress biomarkers. The aim of this study is to assess the concentrations of lead (Pb), cadmium (Cd), mercury (Hg), copper (Cu) and zinc (Zn) with regards to oxidative stress in blood samples of 66 Griffon vultures (Gyps fulvus) from two areas of the Autonomous Community of Valencia (East of Spain). The two study areas (Alcoy n=36 and Cinctorres n=30) were selected as random locations of interest that had not yet been studied, and are feeding stations where supplementary food, mainly of pork origin, is provided for vultures. Given that the two study areas are not considered polluted sites, we expected to find low metal concentrations. However, there are no known threshold concentrations at which metals can affect antioxidant systems, and low metal levels may have an effect on antioxidant biomolecules. In this study, since sampling was done at the beginning of the hunting season, the low Pb levels found in most Griffon vultures from Alcoy and Cinctorres (median=12.37 and 16.26 μg/dl, respectively) are suggestive of background levels usually found in vultures that feed on pork carcasses all year round. The ingestion of game meat with bullet fragments in carcasses or with Pb shots embedded in the flesh could be the cause of the high blood Pb concentrations found in three vultures from Cinctorres (83, 290 and 362 μg/dl). Griffon vultures feeding in Cinctorres had enhanced CAT and GST activities and tGSH concentrations, which may be interpreted as protective response against the higher TBARS levels. This study provides threshold concentrations at which metals affect antioxidant system derived from 66 samples of Griffon vulture. Blood Cd concentrations

  12. Effects of heavy metals on biomarkers for oxidative stress in Griffon vulture (Gyps fulvus)

    Energy Technology Data Exchange (ETDEWEB)

    Espín, Silvia, E-mail: silvia.espin@um.es [Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia (Spain); Martínez-López, Emma, E-mail: emmaml@um.es [Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia (Spain); Jiménez, Pedro, E-mail: pjjm@um.es [Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia (Spain); María-Mojica, Pedro, E-mail: pmmojica@um.es [Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia (Spain); “Santa Faz” Wildlife Recovery Centre, Comunidad Valenciana, Alicante (Spain); García-Fernández, Antonio J., E-mail: ajgf@um.es [Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia (Spain)

    2014-02-01

    Metals are involved in the formation of reactive oxygen species (ROS) which may result in metal-related oxidative stress that can lead to oxidative damage to lipids, DNA and proteins. It is necessary to understand the mechanisms of metal toxicity in wild birds, and the concentrations that cause effects on oxidative stress biomarkers. The aim of this study is to assess the concentrations of lead (Pb), cadmium (Cd), mercury (Hg), copper (Cu) and zinc (Zn) with regards to oxidative stress in blood samples of 66 Griffon vultures (Gyps fulvus) from two areas of the Autonomous Community of Valencia (East of Spain). The two study areas (Alcoy n=36 and Cinctorres n=30) were selected as random locations of interest that had not yet been studied, and are feeding stations where supplementary food, mainly of pork origin, is provided for vultures. Given that the two study areas are not considered polluted sites, we expected to find low metal concentrations. However, there are no known threshold concentrations at which metals can affect antioxidant systems, and low metal levels may have an effect on antioxidant biomolecules. In this study, since sampling was done at the beginning of the hunting season, the low Pb levels found in most Griffon vultures from Alcoy and Cinctorres (median=12.37 and 16.26 μg/dl, respectively) are suggestive of background levels usually found in vultures that feed on pork carcasses all year round. The ingestion of game meat with bullet fragments in carcasses or with Pb shots embedded in the flesh could be the cause of the high blood Pb concentrations found in three vultures from Cinctorres (83, 290 and 362 μg/dl). Griffon vultures feeding in Cinctorres had enhanced CAT and GST activities and tGSH concentrations, which may be interpreted as protective response against the higher TBARS levels. This study provides threshold concentrations at which metals affect antioxidant system derived from 66 samples of Griffon vulture. Blood Cd concentrations

  13. DEVELOPMENT OF A PLANT TEST SYSTEM FOR EVALUATION OF THE TOXICITY OF METAL CONTAMINATED SOILS. I. SENSITIVITY OF PLANT SPECIES TO HEAVY METAL STRESS

    Directory of Open Access Journals (Sweden)

    Andon VASSILEV

    2001-09-01

    Full Text Available The sensitivity of young bean, cucumber and lettuce plants to heavy metals stress was studied at control conditions in a climatic room. The plants were grown in pots with perlite and supplied daily by half-strength Hoagland nutrient solution. The plants were treated for 8 days with different heavy metal doses (full, ½ and ¼ starting at appearance of the fi rst true leaf (cucumber and bean or the full development of the second leaf (lettuce. The full dose consisted 500 μM Zn, 50 μM Cd and 20 μM Cu added to the nutrient solution. Based on the measured morphological (fresh weight, leaf area, root length and physiological parameters (photosynthetic pigments content and activity of guaiacol peroxidase in roots, the cucumber plants presented the highest sensitivity to heavy metal stress.

  14. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR.

  15. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR

  16. Evaluation of the onset of failure under mechanical and thermal stresses on luting agent for metal-ceramic and metal crowns by finite element analysis

    Directory of Open Access Journals (Sweden)

    Hema Agnihotri

    2010-01-01

    Full Text Available Long-term clinical failures of cemented prosthesis depend, to a large extent, on the integrity of the luting agent. The causative factors that lead to microfracture and, hence, failure of the luting agents are the stresses acting inside the oral cavity. Therefore, the present study was designed to develop an understanding of the relationship between stresses in the tooth and the failure potential of the luting agent. Two-dimensional finite element stress analysis was performed on the mandibular second premolar. The behavior of zinc-phosphate and glass-ionomer were studied under different crowns (metal-ceramic and metal crown and loading conditions (mechanical force of 450 N acting vertically over the occlusal surface, thermal loads of 60° and 0°C. It was observed from the study that failure threshold of the luting agent was influenced both by the elastic modulus of the luting agent and by the type of the crown.

  17. Residual stresses in a bulk metallic glass-stainless steel composite

    Energy Technology Data Exchange (ETDEWEB)

    Aydiner, C.C. [Department of Materials and Science Engineering, Iowa State University, Ames, IA 50011 (United States); Uestuendag, E. [Department of Materials and Science Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Clausen, B. [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hanan, J.C. [Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125 (United States); Winholtz, R.A. [Department of Mechanical and Aerospace Engineering and Research Reactor Center, University of Missouri, Columbia, MO 65211 (United States); Bourke, M.A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Peker, A. [Liquidmetal Technologies, Lake Forest, CA 92630 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) are new structural materials with impressive mechanical properties. They can now be cast into large dimensions, which can lead to significant residual stress generation due to thermal tempering. In this process, a surface compression develops balanced with tension in the interior. To evaluate this phenomenon non-destructively, a model cylindrical stainless steel (SS)-BMG composite was prepared and studied using neutron diffraction and finite element (FE) modeling. The residual strain data from the SS obtained by diffraction were used in modeling calculations to show that significant tempering could be achieved in the composite (about -200 MPa surface compression in the SS). The strong bond between the SS and BMG allowed efficient load transfer and facilitated stress generation. The final values of the residual stresses were seen to be relatively insensitive to the high temperature constitutive behavior of the SS due to the physics of the thermal tempering in BMGs. The approach presented here constitutes an effective means to study non-destructively thermal tempering in BMGs.

  18. Residual stresses in a bulk metallic glass-stainless steel composite

    International Nuclear Information System (INIS)

    Aydiner, C.C.; Uestuendag, E.; Clausen, B.; Hanan, J.C.; Winholtz, R.A.; Bourke, M.A.M.; Peker, A.

    2005-01-01

    Bulk metallic glasses (BMGs) are new structural materials with impressive mechanical properties. They can now be cast into large dimensions, which can lead to significant residual stress generation due to thermal tempering. In this process, a surface compression develops balanced with tension in the interior. To evaluate this phenomenon non-destructively, a model cylindrical stainless steel (SS)-BMG composite was prepared and studied using neutron diffraction and finite element (FE) modeling. The residual strain data from the SS obtained by diffraction were used in modeling calculations to show that significant tempering could be achieved in the composite (about -200 MPa surface compression in the SS). The strong bond between the SS and BMG allowed efficient load transfer and facilitated stress generation. The final values of the residual stresses were seen to be relatively insensitive to the high temperature constitutive behavior of the SS due to the physics of the thermal tempering in BMGs. The approach presented here constitutes an effective means to study non-destructively thermal tempering in BMGs

  19. Metal bioaccumulation and oxidative stress profiles in Ruditapes philippinarum – insights towards its suitability as bioindicator of estuarine metal contamination

    KAUST Repository

    Marques, Ana

    2017-11-09

    The Manila clam Ruditapes philippinarum is an invasive bivalve in Europe, widely distributed, with a great ability to tolerate a broad range of environmental conditions. Despite the ability to reflect contamination, its suitability as bioindicator is not consensual. This study provided clarification on this issue by evaluating the ability of R. philippinarum to signalise trace element contamination in an estuary chronically impacted by metals and metalloids (Tagus estuary, Portugal). A multidimensional approach was carried out in two differently contaminated sites (Barreiro – BAR; Alcochete – ALC) in warm and cold periods, combining sediment contamination, bioaccumulation of trace elements (As, Cd, Pb and Hg), and a battery of oxidative stress biomarkers in two R. philippinarum organs (digestive gland and gills). Sediments from BAR exhibited higher concentrations of all the elements than those from ALC, in line with the anthropogenic pressures identified for both estuarine areas. Likewise, clams from BAR showed higher concentrations of As and Pb in the digestive gland (cold period) and Pb in the gills (warm and cold periods) in comparison with ALC. These results suggest the capacity of R. philippinarum to reflect external levels of exposure to those elements into tissue loads. However, an opposite spatial variation was consistently found for Hg accumulation in the digestive gland and gills in both periods, as well as for Cd in the gills in the warm season. The results reinforce the idea that trace element accumulation patterns depend not only on the external bioavailability, but also on the toxicokinetics that is trace element-specific. Despite the two contrasting patterns found for bioaccumulation in R. philippinarum (mainly Pb vs. Hg), oxidative stress parameters were able to signalise BAR as the most impacted area. In fact, the digestive gland of BAR clams exhibited higher GST activity and GSHt levels (in both sampling periods) and SOD activity (warm season

  20. Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jizhong [University of Oklahoma; He, Zhili [University of Oklahoma

    2010-02-28

    Project Title: Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria DOE Grant Number: DE-FG02-06ER64205 Principal Investigator: Jizhong (Joe) Zhou (University of Oklahoma) Key members: Zhili He, Aifen Zhou, Christopher Hemme, Joy Van Nostrand, Ye Deng, and Qichao Tu Collaborators: Terry Hazen, Judy Wall, Adam Arkin, Matthew Fields, Aindrila Mukhopadhyay, and David Stahl Summary Three major objectives have been conducted in the Zhou group at the University of Oklahoma (OU): (i) understanding of gene function, regulation, network and evolution of Desulfovibrio vugaris Hildenborough in response to environmental stresses, (ii) development of metagenomics technologies for microbial community analysis, and (iii) functional characterization of microbial communities with metagenomic approaches. In the past a few years, we characterized four CRP/FNR regulators, sequenced ancestor and evolved D. vulgaris strains, and functionally analyzed those mutated genes identified in salt-adapted strains. Also, a new version of GeoChip 4.0 has been developed, which also includes stress response genes (StressChip), and a random matrix theory-based conceptual framework for identifying functional molecular ecological networks has been developed with the high throughput functional gene array hybridization data as well as pyrosequencing data from 16S rRNA genes. In addition, GeoChip and sequencing technologies as well as network analysis approaches have been used to analyze microbial communities from different habitats. Those studies provide a comprehensive understanding of gene function, regulation, network, and evolution in D. vulgaris, and microbial community diversity, composition and structure as well as their linkages with environmental factors and ecosystem functioning, which has resulted in more than 60 publications.

  1. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment

  2. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment.

  3. Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Cao, Yi; Roursgaard, Martin

    2015-01-01

    The importance of composition, size, crystal structure, charge and coating of metal-based nanomaterials (NMs) were evaluated in human umbilical vein endothelial cells (HUVECs) and/or THP-1 monocytic cells. Biomarkers of oxidative stress and inflammation were assessed because they are important...... in the development of cardiovascular diseases. The NMs used were five TiO2 NMs with different charge, size and crystal structure, coated and uncoated ZnO NMs and Ag which were tested in a wide concentration range. There were major differences between the types of NMs; exposure to ZnO and Ag resulted in cytotoxicity...... and increased gene expression levels of HMOX1 and IL8. The intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) expression were highest in TiO2 NM-exposed cells. There was increased adhesion of THP-1 monocytic cells onto HUVECs with Ag exposure. None of the NMs increased...

  4. Influence of alkali metal oxides and alkaline earth metal oxides on the mitigation of stress corrosion cracking in CANDU fuel sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    Stress corrosion cracking (SCC)can cause failures of CANDU Zircaloy-4 fuel sheathing. The process occurs when a corrosive element (i.e.,iodine) interacts with a susceptible material that is under sufficient strain at a high temperature. Currently, there is an ongoing effort to improve SCC mitigation strategies for future iterations of CANDU reactors. A potential mechanism for SCC mitigation involves utilizing alkali metal oxides and alkaline earth metal oxides that will sequester corrosive iodine while actively repairing a protective oxide layer on the sheath. SCC tests performed with sodium oxide (Na{sub 2}O) and calcium oxide (CaO) have shown to decrease significantly the sheath degradation. (author)

  5. Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria.

    Science.gov (United States)

    Seneviratne, Mihiri; Weerasundara, Lakshika; Ok, Yong Sik; Rinklebe, Jörg; Vithanage, Meththika

    2017-01-15

    This study assesses the effect of N-fixing bacteria and biochar synergism on plant growth and development of Vigna mungo under heavy metal stress (HM). Heavy metal stress is a worldwide problem, which causes critical effects on plant life due to oxidative stress. Application of biochar is a recent biological remediation technique, which often leads to an immobilization of heavy metals in soil. . Synergism of bacteria and biochar is a novel aspect to enhance plant growth under heavy metal stress. Woody biochar a byproduct of a dendro power industry was added as 1, 2.5 and 5% amounts combination with Bradyrhizobium japonicum, where mung seedlings were planted in serpentine soil rich in Ni, Mn, Cr and Co. Pot experiments were conducted for 12 weeks. The plant height, heavy metal uptake by plants, soil bioavailable heavy metal contents, soil N and P and microbial biomass carbon (MBC) were measured. The plant growth was enhanced with biochar amendment but a retardation was observed with high biochar application (5%). The soil N and P increased with the increase of biochar addition percentage while soil MBC showed reductions at 5% biochar amendment. Both soil bioavailable fractions of HM and up take of HMs by plants were gradually reduced with increase in biochar content. Based on the results, 2.5% biochar synergism with bacteria was the best for plant growth and soil nutrition status. Despite the synergism, available N was negatively correlated with the decrease of bioavailable metal percentage in soil whereas it was conversely for P. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Transcriptome response to copper heavy metal stress in hard-shelled mussel (Mytilus coruscus

    Directory of Open Access Journals (Sweden)

    Meiying Xu

    2016-03-01

    Full Text Available The hard-shelled mussel (Mytilus coruscus has considerably one of the most economically important marine shellfish worldwide and considered as a good invertebrate model for ecotoxicity study for a long time. In the present study, we used Illumina sequencing technology (HiSeq2000 to sequence, assemble and annotate the transcriptome of the hard-shelled mussel which challenged with copper pollution. A total of 21,723,913 paired-end clean reads (NCBI SRA database SRX1411195 were generated from HiSeq2000 sequencer and 96,403 contigs (with N50 = 1118 bp were obtained after de novo assembling with Trinity software. Digital gene expression analysis reveals 1156 unigenes are upregulated and 1681 unigenes are downregulated when challenged with copper. By KEGG pathway enrichment analysis, we found that unigenes in four KEGG pathways (aminoacyl-tRNA biosynthesis, apoptosis, DNA replication and mismatch repair show significant differential expressed between control and copper treated groups. We hope that the gill transcriptome in copper treated hard-shelled mussel can give useful information to understand how mussel handles with heavy metal stress at molecular level. Keywords: Hard-shelled mussel, Heavy metal, Transcriptome, Ecotoxicity

  7. Residual and working stresses in pipe joints in heterogeneous metals, due to common action of welding and service loads

    International Nuclear Information System (INIS)

    Kiselev, S.N.; Voronin, N.N.; Roshchin, V.V.

    1978-01-01

    The stresses in the welded joints of cylindrical shells are studied, which are caused by the total effect of the thermal deformation welding cycles, by the preheats connected with the thermal treatment or operation, and by power loads. Studied were the shell joints made of the steels Kh18N10T and St.3, as well as the joints of three shells made of different metals, St.3+18N1aT steel+copper. The schematic diagram showing the residual stresses set up under effect of different factors are presented. The following has been shown by the study: the preheating of the welded joints of the shells made of diverse metals up to the operational temperatures does not result in obviating the residual stresses. If the welded shells are loaded by the internal pressure up to the stresses of (0.8-O.9) sigmasub(T), in certain cases an essential (up to 60-70%) reduction in the residual welding stresses may be obtained. The effectiveness of a variation in the residual stresses is reduced in the joints that have been thermally treated after welding. The working stresses set up in the welded joints of the shells made of different metals under the operational loading may be essentially reduced through initial preheating with the application of a pressure or without it. The preheating temperature and the pressures applied may be chosen so that to create the residual strains and the stresses of inverse sign as compared with the working stresses

  8. Improvement in the bioenergetics system of plants under metal stress environment via seaweeds

    International Nuclear Information System (INIS)

    Azmat, R.; Askari, S.

    2015-01-01

    The effects of Hg and its remediation through seaweeds on seedlings were escorted in a greenhouse experiment in a randomized block design. The effects of Hg were monitored in relation with bioenergetics system of Trigonella foenumgraecum plant at test site scale. Plants that were exposed to Hg, showed affect in diverse ways, including affinity to suffer in morphological as well as on sugar metabolism. The stress imposed by Hg exposure also extends to chloroplast pigments that lead to the distorted photosynthetic apparatus. The outcomes of reduced contents of photosynthetic machinery related with reduced contents of glucose, sucrose, total soluble sugars and carbohydrate contents of plants. These contents plays vital rule for providing bioenergy to the plant growth regulation. It was suggested that Hg is lethal for plant bioenergetics system due to which plants fail to survive under stress. The lethal effects of Hg were tried to remediate through green seaweeds (Codium iyengrii). It was observed that seaweeds successfully controlled the mobility of Hg metal and improves the plant growth regulatory system at lower applied dose only. While at higher dose of Hg, seaweeds were also effective but to a certain limits. It was established that continuous addition of Hg in soil and aquatic resources execute to the plant productivity. It is demand of time to develop alternative eco-friendly remediation technologies for controlling, cleaning Hg-polluted zones. (author)

  9. Mechanical characteristics of self-expandable metallic stents: in vitro study with three types of stress

    International Nuclear Information System (INIS)

    Lee, Byung Hee; Kim, Kie Hwan; Chin, Soo Yil

    1998-01-01

    To obtain objective and comparable data for mechanical characteristics of self-expandable metallic stents widely used in the treatment of biliary obstruction. The stents tested were the 6 and 8 mm-band Hanaro spiral stent, Gianturco-Rosch Z stent, Wallstent, Ultraflex stent, and Memotherm stent. Each was subjected to three types of load:point, area, and circular. We analyzed their mechanical characteristics (resistance force, expansile force, and elasticity) according to these three types of stress. With regard to point loads, the Memotherm stent showed the highest resistance force and expansile force. The 8 mm-band Hanaro stent showed the lowest resistance force and the Gianturco-Rosch Z stent and Ultraflex stent showed lower expansile force. With regard to area loads, the Ultraflex stent showed the highest resistance force. The 6 mm-band Hanaro stent, Gianturco-Rosch Z stent, and Ultraflex stent showed higher expansile force. The 8 mm-band Hanaro stent showed the lowest value in both resistance force and expansile force. For circular loads, the Memotherm stent showed the highest resistance force and the Ultraflex stent and Wallstent showed lower value. Under all types of stress, the Hanaro stent and Memotherm stent were completely elastic, and the Ultraflex stent and Wallstent showed a wide gap between resistance force and expansile force. In clinical practice, awareness of the mechanical characteristics of each stent might help in choosing the one which is most suitable, according to type of biliary obstruction. =20

  10. Mechanical characteristics of self-expandable metallic stents: in vitro study with three types of stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Hee; Kim, Kie Hwan; Chin, Soo Yil [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1998-09-01

    To obtain objective and comparable data for mechanical characteristics of self-expandable metallic stents widely used in the treatment of biliary obstruction. The stents tested were the 6 and 8 mm-band Hanaro spiral stent, Gianturco-Rosch Z stent, Wallstent, Ultraflex stent, and Memotherm stent. Each was subjected to three types of load:point, area, and circular. We analyzed their mechanical characteristics (resistance force, expansile force, and elasticity) according to these three types of stress. With regard to point loads, the Memotherm stent showed the highest resistance force and expansile force. The 8 mm-band Hanaro stent showed the lowest resistance force and the Gianturco-Rosch Z stent and Ultraflex stent showed lower expansile force. With regard to area loads, the Ultraflex stent showed the highest resistance force. The 6 mm-band Hanaro stent, Gianturco-Rosch Z stent, and Ultraflex stent showed higher expansile force. The 8 mm-band Hanaro stent showed the lowest value in both resistance force and expansile force. For circular loads, the Memotherm stent showed the highest resistance force and the Ultraflex stent and Wallstent showed lower value. Under all types of stress, the Hanaro stent and Memotherm stent were completely elastic, and the Ultraflex stent and Wallstent showed a wide gap between resistance force and expansile force. In clinical practice, awareness of the mechanical characteristics of each stent might help in choosing the one which is most suitable, according to type of biliary obstruction. =20.

  11. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    Science.gov (United States)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  12. Ultrasonic measurement of through-thickness stress gradients in textured sheet metals

    International Nuclear Information System (INIS)

    Man Chising; Li Jianbo; Fan Xingyan; Lu Weiyang

    2000-01-01

    The objective of this investigation is to explore the possibility of using the dispersion of high-frequency Rayleigh waves for the evaluation of through-thickness stress gradients at the surface of metal sheets. We consider an orthorhombic sheet of cubic metal with through-thickness inhomogeneities in stress and texture, and adopt a coordinate system under which the rolling (RD), transverse (TD), and normal direction (ND) of the sheet are taken as the 1-, 2-, and 3-direction, respectively. We restrict our attention to the special case where only the stress components T 11 (x 3 ) and T 22 (x 3 ) in the sheet are nonzero, and consider only Rayleigh waves of sufficiently high frequency for which the sheet can be taken as the half-space x 3 ≥0. For Rayleigh waves of two different frequencies (with wave numbers k 1 and k k 2 respectively) propagating on the same wave path along either RD or TD, we appeal to an analysis of J. Li and Man to obtain a high-frequency asymptotic formula which gives the relative change in time-of-flight Δt/t 0 as (1/k 1 -1/k 2 ) times a linear combination of the derivatives T 11 ' (0), T 22 ' (0), W 4m0 ' (0)(m=0,2,4) and W 6m0 (0)(m=0,2,4,6) at the surface are ascertained and the material constants in the acoustoelastic consitutive equation of this polycrystal are known. An experiment was performed on an AA7075-T651 aluminum alloy beam, in which Δt/t 0 was measured for various values of T 11 (0) and T 11 ' (0) produced by beam bending (with (T 22 ≡0). The relevant texture coefficients of the beam were measured by X-ray diffraction. To obtain specific predictions from the aforementioned symptotic formula, we replace the material constants of the sample by their counterparts predicted for polycrystalline (pure) aluminum by the Man-Paroni model. The predictions and Δt/t 0 are then compared with the experimental results

  13. The influence of surface stress on dislocation emission from sharp and blunt cracks in f.c.c. metals

    DEFF Research Database (Denmark)

    Schiøtz, Jakob

    2000-01-01

    We use computer simulations to study the behaviour of atomically sharp and blunted cracks in various fee metals. The simulations use effective medium potentials which contain many-body interactions. We find that when using potentials representing platinum and gold a sharp crack is stable with res......We use computer simulations to study the behaviour of atomically sharp and blunted cracks in various fee metals. The simulations use effective medium potentials which contain many-body interactions. We find that when using potentials representing platinum and gold a sharp crack is stable...... with respect to the emission of a dislocation from the crack tip, whereas for all other metals studied the sharp crack is unstable. This result cannot be explained by existing criteria for the intrinsic ductile/brittle behaviour of crack tips, but is probably caused by surface stresses. When the crack...... is no longer atomically sharp dislocation emission becomes easier in all the studied metals. The effect is relatively strong; the critical stress intensity factor for emission to occur is reduced by up to 20%. This behaviour appears to be caused by the surface stress near the crack tip. The surface stress...

  14. In-situ stress analysis with X-Ray diffraction for yield locus characterization of sheet metals

    Energy Technology Data Exchange (ETDEWEB)

    Güner, A.; Tekkaya, A. E. [Institute of Forming Technology and Lightweight Construction, TU Dortmund University, Baroper Str. 301, 44227 Dortmund (Germany); Zillmann, B.; Lampke, T. [Institute of Materials Science and Engineering, Chemnitz University of Technology, Erfenschlager Strasse 73 D-09125 Chemnitz (Germany)

    2013-12-16

    A main problem in the field of sheet metal characterization is the inhomogeneous plastic deformation in the gauge regions of specimens which causes the analytically calculated stresses to differ from the sought state of stress acting in the middle of the gauge region. To overcome this problem, application of X-Ray diffraction is analyzed. For that purpose a mobile X-ray diffractometer and an optical strain measurement system are mounted on a universal tensile testing machine. This enables the recording of the whole strain and stress history of a material point. The method is applied to uniaxial tension tests, plane strain tension tests and shear tests to characterize the interstitial free steel alloy DC06. The applicability of the concepts of stress factors is verified by uniaxial tension tests. The experimentally obtained values are compared with the theoretical values calculated with crystal elasticity models utilizing the orientation distribution functions (ODF). The relaxation problem is addressed which shows itself as drops in the stress values with the strain kept at a constant level. This drop is analyzed with elasto-viscoplastic material models to correct the measured stresses. Results show that the XRD is applicable to measure the stresses in sheet metals with preferred orientation. The obtained yield locus is expressed with the Yld2000–2D material model and an industry oriented workpiece is analyzed numerically. The comparison of the strain distribution on the workpiece verifies the identified material parameters.

  15. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress1

    Science.gov (United States)

    Thao, Nguyen Phuong; Khan, M. Iqbal R.; Thu, Nguyen Binh Anh; Hoang, Xuan Lan Thi; Asgher, Mohd; Khan, Nafees A.; Tran, Lam-Son Phan

    2015-01-01

    Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance. PMID:26246451

  16. Metal bioaccumulation and oxidative stress profiles in Ruditapes philippinarum – insights towards its suitability as bioindicator of estuarine metal contamination

    KAUST Repository

    Marques, Ana; Piló , David; Carvalho, Susana; Araú jo, Olinda; Guilherme, Sofia; Santos, Maria Ana; Vale, Carlos; Pereira, Fá bio; Pacheco, Má rio; Pereira, Patrí cia

    2017-01-01

    is not consensual. This study provided clarification on this issue by evaluating the ability of R. philippinarum to signalise trace element contamination in an estuary chronically impacted by metals and metalloids (Tagus estuary, Portugal). A multidimensional

  17. The effect of filler metal thickness on residual stress and creep for stainless-steel plate-fin structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wenchun [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: jiangwenchun@126.com; Gong Jianming; Chen Hu; Tu, S.T. [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2008-08-15

    Stainless-steel plate-fin heat exchanger (PFHE) has been used as a high-temperature recuperator in microturbine for its excellent qualities in compact structure, high-temperature and pressure resistance. Plate-fin structure, as the core of PFHE, is fabricated by vacuum brazing. The main component fins and the parting sheets are joined by fusion of a brazing alloy cladded to the surface of parting sheets. Owing to the material mismatching between the filler metal and the base metal, residual stresses can arise and decrease the structure strength greatly. The recuperator serves at high temperature and the creep would happen. The thickness of the filler metal plays an important role in the joint strength. Hence this paper presented a finite element (FE) analysis of the brazed residual stresses and creep for a counterflow stainless-steel plate-fin structure. The effect of the filler metal thickness on residual stress and creep was investigated, which provides a reference for strength design.

  18. Role of OsWAK124, a rice wall-associated kinase, in response to environmental heavy metal stresses

    International Nuclear Information System (INIS)

    Yin, X.; Hou, X.

    2017-01-01

    Members of the Arabidopsis cell wall-associated kinase (WAK) family play important roles in both development and stress responses. There are about one hundred and twenty five OsWAKs annotated in the rice genome but their functions in rice growth and development are largely unknown. In this paper, we reported a functional role of the OsWAK124 (Os12g0266200) in rice heavy metal responses. Confocal GFP experiments located OsWAK124 in the cell wall and analyses of OsWAK124 promoter GUS transgenic lines suggested that OsWAK124 promoter is primarily active at the meristematic tissues under normal growth condition. Under stress conditions, however, OsWAK124 promoter activity is induced in non-meristematic tissues, such as leaf, stem and root, and the activity in the meristematic tissues is further enhanced. Various transgenic rice lines carrying either RNA interference (RNAi) or overexpression constructs were generated. Transgenic lines were tested for their responses to various stress conditions including salicylic acid, NaCl, AlCl/sub 3/, CuSO/sub 4/ and CdSO/sub 4/. Our analyses showed that rice seedlings overexpressing OsWAK124 are more resistant to the three tested heavy metals (Al, Cu, and Cd), which suggested that OsWAK124, like some Arabidopsis WAK members, plays a role in environmental heavy metal stress responses. (author)

  19. Impact of metal stress on the production of secondary metabolites in Pteris vittata L. and associated rhizosphere bacterial communities.

    Science.gov (United States)

    Pham, Hoang Nam; Michalet, Serge; Bodillis, Josselin; Nguyen, Tien Dat; Nguyen, Thi Kieu Oanh; Le, Thi Phuong Quynh; Haddad, Mohamed; Nazaret, Sylvie; Dijoux-Franca, Marie-Geneviève

    2017-07-01

    Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata's rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.

  20. Finite element analysis and measurement for residual stress of dissimilar metal weld in pressurizer safety nozzle mockup

    International Nuclear Information System (INIS)

    Lee, Kyoung Soo; Kim, W.; Lee, Jeong Geun; Park, Chi Yong; Yang, Jun Seok; Kim, Tae Ryong; Park, Jai Hak

    2009-01-01

    Finite element (FE) analysis and experiment for weld residual stress (WRS) in the pressurizer safety nozzle mockup is described in various processes and results. Foremost of which is the dissimilar simulation metal welding (DMW) between carbon steel and austenitic stainless steel. Thermal and structural analyses were compared with actual residual stress, and actual measurements of. Magnitude and distribution of WRS in the nozzle mockup were assessed. Two measurement methods were used: hole-drilling method (HDM) with strain gauge for residual stress on the surface of the mockup, and block removal and splitting layer (BRSL) method for through-thickness. FE analysis and measurement data showed good agreement. In conclusion, the characteristics of weld residual stress of DMW could be well understood and the simplified FE analysis was verified as acceptable for estimating WRS

  1. Finite element analysis and measurement for residual stress of dissimilar metal weld in pressurizer safety nozzle mockup

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Soo; Kim, W.; Lee, Jeong Geun; Park, Chi Yong; Yang, Jun Seok; Kim, Tae Ryong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Park, Jai Hak [Chungbuk University, Cheongju (Korea, Republic of)

    2009-11-15

    Finite element (FE) analysis and experiment for weld residual stress (WRS) in the pressurizer safety nozzle mockup is described in various processes and results. Foremost of which is the dissimilar simulation metal welding (DMW) between carbon steel and austenitic stainless steel. Thermal and structural analyses were compared with actual residual stress, and actual measurements of. Magnitude and distribution of WRS in the nozzle mockup were assessed. Two measurement methods were used: hole-drilling method (HDM) with strain gauge for residual stress on the surface of the mockup, and block removal and splitting layer (BRSL) method for through-thickness. FE analysis and measurement data showed good agreement. In conclusion, the characteristics of weld residual stress of DMW could be well understood and the simplified FE analysis was verified as acceptable for estimating WRS

  2. Stress-induced chemical detection using flexible metal-organic frameworks.

    Science.gov (United States)

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-05

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

  3. Production of catalases by Aspergillus niger isolates as a response to pollutant stress by heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Buckova, M.; Godocikova, J.; Simonovicova, A.; Polek, B. [Slovakian Academy of Science, Bratislava (Slovakia)

    2005-04-15

    Isolates of Aspergillus niger, selected from the coal dust of a mine containing arsenic (As; 400 mg/kg) and from the river sediment of mine surroundings (As, 1651 mg/kg, Sb, 362 mg/kg), growing in minimal nitrate medium in the phase of hyphal development and spore formation, exhibited much higher levels of total catalase activity than the same species from the culture collection or a culture adapted to soil contaminated with As (5 mg/L). Electrophoretic resolution of catalases in cell-free extracts revealed three isozymes of catalases and production of individual isozymes was not significantly affected by stress environments. Exogenously added stressors (As{sup 5+}, Cd{sup 2+}, Cu{sup 2+}) at final concentrations of 25 and 50 mg/L and H{sub 2}O{sub 2} (20 or 40 m(M)) mostly stimulated production of catalases only in isolates from mines surroundings, and H{sub 2}O{sub 2} and Hg{sup 2+} caused the disappearance of the smallest catalase I. Isolates exhibited a higher tolerance of the toxic effects of heavy metals and H{sub 2}O{sub 2}, as monitored by growth, than did the strain from the culture collection.

  4. The changes in leaf reflectance of sugar maple seedlings (Acer saccharum Marsh) in response to heavy metal stress

    Science.gov (United States)

    Schwaller, M. R.; Schnetzler, C. C.; Marshall, P. E.

    1981-01-01

    The effects of heavy metal stress on leaf reflectance of sugar maple seedlings (Acer saccharum Marsh) are examined. It is found that sugar maple seedlings treated with anomalous amounts of heavy metals in the rooting medium exhibited an increased leaf reflectance over the entire range of investigated wavelengths, from 475 to 1650 nm. These results conform to those of a previous investigation in the wavelengths from 475 to 660nm, but tend to contradict the previous study in the near infrared wavelengths from 1000 to 1650nm. The differences may possible be due to different water regimes in the two investigations.

  5. The changes in leaf reflectance of sugar maple (Acer saccharum Marsh) seedlings in response to heavy metal stress

    Science.gov (United States)

    Schwaller, M. R.; Schnetzler, C. C.; Marshall, P. E.

    1983-01-01

    The effects of heavy metal stress on leaf reflectance of sugar maple seedlings (Acer saccharum Marsh) are examined. It is found that sugar maple seedlings treated with anomalous amounts of heavy metals in the rooting medium exhibited an increased leaf reflectance over the entire range of investigated wavelengths, from 475 to 1650 nm. These results conform to those of a previous investigation in the wavelengths from 475 to 660 nm, but tend to contradict the previous study in the near infrared wavelengths from 1000 to 1650 nm. The differences may possibly be due to different water regimes in the two investigations. Previously announced in STAR as N81-29729

  6. Stress Distribution in the Dissimilar Metal Butt Weld of Nuclear Reactor Piping due to the Simulation Technique for the Repair Welding

    International Nuclear Information System (INIS)

    Lee, Hweeseung; Huh, Namsu; Kim, Jinsu; Lee, Jinho

    2013-01-01

    During welding, the dissimilar metal butt welds of nuclear piping are typically subjected to repair welding in order to eliminate defects that are found during post-weld inspection. It has been found that the repair weld can significantly increase the tensile residual stress in the weldment, and therefore, accurate estimation of the weld residual stress due to repair weld, especially for dissimilar metal welds using Ni-based alloy 82/182 in nuclear components, is of great importance in order to assess susceptibility to primary water stress corrosion cracking. In the present study, the stress distributions of dissimilar metal butt welds in nuclear reactor piping subjected to repair weld were investigated based on detailed nonlinear finite element analyses. Particular emphasis was placed on the variation of the stress distribution in the dissimilar metal butt weld according to the finite element welding analysis sequence for the repair welding process

  7. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  8. Stress distribution at the dissimilar metal weld of safety injection nozzle according to safe-end length and SMW thickness

    International Nuclear Information System (INIS)

    Kim, Tae Jin; Jeong, Woo Chul; Huh, Nam Su

    2015-01-01

    In the present paper, we evaluate the effects of the safe-end length and thickness of the similar metal weld (SMW) of safety injection nozzles on stress distributions at the dissimilar metal weld (DMW). For this evaluation, we carry out detailed 2-D axisymmetric finite element analyses by considering four different values of the safe-end length and four different values of the thickness of SMW. Based on the results obtained, we found that the SMW thickness affects the axial stresses at the center of the DMW for the shorter safe-end length; on the other hand, it does not affect the hoop stresses. In terms of the safe-end length, the values of the axial and hoop stresses at the inner surface of the DMW center increase as the safe-end length increases. In particular, for the cases considered in the present study, the stress distributions at the DMW center can be categorized according to certain values of safe-end length

  9. Plastic deformation, residual stress, and crystalline texture measurements for in-process characterization of FCC metal alloys

    International Nuclear Information System (INIS)

    Ruud, C.O.; Jacobs, M.E.; Weedman, S.D.; Snoha, D.J.

    1989-01-01

    This paper describes the results of several on-going investigations on the measurement of plastic deformation, residual stress, and crystalline texture in nickel, copper, and aluminum base alloys by x-ray diffraction techniques. X-ray diffraction techniques have been shown to be effective in the measurement of plastic deformation, residual stress, and crystalline texture in FCC metals, from the breadth, position, and intensity of the x-ray diffraction peaks. The Ruud-Barrett position-sensitive scintillation detector has been demonstrated to be fast, non-contacting, and tolerant of detector to component distance variation -- necessary requirements for cost-effective in-process inspection of materials

  10. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    Science.gov (United States)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  11. Hyperspectral reflectance features of water hyacinth growing under feeding stresses of Neochetina spp. and different heavy metal pollutants

    CSIR Research Space (South Africa)

    Newete, SW

    2014-01-01

    Full Text Available metal-induced plant stresses and the interaction between the two stressors. Water hyacinth was grown in 65L tubs, each with a single treatment, from one of; As (1 mg/L), Au (1 mg/L), Cu (2 mg/L), Fe (0.5, 2 and 4 mg/L), Hg (1 mg/L), Mn (0.5, 2 and 4 mg...

  12. Comparison of the stress distribution in the metallic layers of flexible pipes using two alternative Bflex formulations

    OpenAIRE

    Shi, Yunzhu

    2014-01-01

    Axisymmetric load is the most common load acting on flexible pipe. Modelling axisymmetric load correctly is very important to estimate the strength of a flexible pipe. The purpose of the thesis is to compare the stress distribution in metallic layers under three load case, i.e. tension, internal pressure and external pressure. Literature study and discussion to mechanical properties of flexible pipe and finite element modelling method are included in the thesis. The modelling program is BFLEX...

