WorldWideScience

Sample records for metal salt solutions

  1. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes

  2. Optical absorption of dilute solutions of metals in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Senatore, G.; Parrinello, M.; Tosi, M.P. (Trieste Univ. (Italy). Ist. di Fisica Teorica; Gruppo Nazionale di Struttura dell material del CNR, Trieste (Italy); International Centre for Theoretical Physics, Trieste (Italy))

    1978-12-23

    The theory of liquid structure for fluids of charged hard spheres is applied to an evaluation of the F-centre model for valence electrons in metal-molten salt solutions at high dilution. Minimization of the free energy yields the groundstate radius of the elctron bubble and hence the optical excitation energy in a Franck-Condon transition, the shift and broadening of the transition due to fluctuations in the bubble radius, the volume of mixing, and the activity of the salt in the solution.

  3. Ionic structure of solutions of alkali metals and molten salts

    International Nuclear Information System (INIS)

    Chabrier, G.; Senatore, G.; Tosi, M.P.

    1982-02-01

    Neutron diffraction patterns from K-KCl and Rb-RbBr liquid solutions at various compositions are examined in an ionic-mixture model which neglects screening and aggregation due to the metallic electrons. The main feature of the observed diffraction patterns for wave number k above roughly 1A -1 are accounted for by the model. The approach to the metal-rich end of the phase diagram is analyzed in detail from different viewpoints in the K-KCl system. Short-range correlations of the potassium ions are described in this region by a metallic radius deduced from properties of the pure liquid metal, but a simple expanded-metal model must be supplemented by the assumption that considerable disorder is introduced in its structure by the halogen ions. Features of short-range ordering in the salt-rich region that are implied by a shoulder on the high-k side of the main peak in the diffraction pattern are also commented upon. (author)

  4. The nonmetal-metal transition in solutions of metals in molten salts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1997-04-01

    Solutions of metals in molten salts present a rich phenomenology: localization of electrons in disordered ionic media, activated electron transport increasing with metal concentration towards a nonmetal-metal (NM-M) transition, and liquid-liquid phase separation. A brief review of progress in the study of these systems is given in this article, with main focus on the NM-M transition. After recalling the known NM-M behaviour of the component elements in the case of expanded fluid alkali metals and mercury and of solid halogens under pressure, the article focuses on liquid metal - molten salt solutions and traces the different NM-M behaviours of the alkalis in their halides and of metals added to polyvalent metal halides. (author). 51 refs, 2 figs

  5. Ageing behaviour of unary hydroxides in trivalent metal salt solutions

    Indian Academy of Sciences (India)

    LDH)-like phases on ageing in solutions of Al or Cr salts. This reaction is similar to acid leaching and proceeds by a dissolution–reprecipitation mechanism offering a simple method of LDH synthesis, with implications for the accepted theories of ...

  6. Ageing behaviour of unary hydroxides in trivalent metal salt solutions

    Indian Academy of Sciences (India)

    Unknown

    Figure 2. Powder X-ray diffractogram of CuO (a) compared with those of CuO aged in aluminium nitrate for 2 days (b) and 4 days (c). Feature marked by asterisk is due to impurities. Table 2. Powder X-ray diffraction data of layered double hydroxides obtained by the ageing of unary hydroxides in Al (or Cr) salt solutions. d/Å.

  7. Swelling compositions based polycarboxylic acids and bentonite clays in solutions of salts of metals

    Directory of Open Access Journals (Sweden)

    A. Sarshesheva

    2012-12-01

    Full Text Available This work is devoted to the synthesis of chemical cross-linked composite materials made of natural inorganic polymer bentonite clay of Manrak deposit, and polyacrylic and polymethacrylic acids. The swelling ability of the composition in solutions of salts of heavy metals (Ni2+ and Pb2+, influence of solution of concentration, pH and temperature on the swelling ability is investigated.

  8. On salting in effect of the second group metal rhodanides on aqueous-amine solutions

    International Nuclear Information System (INIS)

    Krupatkin, I.L.; Ostrovskaya, E.M.; Vorob'eva, L.D.; Kamyshnikova, G.V.

    1978-01-01

    The ''salting in'' effect of rhodanides of Group 2 metals (magnesium, calcium, strontium, barium) on aqueous-amine solutions (water-aniline, and water-o-toluidine systems) is studied. The solubility in these systems has been determined by the isothermal method at 25 deg C. Compositions of the co-existing liquid phases have been determined by refractometry. The phase diagrams of water-aniline-rhodanide of magnesium, calcium and strontium systems have the same qualitative view. These rhodanides ''salt in'' the water-aniline system so strongly that the systems are completely homogenized. According to the decreasing homogenization effect on the water-aniline and water-o-toluidine systems the salts may be arranged into the following series Mg(NCS) 2 >Ca(NCS) 2 >Sr(NCS) 2 >Ba(NCS) 2 . The ''salting in'. effect is weaker in the water-o-toluidine system rather than in the water-aniline one

  9. Metals removal from spent salts

    Science.gov (United States)

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  10. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    Science.gov (United States)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 ions which is achieved in the current study through electronic continuum correction force fields. A detailed analysis of the effects of ion-pairs on the structure and dynamics of water around the hydrated ions is done through classification of water into different subspecies based on their locations around the cations or anions only or bridged between them. We have looked at the diffusion coefficients, relaxation of orientational correlation functions, and also the residence times of different subspecies of water to explore the dynamics of water in different structural environments in the solutions. The current results show that the water molecules are incorporated into fairly well-structured hydration shells of the ions, thus decreasing the single-particle diffusivities and increasing the orientational relaxation times of water with an increase in salt concentration. The different structural motifs also lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion

  11. Alteration of non-metallic barriers and evolution of solution chemistry in salt formations in Germany

    International Nuclear Information System (INIS)

    Herbert, H.J.; Becker, D.; Hagemann, S.; Meyer, Th.; Noseck, U.; Rubel, A.; Mauke, R.; Wollrath, J.

    2005-01-01

    Different Engineered Barrier Systems (EBS) materials considered in Germany for the sealing of repositories in salt formations are presented. Their long term behaviour in terms of interactions with salt solutions is discussed and evaluated. The discussed EBS materials are crushed salt, self sealing salt backfill, bentonite and salt concrete. Whereas the knowledge concerning the geochemical, geomechanical, hydrological and thermal behavior of crushed salt and salt concrete is well advanced further research is needed for other EBS materials. The self healing salt backfill has also been investigated in depth recently. In order to fully qualify this material large scale in situ experiments are still needed. The present knowledge on compacted bentonites in a salt environment is not yet sufficient for reliable predictions of the long-term performance in salt formations. The sealing concept of the low- and intermediate-level Radioactive Waste Repository Morsleben (ERAM) in a former rock salt and potash mine is presented. This concept is based on cementitious materials, i.e. salt concrete. The geochemical stability of different salt concretes in contact with brines expected in ERAM is addressed. It is shown how the results from leaching experiments and geochemical modelling are used in the safety analyses and how the chemical boundary conditions prevailing in the EBS influence the development of the permeability of the sealing system and thus control the radionuclide release. As a result of modelling the behaviour of the seals in the safety assessment it is shown, that the seals are corroded within a time span of about 20 000 years. The influence of the uncertainty in the model parameters on the safety of the repository was assessed by a variation of the initial permeability of the seal. The maximum dose rate resulting from the radionuclide release from ERAM is nearly independent of the variation of the initial permeability within four orders of magnitude. (authors)

  12. Electrical resistivities and solvation enthalpies for solutions of salts in liquid alkali metals

    International Nuclear Information System (INIS)

    Hubberstey, P.; Dadd, A.T.

    1982-01-01

    An empirical correlation is shown to exist between the resistivity coefficients drho/dc for solutes in liquid alkali metals and the corresponding solvation enthalpies Usub(solvn) of the neutral gaseous solute species. Qualitative arguments based on an electrostatic solvation model in which the negative solute atom is surrounded by a solvation sphere of positive solvent ion cores are used to show that both parameters are dependent on the charge density of the solute atom and hence on the extent of charge transfer from solvent to solute. Thus as the charge density of the solute increases, the solvation enthalpy increases regularly and the resistivity coefficients pass through a maximum to give the observed approximately parabolic drho/dc versus Usub(solvn) relationship. (Auth.)

  13. Electronic Tongue for Qualitative Analysis of Aqueous Solutions of Salts Using Thick-film Technology and Metal Electrodes

    Directory of Open Access Journals (Sweden)

    Juan Soto

    2006-09-01

    Full Text Available An electronic tongue for the qualitative analysis of aqueous solutions of salts hasbeen developed. The following set of electrodes was used: RuO2, Ag, and Cu in thick-filmtechnology and Au, Pb, Zn and Ni as small bars of the corresponding metal. The response ofthe designed “electronic tongue” was tested on a family of samples containing pure salt andcomplex mixtures. The electrodes were used as potentiometric un-specific sensors and thee.m.f. of each electrode in contact with a certain aqueous solution was used as input signalfor a PCA analysis. The study showed that the set of electrodes were capable to discriminatebetween aqueous solutions of salts basically by their different content in anions and cations(the anions SO42-, Cl-, PO4H2-, CO3H-, NO3- and cations Na+ and K+ were studied. In orderto better analyze the basis for the discrimination power shown by the electronic tongue, aquantitative analysis was also envisaged. A fair estimation of the concentrations of thedifferent ions in the solutions studied appeared to be possible using this electronic tonguedesign.Keywords:

  14. Use of alkali metal salts to prepare high purity single-walled carbon nanotube solutions and thin films

    Science.gov (United States)

    Ashour, Rakan F.

    Single-walled carbon nanotubes (SWCNTs) display interesting electronic and optical properties desired for many advanced thin film applications, such as transparent conductive electrodes or thin-film transistors. Large-scale production of SWCNTs generally results in polydispersed mixtures of nanotube structures. Since SWCNT electronic character (conducting or semiconducting nature) depends on the nanotube structure, application performance is being held back by this inability to discretely control SWCNT synthesis. Although a number of post-production techniques are able to separate SWCNTs based on electronic character, diameter, or chirality, most still suffer from the disadvantage of high costs of materials, equipment, or labor intensity to be relevant for large-scale production. On the other hand, chromatographic separation has emerged as a method that is compatible with large scale separation of metallic and semiconducting SWCNTs. In this work, SWCNTs, in an aqueous surfactant suspension of sodium dodecyl sulfate (SDS), are separated by their electronic character using a gel chromatography process. Metallic SWCNTs (m-SWCNTs) are collected as initial fractions since they show minimum interaction with the gel medium, whereas, semiconducting SWCNTs (sc- SWCNTs) remain adsorbed to the gel. The process of sc-SWCNT retention in the gel is found to be driven by the packing density of SDS around the SWCNTs. Through a series of separation experiments, it is shown that sc-SWCNTs can be eluted from the gel simply by disturbing the configuration of the SDS/SWCNT micellar structure. This is achieved by either introducing a solution containing a co-surfactant, such as sodium cholate (SC), or solutions of alkali metal ionic salts. Analysis of SWCNT suspensions by optical absorption provides insights into the effect of changing the metal ion (M+ = Li+, Na+, and K+) in the eluting solution. Salts with smaller metal ions (e.g. Li+) require higher concentrations to achieve

  15. Study of quantitative interactions of potato and corn starch granules with ions in diluted solutions of heavy metal salts.

    Science.gov (United States)

    Szymońska, Joanna; Molenda, Marcin; Wieczorek, Jerzy

    2015-12-10

    Interactions of potato and corn starch granules with ions in diluted solutions of silver, lead, copper or iron salts were investigated. It was shown experimentally that granules accumulated the cations in amounts depending on the granule structure and water content as well as a type of both metal and counter-ions present in solution. Potato starch retained almost three times more cations compared to corn starch what was proportional to the total phosphorous content in these starches. Quantity of milligrams of cations bound by 1g of starch was inversely correlated with the cation hydration. Ag(+), Pb(2+) and Cu(2+) were connected in stoichiometric amounts of moles to semicrystalline and amorphous parts of the granules. Fe(3+) ions were accumulated in higher than stoichiometric quantities mainly in granule amorphous regions. Metal ions penetrated into granules together with anions except nitrates which remained on surface of potato starch granules. Cations facilitated the starch thermal decomposition in accordance with values of their standard redox potentials. Nitrates supported this process only in the presence of base metal cations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. SEPARATION OF METAL SALTS BY ADSORPTION

    Science.gov (United States)

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  17. Nd:YAG laser associated with metal salts solutions in the treatment of dentinal hypersensitivity

    International Nuclear Information System (INIS)

    Glauche, Carlos Eugenio Correia

    2001-01-01

    The objective of this study was to observe the ultrastructural changes caused by the radiation of Nd:YAG laser on the tooth tissue and determine qualitatively the presence of Sn ++ , Sr ++ and F - , inside the dentin, being it irradiated or not. Ten molar teeth recently extracted were cut into 2 mm discs. The samples were soaked in a EDTA solution at 17% for 2 minutes and divided into five groups. Group I: the samples were irradiated with Nd:YAG laser (1,5 W, 100 mJ, 15 Hz, 150 μs and 125 J/cm 2 ) and after that, a treatment with an SnF 2 aqueous solution at 10% for 30 minutes. Group II: the samples got laser irradiation with the same parameters and then a treatment with an SrCl 2 solution at 10% as a toothpaste (Sensodyne TM ) for 30 minutes. Group III: the samples just got a treatment with a SnF 2 aqueous solution at 10% for 30 minutes. Group IV: the samples just got a treatment with a SrCl 2 toothpaste (Sensodyne TM ) for 30 minutes. Group V: samples that just got laser irradiation in the parameters above mentioned. Then, all samples were prepared for scanning electronic microscopy (SEM) and the samples of groups I, II, III and IV for energy dispersive X-ray microanalysis (EDX). The ultrastructure aspect of the dentin showed the surface totally altered by the irradiation. Pits and whitish globules were found amidst an heterogenous and rough structure, due to the melting and resolidification of the dental structure. Craters were also observed. Carbonization areas were absent. Ions Sn ++ were found at a depth of 250 μm in the samples of group I (Nd:YAG + SnF 2 ), whereas in the samples of group III, Sn ++ were not found deeper than 100 μm. Sr ++ could be detected at least at 500 μm in the inner dentin in the samples of group II (Nd:YAG + SrCl 2 ). However, Sn ++ were not found at 50 μm in group IV samples. Ions F - were just found in the irradiated samples of group I. According to the study results we observed that through ultrastructural changes, caused by

  18. Oxidation by metal salts

    International Nuclear Information System (INIS)

    Makhon'kov, D.I.; Cheprakov, A.V.; Rodkin, M.A.; Mil'chenko, A.Yu.; Beletskaya, I.P.

    1986-01-01

    Oxidation of toluene and para-substituted toluenes containing electron acceptor groups: p-toluic acid, p-methyltoluylate and p-nitrotoluene by ammonium cerium (4) nitrate and ammonium cerium (4) sulfate in aqueous solutions of trifluoroacetic acid in the presence of chlorides and bromides of alkali metals is studied. The rate and selectivity of oxidative halogenation in side chain and/or aromatic ring under the conditions studied depend both on the nature of substrate and halogenide-ion and on the reaction conditions and ligand surrounding of cerium (4) atom

  19. Metal Oxide Solubility and Molten Salt Corrosion.

    Science.gov (United States)

    1982-03-29

    soluble oxides that relations like eq. (3) are significant. The oxides of several metal oxides have been found to be amphoteric , i.e., their solution...METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION.(U) MAR 82 K H STERN UNCLASSI E DL R L-4772NL EL .2. MICROCOPY RESOLUTION TEST CHART NATIONAL BURALU...METAL OXIDE SOLUBILITY AND MOLTEN SALT Interim report on a continuing CORROSION NRL problem. S. PERFORMING a4. REPORT NUMlER 7. AuTtwORr) S. CONTRACT OR

  20. Kinetic study of the α-tocopherol-regeneration reaction of ubiquinol-10 in methanol and acetonitrile solutions: notable effect of the alkali and alkaline earth metal salts on the reaction rates.

    Science.gov (United States)

    Mukai, Kazuo; Oi, Masanori; Ouchi, Aya; Nagaoka, Shin-ichi

    2012-03-01

    A kinetic study of regeneration reaction of α-tocopherol (α-TocH) by ubiquinol-10 has been performed in the presence of four kinds of alkali and alkaline earth metal salts (LiClO(4), NaClO(4), NaI, and Mg(ClO(4))(2)) in methanol and acetonitrile solutions, using double-mixing stopped-flow spectrophotometry. The second-order rate constants (k(r)'s) for the reaction of α-tocopheroxyl (α-Toc•) radical with ubiquinol-10 increased and decreased notably with increasing concentrations of metal salts in methanol and acetonitrile, respectively. The k(r) values increased in the order of no metal salt NaClO(4) ~ NaI > LiClO(4) > Mg(ClO(4))(2) at the same concentration of metal salts. The metal salts having a smaller ionic radius of cation and a larger charge of cation gave a larger k(r) value in methanol, and a smaller k(r) value in acetonitrile. The effect of anion was almost negligible in both the solvents. Notable effects of metal cations on the UV-vis absorption spectrum of α-Toc• radical were observed in aprotic acetonitrile solution, suggesting complex formation between α-Toc• and metal cations. On the other hand, effects of metal cations were negligible in protic methanol, suggesting that the complex formation between α-Toc• and metal cations is hindered by the hydrogen bond between α-Toc• and methanol molecules. The difference between the reaction mechanisms in methanol and acetonitrile solutions was discussed on the basis of the results obtained. High concentrations of alkali and alkaline earth metal salts coexist with α-TocH and ubiquinol-10 in plasma, blood, and many tissues, suggesting the contribution of the metal salts to the above regeneration reaction in biological systems.

  1. Notable effects of metal salts on UV-vis absorption spectra of α-, β-, γ-, and δ-tocopheroxyl radicals in acetonitrile solution. The complex formation between tocopheroxyls and metal cations.

    Science.gov (United States)

    Mukai, Kazuo; Kohno, Yutaro; Ouchi, Aya; Nagaoka, Shin-ichi

    2012-08-02

    The measurements of the UV-vis absorption spectra of α-, β-, γ-, and δ-tocopheroxyl (α-, β-, γ-, and δ-Toc(•)) radicals were performed by reacting aroxyl (ArO(•)) radical with α-, β-, γ-, and δ-tocopherol (α-, β-, γ-, and δ-TocH), respectively, in acetonitrile solution including three kinds of alkali and alkaline earth metal salts (LiClO(4), NaClO(4), and Mg(ClO(4))(2)) (MX or MX(2)), using stopped-flow spectrophotometry. The maximum wavelengths (λ(max)) of the absorption spectra of the α-, β-, γ-, and δ-Toc(•) located at 425-428 nm without metal salts increased with increasing concentrations of metal salts (0-0.500 M) in acetonitrile and approached some constant values, suggesting (Toc(•)···M(+) (or M(2+))) complex formations. Similarly, the values of the apparent molar extinction coefficient (ε(max)) increased drastically with increasing concentrations of metal salts in acetonitrile and approached some constant values. The result suggests that the formations of Toc(•) dimers were suppressed by the metal ion complex formations of Toc(•) radicals. The stability constants (K) were determined for Li(+), Na(+), and Mg(2+) complexes of α-, β-, γ-, and δ-Toc(•). The K values increased in the order of NaClO(4) metal salt. The alkali and alkaline earth metal salts having a smaller ionic radius of the cation and a larger charge of the cation gave a larger shift of the λ(max) value, a larger ε(max) value, and a larger K value. The result of the DFT molecular orbital calculations indicated that the α-, β-, γ-, and δ-Toc(•) radicals were stabilized by the (1:1) complex formation with metal cations (Li(+), Na(+), and Mg(2+)). Stabilization energy (E(S)) due to the complex formation increased in the order of Na(+) complexes, being independent of the kinds of Toc(•) radicals. The calculated result also indicated that the metal cations coordinate to the O atom at the sixth position of α-, β-, γ-, and δ-Toc(•) radicals.

  2. Direct Analysis of Metal Ions in Solutions with High Salt Concentrations by Total Reflection X-ray Fluorescence.

    Science.gov (United States)

    Regadío, Mercedes; Riaño, Sofía; Binnemans, Koen; Vander Hoogerstraete, Tom

    2017-04-18

    Total reflection X-ray fluorescence (TXRF) is becoming more and more popular for elemental analysis in academia and industry. However, simplification of the procedures for analyzing samples with complex compositions and residual matrix effects is still needed. In this work, the effect of an inorganic (CaCl 2 ) and an organic (tetraalkylphosphonium chloride) matrix on metals quantification by TXRF was investigated for liquid samples. The samples were spiked with up to 20 metals at concentrations ranging from 3 to 50 mg L -1 per element, including elements with spectral peaks near the peaks of the matrix elements or near the Raleigh and Compton scattering peaks of the X-ray source (molybdenum anode). The recovery rate (RR) and the relative standard deviation (RSD) were calculated to express the accuracy and the precision of the measured element concentrations. In samples with no matrix effects, good RRs are obtained regardless of the internal standard selected. However, in samples with moderate matrix content, the use of an optimum internal standard (OIS) at a concentration close to that of the analyte significantly improved the quantitative analysis. In samples with high concentrations of inorganic ions, using a Triton X-100 aqueous solution to dilute the sample during the internal standardization resulted in better RRs and lower RSDs compared to using only water. In samples with a high concentration of organic material, pure ethanol gave slightly better results than when a Triton X-100-ethanol solution was used for dilution. Compared to previous methods reported in the literature, the new sample-preparation method gave better accuracy, precision, and sensitivity for the elements tested. Sample dilution with an OIS and the surfactant Triton X-100 (inorganic media) or ethanol (organic media) is recommended for fast routine elemental determination in matrix containing samples, as it does not require special equipment, experimentally derived case-dependent mathematical

  3. Metal salt catalysts for enhancing hydrogen spillover

    Science.gov (United States)

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  4. Kinetic study of the aroxyl radical-scavenging reaction of alpha-tocopherol in methanol solution: notable effect of the alkali and alkaline earth metal salts on the reaction rates.

    Science.gov (United States)

    Ouchi, Aya; Nagaoka, Shin-ichi; Abe, Kouichi; Mukai, Kazuo

    2009-10-08

    A kinetic study of the aroxyl (ArO*) radical-scavenging reaction of alpha-tocopherol (alpha-TocH) has been performed in the presence of six kinds of alkali and alkaline earth metal salts (LiI, LiClO(4), NaI, NaClO(4), KI, and Mg(ClO(4))(2)) in methanol solution, using stopped-flow spectrophotometry. The decay rate of the ArO* for the reaction of alpha-TocH with ArO* increased linearly with increasing concentration of metal salts. The second-order rate constants (k(s)) for the reaction of alpha-TocH with ArO* increased in the order of no metal salt concentration of metal salts. For example, the k(s) values in methanol solution including 4.00 x 10(-1) M of LiI and Mg(ClO(4))(2) were 3.04 and 1.30 times larger than that in the absence of metal salts, respectively. The alkali and alkaline earth metal salts having smaller ionic radius of cation and anion and larger charge of cation gave larger rate constants (k(s)). Effects of metal cations on the UV-vis absorption spectra of the alpha-Toc* (and ArO*) radical were negligible in methanol solution, suggesting that the complex formation between the alpha-Toc* (and ArO*) radical molecule and metal cations is hindered by the hydrogen bond between radical and methanol molecules. The results indicate that the hydrogen transfer reaction of alpha-TocH proceeds via an electron transfer intermediate from alpha-TocH to ArO* radicals followed by proton transfer. Both the coordinations of metal cations to the one-electron reduced anions of ArO* (ArO: (-)) and of counteranions to the one-electron oxidized cations of alpha-TocH (alpha-TocH(+)*) may stabilize the intermediate, resulting in the acceleration of electron transfer. On the other hand, the effect of metal salts on the rate of bimolecular self-reaction (2k(d)) of the alpha-Toc* radical was not observed. The result suggests that the hydrogen transfer reaction between two alpha-Toc* radical molecules proceeds via a one-step hydrogen atom transfer mechanism rather than via an

  5. Sol-gel processing with inorganic metal salt precursors

    Science.gov (United States)

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  6. Ammonia Solubility in High Concentration Salt Solutions

    International Nuclear Information System (INIS)

    HEDENGREN, D.C.

    2000-01-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks

  7. Coordination chemistry in fused-salt solutions

    Science.gov (United States)

    Gruen, D. M.

    1969-01-01

    Spectrophotometric work on structural determinations with fused-salt solutions is reviewed. Constraints placed on the method, as well as interpretation of the spectra, are discussed with parallels drawn to aqueous spectrophotometric curves of the same materials.

  8. Aging of trivalent metal hydroxide/oxide gels in divalent metal salt ...

    Indian Academy of Sciences (India)

    Unknown

    Aging of trivalent metal hydroxide/oxide gels in divalent metal salt solutions: Mechanism of formation of layered double hydroxides (LDHs). A V RADHA and P ..... This situation promotes coprecipitation of the two metal hydroxides, by virtue of which the titrations yield the. Zn–Al LDH. The LDHs isolated before and after ...

  9. Metals in Metal Salts: A Copper Mirror Demonstration

    Science.gov (United States)

    Pike, Robert D.

    2010-01-01

    A simple lecture demonstration is described to show the latent presence of metal atoms in a metal salt. Copper(II) formate tetrahydrate is heated in a round-bottom flask forming a high-quality copper mirror.

  10. Titanium metal obtention by fused salts electrolysis

    International Nuclear Information System (INIS)

    Perillo, P.M.; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    Potassium fluorotitanate dissolved in fused sodium chloride or potassium chloride may be electrolyzed under an inert gas atmosphere. Solid electrolysis products are formed on the cathode which contains titanium metal, sodium chloride, lower fluorotitanates and small quantities of alkali metal fluorotitanate. The extraction of titanium from the electrolysis products may be carried out by aqueous leaching (removal of chloride salts of alkali metals and a certain amount of fluorotitanates). Titanium metal obtained is relatively pure. (Author)

  11. Scorpion toxins prefer salt solutions

    Czech Academy of Sciences Publication Activity Database

    Nikouee, A.; Khabiri, Morteza; Cwiklik, Lukasz

    2015-01-01

    Roč. 21, č. 11 (2015), 287/1-287/14 ISSN 1610-2940 R&D Projects: GA ČR GA13-06181S Institutional support: RVO:61388963 ; RVO:61388955 Keywords : ionic solutions * molecular dynamics * nonaqueous media * secondary structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.438, year: 2015

  12. PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells.

    Science.gov (United States)

    Yu, Zhimeng; Xia, Yijie; Du, Donghe; Ouyang, Jianyong

    2016-05-11

    A transparent electrode is an indispensable component of optoelectronic devices, and there as been a search for substitutes of indium tin oxide (ITO) as the transparent electrode. Poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) ( PSS) is a conducting polymer that is very promising as the next generation of materials for the transparent electrode if it can obtain conductivity as high as that of ITO. Here, we report the treatment of PSS with organic solutions to significantly enhance its conductivity. Common organic solvents like dimethylformamide and γ-butyrolactone and common organic salts like methylammonium iodide and methylammonium bromide are used for the organic solutions. The conductivity of pristine PSS films is only ∼0.2 S/cm, and it can be increased to higher than 2100 S/cm. The conductivity enhancement is much more significant than control treatments of PSS films with neat organic solvents or aqueous solutions of the organic salts. The mechanism for the conductivity enhancement is the synergetic effects of both the organic salts and organic solvents on the microstructure and composition of PSS. They induce the segregation of some PSSH chains from PSS. Highly conductive PSS films were studied as the transparent electrode of polymer solar cells. The photovoltaic efficiency is comparable to that with an ITO transparent electrode.

  13. Mutual influence of ions of rare earth metals (III) during extraction by trialkylbenzylammonium naphthenates in toluene from multicomponent salt-containing aqueous solutions

    International Nuclear Information System (INIS)

    Pyartman, A.K.; Kopyrin, A.A.; Zhikharev, D.A.; Keskinov, V.A.

    2003-01-01

    Extraction of lanthanide (III) nitrates [Ln(III): Sm-Lu(III), Y] from multicomponent aqua-salt solutions by trialkylbenzylammonium naphthenates in toluene at 298 K and pH 3 is studied. Physicochemical and mathematical models describing distribution and mutual influence of Ln(III) ions in multicomponent solutions in dependence on summary Ln(III) concentration in aqueous phase and concentrate composition are represented with regard to formation of compounds of (R 4 N) 2 [Ln(NO 3 ) 3 A 2 ] (A - fragments of naphthene acids) in organic phase [ru

  14. Salt-specific effects in lysozyme solutions

    Directory of Open Access Journals (Sweden)

    T. Janc

    2016-03-01

    Full Text Available The effects of additions of low-molecular-mass salts on the properties of aqueous lysozyme solutions are examined by using the cloud-point temperature, T_{cloud}, measurements. Mixtures of protein, buffer, and simple salt in water are studied at pH=6.8 (phosphate buffer and pH=4.6 (acetate buffer. We show that an addition of buffer in the amount above I_{buffer} = 0.6 mol dm^{-3} does not affect the T_{cloud} values. However, by replacing a certain amount of the buffer electrolyte by another salt, keeping the total ionic strength constant, we can significantly change the cloud-point temperature. All the salts de-stabilize the solution and the magnitude of the effect depends on the nature of the salt. Experimental results are analyzed within the framework of the one-component model, which treats the protein-protein interaction as highly directional and of short-range. We use this approach to predict the second virial coefficients, and liquid-liquid phase diagrams under conditions, where T_{cloud} is determined experimentally.

  15. Chronopotentiometry of refractory metals, actinides and oxyanions in molten salts: A review

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    The applications of chronopotentiometry to the study of electrochemical behavior of three technologically important areas of refractory metals, actinides, and oxyanions in molten salts are critically reviewed. Chronopotentiometry is a very versatile diagnostic tool to understand the reaction mechanism of the electrode processes for the electrochemical reduction/oxidation of these electroactive species in molten salt solutions. Well adherent, compact, and uniformly thick coatings of refractory metals may be electrodeposited from their solutions in molten salts.

  16. Salt-specific effects in lysozyme solutions

    OpenAIRE

    T. Janc; M. Kastelic; M. Bončina; V. Vlachy

    2016-01-01

    The effects of additions of low-molecular-mass salts on the properties of aqueous lysozyme solutions are examined by using the cloud-point temperature, $T_{cloud}$, measurements. Mixtures of protein, buffer, and simple salt in water are studied at pH=6.8 (phosphate buffer) and pH=4.6 (acetate buffer). We show that an addition of buffer in the amount above $I_{buffer} = 0.6$ mol dm$^{-3}$ does not affect the $T_{cloud}$ values. However, by replacing a certain amount of the buffer electrolyte b...

  17. Electron spin resonance study of electron localization and dynamics in metal-molten salt solutions: comparison of M-MX and Ln-LnX sub 3 melts (M alkali metal, Ln = rare earth metal, X = halogen)

    CERN Document Server

    Terakado, O; Freyland, W

    2003-01-01

    We have studied the electron spin resonance (ESR) spectra in liquid K-KCl and M-(NaCl/KCl) sub e sub u sub t mixtures at different concentrations in salt-rich melts approaching the metal-nonmetal transition region. In both systems F-centre-like characteristics are found. Strongly exchange narrowed signals clearly indicate that fast electron exchange occurs on the picosecond timescale. In contrast, the ESR spectra of a (NdCl sub 2)(NdCl sub 3)-(LiCl/KCl) sub e sub u sub t melt are characterized by a large line width of the order of 10 sup 2 mT which decreases with increasing temperature. In this case, the g-factor and correlation time are consistent with the model of intervalence charge transfer, which is supported by recent conductivity and optical measurements. The different transport mechanisms will be discussed.

  18. 21 CFR 864.2875 - Balanced salt solutions or formulations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Balanced salt solutions or formulations. 864.2875 Section 864.2875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Balanced salt solutions or formulations. (a) Identification. A balanced salt solution or formulation is a...

  19. Cotton fabrics with UV blocking properties through metal salts deposition

    International Nuclear Information System (INIS)

    Emam, Hossam E.; Bechtold, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Introducing metal salt based UV-blocking properties into cotton fabric. • A quite simple technique used to produce wash resistant UV-absorbers using different Cu-, Zn- and Ti-salts. • Good UPF was obtained after treatment with Cu and Ti salts, and ranged between 11.6 and 14. • The efficiency of the deposited metal oxides is compared on molar basis. - Abstract: Exposure to sunlight is important for human health as this increases the resistance to diverse pathogens, but the higher doses cause skin problems and diseases. Hence, wearing of sunlight protective fabrics displays a good solution for people working in open atmosphere. The current study offered quite simple and technically feasible ways to prepare good UV protection fabrics based on cotton. Metal salts including Zn, Cu and Ti were immobilized into cotton and oxidized cotton fabrics by using pad-dry-cure technique. Metal contents on fabrics were determined by AAS; the highest metal content was recorded for Cu-fabric and it was 360.6 mmol/kg after treatment of oxidized cotton with 0.5 M of copper nitrate. Ti contents on fabrics were ranged between 168.0 and 200.8 mmol/kg and it showed the lowest release as only 38.1–46.4% leached out fabrics after five laundry washings. Metal containing deposits were specified by scanning electron microscopy and energy dispersive X-ray spectroscopy. UV-transmission radiation over treated fabrics was measured and ultraviolet protection factor (UPF) was calculated. UPF was enhanced after treatment with Cu and Ti salts to be 11.6 and 14, respectively. After five washings, the amount of metal (Cu or Ti) retained indicates acceptable laundering durability.

  20. 40 CFR 721.640 - Amine substituted metal salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine substituted metal salts. 721.640... Substances § 721.640 Amine substituted metal salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as amine substituted metal salts...

  1. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151) is...

  2. Size-selective extraction of metal salts: the general principles

    International Nuclear Information System (INIS)

    Yakshin, V.V.

    1988-01-01

    Consideration is given to application of the structural correspondence principle for explaining processes of selective (with respect to ion size) solvent extraction of metal salts from aqueous solutions to organic phase by crown-ethers of different spatial and electronic structure. A study has been made on more than 50 different structures of cyclic and acyclic polyethers, containing aromatic, aliphatic and cycloaliphatic fragments. It is shown that introduction of additional substituents enables to increase extraction selectivity and separate elements with similar chemical properties

  3. Uranium metal production by molten salt electrolysis

    International Nuclear Information System (INIS)

    Takasawa, Yutaka

    1999-01-01

    Atomic vapor laser isotope separation (AVLIS) is a promising uranium enrichment technology in the next generation. Electrolytic reduction of uranium oxides into uranium metal is proposed for the preparation of uranium metal as a feed material for AVLIS plant. Considering economical performance, continuos process concept and minimizing the amount of radioactive waste, an electrolytic process for producing uranium metal directly from uranium oxides will offer potential advantages over the existing commercial process. Studies of uranium metal by electrolysis in fluoride salts (BaF 2 -LiF-UF 4 (74-11-15 w/o) at 1150-1200degC, using both a laboratory scale apparatus and an engineering scale one, and continuous casting of uranium metal were carried out in order to decide the optimum operating conditions and the design of the industrial electrolytic cells. (author)

  4. Solubility of pllutonium in alkaline salt solutions

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Edwards, T.B.

    1993-01-01

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model

  5. Decomposition of metal nitrate solutions

    International Nuclear Information System (INIS)

    Haas, P.A.; Stines, W.B.

    1982-01-01

    Oxides in powder form are obtained from aqueous solutions of one or more heavy metal nitrates (e.g. U, Pu, Th, Ce) by thermal decomposition at 300 to 800 deg C in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal. (author)

  6. Complexability of o-bisguanidinobenzenes with arsenic and phosphoric acids in solution and solid states, and the potential use of their immobilized derivatives as solid base ligands for metal salts and arsenic acid.

    Science.gov (United States)

    Ito, Tomoya; Suda, Koji; Kumamoto, Takuya; Nakanishi, Waka; Watanabe, Toshiko; Ishikawa, Tsutomu; Seki, Hiroko; Kawahata, Masatoshi; Yamaguchi, Kentaro; Ogura, Yasumitsu; Suzuki, Kazuo T

    2010-02-01

    The role of o-bisguanidinobenzenes (BGBs) as new Brønsted base ligands for arsenic and phosphoric acids was examined. In solution state, complexation was evaluated by Job's plot in (1)H NMR experiment, indicating a 1:1 complex formation, whereas in solid state crystalline structures of complexes obtained were addressed by X-ray crystallographic analysis and/or solid state (13)C NMR experiment, in which 1:2 complexes between the BGB and the acid components were normally formed. Based on these results, Merrifield and Hypogel resin-anchored BGBs were designed and prepared as the corresponding polymer-supported host ligands. Evaluation of their coordination ability with metal salts (ZnCl(2) and CoCl(2)) and arsenic acid in aqueous media by ICP-MS showed that the latter Hypogel resin-anchored BGBs acted as effective immobilized base ligands.

  7. 40 CFR 721.4620 - Dialkylamino alkanoate metal salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dialkylamino alkanoate metal salt. 721... Substances § 721.4620 Dialkylamino alkanoate metal salt. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as dialkylamino alkanoate metal...

  8. Adsorption of di-2-ethylhexylphosphoric acid from toluene the interface with inorganic salt aqueous solutions

    International Nuclear Information System (INIS)

    Fajnshtejn, E.V.; Popov, A.N.

    1990-01-01

    Interfacial tension in the system toluene solution of di-2-ethylhexylphosphoric acid HDEHP-aqueous solutions of inorganic salts has been measured by the drop volume method. The ion-exchange constants in the monolayers formed by HDEHP and alkaline-earth metals have been measured

  9. Isolation of transplutonium elements on ion exchangers from solutions of high salt concentration

    International Nuclear Information System (INIS)

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1985-01-01

    The behaviour of transplutonium elements (TPE) on cation and anion exchangers in aqueous alcoholic solutions of chlorides and nitrates of some alkali and alkaline earth metals depending on different factors: salt concentration, content of alcohol and of acid in the solution as well as the nature of a cation was studied. The data obtained were used to determine the optimal conditions of concentration of TPE on ion exchangers from solutions containing great quantities of salts. The advantages of the use of aqueous alcoholic solutions of nitric acid in the isolation of TPE are shown. (author)

  10. Effect of ionic strength of aqueous salt solutions in a liquid scintillation system on tritium counting efficiency

    International Nuclear Information System (INIS)

    Raieh, M.; Abd-elwahid, A.; Khachadoorian, S.K.

    1987-01-01

    The dependence of the counting efficiency of tritium dissolved in aqueous salt solutions as a function of salt ionic strength has been studied. The scintillation system used was POPOP/PPO/Triton x 100/toluene mixture. The quenching effect of the following salts have been investigated 1. Group I and group II metal chlorides and nitrates. 2. Different halides of potassium. 3. Different ammonium salts. 4. Different sodium oxychlorides

  11. Metal cation exchange reactions of ore minerals in Fe-Mn crusts of the Marcus Wake Rise (Pacific Ocean) in aqueous-salt solutions

    Science.gov (United States)

    Novikov, G. V.; Bogdanova, O. Yu.; Melnikov, M. E.; Drozdova, A. N.; Lobus, N. V.; Shulga, N. A.