  13. Surface stress and large-scale self-organization at organic-metal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pollinger, Florian

    2009-01-22

    The role of elastic interactions, particularly for the self-organized formation of periodically faceted interfaces, was investigated in this thesis for archetype organic-metal interfaces. The cantilever bending technique was applied to study the change of surface stress upon formation of the interface between 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) and Ag(111). The main focus of this work was on the investigation of the formation of the long-range ordered, self-organized faceted PTCDA/Ag(10 8 7) interface. Reciprocal space maps of this interface were recorded both by spot profile analysis low energy electron diffraction (SPA-LEED) and low energy electron microscopy (LEEM) in selected area LEED mode. Complementary to the reciprocal data, also microscopic real-space LEEM data were used to characterize the morphology of this interface. Six different facet faces ((111), (532), (743), (954), (13 9 5), and (542)) were observed for the preparation path of molecular adsorption on the substrate kept at 550 K. Facet-sensitive dark-field LEEM localized these facets to grow in homogeneous areas of microscopic extensions. The temperature-dependence of the interface formation was studied in a range between 418 K and 612 K in order to learn more about the kinetics of the process. Additional steeper facets of 27 inclination with respect to the (111) surface were observed in the low temperature regime. Furthermore, using facet-sensitive dark-field LEEM, spatial and size distributions of specific facets were studied for the different temperatures. Moreover, the facet dimensions were statistically analyzed. The total island size of the facets follows an exponential distribution, indicating a random growth mode in absence of any mutual facet interactions. While the length distribution of the facets also follows an exponential distribution, the width distribution is peaked, reflecting the high degree of lateral order. This anisotropy is temperature-dependent and occurs

  14. Heavy metals in wild house mice from coal-mining areas of Colombia and expression of genes related to oxidative stress, DNA damage and exposure to metals.

    Science.gov (United States)

    Guerrero-Castilla, Angélica; Olivero-Verbel, Jesús; Marrugo-Negrete, José

    2014-03-01

    Coal mining is a source of pollutants that impact on environmental and human health. This study examined the metal content and the transcriptional status of gene markers associated with oxidative stress, metal transport and DNA damage in livers of feral mice collected near coal-mining operations, in comparison with mice obtained from a reference site. Mus musculus specimens were caught from La Loma and La Jagua, two coal-mining sites in the north of Colombia, as well as from Valledupar (Cesar Department), a city located 100km north of the mines. Concentrations in liver tissue of Hg, Zn, Pb, Cd, Cu and As were determined by differential stripping voltammetry, and real-time PCR was used to measure gene expression. Compared with the reference group (Valledupar), hepatic concentrations of Cd, Cu and Zn were significantly higher in animals living near mining areas. In exposed animals, the mRNA expression of NQ01, MT1, SOD1, MT2, and DDIT3 was 4.2-, 7.3-, 2.5-, 4.6- and 3.4-fold greater in coal mining sites, respectively, than in animals from the reference site (pmining may generate pollutants that could affect the biota, inducing the transcription of biochemical markers related to oxidative stress, metal exposure, and DNA damage. These changes may be in part linked to metal toxicity, and could have implications for the development of chronic disease. Therefore, it is essential to implement preventive measures to minimize the effects of coal mining on its nearby environment, in order to protect human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Comparative Analysis of GF-1 and HJ-1 Data to Derive the Optimal Scale for Monitoring Heavy Metal Stress in Rice.

    Science.gov (United States)

    Wang, Dongmin; Liu, Xiangnan

    2018-03-06

    Remote sensing can actively monitor heavy metal contamination in crops, but with the increase of satellite sensors, the optimal scale for monitoring heavy metal stress in rice is still unknown. This study focused on identifying the optimal scale by comparing the ability to detect heavy metal stress in rice at various spatial scales. The 2 m, 8 m, and 16 m resolution GF-1 (China) data and the 30 m resolution HJ-1 (China) data were used to invert leaf area index (LAI). The LAI was the input parameter of the World Food Studies (WOFOST) model, and we obtained the dry weight of storage organs (WSO) and dry weight of roots (WRT) through the assimilation method; then, the mass ratio of rice storage organs and roots (SORMR) was calculated. Through the comparative analysis of SORMR at each spatial scale of data, we determined the optimal scale to monitor heavy metal stress in rice. The following conclusions were drawn: (1) SORMR could accurately and effectively monitor heavy metal stress; (2) the 8 m and 16 m images from GF-1 were suitable for monitoring heavy metal stress in rice; (3) 16 m was considered the optimal scale to assess heavy metal stress in rice.

  16. Spectrometric analyses in comparison to the physiological condition of heavy metal stressed floodplain vegetation in a standardised experiment

    Science.gov (United States)

    Götze, Christian; Jung, András; Merbach, Ines; Wennrich, Rainer; Gläßer, Cornelia

    2010-06-01

    Floodplain ecosystems are affected by flood dynamics, nutrient supply as well as anthropogenic activities. Heavy metal pollution poses a serious environmental challenge. Pollution transfer from the soil to vegetation is still present at the central location of Elbe River, Germany. The goal of this study was to assess and separate the current heavy metal contamination of the floodplain ecosystem, using spectrometric field and laboratory measurements. A standardized pot experiment with floodplain vegetation in differently contaminated soils provided the basis for the measurements. The dominant plant types of the floodplains are: Urtica dioica, Phalaris arundinacea and Alopecurus pratensis, these were also chemically analysed. Various vegetation indices and methods were used to estimate the red edge position, to normalise the spectral curve of the vegetation and to investigate the potential of different methods for separating plant stress in floodplain vegetation. The main task was to compare spectral bands during phenological phases to find a method to detect heavy metal stress in plants. A multi-level algorithm for the curve parameterisation was developed. Chemo-analytical and ecophysiological parameters of plants were considered in the results and correlated with spectral data. The results of this study show the influence of heavy metals on the spectral characteristics of the focal plants. The developed method (depth CR1730) showed significant relationship between the plants and the contamination.

  17. Stress-induced chemical detection using flexible metal-organic frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Hesketh, Peter J. (Georgia Institute of Technology, Atlanta, GA); Gall, Kenneth A. (Georgia Institute of Technology, Atlanta, GA); Choudhury, A. (Georgia Institute of Technology, Atlanta, GA); Pikarsky, J. (Georgia Institute of Technology, Atlanta, GA); Andruszkiewicz, Leanne (Georgia Institute of Technology, Atlanta, GA); Houk, Ronald J. T.; Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD)

    2009-09-01

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be efficiently converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N{sub 2} or O{sub 2}. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO{sub 2}. We also report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. A force field model is described that successfully predicts changes in MOF properties and the uptake of gases. This model is used to predict adsorption isotherms for a number of representative compounds, including explosives, nerve agents, volatile organic compounds, and polyaromatic hydrocarbons. The results show that, as a result of relatively large heats of adsorption (> 20 kcal mol{sup -1}) in most cases, we expect an onset of adsorption by MOF as low as 10{sup -6} kPa, suggesting the potential to detect compounds such as RDX at levels as low as 10 ppb at atmospheric pressure.

  18. Shape optimization of metal forming and forging products using the stress equivalent static loads calculated from a virtual model

    International Nuclear Information System (INIS)

    Jang, Hwan Hak; Jeong, Seong Beom; Park, Gyung Jin

    2012-01-01

    A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes

  19. Effect of tensile stress on the annealed structure of a metallic glass

    International Nuclear Information System (INIS)

    Vianco, P.T.; Li, J.C.M.

    1987-01-01

    The low-temperature (120 0 --245 0 C) structural relaxation of Metglas/sup R/ 2826B (Ni 49 Fe 29 P 14 B 6 Si 2 ) amorphous alloy was investigated for samples subjected to a tensile stress in the range of 20--400 MPa during annealing. The stress-annealed samples demonstrated a much smaller increase of microhardness than was observed in similarly annealed ribbons without a stress. Further heat treatment of the stress-annealed specimens, this time without the stress, was capable of increasing the microhardnesses of only some ribbons to values equal to those of samples similarly heat treated initially without a stress. An additional exothermic peak in the differential scanning calorimetry (DSC) thermograms of the stress-annealed specimens indicated the presence of a more disordered structure at room temperature, which was found to correlate with the lower microhardness values. Otherwise, those artifacts of the DSC thermograms that were characteristic of samples annealed without a stress were still present in the stress-annealed ribbons. No effect on the crystallization temperature was noted but the glass transition temperature was increased in the stress-annealed case with respect to values attained when the stress was absent during heat treatment. A reduction in the degree of embrittlement of those samples annealed with a tensile stress was a further indication of more disorder in the stress-annealed ribbons

  20. Sublethal effects of a metal contamination due to uranium mine tailings in the three-spined stickleback (Gasterosteus aculeatus L.). Implication in the susceptibility to a biological stress

    International Nuclear Information System (INIS)

    Le Guernic, Antoine

    2015-01-01

    Uranium extraction has resulted in a remobilization of this actinide into mine surrounding ecosystems. Uses of metal salts during mining site rehabilitation, and the natural presence of metals have increased the metal contamination in hydro systems submitted to mine tailings. In situ experiments were conducted in two former French uranium mining sites. Three-spined stickleback caging was used to determine the sublethal effects of this metal mixture on this freshwater fish, as well as its effects on fish susceptibility to a sudden biological stress. This pollution, characterised by higher metal concentrations (especially for uranium), has led to an oxidative stress in sticklebacks visible through several bio-markers, and other effects dependent on the study site. The polymetallic contamination has modified the stickleback responses to the biological stress, by preventing their phagocytic and antioxidant responses. This work has reinforced the interest of the caging technique during environmental studies and that of immuno-markers in a multi-bio-marker approach. (author)

  1. Influence of alkali metal oxides and alkaline earth metal oxides on the mitigation of stress corrosion cracking in CANDU fuel sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    This work investigates strategies to mitigate stress corrosion cracking (SCC) in Zircaloy-4 sheathing materials. The CANLUB coatings currently used in CANDU reactors contain both alkali metal and alkaline earth metal impurities, which can exist as oxides (e.g., Na{sub 2}O and CaO). It is believed that when the corrosive fission product iodine reacts with these oxides, the iodine can be sequestered through the formation of an iodide (e.g.,NaI and CaI{sub 2}). The subsequent O{sub 2} release may repair cracks in the protective ZrO{sub 2} layer on the sheathing, shielding the Zircaloy-4 sheathing from further corrosive fission product attack. For this investigation, O{sub 2} gas, Na{sub 2}O, and CaO were separately introduced into an environment wherein slotted Zircaloy-4 rings endure mechanical stresses in iodine vapour at high temperatures. Controlled additions of O{sub 2} gas created a slight reduction in the corrosive attack on Zircaloy-4 sheathing, while the inclusion of Na{sub 2}O and CaO lead to greater reductions. (author)

  2. Methodology to evaluate the crack growth rate by stress corrosion cracking in dissimilar metals weld in simulated environment of PWR nuclear reactor

    International Nuclear Information System (INIS)

    Paula, Raphael G.; Figueiredo, Celia A.; Rabelo, Emerson G.

    2013-01-01

    Inconel alloys weld metal is widely used to join dissimilar metals in nuclear reactors applications. It was recently observed failures of weld components in plants, which have triggered an international effort to determine reliable data on the stress corrosion cracking behavior of this material in reactor environment. The objective of this work is to develop a methodology to determine the crack growth rate caused by stress corrosion in Inconel alloy 182, using the specimen (Compact Tensile) in simulated PWR environment. (author)

  3. Analysis of Metal Flow Behavior and Residual Stress Formation of Complex Functional Profiles under High-Speed Cold Roll-Beating

    Directory of Open Access Journals (Sweden)

    Fengkui Cui

    2018-01-01

    Full Text Available To obtain a good surface layer performance of the complex functional profile during the high-speed cold roll-beating forming process, this paper analyzed the metal plastic flow and residual stress-formed mechanism by using a theoretical model of the metal flow and residual stress generation. By using simulation software, the cold roll-beating forming process of a spline shaft was simulated and analyzed. The metal flow and residual stress formation law in the motion were researched. In a practical experiment, the changes in the grains in the spline tooth profile section and the residual stress distribution on the tooth profile were studied. A microcorrespondence relationship was established between the metal plastic flow and the residual stress generation. The conclusions indicate that the rate at which the metal flow decreases changes gradually at different metal layers. The residual stress value is directly related to the plastic flow difference. As the roll-beating speed increases, the uneven degree of plastic deformation at the workpiece surface increases, and the residual stress in the tooth profile is generally greater. At the same roll-beating speed, the rate change trend of the metal flow decreases gradually from the surface to the inner layer and from the dedendum to the addendum. The residual stress distribution on the surface of the tooth profile decreases from the dedendum to the addendum. These findings provide a basis and guidance for the controlled use of residual stress, obtaining better surface layer quality in the high-speed cold roll-beating process of the complex functional profile.

  4. Finding the Key Periods for Assimilating HJ-1A/B CCD Data and the WOFOST Model to Evaluate Heavy Metal Stress in Rice.

    Science.gov (United States)

    Zhao, Shuang; Qian, Xu; Liu, Xiangnan; Xu, Zhao

    2018-04-17

    Accurately monitoring heavy metal stress in crops is vital for food security and agricultural production. The assimilation of remote sensing images into the World Food Studies (WOFOST) model provides an efficient way to solve this problem. In this study, we aimed at investigating the key periods of the assimilation framework for continuous monitoring of heavy metal stress in rice. The Harris algorithm was used for the leaf area index (LAI) curves to select the key period for an optimized assimilation. To obtain accurate LAI values, the measured dry weight of rice roots (WRT), which have been proven to be the most stress-sensitive indicator of heavy metal stress, were incorporated into the improved WOFOST model. Finally, the key periods, which contain four dominant time points, were used to select remote sensing images for the RS-WOFOST model for continuous monitoring of heavy metal stress. Compared with the key period which contains all the available remote sensing images, the results showed that the optimal key period can significantly improve the time efficiency of the assimilation framework by shortening the model operation time by more than 50%, while maintaining its accuracy. This result is highly significant when monitoring heavy metals in rice on a large-scale. Furthermore, it can also offer a reference for the timing of field measurements in monitoring heavy metal stress in rice.

  5. comparative study with commercial rootstocks to determine the tolerance to heavy metal (Pb in the drought and salt stress tolerant eggplant breeding lines

    Directory of Open Access Journals (Sweden)

    Mevlüde Nur TOPAL

    2017-06-01

    Full Text Available Negative effects of heavy metals on plants are peroxidation of lipids in cell membranes, production of free oxygen radicals, disorders in photosynthesis, damages in DNAs and as a result death of the cell. Plant development, productivity and quality of the fruits are decreased in the plants that are exposed to Pb stress which is one of the most toxic heavy metals. Usage of rootstocks which is mainly used against biotic stress conditions also seems to be defined as a solution to abiotic stress conditions such as heavy metal stresses. In eggplant production, wild species and hybrids are used as rootstocks against soil based pathogens and nematode. Reactions of improvement lines derived from local gene resources for rootstock improvement to heavy metal stress which is one of the abiotic stresses were determined. While determining the resistance against Pb stress, commercially used eggplant rootstocks are compared. In this study 4 eggplant cultivars (S. melongena: Burdur Bucak, Mardin Kızıltepe, Artvin Hopa and Kemer whose resistance potential against salt and drought stresses had been previously revealed and 6 rootstocks of wild eggplant species or hybrids (AGR-703, Doyran, Hawk, Hikyaku, Köksal-F1 and Vista-306 were tested against Pb stress. Eggplant seedlings were applied to 0, 150 and 300 ppm Pb solutions (Pb(NO32 during 4-5 true leaf stage. 20 days after the stress application wet and dry weight of green parts and roots, height of the body part and leaf areas were measured. Pb tolerance of Köksal F1 and AGR703 rootstocks were higher than other commercial rootstocks. Mardin Kızıltepe and Burdur Merkez genotypes which have high tolerances against abiotic stress gave lower values with respect to Artvin Hopa and Kemer which are sensitive genotypes and many other rootstocks while comparing the reduction ratios of stress signs such as shoot fresh weight and shoot length according to control under Pb stress.

  6. Biaxial stress driven tetragonal symmetry breaking and high-temperature ferromagnetic semiconductor from half-metallic CrO2

    Science.gov (United States)

    Xiao, Xiang-Bo; Liu, Bang-Gui

    2018-03-01

    It is highly desirable to combine the full spin polarization of carriers with modern semiconductor technology for spintronic applications. For this purpose, one needs good crystalline ferromagnetic (or ferrimagnetic) semiconductors with high Curie temperatures. Rutile CrO2 is a half-metallic spintronic material with Curie temperature 394 K and can have nearly full spin polarization at room temperature. Here, we find through first-principles investigation that when a biaxial compressive stress is applied on rutile CrO2, the density of states at the Fermi level decreases with the in-plane compressive strain, there is a structural phase transition to an orthorhombic phase at the strain of -5.6 % , and then appears an electronic phase transition to a semiconductor phase at -6.1 % . Further analysis shows that this structural transition, accompanying the tetragonal symmetry breaking, is induced by the stress-driven distortion and rotation of the oxygen octahedron of Cr, and the half-metal-semiconductor transition originates from the enhancement of the crystal field splitting due to the structural change. Importantly, our systematic total-energy comparison indicates the ferromagnetic Curie temperature remains almost independent of the strain, near 400 K. This biaxial stress can be realized by applying biaxial pressure or growing the CrO2 epitaxially on appropriate substrates. These results should be useful for realizing full (100%) spin polarization of controllable carriers as one uses in modern semiconductor technology.

  7. Involvement of Potassium Transport Systems in the Response of Synechocystis PCC 6803 Cyanobacteria to External pH Change, High-Intensity Light Stress and Heavy Metal Stress.

    Science.gov (United States)

    Checchetto, Vanessa; Segalla, Anna; Sato, Yuki; Bergantino, Elisabetta; Szabo, Ildiko; Uozumi, Nobuyuki

    2016-04-01

    The unicellular photosynthetic cyanobacterium, able to survive in varying environments, is the only prokaryote that directly converts solar energy and CO2 into organic material and is thus relevant for primary production in many ecosystems. To maintain the intracellular and intrathylakoid ion homeostasis upon different environmental challenges, the concentration of potassium as a major intracellular cation has to be optimized by various K(+)uptake-mediated transport systems. We reveal here the specific and concerted physiological function of three K(+)transporters of the plasma and thylakoid membranes, namely of SynK (K(+)channel), KtrB (Ktr/Trk/HKT) and KdpA (Kdp) in Synechocystis sp. strain PCC 6803, under specific stress conditions. The behavior of the wild type, single, double and triple mutants was compared, revealing that only Synk contributes to heavy metal-induced stress, while only Ktr/Kdp is involved in osmotic and salt stress adaptation. With regards to pH shifts in the external medium, the Kdp/Ktr uptake systems play an important role in the adaptation to acidic pH. Ktr, by affecting the CO2 concentration mechanism via its action on the bicarbonate transporter SbtA, might also be responsible for the observed effects concerning high-light stress and calcification. In the case of illumination with high-intensity light, a synergistic action of Kdr/Ktp and SynK is required in order to avoid oxidative stress and ensure cell viability. In summary, this study dissects, using growth tests, measurement of photosynthetic activity and analysis of ultrastructure, the physiological role of three K(+)transporters in adaptation of the cyanobacteria to various environmental changes. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Ou, Xiufang; Zhang, Yunhong; Xu, Chunming; Lin, Xiuyun; Zang, Qi; Zhuang, Tingting; Jiang, Lili; von Wettstein, Diter; Liu, Bao

    2012-01-01

    DNA methylation is sensitive and responsive to stressful environmental conditions. Nonetheless, the extent to which condition-induced somatic methylation modifications can impose transgenerational effects remains to be fully understood. Even less is known about the biological relevance of the induced epigenetic changes for potentially altered well-being of the organismal progenies regarding adaptation to the specific condition their progenitors experienced. We analyzed DNA methylation pattern by gel-blotting at genomic loci representing transposable elements and protein-coding genes in leaf-tissue of heavy metal-treated rice (Oryza sativa) plants (S0), and its three successive organismal generations. We assessed expression of putative genes involved in establishing and/or maintaining DNA methylation patterns by reverse transcription (RT)-PCR. We measured growth of the stressed plants and their unstressed progenies vs. the control plants. We found (1) relative to control, DNA methylation patterns were modified in leaf-tissue of the immediately treated plants, and the modifications were exclusively confined to CHG hypomethylation; (2) the CHG-demethylated states were heritable via both maternal and paternal germline, albeit often accompanying further hypomethylation; (3) altered expression of genes encoding for DNA methyltransferases, DNA glycosylase and SWI/SNF chromatin remodeling factor (DDM1) were induced by the stress; (4) progenies of the stressed plants exhibited enhanced tolerance to the same stress their progenitor experienced, and this transgenerational inheritance of the effect of condition accompanying heritability of modified methylation patterns. Our findings suggest that stressful environmental condition can produce transgenerational epigenetic modifications. Progenies of stressed plants may develop enhanced adaptability to the condition, and this acquired trait is inheritable and accord with transmission of the epigenetic modifications. We suggest

  9. Bioaccumulation of heavy metals and ecophysiological responses to heavy metal stress in selected populations of Vaccinium myrtillus L. and Vaccinium vitis-idaea L.

    Science.gov (United States)

    Kandziora-Ciupa, Marta; Nadgórska-Socha, Aleksandra; Barczyk, Gabriela; Ciepał, Ryszard

    2017-09-01

    The aim of this study was to determine the concentrations of heavy metals (Cd, Pb, Zn, Fe, and Mn) in soil, and their bioavailability and bioaccumulation in Vaccinium myrtillus L. and Vaccinium vitis-idaea L. organs. Analysis also concerned the physiological responses of these plants from three polluted sites (immediate vicinity of a zinc smelter in Miasteczko Śląskie, ArcelorMittal Poland S.A. iron smelter in Dąbrowa Górnicza-Łosień, and Jaworzno III power plant in Jaworzno) and one pseudo-control site (Pazurek nature reserve in Jaroszowiec Olkuski). All of the sites are situated in the southern parts of Poland in the Śląskie or Małopolskie provinces. The contents of proline, non-protein thiols, glutathione, ascorbic acid, and the activity of superoxide dismutase and guaiacol peroxidase in the leaves of Vaccinium myrtillus L. and Vaccinium vitis-idaea L. were measured. In soil, the highest levels of Cd, Pb, and Zn (HNO 3 extracted and CaCl 2 extracted) were detected at the Miasteczko Śląskie site. At all sites a several times lower concentration of the examined metals was determined in the fraction of soil extracted with CaCl 2 . Much higher Cd, Pb, Zn and Fe concentrations were found in V. myrtillus and V. vitis-idaea grown at the most polluted site (located near the zinc smelter) in comparison with cleaner areas; definitely higher bioaccumulation of these metals was found in lingonberry organs. Additionally, we observed a large capability of bilberry to accumulate Mn. Antioxidant response to heavy metal stress also differed between V. myrtillus and V. vitis-idaea. In V. myrtillus we found a positive correlation between the level of non-protein thiols and Cd and Zn concentrations, and also between proline and these metals. In V. vitis-idaea leaves an upward trend in ascorbic acid content and superoxide dismutase activity accompanied an increase in Cd, Pb, and Zn concentrations. At the same time, the increased levels of all tested metals in the leaves

  10. Sensitivity analyses of finite element method for estimating residual stress of dissimilar metal multi-pass weldment in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Kim, Yun Jae [Korea Unviersity, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    In nuclear power plants, ferritic low alloy steel components were connected with austenitic stainless steel piping system through alloy 82/182 butt weld. There have been incidents recently where cracking has been observed in the dissimilar metal weld. Alloy 82/182 is susceptible to primary water stress corrosion cracking. Weld-induced residual stress is main factor for crack growth. Therefore exact estimation of residual stress is important for reliable operating. This paper presents residual stress computation performed by 6'' safety and relief nozzle. Based on 2 dimensional and 3 dimensional finite element analyses, effect of welding variables on residual stress variation is estimated for sensitivity analysis.

  11. In-situ X-ray residual stress measurement on a peened alloy 600 weld metal at elevated temperature under tensile load

    International Nuclear Information System (INIS)

    Yunomura, Tomoaki; Maeguchi, Takaharu; Kurimura, Takayuki

    2014-01-01

    In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening (WJP) on surface of alloy 600 weld metal (alloy 132) was investigated by in-situ X-ray residual stress measurement under thermal aging and stress condition considered for actual plant operation. Surface residual stress change was observed at the early stage of thermal aging at 360°C, but no significant further stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. For the X-ray residual stress measurement, X-ray stress constant at room temperature for alloy 600 was determined experimentally with several surface treatment and existence of applied strain. The X-ray stress constant at elevated temperatures were extrapolated theoretically based on the X-ray stress constant at room temperature for alloy 600. (author)

  12. Characteristics of Superjunction Lateral-Double-Diffusion Metal Oxide Semiconductor Field Effect Transistor and Degradation after Electrical Stress

    Science.gov (United States)

    Lin, Jyh‑Ling; Lin, Ming‑Jang; Lin, Li‑Jheng

    2006-04-01

    The superjunction lateral double diffusion metal oxide semiconductor field effect has recently received considerable attention. Introducing heavily doped p-type strips to the n-type drift region increases the horizontal depletion capability. Consequently, the doping concentration of the drift region is higher and the conduction resistance is lower than those of conventional lateral-double-diffusion metal oxide semiconductor field effect transistors (LDMOSFETs). These characteristics may increase breakdown voltage (\\mathit{BV}) and reduce specific on-resistance (Ron,sp). In this study, we focus on the electrical characteristics of conventional LDMOSFETs on silicon bulk, silicon-on-insulator (SOI) LDMOSFETs and superjunction LDMOSFETs after bias stress. Additionally, the \\mathit{BV} and Ron,sp of superjunction LDMOSFETs with different N/P drift region widths and different dosages are discussed. Simulation tools, including two-dimensional (2-D) TSPREM-4/MEDICI and three-dimensional (3-D) DAVINCI, were employed to determine the device characteristics.

  13. Dose dependence of true stress parameters in irradiated bcc, fcc, and hcp metals

    Science.gov (United States)

    Byun, T. S.

    2007-04-01

    The dose dependence of true stress parameters has been investigated for nuclear structural materials: A533B pressure vessel steels, modified 9Cr-1Mo and 9Cr-2WVTa ferritic martensitic steels, 316 and 316LN stainless steels, and Zircaloy-4. After irradiation to significant doses, these alloys show radiation-induced strengthening and often experience prompt necking at yield followed by large necking deformation. In the present work, the critical true stresses for deformation and fracture events, such as yield stress (YS), plastic instability stress (PIS), and true fracture stress (FS), were obtained from uniaxial tensile tests or calculated using a linear strain-hardening model for necking deformation. At low dose levels where no significant embrittlement was detected, the true fracture stress was nearly independent of dose. The plastic instability stress was also independent of dose before the critical dose-to-prompt-necking at yield was reached. A few bcc alloys such as ferritic martensitic steels experienced significant embrittlement at doses above ∼1 dpa; and the true fracture stress decreased with dose. The materials fractured before yield at or above 10 dpa.

  14. Measurement and Interpretation of Flow Stress Data for the Simulation of Metal-Forming Processes

    Science.gov (United States)

    2010-01-01

    fitting constants that differ in each equation): Ludwik Equation: c)εb(aσ += , (29) Voce Equation: )]εcexp([1*a][baσ −−−+= (30) Swift...stress at low strains (ɘ.2) and to overestimate the stress for high strains. For heavily prestrained materials, c ~ 1. The Voce and Swift equations tend

  15. Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals

    OpenAIRE

    Jutsz Anna Małachowska; Gnida Anna

    2015-01-01

    Heavy metal pollution of soil is a significant environmental problem and has a negative impact on human health and agriculture. Phytoremediation can be an alternative environmental treatment technology, using the natural ability of plants to take up and accumulate pollutants or transform them. Proper development of plants in contaminated areas (e.g. heavy metals) requires them to generate the appropriate protective mechanisms against the toxic effects of these pollutants. This paper presents ...

  16. Stress induced by heavy metals on breeding of magpie (Pica pica) from central Iran.

    Science.gov (United States)

    Zarrintab, Mohammad; Mirzaei, Rouhollah

    2017-09-01

    The aim of this study was to address the impacts of some heavy metals (Cd, Pb, Zn, Ni and Cu) contamination on laying behavior, egg quality and breeding performance of Pica pica in north of Isfahan Province, Iran. During the breeding season of 2013, magpie's egg content and eggshell as well as nestling excrements and feathers were collected and total concentrations of heavy metals were measured by ICP-OES. Except for Zn in nestling feathers, the significantly higher concentrations of heavy metals were observed in nestling excrements than other samples. Also, comparison of heavy metals concentrations in egg content and eggshell showed that egg content had significantly higher concentrations of Zn and Pb, instead eggshell had significantly higher amount of Cu and Cd. Except for Cu, all heavy metals concentrations in eggshell had a negative relationship with morphological characters; and also concentration of Cu in egg content showed a significantly negative correlation with egg weight and volume. The most of heavy metals in nestling feathers and excrements had strongly positive correlations with each other. Also all heavy metals levels in eggshell and egg content had significantly positive correlations (except for Cu). Unhatched eggs had significantly lower weight but also greater levels of Zn, Cd, and Pb, than randomly collected eggs. No significant differences were observed for morphometric measurements of eggs between different sites, however, a decreased gradient was observed in egg volume toward the brick kiln site. Samples collected in brick kiln site accumulated higher concentrations of heavy metals than other sites. Although numbers of clutch size in brick kiln site were significantly higher than other sites, however, other breeding variable were lower than other sites. It can be suggested that ecosystem contamination may be caused to decrease the reproduction rate of Pica pica in brick kiln, probably by laying more poor quality eggs per clutch and nestling

  17. Production of an antibiotic enterocin from a marine actinobacteria strain H1003 by metal-stress technique with enhanced enrichment using response surface methodology.

    Science.gov (United States)

    Hassan, Syed Shamsul; Shah, Sayed Asmat Ali; Pan, Chengqian; Fu, Leilei; Cao, Xun; Shi, Yutong; Wu, Xiaodan; Wang, Kuiwu; Wu, Bin

    2017-01-01

    Elicitation by chemical means including heavy metals is one of a new technique for drug discoveries. In this research, the effect of heavy metals on marine actinobacteria Streptomyces sp. H-1003 for the production of enterocin, with a strong broad spectrum activity, along optimized fermented medium was firstly investigated. The optimum metal stress conditions consisted of culturing marine actinobacteria strain H-1003 with addition of cobalt ions at 2mM in optimized Gause's medium having starch at 20mg/L for 10 days at 180 revolution/min. Under these conditions, enterocin production was enhanced with a value of 5.33mg/L, which was totally absent at the normal culture of strain H-1003 and much higher than other tested metal-stress conditions. This work triumphantly announced a prodigious effect of heavy metals on marine actinobacteria with fringe benefits as a key tool of enterocin production.

  18. Effect of heavy metal stress on the catalase activity and expression of isozymes in the leaves of rice seedling

    International Nuclear Information System (INIS)

    Ge Cailin; Yang Xiaoyong; Zhu Hongxia; Wang Zegang; Luo Shishi; Ma Fei; Sun Jinhe

    2002-01-01

    The effect of heavy metal stress on the catalase (CAT) activity and expression of isozymes in the leaves of rice (Wuyujing, Yangdao 6, Shanyou 818) seedling was measured and analyzed. The results showed as follows. (1) When the concentration of Cu, Cd and Hg was in the range of 0.05-2.0 mM, the CAT activity decreased continuously with the concentration of Cu and Cd increasing. However, with the concentration of Hg increasing the CAT activity rapidly decreased first, and then increased slightly, and again decreased obviously, indicating that the Cu, Cd and Hg of 0.05-2.0 mM inhibited the CAT activity in the leaves of rice seedling. (2) The results by using polyacrylamide concentration gradient gel electrophoresis technique to analyze the CAT isozymes indicated that, on the normal condition, there were 1 to 2 CAT isozymes being expressed in the rice leaves (2 CAT isozymes being expressed in Wuyujing leaves, 1 CAT isozymes in Yangdao 6 and Shanyou 818 leaves). 0.1 mM Cd stress induced Wuyujing leaves to express 1 new CAT isozymes, 0.1 mM Cd and Hg stress also induced Yangdao 6 leaves to express 1 new CAT isozymes, but the expression of CAT isozymes, which were expressed in normal condition, were inhibited by Cu, Cd and Hg stress

  19. Stress

    Science.gov (United States)

    ... taking care of an aging parent. With mental stress, the body pumps out hormones to no avail. Neither fighting ... with type 1 diabetes. This difference makes sense. Stress blocks the body from releasing insulin in people with type 2 ...

  20. Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress

    International Nuclear Information System (INIS)

    Machado, Manuela D.; Soares, Eduardo V.

    2014-01-01

    Highlights: •Metals induce morphological alterations on P. subcapitata. •Algal cell cycle consists: mother cell growth; cell division, with two nucleus divisions; release of four autospores. •Cu(II) and Cr(VI) arrest cell growth before the first nuclear division. •Cd(II) arrests cell growth after the second nuclear division but before the cytokinesis. •The approach used can be useful in the elucidation of different modes of action of pollutants. -- Abstract: The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwater alga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells were exposed to three nominal concentrations of each metal: low (closed to 72 h-EC 10 values), intermediate (closed to 72 h-EC 50 values) and high (upper than 72 h-EC 90 values). The exposure to low metal concentrations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations an increase of cell volume was observed; this effect was particularly notorious for Cd and less pronounced for Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations of metals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an opposite effect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases in P. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus; and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrations resulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after the second nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). The different impact of metals on algal cell volume and cell-cycle progression, suggests that different toxicity mechanisms underlie the action of different metals

  1. Tolerance of Chemoorganotrophic Bioleaching Microorganisms to Heavy Metal and Alkaline Stresses

    Science.gov (United States)

    Monballiu, Annick; Cardon, Nele; Tri Nguyen, Minh; Cornelly, Christel; Meesschaert, Boudewijn; Chiang, Yi Wai

    2015-01-01

    The bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc) and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity. Growth curves were prepared using bacterial/fungal growth counting techniques such as plate counting, optical density measurement, and dry biomass determination. Cadmium, nickel, and arsenite had a negative influence on the growth of B. mucilaginosus, whereas A. niger was sensitive to cadmium and arsenate. However, it was shown that growth recovered when microorganisms cultured in the presence of these metals were inoculated onto metal-free medium. Based on the findings of the bacteriostatic/fungistatic effect of the metals and the adaptability of the microorganisms to fairly elevated pH values, it is concluded that both strains have potential applicability for further research concerning bioleaching of alkaline waste materials. PMID:26236176

  2. Improvement of heavy metal stress and toxicity assays by coupling a transgenic reporter in a mutant nematode strain

    Energy Technology Data Exchange (ETDEWEB)

    Chu, K.-W. [Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Chan, Shirley K.W. [Atmospheric, Marine and Coastal Environment Program, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Chow, King L. [Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China) and Atmospheric, Marine and Coastal Environment Program, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)]. E-mail: bokchow@ust.hk

    2005-09-30

    Previous studies have demonstrated that wild type Caenorhabditis elegans displays high sensitivity to heavy metals in a lethality test at a level comparable to that of other bioindicator organisms. Taking advantage of the genetics of this model organism, we have tested a number of mutant strains for enhanced sensitivity in heavy metal induced lethality and stress response. These mutants are defective in genes controlling dauer formation, longevity or response to reactive oxygen species (ROS). Among the tested mutants, a double mutant daf-16 unc-75 strain was identified to have superior sensitivity. It has a 6-, 3- and 2-fold increase in sensitivity to cadmium, copper and zinc, respectively, as compared with that of wild type animals. When a fluorescent reporter transgene was coupled with this double mutant for stress detection, a 10-fold enhancement of sensitivity to cadmium over the wild type strain was observed. These transgenic animals, superior to most of the model organisms currently used in bioassays for environmental pollutants, offer a fast and economic approach to reveal the bioavailability of toxic substance in field samples. This study also demonstrates that combination of genetic mutations and transgenesis is a viable approach to identify sensitive indicator animals for environmental monitoring.

  3. Improvement of heavy metal stress and toxicity assays by coupling a transgenic reporter in a mutant nematode strain

    International Nuclear Information System (INIS)

    Chu, K.-W.; Chan, Shirley K.W.; Chow, King L.

    2005-01-01

    Previous studies have demonstrated that wild type Caenorhabditis elegans displays high sensitivity to heavy metals in a lethality test at a level comparable to that of other bioindicator organisms. Taking advantage of the genetics of this model organism, we have tested a number of mutant strains for enhanced sensitivity in heavy metal induced lethality and stress response. These mutants are defective in genes controlling dauer formation, longevity or response to reactive oxygen species (ROS). Among the tested mutants, a double mutant daf-16 unc-75 strain was identified to have superior sensitivity. It has a 6-, 3- and 2-fold increase in sensitivity to cadmium, copper and zinc, respectively, as compared with that of wild type animals. When a fluorescent reporter transgene was coupled with this double mutant for stress detection, a 10-fold enhancement of sensitivity to cadmium over the wild type strain was observed. These transgenic animals, superior to most of the model organisms currently used in bioassays for environmental pollutants, offer a fast and economic approach to reveal the bioavailability of toxic substance in field samples. This study also demonstrates that combination of genetic mutations and transgenesis is a viable approach to identify sensitive indicator animals for environmental monitoring

  4. Prediction of residual stress for dissimilar metals welding at nuclear power plants using fuzzy neural network models

    International Nuclear Information System (INIS)

    Na, Man Gyun; Kim, Jin Weon; Lim, Dong Hyuk

    2007-01-01

    A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones

  5. Stress-Corrosion Cracking of Metallic Materials. Part III. Hydrogen Entry and Embrittlement in Steel

    Science.gov (United States)

    1975-04-01

    work of Kerns (36)] 29 22 Crack Velocity vs. Stress Intensity for AISI 4340 Steel (Martensitic and Bainitic Structures) in 314 NaCl Solution (pit = 6.0...magnitude greater for 4340 steel with a tempered martensite structure than for the lower bainite structure. Figure 22 shows crack velocity as a function of...applied stress intensity for martensitic and bainitic steels . The dif- ference was attributed to more effective trapping of hydrogen at coher- ently

  6. Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites

    International Nuclear Information System (INIS)

    Nakamura, T.; Suresh, S.

    1993-01-01

    The combined effects of thermal residual stresses and fiber spatial distribution on the deformation of a 6061 aluminum alloy containing a fixed concentration unidirectional boron fibers have been analyzed using detailed finite element models. The geometrical structure includes perfectly periodic, uniformly space fiber arrangements in square and hexagonal cells, as well as different cells in which either 30 or 60 fibers are randomly placed in the ductile matrix. The model involves an elastic-plastic matrix, elastic fibers, and mechanically bonded interfaces. The results indicate that both fiber packing and thermal residual stresses can have a significant effect on the stress-strain characteristics of the composite. The thermal residual stresses cause pronounced matrix yielding which also influences the apparent overall stiffness of the composite during the initial stages of subsequent far-field loading along the axial and transverse direction. Furthermore, the thermal residual stresses apparently elevate the flow stress of the composite during transverse tension. Such effects can be traced back to the level of constraint imposed on the matrix by local fiber spacing. The implications of the present results to the processing of the composites are also briefly addressed

  7. The flow stress of high-purity refractory body-centred cubic metals and its modification by atomic defects

    International Nuclear Information System (INIS)

    Seeger, A.

    1995-01-01

    The strong temperature and strain-rate dependence of the flow stress of high-purity refractory body-centred cubic metals has been shown to be an intrinsic property and is usually ascribed to a high Peierls barrier of a o left angle 111 right angle /2 screw dislocations. These barriers are overcome by the formation of kink pairs on the screw dislocations. The paper reports on recent, very complete flow-stress data on ultra-high purity Mo crystals obtained by two different experimental techniques and covering the temperature range 4 K to 460 K. The results are in accord with earlier work of Brunner and Diehl on α-Fe, who showed that below the so-called knee temperature, T K , three regimes in the temperature variation of the flow-stress should be distinguished. Two of them are fully accounted for by the same glide mechanism, namely elementary glide steps on {211} planes. The so-called upper bend separating these two regimes in an inherent feature of the theory of kink-pair formation and does not indicate a change in the glide mechanism. There is, however, strong evidence that the so-called lower bend, separating the range of {211} elementary glide steps from the low-temperature flow-stress regime, is due to a change in the glide mechanism. It is argued that at the lower bend the screw-dislocation cores undergo a ''first-order phase transition'' from a low-temperature configuration that allows glide of a given screw dislocation on any of its three {110} glide planes to a high-temperature configuration that can glide only on one definite {211} plane. Between T K and the lower-bend temperature, T, bcc metals may show the unique phenomena of alloy and irradiation softening. With regard to the latter phenomenon, Brunner and Diehl distinguish between ''primary'' and ''secondary'' softening. It is shown that alloy softening and the ''secondary irradiation softening'' of bcc metals may be explained by an ''overheating'' of the phase transition in the dislocation core. (orig./WL)

  8. Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress

    International Nuclear Information System (INIS)

    Machado, Manuela D.; Lopes, Ana R.; Soares, Eduardo V.

    2015-01-01

    Highlights: • Heavy metals provoke a perturbation of the physiological status of Pseudokirchneriella subcapitata. • Cd(II), Cr(VI) and Cu(II), at high concentrations, cause the loss of membrane integrity. • Cd(II), Cr(VI), Cu(II) and Zn(II) inhibit esterase activity in a dose dependent manner. • Heavy metals affect mitochondrial function and photosynthetic activity. • Fluorescent probes are a useful tool in the identification of toxicity targets of the heavy metals. - Abstract: The green alga Pseudokirchneriella subcapitata has been widely used in ecological risk assessment, usually based on the impact of the toxicants in the alga growth. However, the physiological causes that lead algal growth inhibition are not completely understood. This work aimed to evaluate the biochemical and structural modifications in P. subcapitata after exposure, for 72 h, to three nominal concentrations of Cd(II), Cr(VI), Cu(II) and Zn(II), corresponding approximately to 72 h-EC 10 and 72 h-EC 50 values and a high concentration (above 72 h-EC 90 values). The incubation of algal cells with the highest concentration of Cd(II), Cr(VI) or Cu(II) resulted in a loss of membrane integrity of ~16, 38 and 55%, respectively. For all metals tested, an inhibition of esterase activity, in a dose-dependent manner, was observed. Reduction of chlorophyll a content, decrease of maximum quantum yield of photosystem II and modification of mitochondrial membrane potential was also verified. In conclusion, the exposure of P. subcapitata to metals resulted in a perturbation of the cell physiological status. Principal component analysis revealed that the impairment of esterase activity combined with the reduction of chlorophyll a content were related with the inhibition of growth caused by a prolonged exposure to the heavy metals

  9. Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Manuela D. [Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Porto (Portugal); CEB-Centre of Biological Engineering, University of Minho, Braga (Portugal); Lopes, Ana R. [LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto (Portugal); Soares, Eduardo V., E-mail: evs@isep.ipp.pt [Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Porto (Portugal); CEB-Centre of Biological Engineering, University of Minho, Braga (Portugal)

    2015-10-15

    Highlights: • Heavy metals provoke a perturbation of the physiological status of Pseudokirchneriella subcapitata. • Cd(II), Cr(VI) and Cu(II), at high concentrations, cause the loss of membrane integrity. • Cd(II), Cr(VI), Cu(II) and Zn(II) inhibit esterase activity in a dose dependent manner. • Heavy metals affect mitochondrial function and photosynthetic activity. • Fluorescent probes are a useful tool in the identification of toxicity targets of the heavy metals. - Abstract: The green alga Pseudokirchneriella subcapitata has been widely used in ecological risk assessment, usually based on the impact of the toxicants in the alga growth. However, the physiological causes that lead algal growth inhibition are not completely understood. This work aimed to evaluate the biochemical and structural modifications in P. subcapitata after exposure, for 72 h, to three nominal concentrations of Cd(II), Cr(VI), Cu(II) and Zn(II), corresponding approximately to 72 h-EC{sub 10} and 72 h-EC{sub 50} values and a high concentration (above 72 h-EC{sub 90} values). The incubation of algal cells with the highest concentration of Cd(II), Cr(VI) or Cu(II) resulted in a loss of membrane integrity of ~16, 38 and 55%, respectively. For all metals tested, an inhibition of esterase activity, in a dose-dependent manner, was observed. Reduction of chlorophyll a content, decrease of maximum quantum yield of photosystem II and modification of mitochondrial membrane potential was also verified. In conclusion, the exposure of P. subcapitata to metals resulted in a perturbation of the cell physiological status. Principal component analysis revealed that the impairment of esterase activity combined with the reduction of chlorophyll a content were related with the inhibition of growth caused by a prolonged exposure to the heavy metals.

  10. Sensitization behaviour of modified 316N and 316L stainless steel weld metals after complex annealing and stress relieving cycles

    International Nuclear Information System (INIS)

    Parvathavarthini, N.; Dayal, R.K.; Khatak, H.S.; Shankar, V.; Shanmugam, V.

    2006-01-01

    Sensitization behaviour of austenitic stainless steel weld metals prepared using indigenously developed modified 316N (C = 0.05%; N = 0.12%) and 316L (C = 0.02%; N = 0.07%) electrodes was studied. Detailed optical and scanning electron microscopic examination was carried out to understand the microstructural changes occurring in the weld metal during isothermal exposure at various temperatures ranging from 500 deg. C to 850 deg. C (773-1123 K). Based on these studies the mechanism of sensitization in the austenite-ferrite weld metal has been explained. Time-temperature-sensitization (TTS) diagrams were established using ASTM A262 Practice E test. From the TTS diagrams, critical cooling rate (CCR) above which there is no risk of sensitization was calculated for both materials. The heating/cooling rates to be followed for avoiding sensitization during heat treatment cycles consisting of solution-annealing and stress-relieving in fabrication of welded components of AISI 316LN stainless steel (SS) were estimated taking into account the soaking time and the number of times the component undergoes thermal excursions in the sensitization regime. The results were validated by performing controlled heating and cooling heat treatment trials on welded specimens

  11. Possible origin of the discrepancy in Peierls stresses of fcc metals: First-principles simulations of dislocation mobility in aluminum

    Science.gov (United States)

    Shin, Ilgyou; Carter, Emily A.

    2013-08-01

    Dislocation motion governs the strength and ductility of metals, and the Peierls stress (σp) quantifies dislocation mobility. σp measurements carry substantial uncertainty in face-centered cubic (fcc) metals, and σp values can differ by up to two orders of magnitude. We perform first-principles simulations based on orbital-free density functional theory (OFDFT) to calculate the most accurate currently possible σp for the motion of (1)/(2)111 dislocations in fcc Al. We predict the σps of screw and edge dislocations (dissociated in their equilibrium state) to be 1.9×10-4G and 4.9×10-5G, respectively (G is the shear modulus). These values fall within the range of measurements from mechanical deformation tests (10-4-10-5G). OFDFT also finds a new metastable structure for a screw dislocation not seen in earlier simulations, in which a dislocation core on the glide plane does not dissociate into partials. The corresponding σp for this undissociated dislocation is predicted to be 1.1×10-2G, which agrees with typical Bordoni peak measurements (10-2-10-3G). The calculated σps for dissociated and undissociated screw dislocations differ by two orders of magnitude. The presence of undissociated, as well as dissociated, screw dislocations may resolve the decades-long mystery in fcc metals regarding the two orders of magnitude discrepancy in σp measurements.

  12. Numerical simulation of stress distribution in Inconel 718 components realized by metal injection molding during supercritical debinding

    Science.gov (United States)

    Agne, Aboubakry; Barrière, Thierry

    2018-05-01

    Metal injection molding (MIM) is a process combining advantages of thermoplastic injection molding and powder metallurgy process in order to manufacture components with complex and near net-shape geometries. The debinding of a green component can be performed in two steps, first by using solvent debinding in order to extract the organic part of the binder and then by thermal degradation of the rest of the binder. A shorter and innovative method for extracting an organic binder involves the use of supercritical fluid instead of a regular solvent. The debinding via a supercritical fluid was recently investigated to extract organic binders contained in components obtained by Metal Injection Molding. It consists to put the component in an enclosure subjected to high pressure and temperature. The supercritical fluid has various properties depending on these two conditions, e.g., density and viscosity. The high-pressure combined with the high temperature during the process affect the component structure. Three mechanisms contributing to the deformation of the component can been differentiated: thermal expansion, binder extraction and supercritical fluid effect on the outer surfaces of the component. If one supposes that, the deformation due to binder extraction is negligible, thermal expansion and the fluid effect are probably the main mechanisms that can produce several stress. A finite-element model, which couples fluid-structures interaction and structural mechanics, has been developed and performed on the Comsol Multiphysics® finite-element software platform allowed to estimate the stress distribution during the supercritical debinding of MIM component composed of Inconel 718 powders, polypropylene, polyethylene glycol and stearic acid as binder. The proposed numerical simulations allow the estimation of the stress distribution with respect to the processing parameters for MIM components during the supercritical debinding process using a stationary solver.

  13. Residual stress improvement mechanism on metal material by underwater laser irradiation

    International Nuclear Information System (INIS)

    Sano, Yuji; Yoda, Masaki; Mukai, Naruhiko; Obata, Minoru; Kanno, Masanori

    2000-01-01

    Residual stress improvement technology for component surface by underwater pulsed laser irradiation has been developed as a method of preventing stress corrosion cracking (SCC) of core components in nuclear reactors. In order to optimize the laser irradiation conditions based on a complete understanding of the mechanism, the propagation of a shock wave induced by the impulse of laser irradiation and the dynamic response of the irradiated material were analyzed through time-dependent elasto-plastic calculations with a finite element program. The calculated results are compared with the measured results obtained by experiments in which laser pulses with an energy of 200 mJ are focused to a diameter of 0.8 mm on a water-immersed test piece of 20% cold-worked Type 304 austenitic stainless steel to simulate neutron irradiation hardening. A residual compressive stress, which is nearly equivalent to the yield stress of the processed material, remains on the material surface after passage of the shock wave with enough amplitude to induce a permanent strain. Multiple irradiation of laser pulses extends the stress-improved depth to about 1 mm, which would be the limit corresponding to the three-dimensional dispersion effect of the shock wave. (author)

  14. Heavy metal uptake and stress responses of hydroponically cultivated garlic (Allium sativum L.)

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Petrová, Šárka; Vaněk, Tomáš

    2011-01-01

    Roč. 74, - (2011), s. 289-295 ISSN 0098-8472 R&D Projects: GA MŠk OC09082; GA MŠk 2B08058 Institutional research plan: CEZ:AV0Z50380511 Keywords : Heavy metal s * Uptake * Garlic Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 2.985, year: 2011

  15. Differential effects of metal contamination on the transcript expression of immune- and stress-response genes in the Sydney Rock oyster, Saccostrea glomerata

    International Nuclear Information System (INIS)

    Taylor, Daisy A.; Thompson, Emma L.; Nair, Sham V.; Raftos, David A.

    2013-01-01

    Environmental contamination by metals is a serious threat to the biological sustainability of coastal ecosystems. Our current understanding of the potential biological effects of metals in these ecosystems is limited. This study tested the transcriptional expression of immune- and stress-response genes in Sydney Rock oysters (Saccostrea glomerata). Oysters were exposed to four metals (cadmium, copper, lead and zinc) commonly associated with anthropogenic pollution in coastal waterways. Seven target genes (superoxide dismutase, ferritin, ficolin, defensin, HSP70, HSP90 and metallothionein) were selected. Quantitative (real-time) PCR analyses of the transcript expression of these genes showed that each of the different metals elicited unique transcriptional profiles. Significant changes in transcription were found for 18 of the 28 combinations tested (4 metals × 7 genes). Of these, 16 reflected down-regulation of gene transcription. HSP90 was the only gene significantly up-regulated by metal contamination (cadmium and zinc only), while defensin expression was significantly down-regulated by exposure to all four metals. This inhibition could have a significant negative effect on the oyster immune system, promoting susceptibility to opportunistic infections and disease. -- Highlights: ► Oysters were exposed to Cd, Cu, Pb or Zn, all commonly associated with coastal pollution. ► qPCR identified significant down-regulation in stress- and immune-response genes in oysters exposed to these metals. ► qPCR showed that each of the different metals elicited unique transcriptional profiles. ► The genes identified have the potential to lead to increased disease susceptibility in oysters. -- qPCR identified significant down-regulation in stress- and immune-response genes in oysters exposed to metals, which could lead to increased disease susceptibility

  16. Uniaxial stress-driven coupled grain boundary motion in hexagonal close-packed metals: A molecular dynamics study

    International Nuclear Information System (INIS)

    Zong, Hongxiang; Ding, Xiangdong; Lookman, Turab; Li, Ju; Sun, Jun

    2015-01-01

    Stress-driven grain boundary (GB) migration has been evident as a dominant mechanism accounting for plastic deformation in crystalline solids. Using molecular dynamics (MD) simulations on a Ti bicrystal model, we show that a uniaxial stress-driven coupling is associated with the recently observed 90° GB reorientation in shock simulations and nanopillar compression measurements. This is not consistent with the theory of shear-induced coupled GB migration. In situ atomic configuration analysis reveals that this GB motion is accompanied by the glide of two sets of parallel dislocation arrays, and the uniaxial stress-driven coupling is explained through a composite action of symmetrically distributed dislocations and deformation twins. In addition, the coupling factor is calculated from MD simulations over a wide range of temperatures. We find that the coupled motion can be thermally damped (i.e., not thermally activated), probably due to the absence of the collective action of interface dislocations. This uniaxial coupled mechanism is believed to apply to other hexagonal close-packed metals

  17. Stress Corrosion Evaluation of Various Metallic Materials for the International Space Station Water Recycling System

    Science.gov (United States)

    Torres, P. D.

    2015-01-01

    A stress corrosion evaluation was performed on Inconel 625, Hastelloy C276, titanium commercially pure (TiCP), Ti-6Al-4V, Ti-6Al-4V extra low interstitial, and Cronidur 30 steel as a consequence of a change in formulation of the pretreatment for processing the urine in the International Space Station Environmental Control and Life Support System Urine Processing Assembly from a sulfuric acid-based to a phosphoric acid-based solution. The first five listed were found resistant to stress corrosion in the pretreatment and brine. However, some of the Cronidur 30 specimens experienced reduction in load-carrying ability.

  18. A friction stress method for the cyclic inelastic behavior of metals

    International Nuclear Information System (INIS)

    Jhansale, H.R.

    1975-01-01

    Inelastic deformation and fatigue analyses require that computational models of inelastic material behavior be capable of simulating the various plastic stress-strain phenomena such as the memory of prior history and cycle dependent transient hardening, softening, relaxation and creep associated with cyclic loads. This paper presents such a formulation in which the transient phenomena are uniquely described in terms of a friction stress parameter and the memory phenomenon is simulated by the characteristics of a mechanical model comprising of 'Hookean Spring-Friction Slider' elements connected in series, the spring and slider within each element being connected in parallel. The formulation is ideally suited for programming on a digital computer. (Auth.)

  19. Creep and stress relaxation induced by interface diffusion in metal matrix composites

    Science.gov (United States)

    Li, Yinfeng; Li, Zhonghua

    2013-03-01

    An analytical solution is developed to predict the creep rate induced by interface diffusion in unidirectional fiber-reinforced and particle reinforced composites. The driving force for the interface diffusion is the normal stress acting on the interface, which is obtained from rigorous Eshelby inclusion theory. The closed-form solution is an explicit function of the applied stress, volume fraction and radius of the fiber, as well as the modulus ratio between the fiber and the matrix. It is interesting that the solution is formally similar to that of Coble creep in polycrystalline materials. For the application of the present solution in the realistic composites, the scale effect is taken into account by finite element analysis based on a unit cell. Based on the solution, a closed-form solution is also given as a description of stress relaxation induced by interfacial diffusion under constant strain. In addition, the analytical solution for the interface stress presented in this study gives some insight into the relationship between the interface diffusion and interface slip. This work was supported by the financial support from the Nature Science Foundation of China (No. 10932007), the National Basic Research Program of China (No. 2010CB631003/5), and the Doctoral Program of Higher Education of China (No. 20100073110006).

  20. Influence of stresses and magnetostriction on the soft magnetic behavior of metallic films

    NARCIS (Netherlands)

    Chezan, AR; Craus, CB; Chechenin, NG; Vystavel, T; Niesen, L; De Hosson, JTM; Boerma, DO

    Nanocrystalline soft magnetic Fe-Zr-N films have been successfully deposited by DC magnetron reactive sputtering. For thick films (>200 nm), the compressive stress in the as-deposited films and the positive matgnetostriction produce perpendicular anisotropy. The magnitude of this effect is smaller

  1. Glutamate kinase as a potential biomarker of heavy metal stress in plants

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, D.; Pavlík, Milan; Staszková, L.; Motyka, Václav; Száková, J.; Tlustoš, P.; Balík, J.

    2008-01-01

    Roč. 70, č. 2 (2008), s. 223-230 ISSN 0147-6513 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cadmium * Chronic stress * Glutamate kinase [E.C.2.7.2.11] * Proline Subject RIV: GA - Agricultural Economics Impact factor: 2.590, year: 2008

  2. Investigations on the effect of creep stress on the thermal properties of metallic materials

    International Nuclear Information System (INIS)

    Radtke, U.; Crostack, H.A.; Winschuh, E.

    1995-01-01

    Using thermal wave analysis with front side infrared detection on sample material damaged by creep, one examines whether the creep stress has an effect on the thermal material properties and to what effect this can be used to estimate the remaining service life. (orig.) [de

  3. Random cyclic stress-strain responses of a stainless steel pipe-weld metal. II. A modeling

    International Nuclear Information System (INIS)

    Zhao, Y.X.; Wang, J.N.

    2000-01-01

    For pt.I see ibid., vol.199, p.303-14, 2000. This paper pays special attention to an issue that there is a significant scatter of the stress-strain responses of a nuclear engineering material, 1Cr18Ni9Ti stainless steel pipe-weld metal. Efforts are made to reveal the random fatigue damage character by fracture surface observations and to model the random responses by introducing probability-based stress-strain curves of Ramberg-Osgood relation and its modified form. Results reveal that the fatigue damage is subjected to, 3-D interacting and involved microcracks. The three stages, namely microstructural short cracks (MSC), physical short cracks (PSC) and long cracks (LC) subdivided by Miller and de los Rios, can give a good characterization of the damage process. Both micro- and macro-behaviour of the material have the character of three stages. The 3-D effects are strong in the MSC stage, tend to a gradual decrease in the PSC stage, and then show saturation after going to the LC stage. Intrinsic causes of the random behaviour are the difference and evolution of the microstructural conditions ahead of the dominant crack tips. The 'effectively short fatigue crack criterion' introduced by Zhao et al. in observing the material surface short crack behaviour could facilitate an understanding of the mechanism of interaction and evolution. Based on the previous obtained appropriate assumed distribution, normal model, for the cyclic stress amplitude, the probability-based curves are approximated by the mean value and standard deviation cyclic stress-strain curves. Then, fatigue analysis at arbitrarily given reliability can be conveniently made according to the normal distribution function. To estimate these curves, a maximum likelihood method is developed. The analysis reveals that the curves could give a good modeling of the random responses of material. (orig.)

  4. Residual stress determination in oxide layers at different length scales combining Raman spectroscopy and X-ray diffraction: Application to chromia-forming metallic alloys

    Science.gov (United States)

    Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume; Panicaud, Benoit; Tamura, Nobumichi; Kunz, Martin; Dejoie, Catherine; Micha, Jean-Sebastien; Thiaudière, Dominique; Goudeau, Philippe

    2017-11-01

    In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films with a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.

  5. Metal stress and decreased tree growth in response to biosolids application in greenhouse seedlings and in situ Douglas-fir stands

    International Nuclear Information System (INIS)

    Cline, Erica T.; Nguyen, Quyen T.N.; Rollins, Lucy; Gawel, James E.

    2012-01-01

    To assess physiological impacts of biosolids on trees, metal contaminants and phytochelatins were measured in Douglas-fir stands amended with biosolids in 1982. A subsequent greenhouse study compared these same soils to soils amended with fresh wastewater treatment plant biosolids. Biosolids-amended field soils had significantly higher organic matter, lower pH, and elevated metals even after 25 years. In the field study, no beneficial growth effects were detected in biosolids-amended stands and in the greenhouse study both fresh and historic biosolids amendments resulted in lower seedling growth rates. Phytochelatins – bioindicators of intracellular metal stress – were elevated in foliage of biosolids-amended stands, and significantly higher in roots of seedlings grown with fresh biosolids. These results demonstrate that biosolids amendments have short- and long-term negative effects that may counteract the expected tree growth benefits. - Highlights: ► Biosolids amendment increases soil metals over 25 years later. ► Douglas-fir growth benefits fail to materialize from biosolids amendments. ► Phytochelatins are elevated in foliage of trees and roots of greenhouse seedlings after new biosolids are added to soil. ► Biosolids connected to metal stress in Douglas-fir. - Biosolids applications increase bioindicators of intracellular metal stress and may counteract tree growth benefits.

  6. Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress.

    Science.gov (United States)

    Park, Won; Feng, Yufeng; Kim, Hyojin; Suh, Mi Chung; Ahn, Sung-Ju

    2015-09-01

    Under heavy-metal stress, CsHMA3 overexpressing transgenic Camelina plants displayed not only a better quality, but also a higher quantity of unsaturated fatty acids in their seeds compared with wild type. Camelina sativa L. belongs to the Brassicaceae family and is frequently used as a natural vegetable oil source, as its seeds contain a high content of fatty acids. In this study, we observed that, when subjected to heavy metals (Cd, Co, Zn and Pb), the seeds of CsHMA3 (Heavy-Metal P1B-ATPase 3) transgenic lines retained their original golden yellow color and smooth outline, unlike wild-type seeds. Furthermore, we investigated the fatty acids content and composition of wild type and CsHMA3 transgenic lines after heavy metal treatments compared to the control. The results showed higher total fatty acid amounts in seeds of CsHMA3 transgenic lines compared with those in wild-type seeds under heavy-metal stresses. In addition, the compositions of unsaturated fatty acids-especially 18:1 (oleic acid), 18:2 (linoleic acid; only in case of Co treatment), 18:3 (linolenic acid) and 20:1 (eicosenoic acid)-in CsHMA3 overexpressing transgenic lines treated with heavy metals were higher than those of wild-type seeds under the same conditions. Furthermore, reactive oxygen species (ROS) contents in wild-type leaves and roots when treated with heavy metal were higher than in CsHMA3 overexpressing transgenic lines. These results indicate that overexpression of CsHMA3 affects fatty acid composition and content-factors that are responsible for the fuel properties of biodiesel-and can alleviate ROS accumulation caused by heavy-metal stresses in Camelina. Due to these factors, we propose that CsHMA3 transgenic Camelina can be used for phytoremediation of metal-contaminated soil as well as for oil production.

  7. Investigations on thermal properties, stress and deformation of Al/SiC metal matrix composite based on finite element method

    Directory of Open Access Journals (Sweden)

    K. A. Ramesh Kumar

    2014-09-01

    Full Text Available AlSiC is a metal matrix composite which comprises of aluminium matrix with silicon carbide particles. It is characterized by high thermal conductivity (180-200 W/m K, and its thermal expansion are attuned to match other important materials that finds enormous demand in industrial sectors. Although its application is very common, the physics behind the Al-SiC formation, functionality and behaviors are intricate owing to the temperature gradient of hundreds of degrees, over the volume, occurring on a time scale of a few seconds, involving multiple phases. In this study, various physical, metallurgical and numerical aspects such as equation of continuum for thermal, stress and deformation using finite element (FE matrix formulation, temperature dependent material properties, are analyzed. Modelling and simulation studies of Al/SiC composites are a preliminary attempt to view this research work from computational point of view.

  8. Residual Stress Development in Explosive-Bonded Bi-Metal Composite Materials

    Science.gov (United States)

    2014-03-01

    solidification cracking in steels and stainless steels . He has also undertaken extensive work on improving the weld zone toughness of high strength steels ...information on microstructural characterisation at the interface of ferritic- martensitic and austenitic steels produced using the EW process, the...957. [3] I. Tatsukawa, I. Oda, ‘Residual Stress Measurements on Explosive Clad Stainless Steel ’, Trans. Japan Welding Soc., 2(2), 1971, p26-34

  9. Tungsten heavy metal alloys relations between the crystallographic texture and the internal stress distribution

    International Nuclear Information System (INIS)

    Nicolas, G.; Voltz, M.

    2001-01-01

    Quite often the W-Ni-Fe-Co heavy alloys are subjected to a thermomechanical processing of swaging and aging in order to obtain the highest possible level of resistance. Within the framework of this plastic deformation on cylindrical parts, the swaging leads to the distribution of morphological and crystallographic texture as well as specific internal stresses. The resulting mechanical characteristics are correlated to structural and sub-structural variations. (author)

  10. Residual stress measurements in a ferritic steel/In625 superalloy dissimilar metal weldment using neutron diffraction and deep-hole drilling

    International Nuclear Information System (INIS)

    Skouras, A.; Paradowska, A.; Peel, M.J.; Flewitt, P.E.J.; Pavier, M.J.

    2013-01-01

    This paper reports the use of non-invasive and semi-invasive techniques to measure the residual stresses in a large dissimilar weldment. This took the form of a butt weld between two sections of a P92 steel pipe, joined using an In625 welding consumable. Residual stress measurements have been carried out on the 30 mm thick welded pipe using the deep-hole drilling technique to characterise the through wall section residual stress distribution for the weld metal, HAZ and parent material. In addition, neutron diffraction measurements have been carried out within the weld zone. Diffraction patterns presented a high intensity and sharp peaks for the base P92 steel material. However measurements in the weld superalloy material were proven problematic as very weak diffraction patterns were observed. A thorough examination of the weld material suggested that the likely cause of this phenomenon was texture in the weld material created during the solidification phase of the welding procedure. This paper discusses the challenges in the execution and interpretation of the neutron diffraction results and demonstrates that realistic measurements of residual stresses can be achieved, in complex dissimilar metal weldments. Highlights: ► One of the few papers to measure residual stresses on dissimilar metal welds. ► Paper managed to provide realistic measurements of residual stresses using the DHD and ND technique. ► Results of this study have demonstrated the effect of texture during the ND measurements.

  11. In-situ investigation of stress conditions during expansion of bare metal stents and PLLA-coated stents using the XRD sin(2)ψ-technique.

    Science.gov (United States)

    Kowalski, Wolfgang; Dammer, Markus; Bakczewitz, Frank; Schmitz, Klaus-Peter; Grabow, Niels; Kessler, Olaf

    2015-09-01

    Drug eluting stents (DES) consist of platform, coating and drug. The platform often is a balloon-expandable bare metal stent made of the CoCr alloy L-605 or stainless steel 316 L. The function of the coating, typically a permanent polymer, is to hold and release the drug, which should improve therapeutic outcome. Before implantation, DES are compressed (crimped) to allow implantation in the human body. During implantation, DES are expanded by balloon inflation. Crimping, as well as expansion, causes high stresses and high strains locally in the DES struts, as well as in the polymer coating. These stresses and strains are important design criteria of DES. Usually, they are calculated numerically by finite element analysis (FEA), but experimental results for validation are hardly available. In this work, the X-ray diffraction (XRD) sin(2)ψ-technique is applied to in-situ determination of stress conditions of bare metal L-605 stents, and Poly-(L-lactide) (PLLA) coated stents. This provides a realistic characterization of the near-surface stress state and a validation option of the numerical FEA. XRD-results from terminal stent struts of the bare metal stent show an increasing compressive load stress in tangential direction with increasing stent expansion. These findings correlate with numerical FEA results. The PLLA-coating also bears increasing compressive load stress during expansion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. FEA stress analysis considering cavity formation of metallic fuel pin under transient state

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun-Woo; Oh, Young-Ryun; Kim, Yun-Jae [Korea University, Seoul (Korea, Republic of)

    2016-05-15

    The aim of this research is to study the stress state of the fuel and the cladding under transient state using the commercial finite element analysis software, ABAQUS v6.13. It is checked out that the gap distance between the fuel and the cladding is a major factor determining FCMI stress. In this regard, initial boundary condition of the fuel pin such as the initial gap distance should be set carefully when the stress analysis of the fuel pin under transient state is conducted. In case of simulating cavity formation, it is confirmed that the new cavity simulation model that elements in cavity region lose their stiffness is valid. There is a great deal of research into SFR, which is one of GEN IV reactors. When it comes to the accidents of SFR, there are two cases of accident process. One of them is In-pin process that molten fuel is discharged into upper plenum. The other is Ex-pin process that the molten fuel is discharged into coolant because of breakage of cladding.

  13. Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying

    International Nuclear Information System (INIS)

    Zhang, Yang; Tucker, Garritt J.; Trelewicz, Jason R.

    2017-01-01

    The mechanisms of stress-assisted grain growth are explored using molecular dynamics simulations of nanoindentation in nanocrystalline Ni and Ni-1 at.% P as a function of grain size and deformation temperature. Grain coalescence is primarily confined to the high stress region beneath the simulated indentation zone in nanocrystalline Ni with a grain size of 3 nm. Grain orientation and atomic displacement vector mapping demonstrates that coalescence transpires through grain rotation and grain boundary migration, which are manifested in the grain interior and grain boundary components of the average microrotation. A doubling of the grain size to 6 nm and addition of 1 at.% P eliminates stress-assisted grain growth in Ni. In the absence of grain coalescence, deformation is accommodated by grain boundary-mediated dislocation plasticity and thermally activated in pure nanocrystalline Ni. By adding solute to the grain boundaries, the temperature-dependent deformation behavior observed in both the lattice and grain boundaries inverts, indicating that the individual processes of dislocation and grain boundary plasticity will exhibit different activity based on boundary chemistry and deformation temperature.

  14. In-reactor stress relaxation of selected metals and alloys at low temperatures

    International Nuclear Information System (INIS)

    Causey, A.R.; Carpenter, G.J.C.; MacEwen, S.R.

    1980-01-01

    Stress relaxation of bent beam specimens under fast neutron irradiation at 340 and 570 K has been studied for a range of materials, as follows: several stainless steels, a maraged steel, AISI-4140, Ni, Inconel X-750, Ti, Zircaloy-2, Zr-2.5% Nb and Zr 3 Al. All specimens were in the annealed or solution-treated condition. Where comparisons were possible, the creep coefficients derived from the stress relaxation tests were found to be consistent with other studies of irradiation-induced creep. The steels showed the lowest rates of stress relaxation; the largest rates were observed with Zr-Nb, Ti and Ni. For most materials, the creep coefficient at 340 K was equal to or greater than that at 570 K. Such weak temperature dependence is not easily reconciled with existing models of irradiation creep based on dislocation climb, such as SIPA or climb-induced glide. Rate theory calculations indicate that because the vacancy mobility becomes very low at the lower temperature, recombination should dominate point defect annealing, resulting in a very low creep rate compared to that at the higher temperature. It is shown that the weak temperature dependence observed experimentally cannot be accounted for by the inclusion of more mobile divacancies in the calculation. (orig.)

  15. In-reactor stress relaxation of selected metals and alloys at low temperatures

    International Nuclear Information System (INIS)

    Causey, A.R.; Carpenter, G.J.C.; MacEwen, S.R.

    1980-01-01

    Stress relaxation of bent beam specimens under fast neutron irradiation at 340 and 570 K has been studied for a range of materials, as follows: several stainless steels, a maraged steel, AISI-4140, Ni, Inconel X-750, Ti, Zircaloy-2, Zr-2.5% Nb and Zr 3 A1. All specimens were in the annealed or solution-treated condition. Where comparisons were possible, the creep coefficients derived from the stress relaxation tests were found to be consistent with other studies of irradiation-induced creep. The steels showed the lowest rates of stress relaxation; the largest rates were observed with Zr-Nb, Ti and Ni. For most materials, the creep coefficient at 340 K was equal to or greater than that at 570 K. Such weak temperature dependence is not easily reconciled with existing models of irradiation creep based on dislocation climb, such as SIPA or climb-induced glide. Rate theory calculations indicate that because the vacancy mobility becomes very low at the lower temperature, recombination should dominate point defect annealing, resulting in a very low creep rate compared to that at the higher temperature. It is shown that the weak temperature dependence observed experimentally cannot be accounted for by the inclusion of more mobile divacancies in the calculation. (author)

  16. Magnetite (Fe3O4 Nanoparticles Alleviate Growth Inhibition and Oxidative Stress Caused by Heavy Metals in Young Seedlings of Cucumber (Cucumis Sativus L

    Directory of Open Access Journals (Sweden)

    Konate Alexandre

    2017-01-01

    Full Text Available Accumulation of heavy metals in the ecosystem and their toxic effects through food chain can cause serious ecological and health problems. In the present study, experiments were performed to understand how the addition of magnetite (Fe3O4 nanoparticles reduces the toxicity caused by Cd, Pb, Cu, and Zn in cucumber plants. Plant growth parameters, lipid peroxidation, and antioxidant enzymes were measured in seedling samples treated with either metals or metals supplemented with Fe3O4 to demonstrate the reduction in metal-induced oxidative stress conferred by Fe3O4. Results showed that the toxic effect of metals on seedling growth parameters can be arranged in the rank order of inhibition as follows: Cu > Cd > Zn > Pb. Exposure to metals significantly decreased the seedlings growth, the activities of superoxide dismutase (SOD and peroxidases (POD, while the malondialdehyde (MDA content significantly increased in cucumber seedlings. The reducing activity of nano-Fe3O4 against heavy metals stresses was confirmed in this study by the decrease in MDA content. The correlation between the decrease of MDA concentration and the increase in SOD and POD activities in the presence of nano-Fe3O4 suggest that the MDA reduction in the tested seedlings can result from the increased enzyme activity.

  17. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress.

    Science.gov (United States)

    Kong, Zhaoyu; Mohamad, Osama Abdalla; Deng, Zhenshan; Liu, Xiaodong; Glick, Bernard R; Wei, Gehong

    2015-08-01

    The effects of rhizobial symbiosis on the growth, metal uptake, and antioxidant responses of Medicago lupulina in the presence of 200 mg kg(-1) Cu(2+) throughout different stages of symbiosis development were studied. The symbiosis with Sinorhizobium meliloti CCNWSX0020 induced an increase in plant growth and nitrogen content irrespective of the presence of Cu(2+). The total amount of Cu uptake of inoculated plants significantly increased by 34.0 and 120.4% in shoots and roots, respectively, compared with non-inoculated plants. However, although the rhizobial symbiosis promoted Cu accumulation both in shoots and roots, the increase in roots was much higher than in shoots, thus decreasing the translocation factor and helping Cu phytostabilization. The rate of lipid peroxidation was significantly decreased in both shoots and roots of inoculated vs. non-inoculated plants when measured either 8, 13, or 18 days post-inoculation. In comparison with non-inoculated plants, the activities of superoxide dismutase and ascorbate peroxidase of shoots of inoculated plants exposed to excess Cu were significantly elevated at different stages of symbiosis development; similar increases occurred in the activities of superoxide dismutase, catalase, and glutathione reductase of inoculated roots. The symbiosis with S. meliloti CCNWSX0020 also upregulated the corresponding genes involved in antioxidant responses in the plants treated with excess Cu. The results indicated that the rhizobial symbiosis with S. meliloti CCNWSX0020 not only enhanced plant growth and metal uptake but also improved the responses of plant antioxidant defense to excess Cu stress.

  18. Near-Surface Sensing of Vegetative Heavy Metal Stress: Method Development for an Accelerated Assessment of Mine Tailing Waste and Remediation Efforts

    Science.gov (United States)

    Lee, M. T.; Gottfried, M.; Berglund, E.; Rodriguez, G.; Ceckanowicz, D. J.; Cutter, N.; Badgeley, J.

    2014-12-01

    The boom and bust history of mineral extraction in the American southwest is visible today in tens of thousands of abandoned and slowly decaying mine installations that scar the landscape. Mine tailing piles, mounds of crushed mineral ore, often contain significant quantities of heavy metal elements which may leach into surrounding soils, surface water and ground water. Chemical analysis of contaminated soils is a tedious and time-consuming process. Regional assessment of heavy metal contamination for treatment prioritization would be greatly accelerated by the development of near-surface imaging indices of heavy-metal vegetative stress in western grasslands. Further, the method would assist in measuring the ongoing effectiveness of phytoremedatian and phytostabilization efforts. To test feasibility we ground truthed nine phytoremediated and two control sites sites along the mine-impacted Kerber Creek watershed in Saguache County, Colorado. Total metal concentration was determined by XRF for both plant and soil samples. Leachable metals were extracted from soil samples following US EPA method 1312. Plants were identified, sorted into roots, shoots and leaves, and digested via microwave acid extraction. Metal concentrations were determined with high accuracy by ICP-OES analysis. Plants were found to contain significantly higher concentrations of heavy metals than surrounding soils, particularly for manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), barium (Ba), and lead (Pb). Plant species accumulated and distributed metals differently, yet most showed translocation of metals from roots to above ground structures. Ground analysis was followed by near surface imaging using an unmanned aerial vehicle equipped with visible/near and shortwave infrared (0.7 to 1.5 μm) cameras. Images were assessed for spectral shifts indicative of plant stress and attempts made to correlate results with measured soil and plant metal concentrations.

  19. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  20. Stress !!!

    OpenAIRE

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.

  1. Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance.