    2017-12-01

    It is shown that the reaction ability of metal cations of ore minerals in Fe-Mn crusts of the Marcus Wake Rise increases in the following manner: (Co2+ minerals is constant and includes these metal cations. Ca2+ and Na+ are major contributors to the exchange capacity of the ore minerals. The capacity of the ore minerals by cations of alkali and base metals is 0.43-0.60 and 2.08-2.70 mg-equiv/g, respectively. The exchange capacity of the ore minerals by cations of base metals increases linearly with the increase in the MnO2 content of the crust and does not depend on the geographical locations of the Marcus Wake guyots.

  12. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  13. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].

    Science.gov (United States)

    Bogdanova, L R; Bakirova, D R; Valiullina, Yu A; Idiyatullin, B Z; Faizullin, D A; Zueva, O S; Zuev, Yu F

    2016-01-01

    The changes in structure and catalytic properties of fungal lipases (Candida rugosa, Rhizomucor miehei, Mucor javanicus) were investigated in micellar solutions of bile salts that differ in hydrophilic-lypophilic balance and reaction medium properties. The methods of circular dichroism and tryptophan fluorescence were applied to estimate the changes in peptide structure within complexes with bile salt micelles. Bile salts do not exert a significant influence on the structure of the enzymes under study: in Rh. miehei and M. javanicus lipases the alpha helix content slightly decreased, the influence of bile salts on the C. rugosa structure was not revealed. Despite negligible structural modifications in the enzymes, in bile salt solutions a considerable change in their catalytic properties was observed: an abrupt decrease in catalytic effectiveness. Substrate-bile salts micelles complex formation was demonstrated by the NMR self-diffusion method. The model of a regulation of fungal lipase activity was proposed.

  14. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The changes with time in the corrosion rate and corrosion current density on a cast iron electrode in various aqueous salt solutions have been carried out using total immersion test and potentiostatic polarization curves. The concentration of salts taken is expected to be present in potable water. The relative ...

  15. Selective extraction of metals from acidic uranium(VI) solutions using neo-tridecano-hydroxamic acid

    International Nuclear Information System (INIS)

    Bardoncelli, F.; Grossi, G.

    1975-01-01

    According to this invention neo-alkyl-hydroxamic acids are employed as ion-exchanging agents in processes for liquid-liquid extraction with the aim of separating, purifying dissolved metals and of converting a metal salt solution into a solution of a salt of the same metal but with different anion. In particular it is an objective of this invention to provide a method whereby a molecular pure uranium solution is obtained by selective extraction from a uranium solution delivered by irradiated fuel reprocessing plants and containing plutonium, fission products and other unwanted metals, in which method neo-tridecane-hydroxamic acid is employed as ion exchanger. (Official Gazette)

  16. Methods for predicting properties and tailoring salt solutions for industrial processes

    Science.gov (United States)

    Ally, Moonis R.

    1993-01-01

    An algorithm developed at Oak Ridge National Laboratory accurately and quickly predicts thermodynamic properties of concentrated aqueous salt solutions. This algorithm is much simpler and much faster than other modeling schemes and is unique because it can predict solution behavior at very high concentrations and under varying conditions. Typical industrial applications of this algorithm would be in manufacture of inorganic chemicals by crystallization, thermal storage, refrigeration and cooling, extraction of metals, emissions controls, etc.

  17. Determination of toxic metals in salt deposits in Bormanda, Nigeria ...

    African Journals Online (AJOL)

    lawal

    Heavy metals which may co-exist with soil salt, when present above their threshold levels could be hazardous to the body system. Common salt samples extracted from soil samples from Bormanda and. Karim Lamido Local Government Areas in Taraba State, Nigeria, were digested in aqua-regia and analysed for Lead ...

  18. A study on the structure of thorium salt solutions

    International Nuclear Information System (INIS)

    Magini, M.; Cabrini, A.; Di Bartolomeo, A.

    1975-01-01

    The structure of highly hydrolyzed thorium salt solutions has been investigated by large and small angle X-ray scattering techniques. The diffraction data obtained with large angle measurements show the presence in solution of microcrystalline particles with the thorium oxide structure. Particles larger than those were discovered by small angle measurements. A possible shape of these colloidal particles has been discussed

  19. Americium extraction by alkylpyrocatechin from alkaline salt solutions

    International Nuclear Information System (INIS)

    Karalova, Z.K.; Rodionova, L.M.; Myasoedov, B.F.

    1984-01-01

    Effect of iron, aluminium, calcium, and sodium nitrates on americium extraction by 0.1 mol/l DOP solution [4-(α-α dioctylethyl) pyrocatechin] in toluene from a mixture of 2 mol/l NaOH with 0.1 mol/l EDTA has been investigated. It has been shown that americium extraction does not change essen-- tially in the presence of salts that permits to use DOP for Am extraction from alkaline solutions in the presence of outside salts. Verification of the above method of extraction of radioactive isotopes has been carried out. According to the data obtained double extraction provides a preparation of alkaline solutions practically free from radioactive isotopes. DOP application for Am extraction from alkaline salt solutions allows one to carry out repeated Am concentration and separation from accompanying elements. Conditions, under which Fe(3)-Am(3) pair separation coefficient achieves nx10 2 -10 4 , have been found out

  20. Effects of metal salt catalysts on yeast cell growth in ethanol conversion

    Science.gov (United States)

    Chung-Yun Hse; Yin Lin

    2009-01-01

    The effects of the addition of metal salts and metal salt-catalyzed hydrolyzates on yeast cell growth in ethanol fermentation were investigated. Four yeast strains (Saccharomyces cerevisiae WT1, Saccharomyces cerevisiae MT81, Candida sp. 1779, and Klumaromyces fragilis), four metal salts (CuCl2, FeCl3, AgNO3, and I2), two metal salt-catalyzed hydrolyzates (...

  1. Molten salt/metal extractions for recovery of transuranic elements

    International Nuclear Information System (INIS)

    Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

    1992-01-01

    The integral fast reactor (EFR) is an advanced reactor concept that incorporates metallic driver and blanket fuels, an inherently safe, liquid-sodium-cooled, pool-type, reactor design, and on-site pyrochemical reprocessing (including electrorefining) of spent fuels and wastes. This paper describes a pyrochemical method that is being developed at Argonne National Laboratory to recover transuranic elements from the EFR electrorefiner process salt. The method uses multistage extractions between molten chloride salts and cadmium metal at high temperatures. The chemical basis of the salt extraction method, the test equipment, and a test plan are discussed

  2. Eliminating inhibition of enzymatic hydrolysis by lignosulfonate in unwashed sulfite-pretreated aspen using metal salts

    Science.gov (United States)

    Hao Liu; Junyong Zhu

    2010-01-01

    This study demonstrated the efficiency of Ca(II) and Mg(II) in removing inhibition of enzymatic hydrolysis by lignosulfonate through non-productive adsorption of enzymes. Adding 1 mmol/g cellulose of either metal salt restores approximately 65% of the activity lost when a pure cellulose/cellulase solution is spiked with lignosulfonate. Addition of either Ca(II) or Mg(...

  3. Determination of Heavy Metal Levels in Edible Salt

    Directory of Open Access Journals (Sweden)

    Heshmati

    2014-09-01

    Full Text Available Background Edible salt is the most commonly used food additive worldwide. Therefore, any contamination of table salt could be a health hazard. Objectives The present study aimed to determine the levels of heavy metals in table and bakery refined salts. Materials and Methods Eighty-one table refined salt samples and the same number of bakery refined salt samples were purchased from retail market in the province of Hamadan, Iran. The levels of lead (Pb, cadmium (Cd, mercury (Hg, copper (Cu, and iron (Fe were determined using atomic absorption spectroscopy method. Results The levels (mean ± SD, μg/g of Pb, Cd, Hg, Cu, Fe in table refined salt samples were 0.852 ± 0.277, 0.229 ± 0.012, 0.054 ± 0.040, 1.25 ± 0.245 and 0.689 ± 1.58, respectively. The results for the same metals in bakery refined salt samples were as follows (mean ± SD, μg/g: 22 ± 0.320 for Pb, 0.240 ± 0.018 for Cd, 0.058 ± 0.007 for Hg, 1.89 ± 0.218 for Cu, and 8.75 ± 2.10 for Fe. Heavy metal concentrations were generally higher in bakery refined salt. Conclusions The results obtained in the present study were compared with the literature and legal limits. All values for these metals in the table and bakery refined salts were lower than the permitted consumption level defined by Codex (2 µg/g of Pb, 0.5 µg/g of Cd, 0.1 µg/g of Hg, and 2 µg/g of Cu.

  4. Potassium salts of fatty acids as precipitating agents of alkaline earth metal ions

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Sin'kova, L.A.

    1977-01-01

    Regularities have been studied of precipitation of ions of alkaline-earth elements with caprilate, pelargonate, caprinate, undecanate, laurate, tridecanate, myristate, pentadecanate, palmitate, and stearate of potassium. It has been shown that completeness of precipitation of metal ions is determined by the nature of alkaline-earth metal and potassium salt as well as by pH value and temperature of the solution. The study of temperature dependence of soaps of alkaline-earth metals makes it possible to calculate the heats of dissolution of laurates of alkaline-earth metals, and a change in entropy and free energy

  5. Solidification of salt solutions on a horizontal surface

    International Nuclear Information System (INIS)

    Braga, S.L.; Viskanta, R.

    1990-01-01

    The freezing of water-salt solutions on a horizontal wall is investigated experimentally and theoretically. The growth of the solid-liquid region is observed for NaCl - H sub(2)O and N H sub(4)Cl - H sub(2)O systems under different temperature and concentration conditions. A unidirectional mathematical model is used to predict the solidification process. The transport of heat is by diffusion, and convection is absent. The mass diffusion is neglected and the growth of crystal is governed by the transport of heat. In all experiments, the solution salt concentration is smaller than the eutectic composition, and the wall temperature is higher than the eutectic temperature. The predicted temperature and salt concentration profiles, as well as the interface position, are compared with experimental data. (author)

  6. Extraction of lithium from neutral salt solutions with fluorinated β-diketones

    International Nuclear Information System (INIS)

    Seeley, F.G.; Baldwin, W.H.

    1976-01-01

    Lithium was selectively extracted from near-neutral aqueous solutions of alkali metal salts. The mechanism by which this was achieved involves the formation of the trioctylphosphine oxide adduct of a lithium chelate of a fluorinated β-diketone, which is then readily extractable into an organic diluent. High separation factors were obtained from sodium, potassium, rubidium, and cesium. The selectivity of the fluorinated β-diketones for lithium over the alkaline earths was found to be poor. A suggested general flowsheet for the recovery of lithium from a salt brine concentrate is included. (author)

  7. [Determination of Chloride Salt Solution by NIR Spectroscopy].

    Science.gov (United States)

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing

    2015-07-01

    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  8. Homemade sugar-salt solution for oral rehydration: knowledge of ...

    African Journals Online (AJOL)

    Up to 95% of these cases can be treated successfully with oral rehydration therapy. The aim of the study was to evaluate caregivers' knowledge of, attitudes to and use of homemade sugar and salt solution (SSS) in order to address the shortfalls. Differences between the knowledge, attitudes and practices in urban, rural and ...

  9. Salting Out Effect of Electrolyte Solutions in The Extraction of ...

    African Journals Online (AJOL)

    USER

    ABSTRACT: The salting-out effect of various solutions of electrolyte in the extraction of tantalum and niobium using aqueous biphasic system (ABS) was investigated. This was achieved by leaching ball-milled Tantalite ore with mineral acids (H2SO4 and HF) in the ratio of 3:1. The leached liquor was then divided into five ...

  10. Stabilization of aqueous alkali metal aluminate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Allenson, S.J.

    1988-03-29

    A method of stabilizing an aqueous solution of alkali metal aluminate is described comprising: admixing an aqueous solution of alkali metal aluminate having a pH of at least 10 with a sufficient amount of vinyl polymer having pendant carboxylate groups to form a solution containing from 0.1 to 2.0 weight percent of an anionic vinyl polymer based on alkali metal aluminate solids. The anionic vinyl polymer has an average molecular weight of at least 500,000.

  11. PREPARATION AND PROPERTIES OF THE COLLODIAL SOLUTION BASED ON BIOGENIC METAL NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    K. V. Liapina

    2014-12-01

    Full Text Available The aim of the work was obtaining a stable suspension based on biocompatible substances with application of biogenic metal nanoparticles encapsulated into NaCl salt matrix, as a precursor. Water-soluble complex based on different amine derivatives with antiseptic properties was selected as a liquid for salt dissolution. The solution was subjected to dispersion using ultrasonication at elevated temperature. Dispersion is accompanied by salt shell removal with simultaneous formation of an organic shell on the surfaces of metal nanoparticles that ensure their stabilization. Study of the suspension after soaking at room temperature for 100 days showed that its characteristics remain stable. A method for producing a stable colloidal solution based on nanoparticles of biogenic metal (Cu, Co, fem etc. was developed. Metal nanopowder encapsulated into salt shell was used as a precursor. It is shown that such colloidal solutions are characterized by narrow size dispersion, as well as stability to temperature impact and time factor.

  12. Synthesis of carbides of refractory metals in salt melts

    International Nuclear Information System (INIS)

    Ilyushchenko, N.G.; Anfinogenov, A.I.; Chebykin, V.V.; Chernov, Ya.B.; Shurov, N.I.; Ryaposov, Yu.A.; Dobrynin, A.I.; Gorshkov, A.V.; Chub, A.V.

    2003-01-01

    The ion-electron melts, obtained through dissolving the alkali and alkali-earth metals in the molten chlorides above the chloride melting temperature, were used for manufacturing the high-melting metal carbides as the transport melt. The lithium, calcium and magnesium chlorides and the mixture of the lithium chloride with the potassium or calcium chloride were used from the alkali or alkali-earth metals. The metallic lithium, calcium, magnesium or the calcium-magnesium mixtures were used as the alkali or alkali-earth metals. The carbon black or sugar was used as carbon. It is shown, that lithium, magnesium or calcium in the molten salts transfer the carbon on the niobium, tantalum, titanium, forming the carbides of the above metals. The high-melting metal carbides are obtained both from the metal pure powders and from the oxides and chlorides [ru

  13. The Effect of Salts in Promoting Specific and Competitive Interactions between Zinc Finger Proteins and Metals

    Science.gov (United States)

    Li, Gongyu; Yuan, Siming; Zheng, Shihui; Chen, Yuting; Zheng, Zhen; Liu, Yangzhong; Huang, Guangming

    2017-12-01

    Specific protein-metal interactions (PMIs) fulfill essential functions in cells and organic bodies, and activation of these functions in vivo are mostly modulated by the complex environmental factors, including pH value, small biomolecules, and salts. Specifically, the role of salts in promoting specific PMIs and their competition among various metals has remained untapped mainly due to the difficulty to distinguish nonspecific PMIs from specific PMIs by classic spectroscopic techniques. Herein, we report Hofmeister salts differentially promote the specific PMIs by combining nanoelectrospray ionization mass spectrometry and spectroscopic techniques (fluorescence measurement and circular dichroism). Furthermore, to explore the influence of salts in competitive binding between metalloproteins and various metals, we designed a series of competitive experiments and applied to a well-defined model system, the competitive binding of zinc (II) and arsenic (III) to holo-promyelocytic leukemia protein (PML). These experiments not only provided new insights at the molecular scale as complementary to previous NMR and spectroscopic results, but also deduced the relative binding ability between zinc finger proteins and metals at the molecular scale, which avoids the mass spectrometric titration-based determination of binding constants that is frequently affected and often degraded by variable solution conditions including salt contents. [Figure not available: see fulltext.

  14. Separation of metal ions from aqueous solutions

    Science.gov (United States)

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  15. Investigation of structural features of aqueous salt solutions by means of electronic spectroscopy

    International Nuclear Information System (INIS)

    Lyashchenko, A.K.; Borina, A.F.

    1985-01-01

    Electronic spectroscopy and structural-geometric analysis have been used in studying ionic interactions in aqueous solutions of Co(NO 3 ) 2 , CoSO 4 , CoCl 2 , and NiSO 4 . The processes influencing the structural environment of the cations in solution and the character of the electronic spectra of Co(II) and Ni(II) have been distinguished: replacement of ligands in the first coordination sphere of the transition-metal ion, change in mobility of the particles in the medium, and change in the structural matrix on the solution upon going from one concentration region to another. A small change in the structure of bulk water in the solutions of these salts has been demonstrated. For Co(NO 3 ) 2 solutions, the limit of existence of a water-like structure of the solution has been defined

  16. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Science.gov (United States)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  17. Melting of Uranium Metal Powders with Residual Salts

    International Nuclear Information System (INIS)

    Jin-Mok Hur; Dae-Seung Kang; Chung-Seok Seo

    2007-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) of the Korea Atomic Energy Research Institute focuses on the conditioning of Pressurized Water Reactor spent oxide nuclear fuel. After the oxide reduction step of the ACP, the resultant metal powders containing ∼ 30 wt% residual LiCl-Li 2 O should be melted for a consolidation of the fine metal powders. In this study, we investigated the melting behaviors of uranium metal powders considering the effects of a LiCl-Li 2 O residual salt. (authors)

  18. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and P-89-577...

  19. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  20. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  1. Ageing behaviour of unary hydroxides in trivalent metal salt ...

    Indian Academy of Sciences (India)

    LDH)-like phases on ageing in solutions of Al or Cr salts. This reaction is similar to acid leaching and proceeds by a dissolution–reprecipitation mechanism offering a simple method of LDH synthesis, with implications for the accepted theories of ...

  2. Interactions between salt marsh plants and Cu nanoparticles - Effects on metal uptake and phytoremediation processes.

    Science.gov (United States)

    Andreotti, Federico; Mucha, Ana Paula; Caetano, Cátia; Rodrigues, Paula; Rocha Gomes, Carlos; Almeida, C Marisa R

    2015-10-01

    The increased use of metallic nanoparticles (NPs) raises the probability of finding NPs in the environment. A lot of information exists already regarding interactions between plants and metals, but information regarding interactions between metallic NPs and plants, including salt marsh plants, is still lacking. This work aimed to study interactions between CuO NPs and the salt marsh plants Halimione portulacoides and Phragmites australis. In addition, the potential of these plants for phytoremediation of Cu NPs was evaluated. Plants were exposed for 8 days to sediment elutriate solution doped either with CuO or with ionic Cu. Afterwards, total metal concentrations were determined in plant tissues. Both plants accumulated Cu in their roots, but this accumulation was 4 to 10 times lower when the metal was added in NP form. For P. australis, metal translocation occurred when the metal was added either in ionic or in NP form, but for H. portulacoides no metal translocation was observed when NPs were added to the medium. Therefore, interactions between plants and NPs differ with the plant species. These facts should be taken in consideration when applying these plants for phytoremediation of contaminated sediments in estuaries, as the environmental management of these very important ecological areas can be affected. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets

    Science.gov (United States)

    Jaiswal, Vivek; Harikrishnan, A. R.; Khurana, Gargi; Dhar, Purbarun

    2018-01-01

    The presence of dispersed inclusions is known to modify the interfacial characteristics in liquids by adsorption-desorption of the ions at interfaces. The present article reports the influencing role of dissolved ions in a polar fluid on its evaporation dynamics. The evaporation dynamics of pendant droplets of aqueous solutions of variant simple salts and concentrations have been experimentally studied. The presence of salts is observed to enhance the evaporation rate (obeying the classical D2 law), and the enhancement has been found to hold a direct proportionality to the concentration of the dissolved salt. Furthermore, it is observed that the degree of enhancement in the evaporation rate is also directly proportional to the solubility of the salt in question. The phenomenon is explained based on the chemical kinetics and thermodynamics of hydration of the ionic species in the polar fluid. The classical evaporation rate constant formulation is found to be inadequate in modeling the enhanced species transport. Additional probing via particle image velocimetry reveals augmented internal circulation within the evaporating salt based drops compared to pure water. Mapping the dynamic surface tension reveals that a salt concentration gradient is generated between the bulk and periphery of the droplet and it could be responsible for the internal advection cells visualized. A thermo-solutal Marangoni and Rayleigh convection based mathematical formulation has been put forward, and it is shown that the enhanced solute-thermal convection could play a major role in enhanced evaporation. The internal circulation mapped from experiments is found to be in good quantitative agreement with the model predictions. Scaling analysis further reveals that the stability of the solutal Marangoni convection surpasses the thermal counterpart with higher salt concentration and solubility. The present article sheds insight into the possible domineering role of conjugate thermohydraulic and

  4. Methods of deoxygenating metals having oxygen dissolved therein in a solid solution

    Science.gov (United States)

    Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Xia, Yang; Zhou, Chengshang

    2017-06-06

    A method of deoxygenating metal can include forming a mixture of: a metal having oxygen dissolved therein in a solid solution, at least one of metallic magnesium and magnesium hydride, and a magnesium-containing salt. The mixture can be heated at a deoxygenation temperature for a period of time under a hydrogen-containing atmosphere to form a deoxygenated metal. The deoxygenated metal can then be cooled. The deoxygenated metal can optionally be subjected to leaching to remove by-products, followed by washing and drying to produce a final deoxygenated metal.

  5. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt

  6. Production of Plutonium Metal from Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Orth, D.A.

    2003-01-16

    The primary separation of plutonium from irradiated uranium by the Purex solvent extraction process at the Savannah River Plant produces a dilute plutonium solution containing residual fission products and uranium. A cation exchange process is used for concentration and further decontamination of the plutonium, as the first step in the final preparation of metal. This paper discusses the production of plutonium metal from the aqueous solutions.

  7. The removal of actinide metals from solution

    International Nuclear Information System (INIS)

    Hancock, R.D.; Howell, I.V.

    1980-01-01

    A process is specified for removing actinide metals (e.g. uranium) from solutions. The solution is contacted with a substrate comprising the product obtained by reacting an inorganic solid containing surface hydroxyl groups (e.g. silica gel) with a compound containing a silane grouping, a nitrogen-containing group (e.g. an amine) and other specified radicals. After treatment, the actinide metal is recovered from the substrate. (U.K.)

  8. Fate and effects of heavy metals in salt marsh sediments

    Energy Technology Data Exchange (ETDEWEB)

    Suntornvongsagul, Kallaya [Department of Chemical Engineering, New Jersey Institute of Technology (NJIT), University Heights, Newark, NJ 07102 (United States); Environmental Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Burke, David J. [Department of Biological Sciences, Rutgers University, 101 Warren Street, Smith Hall 135, Newark, NJ 07102 (United States); The Holden Arboretum, 9500 Sperry Road, Kirtland, OH 44094 (United States); Hamerlynck, Erik P. [Department of Biological Sciences, Rutgers University, 101 Warren Street, Smith Hall 135, Newark, NJ 07102 (United States); Hahn, Dittmar [Department of Chemical Engineering, New Jersey Institute of Technology (NJIT), University Heights, Newark, NJ 07102 (United States) and Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 (United States)]. E-mail: dh49@txstate.edu

    2007-09-15

    The fate and effects of selected heavy metals were examined in sediment from a restored salt marsh. Sediment cores densely covered with Spartina patens were collected and kept either un-amended or artificially amended with nickel (Ni) under standardized greenhouse conditions. Ni-amendment had no significant effect on the fate of other metals in sediments, however, it increased root uptake of the metals. Metal translocation into the shoots was small for all metals. Higher Ni concentrations in plants from amended cores were accompanied by seasonal reductions in plant biomass, photosynthetic capacity and transfer efficiency of open photosystem II reaction centers; these effects, however, were no longer significant at the end of the growing season. Root colonization by arbuscular mycorrhizal fungi (AMF) resembled that of natural salt marshes with up to 20% root length colonized. Although Ni-amendment increased AMF colonization, especially during vegetative growth, in general AMF were largely unaffected. - Spartina patens accumulates heavy metals in roots without significant translocation into shoots, and with only small seasonal effects on plant growth performance and mycorrhizal colonization.

  9. Applications of molten salts in reactive metals processing

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, B.; Olson, D.L. [Colorado School of Mines, Golden, CO (United States). Kroll Inst. for Extractive Metallurgy; Averill, W.A. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant

    1993-12-31

    Pyrochemical processes using molten salts provide a unique opportunity for the extraction and refining of many reactive and valuable metals either directly from the beneficiated ore or from other process effluent that contain reactive metal compounds. This research program is aimed at developing a process for the production and recovery of reactive and valuable metals, such as zinc, tin, lead, bismuth and silver, in a hybrid reactor combining electrolytic production of the calcium reductant and in-situ utilization of this reductant for pyrochemical reduction of the metal compounds, such as halide or oxides. The process is equally suitable for producing other low melting metals, such as cadmium and antimony. The cell is typically operated below 1000C temperature. Attempts have been made to produce silver, lead, bismuth, tin and cerium by calciothermic reduction in a molten salt media. In a separate effort, calcium has been produced by an electrolytic dissociation of lime in a calcium chloride medium. The most important characteristic of the hybrid technology is its ability to produce metals under ``zero-waste`` conditions.

  10. Application of molten salts in pyrochemical processing of reactive metals

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.; Averill, W.A.

    1992-01-01

    Various mixes of chloride and fluoride salts are used as the media for conducting pyrochemical processes in the production and purification of reactive metals. These processes generate a significant amount of contaminated waste that has to be treated for recycling or disposal. Molten calcium chloride based salt systems have been used in this work to electrolytically regenerate calcium metal from calcium oxide for the in situ reduction of reactive metal oxides. The recovery of calcium is characterized by the process efficiency to overcome back reactions in the electrowinning cell. A thermodynamic analysis, based on fundamental rate theory, has been performed to understand the process parameters controlling the metal deposition, rate, behavior of the ceramic anode-sheath and influence of the back-reactions. It has been observed that the deposition of calcium is dependent on the ionic diffusion through the sheath. It has also been evidenced that the recovered calcium is completely lost through the back-reactions in the absence of a sheath. A practical scenario has also been presented where the electrowon metal can be used in situ as a reductant to reduce another reactive metal oxide

  11. Problems of evaluating isotope analysis of concentrated salt solutions in potash mines

    International Nuclear Information System (INIS)

    Schmiedl, H.D.

    1980-01-01

    Three problems of quantitative evaluation of analytic D and 18 O isotope data of concentrated salt solutions are discussed: (1) Consideration of the influence of admixtures of hydrated salts in determining meteoric or marine water fractions in a concentrated salt solution, (2) analytic accuracy and detection limits in determining meteoric water in salt solutions, and (3) processes of isotopic exchange with reservoir rock and sample matrix

  12. Crystalline insoluble acid salts of tetravalent metals

    International Nuclear Information System (INIS)

    Alberti, G.; Bernasconi, M.G.; Casciola, M.; Costantino, U.

    1980-01-01

    The H + /NH 4 + ion-exchange and the ammonia uptake on γ-Ti(HPO 4 ) 2 .2H 2 O has been investigated. The first proton (3.63 meq/g) is completely exchanged at pH 4 .NH 4 PO 4 . H 2 O (inter-layer distance 11.2 A). From 50 to about 80% of exchange, the NH 4 + -uptake takes place at pH > 7, without appreciable change in the inter-layer distance. From 80 to 100% of exchange, there is, instead, a discontinuous change from 11.2 to 13.6 A and the phase γ-Ti(NH 4 PO 4 ) 2 .H 2 O is formed. Also the ammonia is taken up, at high rate, from aqueous solution with formation of half- and fully exchanged NH 4 + forms. Thus the use of γ-titanium phosphate in the removal of NH 3 or NH 4 + ions from waste solution, or in kidney machines, seems to be possible. The study of the potassium and ammonium forms showed that the structure of the layers of γ-titanium phosphate, as already found for α-zirconium phosphate, does not appreciably change during an ion-exchange process. (author)

  13. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  14. Liquid chromatography coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum.

    Science.gov (United States)

    Cirigliano, Adriana M; Rodriguez, M Alejandra; Gagliano, M Laura; Bertinetti, Brenda V; Godeas, Alicia M; Cabrera, Gabriela M

    2016-03-25

    Fusarium oxysporum L11 is a non-pathogenic soil-borne fungal strain that yielded an extract that showed antifungal activity against phytopathogens. In this study, reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry (API-QTOF-MS) was applied for the comprehensive profiling of the metabolites from the extract. The employed sources were electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Post-column addition of metal solutions of Ca, Cu and Zn(II) was also tested using ESI. A total of 137 compounds were identified or tentatively identified by matching their accurate mass signals, suggested molecular formulae and MS/MS analysis with previously reported data. Some compounds were isolated and identified by NMR. The extract was rich in cyclic peptides like cyclosporins, diketopiperazines and sansalvamides, most of which were new, and are reported here for the first time. The use of post-column addition of metals resulted in a useful strategy for the discrimination of compound classes since specific adducts were observed for the different compound families. This technique also allowed the screening for compounds with metal binding properties. Thus, the applied methodology is a useful choice for the metabolic profiling of extracts and also for the selection of metabolites with potential biological activities related to interactions with metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Transgenerational adaptation to heavy metal salts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Mohammad eReza Rahavi

    2011-12-01

    Full Text Available Exposure to abiotic and biotic stress results in changes in plant physiology and triggers genomic instability. Recent reports suggest that the progeny of stressed plants also exhibit changes in genome stability, stress tolerance and methylation.Here we analyzed whether exposure to Ni2+, Cd2+ and Cu2+ salts leads to transgenerational changes in the homologous recombination frequency and in the stress tolerance. We found that immediate progeny of stressed plants indeed exhibit increased recombination frequency. When the progeny of stressed plants was propagated without stress, the recombination frequency changed back to normal. Exposure of plants to heavy metals for five consecutive generations (S1-S5 showed that recombination frequency was maintained at high level. Skipping stress after propagation on 50 mM Ni2+ or Cd2+ for 2-3 generations did not decrease the recombination frequency, suggesting certain acclimation to upregulated recombination. Analysis of the progeny of plants exposed to Cu2+ and Ni2+ showed that the plants had higher stress tolerance to the same heavy metal salts. The tolerance was higher in plants propagated on stress for 3-5 generations, which had longer roots than plants propagated on heavy metals only for 1-2 generations. Also the tolerance was more prominent upon exposure to higher concentration of salts. The progeny of stressed plants was also more tolerant to NaCl and MMS.

  16. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    Science.gov (United States)

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  17. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts

    International Nuclear Information System (INIS)

    Furukawa, Kazuki; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki

    2014-01-01

    Highlights: • We investigated anodic behavior of stainless-steel in organic electrolytes for advanced capacitor. • Anion of the electrolyte affected the anodic stability of the alloy. • Anodic passivation occurs in LiPF 6 solution but pitting or active dissolution proceeds in other electrolyte solutions. • Fluoride source in the solution contributes to forming a stable surface layer on the stainless steel. - Abstract: The anodic behavior of austenitic stainless-steel, SUS304, as a current collector of positive electrode in lithium-ion battery/capacitor has been investigated in organic electrolyte solutions based on a mixed alkyl carbonate solvent with different lithium salts. Stable passivation characteristics were observed for the stainless-steel in the LiPF 6 solution, but pitting corrosion or active dissolution proceeded in the solutions containing other anions, BF 4 - , (CF 3 SO 2 ) 2 N - (TFSA - ) and ClO 4 - . The mass ratios of the dissolved metal species in the solutions of LiTFSA and LiClO 4 were equivalent to that of the alloy composition, which suggests that no preferential dissolution occurs during the anodic polarization in these electrolyte solutions. An HF component formed by decomposition of PF 6 - with the contaminate water will act as an F - source for the formation of a surface fluoride layer, that will contribute to the anodic stability of SUS304 in the LiPF 6 solution. The anodic corrosion in the LiTFSA solution was suppressed in part by mixing the PF 6 salt or adding HF in the electrolyte

  18. Alkali earth metal extraction by zirconium salt of dibutylphosphoric acid

    International Nuclear Information System (INIS)

    Zil'berman, B.Ya.; Fedorov, Yu.S.; Shmidt, O.V.; Egorova, O.N.

    2006-01-01

    Zirconium salt of dibutyl phosphoric acid (ZS HDBP) could be used as a TBP-compatible solvent for the treatment of liquid radwaste containing long-lived radionuclides, strontium in particular. The alkali earth metals behaviour during their extraction with ZS HDBP and the influence of TBP on the extraction properties of ZS HDBP were investigated. The maximum of Sr extraction was observed at the molar ratio of Zr:HDBP = 1:9, which is also optimal for TPE and RE extraction. Distribution coefficients increase in the series Ba 3 ). Increase of nitric acid concentration resulted in a decrease of the Sr distribution coefficient with a slope of -3. The distribution coefficients of Sr showed quadratic dependence on the HDBP concentration. The presence of TBP in the solvent resulted in a minor decrease in Sr extraction, this effect being significantly lower than for TPE and RE during their extraction by ZS HDBP. At the same time, full saturation of solvent with Sr was not reached because of precipitation in the solvent phase. When xylene was used as the polar diluent for TBP, the influence of TBP on Sr extraction by ZS HDBP was not as significant as for the hydrocarbons, and the Sr distribution coefficients were ten times lower. Solvent saturation curves for Sr extraction by 0.4 mol/L ZS HDBP with xylene at Zr:HDBP = 1:9 showed that in the absence of TBP, the maximum solvent loading reached 0.014 mol/L Sr, which corresponded to Zr : Sr = 3:1. The solubility of Ca in the extract was significantly lower than that of Sr. A centrifugal contactor rig trial was carried out with the use of simulated solutions and 0.4 mol/L ZS HDBP in 30 % TBP with Isopar-L as the solvent. The extraction was performed while neutralizing the aqueous solution in the flow to a residual acidity of 0.05-0.2 mol/L, the stripping was performed by using 1-3 mol/L HNO 3 . Sr concentrating of 3 was achieved by purification from Cs of 50-100 during extraction from TPE and RE during selective stripping. Special

  19. Properties of solvated electrons, alkali anions and other species in metal solutions and kinetics of cation and electron exchange reactions. Final report

    International Nuclear Information System (INIS)

    Dye, J.L.

    1979-01-01

    The properties of solutions of alkali metals in amine solvents were studied by optical, ETR, NMR and electrochemical methods. Complexation of the alkali cations by crown ethers and cryptands permitted the preparation of concentrated solutions of alkali metals in amine and ether solvents. Extensive alkali metal NMR studies of the exchange of M + with crown-ethers and cryptands and of the alkali metal anion, M - , were made. The first crystalline salt of an alkali metal anion, Na + Cryptand [2.2.2]Na - was synthesized and characterized and led to the preparation of other alkali metal anion salts. This research provided the foundation for continuing studies of crystalline alkalide salts

  20. Antimicrobial activities of pomegranate rind extracts: enhancement by addition of metal salts and vitamin C

    Directory of Open Access Journals (Sweden)

    Kelly Alison F

    2008-12-01

    Full Text Available Abstract Background Punica granatum L. or pomegranates, have been reported to have antimicrobial activity against a range of Gram positive and negative bacteria. Pomegranate formulations containing ferrous salts have enhanced although short-term, antibacteriophage activities which are rapidly diminished owing to instability of the ferrous combination. The aim of this study was to determine the antimicrobial activities of combinations of pomegranate rind extracts (PRE with a range of metals salts with the added stabiliser vitamin C. Methods PRE solutions, prepared by blending rind sections with distilled water prior to sterilisation by autoclaving or filtration, were screened with a disc diffusion assay using penicillin G as a control. Suspension assays were used to determine the antimicrobial activities of PRE alone and in combination with salts of the following metals; Fe (II, Cu (II, Mn (II or Zn (II, and vitamin C, against a panel of microbes following exposure for 30 mins. The test organisms included Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Proteus mirabilis. Results The screening assay demonstrated that PRE exhibited activity against the Gram positive organisms at 24 h with no observable effect on any of the Gram negative bacteria. However, after 12 h, zones of inhibition were only observed for Ps. aeruginosa. In contrast, using the suspension assay, addition of Cu (II salts to PRE solutions extended the activities resulting in no detectable growth being observed for the PRE/Cu (II combination against E. coli, Ps. aeruginosa and P. mirabilis. Minimal antimicrobial activity was observed following incubation with Fe (II, Mn (II or Zn (II salts alone or in combination with PRE against any of the organisms in the test panel. The addition of vitamin C markedly enhanced the activities of both PRE/Fe (II and PRE/Cu (II combinations against S. aureus. Conclusion This is the first report demonstrating

  1. Kinetics of CO2 Absorption into Aqueous Basic Amino Acid Salt: Potassium Salt of Lysine Solution.

    Science.gov (United States)

    Shen, Shufeng; Yang, Ya-nan; Bian, Yangyang; Zhao, Yue

    2016-02-16

    Aqueous amino acid salts are considered as an attractive alternative to alkanolamine solvents (e.g., MEA) for carbon dioxide (CO2) absorption. The kinetics of CO2 into unloaded aqueous solutions of potassium lysinate (LysK) was studied using a wetted wall column at concentrations ranging from 0.25 to 2.0 M and temperatures from 298 to 333 K. Physicochemical properties of aqueous LysK solutions such as density, viscosity, and physical solubility of CO2 were measured to evaluate the reaction rate constants. The reaction pathway is described using zwitterion mechanism taking into account the effect of ionic strength on the reaction rate. Under the fast pseudo-first-order regime, the reaction rate parameters were obtained and correlated in a power-law reaction rate expression. LysK shows higher chemical reactivity toward CO2 than the industrial standard MEA and most of amino acid salts. Its reaction rate constants increase considerably with concentration and temperature. The reaction order is found to be an average value of 1.58 with respect to LysK. The forward second-order kinetic rate constant, k2 0 , are obtained as 31615 and 84822 m3 kmol−1 s−1 at 298 and 313 K, respectively with activation energy of 51.0 kJ mol−1. The contribution of water to the zwitterion deprotonation seems to be more significant than that of LysK for the above-mentioned kinetic conditions

  2. Detection of salt bridges to lysines in solution in barnase

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Williamson, Michael P.; Hounslow, Andrea M.

    2013-01-01

    We show that salt bridges involving lysines can be detected by deuterium isotope effects on NMR chemical shifts of the sidechain amine. Lys27 in the ribonuclease barnase is salt bridged, and mutation of Arg69 to Lys retains a partially buried salt bridge. The salt bridges are functionally important....

  3. A new strategy to stabilize oxytocin in aqueous solutions : I. The effects of divalent metal ions and citrate buffer

    NARCIS (Netherlands)

    Avanti, Christina; Amorij, Jean-Pierre; Setyaningsih, Dewi; Hawe, Andrea; Jiskoot, Wim; Visser, Jan; Kedrov, Alexej; Driessen, Arnold J. M.; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    In the current study, the effect of metal ions in combination with buffers (citrate, acetate, pH 4.5) on the stability of aqueous solutions of oxytocin was investigated. Both monovalent metal ions (Na+and K+) and divalent metal ions (Ca2+, Mg2+, and Zn2+) were tested all as chloride salts. The

  4. The preparation of primary standard solutions for each of the noble metals

    International Nuclear Information System (INIS)

    Mallett, R.C.; Wall, G.J.; Jones, E.A.; Royal, S.J.

    1977-01-01

    A revised method for the preparation of primary standard solutions for each of the noble metals is described. It is now recommended that standard noble-metal solutions should be made from the pure metals and not from salts as previously described. Metals should have a certified purity of 99,95 per cent or better, and the purity should be confirmed by analysis, the techniques of emission spectography or spark-source mass spectrography being used. After the metals have been dissolved, the solutions are made up to volume and the metal content of the standard solutions is checked. For most instrumental techniques for which the standards are intended, the check analysis should be within 0,3 per cent of the certified value

  5. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases

    OpenAIRE

    PAWAR, Vijay; NAIK, Prashant; GIRIDHAR, Rajani; YADAV, Mange Ram

    2014-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanol-amine, and diethylamine) had lowered ...

  6. FUSED SALT METHOD FOR COATING URANIUM WITH A METAL

    Science.gov (United States)

    Eubank, L.D.

    1959-02-01

    A method is presented for coating uranium with a less active metal such as Cr, Ni, or Cu comprising immersing the U in a substantially anhydrous molten solution of a halide of these less active metals in a ternary chloride composition which consists of selected percentages of KCl, NaCl and another chloride such as LiCl or CaCl/sub 2/.

  7. Study of concentrated metal-ammonia solutions: magnetic properties and non metal-metal transition

    International Nuclear Information System (INIS)

    Lelieur, Jean-Pierre

    1972-01-01

    The magnetic susceptibility of alkali metal-liquid ammonia solutions has been measured in the concentration range where the solutions show a progressive passage toward the metallic state. The Knight shift of the metal nuclei and the nitrogen nucleus have been determined as a function of concentration and temperature, in Na-NH 3 and Cs-NH 3 solutions. A phenomenological analysis of the transport properties of metal-ammonia solutions is also presented. This analysis permits the presentation of a model for the mechanism of the transition to the metallic state. (author) [fr

  8. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  9. The effect of divalent salt in chondroitin sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aranghel, D., E-mail: daranghe@nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Extreme Light Intrastructure Nuclear Physics (ELI-NP), Reactorului 30,RO-077125, POB-MG6, Magurele-Bucharest (Romania); Badita, C. R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); University of Bucharest, Faculty of Physics, Atomiştilor 405, CP MG - 11, RO – 077125, Bucharest-Magurele (Romania); Radulescu, A. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science, 85747 Garching (Germany); Moldovan, L.; Craciunescu, O. [National Institute R& D for Biological Sciences, Splaiul Independenţei 296, sector 6, cod 060031, C.P. 17-16, Bucharest (Romania); Balasoiu, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)

    2016-03-25

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca{sup 2+} cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca{sup 2+} by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl{sub 2}) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  10. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases.

    Science.gov (United States)

    Pawar, Vijay; Naik, Prashant; Giridhar, Rajani; Yadav, Mange Ram

    2015-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanolamine, and diethylamine) had lowered melting points while the alkali metal salt (sodium) had a higher melting point than BPA. The in vitro study showed that salt formation improves the physicochemical properties of BPA, leading to improved permeability through the skin. Amongst all the prepared salts, ethanolamine salt (1b) showed 7.2- and 5.4-fold higher skin permeation than the parent drug at pH 7.4 and 5.0, respectively, using rat skin.

  11. Complex electronic waste treatment - An effective process to selectively recover copper with solutions containing different ammonium salts.

    Science.gov (United States)

    Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y

    2016-11-01

    Recovery of valuable metals from electronic waste has been highlighted by the EU directives. The difficulties for recycling are induced by the high complexity of such waste. In this research, copper could be selectively recovered using an ammonia-based process, from industrially processed information and communication technology (ICT) waste with high complexity. A detailed understanding on the role of ammonium salt was focused during both stages of leaching copper into a solution and the subsequent step for copper recovery from the solution. By comparing the reactivity of the leaching solution with different ammonium salts, their physiochemical behaviour as well as the leaching efficiency could be identified. The copper recovery rate could reach 95% with ammonium carbonate as the leaching salt. In the stage of copper recovery from the solution, electrodeposition was introduced without an additional solvent extraction step and the electrochemical behaviour of the solution was figured out. With a careful control of the electrodeposition conditions, the current efficiency could be improved to be 80-90% depending on the ammonia salts and high purity copper (99.9wt.%). This research provides basis for improving the recyclability and efficiency of copper recovery from such electronic waste and the whole process design for copper recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    Science.gov (United States)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  13. SEQUESTERING AGENTS FOR METAL IMMOBILIZATION APPLICATION TO THE DEVELOPMENT OF ACTIVE CAPS IN FRESH AND SALT WATER SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A; Michael Paller, M

    2006-11-17

    This research evaluated the removal of inorganic contaminants by a variety of amendments and mixtures of amendments in fresh and salt water. A series of removal and retention batch experiments was conducted to identify the best treatment for metal removal. Metal removal by the amendments was evaluated by calculating the partition coefficient and percent removal. Retention of metals by the amendments was evaluated in retention (desorption) studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays (e.g., OCB-750), and the biopolymer, chitosan, are very effective in removal and retention of metals in both fresh and salt water. These amendments are being evaluated further as components in the development of active caps for sediment remediation.

  14. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Yogeshwar Sahai

    2007-07-31

    Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Clean Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy

  15. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO2

    International Nuclear Information System (INIS)

    Ho, Tuan Anh; Ilgen, Anastasia

    2017-01-01

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2 . With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2 decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.

  16. Influence of Salts on Electrospinning of Aqueous and Nonaqueous Polymer Solutions

    Directory of Open Access Journals (Sweden)

    Fatma Yalcinkaya

    2015-01-01

    Full Text Available A roller electrospinning system was used to produce nanofibres by using different solution systems. Although the process of electrospinning has been known for over half a century, knowledge about spinning behaviour is still lacking. In this work, we investigated the effects of salt for two solution systems on spinning performance, fibre diameter, and web structure. Polyurethane (PU and polyethylene oxide (PEO were used as polymer, and tetraethylammonium bromide and lithium chloride were used as salt. Both polymer and salt concentrations had a noteworthy influence on the spinning performance, morphology, and diameter of the nanofibres. Results indicated that adding salt increased the spinnability of PU. Salt created complex bonding with dimethylformamide solvent and PU polymer. Salt added to PEO solution decreased the spinning performance of fibres while creating thin nanofibres, as explained by the leaky dielectric model.

  17. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10097 Disubstituted benzenesulfonic acid, alkali... chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P...

  18. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzoic acid, alkali... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to...

  19. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this...

  20. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    Unknown

    The concentration of salts taken is expected to be present in potable water. The relative behaviour of these salts ... decreased so as to provide protection towards corrosion have also been calculated. It was found that KCl and. NaCl are ... Cast iron is widely used for water carrying purposes besides mild steel and other ...

  1. The preparation of magnetite from iron(III) and iron(II) salt solutions

    International Nuclear Information System (INIS)

    Segal, D.L.

    1980-10-01

    Methods are described for the preparation of magnetite from iron(III) and iron(II) salt solutions at temperatures between 295 to 373 K. The effect of the reagent concentration, a chelating agent and different alkali-metal cations on the formation of magnetite has been investigated. The magnetite samples have been examined by X-ray diffraction, transmission electron microscopy, adsorption of nitrogen, emission spectroscopy, X-ray photoelectron spectroscopy and by determination of the point of zero charge. A review of previous work on the preparation of magnetite in an aqueous environment is also included. This work is relevant to the corrosion processes which can occur in the water coolant circuits of nuclear reactors. (author)

  2. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  3. Viscous Behavior of Dilute CMC Salt Solution Before and After Photodegradation

    OpenAIRE

    El Ashhab, F. [فتحي الأشهب; Sheha, L. [ٍالبني عبد العزيز شيحا; Sheltami, R. M. [رشا محمد الشلطامي; Feituri, Z. M. [زكريا الفيتوري

    2006-01-01

    Photodegradation curve of carboxymethylcellulose (CMC) in aqueous solution has been reported. Densities and solution viscosities of very dilute CMC salt solution before and after UV-irradiation have been measured. UV-irradiation of CMC decreases the values of density, specific, reduced and intrinsic viscosities, molar mass, hydrodynamic volume, expansion factor, real and ideal chain dimensions of CMC in solution. In contrary, it increases the solute-solvent interaction and decreases the solut...

  4. Measurement of linear attenuation coefficients of gamma rays for some salts by aqueous solution method

    International Nuclear Information System (INIS)

    Teli, M.T.; Dongarge, S.M.; Mahajan, C.S.; Malode, S.S.; Nathuram, R.

    1999-01-01

    The linear attenuation coefficients of dilute aqueous solutions of some salts with varying concentrations are measured for different gamma energies (0.36 MeV to 1.33 MeV). From these measurements, linear attenuation coefficients for pure salts are obtained by using the improved technique of Teli (1998). The comparison with theoretical values shows excellent agreement. Half value thicknesses of the salts and total atomic cross sections are also evaluated. (author)

  5. Effects of salt on the `drying' transition and hydrophobic interaction between nano-sized spherical solutes

    Science.gov (United States)

    Dzubiella, Joachim; Hansen, Jean-Pierre

    2013-12-01

    The effects of sodium halide salts on the hydration and effective interaction between two nanometer-sized, spherical hydrophobic solutes are studied using explicit-water molecular dynamics computer simulations. The system exhibits bimodal wet-dry hydration oscillations that are found to be significantly shifted to dryer states by the presence of salt at and above physiological concentrations. We find that the wet-dry equilibrium of the confined solvent and the resulting interaction between the two solutes can be sensitively tuned by varying the salt type and concentration. A free energy analysis indicates that the strong salt effects can be traced back to large changes in the water chemical potential for the transfer process of a water molecule from the bulk reservoir into the ion-depleted confined region. Our results provide a better understanding of salt effects at the onset of aggregation and self-assembly of large hydrophobic solutes such as globular proteins.

  6. Different photolysis kinetics at the surface of frozen freshwater vs. frozen salt solutions

    Directory of Open Access Journals (Sweden)

    T. F. Kahan

    2010-11-01

    Full Text Available Reactions at air-ice interfaces can proceed at very different rates than those in aqueous solution, due to the unique disordered region at the ice surface known as the quasi-liquid layer (QLL . The physical and chemical nature of the surfacial region of ice is greatly affected by solutes such as sodium halide salts. In this work, we studied the effects of sodium chloride and sodium bromide on the photolysis kinetics of harmine, an aromatic organic compound, in aqueous solution and at the surface of frozen salt solutions above the eutectic temperature. In common with other aromatic organic compounds we have studied, harmine photolysis is much faster on ice surfaces than in aqueous solution, but the presence of NaCl or NaBr – which does not affect photolysis kinetics in solution – reduces the photolysis rate on ice. The rate decreases monotonically with increasing salt concentration; at the concentrations found in seawater, harmine photolysis at the surface of frozen salt solutions proceeds at the same rate as in aqueous solution. These results suggest that the brine excluded to the surfaces of frozen salt solutions is a true aqueous solution, and so it may be possible to use aqueous-phase kinetics to predict photolysis rates at sea ice surfaces. This is in marked contrast to the result at the surface of frozen freshwater samples, where reaction kinetics are often not well-described by aqueous-phase processes.

  7. Results for the Fourth Quarter Calendar Year 2015 Tank 50H Salt Solution Sample

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-11

    In this memorandum, the chemical and radionuclide contaminant results from the Fourth Quarter Calendar Year 2015 (CY15) sample of Tank 50H salt solution are presented in tabulated form. The Fourth Quarter CY15 Tank 50H samples were obtained on October 29, 2015 and received at Savannah River National Laboratory (SRNL) on October 30, 2015. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Fourth Quarter Calendar Year 2015 (CY15) sampling of Tank 50H were requested by SRR personnel and details of the testing are presented in the SRNL Task Technical and Quality Assurance Plan.

  8. Location of microseismic swarms induced by salt solution mining

    Science.gov (United States)

    Kinscher, J.; Bernard, P.; Contrucci, I.; Mangeney, A.; Piguet, J. P.; Bigarre, P.

    2015-01-01

    Ground failures, caving processes and collapses of large natural or man-made underground cavities can produce significant socio-economic damages and represent a serious risk envisaged by the mine managements and municipalities. In order to improve our understanding of the mechanisms governing such a geohazard and to test the potential of geophysical methods to prevent them, the development and collapse of a salt solution mining cavity was monitored in the Lorraine basin in northeastern France. During the experiment, a huge microseismic data set (˜50 000 event files) was recorded by a local microseismic network. 80 per cent of the data comprised unusual swarming sequences with complex clusters of superimposed microseismic events which could not be processed through standard automatic detection and location routines. Here, we present two probabilistic methods which provide a powerful tool to assess the spatio-temporal characteristics of these swarming sequences in an automatic manner. Both methods take advantage of strong attenuation effects and significantly polarized P-wave energies at higher frequencies (>100 Hz). The first location approach uses simple signal amplitude estimates for different frequency bands, and an attenuation model to constrain the hypocentre locations. The second approach was designed to identify significantly polarized P-wave energies and the associated polarization angles which provide very valuable information on the hypocentre location. Both methods are applied to a microseismic data set recorded during an important step of the development of the cavity, that is, before its collapse. From our results, systematic spatio-temporal epicentre migration trends are observed in the order of seconds to minutes and several tens of meters which are partially associated with cyclic behaviours. In addition, from spatio-temporal distribution of epicentre clusters we observed similar epicentre migration in the order of hours and days. All together, we

  9. The electrodeposition and rare earths reduction in the molten salt actinides recovery systems using liquid metal

    International Nuclear Information System (INIS)

    Shim, J-B.; Lee, J-H.; Kwon, S-W.; Ahn, B-G.; Woo, M-S.; Lee, B-J.; Kim, E-H.; Park, H-S.; Yoo, J-H.

    2005-01-01

    A pyrochemical partitioning system uses liquid metals such as cadmium and bismuth in order to recover the actinide metals from a molten salt mixture containing rare earth fission product metals. The liquid metals play roles as a cathode in the electrowinning or an extracting phase in the reductive extraction operation. The product resulting from the above operations is metal-cadmium or-bismuth alloy, which should contain the rare earth element amounts as low as possible for a transmutation purpose. In this study, the electrodeposition behaviours of uranium and lanthanide elements such as La, Ce and Nd were investigated for solid molybdenum and liquid cadmium electrodes in a molten LiCl-KCl eutectic salt. Electrochemical methods used are a cyclic voltammetry (CV) and a chronopotentiometry for monitoring the salt phase and recovering the metals, respectively. The CV graphs for monitoring the oxidizing agent CdCl 2 in the salt phase were obtained. These show a time dependently disappearance of the oxidizing agent corresponding to the formation of UCl 3 by inserting the uranium metal into the salt. Also, a sequential oxidation technique which is added at a controlled amount of the oxidizing agents into the salt phase was applied. It was found that this method is feasible for the selective reduction of the rare earths content in liquid metal alloys. (author)

  10. Tetraphenylborate Solubility in High Ionic Strength Salt Solutions

    International Nuclear Information System (INIS)

    Serkiz, S.M.; Ginn, J.D.; Jurgensen, A.R.

    1998-04-01

    Solubility of sodium and potassium salts of the tetraphenylborate ion (TPB) in simulated Savannah River Site High Level Waste was investigated. Data generated from this study allow more accurate predictions of TPB solubility at the In-Tank Precipitation (ITP) facility. Because previous research showed large deviations in the observed solubility of TPB salts when compared with model predictions, additional data were generated to better understand the solubility of TPB in more complex systems of high ionic strength and those containing both potassium and sodium. These data allow evaluation of the ability of current models to accurately predict equilibrium TPB concentrations over the range of experimental conditions investigated in this study

  11. Anomalous Protein-Protein Interactions in Multivalent Salt Solution

    Czech Academy of Sciences Publication Activity Database

    Pasquier, C.; Vazdar, M.; Forsman, J.; Jungwirth, Pavel; Lund, M.

    2017-01-01

    Roč. 121, č. 14 (2017), s. 3000-3006 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA16-01074S Institutional support: RVO:61388963 Keywords : Monte Carlo * molecular dynamics * membranes * proteins * multivalent salts Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.177, year: 2016

  12. Amino acid salt solutions for carbon dioxide capture

    NARCIS (Netherlands)

    Majchrowicz, M.E.

    2014-01-01

    Reactive absorption is a common process in the chemical industry and is used, among others, in the treatment of CO2 containing industrial gas streams. The current work was a part of a project with the aim to assess new reactive solvents based on amino acid salts for CO2 removal from industrial gas

  13. Removal of heavy metals from aqueous solution by using mango ...

    African Journals Online (AJOL)

    user

    2011-03-14

    Mar 14, 2011 ... biomass indicates that they are effective in removing metal ions from single metal solutions as well as other co-ions with ... been devised for the treatment and removal of heavy metals. The commonly used procedures for removing metal ions from aqueous streams include phyto- ...... Removal of uranium (vi).

  14. Complementary experimental-simulational study of surfactant micellar phase in the extraction process of metallic ions: Effects of temperature and salt concentration

    Science.gov (United States)

    Soto-Ángeles, Alan Gustavo; Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis

    2018-02-01

    The thermoresponsive micellar phase behaviour that exhibits the Triton-X-100 micelles by temperature effect and addition of salt in the extraction process of metallic ions was explored from mesoscopic and experimental points. In the theoretical study, we analyse the formation of Triton-X-100 micelles, load and stabilization of dithizone molecules and metallic ions extraction inside the micellar core at room temperature; finally, a thermal analysis is presented. In the experimental study, the spectrophotometric outcomes confirm the solubility of the copper-dithizone complex in the micellar core, as well as the extraction of metallic ions of aqueous environment via a cloud-point at 332.2 K. The micellar solutions with salt present a low absorbance value compared with the micellar solutions without salt. The decrease in the absorbance value is attributed to a change in the size of hydrophobic region of colloidal micelles. All transitory stages of extraction process are discussed and analysed in this document.

  15. Separation of Lead (Pb2+ and Cadmium (Cd2+ from Single and Binary Salt Aqueous Solutions Using Nanofiltration Membranes

    Directory of Open Access Journals (Sweden)

    Ahmed Abed Mohammed

    2016-04-01

    Full Text Available The present work reports on the performance of three types of nanofiltration membranes in the removal of highly polluting and toxic lead (Pb2+ and cadmium (Cd2+ from single and binary salt aqueous solutions simulating real wastewaters. The effect of the operating variables (pH (5.5-6.5, types of NF membrane and initial ions concentration (10-250 ppm on the separation process and water flux was investigated. It was observed that the rejection efficiency increased with increasing pH of solution and decreasing the initial metal ions concentrations. While the flux decreased with increasing pH of solution and increasing initial metal ions concentrations. The maximum rejection of lead and cadmium ions in single salt solution was 99%, 97.5 % and 98 % at pH 6, 6.5 and 6.2 and 78%, 49.2% and 44% at pH 6.5, 6.2 and 6.5 for NF1, NF2 and NF3 respectively. On the other hand, maximum permeate flux for single NF2 (32.2> NF3 (16.1>NF1 (14.2 (l/m2.h for 100 ppm, higher than binary salt solution was NF2 (23.7 ˃ NF3 (13 ˃ NF1 (8 (l/m2.h for (10 Pb2+/50 Cd2+ ppm. The NF membranes proved able to achieve high separation efficiency of both lead and cadmium ions in very suitable conditions, leaving wastewaters in a condition suitable prior discharged into the environment.

  16. Molten salt reactors. Synthesis of studies realized between 1973 and 1983. Metallic materials file

    International Nuclear Information System (INIS)

    1983-03-01

    Metallic materials for molten salt reactors are studied. The corrosion of steels by the eutectic LiF-BeF 2 and molten lead is examined. Fabrication, aging and welding of molybdenum or TZM tubes are also examined. [fr

  17. Direct reduction of uranium dioxide and few other metal oxides to corresponding metals by high temperature molten salt electrolysis

    International Nuclear Information System (INIS)

    Mohandas, K.S.

    2017-01-01

    Molten salt based electro-reduction processes, capable of directly converting solid metal oxides to metals with minimum intermediate steps, are being studied worldwide. Production of metals apart, the process assumes importance in nuclear technology in the context of pyrochemical reprocessing of spent oxide fuels, for it serves as an intermediate step to convert spent oxide fuel to a metal alloy, which in turn can be processed by molten salt electro-refining method to gain the actinides present in it. In the context of future metal fuel fast reactor programme, the electrochemical process was studied for conversion of solid UO 2 to U metal in LiCl-1wt.% Li 2 O melt at 650 °C with platinum anode at the Metal Processing Studies Section, PMPD, IGCAR. A brief overview of the work is presented in the paper

  18. Distribution constants of lower alcohols, acetone, and ethyl acetate in n-hexane-aqueous solutions of inorganic salt systems and the nature of the salting-out effect

    Science.gov (United States)

    Leschev, S. M.; Zayats, M. F.

    2012-06-01

    The distribution of model oxygen-containing organic nonelectrolytes in n-hexane-aqueous solutions of mineral salts (KF, (NH4)2SO4, K2CO3, K3PO4) and lower alcohol-saturated aqueous solutions of salt (KF, K2CO3, K3PO4) systems are studied at a temperature of 20 ± 1°C. Increments of the methylene and functional groups of organic nonelectrolyte of partition constants logarithm are calculated. It is shown that the nature of the salting-out effect primarily involves strengthening of the salt solution's structure and growth of the methylene group increment. A comparative characteristic of various salts according to the degree of their structuring effect and the effectiveness of the salting-out of organic nonelectrolytes from aqueous solutions is given.

  19. Molecular dynamics simulations of freezing of water and salt solutions

    Czech Academy of Sciences Publication Activity Database

    Vrbka, Luboš; Jungwirth, Pavel

    2007-01-01

    Roč. 134, č. 1 (2007), s. 64-70 ISSN 0167-7322 R&D Projects: GA MŠk LC512; GA ČR(CZ) GD203/05/H001 Institutional research plan: CEZ:AV0Z40550506 Keywords : ice freezing * salt ions * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.982, year: 2007

  20. Nd:YAG laser associated with metal salts solutions in the treatment of dentinal hypersensitivity; O laser de Nd:YAG associado a solucoes de sais metalicos no tratamento da hipersensibilidade dentinaria

    Energy Technology Data Exchange (ETDEWEB)

    Glauche, Carlos Eugenio Correia

    2001-07-01

    The objective of this study was to observe the ultrastructural changes caused by the radiation of Nd:YAG laser on the tooth tissue and determine qualitatively the presence of Sn{sup ++}, Sr{sup ++} and F{sup -}, inside the dentin, being it irradiated or not. Ten molar teeth recently extracted were cut into 2 mm discs. The samples were soaked in a EDTA solution at 17% for 2 minutes and divided into five groups. Group I: the samples were irradiated with Nd:YAG laser (1,5 W, 100 mJ, 15 Hz, 150 {mu}s and 125 J/cm{sup 2}) and after that, a treatment with an SnF{sub 2} aqueous solution at 10% for 30 minutes. Group II: the samples got laser irradiation with the same parameters and then a treatment with an SrCl{sub 2} solution at 10% as a toothpaste (Sensodyne{sup TM}) for 30 minutes. Group III: the samples just got a treatment with a SnF{sub 2} aqueous solution at 10% for 30 minutes. Group IV: the samples just got a treatment with a SrCl{sub 2} toothpaste (Sensodyne{sup TM}) for 30 minutes. Group V: samples that just got laser irradiation in the parameters above mentioned. Then, all samples were prepared for scanning electronic microscopy (SEM) and the samples of groups I, II, III and IV for energy dispersive X-ray microanalysis (EDX). The ultrastructure aspect of the dentin showed the surface totally altered by the irradiation. Pits and whitish globules were found amidst an heterogenous and rough structure, due to the melting and resolidification of the dental structure. Craters were also observed. Carbonization areas were absent. Ions Sn{sup ++} were found at a depth of 250 {mu}m in the samples of group I (Nd:YAG + SnF{sub 2}), whereas in the samples of group III, Sn{sup ++} were not found deeper than 100 {mu}m. Sr{sup ++} could be detected at least at 500 {mu}m in the inner dentin in the samples of group II (Nd:YAG + SrCl{sub 2}). However, Sn{sup ++} were not found at 50 {mu}m in group IV samples. Ions F{sup -} were just found in the irradiated samples of group I

  1. Mixed insoluble acidic salts of tetravalent metals Pt. 5

    International Nuclear Information System (INIS)

    Shakshooki, S.K.; Dehair, A.; Elmismary, Y.; Haraga, S.; Benfaid, N.; Benhamed, A.; Maiof, A.; Szirtes, L.

    1988-01-01

    Solid ZrOCl 2 x8H 2 O was added in a slow stream to a solution of phosphoric acid or to a solution of TiCl 4 in phosphoric acid to obtain granules of amorphous Zr(HPO 4 ) 2 xnH 2 O or Zr x Ti (1-x) (HPO 4 ) 2 xnH-2O (where x=0.95-0.80). It was found that the particle size of the resulting materials is very similar to that of ZrOCl 2 x8H 2 O, in such a way that it may be controlled indirectly. These materials are suitable for ion-exchange column operations. The relatively high gamma radiation doses of 60 Co source did not alter its exchange properties. pH-titrations were performed by an automatic titrimeter and the exchange capacities of alkali metal ions were determined by isotopic tracer technique. Other characterizations were made by usual chemical analysis and thermography. (author) 20 refs.; 4 figs

  2. Latent energy storage with salt and metal mixtures for solar dynamic applications

    Science.gov (United States)

    Crane, R. A.; Konstantinou, K. S.

    1988-01-01

    This paper examines three design alternatives for the development of a solar dynamic heat receiver as applied to power systems operating in low earth orbit. These include a base line design used for comparison in ongoing NASA studies, a system incorporating a salt energy storage system with the salt dispersed within a metal mesh and a hybrid system incorporating both a molten salt and molten metal for energy storage. Based on a typical low earth orbit condition, designs are developed and compared to determine the effect of resultant conductivity, heat capacity and heat of fusion on system size, weight, temperature gradients, cycle turbine inlet temperature and material utilization.

  3. Length Scale Dependence of the Dynamic Properties of Hyaluronic Acid Solutions in the Presence of Salt

    Energy Technology Data Exchange (ETDEWEB)

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik (CNRS-UMR); (NIH); (ILL)

    2010-12-07

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D{sub NSE} measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D{sub DLS}. This behavior contrasts with neutral polymer solutions. With increasing salt content, D{sub DLS} approaches D{sub NSE}, which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hueckel length.

  4. Calculation of solubility of salts in binary aqueous solutions

    International Nuclear Information System (INIS)

    Kolker, A.R.

    1990-01-01

    The possibility of theoretical calculation of solubility of some salts of the MX-type, where M - Na, K, Cs; X - F-I, as well as CsNO 3 and others forming no crystal hydrates in the solid phase, and the azeotropic composition in the water-HNO 3 system is studied. The calculational results of solubility are shown to depend very much on the values accepted for the standard free energies of component formation, melting heats and crystallization and on the difference in heat capacity of the melt and the solid phase

  5. Soluble salts: their incidence on the protection of metallic structures by paint coatings

    International Nuclear Information System (INIS)

    Morcillo, M.

    2003-01-01

    The presence of soluble salts at the metal/paint interface is known to have a detrimental effect on the integrity of most paint systems. Though this is a long-standing problem, it has recently come to receive greater attention from the protective coatings industry. In the paper the following points are reviewed: degradation mechanisms of the metal/paint system, the role of the metallic substrate, the nature, origin and detection os soluble salts, expected levels of soluble salts in practice, critical thresholds of soluble salts and risk levels for premature failures, role of the type and thickness of paint systems and exposure conditions, and prevention measures. The author presents an overview of the subject, making reference to the related research that has been carried out by him and his co-workers over the last 16 years. (Author) 58 refs

  6. Meat batter production in an extended vane pump-grinder injecting curing salt solutions to reduce energy requirements: variation of curing salt amount injected with the solution.

    Science.gov (United States)

    Irmscher, Stefan B; Terjung, Eva-Maria; Gibis, Monika; Herrmann, Kurt; Kohlus, Reinhard; Weiss, Jochen

    2017-01-01

    The integration of a nozzle in an extended vane pump-grinder system may enable the continuous injection of curing salt solutions during meat batter production. The purpose of this work was to examine the influence of the curing salt amount injected with the solution (0-100%) on protein solubilisation, water-binding, structure, colour and texture of emulsion-type sausages. The amount of myofibrillar protein solubilised during homogenisation varied slightly from 33 to 36 g kg -1 . Reddening was not noticeably impacted by the later addition of nitrite. L * ranged from 66.9 ± 0.3 to 67.8 ± 0.3, a * from 10.9 ± 0.1 to 11.2 ± 0.1 and b * from 7.7 ± 0.1 to 8.0 ± 0.1. Although softer sausages were produced when only water was injected, firmness increased with increasing curing salt amount injected and was similar to the control when the full amount of salt was used. The substitution of two-thirds of ice with a liquid brine may enable energy savings due to reduced power consumptions of the extended vane pump-grinder system by up to 23%. The injection of curing salt solutions is feasible without affecting structure and colour negatively. This constitutes a first step towards of an 'ice-free' meat batter production allowing for substantial energy savings due to lower comminution work. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Coalescence of organic solutions in acid and metal extraction by tri-alkylamines

    International Nuclear Information System (INIS)

    Blain, J.

    1970-01-01

    The formation of two layers with tri-alkylammonium salts solutions in low polarity diluents could be explained on the basis of settling of micelles. Light scattering and viscosity measurements reveal that micelles size increases rather sharply before coalescence. The existence of micelles in the solution has been confirmed by ultracentrifuge experiments. The behaviour of these solutions, in general, is similar to that of colloidal soap solutions. The various parameters which promote third phase formation are: anion size in the order of Cl - ∼ Br - 3 4 - ; extraction of excess acid; metal cation size in the order of UO 2 ++ 4+ ∼ Th 4+ ; decreasing in the length of the n-alkyl chain in the alkyl-ammonium salts; decreasing in diluent polarity. The above phenomenon could be explained on the basis of the affinity between alkylammonium salts and organic solvent. The composition of the three phases is independent of the initial amine concentration for a fixed acid and metal concentration. This has been verified experimentally and is in conformity with phase rule. (author) [fr

  8. Solution behavior and activity of a halophilic esterase under high salt concentration.

    Science.gov (United States)

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R

    2009-09-14

    Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2-16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45 degrees C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22 degrees C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the alpha-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. The solution alpha-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that all the solutions studied were structurally inhomogeneous, it

  9. CO2 Capture from Flue Gas using Amino Acid Salt Solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Stenby, Erling Halfdan; Thomsen, Kaj

    2009-01-01

    amine and the pH dropped between 2 and 3 units during the absorption process. In both types of solutions the temperature increased as a result of the CO2 absorption, which is expected due to the exothermic nature of the absorption reaction. The increase in temperature for the potassium glycinate......The reversible absorption of CO2 into a chemical solvent is currently the leading CO2 capture technology. Available solvents are almost exclusively based on aqueous alkanolamine solutions, which entail both economic and environmental complications, making the commercialization of the technology...... difficult. Amino acid salt solutions have emerged as an alternative to the alkanolamine solutions. A number of advantages make amino acid salt solutions attractive solvents for CO2 capture from flue gas. In the present study CO2 absorption in aqueous solutions of 0.5 M potassium glycinate and 0.5 M...

  10. Surface Crystallization of Aqueous Salt Solution Under Overheating and Overcooling

    Directory of Open Access Journals (Sweden)

    Nakoryakov Vladimir

    2016-01-01

    Full Text Available The investigation of the surface crystallization with low negative and high positive temperatures were carried in the paper. Crystallization curves for distillate (Ts0 = −9 °C and different mass salt concentrations NaCl (Ts0 = 80 °C were obtained. Experimental data indicate that the crystallization centers influence each other and the number of centers does not change with time. The maximum speeds for the crystallization front reached 0.3–0.5 m/s. There are a significant anisotropy and a curvature of crystallization front. The surface kinetics should be considered to clarify the rate of freezing and melting of ice in modeling global warming.

  11. Metal separation from multi metallic solutions by grape stalks

    OpenAIRE

    Stevens, Bas

    2016-01-01

    With the rapid development of various industries such as mine and metallurgy, wastewaters containing metals are directly or indirectly discharged into the environment. One of the most dangerous effluents discharged are Acid Mine Drainage (AMD), the outflows of acidic waters from metal mines. This water needs to be treated so it can be reused and the metal ions in this polluted water can be recuperated. The metals that occur in the polluted water are difficult to eliminate. To e...

  12. Amino acid salt solutions as solvents in CO2 capture from flue gas

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Thomsen, Kaj; Stenby, Erling Halfdan

    solutions is their ability to form solid precipitates upon the absorption of CO2. The occurrence of crystallization offers the possibility of increasing the CO2 loading capacity of the solvent. However, precipitation can also have negative effect on the CO2 capture process. The chemical nature of the solid...... formed is a decisive factor in determining the effect of precipitation on the process. For the purpose of studying the CO2 loading capacity of amino acid salt solutions, we developed an experimental set-up based on a dynamic analytical mode, with analysis of the effluent gas. Using this set-up, the CO2......New solvents based on the salts of amino acids have emerged as an alternative to the alkanolamine solutions, for the chemical absorption of CO2 from flue gas. But only few studies on amino acids as CO2 capturing agents have been performed so far. One of the interesting features of amino acid salt...

  13. ELECTRODIALYSIS IN THE CONVERSION STEP OF THE CONCENTRATED SALT SOLUTIONS IN THE PROCESS OF BATTERY SCRAP

    Directory of Open Access Journals (Sweden)

    S. I. Niftaliev

    2014-01-01

    Full Text Available Summary. The concentrated sodium sulfate solution is formed during the processing of waste battery scrap. A promising way to further treatment of the concentrated salt solution could be the conversion of these salts into acid and bases by electrodialysis, that can be reused in the same technical process cycle. For carrying out the process of conversion of salts into the corresponding acid and base several cells schemes with different combinations of cation, anion and bipolar membranes are used. At this article a comparative analysis of these cells is carried out. In the cells there were used the membranes МC-40, МА-41 and МB-2I. Acid and base solutions with higher concentration may be obtained during the process of electrodialysis in the circulation mode, when a predetermined amount of salt in the closed loop is run through a set of membranes to obtain the desired concentration of the product. The disadvantages of this method are the high cost of buffer tanks and the need to work with small volumes of treated solutions. In industrial applications it is advisable to use continuous electrodialysis with bipolar membranes, since this configuration allows to increase the number of repeating sections, which is necessary to reduce the energy costs. The increase of the removal rate of salts can be achieved by increasing the process steps, and to produce a more concentrated products after the conversion step can be applied electrodialysis-concentrator or evaporator.

  14. Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A.

    Science.gov (United States)

    Kharaka, Y.K.; Maest, A.S.; Carothers, W.W.; Law, L.M.; Lamothe, P.J.; Fries, T.L.

    1987-01-01

    Oil-field brines are the most favored ore-forming solutions for the sediment-hosted Mississippi Valley-type ore deposits. Detailed inorganic and organic chemical and isotope analyses of water and gas samples from six oil fields in central Mississippi, one of the very few areas with high metal brines, were conducted to study the inorganic and organic complexes responsible for the high concentrations of these metals. The samples were obtained from production zones consisting of sandstone and limestone that range in depth from 1900 to 4000 m (70-120??C) and in age from Late Cretaceous to Late Jurassic. Results show that the waters are dominantly bittern brines related to the Louann Salt. The brines have extremely high salinities that range from 160,000 to 320,000 mg/l total dissolved solids and are NaCaCl-type waters with very high concentrations of Ca (up to 48,000 mg/l) and other alkaline-earth metals, but with low concentrations of aliphatic acid anions. The concentrations of metals in many water samples are very high, reaching values of 70 mg/l for Pb, 245 mg/l for Zn, 465 mg/l for Fe and 210 mg/l for Mn. The samples with high metal contents have extremely low concentrations (<0.02 mg/l) of H2S. Samples obtained from the Smackover Formation (limestone) have low metal contents that are more typical of oil-field waters, but have very high concentrations (up to 85 mg/l) of H2S. Computations with the geochemical code SOLMINEQ.87 give the following results: (1) both Pb and Zn are present predominantly as aqueous chloride complexes (mainly as PbCl42- and ZnCl42-, respectively); (2) the concentrations of metals complexed with short-chained aliphatic acid anions and reduced S species are minor; (3) organic acid anions are important in controlling the concentrations of metals because they affect the pH and buffer capacity of the waters at subsurface conditions; and (4) galena and sphalerite solubilities control the concentrations of Pb and Zn in these waters. ?? 1988.

  15. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    Directory of Open Access Journals (Sweden)

    Silva João Eudes da

    2002-01-01

    Full Text Available Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were subjected to clay dissolution tests, using sodium salts of different ionic forces, to detect the relationship between certain physico-chemical parameters of water, such as pH, nitrate, chloride and sulphate content, in the dissolution of clay and the subsequent extraction of such cations as Al, Fe and K. In acidic sandy clay soils, the mineralogical composition of which was characterised by a predominance of quartz, micas, kaolinite and K-feldspars, decreases of the clay material/water pH ratio increases dissolution of the micaceous and K-feldspars phases. The presence of nitrates in the aqueous solution apparently advanced the extraction of all three cations Al, Fe and K. The specific surface area of the clay material showed a significant correlation with the main kinetic parameters of cation extraction.

  16. Nanosecond pulse radiolysis of ammoniacal solutions of silver salts

    International Nuclear Information System (INIS)

    Farhataziz; Cordier, P.; Perkey, L.M.

    1976-01-01

    In pulse radiolysis of silver salts in liquid ammonia at 23 0 C, the reaction of e/sub am/ - with Ag + produces Ag, and subsequently the reaction of Ag with Ag + produces Ag 2 + which probably disproportionates to Ag 2 . The maxima in absorption spectra at 435, 390, and 300 nm are ascribed to Ag, Ag 2 + , and Ag 2 , respectively. The measured specific rate of the reaction of e/sub am/ - with Ag + is 1.5 x 10 12 M -1 sec -1 at 23 0 C. The calculated specific rate with the Smoluchowski--Debye equation for a diffusion-controlled reaction of e/sub am/ - with Ag + is 1.4 x 10 12 M -1 sec -1 at 25 0 C. The specific rate for the reaction of Ag with Ag + is 1.3 x 10 10 M -1 sec -1 at 23 0 C. At the same temperature, the ratio of the specific rate for the disproportionation of Ag 2 + and extinction coefficient of Ag 2 + at the 390 nm is 10 6 cm sec -1 . A comparison of the spectra of various silver species dissolved in water with the spectra for same species dissolved in liquid ammonia shows that spectra in liquid ammonia are shifted toward longer wavelengths

  17. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    ... rate should be decreased so as to provide protection towards corrosion have also been calculated. It was found that KCl and NaCl are major contributors than MnSO4, Pb(NO3)2, KI and KBr. The relative increase in corrosion is high in KBr, KI, NaNO3, CaCl2, and less in Pb(NO3)2, NaHCO3 and CaCO3 test solutions.

  18. Automation of nuclide separation for alpha- and beta-determination in saturated salt solutions

    International Nuclear Information System (INIS)

    Burow, M.; Flucht, R.; Hill, P.; Ostapczuk, P.; Zoriy, P.; Zoriy, M.; Lennartz, R.