    Directory of Open Access Journals (Sweden)

    Jun Gao

    Full Text Available The Sedum alfredii Hance hyperaccumulating ecotype (HE has the ability to hyperaccumulate cadmium (Cd, as well as zinc (Zn and lead (Pb in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-trimmed raw sequences and the assembly of 57,162 transcript contigs in S. alfredii Hance (HE shoots by the combination of Roche 454 and Illumina/Solexa deep sequencing technologies. We also have functionally annotated the transcriptome and analyzed the transcriptome changes upon Cd hyperaccumulation in S. alfredii Hance (HE shoots. There are 110 contigs and 123 contigs that were up-regulated (Fold Change ≥ 2.0 and down-regulated (Fold Change metal translocation and remobilization were more induced or constitutively expressed at higher levels in HE shoots than that in NHE shoots in response to Cd exposure. Together, our study provides large-scale expressed sequence information and genome-wide transcriptome profiling of Cd responses in S. alfredii Hance (HE shoots.

  2. Standard test method for determining a threshold stress intensity factor for environment-assisted cracking of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method covers the determination of the environment-assisted cracking threshold stress intensity factor parameters, KIEAC and KEAC, for metallic materials from constant-force testing of fatigue precracked beam or compact fracture specimens and from constant-displacement testing of fatigue precracked bolt-load compact fracture specimens. 1.2 This test method is applicable to environment-assisted cracking in aqueous or other aggressive environments. 1.3 Materials that can be tested by this test method are not limited by thickness or by strength as long as specimens are of sufficient thickness and planar size to meet the size requirements of this test method. 1.4 A range of specimen sizes with proportional planar dimensions is provided, but size may be variable and adjusted for yield strength and applied force. Specimen thickness is a variable independent of planar size. 1.5 Specimen configurations other than those contained in this test method may be used, provided that well-established stress ...

  3. Random cyclic stress-strain responses of a stainless steel pipe-weld metal. I. A statistical investigation

    International Nuclear Information System (INIS)

    Zhao, Y.X.; Wang, J.N.

    2000-01-01

    For pt.II see ibid., vol.199, p.315-26, 2000. This paper pays a special attention to the issue that there is a significant scatter of the stress-strain responses of a nuclear engineering material, 1Cr18Ni9Ti stainless steel pipe-weld metal. Statistical investigation is made to the cyclic stress amplitudes of this material. Three considerations are given. They consist of the total fit, the consistency with fatigue physics and the safety in practice of the seven commonly used statistical distributions, namely Weibull (two- and three-parameter), normal, lognormal, extreme minimum value, extreme maximum value and exponential. Results reveal that the data follow meanwhile the seven distributions but the local effects of the distributions yield a significant difference. Any of the normal, lognormal, extreme minimum value and extreme maximum value distributions might be an appropriate assumed distribution for characterizing the data. The normal and extreme minimum models are excellent. Other distributions do not fit the data as they violate two or three of the mentioned considerations. (orig.)

  4. Method for determining appropriate statistical models of the random cyclic stress amplitudes of a stainless pipe weld metal

    International Nuclear Information System (INIS)

    Wang Jinnuo; Zhao Yongxiang; Wang Shaohua

    2001-01-01

    It is revealed by a strain-controlled fatigue test that there is a significant scatter of the cyclic stress-strain responses for a nuclear engineering material, 1Cr18Ni9Ti stainless steel pipe-weld metal. This implies that the existent deterministic analysis might be non-conservative. Taking into account the scatter, a method for determining the appropriate statistical models of material cyclic stress amplitudes is presented by considering the total fit, consistency with fatigue physics, and safety of design of seven commonly used distribution fitting into the test data. The seven distribution are Weibull (two-and three-parameter), normal, lognormal, extreme minimum value, extreme maximum value, and exponential. In the method, statistical parameters of the distributions are evaluated by a linear regression technique. Statistical tests are made by a transformation from t-distribution function to Pearson statistical parameter. Statistical tests are made by a transformation from t-distribution function to Pearson statistical parameter, i.e. the linear relationship coefficient. The total fit is assessed by a parameter so-called fitted relationship coefficient of the empirical and theoretical failure probabilities. The consistency with fatigue physics is analyzed by the hazard rate curves of distributions. The safety of design is measured by examining the change of predicted errors in the tail regions of distributions

  5. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tian; Feng, Wei; Kuang, Dan; Deng, Qifei [Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Zhang, Wangzhen [Institute of Industrial Health, Wuhan Iron & Steel (Group) Corporation, Wuhan 430070, China. (China); Wang, Suhan; He, Meian; Zhang, Xiaomin; Wu, Tangchun [Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Guo, Huan, E-mail: ghuan5011@hust.edu.cn [Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-07-15

    Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are predominate toxic constituents of particulate air pollution that may be related to the increased risk of cardiopulmonary events. We aim to investigate the effects of the toxic heavy metals (arsenic, As; cadmium, Cd; chromium, Cr; nickel, Ni; and lead, Pb), and their interactions with PAHs on oxidative stress among coke-oven workers. A total of 1333 male workers were recruited in this study. We determined their urinary levels of As, Cd, Cr, Ni, Pb, twelve PAH metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Multivariate linear regression models were used to analyze the effects of these metals and their interactions with PAHs on 8-OHdG and 8-iso-PGF2α levels. It was found that only urinary As and Ni showed marginal or significant positive linear dose-dependent effects on 8-OHdG in this study population, especially among smokers (β=0.103, P=0.073 and β=0.110, P=0.002, respectively). After stratifying all participants by the quartiles of ΣOH-PAH, all five metals showed linear association with 8-OHdG in the highest quartile subgroup (Q4) of ΣOH-PAHs. However, these five urinary metals showed significantly consistent linear associations with 8-iso-PGF2α in all subjects and each stratum. Urinary ΣOH-PAHs can significant modify the effects of heavy metals on oxidative stress, while co-exposure to both high levels of ΣOH-PAHs and heavy metals render the workers with highest 8-OHdG and 8-iso-PGF2α (all P{sub interaction}≤0.005). This study showed evidence on the interaction effects of heavy metals and PAHs on increasing the oxidative stress, and these results warrant further investigation in more longitudinal studies. - Highlights: • Heavy metals and PAHs are predominate toxic constituents of particulate matters. • Urinary As and Ni showed linear dose-dependent effects on 8-OHdG and 8-iso-PGF2α. • PAHs significant interact with toxic metal in increasing 8

  6. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers

    International Nuclear Information System (INIS)

    Wang, Tian; Feng, Wei; Kuang, Dan; Deng, Qifei; Zhang, Wangzhen; Wang, Suhan; He, Meian; Zhang, Xiaomin; Wu, Tangchun; Guo, Huan

    2015-01-01

    Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are predominate toxic constituents of particulate air pollution that may be related to the increased risk of cardiopulmonary events. We aim to investigate the effects of the toxic heavy metals (arsenic, As; cadmium, Cd; chromium, Cr; nickel, Ni; and lead, Pb), and their interactions with PAHs on oxidative stress among coke-oven workers. A total of 1333 male workers were recruited in this study. We determined their urinary levels of As, Cd, Cr, Ni, Pb, twelve PAH metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Multivariate linear regression models were used to analyze the effects of these metals and their interactions with PAHs on 8-OHdG and 8-iso-PGF2α levels. It was found that only urinary As and Ni showed marginal or significant positive linear dose-dependent effects on 8-OHdG in this study population, especially among smokers (β=0.103, P=0.073 and β=0.110, P=0.002, respectively). After stratifying all participants by the quartiles of ΣOH-PAH, all five metals showed linear association with 8-OHdG in the highest quartile subgroup (Q4) of ΣOH-PAHs. However, these five urinary metals showed significantly consistent linear associations with 8-iso-PGF2α in all subjects and each stratum. Urinary ΣOH-PAHs can significant modify the effects of heavy metals on oxidative stress, while co-exposure to both high levels of ΣOH-PAHs and heavy metals render the workers with highest 8-OHdG and 8-iso-PGF2α (all P interaction ≤0.005). This study showed evidence on the interaction effects of heavy metals and PAHs on increasing the oxidative stress, and these results warrant further investigation in more longitudinal studies. - Highlights: • Heavy metals and PAHs are predominate toxic constituents of particulate matters. • Urinary As and Ni showed linear dose-dependent effects on 8-OHdG and 8-iso-PGF2α. • PAHs significant interact with toxic metal in increasing 8-OHd

  7. Stress Characterization of 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) using Raman Spectroscopy and the Finite Element Method.

    Science.gov (United States)

    Yoshikawa, Masanobu; Kosaka, Kenichi; Seki, Hirohumi; Kimoto, Tsunenobu

    2016-07-01

    We measured the depolarized and polarized Raman spectra of a 4H-SiC metal-oxide-semiconductor field-effect transistor (MOSFET) and found that compressive stress of approximately 20 MPa occurs under the source and gate electrodes and tensile stress of approximately 10 MPa occurs between the source and gate electrodes. The experimental result was in close agreement with the result obtained by calculation using the finite element method (FEM). A combination of Raman spectroscopy and FEM provides much data on the stresses in 4H-SiC MOSFET. © The Author(s) 2016.

  8. The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress

    Science.gov (United States)

    The heavy metal cadmium is a common environmental contaminant in soils and has adverse effects on crop growth and development. The signaling processes in plants that initiate cellular responses to environmental stress have been shown to be located in the plasma membrane (PM). A better understanding ...

  9. Influence of surface treatments on corrosion resistance of stainless steels. Residual stresses in metals

    International Nuclear Information System (INIS)

    Berge, J. Philippe

    1968-05-01

    In a first part, this research thesis proposes presentation of the definition of a surface condition: chemical characteristics such as passivity and contamination, physical characteristics (obtained through micrographic methods, X ray diffusion, magnetic methods), and micro-geometrical characteristics. The author notably discusses the measurement of characteristics either by appropriate conventional methods or by an original method in the case of passivity. In a second part, the author reports the study of the influence of surface condition on different types of corrosion of stainless steels in chemical environments (corrosion in sulphuric acid, intergranular corrosion, stress corrosion cracking in magnesium chloride, pitting corrosion) and of high temperature oxidation (corrosion in pressurized water, oxidation in dry vapour or in carbon dioxide)

  10. role of some transition metals and metalloproteins on oxidative stress formation among ionizing radiation exposed workers

    International Nuclear Information System (INIS)

    Michael, M.I.

    2004-01-01

    this study was established to evaluate the role of working in radiation field for different prolonged periods on some oxidant/antioxidant parameters and to estimate the role of other additional factors such as age, smoking and inflammation on the progress of oxidative stress on the chosen volunteers. one hundred and twenty six male volunteers working in the nuclear research center and hot laboratories center were assessed in the present study, they were arranged as 70 radiation exposed workers and 56 control individuals. the radiation exposed workers were rearranged into 50 non-smokers, non-hypertensive and non-diabetics; 10 individuals were smokers, non-hypertensive, non-diabetic and other 10 volunteers with increased erythrocyte sedimentation rate (esr), non-smokers, non-hypertensive and non-diabetics

  11. Finite element modelling of the oxidation kinetics of Zircaloy-4 with a controlled metal-oxide interface and the influence of growth stress

    International Nuclear Information System (INIS)

    Zumpicchiat, Guillaume; Pascal, Serge; Tupin, Marc; Berdin-Méric, Clotilde

    2015-01-01

    Highlights: We developed two finite element models of zirconium-based alloy oxidation using the CEA Cast3M code to simulate the oxidation kinetics of Zircaloy-4: the diffuse interface model and the sharp interface model. We also studied the effect of stresses on the oxidation kinetics. The main results are: • Both models lead to parabolic oxidation kinetics in agreement with the Wagner’s theory. • The modellings enable to calculate the stress distribution in the oxide as well as in the metal. • A strong effect of the hydrostatic stress on the oxidation kinetics has been evidenced. • The stress gradient effect changes the parabolic kinetics into a sub-parabolic law closer to the experimental kinetics because of the stress gradient itself, but also because of the growth stress increase with the oxide thickness. - Abstract: Experimentally, zirconium-based alloys oxidation kinetics is sub-parabolic, by contrast with the Wagner theory which predicts a parabolic kinetics. Two finite element models have been developed to simulate this phenomenon: the diffuse interface model and the sharp interface model. Both simulate parabolic oxidation kinetics. The growth stress effects on oxygen diffusion are studied to try to explain the gap between theory and experience. Taking into account the influence of the hydrostatic stress and its gradient into the oxygen flux expression, sub-parabolic oxidation kinetics have been simulated. The sub-parabolic behaviour of the oxidation kinetics can be explained by a non-uniform compressive stress level into the oxide layer.

  12. Stress !!!

    NARCIS (Netherlands)

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.

  13. Thermal infrared imaging of the variability of canopy-air temperature difference distribution for heavy metal stress levels discrimination in rice

    Science.gov (United States)

    Zhang, Biyao; Liu, Xiangnan; Liu, Meiling; Wang, Dongmin

    2017-04-01

    This paper addresses the assessment and interpretation of the canopy-air temperature difference (Tc-Ta) distribution as an indicator for discriminating between heavy metal stress levels. Tc-Ta distribution is simulated by coupling the energy balance equation with modified leaf angle distribution. Statistical indices including average value (AVG), standard deviation (SD), median, and span of Tc-Ta in the field of view of a digital thermal imager are calculated to describe Tc-Ta distribution quantitatively and, consequently, became the stress indicators. In the application, two grains of rice growing sites under "mild" and "severe" stress level were selected as study areas. A total of 96 thermal images obtained from the field measurements in the three growth stages were used for a separate application of a theoretical variation of Tc-Ta distribution. The results demonstrated that the statistical indices calculated from both simulated and measured data exhibited an upward trend as the stress level becomes serious because heavy metal stress would only raise a portion of the leaves in the canopy. Meteorological factors could barely affect the sensitivity of the statistical indices with the exception of the wind speed. Among the statistical indices, AVG and SD were demonstrated to be better indicators for stress levels discrimination.

  14. Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro.

    Science.gov (United States)

    Usha, B; Venkataraman, Gayatri; Parida, Ajay

    2009-01-01

    Prosopis juliflora is a tree species that grows well in heavy metal laden industrial sites and accumulates heavy metals. To understand the possible contribution of metallothioneins (MTs) in heavy metal accumulation in P. juliflora, we isolated and compared the metal binding ability of three different types of MTs (PjMT1-3). Glutathione S-transferase fusions of PjMTs (GSTMT1-3) were purified from Escherichia coli cells grown in the presence of 0.3 mM cadmium, copper or zinc. Analysis of metal bound fusion proteins using atomic absorption spectrometry showed that PjMT1 bound higher levels of all three heavy metals as compared to PjMT2 and PjMT3. A comparative analysis of the genomic regions (including promoter for all three PjMTs) is also presented. All three PjMTs are induced by H(2)O(2) and ABA applications. PjMT1 and PjMT2 are induced by copper and zinc respectively while PjMT3 is induced by copper, zinc and cadmium. Variation in induction of PjMTs in response to metal exposure and their differential binding to metals suggests that each MT has a specific role in P. juliflora. Of the three MTs analyzed, PjMT1 shows maximum heavy metal sequestration and is thus a potential candidate for use in heavy metal phytoremediation.

  15. The metal-responsive transcription factor-1 contributes to HIF-1 activation during hypoxic stress

    International Nuclear Information System (INIS)

    Murphy, Brian J.; Sato, Barbara G.; Dalton, Timothy P.; Laderoute, Keith R.

    2005-01-01

    Hypoxia-inducible factor-1 (HIF-1), the major transcriptional regulator of the mammalian cellular response to low oxygen (hypoxia), is embedded within a complex network of signaling pathways. We have been investigating the importance of another stress-responsive transcription factor, MTF-1, for the adaptation of cells to hypoxia. This article reports that MTF-1 plays a central role in hypoxic cells by contributing to HIF-1 activity. Loss of MTF-1 in transformed Mtf1 null mouse embryonic fibroblasts (MEFs) results in an attenuation of nuclear HIF-1α protein accumulation, HIF-1 transcriptional activity, and expression of an established HIF-1 target gene, glucose transporter-1 (Glut1). Mtf1 null (Mtf1 KO) MEFs also have constitutively higher levels of both glutathione (GSH) and the rate-limiting enzyme involved in GSH synthesis-glutamate cysteine ligase catalytic subunit-than wild type cells. The altered cellular redox state arising from increased GSH may perturb oxygen-sensing mechanisms in hypoxic Mtf1 KO cells and decrease the accumulation of HIF-1α protein. Together, these novel findings define a role for MTF-1 in the regulation of HIF-1 activity

  16. Does the stress tolerance of mixed grassland communities change in a future climate? A test with heavy metal stress (zinc pollution)

    International Nuclear Information System (INIS)

    Van den Berge, Joke; Naudts, Kim; Janssens, Ivan A.; Ceulemans, Reinhart; Nijs, Ivan

    2011-01-01

    Will species that are sensitive/tolerant to Zn pollution still have the same sensitivity/tolerance in a future climate? To answer this question we analysed the response of constructed grassland communities to five levels of zinc (Zn) supply, ranging from 0 to 354 mg Zn kg -1 dry soil, under a current climate and a future climate (elevated CO 2 and warming). Zn concentrations increased in roots and shoots with Zn addition but this increase did not differ between climates. Light-saturated net CO 2 assimilation rate (A sat ) of the species, on the other hand, responded differently to Zn addition depending on climate. Still, current and future climate communities have comparable biomass responses to Zn, i.e., no change in root biomass and a 13% decrease of above-ground biomass. Provided that the different response of A sat in a future climate will not compromise productivity and survival on the long term, sensitivity is not altered by climate change. - Highlights: → We exposed constructed grassland communities to Zn addition in a current and a future climate. → Zn uptake did not differ between the climates. → Although A sat was more responsive to Zn in future climate, climate did not alter biomass responses. → If this response remains on the long term, climate change will not alter sensitivity. - This study is the first to examine plant responses to a heavy metal (Zn) in a changing climate, and shows that the tolerance of plants to Zn stress will not be altered in a future climate.

  17. Resilience of Soil Microbial Communities to Metals and Additional Stressors: DNA-Based Approaches for Assessing “Stress-on-Stress” Responses

    Directory of Open Access Journals (Sweden)

    Hamed Azarbad

    2016-06-01

    Full Text Available Many microbial ecology studies have demonstrated profound changes in community composition caused by environmental pollution, as well as adaptation processes allowing survival of microbes in polluted ecosystems. Soil microbial communities in polluted areas with a long-term history of contamination have been shown to maintain their function by developing metal-tolerance mechanisms. In the present work, we review recent experiments, with specific emphasis on studies that have been conducted in polluted areas with a long-term history of contamination that also applied DNA-based approaches. We evaluate how the “costs” of adaptation to metals affect the responses of metal-tolerant communities to other stress factors (“stress-on-stress”. We discuss recent studies on the stability of microbial communities, in terms of resistance and resilience to additional stressors, focusing on metal pollution as the initial stress, and discuss possible factors influencing the functional and structural stability of microbial communities towards secondary stressors. There is increasing evidence that the history of environmental conditions and disturbance regimes play central roles in responses of microbial communities towards secondary stressors.

  18. Yield stress in metallic glasses: The jamming-unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique

    International Nuclear Information System (INIS)

    Rodney, David; Schuh, Christopher A.

    2009-01-01

    A Monte Carlo approach allowing for stress control is employed to study the yield stress of a two-dimensional metallic glass in the limit of low temperatures and long (infinite) time scales. The elementary thermally activated events are determined using the activation-relaxation technique (ART). By tracking the minimum-energy state of the glass for various applied stresses, we find a well-defined jamming-unjamming transition at a yield stress about 30% lower than the steady-state flow stress obtained in conventional strain-controlled quasistatic simulations. ART is then used to determine the evolution of the distribution of thermally activated events in the glass microstructure both below and above the yield stress. We show that aging below the yield stress increases the stability of the glass, both thermodynamically (the internal potential energy decreases) and dynamically (the aged glass is surrounded by higher-energy barriers than the initial quenched configuration). In contrast, deformation above the yield stress brings the glass into a high internal potential energy state that is only marginally stable, being surrounded by a high density of low-energy barriers. The strong influence of deformation on the glass state is also evidenced by the microstructure polarization, revealed here through an asymmetry of the distribution of thermally activated inelastic strains in glasses after simple shear deformation.

  19. Heat indicators of oxidative stress, inflammation and metal transport show dependence of cadmium pollution history in the liver of female zebrafish.

    Science.gov (United States)

    Zhu, Qing-Ling; Guo, Sai-Nan; Yuan, Shuang-Shuang; Lv, Zhen-Ming; Zheng, Jia-Lang; Xia, Hu

    2017-10-01

    Environmental stressors such as high temperature and metal exposure may occur sequentially, simultaneously, previously in aquatic ecosystems. However, information about whether responses to high temperature depend on Cd exposure history is still unknown in fish. Zebrafish were exposed to 0 (group 1), 2.5 (group 2) and 5μg/L (group 3) cadmium (Cd) for 10 weeks, and then each group was subjected to Cd-free water maintained at 26°C and 32°C for 7days respectively. 26 indicators were used to compare differences between 26°C and 32°C in the liver of female zebrafish, including 5 biochemical indicators (activity of Cu/Zn-SOD, CAT and iNOS; LPO; MT protein), 8 molecular indicators of oxidative stress (mRNA levels of Nrf2, Cu/Zn-SOD, CAT, HSF1, HSF2, HSP70, MTF-1 and MT), 5 molecular indicators of inflammation (mRNA levels of IL-6, IL-1β, TNF-α, iNOS and NF-κB), 8 molecular indicators of metal transport (mRNA levels of, ZnT1, ZnT5, ZIP8, ZIP10, ATP7A, ATP7B and CTR1). All biochemical indicators were unchanged in group 1 and changed in group 2 and 3. Contrarily, differences were observed in almost all of molecular indicators of inflammation and metal transport in group 1, about half in group 2, and few in group 3. We also found that all molecular indicators of oxidative stress in group 2 and fewer in group 1 and 3 were significantly affected by heat. Our data indicated that heat indicators of oxidative stress, inflammation and metal transport showed dependence of previous cadmium exposure in the liver of zebrafish, emphasizing metal pollution history should be carefully considered when evaluating heat stress in fish. Copyright © 2017. Published by Elsevier B.V.

  20. Several loadings and stresses of first wall of SiC with metal liner on conceptual design of moving ring reactor 'KARIN-1'

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Tachibana, Eizaburo; Watanabe, Kenji; Fujiie, Yoichi.

    1983-01-01

    On conceptual design of moving ring reactor ''KARIN-I'' (Output: 1850 MWe), the first wall of SiC with metal liner is considered by reason that SiC ceramics has specific features of excellent radiation damage resistance in fast neutron spectra and a very low residual radioactivity, and that the thin metal liner has good compatibility with liquid lithium and good vaccum-tight, however, a extent electromagnetic interaction. The electromagnetic force applied on the metal liner and several pressure losses of liquid lithum flow are estimated, and these forces correspond to the fluid mechanical loading on SiC first wall. Thermal loading by neutron flux is calculated on the first wall to obtain temperature distributions along the flow direction and toward the wall thickness. At the outlet of the burning section, the surface temperature of SiC rises to the value of 825 0 C on plasma side and on the metal liner, it rises to the value of 540 0 C. Finally, the stress analysis is performed. The thermal stress is about one order larger than the stress induced by the fluid mechanical loading. At the inlet of the burning section, the average tensile stress of 22.4kg/mm 2 is induced on the outer side of SiC wall, and on the inner side, the average compressive stress of -26.1kg/mm 2 is induced. At the outlet of the burning section, the tensile stress is found to oscillate between 25.5kg/mm 2 and 27.3kg/mm 2 on the outer side of SiC wall by frequency of 1 Hz, and on the inner side, the compressive stress also oscillates between -21.6kg/mm 2 and -29.0kg/mm 2 by the same frequency. These stresses are within the value of fracture stress, (72.5kg/mm 2 ). Difficult residual problems on the first wall are also discussed. (author)

  1. Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet.

    Science.gov (United States)

    Firdaus-e-Bareen; Shafiq, Muhammad; Jamil, Sidra

    2012-10-30

    "Assisted phytoextraction" involving application of chemical additives such as plant growth regulators (PGRs) has become a trend in phytoremediation technology. This study identifies a cost-effective, naturally available crude PGR (PGR1) that produces the same effects as the commercial PGR (PGR2), increasing metal uptake by plants and the reduction of metal stress. Assisted phytoextraction by pearl millet (Pennisetum glaucum) from a multi-metal (Cd, Cr, Cu, Fe, Na and Zn) contaminated soil medium with tannery solid waste (TSW) soil amendments of 5 and 10%, was evaluated in a full-factorial pot trial with PGR1, PGR2 and Trichoderma pseudokoningii as factors. The effects of these phytoextraction assistants were measured through dry biomass production, heavy metal uptake, stress tolerance enzymes catalase (CAT) and superoxide dismutase (SOD), soluble protein content of plant, and phytoextraction efficiency. Dry biomass and multi-metal accumulation were the highest in the soil treatments with a combined application of PGR1, PGR2 and T. pseudokoningii and the lowest in the control. The soluble protein contents and the SOD and CAT values were the highest in the 10% TSW treatment provided with PGR2+T. pseudokoningii, while the lowest were in the control. Thus, application of crude PGR in combination with other phytoextraction assistants can increase biomass production as well as multi-metal accumulation in plants. However, the biochemical properties of the plant depend on the level of TSW stress in the soil treatment as well as the type of phytoextraction assistants. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray

    Directory of Open Access Journals (Sweden)

    Chia-Hao Hsu

    2017-02-01

    Full Text Available 304 stainless steels (SS were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC. Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group.

  3. Reverse transcriptase-real time PCR analysis of heavy metal stress response in a uranium resistant Pseudomonas aeruginosa strain isolated from Jaduguda uranium mine

    International Nuclear Information System (INIS)

    Choudhary, Sangeeta; Sar, Pinaki

    2011-01-01

    A multimetal resistant Pseudomonas strain isolated from a uranium mine waste site of Jaduguda, India, was characterized for its potential application in bioremediation. Nearly complete 16 Sr RNA gene sequence and fatty acid methyl ester analyses confirmed the identity of this bacterium as Pseudomonas aeruginosa. This bacterium exhibited high U-resistance i.e. up to an exposure of 6 h in 100 mg UL -1 solution (pH 4.0) and accumulation (maximum of 275 mg Ug -1 cell dry wt.) properties. Microcosm studies further proved the ability of the strain to remove soluble uranium (99%) from U-mine effluent and sequester it as U oxide and phosphate minerals while maintaining its viability. Considering the survival of this strain in U-mine site co-contaminated with other heavy metals, genetic basis of metal resistance was investigated. The bacterium was resistant to 3, 2 or 6 mM of Cu, Cd, or Zn, respectively. Polymerase chain reaction based detection followed by sequence identity and phylogenetic analysis revealed presence of specific metal resistance genes copA (copper resistance determinant) and czcA (RND type heavy metal efflux) in this isolate. Real-time PCR expression studies of these genes indicated significantly increased expression of both the genes in response to Cu, Cd, or Zn. Maximum up regulation of copA and czcA genes was observed following exposure (30 mm) to 25 μm of Cu or 10 μm Cd respectively. High levels of mRNA transcripts of copA and czcA genes in response to specific metals suggest that these resistance systems have important role in conferring metal resistance to the bacterium. Response of sodA an antioxidant Mn-cofactored superoxide dismutase gene to metal stress revealed that induction of this stress gene was not evident at lower concentration(s) of metals, the concentration(s) that cause maximum up- regulation of metal resistance genes. Higher test metal concentration or extended period of exposure, however, resulted in expression of sodA gene. The

  4. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  5. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals.

    Science.gov (United States)

    He, Xiaolin; Xu, Yanbin; Chen, Jinliang; Ling, Jiayin; Li, Yafei; Huang, Lu; Zhou, Xiao; Zheng, Li; Xie, Guangyan

    2017-11-01

    Abuse of antibiotics and heavy metals in aquaculture has been widely concerned and might aggravate the spread of resistance genes in environment. To investigate the occurrence and proliferation of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs), three commonly used antibiotics (tetracycline, sulfanilamide, cefotaxime) and two heavy metals (Zn and Cu) were designed to add individually or jointly in nine fish tanks including five individual exposure tanks of tetracycline (tet), sulfanilamide (sul), cefotaxime (cef), Cu, Zn and four combination exposure tanks of tetracycline + sulfanilamide (tet + sul), tetracycline + sulfanilamide + cefotaxime (tet + sul + cef), tetracycline + sulfanilamide + Cu (tet + sul + Cu), tetracycline + sulfanilamide + Zn (tet + sul + Zn) as well as the control during the experiment period of 180 days. Nineteen ARGs (tetA, tetB, tetC, tetD, tetE, tetG, tetM, tetO, tetQ, tetS, tetW, tetX, tetY, sul1, sul2, sul3, bla DHA , bla MOX , bla FOX ), two HMRGs (copA, czcA) and the class 1 integron gene (intI 1) in fish tanks water were investigated. The results showed that the residual rate of antibiotics and heavy metals ranged from 0.03% to 2.46% and 9.25%-52.97%, respectively, positively related to their original concentration and types. Tetracycline resistance genes were more sensitive to antibiotics and easier to be induced and developed than sulfanilamide resistance genes and AmpC β-lactamase resistance genes. The total relative abundances of ARGs in combined stresses exposure tanks (tet + sul, tet + sul + cef, tet + sul + Cu, tet + sul + Zn) were about 1.01-1.55 times more than the sum of their individual ones. The co-selective effects of cefotaxime on the abundance and diversity of tetracycline resistance genes were stronger than Zn and Cu. Besides, multivariate correlation analysis revealed that tetO, tetQ, tetW and sul3 were in significant correlation with the

  6. Fluctuating asymmetry rather than oxidative stress in Bufo raddei can be an accurate indicator of environmental pollution induced by heavy metals.

    Science.gov (United States)

    Guo, Rui; Zhang, Wenya; Ai, Shiwei; Ren, Liang; Zhang, Yingmei

    2017-06-01

    Oxidative stress (OS) and fluctuating asymmetry (FA) as risk markers for environmental stress are widely used to predict changes in the health and fitness of many animals exposed to pollutants. However, from the perspective of protecting declining amphibians, it remains to be verified which one would be a reliable indicator for amphibians exposed to long-term heavy metal pollution under natural conditions. In this study, the OS and FA of Bufo raddei exposed to natural heavy metal pollution were analyzed to determine which marker is more accurate for indicating heavy metal-induced stress. Three years of data were collected during the breeding season of B. raddei from Baiyin (BY), which has been mainly contaminated with Cu, Zn, Pb, and Cd compounds for a long period, and from Liujiaxia (LJX), which is a relatively unpolluted area. Unexpectedly, although significant accumulation of the four heavy metals was found in the kidney and liver of B. raddei from BY, the levels of superoxide dismutase, glutathione peroxidase, and malondialdehyde in these two organs were found to be irregular, with low repeatability in both BY and LJX. However, significant differences in the levels of FA were observed in B. raddei populations from these two areas over the past 3 years (P < 0.01). The degrees of FA in B. raddei populations from BY and LJX were assessed as degree 4 and 1, respectively. In short, this study suggested that FA was a more reliable and effective indicator than OS to monitor and predict long-term environmental stress on anuran amphibians.

  7. A Modified Eyring Equation for Modeling Yield and Flow Stresses of Metals at Strain Rates Ranging from 10−5 to 5 × 104 s−1

    Directory of Open Access Journals (Sweden)

    Ramzi Othman

    2015-01-01

    Full Text Available In several industrial applications, metallic structures are facing impact loads. Therefore, there is an important need for developing constitutive equations which take into account the strain rate sensitivity of their mechanical properties. The Johnson-Cook equation was widely used to model the strain rate sensitivity of metals. However, it implies that the yield and flow stresses are linearly increasing in terms of the logarithm of strain rate. This is only true up to a threshold strain rate. In this work, a three-constant constitutive equation, assuming an apparent activation volume which decreases as the strain rate increases, is applied here for some metals. It is shown that this equation fits well the experimental yield and flow stresses for a very wide range of strain rates, including quasi-static, high, and very high strain rates (from 10−5 to 5 × 104 s−1. This is the first time that a constitutive equation is showed to be able to fit the yield stress over a so large strain rate range while using only three material constants.

  8. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1.

    Science.gov (United States)

    Rizvi, Asfa; Khan, Mohd Saghir

    2017-10-01

    Rapid industrialization and uncontrolled metal discharge into environment is a global concern for crop production. Metal tolerant bacterium isolated from chilli rhizosphere was identified as Pseudomonas aeruginosa by 16S rDNA sequence analysis. Pseudomonas aeruginosa tolerated high concentrations of Cu (1400 μg ml -1 ), Cd (1000 μg ml -1 ) and Cr (1000 μg ml -1 ). Pseudomonas aeruginosa CPSB1 produced multiple plant growth promoting biomolecules in the presence and absence of metals. Strain CPSB1 solubilized P at 400 μg ml -1 of Cd, Cr and Cu. The strain was positive for indole-3-acetic acid (IAA), siderophores, hydrogen cyanide (HCN), ammonia (NH 3 ) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase when grown with/without metals. The phytotoxic effects on wheat increased with increasing Cd, Cr and Cu rates. The P. aeruginosa CPSB1 inoculated wheat in contrast had better growth and yields under Cu, Cd and Cr stress. The root dry biomass of inoculated plants was enhanced by 44, 28 and 48% at 2007 mg Cu kg -1 , 36 mg Cd kg -1 and 204 mg Cr kg -1 , respectively. The bioinoculant enhanced number of spikes, grain and straw yields by 25, 17 and 12%, respectively. Pseudomonas aeruginosa CPSB1 significantly declined the levels of catalase (CAT), glutathione reductase (GR) and superoxide dismutase SOD), proline and malondialdehyde (MDA), and reduced metal uptake by wheat. The study demonstrated that P. aeruginosa CPSB1 possessed plant growth promoting potentials, showed metal tolerance capability and had ability to counteract deleterious metal impacts. Due to these, P. aeruginosa CPSB1 could be used as bioinoculant for enhancing wheat production even in metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence.

    Science.gov (United States)

    Słaba, Mirosława; Gajewska, Ewa; Bernat, Przemysław; Fornalska, Magdalena; Długoński, Jerzy

    2013-05-01

    The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg g(-1) of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg g(-1) (Cu) to 15.21 mg g(-1) (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment.

  10. Toxicological responses of environmental mixtures: Environmental metal mixtures display synergistic induction of metal-responsive and oxidative stress genes in placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebambo, Oluwadamilare A. [Department of Biological Sciences, North Carolina State University (United States); Ray, Paul D. [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Shea, Damian [Department of Biological Sciences, North Carolina State University (United States); Fry, Rebecca C., E-mail: rfry@unc.edu [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States)

    2015-12-15

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metal mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu{sup 2+} transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. - Highlights: • Toxicogenomic responses of environmental metal mixtures assessed • Induction of ATP7B, HO-1, MT1A, MT1F and MT1G by metal mixtures observed in placental cells • Higher gene induction in response to metal mixtures versus single metal treatments.

  11. Toxicological responses of environmental mixtures: Environmental metal mixtures display synergistic induction of metal-responsive and oxidative stress genes in placental cells

    International Nuclear Information System (INIS)

    Adebambo, Oluwadamilare A.; Ray, Paul D.; Shea, Damian; Fry, Rebecca C.

    2015-01-01

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metal mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu 2+ transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. - Highlights: • Toxicogenomic responses of environmental metal mixtures assessed • Induction of ATP7B, HO-1, MT1A, MT1F and MT1G by metal mixtures observed in placental cells • Higher gene induction in response to metal mixtures versus single metal treatments

  12. Toxicological Responses of Environmental Mixtures: Environmental Metals Mixtures Display Synergistic Induction of Metal-Responsive and Oxidative Stress Genes in Placental Cells

    Science.gov (United States)

    Adebambo, Oluwadamilare A.; Ray, Paul D.; Shea, Damian; Fry, Rebecca C.

    2016-01-01

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metals mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu2+ transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. PMID:26472158

  13. Interactive effects of CO2 and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria

    International Nuclear Information System (INIS)

    Götze, Sandra; Matoo, Omera B.; Beniash, Elia; Saborowski, Reinhard; Sokolova, Inna M.

    2014-01-01

    Highlights: • Elevated P CO 2 enhanced accumulation of Cu and Cd in the gills of mollusks. • The proteasome activities were affected by metals but robust to elevated P CO 2 . • Exposure to Cd and Cu had opposite effects on the proteasome activity. • Combined exposure to Cu and elevated P CO 2 negatively affected energy status. - Abstract: Increased anthropogenic emission of CO 2 changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO 2 and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves—Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4–5 weeks to clean seawater (control) and to either 50 μg L −1 Cu or 50 μg L −1 Cd at one of three partial pressures of CO 2 (P CO 2 ∼395, ∼800 and ∼1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated P CO 2 enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated P CO 2 , but P CO 2 modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome at all CO 2 levels. In contrast, trypsin- and caspase-like activities of

  14. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria

    Energy Technology Data Exchange (ETDEWEB)

    Götze, Sandra [Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven (Germany); Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Matoo, Omera B. [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Beniash, Elia [Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA (United States); Saborowski, Reinhard [Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven (Germany); Sokolova, Inna M., E-mail: isokolov@uncc.edu [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States)

    2014-04-01

    Highlights: • Elevated PCO₂ enhanced accumulation of Cu and Cd in the gills of mollusks. • The proteasome activities were affected by metals but robust to elevated PCO₂. • Exposure to Cd and Cu had opposite effects on the proteasome activity. • Combined exposure to Cu and elevated PCO₂ negatively affected energy status. - Abstract: Increased anthropogenic emission of CO₂ changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO₂ and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves—Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4–5 weeks to clean seawater (control) and to either 50 μg L⁻¹ Cu or 50 μg L⁻¹ Cd at one of three partial pressures of CO₂ PCO₂ ~395, ~800 and ~1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated PCO₂ enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated PCO₂, but PCO₂ modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome

  15. Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chen, Yue Yi; Yang, Shu Guang; Tian, Wei Min, E-mail: wmtian9110@126.com

    2015-05-22

    Metallothioneins (MTs) are of low molecular mass, cysteine-rich proteins. They play an important role in the detoxification of heavy metals and homeostasis of intracellular metal ions, and protecting against intracellular oxidative damages. In this study a full-length cDNA of type 2 plant metallothioneins, HbMT2a, was isolated from 25 mM Polyethyleneglycol (PEG) stressed leaves of Hevea brasiliensis by RACE. The HbMT2a was 372 bp in length and had a 237 bp open reading frame (ORF) encoding for a protein of 78 amino acid residues with molecular mass of 7.772 kDa. The expression of HbMT2a in the detached leaves of rubber tree clone RY7-33-97 was up-regulated by Me-JA, ABA, PEG, H{sub 2}O{sub 2}, Cu{sup 2+} and Zn{sup 2+}, but down-regulated by water. The role of HbMT2a protein in protecting against metal toxicity was demonstrated in vitro. PET-28a-HbMT2-beared Escherichia coli. Differential expression of HbMT2a upon treatment with 10 °C was observed in the detached leaves of rubber tree clone 93-114 which is cold-resistant and Reken501 which is cold-sensitive. The expression patterns of HbMT2a in the two rubber tree clones may be ascribed to a change in the level of endogenous H{sub 2}O{sub 2}. - Highlights: • Cloning an HbMT2a gene from rubber tree. • Analyzing expression patterns of HbMT2a upon abiotic stress and heavy metal stress. • Finding different expression patterns of HbMT2a among two Hevea germplasm. • The expressed protein of HbMT2a enhances copper and zinc tolerance in Escherichia coli.