    2009-01-01

    Analysis of saturated salt solutions by various analytical techniques is, usually, difficult. Small temperature changes could induce a precipitation of salts, which are not easy to solve again. Besides the possible lost of nuclides due to the precipitation, the chemical recovery could be also a severe problem because of multitude of steps included in separation procedure. To increase the reproducibility of chemical recovery an automatic system based on AutoTrace registered SPE Workstation (DIONEX Softron GmbH, Germering, Deutschland) was developed. Using this system it was possible in automated way to separate the nuclide of interest (e.g. U, Th, Am, Pu, Tc and Sr) in saturated salt solutions by means of ion exchanger. In addition, proposed automated system made it possible to increase the number of analyzed samples per working day as well as to reduce the amount of chemicals used. In the present work the different experimental parameters (e.g. flow rate, solution content, solution concentration, etc) for of developed automated arrangement were tested. Due to the increasing of the sample volume it was possible to improve the detection limit of overall analytical procedure (however, the time needed for separation in such case was increased). It was also found, that the dilution of analyzed saturated salt solutions (1:1) with water before the separation steps, minimizes the problems with precipitation and chemical recovery. (orig.)

  19. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt

    Directory of Open Access Journals (Sweden)

    Palash Sanphui

    2014-03-01

    Full Text Available Acemetacin (ACM is a non-steroidal anti-inflammatory drug (NSAID, which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM, isonicotinamide (INA, and picolinamide (PAM], caprolactam (CPR, p-aminobenzoic acid (PABA, and piperazine (PPZ. The structures of an ACM–INA cocrystal and a binary adduct ACM–PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM–PAM and ACM–CPR, and the piperazine salt ACM–PPZ were solved from high-resolution powder X-ray diffraction data. The ACM–INA cocrystal is sustained by the acid...pyridine heterosynthon and N—H...O catemer hydrogen bonds involving the amide group. The acid...amide heterosynthon is present in the ACM–PAM cocrystal, while ACM–CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM hydrogen bonds. The cocrystals ACM–INA, ACM–PAM and ACM–CPR are three-dimensional isostructural. The carboxyl...carboxyl synthon in ACM–PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM–PPZ salt and ACM–nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM–PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable

  20. The effects of soluble salts at the metal/paint interface: advances in knowledge

    OpenAIRE

    Fuente, Daniel de la; Chico, Belén; Morcillo, Manuel

    2006-01-01

    The presence of soluble salts (particularly sulphates and chlorides) at the metal/paint interface is known to have a detrimental effect on the integrity of most paint systems. Though this is a long-standing problem, it has recently come to receive greater attention from the protective coatings industry. International Standards Organization (ISO) has for some time been trying to develop a standard about guidance levels for water-soluble salt contamination before the application of paints and r...

  1. Mineralogy and heavy metal content of secondary mineral salts: A ...

    African Journals Online (AJOL)

    tailings contain about 30 million tonnes of sulphur and 430 000 tonnes of uranium in the tailings storage facilities (Weiersbye and Witkowski., 2006). It is estimated that 25 million litres of contaminated water is discharged daily into surface water bodies and 100 tonnes of efflorescent salt is deposited into the surrounding ...

  2. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-30

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastes were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.

  3. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-03-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts () bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  4. CO2 Capture from Flue gas using Amino acid salt solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai

    /or amino acid salt concentrations. The formation of solids poses challenges, but it also holds the promise for improving the efficiency of the capture process. This project focuses on phase equilibrium experiments of five systems CO2 + amino acid salt + H2O, at conditions relevant for the CO2 capture...... to storage. Typical solvents for the process are based on aqueous solutions of alkanolamines, such as mono-ethanolamine (MEA), but their use implies economic disadvantages and environmental complications. Amino acid salt solutions have emerged as an alternative to the alkanolamines, partlybecause...... they are naturally occurring substances, and partly because they have desirable properties, such as lower vapor pressures and higher stability against oxidative degradation. One important feature of these new solvents is the formation of solids upon CO2 absorption, which happens especially at higher CO2 loadings and...

  5. Electrochemical Recovery of Sodium Hydroxide from Alkaline Salt Solution

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Westinghouse Savannah River Company, AIKEN, SC (United States); Edwards, T.B.

    1996-10-01

    A statistically designed set of tests determined the effects of current density, temperature, and the concentrations of nitrate/nitrite, hydroxide and aluminate on the recovery of sodium as sodium hydroxide (caustic) from solutions simulating those produced from the Savannah River Site (SRS) In-Tank Precipitation process. These tests included low nitrate and nitrite concentrations which would be produced by electrolytic nitrate/nitrite destruction. The tests used a two compartment electrochemical cell with a Nafion Type 324 ion-exchange membrane. Caustic was successfully recovered from the waste solutions. Evaluation of the testing results indicated that the transport of sodium across the membrane was not significantly affected by any of the varied parameters. The observed variance in the sodium flux is attributed to experimental errors and variations in the performance characteristics of individual pieces of the organic-based Nafion membrane.Additional testing is recommended to determine the maximum current density, to evaluate the chemical durability of the organic membrane as a function of current density and to compare the durability and performance characteristics of the organic-based Nafion membrane with that of other commercially available organic membranes and the inorganic class of membranes under development by Ceramatec and PNNL.

  6. Whispering Gallery Mode Based Optical Fiber Sensor for Measuring Concentration of Salt Solution

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available An optical fiber solution-concentration sensor based on whispering gallery mode (WGM is proposed in this paper. The WGM solution-concentration sensors were used to measure salt solutions, in which the concentrations ranged from 1% to 25% and the wavelength drifted from the left to the right. The experimental results showed an average sensitivity of approximately 0.372 nm/% and an R2 linearity of 0.8835. The proposed WGM sensors are of low cost, feasible for mass production, and durable for solution-concentration sensing.

  7. The production of HTR-fuel kernels by microwave hardening of aqueous metal-salt-resin droplets

    International Nuclear Information System (INIS)

    Knotik, K.; Leichter, P.

    1981-04-01

    The construction and function of the microwave equipment for the hardening of free falling salt-resin-droplets, the preparation of solutions, their treatment and conditioning of the hardening process, the appearance and properties of the hardened ''green'' kernels and the transformation of ''green'' kernels of HTR-fuel kernels, i.e. sintered UO 2 -particles are described. With a suitable microwave equipment it is possible to harden aqueous droplets containing metal-salts (e.g. uranylnitrate), resorcinol and formaldehyde. The hardening occurs while the mentioned droplets are falling under gravity. These particles are suitable for the production of HTR-fuel kernels, e.g. high density UO 2 -particles. The entire process has the advantage of minimising the process specific waste. (author)

  8. Halophyte vegetation influences in salt marsh retention capacity for heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Reboreda, Rosa [Institute of Oceanography, Faculty of Sciences, University of Lisbon, Campo Grande, Rua Ernesto de Vasconcelos, 1749-016 Lisbon (Portugal); Cacador, Isabel [Institute of Oceanography, Faculty of Sciences, University of Lisbon, Campo Grande, Rua Ernesto de Vasconcelos, 1749-016 Lisbon (Portugal)]. E-mail: micacador@fc.ul.pt

    2007-03-15

    We analysed concentrations of Cu, Cd and Pb in above and belowground tissues of the halophyte species Halimione portulacoides and Spartina maritima, as well as in sediments and pore water between the roots in a Tagus estuary salt marsh (Portugal). From these results we calculated the pools of metals in the compartments mentioned above. Relative percentages of accumulation in each pool were also determined. Our aim was to determine how the type of vegetation in the salt marsh affects overall metal retention capacity of the system. It was concluded that areas colonised by H. portulacoides are potential sources of Cu, Cd and Pb to the marsh ecosystem, whereas areas colonised by S. maritima are more effective sinks at least for Cu and Cd. Consequently, S. maritima seems to contribute more effectively to the stabilisation of metals in salt marsh sediments, reducing their availability to the estuarine system. - The type of vegetal cover can affect the overall retention capacity of a salt marsh as well as the functioning of the salt marsh as a sink or source of metals to the estuarine system.

  9. Sodium concentration in home made salt – sugar – solution (sss ...

    African Journals Online (AJOL)

    In a cohort of 210 young mothers, selected through cluster sampling technique from Ogida health district of Egor Local Government Area of Edo State, the electrolyte concentration of prepared salt-sugar-solutions (SSS) were evaluated. This was predicated on the need to determine the effects of introduction of various ...

  10. Additional disinfection with a modified salt solution in a root canal model

    NARCIS (Netherlands)

    van der Waal, S.V.; Oonk, C.A.M.; Nieman, S.H.; Wesselink, P.R.; de Soet, J.J.; Crielaard, W.

    2015-01-01

    Objectives The aim of this study is to investigate the disinfecting properties of a modified salt solution (MSS) and calcium hydroxide (Ca(OH)2) in a non-direct-contact ex-vivo model. Methods Seventy-four single-canal roots infected with Enterococcus faecalis were treated with 1% sodium hypochlorite

  11. Dynamic flow method to study the CO2 loading capacity of amino acid salt solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Stenby, Erling Halfdan; Thomsen, Kaj

    Due to a number of advantages amino acid salt solutions have emerged as alternatives to the alkanolamine solvents for the chemical absorption of CO2 from flue gas. The use of amino acids in CO2 capture is a bio-mimetic process, as it is similar to CO2 binding by proteins in the blood, such as hem...

  12. Participation of Taxifolin in the Protection of Soya Seeds from the Effects of Heavy Metal Salts

    Directory of Open Access Journals (Sweden)

    V.A. Kuznetsova

    2015-06-01

    Full Text Available A correlation was revealed between the specific activity of peroxidases and their multiple forms during the germination of soya seeds (Glycine max (L. Merrill in the presence of heavy metal salts. It was shown that lead and cadmium sulfates cause emergence of new forms of the enzyme with high electrophoretic mobility, which indicates that the identified enzyme forms are involved in the molecular mechanism of adaptation to oxidative stress. Addition of taxifolin (dihydroquercetin, a bioflavonoid antioxidant, to the salts of heavy metals caused decrease in the specific activity of peroxidases and favored emergence of new forms of the enzyme, which were absent in the control samples.

  13. Transgenerational Adaptation to Heavy Metal Salts in Arabidopsis

    OpenAIRE

    Rahavi, Mohammad Reza; Migicovsky, Zoë; Titov, Viktor; Kovalchuk, Igor

    2011-01-01

    Exposure to abiotic and biotic stress results in changes in plant physiology and triggers genomic instability. Recent reports suggest that the progeny of stressed plants also exhibit changes in genome stability, stress tolerance, and methylation. Here we analyzed whether exposure to Ni2+, Cd2+, and Cu2+ salts leads to transgenerational changes in homologous recombination frequency and stress tolerance. We found that the immediate progeny of stressed plants exhibited an increased rate of recom...

  14. Biosorption of Metals from Multi-Component Bacterial Solutions

    CERN Document Server

    Tsertsvadze, L A; Petriashvili, Sh G; Chutkerashvili, D G; Kirkesali, E I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2002-01-01

    The method of extraction of metals from industrial solutions by means of economical and easy to apply biosorbents in subtropics such as products of tea manufacturing, moss, microorganisms is described. The multi-component solutions obtained in the process of leaching of ores, rocks and industrial wastes by peat suspension were used in the experiments. The element composition of sorbent biomass and solutions was investigated by epithermal neutron activation analysis and by atomic absorption spectrometry. The results obtained evidence that the used biosorbents are applicable for extraction of the whole set of heavy metals and actinides (U, Th, Cu, Mn, Fe, Pb, Li, Rb, Sr, Cd, As, Co and others) from industrial solutions.

  15. On-site production of a dialysis bath from dry salts. Results of solute concentration control by routine clinical chemistry

    OpenAIRE

    Beige, Joachim; Lutter, Steffen; Martus, Peter

    2012-01-01

    Background. Dialysis bath production, at least in Europe, is currently based on pre-produced aqueous solutions of dialysis salts (concentrate), which are re-handled by dialysis machines to deliver the final dialysate concentrations. Because of the logistics of aqueous solution creation, a large amount of transportation capacity is needed. Therefore, we changed this process to use pre-produced dry salt containers and to undertake in-clinic dissolution of salts and concentration production. Bec...

  16. Explicit-water theory for the salt-specific effects and Hofmeister series in protein solutions

    Science.gov (United States)

    Kalyuzhnyi, Yuriy V.; Vlachy, Vojko

    2016-06-01

    Effects of addition of salts on stability of aqueous protein solutions are studied theoretically and the results are compared with experimental data. In our approach, all the interacting species, proteins, ions, and water molecules, are accounted for explicitly. Water molecules are modeled as hard spheres with four off-center attractive square-well sites. These sites serve to bind either another water or to solvate the ions or protein charges. The ions are represented as charged hard spheres, and decorated by attractive sites to allow solvation. Spherical proteins simultaneously possess positive and negative groups, represented by charged hard spheres, attached to the surface of the protein. The attractive square-well sites, mimicking the protein-protein van der Waals interaction, are located on the surface of the protein. To obtain numerical results, we utilized the energy route of Wertheim's associative mean spherical approximation. From measurable properties, we choose to calculate the second virial coefficient B2, which is closely related to the tendency of proteins to aggregate and eventually crystalize. Calculations are in agreement with experimental trends: (i) For low concentration of added salt, the alkali halide salts follow the inverse Hofmeister series. (ii) At higher concentration of added salt, the trend is reversed. (iii) When cations are varied, the salts follow the direct Hofmeister series. (iv) In contrast to the colloidal theories, our approach correctly predicts the non-monotonic behavior of B2 upon addition of salts. (v) With respect to anions, the theory predicts for the B2 values to follow different sequences below and above the iso-ionic point, as also confirmed experimentally. (vi) A semi-quantitative agreement between measured and calculated values for the second virial coefficient, as functions of pH of solution and added salt type and concentration, is obtained.

  17. Solution behavior and activity of a halophilic esterase under high salt concentration.

    Directory of Open Access Journals (Sweden)

    Lang Rao

    Full Text Available BACKGROUND: Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. METHODOLOGY/PRINCIPAL FINDINGS: A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2-16, with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45 degrees C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22 degrees C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD, dynamic light scattering (DLS and small angle neutron scattering (SANS were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the alpha-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. CONCLUSIONS/SIGNIFICANCE: The solution alpha-helical structure and activity relation also matched the highest proportion of enzyme unimers

  18. Process and system for reducing the inactive salt concentration in waste solutions of nuclear power plants

    International Nuclear Information System (INIS)

    Balint, T.; Drozda, T.; Mozes, G.; Kristof, M.; Hanel, E.; Tilky, P.

    1987-01-01

    The method is based on a suitable combination of most modern separation measures as there are precipitation, filtration, ultra-filtration, reverse osmosis, ion exchange, evaporation and crystallization; in this method almost the total quantity of the components with radioactivity, except tritium, can be effectively separated from inactive salts. One part of the inactive salt (alkali nitrate) can be treated as industrial waste and the other part (boric acid) can be recycled. The method of the invention as well as the equipment used for its execution can considerably reduce the high costs of waste solution treatment in nuclear power stations. (orig./RB) [de

  19. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    Science.gov (United States)

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  20. Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Benjia [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wheeler, Lance M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christians, Jeffrey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moore, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Harvey, Steven P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Joseph J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Barnes, Frank S. [University of Colorado; Shaheen, Sean E. [University of Colorado

    2018-03-02

    Whereas the promise of metal halide perovskite (MHP) photovoltaics (PV) is that they can combine high efficiency with solution-processability, the chemistry occurring in precursor inks is largely unexplored. Herein, we investigate the degradation of MHP solutions based on the most widely used solvents, dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). For the MHP inks studied, which contain formamidinium (FA+), methylammonium (MA+), cesium (Cs+), lead (Pb2+), bromide (Br-), and iodide (I-), dramatic compositional changes are observed following storage of the inks in nitrogen in the dark. We show that hydrolysis of DMF in the precursor solution forms dimethylammonium formate, which subsequently incorporates into the MHP film to compromise the ability of Cs+ and MA+ to stabilize FA+-based MHP. The changes in solution chemistry lead to a modification of the perovskite film stoichiometry, band gap, and structure. The solid precursor salts are stable when ball-milled into a powder, allowing for the storage of large quantities of stoichiometric precursor materials.

  1. Solution-derived sodalite made with Si- and Ge-ethoxide precursors for immobilizing electrorefiner salt

    International Nuclear Information System (INIS)

    Riley, Brian J.; Lepry, William C.; Crum, Jarrod V.

    2016-01-01

    Chlorosodalite has the general form of Na 8 (AlSiO 4 ) 6 Cl 2 and this paper describes experiments conducted to synthesize sodalite with a solution-based approach to immobilize a simulated spent electrorefiner salt solution containing a mixture of alkali, alkaline earth, and lanthanide chlorides. The reactants used were the salt solution, NaAlO 2 , and either Si(OC 2 H 5 ) 4 or Ge(OC 2 H 5 ) 4 . Additionally, seven different glass sintering aids (at loadings of 5 mass%) were evaluated as sintering aids for consolidating the as-made powders using a cold-press-and-sinter technique. This process of using alkoxide additives for the Group IV component can be used to produce large quantities of sodalite at near-room temperature as compared to a method where colloidal silica was used as the silica source. However, the small particle sizes inhibited densification during heat treatments.

  2. Alkali metal bismuth(III) chloride double salts

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Andrew W. [Department of Chemistry, College of William and Mary, Williamsburg, VA 23187 (United States); Nicholas, Aaron; Ahern, John C. [Department of Chemistry, University of Maine, Orono, ME 04469 (United States); Chan, Benny [Department of Chemistry, College of New Jersey, Ewing, NJ 08628-0718 (United States); Patterson, Howard H. [Department of Chemistry, University of Maine, Orono, ME 04469 (United States); Pike, Robert D., E-mail: rdpike@wm.edu [Department of Chemistry, College of William and Mary, Williamsburg, VA 23187 (United States)

    2016-06-15

    Evaporative co-crystallization of MCl (M = Na, K, Rb, Cs) with BiOCl in aqueous HCl produces double salts: M{sub x}Bi{sub y}Cl{sub (x+3y)}·zH{sub 2}O. The sodium salt, Na{sub 2}BiCl{sub 5}·5H{sub 2}O (monoclinic P2{sub 1}/c, a = 8.6983(7) Å, b = 21.7779(17) Å, c = 7.1831(6) Å, β = 103.0540(10)°, V = 1325.54(19) Å{sup 3}, Z = 4) is composed of zigzag chains of μ{sub 2}-Cl-cis-linked (BiCl{sub 5}){sub n}{sup 2n–} chains. Edge-sharing chains of NaCl{sub n}(OH{sub 2}){sub 6−n} octahedra (n = 0, 2, 3) are linked through μ{sub 3}-Cl to Bi. The potassium salt, K{sub 7}Bi{sub 3}Cl{sub 16} (trigonal R−3c, a = 12.7053(9) Å, b = 12.7053(9) Å, c = 99.794(7) Å, V = 13,951(2) Å{sup 3}, Z = 18) contains (Bi{sub 2}Cl{sub 10}){sup 4–} edge-sharing dimers of octahedra and simple (BiCl{sub 6}){sup 3–} octahedra. The K{sup +} ions are 5- to 8-coordinate and the chlorides are 3-, 4-, or 5-coordinate. The rubidium salt, Rb{sub 3}BiCl{sub 6}·0.5H{sub 2}O (orthorhombic Pnma, a = 12.6778(10) Å, b = 25.326(2) Å, c = 8.1498(7) Å, V = 2616.8(4) Å{sup 3}, Z = 8) contains (BiCl{sub 6}){sup 3–} octahedra. The Rb{sup +} ions are 6-, 8-, and 9-coordinate, and the chlorides are 4- or 5-coordinate. Two cesium salts were formed: Cs{sub 3}BiCl{sub 6} (orthorhombic Pbcm, a = 8.2463(9) Å, b = 12.9980(15) Å, c = 26.481(3) Å, V = 2838.4(6) Å{sup 3}, Z = 8) being comprised of (BiCl{sub 6}){sup 3–} octahedra, 8-coordinate Cs{sup +}, and 3-, 4-, and 5-coordinate Cl{sup −}. In Cs{sub 3}Bi{sub 2}Cl{sub 9} (orthorhombic Pnma, a = 18.4615(15) Å, b = 7.5752(6) Å, c = 13.0807(11) Å, V = 1818.87(11) Å{sup 3}, Z = 4) Bi octahedra are linked by μ{sub 2}-bridged Cl into edge-sharing Bi{sub 4} squares which form zigzag (Bi{sub 2}Cl{sub 9}){sub n}{sup 3n–} ladders. The 12-coordinate Cs{sup +} ions bridge the ladders, and the Cl{sup −} ions are 5- and 6-coordinate. Four of the double salts are weakly photoluminescent at 78 K, each showing a series of three excitation peaks

  3. Salt effects on the sol-gel transitions of aqueous peptide-amphiphile solutions

    Science.gov (United States)

    Yamamoto, Masashi; Maeda, Tomoki; Hotta, Atsushi

    A hydrogel made of a peptide amphiphile (PA) is an interesting soft material especially in the biomedical fields due to its controllable nanoscale structures with excellent biocompatibility. To extend the practical use of PA, a comprehensive study of the sol-gel transitions of PA is necessary to be used as e.g. a biomedical material. The effects of the types of salts in our body or in medicinal agents on the physical properties of the PA solution are not fully understood. In this study, different types of salt with various negative ions were added to a PA (C16-W3K) solution. The salt effects on the rheological properties, the pH, and the zeta potentials of the PA solutions were studied. From the rheological testing, it was found that the C16-W3K solutions could not gelate in the presence of Na2CO3 or Na3PO4, which could be caused by the aggregation of the wormlike micelles made of C16-W3K. pH-wise, the sol-gel transitions could be observed only when the PA solutions were relatively acidic (the Zeta potential was positive) instead of basic (the Zeta potential was very negative) . It was therefore concluded that the sol-gel transitions of the PA solution could be effectively controlled by the types of salt. This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI.

  4. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass

    NARCIS (Netherlands)

    Kalis, E.J.J.; Temminghoff, E.J.M.; Town, R.M.; Unsworth, E.R.; Riemsdijk, van W.H.

    2008-01-01

    Received for publication October 12, 2007. The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total

  5. Results For The Third Quarter Calendar Year 2016 Tank 50H Salt Solution Sample

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-13

    In this memorandum, the chemical and radionuclide contaminant results from the Third Quarter Calendar Year 2016 (CY16) sample of Tank 50H salt solution are presented in tabulated form. The Third Quarter CY16 Tank 50H samples (a 200 mL sample obtained 6” below the surface (HTF-5-16-63) and a 1 L sample obtained 66” from the tank bottom (HTF-50-16-64)) were obtained on July 14, 2016 and received at Savannah River National Laboratory (SRNL) on the same day. Prior to obtaining the samples from Tank 50H, a single pump was run at least 4.4 hours, and the samples were pulled immediately after pump shut down. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Third Quarter CY16 sampling of Tank 50H were requested by Savannah River Remediation (SRR) personnel and details of the testing are presented in the SRNL TTQAP.

  6. Results for the first quarter calendar year 2017 tank 50H salt solution sample

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-04-12

    In this memorandum, the chemical and radionuclide contaminant results from the First Quarter Calendar Year 2017 (CY17) sample of Tank 50H salt solution are presented in tabulated form. The First Quarter CY17 Tank 50H samples [a 200 mL sample obtained 6” below the surface (HTF-50-17-7) and a 1 L sample obtained 66” from the tank bottom (HTF-50-17-8)] were obtained on January 15, 2017 and received at Savannah River National Laboratory (SRNL) on January 16, 2017. Prior to obtaining the samples from Tank 50H, a single pump was run at least 4.4 hours and the samples were pulled immediately after pump shut down. All volatile organic analysis (VOA) and semi-volatile organic analysis (SVOA) were performed on the surface sample and all other analyses were performed on the variable depth sample. The information from this characterization will be used by Savannah River Remediation (SRR) for the transfer of aqueous waste from Tank 50H to the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. The chemical and radionuclide contaminant results from the characterization of the First Quarter CY17 sampling of Tank 50H were requested by SRR personnel and details of the testing are presented in the SRNL Task Technical and Quality Assurance Plan (TTQAP). This memorandum is part of Deliverable 2 from SRR request. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the TTQAP for the Tank 50H saltstone task.

  7. Accumulation of heavy metals from single and mixed metal solutions ...

    African Journals Online (AJOL)

    The usefulness of the intertidal gastropod Tympanotonus fuscatus L as a biomonitor of heavy metals in tropical estuaries was assessed. The periwinkles were collected from a site in the upper Bonny Estuary, Southern Nigeria and exposed in a series of experiments either singly or binary mixtures to copper, zinc and ...

  8. Mössbauer spectroscopic studies of frozen aqueous solutions of Fe3+ salts

    DEFF Research Database (Denmark)

    Mørup, Steen; Knudsen, J. E.; Nielsen, M. K.

    1976-01-01

    Frozen aqueous solutions (FAS) of Fe3+ salts have been investigated by use of Mössbauer spectroscopy in order to study the conditions for formation of glasses. A general discussion of spin–spin relaxation in glasses is given, and we discuss how changes in the spin–spin relaxation time can...... be attributed to changes in the average separation between the iron ions. In the FeCl3–H2O system, it was found that homogeneous glasses are easily formed when the salt concentration is larger than 3.5 moles FeCl3 per 100 moles H2O. In more dilute samples, ice crystallizes during cooling, while the salt...

  9. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  10. Stabilization of polyamides IV. Thermooxidation of hexano-6-lactam in the presence of alkali metal salts

    Czech Academy of Sciences Publication Activity Database

    Lánská, Božena; Matisová-Rychlá, L.; Rychlý, J.

    2005-01-01

    Roč. 87, č. 2 (2005), s. 361-373 ISSN 0141-3910 R&D Projects: GA AV ČR(CZ) KSK4050111 Institutional research plan: CEZ:AV0Z40500505 Keywords : oxidation of N-alkylamides * alkali metal salts * chemiluminescence of reactions Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.749, year: 2005

  11. Ba/Cd/Zn metal salts carboxylate and dibasic lead stearate

    African Journals Online (AJOL)

    Revue Synthèse N° 20, Juin 2009. S.F. Chabira et M. Sebaa. 94. Effect of thermal stabilizers. (Ba/Cd/Zn metal salts carboxylate and dibasic lead stearate) on the kinetic of carbonyls formation of PVC films. Salem Fouad Chabira et Mohamed Sebaa. Department of Mechanics, Laghouat University,. BP 37 G, Laghouat 03000, ...

  12. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  13. In vitro Effects of Three Metallic Salts and Carbon Black (Soot) on ...

    African Journals Online (AJOL)

    The antifungal effects of zinc chloride (Zn Cl2) calcium chloride (CaCl2), magnesium chloride (MgCl2) as well as soot collected from a local kitchen were tested on five isolated species of the dermatophytes from cases of human dermatophytoses. Of these three metallic salts, ZnCl2 showed the highest inhibitory effect on the ...

  14. Assessment of a 42 metal salts chemical library in mouse embryonic stem cells

    Science.gov (United States)

    The developmental effects of xenobiotics on differentiation can be profiled using mouse embryonic stem cells (mESCs). The adherent cell differentiation and cytotoxicity (ACDC) technique was used to evaluate a library of 42 metal and metaloid salts. Jl mESCs were allowed to prolif...

  15. Syntheses, structure and properties of Alkaline-earth metal salts of 4 ...

    Indian Academy of Sciences (India)

    The synthesis, crystal structure, spectral characteristics and thermal properties of alkaline-earth metal salts of 4-nitrophenylacetic acid (4-npaH) .... Isothermal weight loss studies were performed in a temperature controlled furnace. TG-DTA study ... resulted in the dissolu- tion of MCO3. Filtration followed by slow evaporation ...

  16. On calculation of lattice parameters of refractory metal solid solutions

    International Nuclear Information System (INIS)

    Barsukov, A.D.; Zhuravleva, A.D.; Pedos, A.A.

    1995-01-01

    Technique for calculating lattice periods of solid solutions is suggested. Experimental and calculation values of lattice periods of some solid solutions on the basis of refractory metals (V-Cr, Nb-Zr, Mo-W and other) are presented. Calculation error was correlated with experimental one. 7 refs.; 2 tabs

  17. Enhancement mechanisms behind exclusive removal and selective recovery of copper from salt solutions with an aminothiazole-functionalized adsorbent

    International Nuclear Information System (INIS)

    Xu, Chao; Liu, Fu-qiang; Gao, Jie; Li, Lan-juan; Bai, Zhi-ping; Ling, Chen; Zhu, Chang-qing; Chen, Da; Li, Ai-min

    2014-01-01

    Graphical abstract: - Highlights: • Exclusive removal and selective recovery of copper from salt solutions was achieved. • Interaction mechanisms and selective adsorption mechanisms were depicted. • Geometric structure of complex was optimized and affirmed by DFT. • Enhancement mechanism of salts was further investigated. - Abstract: The aminothiazole-functionalized adsorbent (CEAD) could exclusively remove and to selectively recover copper. The adsorption and separation properties of Cu(II) onto CEAD from aqueous media, with or without salts such as NaNO 3 , Ca(NO 3 ) 2 and Ni(NO 3 ) 2 , were systematically compared by carrying out single, binary and multiple component static and dynamic experiments. In binary systems, the adsorption capacities of Cu(II) were obviously increased by 39.47%, 47.37% and 57.89% with Ni(NO 3 ) 2 , NaNO 3 and Ca(NO 3 ) 2 , respectively. Besides, simulation study was performed to selectively recover Cu(II) from multi-component aqueous media, with the separation factor of only 54.91 in aqueous media without salts. The separation factor became infinite in the presence of NaNO 3 and the enhancement ratio for Cu(II) was raised by 126.31%. Dynamic adsorption could separate Cu(II) and Ni(II) completely and the amount of effluent for pure Ni(II) increased to 127 BV with the help of NaNO 3 . In the predominant chelating mode simulated by density functional theory calculation, a metal ion coordinated with three nitrogen atoms and formed a chelating complex with two five-membered rings, and Cu(II) showed stronger coordinating ability than Ni(II) did. Meanwhile, anions exerted significant beneficial effects by electrostatic screening, and thus strengthened the exclusive removal and selective recovery of Cu(II)

  18. The salting-out of molibdoferrats(II from aqueous solutions by the organic solvents

    Directory of Open Access Journals (Sweden)

    Mykola V. Nikolenko

    2016-12-01

    Full Text Available The aim of this work was to develop a method for producing of molybdoferrate(II precipitates by salting-out them from aqueous solutions by means of organic solvents. Dependence of the composition of molybdoferrate(II precipitates on the pH of the reaction solutions was studied. Experiments on salting-out of molybdoferrate(II with various organic solvents were carried out. As a result it was found that the best reagent for the molybdoferrate(II salting-out is acetone. By its use, lowest quantity of the ammonium sulfate impurities was obtained. It is also of importance that by using of acetone the process of regeneration by distillation of the reaction solutions is characterized by the lowest energy consumption. A functional relationship between the solubility of molybdoferrates(II and dielectric constant of the medium was established. By increasing the dielectric constant of the solvent solubility of molybdoferrates(II rapidly increases. The linearized dependence ln(lnS–ln(1/e was proposed to predict the solubility of molybdoferrates(II in various aqueous-organic solutions.

  19. The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel

    Science.gov (United States)

    Mende, Mandy; Schwarz, Dana; Steinbach, Christine; Schwarz, Simona

    2018-01-01

    The biodegradable polysaccharide chitosan possesses protonated and natural amino groups at medium pH values and has therefore been used as an adsorbing material for nickel salts in water treatment. Nickel is a problematic heavy metal ion which can cause various diseases and disorders in living organisms. Here, we show the influence of oxyanions (e.g., nitrate and sulfate) to the adsorption of nickel ions. Hence, simultaneously we are addressing the increasing global problem of nitrate and sulfate ion pollution in groundwater and surface water. A series of adsorption experiments was carried out in order to determine (i) the adsorption equilibrium, (ii) the adsorption capacity in dependence on the initial nickel ion concentration, and (iii) the influence of the anion presented in solution for the adsorption capacity. Surface morphology of chitosan flakes before and after the adsorption process has been studied with SEM-EDX analysis. The chitosan flakes exhibited promising adsorption capacities of 81.9 mg·g−1 and 21.2 mg·g−1 for nickel (sulfate) and nickel (nitrate), respectively. The calculated values of Gibbs free energy change ΔG0 confirm the higher adsorption of nickel ions in presence of sulfate ions. Hence, higher anion valence leads to a higher adsorption capacity. PMID:29510485

  20. Removal of heavy metals from synthetic solution by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Mohamed Ilou

    2016-05-01

    Full Text Available The objective of this work concerns the optimization of the operating conditions for the removal of heavy metals from synthetic solution by Electrocoagulation (EC. To reach this purpose, we prepared a synthetic wastewater containing certain heavy metals (Ni, Cu, Zn, Fe and Pb to study the influence of various parameters (conductivity, pH, time of electrolysis, current density and the initial concentration of the metal on the rate of removal of these metals. The results show that this rate of removal can reach 99.9 % in the following optimal conditions: pH included between 6 and 8 and a density of the current of 1~1.5A / dm2. This study shows that it is possible to remove metals in aqueous solution by the technique of electrocoagulation. 

  1. Mineralogy and heavy metal content of secondary mineral salts: A ...

    African Journals Online (AJOL)

    Secondary minerals associated with acid mine drainage play an important role in metal cycling and may pose a geochemical hazard. The occurrence of secondary minerals indicates prevailing and past geochemical conditions. Detecting and characterising secondary minerals is necessary to the planning of remediation ...

  2. Obtainment of lithium metal by electrolysis of molten salts

    International Nuclear Information System (INIS)

    Silva Costa, M.A.Z. da.

    1988-04-01

    The obtainment metallic lithium through KCL + LiCl, using a stainless steel cathode and a graphite anode is studied. The applications of lithium on nuclear energy, aerospatial program, metalurgy and as refining and degassing agent are also presented. The purification of lithium is still mentioned. (C.G.C.) [pt

  3. Plutonium and americium separation from salts

    International Nuclear Information System (INIS)

    Hagan, P.G.; Miner, F.J.

    1976-01-01

    Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution

  4. EFFECTS OF INORGANIC SALT SOLUTION ON SOME PROPERTIES OF COMPACTED CLAY LINERS

    Directory of Open Access Journals (Sweden)

    KHALID R. MAHMOOD AL-JANABI

    2017-12-01

    Full Text Available Processed and natural clays are widely used to create impermeable liners in solid waste disposal landfills. The engineering properties of clay liners can be significantly affected by the leachate from the waste mass. In this study, the effect of inorganic salt solutions will be investigated. These solutions used at different concentrations. Two type of inorganic salt MnSO4 and FeCl3 are used at different concentration 2%,5%, 10%. Clay used in this study was the CL- clay (kaolinite. The results show that the consistency limits and unconfined compressive strength increased as the concentration of salts increased. While the permeability tends to decrease as salt concentration increased. Also, the compression index decreases as the concentration increased from 2% to 5%. The swelling index tends to increase slightly as the concentration of MnSO4 increased, while its decrease as the concentration of FeCl3. In this paper, it is aimed to investigate the performance of compacted clay liner exposed to the certain chemicals generated by the leachate and their effects on the geotechnical properties of compacted clay liner such consistency limits, permeability coefficient, compressibility characteristics and unconfined compressive strength.

  5. Sorption and permeation of solutions of chloride salts, water and methanol in a Nafion membrane

    International Nuclear Information System (INIS)

    Villaluenga, J.P.G.; Barragan, V.M.; Seoane, B.; Ruiz-Bauza, C.

    2006-01-01

    The sorption of water-methanol mixtures containing a dissolved chloride salt in a Nafion 117 membrane, and their transport through the membrane under the driving force of a pressure gradient, have been studied. Both type of experiments was performed by using five different salts: lithium chloride, sodium chloride, cesium chloride, magnesium chloride and calcium chloride. It was observed that both the permeation flow through the membrane and the membrane swelling increase significantly with the methanol content of the solutions. These facts are attributed to the increase in wet membrane porosity, which brings about the increase of the mobility of solvents in the membrane, besides the increase of the mobility of the polymer pendant chains. In contrast, the influence of the type of electrolyte on the membrane porosity and permeability is not very important, with the exception of the CsCl solutions, which is probably due to the small hydration ability of the Cs + ion

  6. Accumulation of de-icing salts and its short-term effect on metal mobility in urban roadside soils.

    Science.gov (United States)

    Li, Fayun; Zhang, Ying; Fan, Zhiping; Oh, Kokyo

    2015-04-01

    In this study, a field investigation combined with a laboratory column leaching experiment were carried out to assess the effects of de-icing salts application on the heavy metal mobilization in roadside soils in an old and large industrial zone in Northeastern China. In the field investigation, 41 roadside soils were collected from the industrial zone, and the results showed a strong rise in deicing salts related concentrations of Na (352-513 mg/kg) and Cl (577-2,353 mg/kg) and high values of Cd (1.2-7.6 mg/kg) and Pb (28.7-101.6 mg/kg). The most serious contaminated roadside soil was used for column leaching experiment alternately with de-icing salts solution and deionized water to simulate the runoff of de-icing salts into roadside soils followed by snowmelt or rainwater. The results showed that an extensive mobilization of Cd (20.90 % of the total Cd in the soil) occurred in the salt leachate, and a high correlation with Cl were found, indicating that Cl complexes are important for the mobilization. Conversely, only 2.34 % of the total amount of Pb in the soil was leached, confirming the usual hypotheses about the high immobility of Pb in soils. However, it was found that high Pb concentration coincided with peaks in Fe and TOC concentrations, and the proportion of Pb in the >0.45 µm phase was much low, which implied an extensive Pb mobilization with small-sized colloids.

  7. Commonly used metal and crystalline salts in South African traditional medicine.

    Science.gov (United States)

    Street, R A; Cele, M P

    2013-06-21

    Traditional medicines in the form of plants, animals and/or minerals are used by millions of South Africans. There is currently no data regarding the commonly used mineral elements thus the potential benefits or hazards of such products remain unclear. Metal and crystalline salts were purchased from a rural market (Nongoma, Zululand, South Africa). Information regarding the colloquial name, price and weight was recorded. Energy dispersive X-ray spectroscopy (EDX) was used to quantatively determine the unknown salts. Six widely available salts were analyzed. Ndonya, as it is colloquially known, refers to two products which look identical to the untrained eye-one is dyed table salt and the other is hexavalent chromium. A further product used medicinally, although not widely available, was identified as iron chromite ore. The array of substances documented, ranging from benign to carcinogenic, stresses the importance of documenting components used in traditional medicine and confirms the necessity to regulate South Africa traditional medicine. Healthcare workers should be aware of the complexities of using such metal salt. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. The influence of temperature and salt on metal and sediment removal in stormwater biofilters.