  16. A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution)

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Son, Bong Jin

    1997-01-01

    Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation

  17. Stress dependence of the Peierls barrier of 1/2〈1 1 1〉 screw dislocations in bcc metals

    International Nuclear Information System (INIS)

    Gröger, R.; Vitek, V.

    2013-01-01

    The recently formulated constrained nudged elastic band method with atomic relaxations (NEB + r) (Gröger R, Vitek V. Model Simul Mater Sci Eng 2012;20:035019) is used to investigate the dependence of the Peierls barrier of 1/2〈1 1 1〉 screw dislocations in body-centered cubic metals on non-glide stresses. These are the shear stresses parallel to the slip direction acting in the planes of the 〈1 1 1〉 zone different from the slip plane, and the shear stresses perpendicular to the slip direction. Both these shear stresses modify the structure of the dislocation core and thus alter both the Peierls barrier and the related Peierls stress. Understanding of this effect of loading is crucial for the development of mesoscopic models of thermally activated dislocation motion via formation and propagation of pairs of kinks. The Peierls stresses and related choices of the glide planes determined from the Peierls barriers agree with the results of molecular statics calculations (Gröger R, Bailey AG, Vitek V. Acta Mater 2008;56:5401), which demonstrates that the NEB + r method is a reliable tool for determining the variation in the Peierls barrier with the applied stress. However, such calculations are very time consuming, and it is shown here that an approximate approach of determining the stress dependence of the Peierls barrier (proposed in Gröger R, Vitek V. Acta Mater 2008;56:5426) can be used, combined with test calculations employing the NEB + r method

  18. Thermal Aging Effects on Residual Stress and Residual Strain Distribution on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Junhyuk; Choi, Kyoung Joon; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Dissimilar metal weld (DMW), consisting of Alloy 600, Alloy 182, and A508 Gr.3, has been widely used as a joining material of the reactor pressure vessel penetration nozzle and the steam generator tubing for pressurized water reactors (PWR) because of its good mechanical strength, thermal conductivity, and corrosion resistance. Residual tensile stress is mainly nominated as a cause of SCC in light water reactors by IAEA report. So, to relax the residual stress, post-weld heat treatment is required after manufacturing process such as welding. However, thermal treatment has a great effect on the microstructure and the chromium depletion profile on Alloy 600, so called sensitization. By this reason, HAZ on Alloy 600 is critical to crack. According to G.A. Young et al., Crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions. And according to Z.P. Lu et al., CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. There are some methods to measure the exact value of residual stress on the material surface. The most common way is X-ray diffraction method (XRD). The principle of XRD is based on lattice strains and depends on the changes in the spacing of the atomic planes in material. And there is a computer simulation method to estimate residual stress distribution which is called ANSYS. This study was conducted to investigate how thermal aging affects residual stress and residual strain distribution of Alloy 600 HAZ. Following conclusions can be drawn from this study. According to preceding researches and this study, both the relaxation of residual stress and the change of residual strain follow as similar way, spreading out from concentrated region. The result of Vickers micro-hardness tester shows that tensile residual stresses are distributed broadly on the material aged by 15 years. Therefore, HT400{sub Y}15 material is weakest state for PWSCC. The

  19. Metal accumulation and oxidative stress responses in Ulva spp. in the presence of nocturnal pulses of metals from sediment: A field transplantation experiment under eutrophic conditions

    KAUST Repository

    Pereira, Patrícia M R

    2014-03-01

    In aquatic systems under eutrophic conditions, remobilization of metals from sediment to the overlying water may occur. Consequently, adaptive responses of local organisms could result from the accumulation of metals intermittently released from the sediment. In summer 2007, a field transplantation experiment was performed in the Óbidos lagoon (Portugal) with Ulva spp. comprising three short-term exposures (between 15:30-23:30; 23:30-07:30; 07:30-15:30) during a 24-h period. In each period, Ulva spp. was collected at a reference site located in the lower lagoon (LL) and transplanted to a eutrophic site located at the Barrosa branch (BB), characterized by moderate metal contamination. For comparison purposes, macroalgae samples were simultaneously exposed at LL under the same conditions. Both sites were surveyed in short-time scales (2-4 h) for the analysis of the variability of physical-chemical parameters in the water and metal levels in suspended particulate matter. The ratios to Al of particulate Mn, Fe, Cu and Pb increased during the period of lower water oxygenation at the eutrophic site, reaching 751 × 10-4, 0.67, 12 × 10-4, 9.9 × 10-4, respectively, confirming the release of metals from the sediment to water during the night. At the reference site, dissolved oxygen oscillated around 100%, Mn/Al ratios were considerably lower (81 × 10-4-301 × 10-4) compared to BB (234 × 10-4-790 × 10-4), and no increases of metal/Al ratios were found during the night. In general, algae uptake of Mn, Cu, Fe, Pb and Cd was significantly higher at the eutrophic site compared to the reference site. The results confirmed the potential of Ulva spp. as bioindicator of metal contamination and its capability to respond within short periods. An induction of SOD, an inhibition of CAT and the increase of LPO were recorded in Ulva spp. exposed at BB (between 23:30 and 7:30) probably as a response to the higher incorporation of Mn, Fe and Pb in combination with the lack of

  20. Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Hongliang; Zhu, Ruolin [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Zhang, Zhiming [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En.-Hou.; Ke, Wei [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Su, Mingxing [Shanghai Research Center for Weld and Detection Engineering Technique of Nuclear Equipment, Shanghai 201306 (China)

    2016-07-04

    The microstructure, local mechanical properties and local stress corrosion cracking susceptibility of an SA508-52M-316LN domestic dissimilar metal welded safe-end joint used for AP1000 nuclear power plant prepared by automatic gas tungsten arc welding was studied in this work by optical microscopy, scanning electron microscopy (with electron back scattering diffraction and an energy dispersive X-ray spectroscopy system), micro-hardness testing, local mechanical tensile testing and local slow strain rate tests. The micro-hardness, local mechanical properties and stress corrosion cracking susceptibility across this dissimilar metal weld joint vary because of the complex microstructure across the fusion area and the dramatic chemical composition change across the fusion lines. Briefly, Type I boundaries and Type II boundaries exist in 52Mb near the SA508-52Mb interface, a microstructure transition was found in SA508 heat affected zone, the residual strain and grain boundary character distribution changes as a function of the distance from the fusion boundary in 316LN heat affected zone, micro-hardness distribution and local mechanical properties along the DMWJ are heterogeneous, and 52Mw-316LN interface has the highest SCC susceptibility in this DMWJ while 316LN base metal has the lowest one.

  1. An Investigation into Stress Corrosion Cracking of Dissimilar Metal Welds with 304L Stainless Steel and Alloy 82 in High Temperature Pure Water

    Science.gov (United States)

    Yeh, Tsung-Kuang; Huang, Guan-Ru; Tsai, Chuen-Horng; Wang, Mei-Ya

    For a better understanding toward stress corrosion cracking (SCC) in dissimilar metal welds with 304L stainless steel and Alloy 82, the SCC growth behavior in the transition regions of weld joints was investigated via slow strain rate tensile (SSRT) tests in 280 oC pure water with a dissolve oxygen level of 300 ppb. Prior to the SSRT tests, samples with dissimilar metal welds were prepared and underwent various pretreatments, including post-weld heat treatment (PWHT), shot peening, solution annealing, and mechanical grinding. In addition to the SSRT tests, measurements of degree of sensitization and micro-hardness on the transition regions of the metal welds were also conducted. According to the test results, the samples having undergone PWHTs exhibited relatively high degrees of sensitization. Distinct decreases in hardness were observed in the heat-affected zones of the base metals in all samples. Furthermore, the fracture planes of all samples after the SSRT tests were located at the stainless steel sides and were in parallel with the fusion lines. Among the treating conditions investigated in this study, a PWHT would pose a detrimental effect on the samples in the aspects of mechanical property and degree of SCC. Solution annealing would lead to the greatest improvement in ductility and SCC retardation, and shot peening would provide the treated samples with a positive improvement in ductility and corrosion retardation, but not to a great extent.

  2. Proposal of reference stress for a surface flaw on a cylindrical component from a review-with-comparison of the local metal loss assessment rule between API 579-1 and the p-M diagram method

    International Nuclear Information System (INIS)

    Oyamada, Kenji; Konosu, Shinji; Ohno, Takashi

    2011-01-01

    The Remaining Strength Factor (RSF) approach in Part 5 of API 579-1/ASME FFS-1 is an assessment method for a cylindrical component with a local metal loss based on surface correction factors. Also, reference stress solutions that are applied in the Failure Assessment Diagram (FAD) method for a cylindrical component with a crack-like flaw are provided in Annex D using surface correction factors. In the recently-developed p-M diagram method, the reference stress solution for local metal loss evaluation in a cylindrical component is derived using bulging factors, which are similar but not identical to the surface correction factors used in API 579-1/ASME FFS-1. This paper describes the results of a comparative study among the RSF approach, reference stress solutions for the FAD method, and the p-M diagram method, in terms of plastic collapse evaluation of a cylindrical component. These results were compared with the FEA and experimental results to confirm how these estimated stresses could be validated. This study also involves recommended reference stress solutions for a cylindrical component with a crack-like flaw or a local metal loss, which should be adopted as fitness-for-service rules, and a discussion on the influence of the design margin of the construction code on allowable flaw depth. - Highlights: → We compared local metal loss assessment rule between API 579-1 and the p-M method. → Experiments and FEA verified the p-M estimate stress state around a flaw accurate. → API 579-1 for local metal loss may underestimate stress state for certain conditions. → Existing reference stresses for crack-like flaws may underestimate stress state too. → We propose the reference stress for a surface flaw subjected to pressure and moment.

  3. Effect of short-term Zn/Pb or long-term multi-metal stress on physiological and morphological parameters of metallicolous and nonmetallicolous Echium vulgare L. populations.

    Science.gov (United States)

    Dresler, Sławomir; Wójciak-Kosior, Magdalena; Sowa, Ireneusz; Stanisławski, Grzegorz; Bany, Izabela; Wójcik, Małgorzata

    2017-06-01

    The aim of the study was to determine the response of metallicolous and nonmetallicolous Echium vulgare L. populations to chronic multi-metal (Zn, Pb, Cd) and acute Zn (200, 400 μM) and Pb (30, 60 μM) stress. Three populations of E. vulgare, one from uncontaminated and two from metal-contaminated areas, were studied. Two types of experiments were performed - a short-term hydroponic experiment with acute Zn or Pb stress and a long-term manipulative soil experiment with the use of soils from the sites of origin of the three populations. Growth parameters, such as shoot and root fresh weight and leaf area, as well as organic acid accumulation were determined. Moreover, the concentration of selected secondary metabolites and antioxidant capacity in the three populations exposed to Pb or Zn excess were measured. Both metallicolous populations generally achieved higher biomass compared with the nonmetallicolous population cultivated under metal stress in hydroponics or on metalliferous substrates. Plants exposed to Pb or Zn excess or contaminated soil substrate exhibited higher malate and citrate concentrations compared with the reference (no metal stress) plants. It was observed that Zn or Pb stress increased accumulation of allantoin, chlorogenic and rosmarinic acids, total phenolics, and flavonoids. Moreover, it was shown that Pb sequestration in the roots or Zn translocation to the shoots may play a role in enhanced metal tolerance of metallicolous populations under acute Pb/Zn stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Metal-induced stress in bivalves living along a gradient of Cd contamination: relating sub-cellular metal distribution to population-level responses

    International Nuclear Information System (INIS)

    Perceval, Olivier; Couillard, Yves; Pinel-Alloul, Bernadette; Giguere, Anik; Campbell, Peter G.C.

    2004-01-01

    The use of biomarkers to assess the impacts of contaminants on aquatic ecosystems has noticeably increased over the past few years. Few of these studies, however, have contributed to the prediction of ecologically significant effects (i.e., at the population or community levels). The present field study was designed to evaluate the potential of metallothionein (MT) and sub-cellular metal partitioning measurements for predicting toxic effects at higher levels of the biological organization in freshwater bivalves (Pyganodon grandis) chronically exposed to Cd. For that purpose, we quantitatively sampled P. grandis populations in the littoral zone of nine lakes on the Precambrian Canadian Shield during two consecutive summers (1998 and 1999); lakes were characterized by contrasting Cd levels but similar trophic status. We tested relationships between the population status of P. grandis (i.e., growth parameters, density, biomass, secondary production, turnover ratio and cumulative fecundity) and (i) ambient Cd concentrations, (ii) sub-organismal responses (MT concentrations in the gill cytosol of individuals and Cd concentrations in three metal-ligand pools identified as M-HMW, the high molecular weight pool, M-MT, the metallothionein-like pool and M-LMW, the low molecular weight pool) and (iii) ecological confounding factors (food resources, presence of host fishes for the obligatory parasitic larval stage of P. grandis). Our results show that littoral density, live weight, dry viscera biomass, production and cumulative fecundity decreased with increasing concentrations of the free-cadmium ion in the environment (Pearson's r ranging from -0.63 to -0.78). On the other hand, theoretical maximum shell lengths (L ∞ ) in our populations were related to both the dissolved Ca concentration and food quality (sestonic C and N concentrations). Overall, Cd concentrations in the gill cytosolic HMW pool of the individual molluscs were the biomarker response that was most

  5. Fabrication of a metallic roll stamp with low internal stress and high hardness for large area display applications by a pulse reverse current electroforming process

    International Nuclear Information System (INIS)

    Kim, Joongeok; Han, Jungjin; Kim, Taekyung; Kang, Shinill

    2014-01-01

    With the increasing demand for large scale micro/nano components in the fields of display, energy and electrical devices, etc, the establishment of a roll imprinting process has become a priority. The fabrication of a roll stamp with high dimensional accuracy and uniformity is one of the key issues in the roll imprinting process, because the roll stamp determines the properties of the replicated micro/nano structures. In this study, a method to fabricate a metallic roll stamp with low internal stress, high flatness, and high hardness was proposed by a pulse reverse current (PRC) electroforming process. The effects of PRC electroforming processes on the internal stress, hardness, and grain size of the electroformed stamp were examined, and the optimum process conditions were suggested. As a practical example of the proposed method, various micro-patterns for electronic circuits were fabricated via the roll imprinting process using a PRC electroformed stamp. (paper)

  6. A comparison of ionizing radiation and high field stress effects in n-channel power vertical double-diffused metal-oxide-semiconductor field-effect transistors

    International Nuclear Information System (INIS)

    Park, Mun-Soo; Na, Inmook; Wie, Chu R.

    2005-01-01

    n-channel power vertical double-diffused metal-oxide-semiconductor field-effect-transistor (VDMOSFET) devices were subjected to a high electric field stress or to a x-ray radiation. The current-voltage and capacitance-voltage measurements show that the channel-side interface and the drain-side interface are affected differently in the case of high electric field stress, whereas the interfaces are nearly uniformly affected in the case of x-ray radiation. This paper also shows that for the gated diode structure of VDMOSFET, the direct-current current-voltage technique measures only the drain-side interface; the subthreshold current-voltage technique measures only the channel-side interface; and the capacitance-voltage technique measures both interfaces simultaneously and clearly distinguishes the two interfaces. The capacitance-voltage technique is suggested to be a good quantitative method to examine both interface regions by a single measurement

  7. Changes in antioxidant enzyme activities in Eichhornia crassipes (Pontederiaceae) and Pistia stratiotes (Araceae) under heavy metal stress

    International Nuclear Information System (INIS)

    Odjegba, V. J.; Fasidi, I. O.

    2007-01-01

    Whole plants of Eichhornia crassipes and Pistia stratiotes were exposed to various concentrations (0,0.1, 0.3, 0.5, 1.0, 3.0 and 5.0 mM) of 8 heavy metals (Ag, Cd, Cr, Cu, Hg, Ni, Pb and Zn) hydroponically for 21 days. Spectrometric assays for the total activity of catalase, peroxidase, and superoxide dismutase in the leaves were studied. At the end of the experimental period, data referred to metal treated plants were compared to data of untreated ones (control). Heavy metals increased the activity of catalase, peroxidase and superoxide dismutase in both species and there was differential inducement among metals. Overall, Zn had the least inducement of antioxidant enzymes in both species while Hg had the highest inducement. The increase in antioxidant enzymes in relation to the control plants was more in E. crassipes than P. stratiotes. The results showed that E. crassipes tolerated higher metal concentrations in a greater number of metals than P. stratiotes. (author)

  8. Impact of heavy metal contamination on oxidative stress of Eisenia andrei and bacterial community structure in Tunisian mine soil.

    Science.gov (United States)

    Boughattas, Iteb; Hattab, Sabrine; Boussetta, Hamadi; Banni, Mohamed; Navarro, Elisabeth

    2017-08-01

    The aims of this work were firstly to study the effect of heavy metal-polluted soils from Tunisian mine on earthworm biochemical biomarkers and on bacterial communities and therefore to analyze the interaction between earth worms and bacterial communities in these contaminated soils. For this purpose, we had introduced earthworm Eisenia andrei in six soils: one from mine spoils and five from agricultural soils, establishing a gradient of contamination. The response of worms to the presence of heavy metal was analyzed at the biochemical and transcriptional levels. In a second time, the impact of worm on bacterial community structure was investigated using automated ribosomal intergenic spacer analysis (ARISA) fingerprinting. An impact of heavy metal-contaminated soils on the oxidative status of E. andrei was observed, but this effect was dependent of the level of heavy metal contamination. Moreover, our results demonstrate that the introduction of earthworms E. andrei has an impact on bacterial community; however, the major change was observed in the less contaminated site. Furthermore, a significant correlation between earthworm oxidative status biomarkers and bacterial community structure was observed, mainly in the mine spoils. Therefore, we contribute to a better understanding of the relationships between epigenic earthworms and bacterial communities in heavy metal-contaminated soils.

  9. Influence of fly ash aided phytostabilisation of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress

    International Nuclear Information System (INIS)

    Lopareva-Pohu, Alena; Verdin, Anthony; Garcon, Guillaume; Lounes-Hadj Sahraoui, Anissa; Pourrut, Bertrand; Debiane, Djouher; Waterlot, Christophe; Laruelle, Frederic

    2011-01-01

    Due to anthropogenic activities, large extends of soils are highly contaminated by Metal Trace Element (MTE). Aided phytostabilisation aims to establish a vegetation cover in order to promote in situ immobilisation of trace elements by combining the use of metal-tolerant plants and inexpensive mineral or organic soil amendments. Eight years after Coal Fly Ash (CFA) soil amendment, MTE bioavailability and uptake by two plants, Lolium perenne and Trifolium repens, were evaluated, as some biological markers reflecting physiological stress. Results showed that the two plant species under study were suitable to reduce the mobility and the availability of these elements. Moreover, the plant growth was better on CFA amended MTE-contaminated soils, and the plant sensitivity to MTE-induced physiological stress, as studied through photosynthetic pigment contents and oxidative damage was lower or similar. In conclusion, these results supported the usefulness of aided phytostabilisation of MTE-highly contaminated soils. - Highlights: → Aided phytostabilisation aims to establish a vegetation cover in order to promote immobilisation of MTE. → 8 years after the soil amendments, a pot culture study was carried out in greenhouse conditions. → MTE bioavailability and uptake by the two plants was drastically decreased with amendments. → Our results support the usefulness of aided phytostabilisation of MTE-highly contaminated soils. → CFA addition contributed to the reduction of the MTE mobility and availability for the plants. - Efficiency of Coal Fly Ash amendment for phytostabilisation of Pb, Cd and Zn in MTE-highly contaminated soils.

  10. Effect of metal stress on photosynthetic pigments in the Cu-hyperaccumulating lichens Cladonia humilis and Stereocaulon japonicum growing in Cu-polluted sites in Japan.

    Science.gov (United States)

    Nakajima, Hiromitsu; Yamamoto, Yoshikazu; Yoshitani, Azusa; Itoh, Kiminori

    2013-11-01

    To understand the ecology and physiology of metal-accumulating lichens growing in Cu-polluted sites, we investigated lichens near temple and shrine buildings with Cu roofs in Japan and found that Stereocaulon japonicum Th. Fr. and Cladonia humilis (With.) J. R. Laundon grow in Cu-polluted sites. Metal concentrations in the lichen samples collected at some of these sites were determined by inductively coupled plasma mass spectroscopy (ICP-MS). UV-vis absorption spectra of pigments extracted from the lichen samples were measured, and the pigment concentrations were estimated from the spectral data using equations from the literature. Secondary metabolites extracted from the lichen samples were analyzed by high-performance liquid chromatography (HPLC) with a photodiode array detector. We found that S. japonicum and C. humilis are Cu-hyperaccumulating lichens. Differences in pigment concentrations and their absorption spectra were observed between the Cu-polluted and control samples of the 2 lichens. However, no correlation was found between Cu and pigment concentrations. We observed a positive correlation between Al and Fe concentrations and unexpectedly found high negative correlations between Al and pigment concentrations. This suggests that Al stress reduces pigment concentrations. The concentrations of secondary metabolites in C. humilis growing in the Cu-polluted sites agreed with those in C. humilis growing in the control sites. This indicates that the metabolite concentrations are independent of Cu stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Stress corrosion crack growth studies on nitrogen added AISI type 316 stainless steel and its weld metal in boiling acidified sodium chloride solution using the fracture mechanics approach

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, H.; George, G.; Khatak, H.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Div. of Metallurgy; Schneider, F.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe

    2000-10-01

    Compact tension specimens of nitrogen-added AISI type 316 austenitic stainless steel and its weld metal were subject to stress corrosion cracking (SCC) testing in a boiling solution containing 5 M sodium chloride + 0.15 M sodium sulphate + 2.5 ml/l hydrochloric acid solution using the constant extension rate testing (CERT) technique. The extension rate of testing was 10 microns per hour. The threshold values of stress intensify factor (K{sub ISCC}) and J-integral (J{sub ISCC}) were taken as those values of K{sub I} and J{sub I} at which about 25 microns of SCC crack growth was observed. These threshold values were about four times higher and plateau crack growth rates (PCGR) were nearly one order of magnitude lower for the base metal vis-a-vis the weld metal. Fractographic observations indicated failure by transgranular SCC (TGSCC) of austenite in both the base and weld metal. No stress-assisted dissolution of delta-ferrite or its interface with austenite, was observed. (orig.) [German] CT-Proben von Grund- und Schweissnahtwerkstoff des stickstoffhaltigen Stahles AISI 316 LN wurden Spannungsrisskorrosionstests in siedender chloridhaltiger Loesung (5 M Natriumchlorid/0,15 M Natriumsulfat/0,03 M Salzsaeure) unterzogen. Die Tests erfolgten bei konstanter Dehnrate (CERT-Test) von 10 {mu}m/h. Als Schwellwerte der Initiierung von Spannungsrisskorrosion K{sub ISCC} und I{sub ISCC} wurden die Werte des Spannungsintensitaetsfaktors K{sub I} und des J-Integrals J{sub I} ermittelt, bei denen ein Risswachstum von 25 {mu}m auftrat. Dabei wies der Grundwerkstoff 4-fach hoehere Schwellwerte K{sub ISCC} und J{sub ISCC} auf als der Schweissnahtwerkstoff. Auch die Risswachstumsraten im Plateaubereich der Risswachstumsrate-Spannungsintensitaetskruven waren am Grundwerkstoff um eine Groessenordnung geringer als am Schweissnahtwerkstoff. Die fraktorgrahischen Untersuchungen zeigten an beiden Materialien Schaedigung durch transkristalline Spannungsrisskorrosion. Eine

  12. Isolation Of PS II Nanoparticles And Oxygen Evolution Studies In Synechococcus Spp. PCC 7942 Under Heavy Metal Stress

    Science.gov (United States)

    Ahmad, Iffat Zareen; Sundaram, Shanthy; Tripathi, Ashutosh; Soumya, K. K.

    2009-06-01

    The effect of heavy metals was seen on the oxygen evolution pattern of a unicellular, non-heterocystous cyanobacterial strain of Synechococcus spp. PCC 7942. It was grown in a BG-11 medium supplemented with heavy metals, namely, nickel, copper, cadmium and mercury. Final concentrations of the heavy metal solution used in the culture were 0.1, 0.4 and 1 μM. All the experiments were performed in the exponential phase of the culture. Oxygen-evolving photosystem II (PS II) particles were purified from Synechococcus spp. PCC 7942 by a single-step Ni2+-affinity column chromatography after solubilization of thylakoid membranes with sucrose monolaurate. Oxygen evolution was measured with Clark type oxygen electrode fitted with a circulating water jacket. The light on the surface of the vessel was 10 w/m2. The cultures were incubated in light for 15 minutes prior to the measurement of oxygen evolution. Oxygen evolution was measured in assay mixture containing phosphate buffer (pH-7.5, 0.1 M) in the presence of potassium ferricyanide as the electron acceptor. The preparation from the control showed a high oxygen-evolving activity of 2, 300-2, 500 pmol O2 (mg Chl)-1 h-1 while the activity was decreased in the cultures grown with heavy metals. The inhibition of oxygen evolution shown by the organism in the presence of different metals was in the order Hg>Ni>Cd>Cu. Such heavy metal resistant strains will find application in the construction of PS II- based biosensors for the monitoring of pollutants.

  13. The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress

    Directory of Open Access Journals (Sweden)

    Liming eYang

    2016-02-01

    Full Text Available The heavy metal cadmium is a common environmental contaminant in soils and has adverse effects on crop growth and development. The signaling processes in plants that initiate cellular responses to environmental stress have been shown to be located in the plasma membrane (PM. A better understanding of the PM proteome in response to environmental stress might provide new insights for improving stress-tolerant crops. Nitric oxide (NO is reported to be involved in the plant response to cadmium (Cd stress. To further investigate how NO modulates protein changes in the plasma membrane during Cd stress, a quantitative proteomics approach based on isobaric tags for relative and absolute quantification (iTRAQ was used to identify differentially regulated proteins from the rice plasma membrane after Cd or Cd and NO treatment. Sixty-six differentially expressed proteins were identified, of which, many function as transporters, ATPases, kinases, metabolic enzymes, phosphatases and phospholipases. Among these, the abundance of phospholipase D (PLD was altered substantially after the treatment of both Cd and Cd and NO. Transient expression of the PLD fused with green fluorescent peptide (GFP in rice protoplasts showed that the Cd and NO treatment promoted the accumulation of PLD in the plasma membrane. Addition of NO also enhanced Cd-induced PLD activity and the accumulation of phosphatidic acid (PA produced through PLD activity. Meanwhile, NO elevated the activities of antioxidant enzymes and caused the accumulation of glutathione both which function to reduce Cd-induced H2O2 accumulation. Taken together, we suggest that NO signaling is associated with the accumulation of antioxidant enzymes, glutathione and PA which increases cadmium tolerance in rice via the antioxidant defense system.

  14. A Heavy Metal-Associated Protein (AcHMA1 from the Halophyte, Atriplex canescens (Pursh Nutt., Confers Tolerance to Iron and Other Abiotic Stresses When Expressed in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Xin-Hua Sun

    2014-08-01

    Full Text Available Many heavy metals are essential for metabolic processes, but are toxic at elevated levels. Metal tolerance proteins provide resistance to this toxicity. In this study, we identified and characterized a heavy metal-associated protein, AcHMA1, from the halophyte, Atriplex canescens. Sequence analysis has revealed that AcHMA1 contains two heavy metal binding domains. Treatments with metals (Fe, Cu, Ni, Cd or Pb, PEG6000 and NaHCO3 highly induced AcHMA1 expression in A. canescens, whereas NaCl and low temperature decreased its expression. The role of AcHMA1 in metal stress tolerance was examined using a yeast expression system. Expression of the AcHMA1 gene significantly increased the ability of yeast cells to adapt to and recover from exposure to excess iron. AcHMA1 expression also provided salt, alkaline, osmotic and oxidant stress tolerance in yeast cells. Finally, subcellular localization of an AcHMA1/GFP fusion protein expressed in tobacco cells showed that AcHMA1 was localized in the plasma membrane. Thus, our results suggest that AcHMA1 encodes a membrane-localized metal tolerance protein that mediates the detoxification of iron in eukaryotes. Furthermore, AcHMA1 also participates in the response to abiotic stress.

  15. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site

    International Nuclear Information System (INIS)

    Farwell, Andrea J.; Vesely, Susanne; Nero, Vincent; Rodriguez, Hilda; McCormack, Kimberley; Shah, Saleh; Dixon, D. George; Glick, Bernard R.

    2007-01-01

    The growth of transgenic canola (Brassica napus) expressing a gene for the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase was compared to non-transformed canola exposed to flooding and elevated soil Ni concentration, in situ. In addition, the ability of the plant growth-promoting bacterium Pseudomonas putida UW4, which also expresses ACC deaminase, to facilitate the growth of non-transformed and transgenic canola under the above mentioned conditions was examined. Transgenic canola and/or canola treated with P. putida UW4 had greater shoot biomass compared to non-transformed canola under low flood-stress conditions. Under high flood-stress conditions, shoot biomass was reduced and Ni accumulation was increased in all instances relative to low flood-stress conditions. This is the first field study to document the increase in plant tolerance utilizing transgenic plants and plant growth-promoting bacteria exposed to multiple stressors. - Using transgenic plants and plant growth-promoting bacteria as phytoremediation methods increased plant tolerance at a metal-contaminated field site under low flood conditions

  16. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    Energy Technology Data Exchange (ETDEWEB)

    Dimkpa, Christian O., E-mail: cdimkpa@usu.edu [Utah State University, Department of Biological Engineering (United States); McLean, Joan E. [Utah State University, Utah Water Research Laboratory (United States); Latta, Drew E. [Argonne National Laboratory, Biosciences Division (United States); Manangon, Eliana [University of Utah, Department of Geology and Geophysics (United States); Britt, David W. [Utah State University, Department of Biological Engineering (United States); Johnson, William P. [University of Utah, Department of Geology and Geophysics (United States); Boyanov, Maxim I. [Argonne National Laboratory, Biosciences Division (United States); Anderson, Anne J. [Utah State University, Department of Biological Engineering (United States)

    2012-09-15

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (<50 nm) and ZnO (<100 nm) NPs on wheat (Triticum aestivum) grown in a solid matrix, sand. The NPs contained both metallic and non-metallic impurities to different extents. Dynamic light scattering and atomic force microscopy (AFM) assessments confirmed aggregation of the NPs to submicron sizes. AFM showed transformation of ZnO NPs from initial rhomboid shapes in water to elongated rods in the aqueous phase of the sand matrix. Solubilization of metals occurred in the sand at similar rates from CuO or ZnO NPs as their bulk equivalents. Amendment of the sand with 500 mg Cu and Zn/kg sand from the NPs significantly (p = 0.05) reduced root growth, but only CuO NPs impaired shoot growth; growth reductions were less with the bulk amendments. Dissolved Cu from CuO NPs contributed to their phytotoxicity but Zn release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  17. Comparison of different test methods to assess thermal stresses of metal oxide surge arresters under pollution conditions

    International Nuclear Information System (INIS)

    Bargigia, A.; de Nigris, M.; Pigini, A.; Sironi, A.

    1992-01-01

    The report deals with the research conducted by ENEL, the Italian Electricity Board, to assess the performance of zinc oxide surge arresters under pollution condition, with special reference to the consequent thermal stress on internal active parts which can affect the energy handling capabality of the arrester and may lead, in particular conditions, even to thermal runaway

  18. Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus from Nigeria Ogun River

    Directory of Open Access Journals (Sweden)

    Y. R. Ajimoko

    2007-06-01

    Clarias gariepinus were significantly (P<0.001 elevated in the liver, kidney, gills and heart by 177%, 102%, 168% and 71% respectively compared to that from Agodi fish farm. Overall, the results demonstrate that alteration in the antioxidant enzymes, glutathione system and induction of lipid peroxidation reflects the presence of heavy metals which may cause oxidative stress in the Clarias gariepinus from Ogun River. The study therefore provides a rational use of biomarkers of oxidative stress in biomonitoring of aquatic pollution.

  19. Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus) from Nigeria Ogun River

    Science.gov (United States)

    Farombi, E. O.; Adelowo, O. A.; Ajimoko, Y. R.

    2007-01-01

    reflects the presence of heavy metals which may cause oxidative stress in the Clarias gariepinus from Ogun River. The study therefore provides a rational use of biomarkers of oxidative stress in biomonitoring of aquatic pollution. PMID:17617680

  20. Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress

    Energy Technology Data Exchange (ETDEWEB)

    Huang Guoyong, E-mail: huang_gyh@sina.com [Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China); State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang Youshao [Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China)

    2010-08-01

    Metallothioneins (MTs) are a family of low-molecular-weight cysteine-rich proteins and are thought to play possible roles in metal metabolism or detoxification. To evaluate the roles of metallothioneins in metal homeostasis or tolerance in Avicennia marina, a real-time quantitative PCR protocol was developed to directly evaluate the expression of AmMT2 mRNA, when A. marina seedlings were exposed to different concentrations of zinc (Zn), copper (Cu) or lead (Pb) for 3 and 7 d. Real-time quantitative PCR results indicated that the regulation of AmMT2 mRNA expression by Zn, Cu and Pb was strongly dependent on concentration and time of exposure. A significant increase in the transcripts of AmMT2 gene was also found in response to Zn, Cu and Pb, at least under some experimental conditions. When AmMT2 was overexpressed in Escherichia coli BL21 as a carboxy-terminal extension of glutathione-S-transferase (GST), the transgenic bacteria showed an increased tolerance to Zn, Cu, Pb and Cd exposure as compared to control strains. Moreover, GST-AmMT2 was purified from E. coli cells grown in the presence of 400 {mu}M Zn, Cu, Pb or Cd. The purified GST-AmMT2 fusion protein could bind higher levels of all four metals than GST alone. Taken together, these data support the hypothesis that AmMT2 may be involved in processes of metal homeostasis or tolerance in A. marina.

  1. Effects of metals on blood oxidative stress biomarkers and acetylcholinesterase activity in dice snakes (Natrix tessellata from Serbia

    Directory of Open Access Journals (Sweden)

    Gavrić Jelena P.

    2015-01-01

    Full Text Available The effects of waterborne metals in water on the activities of blood copper-zinc superoxide dismutase (CuZnSOD, catalase (CAT, glutathione peroxidase (GSH-Px, glutathione reductase (GR, glutathione-S-transferase (GST, and acetylcholinesterase (AChE, and on the concentrations of total glutathione (GSH and lipid peroxides (TBARS in the blood of dice snakes (Natrix tessellata caught in Obedska Bara, Sebia (control area, with snakes caught in Pančevački Rit, a contaminated area in Serbia were examined. The activities of CAT, GSH-Px, GR and AChE, and the concentration of TBARS were significantly decreased, while GST activity and GSH concentration were significantly increased in snakes from the contaminated area compared to specimens from the control area. Significantly increased concentrations of Al, As, B, Ba, Ca, Cu, Fe, K, Li, Mn, Na, Ni and Zn in the water at the contaminated area as compared to control area were detected. The metals Ag, Bi, Cd, Co, Hg, In and Tl were not observed in any of the localities. Cr, Mo and Pb were not detected at the control area but were observed at the contaminated area. The concentrations of Sr were similar at both sites. The concentration of Mg was 2-fold higher at the control site than at the contaminated area. The obtained results show that most of the investigated blood biomarkers correlate with concentrations of metals present in the environment. These findings suggest that dice snakes are sensitive bioindicator species for monitoring the effects of increased metal concentrations in the environment. [Projekat Ministarstva nauke Republike Srbije, br. 173041 i br. 173043

  2. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    Science.gov (United States)

    Dimkpa, Christian O.; McLean, Joan E.; Latta, Drew E.; Manangón, Eliana; Britt, David W.; Johnson, William P.; Boyanov, Maxim I.; Anderson, Anne J.

    2012-09-01

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  3. Influence of friction on the residual morphology, the penetration load and the residual stress distribution of a Zr-based bulk metallic glass

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2013-04-01

    Full Text Available In this paper, friction between the Cube-Corner indenter and the sample surface of a Zr-based bulk metallic glass (BMG was analyzed and discussed by the experimental method, the theoretical method and the finite element simulation. Linear residua are observed on the surface of the indenter for the first time, which gives the direct evidence that strong interaction processes exist between the indenter surface and the sample surface because of strong friction and local high contact press. A simplified model was developed to correct the penetration load with the consideration of friction. Effects of friction on the penetration load-depth curves, plastic flow, surface deformation and residual stress distribution of the sample with different friction coefficients were investigated by the finite element simulation.

  4. Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering

    International Nuclear Information System (INIS)

    Dubois, Marc-Alexandre; Muralt, Paul

    2001-01-01

    Polycrystalline aluminum nitride thin films were deposited onto platinum, aluminum, and titanium electrodes by reactive magnetron sputtering in the pulsed direct current mode. The films exhibited all a columnar microstructure and a c-axis texture. The built-in stress and the piezoelectric properties of these films were studied as a function of both the processing conditions and the electrode material. Stress was found to be very much dependent on the growth conditions, and values ranging from strong compression to high tension were observed. The piezoelectric d 33,f coefficient was shown to rely on substrate quality and ionic bombardment: The nucleation surface must be stable with regard to the nitrogen plasma and present a hexagonal symmetry and, on the other hand, enough energy must be delivered to the growing film through ionic bombardment. [copyright] 2001 American Institute of Physics

  5. Pressure-induced α->ω transition in titanium metal: a systematic study of the effects of uniaxial stress

    International Nuclear Information System (INIS)

    Errandonea, Daniel; Meng, Y.; Somayazulu, M.; Haeusermann, D.

    2005-01-01

    The effects of uniaxial stress on the pressure-induced α->ω transition in pure titanium (Ti) are investigated by means of angle dispersive X-ray diffraction in a diamond-anvil cell. Experiments under four different pressure environments reveal that: (1) the onset of the transition depends on the pressure medium used, going from 4.9GPa (no pressure medium) to 10.5GPa (argon pressure medium); (2) the α and ω phases coexist over a rather large pressure range, which depends on the pressure medium employed; (3) the hysteresis and quenchability of the ω phase is affected by differences in the sample pressure environment; and (4) a short-term laser heating of Ti lowers the α->ω transition pressure. Possible transition mechanisms are discussed in the light of the present results, which clearly demonstrate the influence of uniaxial stress in the α->ω transition

  6. Scanning electron-acoustic imaging of residual stress distributions in aluminum metal and ZrSiO4 multiphase ceramics

    International Nuclear Information System (INIS)

    Zhang, B.Y.; Jiang, F.M.; Shi, Y.; Yin, Q.R.; Qian, M.L.

    1997-01-01

    The scanning electron-acoustic imaging technique has been used in the characterization of the residual stress field distributions existing in the subsurface in aluminum disks and 20 vol% SiC ( w)/ZrSiO 4 multiphase ceramics left by Vicker close-quote s indentation. The experimental results reveal that the distribution areas are the plastic-elastic interchange zones. The electron-acoustic signal generation mechanism in the samples are discussed. copyright 1997 American Institute of Physics

  7. Finite Element Analysis for Fatigue Damage Reduction in Metallic Riveted Bridges Using Pre-Stressed CFRP Plates

    Directory of Open Access Journals (Sweden)

    Elyas Ghafoori

    2014-04-01

    Full Text Available Many old riveted steel bridges remain operational and require retrofit to accommodate ever increasing demands. Complicating retrofit efforts, riveted steel bridges are often considered historical structures where structural modifications that affect the original construction are to be avoided. The presence of rivets along with preservation requirements often prevent the use of traditional retrofit methods, such as bonding of fiber reinforced composites, or the addition of supplementary steel elements. In this paper, an un-bonded post-tensioning retrofit method is numerically investigated using existing railway riveted bridge geometry in Switzerland. The finite element (FE model consists of a global dynamic model for the whole bridge and a more refined sub-model for a riveted joint. The FE model results include dynamic effects from axle loads and are compared with field measurements. Pre-stressed un-bonded carbon fiber reinforced plastic (CFRP plates will be considered for the strengthening elements. Fatigue critical regions of the bridge are identified, and the effects of the un-bonded post-tensioning method with different pre-stress levels on fatigue susceptibility are explored. With an applied 40% CFRP pre-stress, fatigue damage reductions of more than 87% and 85% are achieved at the longitudinal-to-cross beam connections and cross-beam bottom flanges, respectively.

  8. Cyclic Thermal Stress-Induced Degradation of Cu Metallization on Si3N4 Substrate at -40°C to 300°C

    Science.gov (United States)

    Lang, Fengqun; Yamaguchi, Hiroshi; Nakagawa, Hiroshi; Sato, Hiroshi

    2015-01-01

    The high-temperature reliability of active metal brazed copper (AMC) on Si3N4 ceramic substrates used for fabricating SiC high-temperature power modules was investigated under harsh environments. The AMC substrate underwent isothermal storage at 300°C for up to 3000 h and a thermal cycling test at -40°C to 300°C for up to 3000 cycles. During isothermal storage at 300°C, the AMC substrate exhibited high reliability, characterized by very little deformation of the copper (Cu) layer, low crack growth, and low oxidation rate of the Cu layer. Under thermal cycling conditions at -40°C to 300°C, no detachment of the Cu layer was observed even after the maximum 3000 cycles of the experiment. However, serious deformation of the Cu layer occurred and progressed as the number of thermal cycles increased, thus significantly roughening the surface of the Cu metallized layer. The cyclic thermal stress led to a significant increase in the crack growth and oxidation of the Cu layer. The maximum depth of the copper oxides reached up to 5/6 of the Cu thickness. The deformation of the Cu layer was the main cause of the decrease of the bond strength under thermal cycling conditions. The shear strength of the SiC chips bonded on the AMC substrate with a Au-12 wt.%Ge solder decreased from the original 83 MPa to 14 MPa after 3000 cycles. Therefore, the cyclic thermal stress destroyed the Cu oxides and enhanced the oxidation of the Cu layer.

  9. An accelerated stress testing program for determining the reliability sensitivity of silicon solar cells to encapsulation and metallization systems

    Science.gov (United States)

    Lathrop, J. W.; Davis, C. W.; Royal, E.

    1982-01-01

    The use of accelerated testing methods in a program to determine the reliability attributes of terrestrial silicon solar cells is discussed. Different failure modes are to be expected when cells with and without encapsulation are subjected to accelerated testing and separate test schedules for each are described. Unencapsulated test cells having slight variations in metallization are used to illustrate how accelerated testing can highlight different diffusion related failure mechanisms. The usefulness of accelerated testing when applied to encapsulated cells is illustrated by results showing that moisture related degradation may be many times worse with some forms of encapsulation than with no encapsulation at all.

  10. Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress.

    Science.gov (United States)

    Schor-Fumbarov, Tamar; Goldsbrough, Peter B; Adam, Zach; Tel-Or, Elisha

    2005-12-01

    A cDNA encoding a type 2 metallothionein (MT) was isolated from Azolla filiculoides, termed AzMT2, accession no. AF482470. The AzMT2 transcript was expressed in sterile A. filiculoides that were free of the cyanobiont Anabaena azollae after erythromycin treatment, proving that AzMT2 is encoded by the fern genome. AzMT2 RNA expression was enhanced by the addition of Cd(+2), Cu(+2), Zn(+2) and Ni(+2) to the growth medium. The transcript level of AzMT2 correlated with the metal content in the plants. Temporal analysis of AzMT2 expression demonstrated that Cd(2+) and Ni(2+) induction of AzMT2 RNA expression occurred within 48 h. AzMT2-enhanced expression responded more intensely to the toxic Cd and Ni ions in A. filiculoides suggesting that AzMT2 may participate in detoxification mechanism. The more moderate response of AzMT2 to Zn and Cu ions, which are essential micronutrients, suggest a role for AzMT2 in metal homeostasis.

  11. Adaptation of the chlorophycean Dictyosphaerium chlorelloides to stressful acidic, mine metal-rich waters as result of pre-selective mutations.

    Science.gov (United States)

    López-Rodas, Victoria; Marvá, Fernando; Rouco, Mónica; Costas, Eduardo; Flores-Moya, Antonio

    2008-06-01

    Several species of microalgae, closely related to mesophilic lineages, inhabit the extreme environment (pH 2.5, high levels of metals) of the Spain's Aguas Agrias Stream water (AASW). Consequently, AASW constitutes an interesting natural laboratory for analysis of adaptation by microalgae to extremely stressful conditions. To distinguish between the pre-selective or post-selective origin of adaptation processes allowing the existence of microalgae in AASW, a Luria-Delbrück fluctuation analysis was performed with the chlorophycean Dictyosphaerium chlorelloides isolated from non-acidic waters. In the analysis, AASW was used as selective factor. Preselective, resistant D. chlorelloides cells appeared with a frequency of 1.1 x 10(-6) per cell per generation. AASW-resistant mutants, with a diminished Malthusian fitness, are maintained in non-extreme waters as the result of a balance between new AASW-resistant cells arising by mutation and AASW-resistant mutants eliminated by natural selection (equilibrium at c. 12 AASW-resistants per 10(7) wild-type cells). We propose that the microalgae inhabiting this stressful environment could be the descendents of chance mutants that arrived in the past or are even arriving at the present.

  12. Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles

    International Nuclear Information System (INIS)

    Bacon, D.H.; Edwards, L.; Moffatt, J.E.; Fitzpatrick, M.E.

    2011-01-01

    Highlights: → Synchrotron X-ray diffraction was used to measure internal stresses in Fe-TiB 2 MMCs. → Samples of the MMCs were loaded to failure in situ in the X-ray beam. → The results show good elastic load transfer from the matrix to the reinforcement. → There is good agreement with the predicted elastic stresses from Eshelby modeling. → During plastic deformation there is increasing load transfer to the reinforcement. - Abstract: High-energy synchrotron X-ray diffraction was used to measure the internal strain evolution in the matrix and reinforcement of steel-based metal matrix composites reinforced with particulate titanium diboride (TiB 2 ). Two systems were studied: a 316L matrix with 25% TiB 2 by volume and a W1.4418 matrix with 10% reinforcement. In situ loading experiments were performed, where the materials were loaded uniaxially in the X-ray beam. The results show the strain partitioning between the phases in the elastic regime, and the evolution of the strain partitioning once plasticity occurs. The results are compared with results from Eshelby modelling, and very good agreement is seen between the measured and modelled response for elastic loading of the material. Heat treatment of the 316-based material did not affect the elastic internal strain response.

  13. On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: Considerations of stress and energy

    Science.gov (United States)

    Ferguson, J. B.; Schultz, Benjamin F.; Venugopalan, Dev; Lopez, Hugo F.; Rohatgi, Pradeep K.; Cho, Kyu; Kim, Chang-Soo

    2014-03-01

    Yield strength improvement in dispersion strengthened alloys and nano particle-reinforced composites by well-known strengthening mechanisms such as solid solution, grain refinement, coherent and incoherent dispersed particles, and increased dislocation density resulting from work-hardening can all be described individually. However, there is no agreed upon description of how these mechanisms combine to determine the yield strength. In this work, we propose an analytical yield strength prediction model combining arithmetic and quadratic addition approaches based on the consideration of two types of yielding mechanisms; stress-activated and energy-activated. Using data available in the literature for materials of differing grain sizes, we consider the cases of solid solutions and coherent precipitates to show that they follow stress-activated behavior. Then, we applied our model with some empirical parameters to precipitationhardenable materials of various grain sizes in both coherent and incoherent precipitate conditions, which demonstrated that grain boundary and Orowan-strengthening can be treated as energy-activated mechanisms.

  14. Molecular oxidative stress markers in olive ridley turtles (Lepidochelys olivacea) and their relation to metal concentrations in wild populations.

    Science.gov (United States)

    Cortés-Gómez, Adriana A; Morcillo, Patricia; Guardiola, Francisco A; Espinosa, Cristobal; Esteban, María A; Cuesta, Alberto; Girondot, Marc; Romero, Diego

    2018-02-01

    Due to their longevity and extensive migration areas, marine turtles are able to accumulate diverse contaminants over many years and as a consequence they represent an interesting bioindicator species for marine ecosystem pollution. Metals provoke toxicological effects in many aquatic animal species, but marine turtles have been under-investigated in this area. Thus, we have determined the presence of certain inorganic elements (As, Cd, Cu, Ni, Pb, Se and Zn) in olive ridley turtles (Lepidochelys olivacea) and related them to metallothionein (MT), superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) transcription and/or enzymatic activities. Gene expression of sod, cat and gr was found to be higher in blood than liver or kidney but most of the significant relationships were found in liver, not only for gene expression but also for enzyme activities. This must be related to the role the liver has as the first filter organ. Several positive relationships of sod, cat and gr gene expression in the different tissues were found in this population, as well as very high Cd concentrations. This could mean that these turtles are adapting to the metals-production of ROS and damage through a high transcription of these antioxidants. Multiple positive relationships with GR seem to be part of its compensatory effect due to the decrease of SOD production against the high and chronic exposure to certain xenobiotics. CAT, on the other hand, seems not to be used much, and glutathione detoxification of H 2 O 2 may be more important in this species. Finally, despite the very high Cd concentrations found in this population, no significant relationship was found in any tissue with metallothionein gene expression. These results, along with very high Cd concentrations and a negative relationship with Cu, lead us to consider some kind of disruption in mt gene expression in these turtles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

    Science.gov (United States)

    Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu

    2016-08-01

    Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.

  16. Layer texture of hot-rolled BCC metals and its significance for stress-corrosion cracking of main gas pipelines

    Science.gov (United States)

    Perlovich, Yu. A.; Isaenkova, M. G.; Krymskaya, O. A.; Morozov, N. S.

    2016-10-01

    Based on data of X-ray texture analysis of hot-rolled BCC materials it was shown that the layerwise texture inhomogeneity of products is formed during their manufacturing. The effect can be explained by saturation with interstitial impurities of the surface layer, resulting in dynamical deformation aging (DDA). DDA prevents the dislocation slip under rolling and leads to an increase of lattice parameters in the external layer. The degree of arising inhomogeneity correlates with the tendency of hot-rolled sheets and obtained therefrom tubes to stress-corrosion cracking under exploitation, since internal layers have a compressive effect on external layers, and prevents opening of corrosion cracks at the tube surface.

  17. Metallic materials for heat exchanger components and highly stressed internal of HTR reactors for nuclear process heat generation

    International Nuclear Information System (INIS)

    1982-01-01

    The programme was aimed at the development and improvement of materials for the high-temperature heat exchanger components of a process steam HTR. The materials must have high resistance to corrosion, i.e. carburisation and internal oxidation, and high long-term toughness over a wide range of temperatures. They must also meet the requirements set in the nuclear licensing procedure, i.e. resistance to cyclic stress and irradiation, non-destructive testing, etc. Initially, it was only intended to improve and qualify commercial alloys. Later on an alloy development programme was initiated in which new, non-commercial alloys were produced and modified for use in a nuclear process heat facility. Separate abstracts were prepared for 19 pays of this volume. (orig./IHOE) [de

  18. Evaluation of reference genes for RT-qPCR study in abalone Haliotis discus hannai during heavy metal overload stress

    Directory of Open Access Journals (Sweden)

    Sang Yoon Lee

    2016-06-01

    Full Text Available Abstract Background The evaluation of suitable reference genes as normalization controls is a prerequisite requirement for launching quantitative reverse transcription-PCR (RT-qPCR-based expression study. In order to select the stable reference genes in abalone Haliotis discus hannai tissues (gill and hepatopancreas under heavy metal exposure conditions (Cu, Zn, and Cd, 12 potential candidate housekeeping genes were subjected to expression stability based on the comprehensive ranking while integrating four different statistical algorithms (geNorm, NormFinder, BestKeeper, and ΔCT method. Results Expression stability in the gill subset was determined as RPL7 > RPL8 > ACTB > RPL3 > PPIB > RPL7A > EF1A > RPL4 > GAPDH > RPL5 > UBE2 > B-TU. On the other hand, the ranking in the subset for hepatopancreas was RPL7 > RPL3 > RPL8 > ACTB > RPL4 > EF1A > RPL5 > RPL7A > B-TU > UBE2 > PPIB > GAPDH. The pairwise variation assessed by the geNorm program indicates that two reference genes could be sufficient for accurate normalization in both gill and hepatopancreas subsets. Overall, both gill and hepatopancreas subsets recommended ribosomal protein genes (particularly RPL7 as stable references, whereas traditional housekeepers such as β-tubulin (B-TU and glyceraldehyde-3-phosphate dehydrogenase (GAPDH genes were ranked as unstable genes. The validation of reference gene selection was confirmed with the quantitative assay of MT transcripts. Conclusions The present analysis showed the importance of validating reference genes with multiple algorithmic approaches to select genes that are truly stable. Our results indicate that expression stability of a given reference gene could not always have consensus across tissue types. The data from this study could be a good guide for the future design of RT-qPCR studies with respect to metal regulation/detoxification and other related

  19. Primary water stress corrosion cracks in nickel alloy dissimilar metal welds: Detection and sizing using established and emerging nondestructive examination techniques

    International Nuclear Information System (INIS)

    Braatz, B.G.; Doctor, S.R.; Cumblidge, S.E.; Prokofiev, I.G.

    2012-01-01

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (∼400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional and phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (∼900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for

  20. Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.; Prokofiev, Iouri

    2012-12-31

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional and phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for

  1. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  2. Construction of environmental risk score beyond standard linear models using machine learning methods: application to metal mixtures, oxidative stress and cardiovascular disease in NHANES.

    Science.gov (United States)

    Park, Sung Kyun; Zhao, Zhangchen; Mukherjee, Bhramar

    2017-09-26

    There is growing concern of health effects of exposure to pollutant mixtures. We initially proposed an Environmental Risk Score (ERS) as a summary measure to examine the risk of exposure to multi-pollutants in epidemiologic research considering only pollutant main effects. We expand the ERS by consideration of pollutant-pollutant interactions using modern machine learning methods. We illustrate the multi-pollutant approaches to predicting a marker of oxidative stress (gamma-glutamyl transferase (GGT)), a common disease pathway linking environmental exposure and numerous health endpoints. We examined 20 metal biomarkers measured in urine or whole blood from 6 cycles of the National Health and Nutrition Examination Survey (NHANES 2003-2004 to 2013-2014, n = 9664). We randomly split the data evenly into training and testing sets and constructed ERS's of metal mixtures for GGT using adaptive elastic-net with main effects and pairwise interactions (AENET-I), Bayesian additive regression tree (BART), Bayesian kernel machine regression (BKMR), and Super Learner in the training set and evaluated their performances in the testing set. We also evaluated the associations between GGT-ERS and cardiovascular endpoints. ERS based on AENET-I performed better than other approaches in terms of prediction errors in the testing set. Important metals identified in relation to GGT include cadmium (urine), dimethylarsonic acid, monomethylarsonic acid, cobalt, and barium. All ERS's showed significant associations with systolic and diastolic blood pressure and hypertension. For hypertension, one SD increase in each ERS from AENET-I, BART and SuperLearner were associated with odds ratios of 1.26 (95% CI, 1.15, 1.38), 1.17 (1.09, 1.25), and 1.30 (1.20, 1.40), respectively. ERS's showed non-significant positive associations with mortality outcomes. ERS is a useful tool for characterizing cumulative risk from pollutant mixtures, with accounting for statistical challenges such as high

  3. Stress Dispersed Cu Metal Anode by Laser Multiscale Patterning for Lithium-Ion Batteries with High Capacity

    Directory of Open Access Journals (Sweden)

    Jin-Young So

    2018-06-01

    Full Text Available Electric power production continues to increase as the industry advances, and the demand for high-capacity batteries for efficient operation of the electric power produced is higher than ever before. Si has been attracting a great deal of attention recently as an anode electrode material because of its high theoretical capacity. However, it suffers from significant capacity-loss, resulting from the volume-expansion of Si during charge and discharge cycles. Inspired by the multiscale structures commonly found in nature, we attempt to solve this problem by patterning the surface of the Cu current-collector. To this end, we develop a direct, one-step method using laser patterning to manufacture a multiscale structure on the surface of the current-collector. The inherent exfoliation characteristic of the Cu current-collector allows the spontaneous formation of the multiscale structure while being irradiated with a laser. A micro/nano structure, with a different surface area, is fabricated by varying the laser output at three levels, and the batteries prepared with the fabricated Cu current-collector are tested to evaluate their charge-discharge characteristics and electrochemical impedance. The results show that the multiscale structure reduces mechanical stress. The initial capacity of the Cu current-collector is proportional to the laser output, and the initial capacity of the coin cell prepared with the Cu current-collector, fabricated at the highest laser output, is 396.7% higher than that of the coin cell prepared with a bare Cu current-collector. The impedance is inversely proportional to the laser output. The charge transfer resistance of the coin cell prepared with the Cu current-collector and irradiated with the highest laser output is 190.2% lower than that of the coin cell prepared with the bare Cu current-collector.

  4. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for residual stress analysis in weld joint. Analysis model of dissimilar metal weld joint applied post weld heat treatment (PWHT)

    International Nuclear Information System (INIS)

    2012-12-01

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  5. Changes in mycelia growth, sporulation, and virulence of Phytophthora capsici when challenged by heavy metals (Cu2+, Cr2+ and Hg2+) under acid pH stress.

    Science.gov (United States)

    Liu, Peiqing; Wei, Mengyao; Zhang, Jinzhu; Wang, Rongbo; Li, Benjin; Chen, Qinghe; Weng, Qiyong

    2018-04-01

    Phytophthora capsici, an economically devastating oomycete pathogen, causes devastating disease epidemics on a wide range of vegetable plants and pose a grave threat to global vegetables production. Heavy metals and acid pH are newly co-occurring stresses to soil micro-organisms, but what can be expected for mycelia growth and virulence and how they injure the oomycetes (especially P. capsici) remains unknown. Here, the effects of different heavy metals (Cu 2+ , Cr 2+ , and Hg 2+ ) on mycelia growth and virulence were investigated at different pHs (4.0 vs. 7.0) and the plausible molecular and physiological mechanisms were analyzed. In the present study, we compared the effective inhibition of different heavy metals (Cu 2+ , Cr 2+ , and Hg 2+ ) and acid pH on a previously genome sequenced P. capsici virulent strain LT1534. Both stress factors independently affected its mycelia growth and sporulation. Next, we investigated whether ROS participated in the pH-inhibited mycelial growth, finding that the ROS scavenger, catalase (CAT), significantly inhibited the acid pH-induced ROS in mycelia. Additionally, because MAPK specially transmits different stress responsive signals in environment into cells, we employed CAT and a p38-MAPK pathway inhibitor to investigate ROS and p38-MAPK roles in heavy metal-inhibited mycelia growth at different pHs (4.0 vs. 7.0), finding that they significantly inhibited growth. Furthermore, ROS and p38-MAPK influenced the heavy metal-induced TBARS content, total antioxidant capacity (TAC), and CAT activity at different pHs, and also reduced the expression of infection-related laccases (PcLAC2) and an effector-related protein (PcNLP14). We propose that acid pH stress accelerates how heavy metals inhibit mycelium growth, sporulation, and virulence change in P. capsici, and posit that ROS and p38-MAPK function to regulate the molecular and physiological mechanisms underlying this toxicity. Although these stresses induce molecular and

  6. Mechanistic modeling analysis of micro-evolutive responses from a Caenorhabditis elegans population exposed to a radioactive metallic stress

    International Nuclear Information System (INIS)

    Goussen, Benoit

    2013-01-01

    The evolution of toxic effects at a relevant scale is an important challenge for the ecosystem protection. Indeed, pollutants may impact populations over long-term and represent a new evolutionary force which can be adding itself to the natural selection forces. Thereby, it is necessary to acquire knowledge on the phenotypics and genetics changes that may appear in populations submitted to stress over several generations. Usually statistical analyses are performed to analyse such multi-generational studies. The use of a mechanistic mathematical model may provide a way to fully understand the impact of pollutants on the populations' dynamics. Such kind of model allows the integration of biological and toxic processes into the analysis of eco-toxicological data and the assessment of interactions between these processes. The aim of this Ph.D. project was to assess the contributions of the mechanistic modelling to the analysis of evolutionary experiment assessing long-term exposure. To do so, a three step strategy has been developed. Foremost, a multi-generational study was performed to assess the evolution of two populations of the ubiquitous nematode Caenorhabditis elegans in control conditions or exposed to 1.1 mM of uranium. Several generations were selected to assess growth, reproduction, and dose-responses relationships, through exposure to a range of concentrations (from 0 to 1.2 mM U) with all endpoints measured daily. A first statistical analysis was then performed. In a second step, a bio-energetic model adapted to the assessment of eco-toxicological data (DEBtox) was developed on C. elegans. Its numerical behaviour was analysed. Finally, this model was applied to all the selected generations in order to infer parameters values for the two populations and to assess their evolutions. Results highlighted an impact of the uranium starting from 0.4 mM U on both C. elegans' growth and reproduction. Results from the mechanistic analysis indicate this effect is due

  7. Effects of water stress, organic amendment and mycorrhizal inoculation on soil microbial community structure and activity during the establishment of two heavy metal-tolerant native plant species.

    Science.gov (United States)

    Fernández, D A; Roldán, A; Azcón, R; Caravaca, F; Bååth, E

    2012-05-01

    Our aim was to examine the effect of water stress on plant growth and development of two native plant species (Tetraclinis articulata and Crithmum maritimum) and on microbial community composition and activity in the rhizosphere soil, following the addition of an organic amendment, namely sugar beet residue (SBR), and/or the inoculation with an arbuscular mycorrhizal (AM) fungus, namely Glomus mosseae, in a non-sterile heavy metal-polluted soil. The AM inoculation did not have any significant effect on plant growth of both species. In T. articulata, SBR increased shoot growth, foliar P, total phospholipid fatty acids (PLFA), fungi-related PLFA, AM fungi-related neutral lipid fatty acid, bacterial gram-positive/gram-negative PLFA ratio and the β-glucosidase and dehydrogenase activities. SBR and AM inoculation increased phosphatase activity in T. articulata plants grown under drought conditions. In both plants, there was a synergistic effect between AM inoculation and SBR on mycorrhizal colonisation under drought conditions. In C. maritimum, the increase produced by the SBR on total amounts of PLFA, bacterial gram-positive-related PLFA and bacterial gram-negative-related PLFA was considerably higher under drought conditions. Our results suggest that the effectiveness of the amendment with regard to stimulating microbial communities and plant growth was largely limited by drought, particularly for plant species with a low degree of mycorrhizal colonisation.

  8. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    Science.gov (United States)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  9. Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: An investigation with pigment analysis by HPLC

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Babu, P.V.R.; Acharyya, T.; Bandyopadhyay, D.

    for the destruction of H 2 O 2 , leading to the production of free radicals and oxidative destruction of membrane lipids (Sandmann & Boger 1980). This metal ion may react with sulphydryl groups to lower intracellular thiol concentration, or it may interfere... attempts are now being made to relate metal toxicity to speciation and the concentration of free metal ions. Most studies in which the toxicity of metals to microorganisms has been varied by addition of organic complexing agents suggest that not only...

  10. Expression of γ-tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal-induced oxidative stresses by reducing reactive oxygen species.

    Science.gov (United States)

    Jin, Shuangxia; Daniell, Henry

    2014-12-01

    The γ-tocopherol methyltransferase (γ-TMT) is an important enzyme regulating synthesis of four tocopherols (α, γ, β and δ). In this report, we investigated the role of γ-TMT in regulating abiotic stress within chloroplasts. The At γ-tmt overexpressed via the tobacco chloroplast genome accumulated up to 7.7% of the total leaf protein, resulting in massive proliferation of the inner envelope membrane (IEM, up to eight layers). Such high-level expression of γ-TMT converted most of γ-tocopherol to α-tocopherol in transplastomic seeds (~10-fold higher) in the absence of abiotic stress. When grown in 400 mm NaCl, α-tocopherol content in transplastomic TMT leaves increased up to 8.2-fold and 2.4-fold higher than wild-type leaves. Likewise, under heavy metal stress, α-tocopherol content in the TMT leaves increased up to 7.5-fold, twice higher than in the wild type. Under extreme salt stress, the wild type accumulated higher starch and total soluble sugars, but TMT plants were able to regulate sugar transport. Hydrogen peroxide and superoxide content in wild type increased up to 3-fold within 48 h of NaCl stress when compared to TMT plants. The ion leakage from TMT leaves was significantly less than wild-type plants under abiotic stress and with less malondialdehyde, indicating lower lipid peroxidation. Taken together, these studies show that α-tocopherol plays a crucial role in the alleviation of salt and heavy metal stresses by decreasing ROS, lipid peroxidation and ion leakage, in addition to enhancing vitamin E conversion. Increased proliferation of the IEM should facilitate studies on retrograde signalling from chloroplast to the nucleus. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Expression of γ-tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal-induced oxidative stress by reducing reactive oxygen species

    Science.gov (United States)

    Jin, Shuangxia; Daniell, Henry

    2014-01-01

    Summary The γ-tocopherol methyltransferase (γ-TMT) is an important enzyme regulating synthesis of four tocopherols (α, γ, β and δ). In this report, we investigated the role of γ-TMT in regulating abiotic stress within chloroplasts. The At γ-tmt overexpressed via the tobacco chloroplast genome accumulated up to 7.7% of the total leaf protein, resulting in massive proliferation of the inner envelope membrane (IEM, up to 8 layers). Such high level expression of γ-TMT converted most of γ-tocopherol to α-tocopherol in transplastomic seeds (~10 fold higher) in the absence of abiotic stress. When grown in 400 mM NaCl, α-tocopherol content in transplastomic TMT leaves increased up to 8.2-fold and 2.4-fold higher than wild-type leaves. Likewise, under heavy metal stress α-tocopherol content in the TMT leaves increased up to 7.5-fold, twice higher than in the wild-type. Under extreme salt stress, the wild-type accumulated higher starch and total soluble sugars but TMT plants were able to regulate sugar transport. Hydrogen peroxide and superoxide content in wild-type increased up to 3-fold within 48 hours of NaCl stress when compared to TMT plants. The ion leakage from TMT leaves was significantly less than wild-type plants under abiotic stress and with less malondialdehyde, indicating lower lipid peroxidation. Taken together, these studies show that α-tocopherol plays a crucial role in the alleviation of salt and heavy metal stresses by decreasing ROS, lipid peroxidation and ion leakage, in addition to enhancing vitamin E conversion. Increased proliferation of the IEM should facilitate studies on retrograde signaling from chloroplast to the nucleus. PMID:25051898

  12. Redox proteomics changes in the fungal pathogen Trichosporon asahii on arsenic exposure: identification of protein responses to metal-induced oxidative stress in an environmentally-sampled isolate.

    Directory of Open Access Journals (Sweden)

    Sidra Ilyas

    suggest extensive proteomic alterations in response to metal-induced oxidative stress in T. asahii. Amino acid metabolism, protein folding and degradation are principally affected.

  13. Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium.

    NARCIS (Netherlands)

    Keltjens, W.G.; Beusichem, van M.L.

    1998-01-01

    Abstract

    Heavy metal contaminated soils often show increased levels of more than one metal, e.g. copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb) or nickel (Ni). In case such soils are used for crop production, prediction of yield reduction or quality decline due to heavy metals in the soil

  14. Metallurgy of stress corrosion cracking

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1973-01-01

    The susceptibility of metals and alloys to stress corrosion is discussed in terms of the relationship between structural characteristics (crystal structure, grains, and second phases) and defects (vacancies, dislocations, and cracks) that exist in metals and alloys. (U.S.)

  15. Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing.

    Science.gov (United States)

    Anantharaman, Vivek; Iyer, Lakshminarayan M; Aravind, L

    2012-10-30

    The mode of action of the bacterial ter cluster and TelA genes, implicated in natural resistance to tellurite and other xenobiotic toxic compounds, pore-forming colicins and several bacteriophages, has remained enigmatic for almost two decades. Using comparative genomics, sequence-profile searches and structural analysis we present evidence that the ter gene products and their functional partners constitute previously underappreciated, chemical stress response and anti-viral defense systems of bacteria. Based on contextual information from conserved gene neighborhoods and domain architectures, we show that the ter gene products and TelA lie at the center of membrane-linked metal recognition complexes with regulatory ramifications encompassing phosphorylation-dependent signal transduction, RNA-dependent regulation, biosynthesis of nucleoside-like metabolites and DNA processing. Our analysis suggests that the multiple metal-binding and non-binding TerD paralogs and TerC are likely to constitute a membrane-associated complex, which might also include TerB and TerY, and feature several, distinct metal-binding sites. Versions of the TerB domain might also bind small molecule ligands and link the TerD paralog-TerC complex to biosynthetic modules comprising phosphoribosyltransferases (PRTases), ATP grasp amidoligases, TIM-barrel carbon-carbon lyases, and HAD phosphoesterases, which are predicted to synthesize novel nucleoside-like molecules. One of the PRTases is also likely to interact with RNA by means of its Pelota/Ribosomal protein L7AE-like domain. The von Willebrand factor A domain protein, TerY, is predicted to be part of a distinct phosphorylation switch, coupling a protein kinase and a PP2C phosphatase. We show, based on the evidence from numerous conserved gene neighborhoods and domain architectures, that both the TerB and TelA domains have been linked to diverse lipid-interaction domains, such as two novel PH-like and the Coq4 domains, in different bacteria

  16. Welding stresses

    International Nuclear Information System (INIS)

    Poirier, J.; Barbe, B.; Jolly, N.

    1976-01-01

    The aim is to show how internal stresses are generated and to fix the orders of magnitude. A realistic case, the vertical welding of thick plates free to move one against the other, is described and the deformations and stresses are analyzed. The mathematical model UEDA, which accounts for the elastic modulus, the yield strength and the expansion coefficient of the metal with temperature, is presented. The hypotheses and results given apply only to the instantaneous welding of a welded plate and to a plate welded by a moving electrode [fr

  17. Evaluating the damage of steel 09G2S under static and cyclic loading with regard for the level of residual stresses in the metal

    Science.gov (United States)

    Kuznetsov, A. V.; Kamantsev, I. S.; Zadvorkin, S. M.; Drukarenko, N. A.; Goruleva, L. S.; Veselova, V. E.

    2017-12-01

    An approach to the estimation of the residual durability of structural elements in view of their initial stress-strain state is proposed. The adequacy of the developed approach is confirmed by experiments on cyclic loading of specimens without pronounced stress concentrators simulating the work of real structural elements under conditions of overshooting the total stresses causing local plastic deformation of the material, with regard for residual stresses.

  18. Ultrastructural changes and Heat Shock Proteins 70 induced by atmospheric pollution are similar to the effects observed under in vitro heavy metals stress in Conocephalum conicum (Marchantiales--Bryophyta).

    Science.gov (United States)

    Basile, Adriana; Sorbo, Sergio; Conte, Barbara; Cardi, Manuela; Esposito, Sergio

    2013-11-01

    Changes in ultrastructure and induction of Heat Shock Proteins 70 have been studied in Conocephalum conicum (Marchantiales) collected in different urban and country sites in Italy. These results were compared to the effects in vitro of exposition to different heavy metals for several days. At urban sites, cellular ultrastructure was modified, and heavy metals could be observed accumulating in cell walls. Simultaneously, a strong increment in Hsp70 was detected, compared with results observed on control specimens. When C. conicum was exposed to heavy metals in vitro, comparable effects as in polluted sites were observed: Cd and Pb accumulated mostly within parenchyma and, within cells, were absorbed to cell walls or concentrated in vacuoles. Moreover, severe alterations were observed in organelles. Concomitantly, a progressive accumulation of Hsp70 was detected following heavy metals exposition. These effects are discussed in order to describe the dose and time-dependent response to heavy metal stress in C. conicum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Glassy metals

    CERN Document Server

    Russew, Krassimir

    2016-01-01

    The topics discussed in this book focus on fundamental problems concerning the structural relaxation of amorphous metallic alloys, above all the possibility of studying it on the basis of viscous flow behavior and its relation to rheological anomalies, such as bend stress relaxation, thermal expansion, specific heat, density changes, and crystallization. Most relaxation studies deal with the relaxation changes of a single definite material property, and not with a wider spectrum of physical properties integrated into a common framework. This book shows that it is possible to describe these property changes on the basis of a more comprehensive theoretical understanding of their mechanism.

  20. Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Gabriele Pizzino

    2014-01-01

    Conclusions: Continuous exposure at relatively low concentrations of heavy metals is associated with increased oxidative DNA damage and impaired expression of DNA repair and detoxification genes in adolescents.

  1. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    International Nuclear Information System (INIS)

    Wan Rong; Mo Yiqun; Zhang Xing; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2008-01-01

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO 2 to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of some transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO 2 and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO 2 , at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression .. Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO 2 . Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2 (TIMP-2) in U937 cells

  2. Functional and compositional responses in soil microbial communities along two metal pollution gradients: does the level of historical pollution affect resistance against secondary stress?

    NARCIS (Netherlands)

    Azarbad, H.; Niklinska, M.; Nikiel, K.; van Straalen, N.M.; Röling, W.F.M.

    2015-01-01

    We examined how the exposure to secondary stressors affected the functional and compositional responses of microbial communities along two metal pollution gradients in Polish forests and whether responses were influenced by the level of metal pollution. Basal respiration rate and community

  3. An aldo-keto reductase, Bbakr1, is involved in stress response and detoxification of heavy metal chromium but not required for virulence in the insect fungal pathogen, Beauveria bassiana.

    Science.gov (United States)

    Wang, Huifang; He, Zhangjiang; Luo, Linli; Zhao, Xin; Lu, Zhuoyue; Luo, Tingying; Li, Min; Zhang, Yongjun

    2018-02-01

    The aldo-keto reductases (AKRs) belong to the NADP-dependent oxidoreductase superfamily, which play important roles in various physiological functions in prokaryotic and eukaryotic organisms. However, many AKR superfamily members remain uncharacterized. Here, a downstream target gene of the HOG1 MAPK pathways coding for an aldo-keto reductase, named Bbakr1, was characterized in the insect fungal pathogen, Beauveria bassiana. Bbakr1 expression increased in response to osmotic and salt stressors, and oxidative and heavy metal (chromium) stress. Deletion of Bbakr1 caused a reduction in conidiation, as well as delayed conidial germination. ΔBbakr1 displayed increased sensitivity to osmotic/high-salt stress with decreased compatible solute accumulation. In addition, the mutant was more sensitive to high concentrations of the heavy metal, chromium, and to oxidative stress than the wild type cells, with impaired ability to detoxify active aldehyde that might accumulate due to lipid peroxidation. However, over-expressing Bbakr1 in either the wild type strain or a ΔBbhog1 background did not cause any obvious changes in phenotypes as compared to their controls. Little effect on virulence was seen for either the ΔBbakr1 or overexpression strains in insect bioassays via cuticle infection or intrahemocoel injection assays, suggesting that Bbakr1 is not required for virulence. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  5. Propensity to metal accumulation and oxidative stress responses of two benthic species (Cerastoderma edule and Nephtys hombergii): are tolerance processes limiting their responsiveness?

    KAUST Repository

    Marques, Ana

    2016-02-24

    The chronic exposure of benthic organisms to metals in sediments can lead to the development of tolerance mechanisms, thus diminishing their responsiveness. This study aims to evaluate the accumulation profiles of V, Cr, Co, Ni, As, Cd, Pb and Hg and antioxidant system responses of two benthic organisms (Cerastoderma edule, Bivalvia; Nephtys hombergii, Polychaeta). This approach will provide clarifications about the ability of each species to signalise metal contamination. Organisms of both species were collected at the Tagus estuary, in two sites with distinct contamination degrees (ALC, slightly contaminated; BAR, highly contaminated). Accordingly, C. edule accumulated higher concentrations of As, Pb and Hg at BAR compared to ALC. However, antioxidant responses of C. edule were almost unaltered at BAR and no peroxidative damage occurred, suggesting adjustment mechanisms to the presence of metals. In contrast, N. hombergii showed a minor propensity to metal accumulation, only signalising spatial differences for As and Pb and accumulating lower concentrations of metals than C. edule. The differences in metal accumulation observed between species might be due to their distinctive foraging behaviour and/or the ability of N. hombergii to minimise the metal uptake. Despite that, the accumulation of As and Pb was on the basis of the polychaete antioxidant defences inhibition at BAR, including CAT, SOD, GR and GPx. The integrated biomarker response index (IBRv2) confirmed that N. hombergii was more affected by metal exposure than C. edule. In the light of current findings, in field-based studies, the information of C. edule as a bioindicator should be complemented by that provided by another benthic species, since tolerance mechanisms to metals can hinder a correct diagnosis of sediment contamination and of the system’s health. Overall, the present study contributed to improve the lack of fundamental knowledge of two widespread and common estuarine species, providing

  6. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration.

    Directory of Open Access Journals (Sweden)

    Keiko Yamaji

    Full Text Available Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s underlying this species' ability to tolerate the sites' severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations.

  7. Propensity to metal accumulation and oxidative stress responses of two benthic species (Cerastoderma edule and Nephtys hombergii): are tolerance processes limiting their responsiveness?

    KAUST Repository

    Marques, Ana; Piló , David; Araú jo, Olinda; Pereira, Fá bio; Guilherme, Sofia; Carvalho, Susana; Santos, Maria Ana; Pacheco, Má rio; Pereira, Patrí cia

    2016-01-01

    and antioxidant system responses of two benthic organisms (Cerastoderma edule, Bivalvia; Nephtys hombergii, Polychaeta). This approach will provide clarifications about the ability of each species to signalise metal contamination. Organisms of both species were

  8. Stress, microstructure and evolution under ion irradiation in thin films grown by ion beam sputtering: modelling and application to interfacial effects in metallic multilayers

    International Nuclear Information System (INIS)

    Debelle, A.