    Science.gov (United States)

    Søberg, Laila C; Viklander, Maria; Blecken, Godecke-Tobias

    2014-01-01

    Stormwater biofilters are used to treat stormwater runoff. In countries with cold winter climates, biofilters are subject to low temperatures which, in some cases, are combined with potentially high salt concentrations from road de-icing, potentially affecting the biofilter's performance. Since stormwater biofilters have been developed without consideration of their critical winter use, a laboratory study was carried out to evaluate the performance of stormwater biofilters subjected to low and high temperatures, with and without salt. Both factors and their interaction had a significant effect on outflow concentrations and removal percentages. Salt had a negative impact on outflow concentrations, causing lower removal percentages for (especially dissolved) metals, this impact being most pronounced for Cu and Pb. The unrealistic combination of salt with high temperature seemed to further amplify the negative impacts of salt despite the fact that temperature alone did not cause significant differences in outflow concentrations and removal percentages. Still, biofilters showed the ability to treat stormwater efficiently under the simulated winter conditions; outflow concentrations for total metals as a minimum met the class 4 threshold value defined in the Swedish freshwater quality guidelines, while inflow concentrations clearly exceeded the threshold value for class 5. The relatively coarse filter material (which is recommended to facilitate infiltration during winter) did not seem to exacerbate biofilter performance.

  9. Effect of metal salts on antibacterial activity of zingiber officinale roscoe extract

    International Nuclear Information System (INIS)

    Sohail, T.; Yaqeen, Z.; Imran, H.; Rehman, Z.; Fatima, N.

    2013-01-01

    The antibacterial activity of ethanol extract of Zingiber Officinale Roscoe (ginger) and its combination with different salts like CuSO/sub 4/, ZnSO/sub 4/ and MnCl/sub 2/ was investigated. Both Gram positive and Gram negative bacteria were tested by agar diffusion method. The results showed that ethanol extract of Zingiber Officinale gave the maximum zone of inhibition at 50 mg/ml concentrations against Escherichia coli among Gram negative bacteria and against Staphylococcus aureus in Gram positive bacteria. However antibacterial activity of the ginger and metal salts combination was greater than activity of ethanol extract. These investigations indicate that though ethanol extract has antibacterial activity against Gram positive and Gram negative bacteria, ginger and metal salts complex has more inhibitory effect on microorganisms. Antibacterial activity was also compared with standard drug ampicillin. The minimum inhibitory concentration (MIC) of ginger extract and metal salts complexes against all test organisms ranged from 0.3125 to 2.5 mg/ml. (author)

  10. Spatial and seasonal variation in heavy metals in interstitial water of salt marsh soils

    Energy Technology Data Exchange (ETDEWEB)

    Otero, X.L.; Macias, Felipe

    2002-12-01

    Soil colonization by plants affected spatial and seasonal variation in heavy metals. - The composition of interstitial water collected from a salt marsh in NW Spain showed clear seasonal and spatial variations associated with redox cycles of Fe and S. In the summer, salinity increased in all soils as a consequence of the increase in evapotranspiration. The pH and concentrations of heavy metals also differed with season, but not all environments showed the same variations. Soils not colonized by plants had the highest pH and lowest heavy metal concentrations in the summer. These results support the idea that higher temperatures lead to an increase in the activity of sulfate-reducing bacteria, which in turn leads to an increase in alkalinity and concentration of sulfides in the water. Trace metals tend to precipitate with sulfides under these conditions and are removed from the interstitial water. In contrast, in the soils colonized by Spartina maritima, the oxidation of metal sulfides during the summer led to a decrease in pH and an increase in the metal concentrations in the interstitial water. The results obtained concur with those found for seasonal variations in metal sulfides in soils from the same salt marsh.

  11. Inefficacy of osmotic backwash induced by sodium chloride salt solution in controlling SWRO membrane fouling

    Science.gov (United States)

    Farooque, A. Mohammed; Al-Jeshi, Subhi; Saeed, Mohamed O.; Alreweli, Ali

    2014-12-01

    A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and therefore minimizing/eliminating the need for chemical cleaning. SWRO membranes were deliberately fouled by feeding seawater from an open intake located on the Arabian Gulf Coast without dosing chemicals. The fouled membranes were subjected to offline cleaning with the salt solution of up to 25 % concentration. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning. Similarly, online osmotic backwash was found to be not only ineffective in removing foulants from membrane surfaces but actually increased the fouling rate, as indicated by faster fouling rates compared to other cases. Although the driving force required for the osmotic backwash existed, the generated back flow proved to be insufficient to detach foulants from membrane surfaces. During the study period, the average SWRO membrane flux was maintained between 19 and 23 LMH, whereas the average generated back flow flux by high salt concentration solution was only 11 LMH, which was not adequate to remove foulants from membrane surfaces. Moreover, it seems that the membrane configuration as well as inherent microstructure of SWRO membrane places certain constraints on the osmotic backwash process and renders osmotic backwash ineffective in tackling SWRO membrane fouling. Hence, chemical cleaning is essential to restore SWRO membrane performance whenever fouling occurs, and the use of highly concentrated salt solution does not have any significant benefit. Membrane autopsy revealed only an insignificant accumulation of biofouling layer despite the absence of disinfection. However, it was shown that culturable biofilm bacteria species

  12. Silica precipitation in acidic solutions: mechanism, pH effect, and salt effect.

    Science.gov (United States)

    Gorrepati, Elizabeth A; Wongthahan, Pattanapong; Raha, Sasanka; Fogler, H Scott

    2010-07-06

    This study is the first to show that silica precipitation under very acidic conditions ([HCl] = 2-8 M) proceeds through two distinct steps. First, the monomeric form of silica is quickly depleted from solution as it polymerizes to form primary particles approximately 5 nm in diameter. Second, the primary particles formed then flocculate. A modified Smoluchowski equation that incorporates a geometric population balance accurately describes the exponential growth of silica flocs. Variation of the HCl concentration between 2 and 8 M further showed that polymerization to form primary particles and subsequent particle flocculation become exponentially faster with increasing acid concentration. The effect of salt was also studied by adding 1 M chloride salts to the solutions; it was found that salts accelerated both particle formation and growth rates in the order: AlCl(3) > CaCl(2) > MgCl(2) > NaCl > CsCl > no salt. It was also found that ionic strength, over cation identity, determines silica polymerization and particle flocculation rates. This research reveals that precipitation of silica products from acid dissolution of minerals can be studied apart from the mineral dissolution process. Thus, silica product precipitation from mineral acidization follows a two-step process--formation of 5 nm primary particles followed by particle flocculation--which becomes exponentially faster with increasing HCl concentration and with salts accelerating the process in the above order. This result has implications for any study of acid dissolution of aluminosilicate or silicate material. In particular, the findings are applicable to the process of acidizing oil-containing rock formations, a common practice of the petroleum industry where silica dissolution products encounter a low-pH, salty environment within the oil well.

  13. Development of electrolytic process in molten salt media for light rare-earth metals production. The metallic cerium electrodeposition

    International Nuclear Information System (INIS)

    Restivo, T.A.G.

    1994-01-01

    The development of molten salt process and the respective equipment aiming rare-earth metals recovery was described. In the present case, the liquid cerium metal electrodeposition in a molten electrolytes of cerium chloride and an equimolar mixture of sodium and potassium chlorides in temperatures near 800 C was studied. Due the high chemical reactivity of the rare-earth metals in the liquid state and their molten halides, an electrolytic cell was constructed with controlled atmosphere, graphite crucibles and anodes and a tungsten cathode. The electrolytic process variables and characteristics were evaluated upon the current efficiency and metallic product purity. Based on this evaluations, were suggested some alterations on the electrolytic reactor design and upon the process parameters. (author). 90 refs, 37 figs, 20 tabs

  14. Methods of producing adsorption media including a metal oxide

    Science.gov (United States)

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  15. Adding salt to a surfactant solution: Linear rheological response of the resulting morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Gaudino, Danila; Pasquino, Rossana, E-mail: r.pasquino@unina.it; Grizzuti, Nino [DICMaPI, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy)

    2015-11-15

    The micellar system composed of Cetylpyridinium Chloride-Sodium Salicylate (CPyCl-NaSal) in brine aqueous solutions has been studied by systematically changing the salt concentration, in order to investigate the rheology of the arising morphologies. In particular, the zero-shear viscosity and the linear viscoelastic response have been measured as a function of the NaSal concentration (with [CPyCl] = 100 mM). The Newtonian viscosity shows a nonmonotonic dependence upon concentration, passing through a maximum at NaSal/CPyCl ≈ 0.6, and eventually dropping at higher salt concentrations. The progressive addition of salt determines first a transition from a Newtonian to a purely Maxwell-like behavior as the length of the micelles significantly increases. Beyond the peak viscosity, the viscoelastic data show two distinct features. On the one hand, the main relaxation time of the system strongly decreases, while the plateau modulus remains essentially constant. Calculations based on the rheological data show that, as the binding salt concentration increases, there is a decrease in micelles breaking rate and a decrease in their average length. On the other hand, in the same concentration region, a low-frequency elastic plateau is measured. Such a plateau is considered as the signature of a tenuous, but persistent branched network, whose existence is confirmed by cryo-transmission electron microscopy images.

  16. Absorption and desorption of SO2 in aqueous solutions of diamine-based molten salts.

    Science.gov (United States)

    Lim, Seung Rok; Hwang, Junhyeok; Kim, Chang Soo; Park, Ho Seok; Cheong, Minserk; Kim, Hoon Sik; Lee, Hyunjoo

    2015-05-30

    SO2 absorption and desorption behaviors were investigated in aqueous solutions of diamine-derived molten salts with a tertiary amine group on the cation and a chloride anion, including butyl-(2-dimethylaminoethyl)-dimethylammonium chloride ([BTMEDA]Cl, pKb=8.2), 1-butyl-1,4-dimethylpiperazinium chloride ([BDMP]Cl, pKb=9.8), and 1-butyl-4-aza-1-azoniabicyclo[2,2,2]octane chloride ([BDABCO]Cl, pKb=11.1). The SO2 absorption and desorption performance of the molten salt were greatly affected by the basicity of the molten salt. Spectroscopic, X-ray crystallographic, and computational results for the interactions of SO2 with molten salts suggest that two types of SO2-containg species could be generated depending on the basicity of the unquaternized amino group: a dicationic species comprising two different anions, HSO3(-) and Cl(-), and a monocationic species bearing Cl(-) interacting with neutral H2SO3. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, B., E-mail: baduarte@fc.ul.p [Centro de Oceanografia, Instituto de Oceanografia, Campo Grande, 1749-1016 Lisboa (Portugal); Caetano, M. [INRB/IPIMAR - Instituto Nacional de Recursos Biologicos, Av. Brasilia, 1449-006 Lisboa (Portugal); Almeida, P.R. [Centro de Oceanografia, Instituto de Oceanografia, Campo Grande, 1749-1016 Lisboa (Portugal); Departamento de Biologia, Universidade de Evora, Largo dos Colegiais 2, 7004-516 Evora (Portugal); Vale, C. [INRB/IPIMAR - Instituto Nacional de Recursos Biologicos, Av. Brasilia, 1449-006 Lisboa (Portugal); Cacador, I. [Centro de Oceanografia, Instituto de Oceanografia, Campo Grande, 1749-1016 Lisboa (Portugal)

    2010-05-15

    Pools of Zn, Cu, Cd and Co in leaf, stem and root tissues of Sarcocornia fruticosa, Sarcocornia perennis, Halimione portulacoides and Spartina maritima were analyzed on a bimonthly basis, in a Tagus estuary salt marsh. All the major concentrations were found in the root tissues, being the concentrations in the aboveground organs neglectable for sediment budget proposes, as seen by the low root-aboveground translocation. Metal annual accumulation, root turnovers and cycling coefficients were also assessed. S. maritima showed the higher root turnovers and cycling coefficients for most of the analyzed metals, making this a phytostabilizer specie. By contrast the low root turnover, cycling coefficient and low root necromass generation makes S. perennis the most suitable specie for phytoremediation processes. Although the high amounts of metal return to the sediments, due to root senescence, salt marshes can still be considered sinks of heavy metals, cycling heavy metals mostly between sediment and root. - The efficiency of the phytoremediative processes and metal budgets are greatly influenced by the turnover periods and necromass generation.

  18. Biophysical and biochemical markers of metal/metalloid-impacts in salt marsh halophytes and their implications

    Directory of Open Access Journals (Sweden)

    Naser A. Anjum

    2016-04-01

    Full Text Available As a major sink, estuarine/salt marsh ecosystem can receive discharges laden with myriads of contaminants including metals/metalloids from man-made activities. Two among the major consequences of metal/metalloid-exposure in estuarine/salt marsh ecosystem flora such as halophytic plants are: (a the excessive accumulation of light energy that in turn leads to severe impairments in the photosystem II (PS II, and (b metal/metalloids-accrued elevation in reactive oxygen species (ROS in cells that causes imbalance in cellular redox homeostasis. On one hand, plants adopt several strategies to dissipate excessive energy hence eventually to avoid damage in the PS II and maintain optimum photosynthesis. On the other hand, components of cellular redox system quickly respond to metal/metalloid exposure, where plants try to maintain a fine-tuning therein and tightly control the level of ROS and its potential consequences. Based on recent reports this paper: (a overviews in separate sections major insights into and the significance of major biophysical and biochemical markers in metal/metalloid-exposed halophytes; and (b concludes the paper and highlights major points so far unexplored in the current context. Discussion reflects the need of integrating studies on major biophysical and biochemical markers in order finally to unveil tolerance/resistance mechanisms in halophytes under metal/metalloid exposed conditions.

  19. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    Science.gov (United States)

    Maroni, Victor A.; von Winbush, Samuel

    1988-01-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500.degree. C., electrolysis at a voltage not more negative than about -1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  20. Biosorption of metals from multi-component bacterial solution

    International Nuclear Information System (INIS)

    Tsertsvadze, L.A.; Dzadzamiya, T.D.; Petriashvili, Sh.G.; Chutkerashvili, D.G.; Kirkesali, E.I.; Frontas'eva, M.V.; Pavlov, S.S.; Gundorina, S.F.

    2002-01-01

    The method of extraction of metals from industrial solutions by means of economical and easy to apply biosorbents in subtropics such as products of tea manufacturing, moss, microorganisms is described. The multi-component solutions obtained in the process of leaching of ores, rocks and industrial wastes by peat suspension were used in the experiments. The element composition of sorbent biomass and solutions was investigated by epithermal neutron activation analysis and by atomic absorption spectrometry. The results obtained evidence that the used biosorbents are applicable for extraction of the whole set of heavy metals and actinides (U, Th, Cu, Mn, Fe, Pb, Li, Rb, Sr, Cd, As, Co and others ) from industrial solutions. (author)

  1. Metal ion removal from aqueous solution using physic seed hull.

    Science.gov (United States)

    Mohammad, Masita; Maitra, Saikat; Ahmad, Naveed; Bustam, Azmi; Sen, T K; Dutta, Binay K

    2010-07-15

    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium. 2010 Elsevier B.V. All rights reserved.

  2. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kazuya; Liang, Yunfeng, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp [Environment and Resource System Engineering, Kyoto University, Kyoto 615-8540 (Japan); Sakka, Tetsuo [Department of Energy and Hydrocarbon Chemistry, Kyoto University, Kyoto 615-8510 (Japan)

    2014-04-14

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  3. Molecular Thermodynamics for Swelling of a Mesoscopic Ionomer Gelin 1:1 Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Victorov, Alexey; Radke, Clayton; Prausnitz,John

    2005-06-15

    For a microphase-separated diblock copolymer ionic gel swollen in salt solution, a molecular-thermodynamic model is based on the self-consistent field theory in the limit of strongly segregated copolymer subchains. The geometry of microdomains is described using the Milner generic wedge construction neglecting the packing frustration. Thermodynamic functions are expressed analytically for gels of lamellar, bicontinuous, cylindrical and spherical morphologies. Molecules are characterized by chain composition, length, rigidity, degree of ionization, and by effective polymer-polymer and polymer-solvent interaction parameters. The model predicts equilibrium solvent uptakes and the equilibrium microdomain spacing for gels swollen in salt solutions. Results are given for details of the gel structure: distribution of mobile ions and polymer segments, and the electric potential across microdomains. Apart from effects obtained by coupling classical Flory-Rehner theory with Donnan equilibria, viz., increased swelling with polyelectrolyte charge and shrinking of gel upon addition of salt, the model predicts the effects of microphase morphology on swelling.

  4. Centrifugal separation for miscible solutions: Fundamentals and applications to separation of molten salt nuclear material

    International Nuclear Information System (INIS)

    Ning Li; Camassa, R.; Ecke, R.E.

    1995-01-01

    The authors report on the physical separation of dilute solutions using centrifugal techniques. They use numerical simulations of the diffusion and sedimentation dynamics of centrifugation to model the approach to an equilibrium concentration profile. They verify experimentally the equilibrium profiles for aqueous solutions of different salts under rotation at 25000 rpm corresponding to centrifugal accelerations of about 57,000 g and 75,000 g in two different commercial centrifuges. These measurements provide ratios of sedimentation and diffusion coefficients. The authors show experimental results for the dynamics of separation that confirm the predictions of the theoretical model. They also measure the mass diffusion coefficient for several solutions. Although the relaxation to equilibrium is long, they have determined a method for efficiently extracting enriched components from a ternary mixture based on fast dynamics at early times. These dynamics are modeled in numerical simulations with realistic fluid parameters. Based on these studies the authors show that a multistage centrifugal separation process could provide efficient physical separation of actinides and fission products from a molten-salt solution in proposed transmutation/energy-production systems. The authors consider technical issues in the design of such a separation system

  5. Centrifugal separation for miscible solutions: Fundamentals and applications to separation of molten salt nuclear material

    International Nuclear Information System (INIS)

    Li Ning; Camassa, Roberto; Ecke, Robert E.; Venneri, Francesco

    1995-01-01

    We report on the physical separation of dilute solutions using centrifugal techniques. We use numerical simulations of the diffusion and sedimentation dynamics of centrifugation to model the approach to an equilibrium concentration profile. We verify experimentally the equilibrium profiles for aqueous solutions of different salts under rotation at 25000 rpm corresponding to centrifugal accelerations of about 57,000 g and 75,000 g in two different commercial centrifuges. These measurements provide ratios of sedimentation and diffusion coefficients. We show experimental results for the dynamics of separation that confirm the predictions of the theoretical model. We also measure the mass diffusion coefficient for several solutions. Although the relaxation to equilibrium is long, we have determined a method for efficiently extracting enriched components from a ternary mixture based on fast dynamics at early times. These dynamics are modeled in numerical simulations with realistic fluid parameters. Based on these studies we show that a multistage centrifugal separation process could provide efficient physical separation of actinides and fission products from a molten-salt solution in proposed transmutation/energy-production systems. We consider technical issues in the design of such a separation system

  6. Centrifugal separation for miscible solutions: Fundamentals and applications to separation of molten salt nuclear material

    Energy Technology Data Exchange (ETDEWEB)

    Ning Li; Camassa, R.; Ecke, R.E. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    The authors report on the physical separation of dilute solutions using centrifugal techniques. They use numerical simulations of the diffusion and sedimentation dynamics of centrifugation to model the approach to an equilibrium concentration profile. They verify experimentally the equilibrium profiles for aqueous solutions of different salts under rotation at 25000 rpm corresponding to centrifugal accelerations of about 57,000 g and 75,000 g in two different commercial centrifuges. These measurements provide ratios of sedimentation and diffusion coefficients. The authors show experimental results for the dynamics of separation that confirm the predictions of the theoretical model. They also measure the mass diffusion coefficient for several solutions. Although the relaxation to equilibrium is long, they have determined a method for efficiently extracting enriched components from a ternary mixture based on fast dynamics at early times. These dynamics are modeled in numerical simulations with realistic fluid parameters. Based on these studies the authors show that a multistage centrifugal separation process could provide efficient physical separation of actinides and fission products from a molten-salt solution in proposed transmutation/energy-production systems. The authors consider technical issues in the design of such a separation system.

  7. Influence of water and salt solutions on UVB irradiation of normal skin and psoriasis

    International Nuclear Information System (INIS)

    Boer, J.; Schothorst, A.A.; Boom, B.; Suurmond, D.; Hermans, J.

    1982-01-01

    The influence of tap-water (TW) and salt solutions on the minimal erythema dose (MED) was investigated for normal human skin and uninvolved skin of psoriasis patients. MED (UVB) determinations on the forearm revealed that: (1) the MED definitely decreases whenever the arm is immersed in TW or NaCl solutions with a low concentration (4%) prior to UVB exposure, whereas almost saturated NaCl solution (26%), as well as locum Dead Sea water (LDSW), do not produce a change in the MED, and (2) the decrease in MED obtained by wetting the skin with TW was no longer present when the skin was allowed to dry for 20 min. A decrease in water uptake by skin (in vivo) and by callus (in vitro) was found as the salt concentration of the external solution increased. It is proposed that water taken up by the skin plays an important role in the sensitivity of the skin to UVB exposure. Bathing in TW or 4% NaCl prior to UVB exposure offered a slight to moderate improvement in psoriasis over UVB irradiation alone. Finally, it was shown that there is no obvious difference in clearance of the psoriatic skin between a bath in TW, 4% NaCl, or LDSW prior to UVB exposure. (orig.)

  8. Effects of Salts and Metal Oxides on Electrochemical and Optical Properties of Streptococcus mutans

    Science.gov (United States)

    Kawai, Tsuyoshi; Nagame, Seigo; Kambara, Masaki; Yoshino, Katsumi

    1994-10-01

    The effects of calcium salts and metal oxide powders on electrochemical, optical and biological properties of Streptococcus mutans have been studied as a novel method to determine the strain. Electrochemical signals of Streptococcus mutans show remarkable decrease in the presence of saturated calcium salts such as CaHPO4, Ca3(PO4)2, and Ca5(PO4)3OH depending on the strains of Streptococcus mutans: Ingbritt, NCTC-10449, or GS-5. The number of viable cells also decreases upon addition of these powders. The effects of metal oxides such as ZnO and BaTiO3 on the electrochemical characteristics and photoluminescence of Streptococcus mutans have also been studied.

  9. Temperature effects on geotechnical and hydraulic properties of bentonite hydrated with inorganic salt solutions

    DEFF Research Database (Denmark)

    Rashid, H. M. A.; Kawamoto, K.; Saito, T.

    2015-01-01

    © 2015, International Journal of GEOMATE. This study investigated the combined effect of temperature and single-species salt solutions on geotechnical properties (swell index and liquid limit) and hydraulic conductivity of bentonite applying different cation types, concentrations, and temperatures....... Results showed that both the swell index and the liquid limit decreased with an increase in salt concentration irrespective of the type of cation. Monovalent cations showed higher values of the swell index and the liquid limit compared to divalent cations. In general, the swell index of bentonite...... increased whereas the liquid limit decreased with increasing temperature for all cation types and concentrations. Significant and high correlations were found between swell index and liquid limit of bentonite at all three temperatures. Hydraulic conductivity of bentonite was found to increase...

  10. Modeling of Dielectric Properties of Aqueous Salt Solutions with an Equation of State

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios; Thomsen, Kaj

    2013-01-01

    The static permittivity is the most important physical property for thermodynamic models that account for the electrostatic interactions between ions. The measured static permittivity in mixtures containing electrolytes is reduced due to kinetic depolarization and reorientation of the dipoles...... in the electrical field surrounding ions. Kinetic depolarization may explain 25–75% of the observed decrease in the permittivity of solutions containing salts, but since this is a dynamic property, this effect should not be included in the thermodynamic modeling of electrolytes. Kinetic depolarization has, however......, been ignored in relation to thermodynamic modeling, and authors have either neglected the effect of salts on permittivity or used empirical correlations fitted to the measured static permittivity, leading to an overestimation of the reduction in the thermodynamic static permittivity. We present a new...

  11. Chemistry of solvent extraction of rare metals by quaternary ammonium salts

    International Nuclear Information System (INIS)

    Stepanov, S.I.

    1996-01-01

    An investigation of the liquid-liquid extraction of Ti, Nb,Ta, Cr(VI), Mo(VI), W(VI), U(VI), Th(lV), Sc, Y and lanthanoids, as well as mineral acids and alkaline metals, using quaternary ammonium salts, alone, and with mixtures of other classes of extractants is reported. The composition of extracted compounds and the mechanism of their extraction are discussed

  12. Dependence of capacitance of metal-molten salt interface on local density profiles near electrode

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Tosi, M.P.; Painter, K.R.; Grout, P.J.; March, N.H.

    1983-09-01

    The mean spherical approximation applied to a metal-molten salt interface is generalized to take further account of the local density profiles near the electrode. The temperature dependence of the differential capacitance is shown to arise, in large measure from such local structure. However, the hard wall assumption for the electrode is retained and this must be kept in mind in comparing our model results with experiment. (author)

  13. Regioselective hydrogen isotope exchange reaction in benzoic acid and its alkali metal salts

    International Nuclear Information System (INIS)

    Nakagawa, Akiko; Hasegawa, Hideaki; Oohashi, Kunio; Seki, Hiroko.

    1997-01-01

    The hydrogen isotope exchange reaction of benzoic and acid its alkali metal salts with deuterium oxide was studied in the presence of RhCl 3 ·3H 2 O. The products were analyzed by 1 H- and 13 C-NMR spectroscopies. High regioselectivity of the exchange at the ortho positions was established, and the extent of deuterium labeling and the distribution of d 0 , d 1 , and d 2 were determined. The reaction mechanism was briefly discussed. (author)

  14. Molten salt electrolytic reduction of metal oxides with a view to the processing of nuclear materials

    International Nuclear Information System (INIS)

    Schwandt, Carsten

    2014-01-01

    The winning of metals from their oxides is a subject of huge academic and industrial interest. Molten salt technologies play a key role in this field, as evidenced by the long-established and mature technologies used for the winning of metals such as aluminium, magnesium, lithium and sodium and several others. The objective of this contribution is to review the key features of the FFC Cambridge process, highlight its general advantages and unique versatility and, finally, emphasise its relevance in the reprocessing of spent oxide nuclear fuel in the context of establishing viable nuclear technologies for the future

  15. Extraction of lanthanide(III) nitrates from water-salt solutions with n.-octanol

    International Nuclear Information System (INIS)

    Keskinov, V.A.; Kudrova, A.V.; Valueva, O.V.; Pyartman, A.K.

    2004-01-01

    Extraction of lanthanide(III) nitrates (Ln=La-Nd, Sm-Gd) from aqueous-salt solutions at 298.15 K was studied using solution of n.-octanol, its concentration 6.31 mol/l. It was ascertained that at Ln(NO 3 ) 3 concentration in aqueous phase below 0.6 mol/l, there is actually no extraction. At higher concentrations of nitrates in aqueous phase the content of lanthanides(III) in organic phase increases in the series La-Gd. Isotherms of extraction were ascertained, its phase equilibria being described mathematically. It is shown that extraction of lanthanide(III) nitrates with n.-octanol should be realized from concentrated aqueous solutions [ru

  16. Removal of heavy metals from aqueous solution by using mango ...

    African Journals Online (AJOL)

    Biosorbent and unfertilizable flowering buds of mango plant, a local agrowaste in Multan, Pakistan known as battoor is used in this study. Efficacy of the biosorbent is tested in batch for Pb2+, Cu2+, Zn2+ and Ni2+ in single metal solution under control experimental conditions. The concentration of the biomass was 0.5 g.

  17. Method for removing metal ions from solution with titanate sorbents

    Science.gov (United States)

    Lundquist, Susan H.; White, Lloyd R.

    1999-01-01

    A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.

  18. Chemical metallization of KMPR photoresist polymer in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zeb, Gul [MiQro Innovation Collaborative Centre (C2MI), 45, boul. de l' Aéroport, Bromont, QC, J2L 1S8 (Canada); Mining & Materials Engineering, McGill University, 3610,University Street, Montreal, QC, H3A 0C5 (Canada); Duong, Xuan Truong [Department of Mechanical Engineering, Ecole polytechnique de Montréal, Montréal, QC, H3C 3T5 (Canada); Thai Nguyen University of Technology, 3-2 Street, Thai Nguyen City (Viet Nam); Vu, Ngoc Pi; Phan, Quang The; Nguyen, Duc Tuong; Ly, Viet Anh [Thai Nguyen University of Technology, 3-2 Street, Thai Nguyen City (Viet Nam); Salimy, Siamak [ePeer Review LLC, 145 Pine Haven Shores Rd, Suite 1000-X, Shelburne, VT 05482 (United States); Le, Xuan Tuan, E-mail: xuantuan.le@teledyne.com [MiQro Innovation Collaborative Centre (C2MI), 45, boul. de l' Aéroport, Bromont, QC, J2L 1S8 (Canada); Thai Nguyen University of Technology, 3-2 Street, Thai Nguyen City (Viet Nam)

    2017-06-15

    Highlights: • Electroless deposition of Ni-B film on KMPR photoresist polymer insulator with excellent adhesion has been achieved. • This metallization has been carried out in aqueous solutions at low temperature. • Polyamine palladium complexes grafts serve as seeds for the electroless plating on KMPR. • This electroless metallization process is simple, industrially feasible, chromium-free and environment-friendly. - Abstract: While conventional methods for preparing thin films of metals and metallic alloys on insulating substrates in the field of microelectromechanical systems (MEMS) include vapor deposition techniques, we demonstrate here that electroless deposition can be considered as an alternate efficient approach to metallize the surface of insulating substrates, such as KMPR epoxy photoresist polymer. In comparison with the physical and chemical vapor deposition methods, which are well-established for metallization of photoresist polymers, our electroless nickel plating requires only immersing the substrates into aqueous solutions in open air at low temperatures. Thin films of nickel alloy have been deposited electrolessly on KMPR surface, through a cost-effective and environmental chromium-free process, mediated through direct grafting of amine palladium complexes in aqueous medium. This covalent organic coating provides excellent adhesion between KMPR and the nickel film and allows better control of the palladium catalyst content. Covalent grafting and characterization of the deposited nickel film have been carried out by means of Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy techniques.

  19. Can mothers safely prepare labon-gur salt-sugar solution after demonstration in a diarrhoeal hospital?

    DEFF Research Database (Denmark)

    Islam, M A; Kofoed, Poul-Erik; Begum, S

    1992-01-01

    while 1.3% exceeded the upper danger limit for salt and 98.7% samples of gur were within safe and effective range. Mothers' performances were not different with regard to their educational status and prior practice at home. 80% knew about the solution before coming to the hospital and 45% had utilized......Home-based salt-sugar solution (SSS) prepared with labon (locally produced sea salt) and gur (unrefined brown sugar) has been recommended as a cheap, locally available and a simple tool to prevent and treat diarrhoeal dehydration. Preparation of labon-gur SSS is demonstrated to the patients...

  20. Nucleophilic substitution and oxidative coupling in reaction of metallated lithium salt of acetic acid with 1,2-dibromoethane

    OpenAIRE

    Chanysheva, A.; Zorin, A.; Klimakov, V.; Spirikhin, L.; Zorin, V.

    2009-01-01

    When lithium salt of acetic acid metallated by lithium diisopropylamide in tetrahydrofuran interacts with 1,2-dibromoethane products of nucleophilic substitution of bromine atoms for oxycarbomethyl group and oxidative coupling of acetoxydianions are obtained.

  1. Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration

    Directory of Open Access Journals (Sweden)

    Jefferson Luiz de Aguiar Paes

    2014-10-01

    Full Text Available Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.

  2. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    Science.gov (United States)

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

    2012-04-01

    This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was

  4. Test of electrodialytic upgrading of MSWI APC residue in pilot scale: focus on reduced metal and salt leaching

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Jensen, Pernille Erland; Villumsen, Arne

    2010-01-01

    In this study a pilot plant for electrodialytic treatment of municipal solid waste incineration (MSWI) air pollution control (APC) residue was tested and proposed as a treatment method which can lead to reuse of this otherwise hazardous waste. The pilot plant was developed based on a design...... that is adapted from conventional electrodialysis, e.g. used in desalination of solutions. The APC residue was treated in a suspension (8 kg APC residue and 80 L tap water) and circulated through an electrodialytic (ED) stack consisting of 50 cell pairs separated by ion exchange membranes. A direct current...... was applied to the ED stack for removal of heavy metals (As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and salts (Cl, Na, SO4) from the APC residue suspension. Different tank designs for mixing the APC residue suspension were tested as well as changing experimental conditions. A part of the raw experimental APC residue...

  5. Extreme ductile deformation of fine-grained salt by coupled solution-precipitation creep and microcracking: Microstructural evidence from perennial Zechstein sequence (Neuhof salt mine, Germany)

    Czech Academy of Sciences Publication Activity Database

    Závada, Prokop; Desbois, G.; Schwedt, A.; Lexa, O.; Urai, J. L.

    2012-01-01

    Roč. 37, April (2012), s. 89-104 ISSN 0191-8141 R&D Projects: GA ČR GA14-15632S Institutional support: RVO:67985530 Keywords : rock salt * solution-precipitation creep * microcracking * Griffith crack * fluid inclusion trails Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.285, year: 2012

  6. Effect of Hofmeister series salts on Absorptivity of aqueous solutions on Sodium polyacrylate

    Science.gov (United States)

    Korrapati, Swathi; Pullela, Phani Kumar; Vijayalakshmi, U.

    2017-11-01

    Sodium polyacrylate (SPA) is a popular super absorbent commonly used in children diapers, sanitary pads, adult diapers etc. The use of SPA is in force from past 30 years and the newer applications like as food preservant are evolving. SPA is recently discovered by our group for improvement of sensitivity of colorimetric agents. Though the discovery of improvement in sensitivity is phenomenal, the mechanism still remains a puzzle. A typical assay reagent contains colorimetric/fluorescent reagents, buffers, salts, stabilizers etc. These chemicals are known to influence the water absorptivity of SPA. If we were to perform chemical/biochemical assays on SPA absorbed reagents effect of salts and other excipients on colorimetric/fluorescence compounds absorbed on SPA is very important. The hofmeister series are standard for studying effect of salts on permeability, stability, aggregation, fluorescence quenching etc. We recently studied affect of urea, sodium chloride, ammonium sulfate, guanidine thiocayanate on fluorescence characteristics of fluorescence compounds and noted that except urea all other reagents have resulted in fluorescence quenching and urea had an opposite effect and increased the fluorescence intensity. This result was attributed to the different water structure around fluorescent in urea solution versus other chaotropic agents.

  7. Super-absorbency and phase transition of gels in physiological salt solutions

    Science.gov (United States)

    Zhang, Yong-Qing; Tanaka, Toyoichi; Shibayama, Mitsuhiro

    1992-11-01

    IONIC gels with the ability to absorb many times their dry weight of water have found widespread use as absorbents in medical, chemical and agricultural applications1. The dramatic swelling power of these super-absorbent gels results from both the electrostatic repulsion between the charges on the polymer chains, and the osmotic pressure of the counter-ions2. In salt solutions such as saline, urine or blood, however, excess Na+ and Cl- ions screen the polymer charges and eliminate the osmotic imbalance, effectively changing the properties of the material to that of a non-ionic gel3: this greatly diminishes the swelling power, and hence the utility of these materials under physiological conditions. Here we report the development of a system combining a non-ionic gel with ionized surfactants, which shows super-absorbent behaviour even in the presence of salt. In water, the hydrophobic gel facilitates the formation of spherical surfactant micelles, which mimic the charged sites of an ionic gel. As the salt concentration is increased, the micelles become rod-like, maintaining the electrostatic repulsion along the polymer chains and thereby preserving the swelling power of the gel.

  8. The heat of solution and solvation number of lithium salts in water-alcohol mixtures

    International Nuclear Information System (INIS)

    Mashima, Michio; Takase, Takao; Fukuda, Shinroku; Baba, Norio

    1976-01-01

    The solvation numbers of LiCl and LiI, and of KI for comparison, in water-MeOH mixtures and water-i-PrOH mixtures were determined at an infinite dilution at 25 0 C from the adiabatic compressibility. The heats of solution of these salts were also determined. In general, with an increase in the concentration of alcohol the solvation number increases initially to reach a maximum at 10-30 mol% alcohol, then it decreases to a minimum and increases again from about 75 mol% alcohol. The maximum solvation numbers of the salts determined are as follows: LiCl 11.2 mol/mol at 30 mol% MeOH; LiCl 11.5 mol/mol at 15 mol% i-PrOH;LiI 8.2 mol/mol at 12 mol% i-PrOH and KI 14.0 mol/mol at 10 mol% i-PrOH. The larger the cation, the larger the solvation number. Also, the composition of the solvant where the salt containing larger ions has a maximum solvation number has a lower concentration of alcohol. The maximum solvation number of LiI containing a larger anion is smaller than that of LiCl because an iodide ion has a much larger structure-breaking effect than a chloride ion. By the way, there seems to be difference in the structure of the mixed solvent before and after the maximum solvation number. (auth.)

  9. Removal of Metal Nanoparticles Colloidal Solutions by Water Plants

    Science.gov (United States)

    Olkhovych, Olga; Svietlova, Nataliia; Konotop, Yevheniia; Karaushu, Olena; Hrechishkina, Svitlana

    2016-11-01

    The ability of seven species of aquatic plants ( Elodea canadensis, Najas guadelupensis, Vallisneria spiralis L., Riccia fluitans L., Limnobium laevigatum, Pistia stratiotes L., and Salvinia natans L.) to absorb metal nanoparticles from colloidal solutions was studied. It was established that investigated aquatic plants have a high capacity for removal of metal nanoparticles from aqueous solution (30-100%) which indicates their high phytoremediation potential. Analysis of the water samples content for elements including the mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag + Ag2O) before and after exposure to plants showed no significant differences when using submerged or free-floating hydrophytes so-called pleuston. However, it was found that the presence of submerged hydrophytes in aqueous medium ( E. canadensis, N. guadelupensis, V. spiralis L., and R. fluitans L.) and significant changes in the content of photosynthetic pigments, unlike free-floating hydrophytes ( L. laevigatum, P. stratiotes L., S. natans L.), had occur. Pleuston possesses higher potential for phytoremediation of contaminated water basins polluted by metal nanoparticles. In terms of removal of nanoparticles among studied free-floating hydrophytes, P. stratiotes L. and S. natans L. deserve on special attention.

  10. Aqueous Solution Thermal Conductivity of Beryllium-Subgroup Metal Chlorides

    Directory of Open Access Journals (Sweden)

    K. M. Abdullayev

    2013-01-01

    Full Text Available The paper presents experimental data on thermal conductivity of BeCl2 and SrCl2 salt aqueous solutions in the temperature range from 20 to 300 °С  and at various electrolyte concentrations  in mass percent. For the first time thermal conductivity of the system Н2О + BeCl2 has been investigated at high temperatures.The experimental results are described with the help of an empirical equation in the form of: λs = λo (1+ Am + Bm3/2 + Cm2,where λs  and λo – thermal conductivity coefficients of solution and water; A, B and C – coefficients depending on electrolyte nature; m – molality in units mol/kg.The formula error is less than  ±1 %.

  11. Corrosion performance of several metals in plutonium nitrate solution

    International Nuclear Information System (INIS)

    Takeda, Seiichiro; Nagai, Takayuki; Yasu, Shozo; Koizumi, Tsutomu

    1995-01-01

    Corrosion behavior of several metals exposed in plutonium nitrate solution was studied. Plutonium nitrate solution with the plutonium concentration ranging from 0.01 to 300 g/l was used as a corrosive medium. Specimens tested were type 304 ULC (304 ULC) stainless steel, type 310 Nb (310 Nb) stainless steel, titanium (Ti), titanium-5% tantalum alloy (Ti-5Ta), and zirconium (Zr). Corrosion behavior of these metals in plutonium nitrate solution was evaluated through examining electrochemical characteristics and corrosion rates obtained by weight loss measurement. From the results of the corrosion tests, it was found that the corrosion rate of stainless steels i.e. 304 ULC and 310 Nb, increases by the presence of plutonium in nitric acid solution. The corrosion potential of the stainless steels shifted linearly towards the noble direction as the concentration of plutonium increases. It is thought that the shifts in corrosion potential of the stainless steels to the noble direction results an increase in anodic current and, hence, corrosion rate. Valve metals, i.e. Ti, Ti-5Ta and Zr, showed good corrosion resistance over the whole range of plutonium concentration examined here. (author)

  12. THERMODYNAMIC PROPERTIES OF NONAQUEOUS SINGLE SALT SOLUTIONS USING THE Q-ELECTROLATTICE EQUATION OF STATE

    Directory of Open Access Journals (Sweden)

    A. Zuber

    2015-09-01

    Full Text Available AbstractThe correlation of thermodynamic properties of nonaqueous electrolyte solutions is relevant to design and operation of many chemical processes, as in fertilizer production and the pharmaceutical industry. In this work, the Q-electrolattice equation of state (EOS is used to model vapor pressure, mean ionic activity coefficient, osmotic coefficient, and liquid density of sixteen methanol and ten ethanol solutions containing single strong 1:1 and 2:1 salts. The Q-electrolattice comprises the lattice-based Mattedi-Tavares-Castier (MTC EOS, the Born term and the explicit MSA term. The model requires two adjustable parameters per ion, namely the ionic diameter and the solvent-ion interaction energy. Predictions of osmotic coefficient at 298.15 K and liquid density at different temperatures are also presented.

  13. Are nanoscale ion aggregates present in aqueous solutions of guanidinium salts?

    Science.gov (United States)

    Hunger, Johannes; Niedermayer, Stefan; Buchner, Richard; Hefter, Glenn

    2010-11-04

    A detailed investigation using broadband dielectric relaxation spectroscopy (DRS) has been made of the aqueous solutions of guanidinium chloride and carbonate, GdmCl(aq) and Gdm₂CO₃(aq), at 25 °C. The spectra indicate that Gdm(+) ions, C(NH₂)₃(+), do not bind strongly to water nor are they hydrophobically hydrated; rather they appear to have a most unusual ability to dissolve in water without altering its dynamics. Although DRS is particularly sensitive to the presence of ion pairs, only weak ion pairing was detected in Gdm₂CO₃(aq) solutions and none at all in GdmCl(aq). Surprisingly, no evidence was found for the existence of the higher order homo- and heteroionic nanoscale aggregates that have been identified in recent years by Mason and co-workers using molecular dynamics simulations and neutron diffraction. Possible reasons for this discrepancy are discussed. The present DR spectra and other solution properties of GdmCl(aq) and Gdm₂CO₃(aq), such as apparent molar volumes and electrical conductivities, are shown to have strong similarities to those of the corresponding Na+ salts. However, such solutions also differ remarkably from their Na(+) analogues (and all other simple electrolytes in aqueous solution) in that their average water relaxation times correlate strongly with their bulk viscosities. The biological implications of the present results are briefly discussed.

  14. Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis.

    Science.gov (United States)

    Gwak, Gimun; Jung, Bokyung; Han, Sungsoo; Hong, Seungkwan

    2015-09-01

    Poly (aspartic acid sodium salt) (PAspNa) was evaluated for its potential as a novel draw solute in forward osmosis (FO). The inherent advantages of PAspNa, such as good water solubility, high osmotic pressure, and nontoxicity, were first examined through a series of physicochemical analyses and atomic-scale molecular dynamics simulations. Then, lab-scale FO tests were performed to evaluate its suitability in practical processes. Compared to other conventional inorganic solutes, PAspNa showed comparable water flux but significantly lower reverse solute flux, demonstrating its suitability as a draw solute. Moreover, fouling experiments using synthetic wastewater as a feed solution demonstrated that PAspNa reversely flowed to the feed side reduced inorganic scaling on the membrane active layer. The recyclability of PAspNa was studied using both nanofiltration (NF) and membrane distillation (MD) processes, and the results exhibited its ease of recovery. This research reported the feasibility and applicability of FO-NF or FO-MD processes using PAspNa for wastewater reclamation and brackish water desalination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Trace metals behaviour during salt and fresh water mixing in the Venice Lagoon

    International Nuclear Information System (INIS)

    Ghermandi, G.; Campolieti, D.; Cecchi, R.; Costa, F.; Zaggia, L.; Zonta, R.

    1993-01-01

    Preliminary results of an investigation on trace metals behaviour in the estuarine system of the Dese River (Venice Lagoon) are described. Hydrodynamical and water chemical-physical measurements and PIXE concentrations analysis on size-fractionated samples emphasize the complexity of the processes occurring in the area of salt and fresh water mixing. Suspended load variations in the bottom layer of the water column, which may be mostly ascribed to resuspension, regulate the trace metal concentrations and seem to play a fundamental role in the transport of pollutants in shallow water areas of the estuary. The behaviour of dissolved metals is masked by the presence of suspended matter, but some relationships with chemical-physical variables are distinguishable, furnishing information on the processes affecting their concentration in the system. (orig.)

  16. Standard practice for determining cracking susceptibility of metals exposed under stress to a hot salt environment

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1990-01-01

    1.1 This practice covers procedures for testing metals for embrittlement and cracking susceptibility when exposed under stress to a hot salt environment. This practice can be used for testing all metals for which service conditions dictate the need for such information. The test procedures described herein are generally applicable to all metal alloys; required adjustments in environmental variables (temperature, stress) to characterize a given materials system should be made. This practice describes the environmental conditions and degree of control required, and suggests means for obtaining this desired control. 1.2 This practice can be used both for alloy screening for determination of relative susceptibility to embrittlement and cracking, and for the determination of time-temperature-stress threshold levels for onset of embrittlement and cracking. However, certain specimen types are more suitable for each of these two types of characterizations. Note 1 This practice relates solely to the performance of ...

  17. Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S

    DEFF Research Database (Denmark)

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik

    2015-01-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3–4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable...... combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium–metal (Li–metal), lithium–oxygen (Li–O2......), and lithium–sulfur (Li–S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. This review explores the critical role Li-salts play in ensuring in these batteries viability....

  18. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    Science.gov (United States)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  19. Changes in mechanical properties and morphology of elastomer coatings after immersion in salt solutions

    Science.gov (United States)

    Terán Arce, Fernando; Avci, Recep; Beech, Iwona; Cooksey, Keith; Wigglesworth-Cooksey, Barbara

    2004-03-01

    RTV11 (^TM GE Silicones) and Intersleek (^TM International Paints) are two elastomers of considerable significance to the navy and maritime industry for their application as fouling release coatings. Both materials are composed of polymeric matrices with embedded filler particles, which provide increased strength and durability to the elastomer. Using Atomic force microscopy (AFM), surface and bulk analysis techniques, we have found surface regions with microelastic properties, which correlate with the locations of filler particles inside the coatings. These particles are able to undergo elastic displacements of hundreds of nm inside the polymeric matrix during compression by the AFM tip. While elastic properties of Intersleek remain largely unchanged after immersion in salt solutions, roughening, embrittlement and stiffening occurs in RTV11 coatings depending on the amount of curing agent and humidity used during preparation and curing, respectively. Interestingly, such transformations are absent after immersion in pure water. In particle free regions, elastic moduli of RTV11 take values of 2 - 3 MPa before immersion in salt solutions. After immersion, those values increase 5 - 10 times.

  20. Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions.

    Science.gov (United States)

    Heaton, James C; Russell, Joseph J; Underwood, Tim; Boughtflower, Robert; McCalley, David V

    2014-06-20

    The retention and peak shape of neutral, basic and acidic solutes was studied on hydrophilic interaction chromatography (HILIC) stationary phases that showed both strong and weak ionic retention characteristics, using aqueous-acetonitrile mobile phases containing either formic acid (FA), ammonium formate (AF) or phosphoric acid (PA). The effect of organic solvent concentration on the results was also studied. Peak shape was good for neutrals under most mobile phase conditions. However, peak shapes for ionised solutes, particularly for basic compounds, were considerably worse in FA than AF. Even neutral compounds showed deterioration in performance with FA when the mobile phase water concentration was reduced. The poor performance in FA cannot be entirely attributed to the negative impact of ionic retention on ionised silanols on the underlying silica base materials, as results using PA at lower pH (where their ionisation is suppressed) were inferior to those in AF. Besides the moderating influence of the salt cation on ionic retention, it is likely that salt buffers improve peak shape due to the increased ionic strength of the mobile phase and its impact on the formation of the water layer on the column surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution

    Science.gov (United States)

    Sindt, Julien O.; Alexander, Andrew J.; Camp, Philip J.

    2017-12-01

    The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.

  2. Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Jianxian [College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China) and College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)], E-mail: zengjianxian@163.com; Ye Hongqi [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Hu Zhongyu [College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China)

    2009-01-30

    Complexation-ultrafiltration process was investigated for mercury and cadmium removal from aqueous solutions by using poly(acrylic acid) sodium salt (PAASS) as a complexing agent. The kinetics of complexation reactions of PAASS with the metal ions were studied under a large excess PAASS and pH 5.5. It takes 25 and 50 min for mercury and cadmium to get the complexation equilibrium, respectively, and the reaction kinetics can be described by a pseudo-first-order equation. Effects of various operating parameters such as loading ratios, pH values, etc. on metal rejection coefficients (R) were investigated. In the process of concentration, membrane fluxes decline slowly and R values are about 1. The concentrated retentates were used further for the decomplexation. The decomplexation ratio of mercury-PAASS complex is about 30%, whereas that of cadmium-PAASS complex reaches 93.5%. After the decomplexation, diafiltration experiments were carried out at pH 2.5. Cadmium can be diafiltrated satisfactorily from the retentate, but for mercury it is the contrary. Selective separation of the both metal ions was studied from a binary solution at pH 5. When mercury, cadmium and PAASS concentrations are 30, 30 and 40 mg L{sup -1}, respectively, mercury is retained by ultrafiltration while almost all cadmium passes through the membrane.

  3. Solution behavior of hydrogen isotopes and other non-metallic elements in liquid lithium

    International Nuclear Information System (INIS)

    Maroni, V.A.; Calaway, W.F.; Veleckis, E.; Yonco, R.M.

    1976-01-01

    Results of experimental studies to measure selected thermodynamic properties for systems of lithium with non-metallic elements are reported. Investigations of the Li-H, Li-D, and Li-T systems have led to the elucidation of the dilute solution behavior and the H/D/T isotope effects. In the case of the Li-H and Li-D systems, the principal features of the respective phase diagrams have been delineated. The solubility of Li-D in liquid lithium has been measured down to 200 0 C. The solubility of Li 3 N in liquid lithium and the thermal decomposition of Li 3 N have also been studied. From these data, the free energy of formation of Li 3 N and the Sieverts' constant for dissolution of nitrogen in lithium have been determined. Based on studies of the distribution of non-metallic elements between liquid lithium and selected molten salts, it appears that molten salt extraction offers promise as a means of removing these impurity elements (e.g., H, D, T, O, N, C) from liquid lithium

  4. Determining the Enthalpy of Vaporization of Salt Solutions Using the Cooling Effect of a Bubble Column Evaporator

    Science.gov (United States)

    Fan, Chao; Pashley, Richard M.

    2016-01-01

    The enthalpy of vaporization (?H[subscript vap]) of salt solutions is not easily measured, as a certain quantity of pure water has to be evaporated from a solution, at constant composition, and at a fixed temperature and pressure; then the corresponding heat input has to be measured. However, a simple bubble column evaporator (BCE) was used as a…

  5. On-site production of a dialysis bath from dry salts. Results of solute concentration control by routine clinical chemistry.

    Science.gov (United States)

    Beige, Joachim; Lutter, Steffen; Martus, Peter

    2012-06-01

    BACKGROUND.: Dialysis bath production, at least in Europe, is currently based on pre-produced aqueous solutions of dialysis salts (concentrate), which are re-handled by dialysis machines to deliver the final dialysate concentrations. Because of the logistics of aqueous solution creation, a large amount of transportation capacity is needed. Therefore, we changed this process to use pre-produced dry salt containers and to undertake in-clinic dissolution of salts and concentration production. Because no preclinical control for solute concentrations is available so far using this new process, we employed routine clinical chemistry analytics. METHODS.: We report the controls of solute concentrations created by these methods for 746 samples of concentrates and 151 dissolution processes. For analysis, absolute and relative deviations from prescriptions and associations between the solute concentrations and the density controls of the concentrates were computed. RESULTS.: A total of 98% of all the concentrates were found to be within a 10% margin of error from the prescriptions. The mean relative deviation of the solute concentrations from the prescriptions was -0.635 ± 3.83%. Among particular solutes, sodium had the highest maximum deviation of 26 mmol/L from the prescription. Calcium and magnesium (small concentration solutes) exhibited small systematic errors of 1.37 and 1.22%, respectively. Other solute concentrations showed random errors only and no associations with the mean relative deviations of all the solutes within a production batch or with the density controls. CONCLUSIONS.: Single solute concentration control by routine clinical chemistry after dry salt production of concentrates is a valuable additional tool for monitoring clinical risk with dialysate concentrates. The analytical random error of clinical chemistry exceeds the weight tolerance of production; therefore, such analytics cannot be used for precision production and control of dry salt containers.

  6. Soluble salts: their incidence on the protection of metallic structures by paint coatings

    Directory of Open Access Journals (Sweden)

    Morcillo, M.

    2003-12-01

    Full Text Available The presence of soluble salts at the metal/paint interface is known to have a detrimental effect on the integrity of most paint systems. Though this is a long-standing problem, it has recently come to receive greater attention from the protective coatings industry. In the paper the following points are reviewed: degradation mechanisms of the metal/paint system, the role of the metallic substrate, the nature, origin and detection of soluble salts, expected levels of soluble salts in practice, critical thresholds of soluble salts and risk levels for premature failures, role of the type and thickness of paint systems and exposure conditions, and prevention measures. The author presents an overview of the subject, making reference to the related research that has been carried out by him and his coworkers over the last 16 years.

    Es un hecho conocido que la presencia de sales solubles en la intercara metal/pintura tiene un efecto negativo sobre la mayoría de los sistemas de pintura. Aunque se trata de un problema conocido desde hace tiempo, ha sido recientemente cuando ha recibido una gran atención por parte de la industria de recubrimientos protectores. En el presente trabajo se revisan los siguientes aspectos: mecanismos de degradación del sistema metal/pintura, el papel que juega el substrato metálico, la naturaleza, origen y detección de las sales solubles, niveles esperados de sales solubles en la práctica, niveles críticos de sales solubles y niveles de riesgo de fallo prematuro del sistema de pintura, papel que juega el tipo y espesor del sistema de pintura, el ambiente de exposición y las medidas de prevención. El autor presenta una revisión del tema, haciendo referencia a los trabajos de investigación que ha llevado a cabo, junto con su grupo de investigación, durante los últimos 16 años.

  7. The Equilibrium Between Titanium Ions and Titanium Metal in NaCl-KCl Equimolar Molten Salt

    Science.gov (United States)

    Wang, Qiuyu; Song, Jianxun; Hu, Guojing; Zhu, Xiaobo; Hou, Jungang; Jiao, Shuqiang; Zhu, Hongmin

    2013-08-01

    The equilibrium between metallic titanium and titanium ions, 3Ti2+ ⇌ 2Ti3+ + Ti, in NaCl-KCl equimolar molten salt was reevaluated. At a fixed temperature and an initial concentration of titanium chloride, the equilibrium was achieved by adding an excess amount of sponge titanium in assistant with bubbling of argon into the molten salt. The significance of this work is that the accurate concentrations of titanium ions have been obtained based on a reliable approach for taking samples. Furthermore, the equilibrium constant {{K}}_{{C}} = (x_{{{{Ti}}^{{ 3 { + }}} }}^{{eql}} )3 /(x_{{{{Ti}}^{{ 2 { + }}} }}^{{eql}} )2 was calculated through the best-fitting method under the consideration of the TiOCl dissolution. Indeed, the final results have disclosed that the stable value of KC could be achieved based on all modifications.

  8. Actinides recovery from molten salt/liquid metal system by electrochemical methods

    Science.gov (United States)

    Iizuka, Masatoshi; Koyama, Tadafumi; Kondo, Naruhito; Fujita, Reiko; Tanaka, Hiroshi

    1997-08-01

    Electrochemical methods were examined for the recovery of actinides from the electrorefiner which is used in pyrometallurgical reprocessing of spent metal fuel for fast reactors. Uranium was successfully collected at the solid steel cathode from both liquid cadmium and molten salt solvents. In electrotransport from liquid cadmium, the behavior of uranium and rare earths was as expected by a computer simulation code based on the diffusion layer model at the interface between the electrolyte and the electrodes. In electroreduction from the molten salt electrolyte, a considerable amount of uranium was reduced at the CdLi anode by direct chemical reduction with lithium, especially at a lower anodic current density. The decrease in collection efficiency of uranium due to the direct chemical reduction would be avoided by maintaining the anode potential higher than the deposition potential of uranium.

  9. Insights into the Metal Salt Catalyzed 5-Ethoxymethylfurfural Synthesis from Carbohydrates

    Directory of Open Access Journals (Sweden)

    Xin Yu

    2017-06-01

    Full Text Available The use of common metal salts as catalysts for 5-ethoxymethylfurfural (EMF synthesis from carbohydrate transformation was performed. Initial screening suggested AlCl3 as an efficient catalyst for EMF synthesis (45.0% from fructose at 140 °C. Interestingly, CuSO4 and Fe2(SO43 were found to yield comparable EMF at lower temperature of 110 to 120 °C, and high yields of ethyl levulinate (65.4–71.8% were obtained at 150 °C. However, these sulfate salts were inactive in EMF synthesis from glucose and the major product was ethyl glucoside with around 80% yield, whereas EMF of 15.2% yield could be produced from glucose using CrCl3. The conversion of sucrose followed the accumulation of the reaction pathways of fructose and glucose, and a moderate yield of EMF could be achieved.

  10. Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution

    DEFF Research Database (Denmark)

    Shi, Zhenguo; Geiker, Mette Rica; Lothenbach, Barbara

    2017-01-01

    indicates that only a minor part of the chloride ions is bound in Friedel's in the studied Portland cement (P) and limestone blended (L) cement. The chloride binding capacity with respect to the formation of Friedel's salt by consumption of monocarbonate is reached for the P and L mortars, where only...... a fraction of about 20% of the amount of C3A is found to contribute to formation of Friedel's salt. Higher amounts of Friedel's salt are formed in the metakaolin containing mortars. However, the limited chloride ingress depths prevent quantification of the potential full chloride binding capacity of Friedel......Thermogravimetric analysis (TGA), powder X-ray diffraction (XRD) and thermodynamic modelling have been used to obtain Friedel's salt profiles for saturated mortar cylinders exposed to a 2.8 M NaCl solution. Comparison of the measured Friedel's salt profiles with the total chloride profiles...

  11. Influence of irradiated chitosan on rice plants growing in hydroponic medium contaminated with salt and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.D.; Diep, T.B. [Institute for Nuclear Science and Technique-VAEC, Nghiado, Cau giay, Hanoi (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Effect of chitosan and radiation-degraded chitosan on rice seedlings of a Vietnam's original variety was investigated. Potential of irradiated chitosan in plant tolerance for several stress factors (salt, zinc, and vanadium) also was studied as well. Chitosan represented in hydroponic medium clearly inhibited the growth of rice seedlings at concentrations arranging from 50 ppm. Radiation processing of chitosan with dose higher than 100 kGy reduced toxicity of chitosan and the efficacy was of dose proportion. Rice plant of 203 origin was almost normally grown in hydroponic solution containing chitosan that has been irradiated with dose of 150 and 200 kGy. Irradiated chitosan increased plant resistance to environmental stress caused by vanadium (V); thereby the seedlings could be recovered completely, even gained in biomass. This effect was not appeared when applied chitosan to rice in media contaminated by zinc (Zn) and salt (NaCl). The selectness of irradiated chitosan on various stress factors partly clarified the assistant action of chitosan in the vanadium intoxication because chelating with metal ions could not be evaluated as main mechanism. (author)

  12. Influence of irradiated chitosan on rice plants growing in hydroponic medium contaminated with salt and heavy metals

    International Nuclear Information System (INIS)

    Lam, N.D.; Diep, T.B.; Kume, Tamikazu

    2000-01-01

    Effect of chitosan and radiation-degraded chitosan on rice seedlings of a Vietnam's original variety was investigated. Potential of irradiated chitosan in plant tolerance for several stress factors (salt, zinc, and vanadium) also was studied as well. Chitosan represented in hydroponic medium clearly inhibited the growth of rice seedlings at concentrations arranging from 50 ppm. Radiation processing of chitosan with dose higher than 100 kGy reduced toxicity of chitosan and the efficacy was of dose proportion. Rice plant of 203 origin was almost normally grown in hydroponic solution containing chitosan that has been irradiated with dose of 150 and 200 kGy. Irradiated chitosan increased plant resistance to environmental stress caused by vanadium (V); thereby the seedlings could be recovered completely, even gained in biomass. This effect was not appeared when applied chitosan to rice in media contaminated by zinc (Zn) and salt (NaCl). The selectness of irradiated chitosan on various stress factors partly clarified the assistant action of chitosan in the vanadium intoxication because chelating with metal ions could not be evaluated as main mechanism. (author)

  13. Removal of Toxic Metals from Aqueous Solution by Saw Dust ...

    African Journals Online (AJOL)

    In this work, feasibility studies of using a natural and low cost adsorbent; saw dust for the removal of Cr(VI), Ni(II), Fe(II) and Cd(II) from aqueous solution was carried out. The efficiency of the adsorbent was judged from the variation of the % adsorption with (i) contact time, (ii) adsorbent dose, (iii) initial metal ion concentration ...

  14. Assessment of drug salt release from solutions, suspensions and in situ suspensions using a rotating dialysis cell

    DEFF Research Database (Denmark)

    Parshad, Henrik; Frydenvang, Karla; Liljefors, Tommy

    2003-01-01

    buffer is used as release media. Generally, the initial release of the drug salt from in situ suspensions occurred faster as compared to conventional suspensions, probably due to incomplete precipitation of the drug salt, and hence formation of supersaturated solutions where the rate of release......A rotating dialysis cell consisting of a small (10 ml) and a large compartment (1000 ml) was used to study the release of drug salt (bupivacaine 9-anthracene carboxylate) from (i). solutions, (ii). suspensions and (iii). in situ formed suspensions. Initial release experiments from suspensions...... indicated that the release of drug salt in deionized water was predominantly limited by the diffusion across the membrane whereas it is essentially dissolution rate controlled in 0.05 M phosphate buffer (pH 7.40). Thus, the in vitro model appears to have a potential in formulation screening when phosphate...

  15. [Physical and chemical evaluation during refrigeration storage of salted catfish (Pseudoplatystoma sp.) in brine solution, and packed under vacuum].

    Science.gov (United States)

    Rodríguez, Diana; Barrero, Marinela; Kodaira, Makie

    2009-06-01

    Salting fish in the south Venezuelan towns are still the main method of preserving fish including cutt, and salting fish process, storage and commercialization. As the result, salted-dried fish is particularly susceptible to spoilage by a number of factors, including lipid oxidation, browning meat. Packing salted fish product is an alternative increasing storage life time reducing lost of quality and enhancing the storage time. The present study evaluated the physic, chemist, and sensory quality of fish fillet from cat fish (Pseudoplatystoma sp.) from Apure state, Venezuela. Fillet fish were placed in brine solution at 36% of sodium chloride 1:2 fillet: brine solution; after, they were packed under followed conditions: vacuum, vacuum and storage under refrigeration condition, and room temperature. The results showed significant differences (p refrigeration temperature after three moths. The best conditions treatment was vacuum packing and refrigeration at 4 degrees C.

  16. Measuring and modeling the salting-out effect in ammonium sulfate solutions.

    Science.gov (United States)

    Wang, Chen; Lei, Ying Duan; Endo, Satoshi; Wania, Frank

    2014-11-18

    The presence of inorganic salts significantly influences the partitioning behavior of organic compounds between environmentally relevant aqueous phases, such as seawater or aqueous aerosol, and other, nonaqueous phases (gas phase, organic phase, etc.). In this study, salting-out coefficients (or Setschenow constants) (KS [M(-1)]) for 38 diverse neutral compounds in ammonium sulfate ((NH4)2SO4) solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The measured KS were all positive, varied from 0.216 to 0.729, and had standard errors in the range of 0.006-0.060. Compared to KS for sodium chloride (NaCl) in the literature, KS values for (NH4)2SO4 are always higher for the same compound, suggesting a higher salting-out effect of (NH4)2SO4. A polyparameter linear free energy relationship (pp-LFER) for predicting KS in (NH4)2SO4 solutions was generated using the experimental data for calibration. pp-LFER predicted KS agreed well with measured KS reported in the literature. KS for (NH4)2SO4 was also predicted using the quantum-chemical COSMOtherm software and the thermodynamic model AIOMFAC. While COSMOtherm generally overpredicted the experimental KS, predicted and experimental values were correlated. Therefore, a fitting factor needs to be applied when using the current version of COSMOtherm to predict KS. AIOMFAC tends to underpredict the measured KS((NH4)2SO4) but always overpredicts KS(NaCl). The prediction error is generally larger for KS(NaCl) than for KS((NH4)2SO4). AIOMFAC also predicted a dependence of KS on the salt concentrations, which is not observed in the experimental data. In order to demonstrate that the models developed and calibrated in this study can be applied to estimate Setschenow coefficients for atmospherically relevant compounds involved in secondary organic aerosol formation based on chemical structure alone, we predicted and compared KS for selected

  17. Neptunium sorption and co-precipitation of strontium in simulated DWPF salt solution

    International Nuclear Information System (INIS)

    McIntyre, P.F.; Orebaugh, E.G.; King, C.M.

    1988-01-01

    Batch experiments performed using crushed slag saltstone (∼40 mesh) removed >80% of 237 Np from simulated Defense Waste Processing Facility (DWPF) salt solution. The concentration of 237 Np (110 pCi/ml) used was 1000x greater than levels in actual DWPF solutions. Neptunium-239 was used as a tracer and was formed by neutron activation of uranyl nitrate. Results showed that small amounts of crushed saltstone (as little as 0.05 grams), removed >80% of neptunium from 15 ml of simulated DWPF solution after several hours equilibration. The neptunium is sorbed on insoluble carbonates formed in and on the saltstone matrix. Further testing showed that addition of 0.01 and 0.10 ml of 1 molar Ca +2 (ie. Ca (NO 3 ) 2 , CaCl 2 ) into 15 ml of simulated DWPF solution yielded a white carbonate precipitate which also removed >80% of the neptunium after 1 hour equilibration. Further experiments were performed to determine the effectiveness of this procedure to co-precipitate strontium

  18. Caprylate Salts Based on Amines as Volatile Corrosion Inhibitors for Metallic Zinc: Theoretical and Experimental Studies.

    Science.gov (United States)

    Valente, Marco A G; Teixeira, Deiver A; Azevedo, David L; Feliciano, Gustavo T; Benedetti, Assis V; Fugivara, Cecílio S

    2017-01-01

    The interaction of volatile corrosion inhibitors (VCI), caprylate salt derivatives from amines, with zinc metallic surfaces is assessed by density functional theory (DFT) computer simulations, electrochemical impedance (EIS) measurements and humid chamber tests. The results obtained by the different methods were compared, and linear correlations were obtained between theoretical and experimental data. The correlations between experimental and theoretical results showed that the molecular size is the determining factor in the inhibition efficiency. The models used and experimental results indicated that dicyclohexylamine caprylate is the most efficient inhibitor.

  19. The distribution of soluble radionuclide-relevant trace elements between salt minerals and saline solutions; Die Verteilung loeslicher Radionuklid-relevanter Spurenelemente zwischen Salzmineralen und salinaren Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Ina

    2015-07-16

    The research platform ENTRIA (Disposal options for radioactive residues Interdisciplinary analyses and development of evaluation principles) includes the sub-project ''Final disposal in deep geological formations without any arrangements for retrieval''. This approach considers rock salt (beside clay and granite) as host rock formation for disposal of heat-producing long-live waste. Most rock salt formations contain Mg-rich brines derived from highly evolved sea water evaporation processes now included in the rock salt mass. If such brines get access to metal-canister corrosion will allow release of soluble nuclides to the brine. In this scenario, it cannot be excluded that contaminated brines leave the deep seated disposal area and move along geological or technical migration pathways towards the rock salt/cap rock contact. The temperature of the brine will drop from near 80 C to 25 or 30 C. The deceasing temperature of the brine causes precipitation of magnesian chloride and sulfate phase in equilibrium with the brine. In order to understand the salt precipitation and the retention mechanism of dissolved trace elements experiments have been set up which allow formation of sylvite, carnallite, kainite, and hydrous Mg-sulphates under controlled conditions. The retention capacity of crystallizing salt minerals based occurring in magnesian brine solutions at decreasing temperature within a salt dome is best measured as the distribution coefficient D. This concept assumes incorporation of trace elements into the lattice of salt minerals. The distribution coefficients of the trace elements, Rb, Cs, Co, Ni, Zn, Li and B between sylvite, carnallite, kainite, and MgSO{sub 4} phases have been determined at experimental temperatures of 25, 35, 55 and 83 C. The results clearly indicate the following range of distribution coefficients (D): Sylvite D > 1 Rb and Br, D < 1 Co, Ni, Zn, Li and B, Carnallite D > 1 Rb and Cs, D < 1 Co, Ni, Zn, Li and B, Kainite D

  20. A study of metallic coatings obtained by electrolysis of molten salts

    International Nuclear Information System (INIS)

    Broc, Michel.

    1978-06-01

    An appropriate technique has been developed for obtaining compact metallic coatings from electrolysis of molten salts. Through the use of this method, it has been possible to produce pure metal deposits which, until now, has been extremely difficult to do. The apparatus used and the main steps of the process such as dehydration of the solvant, degassing of the equipment, and starting of the electrolytic process, are first described. This is followed by a discussion of the deposits of the metals beryllium, uranium, tantalum and tungsten obtained from electrolysis of molten fluorides at temperatures between 600 and 800 0 C. The metal coatings so obtained are homogeneous and show continuity, their thicknesses varying from a few microns to a millimeter or more. They have been studied by measurements. As potential applications of this new technique, one can mention the growth of diffusion barriers and the production of cathodes for thermoionic emission. The method can also be used for electroforming. An intermetallic diffusion between the deposit and the substrate has been observed in some cases. The advantage of the technique of melt electrolysis in obtaining metal coatings of enhanced thicknesses is illustrated by taking the beryllium-nickel system as an example. It is shown that the thickness obtained is proportional to the square root of growth time and is about 6 to 8 times larger than that obtained by conventional techniques [fr

  1. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m3 H2/m3·d, with a hydrogen yield of 3.4 mol H2/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes. © 2012 American Chemical Society.

  2. Antitumor Activity and Toxicity of Salts of Inorganic Group IIIa Metals: Aluminum, Gallium, Indium, and Thallium

    Science.gov (United States)

    Hart, Michael M.; Adamson, Richard H.

    1971-01-01

    The toxicity and antitumor activity of salts of the Group IIIa metals aluminum, gallium, indium, and thallium were determined. With the (lethal dose)50 as a measure, the decreasing order of toxicity was TlCl3 ≥ In(NO3)3 > Ga(NO3)3 > Al(NO3)3. All four metals exhibited antitumor activity, but when the tumor was inoculated by a route different from that of the drug, only Ga+3 and, to a lesser extent, In+3 inhibited tumor growth. Ga(NO3)3 was found to inhibit the growth of three out of four rodent solid tumors. Gallium therefore has potential therapeutic usefulness for treatment of solid tumors in man. PMID:5283954

  3. Carbon nanotube doping mechanism in a salt solution and hygroscopic effect: density functional theory.

    Science.gov (United States)

    Duong, Dinh Loc; Lee, Il Ha; Kim, Ki Kang; Kong, Jing; Lee, Seung Mi; Lee, Young Hee

    2010-09-28

    The mechanism of doping carbon nanotubes (CNTs) with a salt solution was investigated using the density functional theory. We propose that the anion-CNT complex is a key component in doping CNTs. Although the cations play an important role in ionizing CNTs as an intermediate precursor, the ionized CNTs are neutralized further by forming a stable anion-CNT complex as a final reactant. The anion-CNT bond has a strong ionic bonding character and clearly shows p-type behavior by shifting the Fermi level toward the valence band. The midgap state is introduced by the strong binding of carbon and anion atoms. These localized charged anion sites are highly hygroscopic and induce the adsorption of water molecules. This behavior provides a new possibility for using anion-functionalized CNTs as humidity sensors.

  4. Comparison of salt solution and air drying methods for moisture fixation in highly porous building materials

    DEFF Research Database (Denmark)

    Antonov, Yovko Ivanov; Jensen, Rasmus Lund; Møldrup, Per

    2017-01-01

    In recent years, research has identified some bio-based, porous building materials as good or excellent regulators of moisture in buildings. The ability of a material to absorb, release and store moisture is described by vapour sorption isotherms. It is necessary input to simulations of indoor...... building materials by a standardized testing method, using saturated salt solutions. Furthermore, results from the standard method are compared to values of moisture content for the same materials, obtained by air-drying at different relative humidity. This is done with the aim to compare the findings from...... volume method discretization. Indoor air relative humidity and moisture content distribution in the construction are compared for the experimented materials and conventional building materials. Results show better agreement between isotherms obtained by standard method and air-drying for low density...

  5. Micro-Arc oxidation of Ti in a solution of sulfuric acid and Ti+3 salt

    International Nuclear Information System (INIS)

    Ragalevicius, Rimas; Stalnionis, Giedrius; Niaura, Gediminas; Jagminas, Arunas

    2008-01-01

    A comparative study was performed on the behavior of titanium electrode in a sulfuric acid solution with and without Ti +3 during micro-arc oxidation under the constant current density control regime. The composition and microstructure of the obtained micro-arc films were analyzed using scanning electron microscopy, glancing-angle X-ray diffractometry, Raman and energy-dispersive X-ray spectroscopies. We have shown that addition of a Ti +3 salt extends the region of current densities (j a ) can be used for micro-arc oxidation of Ti and results in an obvious change of sparking behavior from extensive, large and long-played sparks to numerous, small and short sparks. As a consequence, the titania films formed in the Ti +3 -containing solutions are relatively thick, more uniform, composed of almost pure crystalline anatase and rutile phases of TiO 2 , and contain a network of evenly distributed small pores. It has also been shown that these films are promising for applications in catalysis, sensors and optoelectronics. The Raman spectra indicate that an increase in the electrolysis time of titanium in the Ti +3 -containing solution leads to the increase in rutile content, as expected

  6. Electrodeposition of alkali and alkali-earth metals on liquid lead cathodes in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, C.; De Cordoba, G. [CIEMAT/DE/DFN/URAA. Avda. Complutense, 22. 28040 Madrid (Spain)

    2008-07-01

    Pyrochemical processing of spent nuclear fuel leads to the dissolution as chlorides of fission products (FPs) that have to be removed in order to recycle the salt. Precipitation technique have been tested for the removal of these FPs in the LiCl-KCl, salt selected as reference, with different results. Salt decontamination from lanthanides can be easily achieved as solid precipitates of oxychlorides or single phosphates; however, for the alkaline and alkaline-earth metals this technique is not suitable. Within the EUROPART project (VI FP of the EC), a new route that consist of the electrodeposition of these FP on a liquid lead cathode (LLC) has been considered, including the Li and K constituting the electrolyte. First results obtained with Sr and Cs are presented herein. Although according to the thermodynamic potential values, the electrodeposition order on LLC is Ba, Sr, Li, K and Cs, during our experiments it was not possible to distinguish the electrochemical signals corresponding to the individual elements. (authors)

  7. Indirect, reversible high-density hydrogen storage in compact metal ammine salts

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Hummelshøj, Jens Strabo; Klerke, Asbjørn

    2008-01-01

    structures develop, which facilitates desorption from the interior of large, compact tablets. Density functional theory calculations reproduce trends in desorption enthalpies for the systems studied, and a mechanism in which individual chains of the ammines are released from the surface of the crystal......The indirect hydrogen storage capabilities of Mg(NH3)(6)Cl-2, Ca(NH3)(6)Cl-2, Mn(NH3)(6)Cl-2, and Ni(NH3)(6)Cl-2 are investigated. All four metal ammine chlorides can be compacted to solid tablets with densities of at least 95% of the crystal density. This gives very high indirect hydrogen...... densities both gravimetrically and volumetrically. Upon heating, NH3 is released from the salts, and by employing an appropriate catalyst, H-2 can be released corresponding to up to 9.78 wt % H and 0.116 kg H/L for the Ca(NH3)(8)Cl-2 salt. The NH3 release from all four salts is investigated using...

  8. Chemical metallization of KMPR photoresist polymer in aqueous solutions

    Science.gov (United States)

    Zeb, Gul; Duong, Xuan Truong; Vu, Ngoc Pi; Phan, Quang The; Nguyen, Duc Tuong; Ly, Viet Anh; Salimy, Siamak; Le, Xuan Tuan

    2017-06-01

    While conventional methods for preparing thin films of metals and metallic alloys on insulating substrates in the field of microelectromechanical systems (MEMS) include vapor deposition techniques, we demonstrate here that electroless deposition can be considered as an alternate efficient approach to metallize the surface of insulating substrates, such as KMPR epoxy photoresist polymer. In comparison with the physical and chemical vapor deposition methods, which are well-established for metallization of photoresist polymers, our electroless nickel plating requires only immersing the substrates into aqueous solutions in open air at low temperatures. Thin films of nickel alloy have been deposited electrolessly on KMPR surface, through a cost-effective and environmental chromium-free process, mediated through direct grafting of amine palladium complexes in aqueous medium. This covalent organic coating provides excellent adhesion between KMPR and the nickel film and allows better control of the palladium catalyst content. Covalent grafting and characterization of the deposited nickel film have been carried out by means of Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy techniques.

  9. Evaluation of quality of permanent teeth restorations in children of areas contaminated by heavy metal salts

    Directory of Open Access Journals (Sweden)

    V. V. Avakov

    2014-04-01

    Full Text Available The influence of the environment on the child health is one of priority issues of the present time and it is of great social importance. Increased dental diseases associated with climatic and geographical characteristics of the area are widely discussed in the literature. The leading among them are environmentally determined dental diseases in children associated with geochemical and technogenic pollution of the area where they live. Increasing amounts of hard metal salts is the urgent hygienic problem, due to severity of their multi-element analysis in microsubjects, and negative influence on health of the children population, due to tropism, ability to cumulation, long biological life in the body and antagonism of heavy metal salts to the number of microelements. Influence of hard metal salts on dental diseases development is undeniable. Particular attention is paid to their influence on caries process and treatment peculiarities. Despite the fact that modern аdhesive dentistry in recent years has made a significant breakthrough in improving adhesive systems, correct choice of adhesive system depending on changes in the structure of hard tissue under geochemical contaminants (like heavy metal salts is the most important step. It is the decisive factor for adaptation and connection of restoration with the restoration base. We should remember that on the way of adhesive system there is an altered structure preventing from deep penetration of such system and, consequently, leading to violation of restoration tightness. Therefore, early detection of complications by clinical evaluation of quality of the restorations is of great interest. Multi-vector approach to treatment of dental caries in children living in conditions of technogenic pollution by heavy metal salts is extremely urgent and important issue. Significant niche in this approach is given to adhesive preparation methods combined with local fluoridation, using fluoride medication of the

  10. Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution.

    Science.gov (United States)

    Esmaeeli, Hadi S; Farnam, Yaghoob; Bentz, Dale P; Zavattieri, Pablo D; Weiss, Jason

    2017-02-01

    This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.

  11. Significant Enhancement in the Thermoelectric Properties of PEDOT:PSS Films through a Treatment with Organic Solutions of Inorganic Salts.

    Science.gov (United States)

    Fan, Zeng; Du, Donghe; Yu, Zhimeng; Li, Pengcheng; Xia, Yijie; Ouyang, Jianyong

    2016-09-07

    Conducting polymers have promising thermoelectric application because they have many advantages including abundant elements, mechanical flexibility, and nontoxicity. The thermoelectric properties of conducting polymers strongly depend on their chemical structure and microstructure. Here, we report a novel and facile method to significantly enhance the thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) films through a treatment with organic solutions of inorganic salts. N,N-Dimethylformamide (DMF) and a common inorganic salt like zinc chloride (ZnCl2) are used as the solvent and solute of the solutions, respectively. The treatments can significantly increase both the Seebeck coefficient and electrical conductivity of the PSS films. The thermoelectric properties of the PSS films are sensitive to the experimental conditions, such as the salt concentration, treatment temperature, and the cation of the salts. After treatment at the optimal experimental conditions, the PSS films can exhibit a Seebeck coefficient of 26.1 μV/K and an electrical conductivity of over 1400 S/cm at room temperature. The corresponding power factor is 98.2 μW/(m·K(2)). The mechanism for the enhancement in the thermoelectric properties is attributed to the segregation of some PSSH chains from PSS and the conformation change of PEDOT chains as a result of the synergetic effects of inorganic salts and DMF.

  12. Corrosion-electrochemical behavior of metals in alkali solutions

    International Nuclear Information System (INIS)

    Levin, V.A.; Levina, E.Eh.

    1995-01-01

    Results of an investigation into corrosion-electrochemical behaviour of 12Kh18N10T, 10Kh17N13M2T, 08Kh21N6M2T and 15Kh25T steels, 06KhN28MDT and KhN78T alloys as well as NP-2 nickel in sodium, potassium and lithium hydroxide solutions at 95-180 deg C temperatures are considered. It is ascertained, that anode polarization curves of all metals irrespective of hydroxide nature, concentration, temperature, presence of chloride and chlorate additions, are of identic character. The movement of anode polarization curves in the direction of lower current of hydroxide type in NaOH-KOH-LiOH series, temperature and solution concentration reduction at other equal terms. 12 refs.; 6 figs

  13. Equilibrium Solubility of CO2 in Aqueous Potassium Taurate Solutions : Part 1. Crystallization in Carbon Dioxide Loaded Aqueous Salt Solutions of Amino Acids

    NARCIS (Netherlands)

    Kumar, P.S.; Hogendoorn, J.A.; Feron, P.H.M.; Versteeg, G.F.

    2003-01-01

    Crystallization of a reaction product was observed during the absorption of CO2 in aqueous potassium taurate solutions at 298 K. The crystallizing solid was found to be the protonated amine. The critical CO2 loading value at which crystallization occurred was measured for various amino acid salt

  14. Do salt and low temperature impair metal treatment in stormwater bioretention cells with or without a submerged zone?

    Science.gov (United States)

    Søberg, Laila C; Viklander, Maria; Blecken, Godecke-Tobias

    2017-02-01

    Although seasonal temperature changes and (road) salt in winter and/or coastal stormwater runoff might interfere with the metal treatment performance of stormwater bioretention cells, no previous study has evaluated the effect of these factors and their interactions under controlled conditions. In this 18week long study 24 well established pilot-scale bioretention columns were employed to evaluate the individual and combined effect(s) of low/high temperature, salt and presence of a submerged zone with an embedded carbon source on metal removal using a three factor, two-level full factorial experimental design. In most instances, the three factors significantly influenced the metal outflow concentrations and thus the treatment performance; the effect of temperature depended on the metal in question, salt had an overall negative effect and the submerged zone with carbon source had an overall positive effect. Despite these statistically significant effects, the discharge water quality was generally markedly improved. However, leaching of dissolved Cu and Pb did occur, mainly from bioretention cells dosed with salt-containing stormwater. The highest concentrations of metals were captured in the top layer of the filter material and were not significantly affected by the three factors studied. Overall, the results confirmed that bioretention provides a functioning stormwater treatment option in areas experiencing winter conditions (road salt, low temperatures) or coastal regions (salt-laden stormwater). However, validation of these results in the field is recommended, especially focusing on dissolved metal removal, which may be critically affected under certain conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Stability of interbed for salt cavern gas storage in solution mining considering cusp displacement catastrophe theory

    Directory of Open Access Journals (Sweden)

    Le Yu

    2015-03-01

    Full Text Available Cusp displacement catastrophe theory can be introduced to propose a new method about instability failure of the interbed for gas storage cavern in bedded salt in solution mining. We can calculate initial fracture drawing pace of this interbed to obtain 2D and 3D gas storage shapes at this time. Moreover, Stability evaluation of strength reduction finite element method (FEM based on this catastrophe theory can used to evaluate this interbed stability after initial fracture. A specific example is simulated to obtain the influence of the interbed depth, cavern internal pressure, and cavern building time on stability safety factor (SSF. The results indicate: the value of SSF will be lower with the increase of cavern building time in solution mining and the increase of interbed depth and also this value remains a rise with the increase of cavern internal pressure Especially, we can conclude that the second-fracture of the interbed may take place when this pressure is lower than 6 MPa or after 6 days later of the interbed after initial fracture. According to above analysis, some effective measures, namely elevating the tube up to the top of the interbed, or changing the circulation of in-and-out lines, can be introduced to avoid the negative effects when the second-fracture of the interbed may occur.

  16. Opto-electrochemical spectroscopy of metals in aqueous solutions

    International Nuclear Information System (INIS)

    Habib, K.

    2016-01-01

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the electrical resistance of aluminium samples during the initial stage of anodisation processes in aqueous solution. In fact, because the resistance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the resistance was called electrical resistance–emission spectroscopy. The anodisation process of the aluminium samples was carried out by electrochemical impedance spectroscopy (EIS) in different sulphuric acid concentrations (1.0%–2.5% H 2 SO 4 ) at room temperature. In the meantime, the real time holographic interferometry was used to determine the difference between the electrical resistance of two subsequent values, dR, as a function of the elapsed time of the EIS experiment for the aluminium samples in 1.0%, 1.5%, 2.0%, and 2.5% H 2 SO 4 solutions. The electrical resistance–emission spectra of the present investigation represent a detailed picture of not only the rate change of the electrical resistance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. As a result, a new spectrometer was developed based on the combination of the holographic interferometry and electrochemical impedance spectroscopy for studying in situ the electrochemical behavior of metals in aqueous solutions.

  17. Opto-electrochemical spectroscopy of metals in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Habib, K., E-mail: khaledhabib@usa.net [Materials Science and Photo-Electronics Laboratory, IRE Program, EBR Center KISR, P.O. Box 24885, Safat 13109 (Kuwait)

    2016-03-15

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the electrical resistance of aluminium samples during the initial stage of anodisation processes in aqueous solution. In fact, because the resistance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the resistance was called electrical resistance–emission spectroscopy. The anodisation process of the aluminium samples was carried out by electrochemical impedance spectroscopy (EIS) in different sulphuric acid concentrations (1.0%–2.5% H{sub 2}SO{sub 4}) at room temperature. In the meantime, the real time holographic interferometry was used to determine the difference between the electrical resistance of two subsequent values, dR, as a function of the elapsed time of the EIS experiment for the aluminium samples in 1.0%, 1.5%, 2.0%, and 2.5% H{sub 2}SO{sub 4} solutions. The electrical resistance–emission spectra of the present investigation represent a detailed picture of not only the rate change of the electrical resistance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. As a result, a new spectrometer was developed based on the combination of the holographic interferometry and electrochemical impedance spectroscopy for studying in situ the electrochemical behavior of metals in aqueous solutions.

  18. Radiation stability of colloidal metals in aqueous solutions: silver and other metals

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1998-01-01

    The effect of accelerated electrons and γ-rays of 60N i on the stability of aqueous solutions of colloidal silver was studied. The threshold of absorbed dose, at which the stability dramatically decreases and coagulation of the metal occurs, was found. This critical dose corresponds to the reduction of silver ions determining the electrical potential of the sols. Radiation neutralization was also found for cadmium was not observed in the case of thallium, copper and platinum. A mechanism of the effect of radiation, taking into account the electrostatic factor in the stability of metal sols, was considered. (author)

  19. Radiolysis of aqueous solutions of sodium salt of adipic acid bis-(2,4,6-triiodo-3-carboxyanilide). [Gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamov, V.T.; Pikaev, A.K.; Shubnyakova, L.P.; Sysoeva, K.S.

    1975-07-01

    The ..gamma.. radiolysis of aqueous solutions of the sodium salt of adipic acid bis-(2,4,6-triiodo-3-carboxyanilide) was studied. The radiation-chemical decomposition yields of this compound and the formation of iodide ions under various conditions were measured. (auth)

  20. Chemical equilibrium of hydrogen and aqueous solutions of 1 : 1 bicarbonate and formate salts with a common cation

    NARCIS (Netherlands)

    Engel, D.C.; Versteeg, G.F.; Swaaij, W.P.M. van

    1997-01-01

    The chemical equilibrium of hydrogen and aqueous solutions of 1:1 bicarbonate and formate salts with a common cation has been investigated in an intensively stirred batch reactor: MHCO3(aq) + H2(aq) ↔ MOOCH(aq) + H2O(l) This was accomplished for the sodium (M = Na), potassium (M = K) and ammonium (M

  1. An efficient way to prepare silver nanorods in high concentration by polyol method without adding other metal or salt

    International Nuclear Information System (INIS)

    Chen Yong; Guan Jianguo; Xie Hongquan

    2012-01-01

    Using ethylene glycol as solvent and reductant, polyvinyl pyrrolidone(PVP) as capping agent under the action of appropriately preformed silver crystal seeds and controlled addition rates of silver nitrate and PVP solution, silver nanorods with length of 2–15 μm and diameter of 200–880 nm can be obtained in high concentration of AgNO 3 as 0.50 M. In the absence of the preformed seeds, nanorods cannot be obtained as the main product, if the AgNO 3 concentration is over 0.10 M. It is necessary to use the appropriately preformed silver crystal seeds for the high concentration preparation of silver nanorods. Transmission Electron Microscopy images showed that Ag seeds preformed at appropriate silver nitrate concentrations exhibited the multiply twinned particles of decahedral shape(MTPs), which formed Ag nanorods in the presence of PVP. Through study of the effects of various factors on the nanostructure of silver, the favorable conditions are: appropriately preformed seeds concentration at 6.54–9.81 mM, addition rate of AgNO 3 solution at 0.30–0.43 mL min −1 and molar ratio of PVP/AgNO 3 at 1.1–1.4, in order to control the crystal growth rate of silver matching the reduction rate of AgNO 3 by ethylene glycol. The nanorods obtained were characterized by Scanning Electron Microscopy, EDX, XRD, Raman spectrometry, Infrared Spectrophotometry and Ultraviolet Spectrophotometry. On the base of the above results, the mechanism of rates matching for obtaining silver nanorods was briefly discussed. This method is a simple, facile and economical method using high concentration with high yield without using other metal or salt to massively synthesize silver nanorods through adding preformed silver seeds to control the reduction rate of silver nitrate and the crystal growth rate of silver nanorods. As compared to the conventional polyol method using lower silver nitrate concentration, this method can save ethylene glycol used and time of operation and the as

  2. Saturated salt solution method: a useful cadaver embalming for surgical skills training.

    Science.gov (United States)

    Hayashi, Shogo; Homma, Hiroshi; Naito, Munekazu; Oda, Jun; Nishiyama, Takahisa; Kawamoto, Atsuo; Kawata, Shinichi; Sato, Norio; Fukuhara, Tomomi; Taguchi, Hirokazu; Mashiko, Kazuki; Azuhata, Takeo; Ito, Masayuki; Kawai, Kentaro; Suzuki, Tomoya; Nishizawa, Yuji; Araki, Jun; Matsuno, Naoto; Shirai, Takayuki; Qu, Ning; Hatayama, Naoyuki; Hirai, Shuichi; Fukui, Hidekimi; Ohseto, Kiyoshige; Yukioka, Tetsuo; Itoh, Masahiro

    2014-12-01

    This article evaluates the suitability of cadavers embalmed by the saturated salt solution (SSS) method for surgical skills training (SST). SST courses using cadavers have been performed to advance a surgeon's techniques without any risk to patients. One important factor for improving SST is the suitability of specimens, which depends on the embalming method. In addition, the infectious risk and cost involved in using cadavers are problems that need to be solved. Six cadavers were embalmed by 3 methods: formalin solution, Thiel solution (TS), and SSS methods. Bacterial and fungal culture tests and measurement of ranges of motion were conducted for each cadaver. Fourteen surgeons evaluated the 3 embalming methods and 9 SST instructors (7 trauma surgeons and 2 orthopedists) operated the cadavers by 21 procedures. In addition, ultrasonography, central venous catheterization, and incision with cauterization followed by autosuture stapling were performed in some cadavers. The SSS method had a sufficient antibiotic effect and produced cadavers with flexible joints and a high tissue quality suitable for SST. The surgeons evaluated the cadavers embalmed by the SSS method to be highly equal to those embalmed by the TS method. Ultrasound images were clear in the cadavers embalmed by both the methods. Central venous catheterization could be performed in a cadaver embalmed by the SSS method and then be affirmed by x-ray. Lungs and intestines could be incised with cauterization and autosuture stapling in the cadavers embalmed by TS and SSS methods. Cadavers embalmed by the SSS method are sufficiently useful for SST. This method is simple, carries a low infectious risk, and is relatively of low cost, enabling a wider use of cadavers for SST.

  3. Temperature gradient compatibility tests of some refractory metals and alloys in bismuth and bismuth--lithium solutions

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Cavin, O.B.

    1976-11-01

    Quartz, T-111, and Mo thermal-convection loop tests were conducted at temperatures up to 700 0 C (100 0 C ΔT) to determine the compatibility of several refractory metals/alloys with bismuth and bismuth-lithium solutions for molten salt breeder reactor applications. Methods of evaluation included weight change measurements, metallographic examination, chemical and electron microprobe analysis, and mechanical properties tests. Molybdenum, T-111, and TA--10 percent W appear to be the most promising containment materials, while niobium and iron-based alloys are unacceptable

  4. A METHOD FOR POST-TREATMENT OF AN ARTICLE WITH A METALLIC SURFACE AS WELL AS A TREATMENT SOLUTION TO BE USED IN THE METHOD

    DEFF Research Database (Denmark)

    1993-01-01

    A method and a treatment solution for post-treatment of an article with a metallic surface, where the metallic surface is made of one or more metals of a standard oxidation potential within the range -2.5 to +0.5 V. A thin coating is formed on the metallic surface by a treatment with an aqueous...... conditions where the metal surface is maintained at a potential within the range of -600 and -1800 mV/nhe. A corrosion-protecting and/or decorative effect is obtained which can be compared with the effect obtained by conventional chromate treatment, and which avoids the environmental and toxicologic...... solution containing a molybdenum compound selected among molybdic acid and salts thereof in a concentration of 2.9 to 9.8 g/l calculated as molybdenum, as well as a compound capable of forming a heteropolymolybdate, such as phosphoric acid, together with a molybdate. The treatment is performed under...

  5. Metal Nanoparticles Preparation In Supercritical Carbon Dioxide Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Harry W. Rollins

    2004-04-01

    The novel optical, electronic, and/or magnetic properties of metal and semiconductor nanoparticles have resulted in extensive research on new methods for their preparation. An ideal preparation method would allow the particle size, size distribution, crystallinity, and particle shape to be easily controlled, and would be applicable to a wide variety of material systems. Numerous preparation methods have been reported, each with its inherent advantages and disadvantages; however, an ideal method has yet to emerge. The most widely applied methods for nanoparticle preparation include the sonochemical reduction of organometallic reagents,(1&2) the solvothermal method of Alivisatos,(3) reactions in microemulsions,(4-6) the polyol method (reduction by alcohols),(7-9) and the use of polymer and solgel materials as hosts.(10-13) In addition to these methods, there are a variety of methods that take advantage of the unique properties of a supercritical fluid.(14&15) Through simple variations of temperature and pressure, the properties of a supercritical fluid can be continuously tuned from gas-like to liquid-like without undergoing a phase change. Nanoparticle preparation methods that utilize supercritical fluids are briefly reviewed below using the following categories: Rapid Expansion of Supercritical Solutions (RESS), Reactive Supercritical Fluid Processing, and Supercritical Fluid Microemulsions. Because of its easily accessible critical temperature and pressure and environmentally benign nature, carbon dioxide is the most widely used supercritical solvent. Supercritical CO2 is unfortunately a poor solvent for many polar or ionic species, which has impeded its use in the preparation of metal and semiconductor nanoparticles. We have developed a reactive supercritical fluid processing method using supercritical carbon dioxide for the preparation of metal and metal sulfide particles and used it to prepare narrowly distributed nanoparticles of silver (Ag) and silver sulfide

  6. Method and device for electroextraction of heavy metals from technological solutions and wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Khalemsky, Aron Mikhailov; Payusov, Sergei Abramovic; Kelner, Leonid; Jo, Jae

    2005-05-03

    The basic principles of the method for heavy metals electroextraction from technological solutions and wastewater includes pretreating to remove Chromium-6 and high concentrations of heavy metals and periodically treating in a six-electrode bipolar cylindrical electroreactor made of non-conducting material to achieve lower accepted levels of impurities. Six cylindrical steel electrodes form two triode stacks and are fed with three-phase alternating current of commercial frequency (50-60 Hz), which can be pulsed. Each phase of the three-phase current is connected to three electrodes of one triode stack or in parallel to two triode stacks. The parallel connection of three-phase current to two triode stacks is performed so that the same phase of the three phase current is connected in parallel with each two opposite electrodes of six electrodes located along the periphery, or with two adjacent electrodes. A bipolar stationary aluminum electrode is situated in the inter-electrode space. In one of the embodiments, the bipolar electrode is made of a perforated heat-resistant plastic container filled with secondary aluminum and duralumin scrap. In another embodiment, the bipolar electrode of aluminum or duralumin scrap may be made without a perforated container and is placed in the inter-electrode space as a bulk scrap. In this case, to prevent shorts, each of six steel electrodes is placed in isolated perforated plastic shell with holes of 5 mm in diameter. Non-ferrous metals are extracted in a form of ferrite-chromites, and aluminates as well as hydroxyl salts deposited in the inter-electrode space without electrolysis deposits on electrodes. Deposits are separated from solution by known methods of filtration.

  7. Localized corrosion of high performance metal alloys in an acid/salt environment

    Science.gov (United States)

    Macdowell, L. G.; Ontiveros, C.

    1991-01-01

    Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.

  8. Diclofenac Salts, VIII. Effect of the Counterions on the Permeation through Porcine Membrane from Aqueous Saturated Solutions

    Directory of Open Access Journals (Sweden)

    Cristina Cavallari

    2012-09-01

    Full Text Available The following bases: monoethylamine (EtA, diethylamine (DEtA, triethylamine (TEtA, monoethanolamine (MEA, diethanolamine (DEA, triethanolamine (TEA, pyrrolidine (Py, piperidine (Pp, morpholine (M, piperazine (Pz and their N-2-hydroxyethyl (HE analogs were employed to prepare 14 diclofenac salts. The salts were re-crystallized from water in order to obtain forms that are stable in the presence of water. Vertical Franz-type cells with a diffusional surface area of 9.62 cm2 were used to study the permeation of these diclofenac salts from their saturated solutions through an internal pig ear membrane. The receptor compartments of the cells contained 100 mL of phosphate buffer (pH 7.4; a saturated solution (5 mL of each salt was placed in the donor compartment, thermostated at 37 °C. Aliquots were withdrawn at predetermined time intervals over 8 h and then immediately analyzed by HPLC. Fluxes were determined by plotting the permeated amount, normalized for the membrane surface area versus time. Permeation coefficients were obtained dividing the flux values J by the concentration of the releasing phase—that is, water solubility of each salt. Experimental results show that fluxes could be measured when diclofenac salts with aliphatic amines are released from a saturated aqueous solution. Different chemical species (acid, anion, ion pairs contribute to permeation of the anti-inflammatory agent even though ion-pairs could be hypothesized to operate to a greater extent. Permeation coefficients were found higher when the counterion contains a ring; while hydroxy groups alone do not appear to play an important role, the ring could sustain permeation, disrupting the organized domains of the membrane.

  9. Bridging the gap between ionic liquids and molten salts: group 1 metal salts of the bistriflamide anion in the gas phase.

    Science.gov (United States)

    Leal, João P; da Piedade, Manuel E Minas; Canongia Lopes, José N; Tomaszowska, Alina A; Esperança, José M S S; Rebelo, Luís Paulo N; Seddon, Kenneth R

    2009-03-19

    Fourier transform ion cyclotron resonance mass spectrometry experiments showed that liquid Group 1 metal salts of the bistriflamide anion undergoing reduced-pressure distillation exhibit a remarkable behavior that is in transition between that of the vapor-liquid equilibrium characteristics of aprotic ionic liquids and that of the Group 1 metal halides: the unperturbed vapors resemble those of aprotic ionic liquids, in the sense that they are essentially composed of discrete ion pairs. However, the formation of large aggregates through a succession of ion-molecule reactions is closer to what might be expected for Group 1 metal halides. Similar experiments were also carried out with bis{(trifluoromethyl)sulfonyl}amine to investigate the effect of H(+), which despite being the smallest Group 1 cation, is generally regarded as a nonmetal species. In this case, instead of the complex ion-molecule reaction pattern found for the vapors of Group 1 metal salts, an equilibrium similar to those observed for aprotic ionic liquids was observed.

  10. Formation of Hydrogen-Ion in Isomolar Solution of Hydrochloric and Hydrobromic Acids and Their Salts

    Directory of Open Access Journals (Sweden)

    M.A. Kovaleva

    2016-09-01

    Full Text Available Despite the presence of a large amount of factual material on thermodynamic parameters of complexation of agents in different solvents, including mixed ones, obtained knowledge is specific in nature. In order to identify more general patterns, studies are relevant that would allow to interpret the obtained data taking into account the interaction between chemical forms in solutions. This paper presents a general approach to studying weak ionic interactions in solutions that allows to simultaneously determine the constants of these interactions and the parameters characterizing the influence of changes in the ionic environment on these constants by the example of chlorides and bromides of alkali metals. The obtained constants for hydrosulfate-ion formation and the imperfection parameters can be a reference material for more accurate calculation of the concentration of hydrogen ions in sulfuric acid solutions. The developed approach and patterns identified in the work can be used to study the balanced states for formation of low and medium stable complexes.

  11. Speciation in Solutions of Lithium Salts in Dimethyl Sulfoxide, Propylene Carbonate, and Dimethyl Carbonate from Raman Data: A Minireview

    Directory of Open Access Journals (Sweden)

    M. I. Gorobets

    2016-01-01

    Full Text Available Our recent Raman studies of cation and anion solvation and ion pairing in solutions of lithium salts in dimethyl sulfoxide, propylene carbonate, and dimethyl carbonate are briefly overviewed. Special attention is paid to differences in our and existing data and concepts. As follows from our results, cation solvation numbers in solutions are low (~2 and disagree with previous measurements. This discrepancy is shown to arise from correct accounting for dimerization, hydrogen bonding, and conformation equilibria in the solvents disregarded in early studies. Another disputable question touches upon the absence of free ions in solutions of lithium salts in carbonate solvents and the statement that the charge transfer in carbonate solutions is caused by SSIPs. Direct proofs of the nature of charge carriers in the solvents studied have been obtained by means of analyses of vibrational dynamics. It has been found that collision times for free anions are short and evidence weak interactions between anions and solvent molecules. In SSIPs, collision times are an order of magnitude longer thus signifying strong interactions between anions and cations. In CIPs, collision times become shorter than in SSIPs reflecting the transformation of the structure of concentrated solutions to that of molten salts.

  12. G eobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions

    KAUST Repository

    Sun, Dan

    2014-07-16

    © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Summary: An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G.sulfurreducensPCA and Geobacter metallireducensGS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290±29Am-3 in a high-concentration phosphate buffer solution (PBS-H, 200mM). This current density was significantly higher than that produced by the mixed culture (189±44Am-3) or the type strains (<70Am-3). In a highly saline water (SW; 50mM PBS and 650mM NaCl), current by SD-1 (158±4Am-3) was reduced by 28% compared with 50mM PBS (220±4Am-3), but it was still higher than that of the mixed culture (147±19Am-3), and strains PCA and GS-15 did not produce any current. Electrochemical tests showed that the improved performance of SD-1 was due to its lower charge transfer resistance and more negative potentials produced at higher current densities. These results show that the electrochemical activity of SD-1 was significantly different than other Geobacter strains and mixed cultures in terms of its salt tolerance.

  13. Protein-salt binding data from potentiometric titrations of lysozyme in aqueous solutions containing KCl

    Energy Technology Data Exchange (ETDEWEB)

    Engmann, J.; Blanch, H.W.; Prausnitz, J.M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

    1997-03-01

    An existing method for potentiometric titrations of proteins was improved, tested and applied to titrations of the enzyme hen-egg-white lysozyme in aqueous solutions containing KCl at ionic strengths from 0.1 M to 2.0 M at 25 C. Information about the protein`s net charge dependence on pH and ionic strength were obtained and salt binding numbers for the system were calculated using a linkage concept. For the pH range 2.5--11.5, the net charge slightly but distinctly increases with increasing ionic strength between 0.1 M and 2.0 M. The differences are most distinct in the pH region below 5. Above pH 11.35, the net charge decreases with increasing ionic strength. Preliminary calculation of binding numbers from titration curves at 0.1 M and 1.0 M showed selective association of chloride anions and expulsion of potassium ions at low pH. Ion-binding numbers from this work will be used to evaluate thermodynamic properties and to correlate crystallization or precipitation phase-equilibrium data in terms of a model based on the integral-equation theory of fluids which is currently under development.

  14. The history of metals pollution in Narragansett Bay as recorded by salt-marsh sediments

    International Nuclear Information System (INIS)

    Bricker, S.B.

    1990-01-01

    Sediment cores from 5 salt marshes from the head to the mouth of Narragansett Bay and an additional core from a lagoon on Block Island Sound were analyzed for 210 Pb and for Fe, Mn, Cu, Pb, Cr, Zn, Ag, and Ni in order to examine the long-term variation of metal inputs to Narragansett Bay. The 210 Pb results were used to determine accretion rates for each core. Distributions of Fe and Mn were used as indicators of chemical conditions of sediment cores and Cu, Pb, Cr, Zn, Ag, and Ni distributions with time were compared with known or estimated source inputs to examine the long-term variation of pollutant metal inputs to Narragansett Bay. At one location, duplicate cores were sampled to look at variability within a marsh. At another location, a high marsh, receiving predominantly atmospheric inputs and a low marsh, receiving waterborne and atmospheric inputs, were sampled so that atmospheric and tidal contributions could be determined. A comparison was made of the distributions of metals in bay cores and in the lagoon core. All the Rhode Island marshes accrete at rates equal to or greater than the local rise in sea level. Based on the 210 Pb chronologies, pollutant metals began to increase in the mid to late 1800s, corresponding to coal burning emissions to the atmosphere. Steeper increases in the 1900s reflect industrial and sewage discharges. Maximum concentrations were reached in the 1950s and have declined almost continuously since then. Observed reductions were attributable to implementation of and improvements to sewage treatment, and controls on atmospheric emissions

  15. SANS from Salt-Free Aqueous Solutions of Hydrophilic and Highly Charged Star-Branched Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    François Boué

    2016-06-01

    Full Text Available Scattering functions of sodium sulfonated polystyrene (NaPSS star-branched polyelectrolytes with high sulfonation degrees were measured from their salt-free aqueous solutions, using the Small Angle Neutron Scattering (SANS technique. Whatever the concentration c, they display two maxima. The first, of abscissa q1*, is related to a position order between star cores and scales as q1* ∝ c1/3. The second, of abscissa q2*, is also observed in the scattering function of a semi-dilute solution of NaPSS linear polyelectrolytes. In the dilute regime (c < c*, non-overlapping stars, peak abscissa does not depend on concentration c and is just an intramolecular characteristic associated with the electrostatic repulsion between arms of the same star. In the semi-dilute regime, due to the star interpenetration, the scattering function – through the peak position, reflects repulsion between arms of the same star or of different stars. The c threshold between these distinct c-dependencies of q2* in the dilute and semi-dilute regimes is estimated as c*. Just as simple is the measurement of the geometrical radius R of the star obtained from the q1* value at c* through the relation 2R = 2π/q1*. By considering NaPSS stars of the same functionality with different degrees of polymerization per arm Na, we find R scaling linearly with Na, suggesting an elongated average conformation of the arms. This is in agreement with theoretical predictions and simulations. Meanwhile the value of q2* measured in the dilute regime does not allow any inhomogeneous counterion distribution inside the stars to be revealed.

  16. A study on the reduction of uranium oxide to uranium metal in LiCl molten salt

    International Nuclear Information System (INIS)

    Seo, J. S.; Hur, J. M.; Lee, W. K.; Hong, S. S.; Kang, D. S.; Park, S. W.

    2002-01-01

    Research for the analysis on a metallization process of uranium oxide in LiCl-Li molten salt was carried out. Effect of a concentration of Li 2 O on the metallization process was also studied. The new concept, electrochemical reduction of uranium oxide in LiCl-Li 2 O molten salt was proposed. The concept is based on the integrated process of metallization of UO 2 with simultaneous electrochemical reduction of Li 2 O which is recycled in a closed system. In a LiCl-Li molten salt system, U 3 O 8 whose conversion ratio to U turns out to be 97.1%, showed a better metallization characteristic than UO 2 . It is verified that electrochemically reduced Li is well deposited on the UO 2 powder cathode through a porous magnesia filter in LiCl-Li 2 O molten salt. In that process Li 2 O was from by the reduction process of UO 2 to U. This electrochemical reduction process showed good results to covert UO 2 to U

  17. Effects of Monovalent and Divalent Salt Solutions on the Transport of Toxoplasma gondii in Saturated Porous Media

    Science.gov (United States)

    Darnault, C. J. G.; Pullano, C. P.; Mutty, T.; L'Ollivier, C.; Dubey, J. P.; Dumetre, A.

    2017-12-01

    The pathogenic microorganism Toxoplasma gondii is a current public health threat. Knowledge of the fate and transport of T. gondii in the environment, especially the subsurface, is critical to evaluate the risk of soil and groundwater contaminations. The physico-chemcial properties of groundwater systems, i.e. solution chemistry and aquifer materials, play a key role in the interaction of biocolloids with surfaces and therefore their mobility. This research examines how different salt solutions alter the mobility of T. gondii through saturated porous media. Salt solutions containing varying ionic strengths and concentrations of sodium chloride, calcium chloride, and magnesium chloride were used to test the transport of the T. gondii oocysts. These tests were performed using quartz silica sand columns fed by a peristaltic pump in order to generate flow and transport of the biocolloids. The salt solution was pumped though the column followed by a pulse of the T. gondii oocysts, then a pulse of salt solution without oocysts, and then lastly a pulse of distilled water. Sampling of the solution exiting the columns was tested for T. gondii oocysts using qPCR in order to quantify the oocysts present. The breakthough curve results were then compared to a conservative bromide tracer test in order to determine the factors associated with the movement of these biocolloids through the sand columns. A model of the flow of the toxoplasma colloids through the sand matrix was made in order to characterize the parameters affecting the transport and retention of T. gondii occysts though saturated porous media.

  18. The effectiveness of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) on the impurities removal of saturated salt solution

    Science.gov (United States)

    Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.

    2018-01-01

    Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.

  19. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions

    International Nuclear Information System (INIS)

    Duie, P.; Dirian, G.

    1962-01-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between 40 Ca and 46 Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH) 2 ; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H 2 bubbles. (authors) [fr

  20. A Safe Solution to Dopant Gas Desorption from Metal Surfaces

    Science.gov (United States)

    Nakanoya, Tsutomu; Egami, Maki

    2006-11-01

    TOXICAPTURE™ is used to further minimize trace toxic dopant gas inside cylinder valve outlets, which, over time, may desorb from metal surfaces. When outlet caps or connections to ion source gas cylinders are disconnected in order to perform installations or bottle changes, there always is some risk that toxic fumes resulting from desorption of the metal surface in contact with dopant gas are released in air and inhaled by the operator. TOXICAPTURE™ is a simple and easy solution to reduce this risk that may damage human health or may pollute clean room environment. TOXICAPTURE™ will react with the poison gas vapor to form nontoxic and solid material through irreversible chemical reactions. TOXICAPTURE™ prevents contamination and corrosion on gas contact surfaces of gas pipings, pressure regulators, pneumatic valves, mass flow controllers, and other parts in a gas box. TOXICAPTURE™ is highly effective in shortening the time to achieve high vacuum and in extending the lifetime of devices in the gas box. In this paper, we introduce the structure, functions, reactivity, applications, and effectivity of TOXICAPTURE™.

  1. Novel Biological Hydrogel: Swelling Behaviors Study in Salt Solutions with Different Ionic Valence Number

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2018-01-01

    Full Text Available In this paper, poly γ-glutamic acid/ε-polylysine (γ-PGA/ε-PL hydrogels were successful prepared. The γ-PGA/ε-PL hydrogels could be used to remove Na+, Ca2+, and Cr3+ from aqueous solution and were characterized by scanning electron microscopy. The performance of hydrogels were estimated under different ionic concentration, temperature, and pH. The results showed that the ionic concentration and the pH significantly influenced the swelling capacity of γ-PGA/ε-PL hydrogels. The swelling capacities of γ-PGA/ε-PL hydrogels were decreased with the increase of the ionic concentration. However, the swelling capacity of the γ-PGA/ε-PL hydrogel was increased with the increase of the pH. The swelling kinetics indicated that γ-PGA/ε-PL hydrogels presented a more limited swelling degree in metal ion solutions with higher ionic valence numbers than in ion solutions with lower ionic valence numbers. However, the swelling kinetics of γ-PGA/ε-PL hydrogels showed that they proposed a satisfactory description in NaCl and CaCl2 solutions. The adsorption process was fitted with a pseudo-second-order rate equation model. Moreover, the desorption kinetics of γ-PGA/ε-PL hydrogels showed that they could release most of the adsorption ions. Considering the biocompatibility, biodegradability, and ionic-sensitive properties, we propose that these γ-PGA/ε-PL hydrogels have high potential to be used in environmental protection, medical treatment, and other related fields.

  2. Heavy metal content in edible salts in Isfahan and estimation of their daily intake via salt consumption

    Directory of Open Access Journals (Sweden)

    Hajar Pourgheysari

    2012-01-01

    Conclusions: There was a significant difference between the heavy metal concentrations and their guideline values. Estimation of the health risk due to heavy metals was not possible as PTWI showed total intake of a metal by total food consumption during a week. Therefore, it was important to assess the public health risks arising from the presence of these toxic contaminants in the foods consumed by the population of Iran.

  3. Saturated salt solution: a further step to a formaldehyde-free embalming method for veterinary gross anatomy.

    Science.gov (United States)

    Lombardero, M; Yllera, M M; Costa-E-Silva, A; Oliveira, M J; Ferreira, P G

    2017-08-01

    In the field of veterinary anatomy, most of the specimens used in practical sessions are perfused with fixatives. Thus, they can be used for a longer time , reducing the number of animals for educational purposes. Formalin is the most commonly used fixative, consisting of a 37% formaldehyde solution. However, formaldehyde is a powerful irritant of the eyes and airways and is considered carcinogenic, causing nasopharyngeal cancer in exposed workers and professionals. In the present study, we explored an alternative method to avoid the use of formaldehyde in specimens used for gross anatomy practical sessions. We propose an inexpensive, non-toxic fixative that is available worldwide, such as sea salt. This method consists of a continuous perfusion of saturated salt solution for a period of 6-8 h, enabling drainage of the solution to avoid a weight increase of the specimen, and allowing salt to be retained in the tissue. The method is based on recirculation of the saturated salt solution instead of maceration. Perfused specimens retained their natural consistency and joint mobility, with no blood, resembling a piece of meat from the slaughterhouse. They could be used immediately without a maceration period, or stored in the fridge until use and then kept in a bath of saturated salt solution for future conservation. In the case of the former, no refrigeration was needed. The specimens did not have an irritating or offensive smell, and could be used for long sessions (several hours per day) and stored for long periods. However, the blood vessels used for perfusion determine the results: a less invasive approach (through common carotid arteries) gave good preservation of the musculoskeletal system, whereas more invasive access to cannulate the abdominal aorta and vena cava caudalis was required to achieve better preservation of the viscera. In conclusion, we propose that perfusion followed by immersion in a saturated salt solution is a good alternative method for the

  4. Molten salt extraction (MSE) of americium from plutonium metal in CaCl2-KCl-PuCl3 and CaCl2-PuCl3 salt systems

    International Nuclear Information System (INIS)

    Dodson, K.E.

    1992-01-01

    Molten salt extraction (MSE) of americium-241 from reactor-grade plutonium has been developed using plutonium trichloride salt in stationary furnaces. Batch runs with oxidized and oxide-free metal have been conducted at temperature ranges between 750 and 945C, and plutonium trichloride concentrations from one to one hundred mole percent. Salt-to-metal ratios of 0.10, 0.15, and 0 30 were examined. The solvent salt was either eutectic 74 mole percent CaCl 2 endash 26 mole percent KCl or pure CaCl 2 . Evidence of trivalent product americium, and effects of temperature, salt-to-metal ratio, and oxide contamination on the americium extraction efficiency are given. 24 refs, 20 figs, 13 tabs

  5. Nanofiltration as energy-efficient solution for sulfate waste in vacuum salt production

    NARCIS (Netherlands)

    Bargeman, Gerrald; Steensma, M.; ten Kate, A.; Westerink, J.B.; Demmer, R.L.M.; Bakkenes, H.; Manuhutu, C.F.H.

    2009-01-01

    In vacuum salt production sulfate is an important impurity, but it is also used to remove other cationic impurities from the raw brine. Removal of excess sulfate is currently done by purging salt crystallizer mother liquor from the brine plant, or crystallizing sodium sulfate through evaporative or

  6. Effect of temperature on solvation behaviour of diclofenac sodium salt in aqueous glycine and L-proline solutions

    International Nuclear Information System (INIS)

    Ryshetti, Suresh; Gardas, Ramesh L; Tangeda, Savitha Jyostna

    2015-01-01

    Highlights: • Solvation behaviour of diclofenac drug studied in aqueous solutions. • Density and speed of sound of drug in aq. glycine and L-proline are measured. • Hydrophobic nature of diclofenac sodium salt is studied. • Effect of temperature on solvation of diclofenac sodium salt is analysed. - Abstract: Apparent molar volume (V 2,ϕ ) and apparent molar isentropic compressibility (K s,2,ϕ ) of diclofenac sodium salt (DSS) drug within the concentration range of (0.001 to 0.008) mol · kg −1 in (0.01, 0.03 and 0.05) mol · kg −1 aqueous glycine and L-proline solutions are computed from the experimental density (ρ) and speed of sound (u) values at T = (293.15 to 313.15) K and atmospheric pressure. Derived parameters such as partial molar properties, transfer partial molar properties, hydration numbers and Hepler’s constant are computed from the data of V 2,ϕ and K s,2,ϕ . These parameters have been used to understand the effect of temperature on interactions between DSS drug and aqueous glycine/L-proline solution. Furthermore, the structure making and breaking ability of DSS drug in probed solutions are analysed at experimental conditions

  7. Proton dynamics in lithium-ammonia solutions and expanded metals.

    Science.gov (United States)

    Thompson, Helen; Skipper, Neal T; Wasse, Jonathan C; Spencer Howells, W; Hamilton, Myles; Fernandez-Alonso, Felix

    2006-01-14

    Quasielastic neutron scattering has been used to study proton dynamics in the system lithium-ammonia at concentrations of 0, 4, 12, and 20 mole percent metal (MPM) in both the liquid and solid (expanded metal) phases. At 230 K, in the homogenous liquid state, we find that the proton self-diffusion coefficient first increases with metal concentration, from 5.6x10(-5) cm2 s(-1) in pure ammonia to 7.8x10(-5) cm2 s(-1) at 12 MPM. At higher concentrations we note a small decrease to a value of 7.0x10(-5) cm2 s(-1) at 20 MPM (saturation). These results are consistent with NMR data, and can be explained in terms of the competing influences of the electron and ion solvation. At saturation, the solution freezes to form a series of expanded metal compounds of composition Li(NH3)4. Above the melting point, at 100 K, we are able to fit our data to a jump-diffusion model, with a mean jump length (l) of 2.1 A and residence time (tau) of 3.1 ps. This model gives a diffusion coefficient of 2.3x10(-5) cm2 s(-1). In solid phase I (cubic, stable from 88.8 to 82.2 K) we find that the protons are still undergoing this jump diffusion, with l=2.0 A and tau=3.9 ps giving a diffusion coefficient of 1.8x10(-5) cm2 s(-1). Such motion gives way to purely localized rotation in solid phases IIa (from 82.2 to 69 K) and IIb (stable from 69 to 25 K). We find rotational correlation times (tau(rot)) of the order of 2.0 and 7.3 ps in phases IIa and IIb, respectively. These values can be compared with a rotational mode in solid ammonia with tau(rot) approximately 2.4 ps at 150 K.

  8. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    Science.gov (United States)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  9. Time dependent enhanced resistance against antibiotics & metal salts by planktonic & biofilm form of Acinetobacter haemolyticus MMC 8 clinical isolate.

    Science.gov (United States)

    Gaidhani, Sharvari Vijaykumar; Raskar, Aartee Vishnu; Poddar, Sharmishtha; Gosavi, Shriya; Sahu, Praveen Kishore; Pardesi, Karishma Rajendra; Bhide, Shobhana V; Chopade, Balu Ananada

    2014-11-01

    Available literature shows paucity of reports describing antibiotic and metal resistance profile of biofilm forming clinical isolates of Acinetobacter haemolyticus. The present study was undertaken to evaluate the antibiotic and metal resistance profile of Indian clinical isolate of A. haemolyticus MMC 8 isolated from human pus sample in planktonic and biofilm form. Antibiotic susceptibility and minimum inhibitory concentration were determined employing broth and agar dilution techniques. Biofilm formation was evaluated quantitatively by microtiter plate method and variation in complex architecture was determined by scanning electron microscopy. Minimum biofilm inhibiting concentration was checked by Calgary biofilm device. Planktonic A. haemolyticus MMC 8 was sensitive to 14 antibiotics, AgNO 3 and HgC1 2 resistant to streptomycin and intermediately resistant to netilmycin and kanamycin. MMC 8 exhibited temporal variation in amount and structure of biofilm. There was 32-4000 and 4-256 fold increase in antibiotic and metal salt concentration, respectively to inhibit biofilm over a period of 72 h as against susceptible planktonic counterparts. Total viable count in the range of 10(5)-10(6) cfu / ml was observed on plating minimum biofilm inhibiting concentration on Muller-Hinton Agar plate without antimicrobial agents. Biofilm forming cells were several folds more resistant to antibiotics and metal salts in comparison to planktonic cells. Presence of unaffected residual cell population indicated presence of persister cells. The results indicate that biofilm formation causes enhanced resistance against antibiotics and metal salts in otherwise susceptible planktonic A. haemolyticus MMC 8.

  10. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?

    Science.gov (United States)

    Lutts, Stanley; Lefèvre, Isabelle

    2015-01-01

    Background Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. Scope Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. Conclusions Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments. PMID:25672360

  11. Acid and salt uptake during the marinatig process of Engraulis anchoita fillets influence of the solution: fish ratio and agitation

    Directory of Open Access Journals (Sweden)

    María Eugenia Capaccioni

    2011-12-01

    Full Text Available The aims of this research were to determine the effect of different conditions of the marination stage on the salt and acid uptake, immersion time, and sensorial characteristics during the marinating process of anchovy (Engraulis anchoita. Different solution:fish ratios and the agitation effect during this stage were analyzed. The ratios used were: 0.77:1, 3:1 and 10:1 (with and without agitation. An increase of marinating solution:fish ratio causes a higher speed of acid and salt penetration The product obtained with the 10:1 ratio had a dry and fibrous texture and a slightly salty taste. Salt concentration was statistically significantly lower (p < 0.01 in the samples with agitation. Agitation did not influence the acid uptake, and the salt penetration speed decreased, but rancidity was detected in this product. The ratio 3:1 decreases the marinating time without damaging sensory attributes and can be used in the fish marinating process.

  12. OSMOTIC COEFFICIENTS, SOLUBILITIES, AND DELIQUESCENCE RELATIONS IN MIXED AQUEOUS SALT SOLUTIONS AT ELEVATED TEMPERATURE

    International Nuclear Information System (INIS)

    M.S. Gruszkiewicz; D.A. Palmer

    2006-01-01

    While thermodynamic properties of pure aqueous electrolytes are relatively well known at ambient temperature, there are far fewer data for binary systems extending to elevated temperatures and high concentrations. There is no general theoretically sound basis for prediction of the temperature dependence of ionic activities, and consequently temperature extrapolations based on ambient temperature data and empirical equations are uncertain and require empirical verification. Thermodynamic properties of mixed brines in a wide range of concentrations would enhance the understanding and precise modeling of the effects of deliquescence of initially dry solids in humid air in geological environments and in modeling the composition of waters during heating, cooling, evaporation or condensation processes. These conditions are of interest in the analysis of waters on metal surfaces at the proposed radioactive waste repository at Yucca Mountain, Nevada. The results obtained in this project will be useful for modeling the long-term evolution of the chemical environment, and this in turn is useful for the analysis of the corrosion of waste packages. In particular, there are few reliable experimental data available on the relationship between relative humidity and composition that reveals the eutonic points of the mixtures and the mixture deliquescence RH. The deliquescence RH for multicomponent mixtures is lower than that of pure component or binary solutions, but is not easy to predict quantitatively since the solutions are highly nonideal. In this work we used the ORNL low-temperature and high-temperature isopiestic facilities, capable of precise measurements of vapor pressure between ambient temperature and 250 C for determination of not only osmotic coefficients, but also solubilities and deliquescence points of aqueous mixed solutions in a range of temperatures. In addition to standard solutions of CaCl 2 , LiCl, and NaCl used as references, precise direct

  13. Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance

    Science.gov (United States)

    Ye, Dong; Yu, Yao; Tang, Jie; Liu, Lin; Wu, Yue

    2016-05-01

    Carbon cloth (CC) is an inexpensive and highly conductive textile with excellent mechanical flexibility and strength; it holds great promise as an electrode material for flexible supercapacitors. However, pristine CC has such a low surface area and poor electrochemical activity that the energy storage capability is usually very poor. Herein, we report a green method, two-step electrochemical activation in an aqueous solution of inorganic salts, to significantly enhance the capacitance of CC for supercapacitor application. Micro-cracks, exfoliated carbon fiber shells, and oxygen-containing functional groups (OFGs) were introduced onto the surface of the carbon filament. This resulted in an enhancement of over two orders of magnitude in capacitance compared to that of the bare CC electrode, reaching up to a maximum areal capacitance of 505.5 mF cm-2 at the current density of 6 mA cm-2 in aqueous H2SO4 electrolyte. Electrochemical reduction of CC electrodes led to the removal of most electrochemically unstable surface OFGs, resulting in superior charging/discharging rate capability and excellent cycling stability. Although the activated CC electrode contained a high-level of surface oxygen functional groups (~15 at%), it still exhibited a remarkable charging-discharging rate capability, retaining ~88% of the capacitance when the charging rate increased from 6 to 48 mA cm-2. Moreover, the activated CC electrode exhibited excellent cycling stability with ~97% capacitance remaining after 10 000 cycles at a current density of 24 mA cm-2. A symmetrical supercapacitor based on the activated CC exhibited an ideal capacitive behavior and fast charge-discharge properties. Such a simple, environment-friendly, and cost-effective strategy to activate CC shows great potential in the fabrication of high-performance flexible supercapacitors.Carbon cloth (CC) is an inexpensive and highly conductive textile with excellent mechanical flexibility and strength; it holds great promise as

  14. 1H NMR spectroscopic analysis detects metabolic disturbances in rat urine on acute exposure to heavy metal tungsten alloy based metals salt.

    Science.gov (United States)

    Tyagi, Ritu; Rana, Poonam; Gupta, Mamta; Bhatnagar, Deepak; Srivastava, Shatakshi; Roy, Raja; Khushu, Subash

    2014-03-25

    Heavy metal tungsten alloys (HMTAs) have been found to be safer alternatives for making military munitions. Recently, some studies demonstrating the toxic potential of HMTAs have raised concern over the safety issues, and further propose that HMTAs exposure may lead to physiological disturbances as well. To look for the systemic effect of acute toxicity of HMTA based metals salt, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopic profiling of rat urine was carried out. Male Sprague Dawley rats were administered (intraperitoneal) low and high dose of mixture of HMTA based metals salt and NMR spectroscopy was carried out in urine samples collected at 8, 24, 72 and 120 h post dosing (p.d.). Serum biochemical parameters and liver histopathology were also conducted. The (1)H NMR spectra were analysed using multivariate analysis techniques to show the time- and dose-dependent biochemical variations in post HMTA based metals salt exposure. Urine metabolomic analysis showed changes associated with energy metabolism, amino acids, N-methyl nicotinamide, membrane and gut flora metabolites. Multivariate analysis showed maximum variation with best classification of control and treated groups at 24h p.d. At the end of the study, for the low dose group most of the changes at metabolite level reverted to control except for the energy metabolites; whereas, in the high dose group some of the changes still persisted. The observations were well correlated with histopathological and serum biochemical parameters. Further, metabolic pathway analysis clarified that amongst all the metabolic pathways analysed, tricarboxylic acid cycle was most affected at all the time points indicating a switchover in energy metabolism from aerobic to anaerobic. These results suggest that exposure of rats to acute doses of HMTA based metals salt disrupts physiological metabolism with moderate injury to the liver, which might indirectly result from heavy metals induced oxidative stress. Copyright

  15. Glyoxal and methylglyoxal Setschenow salting constants in sulfate, nitrate, and chloride solutions

    DEFF Research Database (Denmark)

    Waxman, Eleanor M.; Elm, Jonas; Kurtén, Theo

    2015-01-01

    Knowledge about Setschenow salting constants, KS, the exponential dependence of Henry's Law coefficients on salt concentration, is of particular importance to predict secondary organic aerosol (SOA) formation from soluble species in atmospheric waters with high salt concentrations, such as aerosols....... We have measured KS of glyoxal and methylglyoxal for the atmospherically relevant salts (NH4)2SO4, NH4NO3, NaNO3, and NaCl and find that glyoxal consistently "salts-in" (KS of -0.16, -0.06, -0.065, -0.1 molality(-1), respectively) while methylglyoxal "salts-out" (KS of +0.16, +0.075, +0.02, +0.......06 molality(-1)). We show that KS values for different salts are additive and present an equation for use in atmospheric models. Additionally, we have performed a series of quantum chemical calculations to determine the interactions between glyoxal/methylglyoxal monohydrate with Cl(-), NO3(-), SO4(2-), Na...

  16. highly selective amino acid salt solutions as absorption liquid for CO(2) capture in gas-liquid membrane contactors.

    Science.gov (United States)

    Simons, Katja; Nijmeijer, Kitty; Mengers, Harro; Brilman, Wim; Wessling, Matthias

    2010-08-23

    The strong anthropogenic increase in the emission of CO(2) and the related environmental impact force the developments towards sustainability and carbon capture and storage (CCS). In the present work, we combine the high product yields and selectivities of CO(2) absorption processes with the advantages of membrane technology in a membrane contactor for the separation of CO(2) from CH(4) using amino acid salt solutions as competitive absorption liquid to alkanol amine solutions. Amino acids, such as sarcosine, have the same functionality as alkanol amines (e.g., monoethanolamine=MEA), but in contrast, they exhibit a better oxidative stability and resistance to degradation. In addition, they can be made nonvolatile by adding a salt functionality, which significantly reduces the liquid loss due to evaporation at elevated temperatures in the desorber. Membrane contactor experiments using CO(2)/CH(4) feed mixtures to evaluate the overall process performance, including a full absorption/desorption cycle show that even without a temperature difference between absorber and desorber, a CO(2)/CH(4) selectivity of over 70 can be easily achieved with the sarcosine salt solution as absorption liquid. This selectivity reaches values of 120 at a temperature difference between absorber and desorber of 35 degrees C, compared to a value of only 60 for MEA under the same conditions. Although CO(2) permeance values are somewhat lower than the values obtained for MEA, the results clearly show the potential of amino acid salt solutions as competitive absorption liquids for the energy efficient removal of CO(2). In addition, due to the low absorption of CH(4) in sarcosine compared to MEA, the loss of CH(4) is reduced and significantly higher CH(4) product yields can be obtained.

  17. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    Science.gov (United States)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  18. Solution Behavior and Activity of a Halophilic Esterase\\ud under High Salt Concentration

    OpenAIRE

    Rao, L.; Zhao, X.; Pan, F.; Li, Y.; Xue, Y.; Ma, Y.; Lu, J.R.

    2009-01-01

    Background: Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings: A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a rang...

  19. Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    OpenAIRE

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.

    2009-01-01

    BACKGROUND: Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. METHODOLOGY/PRINCIPAL FINDINGS: A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a rang...

  20. Glyoxal and Methylglyoxal Setschenow Salting Constants in Sulfate, Nitrate, and Chloride Solutions: Measurements and Gibbs Energies.

    Science.gov (United States)

    Waxman, Eleanor M; Elm, Jonas; Kurtén, Theo; Mikkelsen, Kurt V; Ziemann, Paul J; Volkamer, Rainer

    2015-10-06

    Knowledge about Setschenow salting constants, KS, the exponential dependence of Henry's Law coefficients on salt concentration, is of particular importance to predict secondary organic aerosol (SOA) formation from soluble species in atmospheric waters with high salt concentrations, such as aerosols. We have measured KS of glyoxal and methylglyoxal for the atmospherically relevant salts (NH4)2SO4, NH4NO3, NaNO3, and NaCl and find that glyoxal consistently "salts-in" (KS of -0.16, -0.06, -0.065, -0.1 molality(-1), respectively) while methylglyoxal "salts-out" (KS of +0.16, +0.075, +0.02, +0.06 molality(-1)). We show that KS values for different salts are additive and present an equation for use in atmospheric models. Additionally, we have performed a series of quantum chemical calculations to determine the interactions between glyoxal/methylglyoxal monohydrate with Cl(-), NO3(-), SO4(2-), Na(+), and NH4(+) and find Gibbs free energies of water displacement of -10.9, -22.0, -22.9, 2.09, and 1.2 kJ/mol for glyoxal monohydrate and -3.1, -10.3, -7.91, 6.11, and 1.6 kJ/mol for methylglyoxal monohydrate with uncertainties of 8 kJ/mol. The quantum chemical calculations support that SO4(2-), NO3(-), and Cl(-) modify partitioning, while cations do not. Other factors such as ion charge or partitioning volume effects likely need to be considered to fully explain salting effects.

  1. Cobalt extraction in ammoniacal solution: Electrochemical effect of metallic iron

    Science.gov (United States)

    Osseo-Asare, K.; Lee, J. W.; Kim, H. S.; Pickering, H. W.

    1983-12-01

    The dissolution behavior of iron and cobalt in ammoniacal ammonium carbonate solution has been investigated with the aid of Eh-pH diagrams for the Fe-NH3-H2O-CO3 and Co-NH3-H2O-CO3 systems, and electrochemical techniques such as open circuit potential measurements and potentiostatic and potentiodynamic polarization experiments. The polarization measurements indicate that both Fe and Co electrodes show active and passive behavior, and that Co dissolves at a more oxidizing potential than does Fe (e.g., E = -0.34 V (SHE) for Co and E = -0.52 V for Fe at a dissolution rate of 1 mA cm-2). The active and passive current densities for Co are both greater than for Fe. In sintered Fe-Co mixtures, the presence of Fe shifts the potential of the maximum current to less noble values and also lowers the magnitude of this current. In addition there is practically no cobalt dissolution when the potential exceeds 0.6 V (SHE). It is suggested that the well-known poor recovery of cobalt from reductive-roasted ferruginous oxide ores may be partly related to the dissolution behavior of a metallic alloy phase containing both iron and cobalt.

  2. Remote laser-induced breakdown spectroscopy for the detection and removal of salt on metal and polymeric surfaces.

    Science.gov (United States)

    Bengtsson, M; Grönlund, R; Lundqvist, M; Larsson, A; Kröll, S; Svanberg, S

    2006-10-01

    The detection of contamination such as salt in outdoor high-voltage insulator systems and its subsequent removal are vital for a reliable transmission of electric power. Remote detection of salt on a copper metal surface was carried out by using a mobile laser-induced breakdown spectroscopy (LIBS) Lidar system with a laser wavelength of 355 nm. Detection of salt on a polymeric high-voltage insulator was obtained when an additional lens was inserted into the beam path, and the number of photons that was detected could be calculated by using a calibrated white light source. Ablative cleaning could readily be carried out with LIBS and was verified by observing the disappearance of the sodium D-line emission.

  3. Galvanic reduction of uranium(III) chloride from LiCl-KCl eutectic salt using gadolinium metal

    Science.gov (United States)

    Bagri, Prashant; Zhang, Chao; Simpson, Michael F.

    2017-09-01

    The drawdown of actinides is an important unit operation to enable the recycling of electrorefiner salt and minimization of waste. A new method for the drawdown of actinide chlorides from LiCl-KCl molten salt has been demonstrated here. Using the galvanic interaction between the Gd/Gd(III) and U/U(III) redox reactions, it is shown that UCl3 concentration in eutectic LiCl-KCl can be reduced from 8.06 wt.% (1.39 mol %) to 0.72 wt.% (0.12 mol %) in about an hour via plating U metal onto a steel basket. This is a simple process for returning actinides to the electrorefiner and minimizing their loss to the salt waste stream.

  4. Solid oxide membrane-assisted controllable electrolytic fabrication of metal carbides in molten salt.

    Science.gov (United States)

    Zou, Xingli; Zheng, Kai; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu

    2016-08-15

    Silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), and tantalum carbide (TaC) have been electrochemically produced directly from their corresponding stoichiometric metal oxides/carbon (MOx/C) precursors by electrodeoxidation in molten calcium chloride (CaCl2). An assembled yttria stabilized zirconia solid oxide membrane (SOM)-based anode was employed to control the electrodeoxidation process. The SOM-assisted controllable electrochemical process was carried out in molten CaCl2 at 1000 °C with a potential of 3.5 to 4.0 V. The reaction mechanism of the electrochemical production process and the characteristics of these produced metal carbides (MCs) were systematically investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses clearly identify that SiC, TiC, ZrC, and TaC carbides can be facilely fabricated. SiC carbide can be controlled to form a homogeneous nanowire structure, while the morphologies of TiC, ZrC, and TaC carbides exhibit porous nodular structures with micro/nanoscale particles. The complex chemical/electrochemical reaction processes including the compounding, electrodeoxidation, dissolution-electrodeposition, and in situ carbonization processes in molten CaCl2 are also discussed. The present results preliminarily demonstrate that the molten salt-based SOM-assisted electrodeoxidation process has the potential to be used for the facile and controllable electrodeoxidation of MOx/C precursors to micro/nanostructured MCs, which can potentially be used for various applications.

  5. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    International Nuclear Information System (INIS)

    Liu, Y.H.; Zhang, Y.C.; Jiang, F.; Fu, B.J.; Sun, N.B.

    2013-01-01

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na 2 WO 4 –WO 3 binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%

  6. Metal-insulator transition of alloyed radical cation salts, (MexEDO-TTF)2PF6

    Science.gov (United States)

    Murata, Tsuyoshi; Shao, Xiangfeng; Nakano, Yoshiaki; Yamochi, Hideki; Saito, Gunzi; Uruichi, Mikio; Yakushi, Kyuya; Tanaka, Koichiro

    2010-06-01

    Ternary radical cation salts containing ethylenedioxytetrathiafulvalene, its mono-methyl substituted derivative, and hexafluorophosphate, [(EDO-TTF)1-x(MeEDO-TTF)x]2PF6 (x=mole fraction of MeEDO-TTF, x=0.01-0.13) were prepared by electrooxidation. Mole fractions of EDO-TTF and MeEDO-TTF in EDO-TTF rich alloys were consistent with the donor mixing ratios in preparation. Crystal structures of these alloys at room temperature were isostructural to that of (EDO-TTF)2PF6, where the donor molecules formed a nearly uniform stacking column to give a quasi-one-dimensional Fermi surface. The alloys exhibited a metal-insulator transition with tetramerization within the donor stack and anion-ordering. Temperature-variable structural analysis and Raman spectra revealed that the charge-ordering took place in the low temperature phase of x=0.05 alloy, however, this feature vanished in the x=0.13 alloy. The phase transition temperature decreased with increasing x value from 279 K of pristine (EDO-TTF)2PF6 to 188 K of x=0.13 alloy.

  7. The introduction to the chemistry of second-sphere complexes of metals in solutions

    International Nuclear Information System (INIS)

    Mironov, V.E.; Isaev, I.D.

    1986-01-01

    Investigation data on the chemistry of second-sphere complexes of metal ions (alkali, alkaline earth, transition, rare earth and other metals) in solutions are generalized. Modern representations about the processes of their formation, investigation methods, thermodynamics, structure, the nature of forces to form them are described. Perspectives of the development of the chemistry of second-sphere complexes in solutions are given

  8. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies.

    Science.gov (United States)

    Vane, Leland M

    2017-03-08

    When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.

  9. Preparation of polymers suitable for radiation shielding and studying its properties (polyester composites with heavy metals salts)

    International Nuclear Information System (INIS)

    Kharita, M. H.; Al-Ajji, Z.; Yousef, S.

    2010-12-01

    Four composites were prepared in this work, based on polyester and heavy metals oxides and salts. The attenuation properties, as well as mechanical properties were studied, and the chemical stability was evaluated. It has been shown, that these composites can be used in radiation shielding for X-rays successfully, and the exact composition of these composites can be optimized according to the radiation energy to prepare the lightest possible shield. (author)

  10. On the appearance of vorticity and gradient shear bands in wormlike micellar solutions of different CPCl/salt systems

    Energy Technology Data Exchange (ETDEWEB)

    Mütze, Annekathrin, E-mail: muetzea@ethz.ch; Heunemann, Peggy; Fischer, Peter [ETH Zürich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich (Switzerland)

    2014-11-01

    Wormlike micellar salt/surfactant solutions (X-salicylate, cetylpyridinium chloride) are studied with respect to the applied shear stress, concentration, temperature, and composition of the counterions (X = lithium, sodium, potassium, magnesium, and calcium) of the salicylate salt solute to determine vorticity and gradient shear bands. A combination of rheological measurements, laser technique, video analysis, and rheo-small-angle neutron scattering allow for a detailed exploration of number and types of shear bands. Typical flow curves of the solutions show Newtonian, shear-thinning, and shear-thickening flow behavior. In the shear-thickening regime, the solutions show vorticity and gradient shear bands simultaneously, in which vorticity shear bands dominate the visual effect, while gradient shear bands always coexist and predominate the rheological response. It is shown that gradient shear bands change their phases (turbid, clear) with the same frequency as the shear rate oscillates, whereas vorticity shear bands change their phases with half the frequency of the shear rate. Furthermore, we show that with increasing molecular mass of the counterions the number of gradient shear bands increases, while the number of vorticity shear bands remains constant. The variation of temperature, shear stress, concentration, and counterions results in a predictable change in the rheological behavior and therefore allows adjustment of the number of vorticity shear bands in the shear band regime.

  11. Modification of thermal sensitivity of Chinese hamster cells by exposure to solutions of monovalent and divalent cationic salts

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Azzam, E.I.; Vadasz, J.

    1984-06-01

    Chinese hamster V79 cells were heated in culture medium or in 0.155-mol.dm -3 solutions of LiCl, NaCl, KCl, MgCl 2 , CaCl 2 and BaCl 2 . The presence of any one of these ionic solutions during heating increased the thermal sensitivity of the cells. The order of increased thermal sensitivity was KCl > LiCl > NaCl for the monovalent salts and BaCl 2 > MgCl 2 > CaCl 2 for the divalent cation salts. The addition of glucose to LiCl or NaCl solutions did not reduce the thermal sensitization caused by these solutions. When cells were sensitized by LiCl or NaCl treatment, a change in pH from 7.2 to 6.6 did not further increase thermal sensitivity. These data show that nutrient and ionic factors and their interplay are involved in cellular thermal sensitivity

  12. Monitoring the Electrolytic Reduction Process of Metal Oxide in the LiCl Molten Salt at 650 . deg. C

    International Nuclear Information System (INIS)

    Choi, In kyu; Hong, Soon Seok; Jung, Myoung Soo; Hur, Jin Mok; Lee, Han Soo

    2010-01-01

    During the electrolytic reduction process of metal oxides, metal oxides are reduced in the cathode basket and oxide ions are oxidized at a platinum anode. Basically the oxide concentration in the bulk should be maintained to be constant during the reduction process, but slow diffusion rate of oxide ions from metal oxide particles to the salt medium results in decreasing the oxide ion concentration. When a high current density is applied for the reduction, lowered lithium oxide concentration causes the platinum anode to be dissolved. To accomplish the reduction of metal oxides without serious damage of platinum anode, monitoring the lithium oxide concentration is very important. For in-situ monitoring the oxide concentration during the reduction, cyclic voltammetry (CV) and chronoamperometry(CA) were applied

  13. Modification of radiation sensitivity by salts of the metals beryllium and indium and the rare earths cerium, lanthanum and scandium

    International Nuclear Information System (INIS)

    Floersheim, G.L.

    1995-01-01

    The LD 50 of 46 salts of metals and rare earths (lanthanoids) was determined in mice. Half the LD 50 of the compounds was then combined with lethal radiation (10.5 Gy) and the modification of survival time was scored. Only the metals beryllium and indium and the rare earths cerium, lanthanum and scandium displayed activity in our assay. There were then tested at a wider range of lower doses and reduced survival time in a dose-dependent fashion. This appears to be compatible with enhancement of radiation sensitivity. The interaction of these metals and rare earths with radiation adds a new facet to their toxicological spectrum and, by enhancing radiation effects, may influence estimates of risk. On the other hand, radiosensitizing properties of the metals may be useful for further development of compounds to be used as adjuncts in specific situations of cancer radiotherapy. 31 refs., 1 fig., 1 tab

  14. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff.

    Science.gov (United States)

    Vijayaraghavan, K; Teo, Ting Ting; Balasubramanian, R; Joshi, Umid Man

    2009-05-30

    The ability of Sargassum sp. to biosorb four metal ions, namely lead, copper, zinc, and manganese from a synthetic multi-solute system and real storm water runoff has been investigated for the first time. Experiments on synthetic multi-solute systems revealed that Sargassum performed well in the biosorption of all four metal ions, with preference towards Pb, followed by Cu, Zn, and Mn. The solution pH strongly affected the metal biosorption, with pH 6 being identified as the optimal condition for achieving maximum biosorption. Experiments at different biosorbent dosages revealed that good biosorption capacity as well as high metal removal efficiency was observed at 3g/L. The biosorption kinetics was found to be fast with equilibrium being attained within 50 min. According to the Langmuir isotherm model, Sargassum exhibited maximum uptakes of 214, 67.5, 24.2 and 20.2mg/g for lead, copper, zinc, and manganese, respectively in single-solute systems. In multi-metal systems, strong competition between four metal ions in terms of occupancy binding sites was observed, and Sargassum showed preference in the order of Pb>Cu>Zn>Mn. The application of Sargassum to remove four heavy metal ions in real storm water runoff revealed that the biomass was capable of removing the heavy metal ions. However, the biosorption performance was slightly lower compared to that of synthetic metal solutions. Several factors were responsible for this difference, and the most important factor is the presence of other contaminants such as anions, organics, and other trace metals in the runoff.

  15. Spontaneous polyiodide formation by unbalancing of charge in room-temperature ionic liquid-lithium salt solutions

    Science.gov (United States)

    Kishimura, Hiroaki; Aono, Masami; Kyuko, Yoshiki; Nagaya, Shoki; Koyama, Shu; Abe, Hiroshi

    2018-03-01

    Spontaneous formations of polyiodides, Im-, were observed in room-temperature ionic liquid (RTIL)-lithium salt solutions. The RTILs consisted of 1-alkyl-3-methylimidazolium iodide, [Cnmim][I] (n = 3, 4, and 6). The lithium salt used was lithium bis(fluorosulfonyl)imide, Li[FSI]. By Raman spectroscopy, the gradual increase in the peak intensities of the polyiodides at a fixed temperature in the [Cnmim][I]-Li[FSI]-ethanol mixtures was observed along with color changes of the mixtures. Because no polyiodides were observed in the [C4mim][I] - [C4mim][FSI] mixture, it was determined that the spontaneous formation of Im- without external addition of iodine was induced by the Li ion.

  16. COMPARATIVE ANALYSIS FOR METAL BINDING CAPACITY OF CYSTEINE BY USING UV-VIS SPECTROPHOTOMETER

    OpenAIRE

    Shivendu Ranjan; Nandita Dasgupta; Gyanendra Gour; Rashmi Dubey; Kumari Amrita

    2012-01-01

    The metal binding capacity of cysteine with three different metals Nickel, Copper and Lead was studied using UV-Vis spectrophotometer for which absorbance values were taken after interaction of cysteine with metal salt solutions (10ppm and 100ppm). Before taking above absorbance dilution factor was set using cysteine stock. The increase in peak intensity was observed when metal salt solution and metal saltcysteine solution were compared. Based on peak shift and peak intensity finally it can b...

  17. Correction: A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    Science.gov (United States)

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-12-22

    Correction for 'A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide' by Chee Koon Ng et al., Chem. Commun., 2016, 52, 11842-11845.

  18. TRANSGENIC PLANTS OF RAPE (BRASSICA NAPUS L. WITH GENE OSMYB4 HAVE INCREASED RESISTANCE TO SALTS OF HEAVY METALS

    Directory of Open Access Journals (Sweden)

    Raldugina G.N.

    2012-08-01

    Full Text Available This work aims to study the response of the transgenic spring rape plants (Brassica napus L. var. ‘Westar’ with the rice transfactor-encoding gene Osmyb4 to treatment with salts of heavy metals (HM CuSO4 or ZnSO4 and accumulation in the leaves of biomass, metals, photosynthetic pigments, lipid peroxidation, and antioxidant compounds: total phenols, anthocyanins, and antioxidant enzyme activity superoxide dismutase (SOD and guaiacol peroxidase (POX were determined. Vegetatively propagated transgenic plants and wild-type plants were grown on Hoagland-Snyder medium at 24°C, then at the 5-6th leaves-stage, CuSO4 (in concentration 25-150 mM or ZnSO4 (500 - 5000 mM were added to the growth medium, and plants were exposed to the salts for 15 days. Under the action of small concentrations of salts, the results obtained for the transgenic and untransformed plants did not differ, but at high concentrations strong differences between transgenic and untransformed plants were observed. In transgenic plants, accumulation of biomass was greater. Carotene and xanthophyll were destroyed in transgenic plants less than in the untransformed plants. They have accumulated in their leaves more metal, especially Zn, reaching almost to the accumulation of 7 mg per g of dry biomass, bringing these plants to the hyperaccumulation of Zn. In the tissues of transgenic plants exposed to high concentrations of salts, the content of total phenols, anthocyanins, and low molecular weight compounds, that are responsible for protection against ROS, increased significantly. All these results indicate a greater stability of the transgenic plants to the action of heavy metals, as evidenced also by less activity of lipid peroxidases in their tissue: at high salt concentrations, malondialdehyde (MDA accumulated significantly less in transgenic plants than in non-transformed plant tissues. The greater stability of transgenic plants to stressful effect of HM is also evidenced by the

  19. Study of absorption spectra for alkali and alkaline earth metal salts in flameless atomic absorption spectrometry using a carbon tube atomizer

    International Nuclear Information System (INIS)

    Yasuda, Seiji; Kakiyama, Hitoo

    1975-01-01

    Absorption spectra of various salts such as alkali metal salts, alkaline earth dichlorides, and ammonium halides were investigated and absorptions of some molecular species produced in the carbon tube were identified. The aqueous solution (20 μl) containing 1.0 mg/ml of each salt was placed in the carbon tube atomizer and heated in a similar manner to usual flameless atomic absorption method. D 2 -lamp was used as a continuous light source and argon gas was employed as an inert sheath gas. The spectra were obtained over the range of wavelength 200 to 350 nm. When alkali halides were feeded, the absorption spectra agreed with those of alkali halide vapors. Therefore, in such cases vapors of the alkali halides were probably produced by the sublimation or vaporization in the atomizer. The spectra of alkali perchlorates were considered to be those of alkali chlorides produced by the pyrolysis of the perchlorates in the atomizer. The absorptions of alkaline earth chlorides below 250 nm were probably due to their gaseous states. Sulfur dioxide was found to be produced by the pyrolysis of alkali sulfates, bisulfates and sulfites in the atomizer, Alkali phosphates and pyrophosphates gave almost identical spectra below 300 nm. Gamma band spectrum of nitrogen monoxide was observed from 200 to 240 nm during ashing at bout 330 0 C for alkali nitrates and nitrites. Ammonia vapor was produced from ammonium halides during drying at about 170 0 C. Although the absorptions of alkali carbonates and hydroxides were almost undetectable, the same spectra as those of alkali halides were observed by the addition of ammonium halides to the solutions of alkali compounds. This shows that alkali halides are produced in the atomizer by the addition of halide ions. (auth.)

  20. Kinetic study of CO2 with various amino acid salts in aqueous solution

    NARCIS (Netherlands)

    van Hoist, J.; Versteeg, G. F.; Brilman, D. W. F.; Hogendoorn, J. A.; Holst, J. v

    2009-01-01

    A study towards the kinetics Of CO2 with several aqueous salts of amino acids was performed at a temperature of 298 K. Absorption rate experiments were carried out in the pseudo-first-order regime, enabling the determination of the kinetic rate constant from the flux. In a preliminary screening at a

  1. Estimation of effect of inorganic salts on state of melts and carbamide solutions

    International Nuclear Information System (INIS)

    Dymnikov, N.S.; Yakunin, N.A.; Baranov, A.V.; Moryganov, A.P.

    1995-01-01

    The character of coordination in the systems carbamide-LiCl and carbamide-CaCl 2 has been shown on the basis of IR spectroscopy data. Interrelation between complexing in the melt carbamide-inorganic salt and thermal resistance of amide compound has been ascertained. 3 refs.; 3 figs

  2. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer.

    Science.gov (United States)

    Cánovas, C R; Macías, F; Pérez-López, R

    2016-05-01

    Underground mine drainages are extremely difficult to study due to the lack of information about the flow path and source proximity in relation to the outflow adit. Geochemical processes controlling metals and acidity fluxes in a complex anthropogenic mine aquifer in SW Spain during the dry and rainy season were investigated by geochemical and statistical tools. High concentrations of acidity, sulfate, metals and metalloids (e.g. Fe, Cu, Zn, As, Cd, Ni, Co) were observed due to intense sulfide oxidation processes. The high residence time inside the anthropogenic aquifer, around 40days, caused the release of significant quantities of metals linked to host rocks (e.g. Al, Ca, Ge, Li, Mg, REE). The most outstanding characteristic of the acid mine drainage (AMD) outflows is the existence of higher Fe/SO4 molar ratios than those theoretical of pyrite (0.50) during most of the monitored period, due to a fire which occurred in 1949 and remained active for decades. Permanent and temporal retention mechanisms of acidity and metals were observed in the galleries. Once released from sulfide oxidation, Pb and As are sorbed on Fe oxyhydroxysulfate or precipitated as low solubility minerals (i.e. anglesite) inside the galleries. The precipitation of evaporitic sulfate salts during the dry season and the subsequent re-dissolution after rainfall control the fluxes of acidity and main metals (i.e. Fe, Mg, Al) from this anthropogenic aquifer. Some elements, such as Cd, Cu, Ni, REE and Zn, are retained in highly soluble sulfate salts while other elements, such as Ge, Pb and Sc, have a lower response to washout processes due to its incorporation in less soluble sulfate salts. In this way, metal concentration during the washout processes would be controlled by the proportion and solubility of each type of evaporitic sulfate salt stored during the dry season. The recovery of metals of economic interest contained in the AMD could help to self-finance the remediation of these waters in

  3. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    Science.gov (United States)

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Will mouth wash solutions of water, salt, sodiumbicarbonate or citric acid improve upper gastrointestinal symptoms in chronic kidney disease.

    Science.gov (United States)

    Manley, Karen Joy

    2017-03-01

    Uraemic symptoms including taste changes, nausea and dry retching are common in chronic kidney disease (CKD). Taste buds detect five basic tastes: sweet, salty, sour, umami and bitter. Saliva in CKD usually has increased concentrations of urea, sodium, potassium, phosphate and higher pH levels. Genetic sensitivities to the bitter taste, with the changes in saliva can cause taste changes and impact uraemic symptoms. The aim of this study was to assess if mouth wash solutions of water, salt, sodium bicarbonate or citric acid improves upper gastrointestinal (GI) symptoms in CKD patients. An interventional crossover study with 42 CKD patients (21 men, 21 women) complaining of upper GI symptoms were recruited. Subjects completed a questionnaire to assess symptoms and tested for genetic taste sensitivities. Saliva samples were analysed. Mouth rinse solutions of salt, bicarbonate, citric acid and de-ionised water were trialled in randomized order for patient reaction and symptom improvement. All 42 patients experienced anorexia, 39 (93%) reported taste changes, 27 (48%) nausea and 27 (48%) dry retching. All solutions improved symptoms in some patients. Sodium bicarbonate (P = 0.005) gave the greatest improvement