    2006-09-01

    We have investigated the formation of the interfacial chemical mixing in Mo/Ni multilayers, and particularly the influence of ballistic effects during the growth. For this purpose, hetero-epitaxial b.c.c./f.c.c. Mo(110)/Ni(111) multilayers were grown by two deposition methods: thermal evaporation and direct ion beam sputtering. As a preliminary, an accurate description of the stress state in pure sputtered Mo thin films was required. Microstructural and stress state analyses were essentially carried out by X-ray diffraction, and ion irradiation was used as a powerful tool to control the stress level. We showed that thermal evaporated thin films exhibit a weak tensile growth stress (∼ 0.6 GPa) that can be accounted for by the grain boundary relaxation model, whereas sputtered thin films develop large compressive growth stress (- 2 to - 4 GPa). This latter results from the bombardment of the growing film by the energetic particles involved during the sputtering process (atomic peening phenomenon), which induces the formation of defects in the layers, generating volume distortions. We thus developed a stress model that includes a hydrostatic stress component to account for these volume strains. This model allowed us to determine the 'unstressed and free of defects lattice parameter' a 0 , solely linked to chemical effects. For epitaxial Mo layers, it was possible to separate coherency stress from growth stress due to their distinct kinetic evolution during ion irradiation. Therefore, the stress analysis enabled us to determine the a 0 values in Mo sub-layers of Mo/Ni superlattices. A tendency to the formation of an interfacial alloy is observed independently of the growth conditions, which suggests that thermodynamic forces favour the exchange mechanism. However, the extent of the intermixing effect is clearly enhanced by ballistic effects. (author)

  9. Contour forming of metals by laser peening

    Science.gov (United States)

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  10. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  11. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  12. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    Science.gov (United States)

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Stress Proteins (hsp70, hsp60) Induced in Isopods and Nematodes by Field Exposure to Metals in a Gradient near Avonmouth, UK

    NARCIS (Netherlands)

    Arts, M.S.J.; Schill, R.O.; Knigge, T.; Eckwert, H.; Kammenga, J.E.; Köhler, H.R.

    2004-01-01

    Heat shock proteins (hsps) are potential biomarkers for monitoring environmental pollution. In this study, the use of hsps as biomarkers in field bioassays was evaluated in terrestrial invertebrates exposed to a metal gradient near Avonmouth, UK. We investigated the hsp70 response in resident and

  14. Thermal stress in the scanning tunneling microscopy of the metallic heterostructure lead on copper(111); Thermospannung bei der Rastertunnelmikroskopie der metallischen Heterostruktur Blei auf Kupfer(111)

    Energy Technology Data Exchange (ETDEWEB)

    Langenkamp, Winfried

    2008-02-22

    The thermal stress, which arises, when tip and sample of a scanning tunneling microscope have different temperatures, was studied in the system lead on copper(111). Thereby atomic resolution on the 4 x 4 superstructure of the lead atoms of the first layer was reached. The thermal stress of lead island was studied because the electronic density of states here is in the greatest part determined by quantum pot states. The density of states as function of the energy can by approached as step function und is by this available for a mathematical modelling. As sum of the influence of the substrates and the influence by the quantum pot states it bas possible to develop a model. in which the thermal stress for lead islands on copper(111) can be described also quantitatively.

  15. Metals and Neurodegeneration

    Science.gov (United States)

    Chen, Pan; Miah, Mahfuzur Rahman; Aschner, Michael

    2016-01-01

    Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration. PMID:27006759

  16. A double metal process

    International Nuclear Information System (INIS)

    Hawley, F.; Vasche, G.; Caywood, J.M.; Houck, B.; Boyce, J.; Tso, L.

    1988-01-01

    A dual layer metallization process is studied using a Tungsten 10% Titanium/Molybdenum sandwich (TiW/Mo) first metal with an Al/.5% Cu for the second metal. This metallization process has: 1) very reliable shallow junction contacts without junction spiking, 2) very high electromigration resistance and (3) A very smooth defect free surface throughout the process. Contact resistance of 50 and 30 ohm-um2 for P and N type silicon respectively is achieved. The TiW/Mo film stress is studied and an optimum condition for low compressive stress is defined. The TiW/Mo is etched using a corrosion free etch process. Electromigration data is presented showing TiW/Mo to be at least an order of magnitude better than Al/Si. The intermetal oxide layer is a planarized sandwich of LTO/SOG/LTO providing a smooth positive slope surface for the Metal 2. Metal l/Metal 2 via resistances are studied with 1.25 ohm-um2 values obtained

  17. Ferric Sulfate and Proline Enhance Heavy-Metal Tolerance of Halophilic/Halotolerant Soil Microorganisms and Their Bioremediation Potential for Spilled-Oil Under Multiple Stresses

    Science.gov (United States)

    Al-Mailem, Dina M.; Eliyas, Mohamed; Radwan, Samir S.

    2018-01-01

    The aim of this study was to explore the heavy-metal resistance and hydrocarbonoclastic potential of microorganisms in a hypersaline soil. For this, hydrocarbonoclastic microorganisms were counted on a mineral medium with oil vapor as a sole carbon source in the presence of increasing concentrations of ZnSO4, HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4. The colony-forming units counted decreased in number from about 150 g-1 on the heavy-metal-free medium to zero units on media with 40–100 mg l-1 of HgCl2, CdSO4, PbNO3, or Na2HAsO4. On media with CuSO4 or ZnSO4 on the other hand, numbers increased first reaching maxima on media with 50 mg l-1 CuSO4 and 90 mg l-1 ZnSO4. Higher concentrations reduced the numbers, which however, still remained considerable. Pure microbial isolates in cultures tolerated 200–1600 mg l-1 of HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4 in the absence of crude oil. In the presence of oil vapor, the isolates tolerated much lower concentrations of the heavy metals, only 10–80 mg l-1. The addition of 10 Fe2(SO4)3 and 200 mg l-1 proline (by up to two- to threefold) enhanced the tolerance of several isolates to heavy metals, and consequently their potential for oil biodegradation in their presence. The results are useful in designing bioremediation technologies for oil spilled in hypersaline areas. PMID:29563904

  18. Oxidative stress biomarkers in Senegal sole, Solea senegalensis, to assess the impact of heavy metal pollution in a Huelva estuary (SW Spain): seasonal and spatial variation.

    Science.gov (United States)

    Oliva, Milagrosa; José Vicente, Juan; Gravato, Carlos; Guilhermino, Lucia; Dolores Galindo-Riaño, María

    2012-01-01

    The response of wild fish to heavy metals was studied in sole (Solea senegalensis) collected in 2004, 2005 and 2006 at three sampling sites from Huelva estuary (SW Spain), in the vicinity of a petrochemical and mining industry. Heavy metals As, Cd, Cu, Fe, Pb and Zn were analyzed in samples collected from sediment, water and tissue (liver) to examine their bioconcentration and effects in fish such as lipid peroxidation (LPO), catalase (CAT; EC 1.11.1.6), glutathione peroxidase (GPx; EC 1.8.1.7), glutathione S-transferase (GST; EC 2.5.1.18) and glutathione reductase (GR; EC 1.11.1.6) were also analyzed in the fish liver. The results showed different effects in sole from diverse locations with varying degrees of pollution. Significant differences in LPO, CAT and GR activities between control fish and fish from sampling sites were observed as well as seasonal differences for biomarkers. Significant correlations were established between some biomarkers and heavy metals concentrations in liver, sediment and water. This study indicates the usefulness of integrating a set of biomarkers to assess the effects of pollutants in aquatic environments under complex mix of pollutants and chronic pollution situation. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Effect of chelating agents and metal ions on nickel bioavailability and chlorophyll fluorescence response in wheat- An approach for attenuation of Ni stress

    Directory of Open Access Journals (Sweden)

    Nilima Patnaik

    2012-08-01

    Full Text Available The objectives of the study are to analyze the physiological changes, biochemical alterations and attenuation of nickel toxicity effects in wheat seedlings under combined applications of Ni ions, metal chelators (EDTA/Citric Acid and metal ions (Zn2+ /Mg2+. Wheat (Triticum aestivum L cv UP262 seedlings were grown hydroponically using different concentrations of Ni up to 7 days along with chelators and metal ions for study. The seedling growth was maximum with NiCl2–Zn2+ (100μM and minimum with NiCl2–EDTA (100μM treatments. Total chlorophyll content was maximum in the seedlings treated with NiCl2-Zn2+ (100μM and minimum in NiCl2-EDTA (100μM treatments. NiCl2–EDTA (100μM showed less Fo and Fm values and therefore, a trend in the decrease in OJIP transient indicates the maximum alteration of photochemical activity of PS-II in presence of NiCl2–EDTA (100μM treatment. Similar observation was found by NiCl2 –EDTA (200μM treatment where Fo and Fm values were noted to decline. High nickel content in roots of the seedlings was noted as compared to shoots.

  20. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  1. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2015-10-01

    Full Text Available Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  2. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review.

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-10-09

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  3. Heavy metals

    OpenAIRE

    Adriano, Domy; VANGRONSVELD, Jaco; Bolan, N.S.; Wenzel, W.W.

    2005-01-01

    - Sources of Metals in the Environment - Environmental Contamination - Retention and Dynamics of Metals in Soils - Adsorption - Complexation - Precipitation - Bioavailability–Natural Attenuation Interactions - Biological Response to Metals - Soil Remediation

  4. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  5. Investigations on the effect of creep stress on the thermal properties of metallic materials; Untersuchungen zum Einfluss der Zeitstandbeanspruchung auf die thermischen Eigenschaften metallischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, U [Univ. Dortmund (Germany); Crostack, H A [Univ. Dortmund (Germany); Winschuh, E [Siemens KWU, Offenbach (Germany)

    1996-12-31

    Using thermal wave analysis with front side infrared detection on sample material damaged by creep, one examines whether the creep stress has an effect on the thermal material properties and to what effect this can be used to estimate the remaining service life. (orig.) [Deutsch] Unter Anwendung der Waermewellenanalyse mit frontseitiger Infrarotdetektion auf zeitstandgeschaedigtes Probenmaterial wird untersucht, ob die Zeitstandbeanspruchung einen Einfluss auf die thermischen Werkstoffeigenschaften hat und inwieweit dieser zur Abschaetzung der Restlebensdauer genutzt werden kann. (orig.)

  6. A simple synthesis of 2-keto-3-deoxy-D-erythro-hexonic acid isopropyl ester, a key sugar for the bacterial population living under metallic stress.

    Science.gov (United States)

    Grison, Claire M; Renard, Brice-Loïc; Grison, Claude

    2014-02-01

    2-Keto-3-deoxy-D-erythro-hexonic acid (KDG) is the key intermediate metabolite of the Entner Doudoroff (ED) pathway. A simple, efficient and stereoselective synthesis of KDG isopropyl ester is described in five steps from 2,3-O-isopropylidene-D-threitol with an overall yield of 47%. KDG isopropyl ester is studied as an attractive marker of a functional Entner Doudoroff pathway. KDG isopropyl ester is used to promote growth of ammonium producing bacterial strains, showing interesting features in the remediation of heavy-metal polluted soils. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Stress Management: Job Stress

    Science.gov (United States)

    Healthy Lifestyle Stress management Job stress can be all-consuming — but it doesn't have to be. Address your triggers, keep perspective and ... stress triggers, it's often helpful to improve time management skills — especially if you tend to feel overwhelmed ...

  8. Childhood Stress

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Childhood Stress KidsHealth / For Parents / Childhood Stress What's in this ... and feel stress to some degree. Sources of Stress Stress is a function of the demands placed ...

  9. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    International Nuclear Information System (INIS)

    Maekelae, K.; Laitinen, T.; Bojinov, M.

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for 60 Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.)

  10. The Influence Of Modified Water Chemistries On Metal Oxide Films, Activity Build-Up And Stress Corrosion Cracking Of Structural Materials In Nuclear Power Plants

    International Nuclear Information System (INIS)

    Maekelae, K.; Laitinen, T.; Bojinov, M.

    1998-07-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of activated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for 60 Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (author)

  11. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, K.; Laitinen, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for {sup 60}Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.) 127 refs.

  12. Track 1 - fuel fabrication: design, manufacture and automation stress field of blister forming in a metallic fuel and its interaction with clad

    International Nuclear Information System (INIS)

    Singh, A.K.; Hussain, M.M.; Singh, R.P.; Singh, R.N.; Chakravartty, J.K.; Shah, B.K.; Ståhle, P.

    2009-01-01

    One of the most critical components for the nuclear reactor is nuclear fuel. The fuel is subjected to severe environment of temperature, thermal stress, irradiation and corrosion in a reactor and its behaviour is governed by complex interaction of physical, chemical, mechanical and metallurgical processes which become operative in the reactor environment. A good fuel element should perform reliably in a reactor without experiencing any type of failure during its lifetime. Hence, the fabrication of nuclear fuel elements to the stringent quality requirements as demanded by the designers is a highly specialized and sophisticated technology

  13. Crystalline structure of metals

    International Nuclear Information System (INIS)

    Holas, A.

    1972-01-01

    An attempt is made to find the crystalline structure of metals on the basis of the existing theory of metals. The considerations are limited to the case of free crystals, that is, not subjected to any stresses and with T=0. The energy of the crystal lattice has been defined and the dependence of each term on structures and other properties of metals has been described. The energy has been used to find the values of crystalline structure parameters as the values at which the energy has an absolute minimum. The stability of the structure has been considered in cases of volume changes and shearing deformations. A semiqualitative description has been obtained which explains characteristic properties of one-electron metals. (S.B.)

  14. Back-propagation neural network-based approximate analysis of true stress-strain behaviors of high-strength metallic material

    International Nuclear Information System (INIS)

    Doh, Jaeh Yeok; Lee, Jong Soo; Lee, Seung Uk

    2016-01-01

    In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material's behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity's effect on the material property through a first-order sensitivity analysis.

  15. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  16. Stress-induced metallic behavior under magnetic field in Pr1-xCaxMnO3 (x=0.5 and 0.4) thin films (invited)

    International Nuclear Information System (INIS)

    Prellier, W.; Simon, Ch.; Mercey, B.; Hervieu, M.; Haghiri-Gosnet, A. M.; Saurel, D.; Lecoeur, Ph.; Raveau, B.

    2001-01-01

    We have investigated the role of the stress induced by the presence of the substrate in thin films of colossal magnetoresistive manganites on structural, resistive, and magnetic properties. Because of the strong coupling between the small structural distortions related to the charge ordering (CO) and the resistive properties, the presence of the substrate prevents the full development of the charge ordering in Pr 0.5 Ca 0.5 MnO 3 , especially in the very thin films. For thicker films, the CO state exists, but is not fully developed. Correlatively, the magnetic field which is necessary to suppress the CO is decreased drastically from 25 T to about 5 T on SrTiO 3 substrates. We have also investigated the influence of the doping level by studying the case of Pr 0.6 Ca 0.4 MnO 3 . [copyright] 2001 American Institute of Physics

  17. Influence exerted by the shape of the surfaces of working roll barrels upon the course of the MEFASS (Metal Forming Aided by Shear Stresses rolling process

    Directory of Open Access Journals (Sweden)

    Świątoniowski A.

    2017-03-01

    Full Text Available The essential aspect of the MEFASS rolling process is introducing the cyclic axial counter movement of the rolls transverse to the direction of rolling in the course of a band pass through a rolling gap. The effect of a change in the way of deformation obtained in this manner makes it possible to set in one roll pass a deformation several times larger than it is possible in a conventional process. In this paper, upon the basis of the computer model of the MES process, supported by experimental research, the analysis of the influence exerted by the shape of the surface of roll barrels upon the distribution of the intensity of stresses σi and deformations εi in the section of the band being rolled, and also upon the kinematic and force parameters of the process.

  18. New metals

    International Nuclear Information System (INIS)

    Bergqvist, U.

    1983-12-01

    The aim of this report is to estimate the exposure to various metals and metal compounds and discuss the available information of the possible toxic effects of these metals and compounds. In the first section, some metals are defined as those with either a large or a fast increasing exposure to living organisms. The available information on toxicity is discussed in the second section. In the third section interesting metals are defined as compounds having a large exposure and an apparent insufficient knowledge of their possible toxic effects. Comments on each of these metals are also to be found in the third section. (G.B.)

  19. Efficiency of Gamma Radiation Alone or In Combination With Heat Stress on Metal Contents of Parents and First Generation of Males of The Cotton Leaf Worm Spodoptera Littoralis

    International Nuclear Information System (INIS)

    El-Degwi, M.S.; Alm El-Din, M.M.S.; Hazaa, M.A.M.

    2011-01-01

    The main objective of the present investigation was to determine the influence of gamma radiation either alone or in combination with heat on the contents and concentration of elements detected in the whole body tissue of male parents and F1 generation of Spodoptera littoralis treated as full grown pupae. The doses applied were 75, 100 and 150 Gy. The data revealed the presence of eight elements in parents and F1 generation exposed to different heat stress (27±2, 33 and 37 degree C and P and Mg were the major contents. The obtained data indicated also that there were no differences in the composition of individual elements between male parents and male F1 generation. There were differences in relative concentration which depends on irradiation dose. The combination treatments were effective on elements concentration. The total concentration of light elements of male parents and F1 generation was increased by increasing the radiation dose. In the contrary, the concentration of heavy element was decreased by increasing the radiation dose. It could be concluded that gamma radiation and/or heat was effective on elements concentrations in adult body of male parents and F1 generation of Spodoptera littoralis which served as biological indicator of normal metabolic pathways and/or biological activity.

  20. A Modified Johnson-Cook Model for Sheet Metal Forming at Elevated Temperatures and Its Application for Cooled Stress-Strain Curve and Spring-Back Prediction

    International Nuclear Information System (INIS)

    Duc-Toan, Nguyen; Tien-Long, Banh; Young-Suk, Kim; Dong-Won, Jung

    2011-01-01

    In this study, a modified Johnson-Cook (J-C) model and an innovated method to determine (J-C) material parameters are proposed to predict more correctly stress-strain curve for tensile tests in elevated temperatures. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. As the first verification, an FEM tensile test simulation based on the isotropic hardening model for boron sheet steel at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code, and compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation of cooling process. The modified (J-C) model showed the good agreement between the simulation results and the corresponding experiments. The second investigation was applied for V-bending spring-back prediction of magnesium alloy sheets at elevated temperatures. Here, the combination of proposed J-C model with modified hardening law considering the unusual plastic behaviour for magnesium alloy sheet was adopted for FEM simulation of V-bending spring-back prediction and shown the good comparability with corresponding experiments.

  1. Phytoremediation of heavy metal polluted sites

    International Nuclear Information System (INIS)

    Aery, N.C.; Panchal, Jayesh

    2007-01-01

    The nature of soil, the contaminant's chemical and physical characteristics and environmental factors such as climate and hydrology interact to determine the accumulation, mobility, toxicity, and overall significance of the contaminant in any specific instance. Although many metals are essential, all metals are toxic at higher concentrations, because they cause oxidative stress by formation of free radicals. Another reason why metals may be toxic is that they can replace essential metals in enzymes disrupting their function. Thus, metals render the land unsuitable for plant growth and destroy the biodiversity. Metal contaminated soil can be remediated by chemical, physical and biological techniques

  2. Stress Management

    Science.gov (United States)

    Healthy Lifestyle Stress management By Mayo Clinic Staff Stress basics Stress is a normal psychological and physical reaction to the demands of life. ... some people's alarm systems rarely shut off. Stress management gives you a range of tools to reset ...

  3. Manage Stress

    Science.gov (United States)

    ... Manage Stress Print This Topic En español Manage Stress Browse Sections The Basics Overview Signs and Health ... and Health Effects What are the signs of stress? When people are under stress, they may feel: ...

  4. Stress Incontinence

    Science.gov (United States)

    Stress incontinence Overview Urinary incontinence is the unintentional loss of urine. Stress incontinence happens when physical movement or activity — such ... coughing, sneezing, running or heavy lifting — puts pressure (stress) on your bladder. Stress incontinence is not related ...

  5. Plant responses to metal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Briat, J.F. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie moleculaire des plantes, CNRS, URA 2133; Lebrun, M. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie vegetale appliquee

    1999-01-01

    Increased metal concentration in the soils, up to toxic levels, is becoming an important environmental problem. Safety rule evolution will require solutions in order to cope with food safety rules, and to freeze metal leakage from heavily metal-poisoned soils, such as those from industrial fallows. In this context, plants could serve to develop bio-assays in order to promote new standards, more realistic than the mass of a given metal per kg of soil, that does not consider the metal bio-disponibility. Plants could also be used for phyto-extraction and/or phyto-stabilization. To reach these objectives, a genetic approach could be useful to generate metal-tolerant plants with enough biomass. In this work is more particularly studied the plant responses to metal toxicity. Metal toxicity for living organisms involves oxidative and /or genotoxic mechanisms. Plant protection against metal toxicity occurs, at least in part, through control of root metal uptake and of long distance metal transport. Inside cells, proteins such as ferritins and metallothioneins, and glutathione-derived peptides named phyto-chelatins, participate in excess metal storage and detoxification. Low molecular weight organic molecules, mainly organic acids and amino acids and their derivatives, also play an important role in plant metal homeostasis. When these systems are overloaded, oxidative stress defense mechanisms are activated. Molecular and cellular knowledge of these processes will be necessary to improve plant metal resistance. Occurrence of naturally tolerant plants which hyper accumulate metals provides helpful tools for this research. (authors) 130 refs.

  6. Stress and Protists: No life without stress.

    Science.gov (United States)

    Slaveykova, Vera; Sonntag, Bettina; Gutiérrez, Juan Carlos

    2016-08-01

    We report a summary of the symposium "Stress and Protists: No life without stress", which was held in September 2015 on the VII European Congress of Protistology in partnership with the International Society of Protistologists (Seville, Spain). We present an overview on general comments and concepts on cellular stress which can be also applied to any protist. Generally, various environmental stressors may induce similar cell responses in very different protists. Two main topics are reported in this manuscript: (i) metallic nanoparticles as environmental pollutants and stressors for aquatic protists, and (ii) ultraviolet radiation - induced stress and photoprotective strategies in ciliates. Model protists such as Chlamydomonas reinhardtii and Tetrahymena thermophila were used to assess stress caused by nanoparticles while stress caused by ultraviolet radiation was tested with free living planktonic ciliates as well as with the symbiont-bearing model ciliate Paramecium bursaria. For future studies, we suggest more intensive analyses on protist stress responses to specific environmental abiotic and/or biotic stressors at molecular and genetic levels up to ecological consequences and food web dynamics. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  8. Particulate trace metals in Cochin backwaters: Distribution of seasonal indices

    Digital Repository Service at National Institute of Oceanography (India)

    Sankaranarayanan, V.N.; Jayalakshmy, K.V.; Joseph, T.

    that surface distribution pattern of the trace metal concentration of cobalt, nickel and iron was almost similar at the four stations thereby stressing the fact that seasonal fluctuations contributed a major part in the surface distribution of these metals...

  9. Metallic fuel development

    International Nuclear Information System (INIS)

    Walters, L.C.

    1987-01-01

    Metallic fuels are capable of achieving high burnup as a result of design modifications instituted in the late 1960's. The gap between the fuel slug and the cladding is fixed such that by the time the fuel swells to the cladding the fission gas bubbles interconnect and release the fission gas to an appropriately sized plenum volume. Interconnected porosity thus provides room for the fuel to deform from further swelling rather than stress the cladding. In addition, the interconnected porosity allows the fuel pin to be tolerant to transient events because as stresses are generated during a transient event the fuel flows rather than applying significant stress to the cladding. Until 1969 a number of metallic fuel alloys were under development in the US. At that time the metallic fuel development program in the US was discontinued in favor of ceramic fuels. However, development had proceeded to the point where it was clear that the zirconium addition to uranium-plutonium fuel would yield a ternary fuel with an adequately high solidus temperature and good compatibility with austenitic stainless steel cladding. Furthermore, several U-Pu-Zr fuel pins had achieved about 6 at.% bu by the late 1960's, without failure, and thus the prospect for high burnup was promising

  10. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    of metal components. An optimization of processes and material parameters must be based on a quantification of stress and strain gradients at the surface and in near surface layer where the structural scale can reach few tens of nanometers. For such fine structures it is suggested to quantify structural...... parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness...

  11. Nuclear stress test

    Science.gov (United States)

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  12. Metallic nanomesh

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Sun, Tianyi; Guo, Chuanfei

    2018-02-20

    A transparent flexible nanomesh having at least one conductive element and sheet resistance less than 300.OMEGA./.quadrature. when stretched to a strain of 200% in at least one direction. The nanomesh is formed by depositing a sacrificial film, depositing, etching, and oxidizing a first metal layer on the film, etching the sacrificial film, depositing a second metal layer, and removing the first metal layer to form a nanomesh on the substrate.

  13. Metal fuel manufacturing and irradiation performance

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Walters, L.C.

    1992-01-01

    The advances in metal fuel by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, and improved passive safety. The goals and the safety philosophy of the Integral Fast Reactor Program are stressed

  14. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  15. NextGen Stress & Fracture for Lightweight Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — The dream in stress and fracture analysis has always been to be able to simulate cracks initiating and then propagating in a stress field in a metal or composite...

  16. Acetabular bone density and metal ions after metal-on-metal versus metal-on-polyethylene total hip arthroplasty; short-term results

    NARCIS (Netherlands)

    Zijlstra, Wierd P.; van der Veen, Hugo C.; van den Akker-Scheek, Inge; Zee, Mark J. M.; Bulstra, Sjoerd K.; van Raay, Jos J. A. M.

    Information on periprosthetic acetabular bone density is lacking for metal-on-metal total hip arthroplasties. These bearings use cobalt-chromium instead of titanium acetabular components, which could lead to stress shielding and hence periprosthetic bone loss. Cobalt and chromium ions have

  17. Metal stress in free-living nematodes

    NARCIS (Netherlands)

    Hamelijnck-Arts, M.S.J.

    2001-01-01

    Terrestrial invertebrates offer meaningful targets for assessing the potential adverse effects of chemicals on soil ecosystems. Invertebrates play a major role in the functioning of the soil ecosystem by enhancing the soil structure, mineralization and the decomposition of organic material, and

  18. Elastic properties of Gum Metal

    International Nuclear Information System (INIS)

    Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi

    2006-01-01

    In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation

  19. The size effect in metal cutting

    Indian Academy of Sciences (India)

    Since the shear stress and strain in metal cutting is unusually high, ... thus joining the transport of dislocations in accounting for the total slip of the shear plane. ... shear plane, and the important role compressive stress plays on the shear plane.

  20. Occupational Stress

    OpenAIRE

    Löblová, Klára

    2011-01-01

    The thesis deals with load, stress and related questions of the working life. Work-related stress brings numerous difficulties not only to affected individuals, but as a result also to organizations. The thesis follows symptoms, impacts, somatic and mental aspects of stress, its types and also types of stressors, which cause this problem. It is concentrated on workload as a specific area of work-related stress, individual resistance to the load, factors of workload and work-related stress and...

  1. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  2. The molecular mechanism of zinc and cadmium stress response in plants

    NARCIS (Netherlands)

    Lin, Y.F.; Aarts, M.G.M.

    2012-01-01

    When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and

  3. Classification of Plants According to Their Heavy Metal Content ...

    African Journals Online (AJOL)

    Plants like other living organisms respond differently under different environmental conditions. An elevated level of heavy metals is one of the stresses which results into three classes of plants depending on their heavy metal content. The classes of plant species according to their accumulated heavy metals around North ...

  4. The method for measuring residual stress in stainless steel pipes

    International Nuclear Information System (INIS)

    Shimov, Georgy; Rozenbaum, Mikhail; Serebryakov, Alexandr; Serebryakov, Andrey

    2016-01-01

    The main reason of appearance and growth of corrosion damages of the nuclear steam generator heat exchanger tubes is the process of stress-corrosion cracking of metal under the influence of residual tensile stress. Methods used in the production for estimating residual stresses (such as a method of ring samples) allow measuring only the average tangential stress of the pipe wall. The method of ring samples does not allow to assess the level of residual stress in the surface layer of the pipe. This paper describes an experimental method for measuring the residual stresses on the pipe surface by etching a thin surface layer of the metal. The construction and working principle of a trial installation are described. The residual stresses in the wall of the tubes 16 × 1.5 mm (steel AISI 321) for nuclear steam generators is calculated. Keywords: heat exchange pipes, stress corrosion cracking, residual stresses, stress distribution, stress measurement.

  5. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  6. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  7. Viscoelastic analysis of a dental metal-ceramic system

    Science.gov (United States)

    Özüpek, Şebnem; Ünlü, Utku Cemal

    2012-11-01

    Porcelain-fused-to-metal (PFM) restorations used in prosthetic dentistry contain thermal stresses which develop during the cooling phase after firing. These thermal stresses coupled with the stresses produced by mechanical loads may be the dominant reasons for failures in clinical situations. For an accurate calculation of these stresses, viscoelastic behavior of ceramics at high temperatures should not be ignored. In this study, the finite element technique is used to evaluate the effect of viscoelasticity on stress distributions of a three-point flexure test specimen, which is the current international standard, ISO 9693, to characterize the interfacial bond strength of metal-ceramic restorative systems. Results indicate that the probability of interfacial debonding due to normal tensile stress is higher than that due to shear stress. This conclusion suggests modification of ISO 9693 bond strength definition from one in terms of the shear stress only to that accounting for both normal and shear stresses.

  8. Neuromuscular Stress.

    Science.gov (United States)

    White, Timothy P.; Kern, Marialice

    1994-01-01

    Discusses exercise-induced stress that results from motor unit recruitment, the impact of recruitment on selected systemic support systems, and some of the environmental overlays that affect the degree of physiological stress. Adaptations to sustained changes in physical activity and muscle and myotendinous injury induced by stress are examined.…

  9. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  10. Metal cyanides

    International Nuclear Information System (INIS)

    Wells, A.F.

    1988-01-01

    From the biewpoint of general crystal T chemistry principles and on the basis of modern data the structural chemistry of metal cyanites is presented. The features of the structure of the following compounds are considered: simple ionic alkali cyanides (Li-Cs) containing CN - ions; molybdenum (4,5), tungsten (4,5), rhenium (5,6) complexes etc, where-CN group is only connected with one metal atom; covalent cyanides of cadmium and other elements in which the CN-group serves as a bridge

  11. Peening as a stress relieving method for welded joints

    International Nuclear Information System (INIS)

    Ferreira, M.L.R.

    1984-01-01

    The efficacy of the process of stress relieving by hammer-peening, in heavy plates of low carbon steel is analysed. The effects of peening in the mechanical properties of welded metal deposited by shield metal arc welding, using the electrodes E-6010, E-7018 and E-8018C-2, and the weld metal deposited by submerged arc welding, using the filler metals ENil and EA3, are also analysed. X-ray diffraction was used in order to verify the efficacy of peening as a stress-relieving process. The obtained results and the literature reviewed show that, peening is effective in stress relieving. (author) [pt

  12. Implications of metal accumulation mechanisms to phytoremediation.

    Science.gov (United States)

    Memon, Abdul R; Schröder, Peter

    2009-03-01

    example, glutathione (GSH), a precursor of phytochelatin synthesis, plays a key role not only in metal detoxification but also in protecting plant cells from other environmental stresses including intrinsic oxidative stress reactions. In the last decade, tremendous developments in molecular biology and success of genomics have highly encouraged studies in molecular genetics, mainly transcriptomics, to identify functional genes implied in metal tolerance in plants, largely belonging to the metal homeostasis network. Analyzing the genetics of metal accumulation in these accumulator plants has been greatly enhanced through the wealth of tools and the resources developed for the study of the model plant Arabidopsis thaliana such as transcript profiling platforms, protein and metabolite profiling, tools depending on RNA interference (RNAi), and collections of insertion line mutants. To understand the genetics of metal accumulation and adaptation, the vast arsenal of resources developed in A. thaliana could be extended to one of its closest relatives that display the highest level of adaptation to high metal environments such as A. halleri and T. caerulescens. This review paper deals with the mechanisms of heavy metal accumulation and tolerance in plants. Detailed information has been provided for metal transporters, metal chelation, and oxidative stress in metal-tolerant plants. Advances in phytoremediation technologies and the importance of metal accumulator plants and strategies for exploring these immense and valuable genetic and biological resources for phytoremediation are discussed. A number of species within the Brassicaceae family have been identified as metal accumulators. To understand fully the genetics of metal accumulation, the vast genetic resources developed in A. thaliana must be extended to other metal accumulator species that display traits absent in this model species. A. thaliana microarray chips could be used to identify differentially expressed genes in

  13. Internal stresses in α-plutonium during deformation

    International Nuclear Information System (INIS)

    Merz, M.D.

    1976-01-01

    Internal stresses were measured in fine grained (2 μm) and coarse grained (20 μm) α-plutonium. In the fine grained metal the internal stress sigmasub(i), which was interpreted as the stress driving recovery processes near grain boundaries, was weakly dependent on applied stress, sigmasub(a). The effective stress, sigmasub(e) = sigma sub(a) - sigmasub(i), which is the stress to move dislocations, increased nearly 1:1 with applied stress, especially at high applied stresses. The strain rate obeyed the relation epsilon=K(T)sigmasub(e)sup(n) where K(T) is a temperature dependent term and n approximately = 3. The recovery rate in fine grained α-plutonium during creep was concluded to be very sensitive to internal stress. The internal stress in α-plutonium with 20 μm grain size was much higher than in the finer grain metal. (Auth.)

  14. heavy metals

    African Journals Online (AJOL)

    NICO

    aDepartment of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, 0007, South Africa. bSchool of Health Systems and Public Health, Faculty of Health Sciences, ... ing the levels of toxic metals in food.15,19 Compared to ET-AAS or .... mum pressure 350 psi and maximum temperature 210 °C. The.

  15. Specifications for Supplementary Classroom Units, Stressed Skin Panel.

    Science.gov (United States)

    Waring, Robert B.; And Others

    Complete outline specifications are given for the construction of supplementary classroom units using stressed skin panels. Sections included are--(1) concrete and related work, (2) masonry, (3) structural and miscellaneous metal, (4) curtain walls and metal windows, (5) carpentry and related work, (6) roofing, sheet metal, and related work, (7)…

  16. A new method of residual stress distribution analysis for corroded Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Godlewski, J.; Cadalbert, R.

    1992-01-01

    An X-ray diffraction method of residual stress measurement is developed to determine the stress level in the metal near the metal/oxide interface of Zircaloy-4 cladding samples oxidized in steam water at 400degC under a pressure of 10.3 MPa. The stress gradient is obtained and the evolution of the average stress is determined as function of the oxidation time. The presence of tetragonal zirconia phase in quite large quantity near the metal/oxide interface could be correlated to the high stress level in the base metal, adjacent to the interface. (author)

  17. A new method for residual stress distribution - analysis of corroded zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Godlewski, J.; Cadalbert, R.

    1992-01-01

    An X-ray diffraction method for residual stress measurement is developed to determine the stress level in the metal near the metal/oxide interface of Zircaloy-4 cladding samples oxidized in steam water at 400 deg C under a pressure of 10.3 MPa. The stress gradient is obtained and the evolution of the average stress is determined as a function of the oxidation time. The presence of tetragonal zirconia phase in quite large quantity near the metal/oxide interface could be correlated to the high stress level in the base metal, adjacent to the interface. 12 refs., 5 figs., 1 tab

  18. Residual stresses

    International Nuclear Information System (INIS)

    Sahotra, I.M.

    2006-01-01

    The principal effect of unloading a material strained into the plastic range is to create a permanent set (plastic deformation), which if restricted somehow, gives rise to a system of self-balancing within the same member or reaction balanced by other members of the structure., known as residual stresses. These stresses stay there as locked-in stresses, in the body or a part of it in the absence of any external loading. Residual stresses are induced during hot-rolling and welding differential cooling, cold-forming and extruding: cold straightening and spot heating, fabrication and forced fitting of components constraining the structure to a particular geometry. The areas which cool more quickly develop residual compressive stresses, while the slower cooling areas develop residual tensile stresses, and a self-balancing or reaction balanced system of residual stresses is formed. The phenomenon of residual stresses is the most challenging in its application in surface modification techniques determining endurance mechanism against fracture and fatigue failures. This paper discusses the mechanism of residual stresses, that how the residual stresses are fanned and what their behavior is under the action of external forces. Such as in the case of a circular bar under limit torque, rectangular beam under limt moment, reclaiming of shafts welds and peening etc. (author)

  19. Electroplastic effect in metals

    International Nuclear Information System (INIS)

    Sprecher, A.F. Jr.

    1984-01-01

    This report presents the effects of single d-c current pulses (1000-6000 A/mm 2 approx.60 μs) on plastically deforming metals. Polycrystalline wire specimens (D 0 approx. 1/2 mm, L 0 approx. 50 mm) representing the three more common crystal structures were employed: Ti from the HCP structures; Fe, Nb, and W from the bcc structure; and Al, Cu, and Ni from the fcc structure. The tests were carried out under uniaxial tension with an applied strain rate of 1.7 x 10 -4 sec -1 at room temperature. Forced air cooling was employed in order to reduce the principal side effect, heating. As a result of applying a current pulse, there were significant drops in the flow stress (1-35%). These drops not only included an electron dislocation interaction but all side effects as well. The main side effect due to the temperature rise was thermal expansion and could account for 60-90% of the drops. In addition to thermal expansion, some thermally induced plastic flow occurred as indicated by computer simulations. The total side effects (thermal expansion and plastic flow) approximately accounted for the stress drops in Ti, W, and Nb. However, a strong electron dislocation (ed) interaction was observed in Cu and Al since plastic flow from thermal effects was negligible. In Ni and Fe the portion of the stress drops due to (ed) was unclear due to some dynamic aging effects present

  20. Residual stress concerns in containment analysis

    International Nuclear Information System (INIS)

    Costantini, F.; Kulak, R. F.; Pfeiffer, P. A.

    1997-01-01

    The manufacturing of steel containment vessels starts with the forming of flat plates into curved plates. A steel containment structure is made by welding individual plates together to form the sections that make up the complex shaped vessels. The metal forming and welding process leaves residual stresses in the vessel walls. Generally, the effect of metal forming residual stresses can be reduced or virtually eliminated by thermally stress relieving the vesseL In large containment vessels this may not be practical and thus the residual stresses due to manufacturing may become important. The residual stresses could possibly tiect the response of the vessel to internal pressurization. When the level of residual stresses is significant it will affect the vessel's response, for instance the yielding pressure and possibly the failure pressure. The paper will address the effect of metal forming residual stresses on the response of a generic pressure vessel to internal pressurization. A scoping analysis investigated the effect of residual forming stresses on the response of an internally pressurized vessel. A simple model was developed to gain understanding of the mechanics of the problem. Residual stresses due to the welding process were not considered in this investigation

  1. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Osredkar Joško

    2012-05-01

    Full Text Available The human organism is exposed to the influence of various forms of stress, either physical, psychological or chemical, which all have in common that they may adversely affect our body. A certain amount of stress is always present and somehow directs, promotes or inhibits the functioning of the human body. Unfortunately, we are now too many and too often exposed to excessive stress, which certainly has adverse consequences. This is especially true for a particular type of stress, called oxidative stress. All aerobic organisms are exposed to this type of stress because they produce energy by using oxygen. For this type of stress you could say that it is rather imperceptibly involved in our lives, as it becomes apparent only at the outbreak of certain diseases. Today we are well aware of the adverse impact of radicals, whose surplus is the main cause of oxidative stress. However, the key problem remains the detection of oxidative stress, which would allow us to undertake timely action and prevent outbreak of many diseases of our time. There are many factors that promote oxidative stress, among them are certainly a fast lifestyle and environmental pollution. The increase in oxidative stress can also trigger intense physical activity that is directly associated with an increased oxygen consumption and the resulting formation of free radicals. Considering generally positive attitude to physical activity, this fact may seem at first glance contradictory, but the finding has been confimed by several studies in active athletes. Training of a top athlete daily demands great physical effort, which is also reflected in the oxidative state of the organism. However, it should be noted that the top athletes in comparison with normal individuals have a different defense system, which can counteract the negative effects of oxidative stress. Quite the opposite is true for irregular or excessive physical activity to which the body is not adapted.

  2. Corrosion of valve metals

    International Nuclear Information System (INIS)

    Draley, J.E.

    1976-01-01

    A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized

  3. Work Stress

    OpenAIRE

    Roeters, Anne

    2014-01-01

    Most of us agree that stress is a growing problem within organizations. We hear about the postal workers who had killed fellow employees and supervisors, and then hear that a major cause of tension is at work. Friends tell us that they are stressed due to increased workload and he has to work overtime because the company is restructured. We read the polls that employees complain about the stress in trying to balance family life with the work. Stress is a dynamic condition in which an individu...

  4. Factors controlling metal fuel lifetime

    International Nuclear Information System (INIS)

    Porter, D.L.; Hofman, G.L.; Seidel, B.R.; Walters, L.C.

    1986-01-01

    The reliability of metal fuel elements is determined by a fuel burnup at which a statistically predicted number of fuel breaches would occur, the number of breaches determined by the amount of free fission gas which a particular reactor design can tolerate. The reliability is therefore measured using experimentally determined breach statistics, or by modelling fuel element behavior and those factors which contribute to cladding breach. The factors are fuel/cladding mechanical and chemical interactions, fission gas pressure, fuel phase transformations involving volume changes, and fission product effects on cladding integrity. Experimental data for EBR-II fuel elements has shown that the primary, and perhaps the only significant factor affecting metal fuel reliability, is the pressure-induced stresses caused by fission gas release. Other metal fuel/cladding systems may perform similarly

  5. Structure and properties of metals

    CERN Document Server

    Kurzydlowski, K J

    1999-01-01

    Metals are one of the most widely used types of engineering materials. Some of their properties, e.g. elastic constants, can be directly related to the nature of the metallic bonds between the atoms. On the other hand, macro- and $9 microstructural features of metals, such as point defects, dislocations, grain boundaries, and second phase particles, control their yield, flow, and fracture stress. Images of microstructural elements can be obtained by modern $9 imaging techniques. Modern computer aided methods can be further used to obtain a quantitative description of these microstructures. These methods take advantage of the progress made in recent years in the field of image processing, $9 mathematical morphology and quantitative stereology. Quantitative description of the microstructures are used for modeling processes taking place under the action of applied load at a given temperature and test (service) environment. $9 These model considerations can be illustrated on the example of an austenitic stainless...

  6. Study on mitigation of stress corrosion cracking by peening

    International Nuclear Information System (INIS)

    Maeguchi, Takaharu; Tsutsumi, Kazuya; Toyoda, Masahiko; Ohta, Takahiro; Okabe, Taketoshi; Sato, Tomonobu

    2010-01-01

    In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening (WJP) and ultrasonic shot peening (USP) on surface of alloy 600 and its weld metal was investigated under various thermal aging and stress condition considered for actual plant operation. In the case of thermal aging at 320-380degC, surface residual stress relaxation was observed at the early stage of thermal aging, but no significant stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. Furthermore, it was confirmed that cyclic stress does not accelerate stress relaxation. (author)

  7. Cadmium induced oxidative stress in Dunaliella salina | Moradshahi ...

    African Journals Online (AJOL)

    The unicellular green algae Dunaliella salina contains various antioxidants which protect the cell from oxidative damage due to environmental stresses such as heavy metal stress. In the present study, the response of D. salina at the stationary growth phase to oxidative stress generated by cadmium chloride was ...

  8. Residual stresses

    International Nuclear Information System (INIS)

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  9. Geopotential Stress

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    Density heterogeneity in the Earth’s lithosphere causes lateral pressure variations. Horizontal gradients of the vertically integrated lithostatic pressure, the Geopotential Energy (GPE), are a source of stresses (Geopotential Stress) that contribute to the Earth’s Stress Field. In theory the GPE...... is linearly related to the lithospheric part of the Geoid. The Geopotential Stress can be calculated if either the density structure and as a consequence the GPE or the lithospheric contribution to the Geoid is known. The lithospheric Geoid is usually obtained by short pass filtering of satellite Geoid...... are not entirely suitable for the stress calculations but can be compiled and adjusted. We present an approach in which a global lithospheric density model based on CRUST2.0 is obtained by simultaneously fitting topography and surface heat flow in the presence of isostatic compensation and long-wavelength lateral...

  10. Electromigration-induced plastic deformation in passivated metal lines

    Science.gov (United States)

    Valek, B. C.; Bravman, J. C.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Spolenak, R.; Brown, W. L.; Batterman, B. W.; Patel, J. R.

    2002-11-01

    We have used scanning white beam x-ray microdiffraction to study microstructural evolution during an in situ electromigration experiment on a passivated Al(Cu) test line. The data show plastic deformation and grain rotations occurring under the influence of electromigration, seen as broadening, movement, and splitting of reflections diffracted from individual metal grains. We believe this deformation is due to localized shear stresses that arise due to the inhomogeneous transfer of metal along the line. Deviatoric stress measurements show changes in the components of stress within the line, including relaxation of stress when current is removed.

  11. Learn to manage stress

    Science.gov (United States)

    Stress - managing; Stress - recognizing; Stress - relaxation techniques ... LEARN TO RECOGNIZE STRESS The first step in managing stress is recognizing it in your life. Everyone feels stress in a different way. ...

  12. Climate change driven plant-metal-microbe interactions.

    Science.gov (United States)

    Rajkumar, Mani; Prasad, Majeti Narasimha Vara; Swaminathan, Sandhya; Freitas, Helena

    2013-03-01

    Various biotic and abiotic stress factors affect the growth and productivity of crop plants. Particularly, the climatic and/or heavy metal stress influence various processes including growth, physiology, biochemistry, and yield of crops. Climatic changes particularly the elevated atmospheric CO₂ enhance the biomass production and metal accumulation in plants and help plants to support greater microbial populations and/or protect the microorganisms against the impacts of heavy metals. Besides, the indirect effects of climatic change (e.g., changes in the function and structure of plant roots and diversity and activity of rhizosphere microbes) would lead to altered metal bioavailability in soils and concomitantly affect plant growth. However, the effects of warming, drought or combined climatic stress on plant growth and metal accumulation vary substantially across physico-chemico-biological properties of the environment (e.g., soil pH, heavy metal type and its bio-available concentrations, microbial diversity, and interactive effects of climatic factors) and plant used. Overall, direct and/or indirect effects of climate change on heavy metal mobility in soils may further hinder the ability of plants to adapt and make them more susceptible to stress. Here, we review and discuss how the climatic parameters including atmospheric CO₂, temperature and drought influence the plant-metal interaction in polluted soils. Other aspects including the effects of climate change and heavy metals on plant-microbe interaction, heavy metal phytoremediation and safety of food and feed are also discussed. This review shows that predicting how plant-metal interaction responds to altering climatic change is critical to select suitable crop plants that would be able to produce more yields and tolerate multi-stress conditions without accumulating toxic heavy metals for future food security. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. In-situ cyclic stress experiment at the Clinton P. Anderson Meson Physics Facility (LAMPF) for determining the effect of dislocation vibration on void growth in metals during irradiation

    International Nuclear Information System (INIS)

    Green, W.V.; Sommer, W.F.; Coulter, C.A.

    1979-01-01

    Experience is reported with the first in-situ cyclic-stress irradiation at LAMPF. A proton beam ion current of 3 to 6 μA of 800 MeV protons was utilized for 24 days irradiation. Radiation damage effects of 800 MeV protons incident on a 1-cm thick Cu target were calculated using the nucleon-meson transport code to determine the nuclear reactions produced by the protons, the theory of Lindhard to evaluate the resultant damage energy deposited in the target. These calculations have been extended to Al. Damage effects were nearly uniform through a 1-cm target thickness, and the results obtained can be expressed in cross section form. The calculation yielded a damage energy cross section of about 63 barn-keV, a nuclear transmutation cross section of 0.44 barns, and indicated copious hydrogen, helium, and neutron production. Analysis of the effect of dislocation vibration on the efficiency of a dislocation line as a sink for point defects predicted that dislocation vibration should suppress void growth. The effect results from the fact that the dislocation will sweep up vacancies, which diffuse less rapidly than interstitials. The growth rate of voids in Al under simultaneous proton irradiation and cyclic stressing are compared to that of samples irradiated at the same time but without any stressing. The samples are placed one behind the other along the proton path so that identical irradiation histories can be achieved. The temperature of the samples is controlled, known and uniform. The initial preirradiation state is a prestrained state of a few hundred stress cycles. The samples are irradiated without stress through the incubation period for void nucleation before the cyclic stress is applied

  14. Stresses in Circular Plates with Rigid Elements

    Science.gov (United States)

    Velikanov, N. L.; Koryagin, S. I.; Sharkov, O. V.

    2018-05-01

    Calculations of residual stress fields are carried out by numerical and static methods, using the flat cross-section hypothesis. The failure of metal when exposed to residual stresses is, in most cases, brittle. The presence in the engineering structures of rigid elements often leads to the crack initiation and structure failure. This is due to the fact that rigid elements under the influence of external stresses are stress concentrators. In addition, if these elements are fixed by welding, the residual welding stresses can lead to an increase in stress concentration and, ultimately, to failure. The development of design schemes for such structures is a very urgent task for complex technical systems. To determine the stresses in a circular plate with a welded circular rigid insert under the influence of an external load, one can use the solution of the plane stress problem for annular plates in polar coordinates. The polar coordinates of the points are the polar radius and the polar angle, and the stress state is determined by normal radial stresses, tangential and shearing stresses. The use of the above mentioned design schemes, formulas, will allow more accurate determination of residual stresses in annular welded structures. This will help to establish the most likely directions of failure and take measures at the stages of designing, manufacturing and repairing engineering structures to prevent these failures. However, it must be taken into account that the external load, the presence of insulation can lead to a change in the residual stress field.

  15. A study on stress corrosion cracking of explosive plugged part

    International Nuclear Information System (INIS)

    Kaga, Seiichi; Fujii, Katsuhiro; Yamamoto, Yoshiaki; Sakuma, Koosuke; Hibi, Seiji; Morimoto, Hiroyoshi.

    1986-01-01

    Studies on the stress corrosion cracking of explosive plugged part are conducted. SUS 304 stainless steel is used as testing material. The distribution of residual stress in plug and tube plate after plugging is obtained. The effect of residual stress on the stress corrosion cracking is studied. Residual stress in tube plate near the plug is compressive and stress corrosion cracking dose not occur in the tube plate there, and it occurs on the inner surface of plug because of residual tensile stress in axial direction of the plug. Stress corrosion test in MgCl 2 solution under constant load is conducted. The susceptibility to stress corrosion cracking of the explosive bonded boundary is lower than that of base metal because of greater resistance to plastic deformation. Stress corrosion test in high temperature and high pressure pure water is also conducted by means of static type of autoclave but stress corrosion cracking does not occur under the testing condition used. (author)

  16. Analyses of cavitation instabilities in ductile metals

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    Cavitation instabilities have been predicted for a single void in a ductile metal stressed under high triaxiality conditions. In experiments for a ceramic reinforced by metal particles a single dominant void has been observed on the fracture surface of some of the metal particles bridging a crack......, and also tests for a thin ductile metal layer bonding two ceramic blocks have indicated rapid void growth. Analyses for these material configurations are discussed here. When the void radius is very small, a nonlocal plasticity model is needed to account for observed size-effects, and recent analyses......, while the surrounding voids are represented by a porous ductile material model in terms of a field quantity that specifies the variation of the void volume fraction in the surrounding metal....

  17. Predicting Shear Transformation Events in Metallic Glasses

    Science.gov (United States)

    Xu, Bin; Falk, Michael L.; Li, J. F.; Kong, L. T.

    2018-03-01

    Shear transformation is the elementary process for plastic deformation of metallic glasses, the prediction of the occurrence of the shear transformation events is therefore of vital importance to understand the mechanical behavior of metallic glasses. In this Letter, from the view of the potential energy landscape, we find that the protocol-dependent behavior of shear transformation is governed by the stress gradient along its minimum energy path and we propose a framework as well as an atomistic approach to predict the triggering strains, locations, and structural transformations of the shear transformation events under different shear protocols in metallic glasses. Verification with a model Cu64 Zr36 metallic glass reveals that the prediction agrees well with athermal quasistatic shear simulations. The proposed framework is believed to provide an important tool for developing a quantitative understanding of the deformation processes that control mechanical behavior of metallic glasses.

  18. Mapping residual stress by ultrasonic tomography

    International Nuclear Information System (INIS)

    Hildebrand, B.P.; Harrington, T.P.

    1979-01-01

    It is known that internal stress concentrations can give rise to microcracks which then grow when the structure is subjected to external forces. It has also been found that the velocity of sound is altered as it propagates through a region of stress. In this paper a technique called Computer-Assisted Tomography (CAT) is discussed and an application that provides pictures of stress fields is described. The results of both simulated and experimental models used to evaluate the technique are reported. It is concluded that the CAT approach has great potential for locating and mapping residual stress in metals. (author)

  19. Residual stresses and stress corrosion cracking in pipe fittings

    International Nuclear Information System (INIS)

    Parrington, R.J.; Scott, J.J.; Torres, F.

    1994-06-01

    Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique

  20. Method and apparatus for determining weldability of thin sheet metal

    Science.gov (United States)

    Goodwin, Gene M.; Hudson, Joseph D.

    1988-01-01

    A fixture is provided for testing thin sheet metal specimens to evaluate hot-cracking sensitivity for determining metal weldability on a heat-to-heat basis or through varying welding parameters. A test specimen is stressed in a first direction with a load selectively adjustable over a wide range and then a weldment is passed along over the specimen in a direction transverse to the direction of strain to evaluate the hot-cracking characteristics of the sheet metal which are indicative of the weldability of the metal. The fixture provides evaluations of hot-cracking sensitivity for determining metal weldability in a highly reproducible manner with minimum human error.

  1. Extracting metals directly from metal oxides

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of β-diketones, halogenated β-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs

  2. Stress Management

    Science.gov (United States)

    ... with regions of your brain that control mood, motivation and fear. The body's stress-response system is ... problems Headaches Heart disease Sleep problems Weight gain Memory and concentration impairment That's why it's so important ...

  3. Stressing academia?

    DEFF Research Database (Denmark)

    Opstrup, Niels; Pihl-Thingvad, Signe

    Incongruences between the individual and the organizational work context are potential stressors. The present study focuses on the relationship between a complementary need-supply fit and Danish researchers’ self-perceived job stress. Strain is expected to increase as organizational supplies fall...... hand, the fit on “hard” dimensions as salary, financial rewards and career opportunities is found to be unrelated to the researchers’ self-perceived stress-level. The fit with regard to job security is an important exception, however....... to “soft” dimensions as freedom and independence in the job, personal and professional development at work, and receiving peer recognition is highly significant for the researchers’ self-perceived stress-level. The better the fit is the lower stress-levels the researchers’ on average report. On the other...

  4. Stress Management

    Directory of Open Access Journals (Sweden)

    Prof.Univ. Dr. Paul Marinescu

    2007-05-01

    Full Text Available In the post-modern management organizational leaders have the obligation of protecting their employees against factors that could cause damages to their potentially wealthy lives. Stress is such a factor. We shall attempt by means of the present article to draw attention on certain general aspects that should be taken into account in drafting plans for fighting against and diminishing the stress faced by the employees

  5. Stress fractures

    International Nuclear Information System (INIS)

    Berquist, T.H.; Cooper, K.L.; Pritchard, D.J.

    1985-01-01

    The diagnosis of a stress fracture should be considered in patients presented with pain after a change in activity, especially if the activity is strenuous and the pain is in the lower extremities. Since evidence of the stress fracture may not be apparent for weeks on routine radiographs, proper use of other imaging techniques will allow an earlier diagnosis. Prompt diagnosis is especially important in the femur, where displacement may occur

  6. Metals production

    Science.gov (United States)

    Beck, Theodore S.

    1992-01-01

    Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.

  7. Theoretical study of lithium clusters by electronic stress tensor

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Nozaki, Hiroo; Komazawa, Naoya; Tachibana, Akitomo

    2012-01-01

    We study the electronic structure of small lithium clusters Li_n (n = 2 ∼ 8) using the electronic stress tensor. We find that the three eigenvalues of the electronic stress tensor of the Li clusters are negative and degenerate, just like the stress tensor of liquid. This leads us to propose that we may characterize a metallic bond in terms of the electronic stress tensor. Our proposal is that in addition to the negativity of the three eigenvalues of the electronic stress tensor, their degeneracy characterizes some aspects of the metallic nature of chemical bonding. To quantify the degree of degeneracy, we use the differential eigenvalues of the electronic stress tensor. By comparing the Li clusters and hydrocarbon molecules, we show that the sign of the largest eigenvalue and the differential eigenvalues could be useful indices to evaluate the metallicity or covalency of a chemical bond.

  8. The Sounds of Metal

    DEFF Research Database (Denmark)

    Grund, Cynthia M.

    2015-01-01

    Two, I propose that this framework allows for at least a theoretical distinction between the way in which extreme metal – e.g. black metal, doom metal, funeral doom metal, death metal – relates to its sound as music and the way in which much other music may be conceived of as being constituted...

  9. Final Report for Project ''Role of Metal Bioavailability in In Situ Bioremediation of Metal and Organic Co-Contaminated Sites''; FINAL

    International Nuclear Information System (INIS)

    Raina M. Maier

    2002-01-01

    A large proportion of hazardous waste sites are co-contaminated with organics and various metals. Such co-contaminated sites are difficult to bioremediate due to the nature of the mixed contaminants. Specifically, the presence of a co-contaminating metal imposes increased stress on indigenous populations already impacted by organic contaminant stress. The overall objective of this research is to investigate the effect of varying metal bioavailability on microbial populations and biodegradation of organics to allow a better understanding of how optimize remediation of co-contaminated sites. The hypothesis for this project is that metal bioavailability is not directly correlated with metal stress imposed on microbial populations that are degrading organics in soil and that further understanding of the relationship between metal bioavailability and metal stress is required for successful treatment of sites contaminated with mixtures of organics and metals. The specific objectives to be addressed to accomplish this goal are: (1) To determine the influence of metal bioavailability in soil microcosms co-contaminated with organics and metals on degradation of the organic contaminants and on mechanisms of metal resistance and (2) To determine the efficacy of different bioremediation strategies for co-contaminated soils based on metal bioavailability

  10. Point defects and the creep of metals

    International Nuclear Information System (INIS)

    Nichols, F.A.

    1976-01-01

    Basic concepts felt to be important in diffusion-controlled creep of metals are reviewed and it is suggested that such creep is controlled by edge-dislocation climb under a rather wide range of conditions. The effect of a damage-producing flux on such creep processes is explored. It is shown that processes such as Herring-Nabarro creep are unaffected by irradiation. Evidence is presented for a climb-plus-glide mechanism of radiation creep for stresses above unirradiated yield or flow stresses. At lower stresses a preferential dislocation loop nucleation model is suggested

  11. ANSYS Modeling of Hydrostatic Stress Effects

    Science.gov (United States)

    Allen, Phillip A.

    1999-01-01

    Classical metal plasticity theory assumes that hydrostatic pressure has no effect on the yield and postyield behavior of metals. Plasticity textbooks, from the earliest to the most modem, infer that there is no hydrostatic effect on the yielding of metals, and even modem finite element programs direct the user to assume the same. The object of this study is to use the von Mises and Drucker-Prager failure theory constitutive models in the finite element program ANSYS to see how well they model conditions of varying hydrostatic pressure. Data is presented for notched round bar (NRB) and "L" shaped tensile specimens. Similar results from finite element models in ABAQUS are shown for comparison. It is shown that when dealing with geometries having a high hydrostatic stress influence, constitutive models that have a functional dependence on hydrostatic stress are more accurate in predicting material behavior than those that are independent of hydrostatic stress.

  12. Additive manufacturing technologies of porous metal implants

    Directory of Open Access Journals (Sweden)

    Yang Quanzhan

    2014-06-01

    Full Text Available Biomedical metal materials with good corrosion resistance and mechanical properties are widely used in orthopedic surgery and dental implant materials, but they can easily cause stress shielding due to the significant difference in elastic modulus between the implant and human bones. The elastic modulus of porous metals is lower than that of dense metals. Therefore, it is possible to adjust the pore parameters to make the elastic modulus of porous metals match or be comparable with that of the bone tissue. At the same time, the open porous metals with pores connected to each other could provide the structural condition for bone ingrowth, which is helpful in strengthening the biological combination of bone tissue with the implants. Therefore, the preparation technologies of porous metal implants and related research have been drawing more and more attention due to the excellent features of porous metals. Selective laser melting (SLM and electron beam melting technology (EBM are important research fields of additive manufacturing. They have the advantages of directly forming arbitrarily complex shaped metal parts which are suitable for the preparation of porous metal implants with complex shape and fine structure. As new manufacturing technologies, the applications of SLM and EBM for porous metal implants have just begun. This paper aims to understand the technology status of SLM and EBM, the research progress of porous metal implants preparation by using SLM and EBM, and the biological compatibility of the materials, individual design and manufacturing requirements. The existing problems and future research directions for porous metal implants prepared by SLM and EBM methods are discussed in the last paragraph.

  13. Planar metal-supported SOFC with novel cermet anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine

    2011-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells. For example, increased resistance against mechanical and thermal stresses and a reduction in material costs. When Ni-YSZ based anodes are used in metal suppo...

  14. Development of Planar Metal Supported SOFC with Novel Cermet Anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine

    2009-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells, such as increased resistance against mechanical and thermal stresses and a reduction in materials cost. When Ni-YSZ based anodes are used in metal supported ...

  15. Metallic fuel design development

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Kang, H. Y.; Lee, B. O. and others

    1999-04-01

    This report describes the R and D results of the ''Metallic Fuel Design Development'' project that performed as a part of 'Nuclear Research and Development Program' during the '97 - '98 project years. The objectives of this project are to perform the analysis of thermo-mechanical and irradiation behaviors, and preliminary conceptual design for the fuel system of the KALIMER liquid metal reactor. The following are the major results that obtained through the project. The preliminary design requirements and design criteria which are necessary in conceptual design stage, are set up. In the field of fuel pin design, the pin behavior analysis, failure probability prediction, and sensitivity analysis are performed under the operation conditions of steady-state and transient accidents. In the area of assembly duct analysis; 1) KAFACON-2D program is developed to calculate an array configuration of inner shape of assembly duct, 2) Stress-strain analysis are performed for the components of assembly such as, handling socket, mounting rail and wire wrap, 3) The BDI program is developed to analyze mechanical interaction between pin bundle and duct, 4) a vibration analysis is performed to understand flow-induced vibration of assembly duct, 5) The NUBOW-2D, which is bowing and deformation analysis code for assembly duct, is modified to be operated in KALIMER circumstance, and integrity evaluation of KALIMER core assembly is carried out using the modified NUBOW-2D and the CRAMP code in U.K., and 6) The KALIMER assembly duct is manufactured to be used in flow test. In the area of non-fuel assembly, such as control, reflector, shielding, GEM and USS, the states-of-the-arts and the major considerations in designing are evaluated, and the design concepts are derived. The preliminary design description and their design drawing of KALIMER fuel system are prepared based upon the above mentioned evaluation and analysis. The achievement of conceptual

  16. Metallic fuel design development

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang, H. Y.; Lee, B. O. and others

    1999-04-01

    This report describes the R and D results of the ''Metallic Fuel Design Development'' project that performed as a part of 'Nuclear Research and Development Program' during the '97 - '98 project years. The objectives of this project are to perform the analysis of thermo-mechanical and irradiation behaviors, and preliminary conceptual design for the fuel system of the KALIMER liquid metal reactor. The following are the major results that obtained through the project. The preliminary design requirements and design criteria which are necessary in conceptual design stage, are set up. In the field of fuel pin design, the pin behavior analysis, failure probability prediction, and sensitivity analysis are performed under the operation conditions of steady-state and transient accidents. In the area of assembly duct analysis; 1) KAFACON-2D program is developed to calculate an array configuration of inner shape of assembly duct, 2) Stress-strain analysis are performed for the components of assembly such as, handling socket, mounting rail and wire wrap, 3) The BDI program is developed to analyze mechanical interaction between pin bundle and duct, 4) a vibration analysis is performed to understand flow-induced vibration of assembly duct, 5) The NUBOW-2D, which is bowing and deformation analysis code for assembly duct, is modified to be operated in KALIMER circumstance, and integrity evaluation of KALIMER core assembly is carried out using the modified NUBOW-2D and the CRAMP code in U.K., and 6) The KALIMER assembly duct is manufactured to be used in flow test. In the area of non-fuel assembly, such as control, reflector, shielding, GEM and USS, the states-of-the-arts and the major considerations in designing are evaluated, and the design concepts are derived. The preliminary design description and their design drawing of KALIMER fuel system are prepared based upon the above mentioned evaluation and analysis. The achievement of conceptual design technology on metallic fuel

  17. Professional stress

    Directory of Open Access Journals (Sweden)

    Stanojević Dragana Z.

    2011-01-01

    Full Text Available Job stress is a line, for the person at work hired adverse physiological, psychological and behavioral reactions to situations in which job requirements are not in accordance with its capabilities, abilities and needs. Sources of stress at work are numerous. Personal factors: personality types have been most studied so far, environmental changes and demographic characteristics as well. Interpersonal stress inducing factors act and influence to the occurrence of many psychosomatic diseases. Psychosocial climate and relationships which are prevented or encouraged such as: cooperation and competition, trust and suspicion certainly affect to the appearance of professional stress. The way of leadership is very important. Organizational factors are the type of work, work time, noncompliance of the job, the introduction of new ethnologies, the conflict of personal roles, fear of job loss, bad physical conditions of working environment. The consequences of stress at work are numerous: at the cognitive level, the emotional level, the production plan, the health, plan reduces the immune system that cause a variety of psychosomatic illnesses and accidents at work.

  18. The role of edge dislocations in the deformation of BCC metals

    International Nuclear Information System (INIS)

    Lung, C.W.

    1994-08-01

    It was widely accepted that the screw dislocation is responsible for the strong temperature dependence of the yield stresses observed in bcc metals. In this paper, we show the role of edge dislocations in the deformation of bcc metals and point out that in some cases, its main contribution to the yield stress cannot be ignored. (author). 15 refs, 2 figs, 1 tab

  19. New process for weld metal reliability

    International Nuclear Information System (INIS)

    Hebel, A.G.

    1985-01-01

    The industry-wide nature of weld cracking alerts one to the possibility that there is a fundamental law being overlooked. And in overlooking this law, industry is unable to counteract it. That law mandates that restraint during welding causes internal stress; internal stress causes weld metal to crack. Component restraint during welding, according to the welding standard, is the major cause of weld metal failures. When the metal working industry accepts this fact and begins to counter the effects of restraint, the number of weld failures experienced fall dramatically. Bonal Technologies, inc., of Detroit, has developed the first consistently effective non-thermal process to relieve stress caused by restraint during welding. Bonal's patented Mets-Lax sub-resonant stress relief acts as a restraint neutralizer when used during welding. Meta-Lax weld conditioning produces a finer more uniform weld grain structure. A finer, more uniform grain structure is a clear metallurgical indication of improved mechanical weld properties. Other benefits like less internal stress, and less warpage are also achieved

  20. Impacts of metal and metal oxide nanoparticles on marine organisms

    International Nuclear Information System (INIS)

    Baker, Tony J.; Tyler, Charles R.; Galloway, Tamara S.

    2014-01-01

    Increasing use of metal and metal oxide nanoparticles [Me(O)NPs] in products means many will inevitably find their way into marine systems. Their likely fate here is sedimentation following hetero-aggregation with natural organic matter and/or free anions, putting benthic, sediment-dwelling and filter feeding organisms most at risk. In marine systems, Me(O)NPs can absorb to micro-organisms with potential for trophic transfer following consumption. Filter feeders, especially bivalves, accumulate Me(O)NPs through trapping them in mucus prior to ingestion. Benthic in-fauna may directly ingest sedimented Me(O)NPs. In fish, uptake is principally via the gut following drinking, whilst Me(O)NPs caught in gill mucus may affect respiratory processes and ion transport. Currently, environmentally-realistic Me(O)NP concentrations are unlikely to cause significant adverse acute health problems, however sub-lethal effects e.g. oxidative stresses have been noted in many organisms, often deriving from dissolution of Ag, Cu or Zn ions, and this could result in chronic health impacts. -- Highlights: • Nanoparticle (NP) use increasing, and NPs ultimately discharged to marine systems. • Metal ion dissolution from NPs causes oxidative stress at relevant concentrations. • Bioaccumulation and trophic transfer of NPs likely at all levels of marine food webs. • Biofilms and filter feeders are major NP accumulators, but many Classes lack study. • Current release levels unlikely to cause chronic damage, but may be a future issue. -- Exposure to metal (oxide) nanoparticles causes sub-lethal effects in marine organisms, the extent of which is related principally to the organisms' feeding regime, habitat and lifestyle

  1. Modification of magnetic anisotropy in metallic glasses using high ...

    Indian Academy of Sciences (India)

    The data gives a straight line as a best fit as shown in figure 4. It can be safely inferred that the residual stresses produced in the glassy metals could be the main cause of the reduction in in-plane magnetic anisotropy. This phe- nomenon is in conformity with the magnetostriction effect in which mechanical stresses. 1098.

  2. Stress Analysis

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    The following types of forces contribute to the stresses in a Dolos in a pack exposed to waves: 1)Gravity forces Compaction forces (mainly due to settlements, gravity and flow forces) 2) Flow forces 3) Impact forces (impacts between moving concrete blocks)......The following types of forces contribute to the stresses in a Dolos in a pack exposed to waves: 1)Gravity forces Compaction forces (mainly due to settlements, gravity and flow forces) 2) Flow forces 3) Impact forces (impacts between moving concrete blocks)...

  3. Stress factors for the deformation systems of zirconium under multiaxial stress

    International Nuclear Information System (INIS)

    Hobson, D.O.

    1976-01-01

    Calculation of the resolved shear stresses (rss) that act on various deformation systems in metals and, in particular, the determination of those systems subjected to the highest rss by a given set of multiaxial stresses is of importance in the study of texture development, yielding and plastic flow. This study examines the geometrical influences of any stress state on the deformation modes of zirconium. One slip mode and three twinning modes, comprising twenty-one deformation systems, are considered. Stress factors computed for these systems are shown on a coordinate system that allows specimen orientation, most highly stressed deformation system, and stress factor to be shown without ambiguity. The information in this report allows the determination of the rss that results from any multiaxial stress state; this information also allows the prediction of the deformation modes that might operate for any specimen orientation in that strss state

  4. (stress) testing

    African Journals Online (AJOL)

    However, maximal HR was significantly higher in all groups during their sporting activities than during stress testing in the laboratory (P < 0.01). Conclusions. Maximal HR in veteran athletes during specific sporting activities was significantly higher than that attained during a routine sECG. This finding was not sport-specific, ...

  5. Estimation of the controlling stress in creep fracture

    International Nuclear Information System (INIS)

    Henderson, J.; Ferguson, F.R.

    1975-01-01

    The implementation of correct criterion in creep design, has been shown to be of fundamental significance in the assessment of component life. The present report considers the problem of the means whereby the criterion may be derived for a particular metal without the availability of sophisticated complex-stress testing equipment and procedures such as the combined tension and torsion tests on thin walled tubular specimens employed in the earlier fundamental researches on the subject. By investigating a wide spectrum of engineering metals it was established that for homogeneous stress conditions two criteria appeared to be sufficient to cover all the metals studied for complex-stress creep fracture, either the maximum principal stress or the octahedral shear stress criterion. Further, it was found that those metals which developed random and continuous cracking during creep were controlled with respect to fracture time by the maximum principal stress, while metals which showed virtually no cracking were governed by the octahedral shear stress or second order invariant. The physical nature of the final fracture (transcrystalline or inter-crystalline), contrary to considerable current concepts, was found to be unrelated to which criterion was operative. Having reduced the possible fracture criteria to two, it only remained to develop a simple test method exploiting this finding to achieve the precise identification for a particular metal. Seven metals including aluminium, copper, titanium, cast iron and three steels have been investigated in the present report at temperatures where creep conditions are operative. The results have shown that the method leads to sufficiently accurate prediction of the complex stress creep fracture criterion for the metals studied

  6. Flexible high-κ/Metal gate metal/insulator/metal capacitors on silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-10-01

    Implementation of memory on bendable substrates is an important step toward a complete and fully developed notion of mechanically flexible computational systems. In this paper, we have demonstrated a simple fabrication flow to build metal-insulator-metal capacitors, key components of dynamic random access memory, on a mechanically flexible silicon (100) fabric. We rely on standard microfabrication processes to release a thin sheet of bendable silicon (area: 18 {\\ m cm}2 and thickness: 25 \\\\mu{\\ m m}) in an inexpensive and reliable way. On such platform, we fabricated and characterized the devices showing mechanical robustness (minimum bending radius of 10 mm at an applied strain of 83.33% and nominal strain of 0.125%) and consistent electrical behavior regardless of the applied mechanical stress. Furthermore, and for the first time, we performed a reliability study suggesting no significant difference in performance and showing an improvement in lifetime projections. © 1963-2012 IEEE.

  7. Proceedings of the symposium on chemistry and physics of surface of metals and their oxides

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Topics covered include: structure of crystalline surfaces; thermodynamic, electrostatic, and physicochemical considerations on defect structure and metal to metal interfaces; physical properties of metal surfaces; stress corrosion cracking; corrosion; passivation; mass transfer across interfaces; electrodeposition; Auger electron spectroscopy; electron microscopy; and catalysis. (GHT)

  8. Effects of loading variables on fatigue-crack growth in liquid-metal environments

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1995-10-01

    Full Text Available Liquid-metal-induced embrittlement (LMIE) refers to the loss of ductility in normally ductile metals and alloys when stressed while in contact with a liquid metal. In this study, the fatigue crack growth behaviour of brass in molten gallium...

  9. Liquid metal cooled divertor for ARIES

    International Nuclear Information System (INIS)

    Muraviev, E.

    1995-01-01

    A liquid metal, Ga-cooled divertor design was completed for the double null ARIES-II divertor design. The design analysis indicated a surface heat flux removal capability of up to 15 MW/m 2 , and its relative easy maintenance. Design issues of configuration, thermal hydraulics, thermal stresses, liquid metal loop and safety effects were evaluated. For coolant flow control, it was found that it is necessary to use some part of the blanket cooling ducts for the draining of liquid metal from the top divertor. In order to minimize the inventory of Ga, it was recommended that the liquid metal loop equipment should be located as close to the torus as possible. More detailed analysis of transient conditions especially under accident conditions was identified as an issue that will need to be addressed

  10. Heavy metal jako subkultura

    OpenAIRE

    KOUTNÁ, Daniela

    2016-01-01

    This bachelor thesis deals with heavy metal subculture. Its aim is to introduce the most important branches and to show broadness of heavy metal. This bachelor thesis describes development and history, briefly shows Czech heavy metal history alongside with the biggest and most popular Czech heavy metal festivals. It shows the most dressing concerns of society against this style.

  11. METAL PRODUCTION AND CASTING

    Science.gov (United States)

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  12. Investigation of surface residual stress profile on martensitic stainless steel weldment with X-ray diffraction

    Directory of Open Access Journals (Sweden)

    I.I. Ahmed

    2018-04-01

    Full Text Available The development of residual stresses during fabrication is inevitable and often neglected with dire consequences during the service life of the fabricated components. In this work, the surface residual stress profile following the martensitic stainless steel (MSS pipe welding was investigated with X-ray diffraction technique. The results revealed the presence of residual stresses equilibrated across the weldment zones. Tensile residual stress observed in weld metal was balanced by compressive residual stresses in the parent material on the opposing sides of weld metal. Keywords: Residual stress, Weld, Stainless steel, X-ray, HAZ

  13. Cavitation instabilities between fibres in a metal matrix composite

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    induced by bonding to the ceramics that only show elastic deformation. In an MMC the stress state in the metal matrix is highly non-uniform, varying between regions where shear stresses are dominant and regions where hydrostatic tension is strong. An Al–SiC whisker composite with a periodic pattern......Short fibre reinforced metal matrix composites (MMC) are studied here to investigate the possibility that a cavitation instability can develop in the metal matrix. The high stress levels needed for a cavitation instability may occur in metal–ceramic systems due to the constraint on plastic flow...... of transversely staggered fibres is here modelled by using an axisymmetric cell model analysis. First the critical stress level is determined for a cavitation instability in an infinite solid made of the Al matrix material. By studying composites with different distributions and aspect ratios of the fibres...

  14. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  15. Control of welding residual stress for ensuring integrity against fatigue and stress-corrosion cracking

    International Nuclear Information System (INIS)

    Mochizuki, Masahito

    2007-01-01

    The availability of several techniques for residual stress control is discussed in this paper. The effectiveness of these techniques in protecting from fatigue and stress-corrosion cracking is verified by numerical analysis and actual experiment. In-process control during welding for residual stress reduction is easier to apply than using post-weld treatment. As an example, control of the welding pass sequence for multi-pass welding is applied to cruciform joints and butt-joints with an X-shaped groove. However, residual stress improvement is confirmed for post-weld processes. Water jet peening is useful for obtaining a compressive residual stress on the surface, and the tolerance against both fatigue and stress-corrosion cracking is verified. Because cladding with a corrosion-resistant material is also effective for preventing stress-corrosion cracking from a metallurgical perspective, the residual stress at the interface of the base metal is carefully considered. The residual stress of the base metal near the clad edge is confirmed to be within the tolerance of crack generation. Controlling methods both during and after welding processes are found to be effective for ensuring the integrity of welded components

  16. Alkali metals and group IIA metals

    International Nuclear Information System (INIS)

    Fenton, D.E.

    1987-01-01

    This chapter on the coordination complexes of the alkali metals of group IIA starts with a historical perspective of their chemistry, from simple monodentate ligands, metal-β-diketonates to the macrocyclic polyethers which act as ligands to the alkali and akaline earth metals. Other macrocyclic ligands include quarterenes, calixarenes, porphyrins, phthalocyanines and chlorophylls. A section on the naturally occurring ionophores and carboxylic ionophores is included. (UK)

  17. Predicting dietborne metal toxicity from metal influxes

    Science.gov (United States)

    Croteau, M.-N.; Luoma, S.N.

    2009-01-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal i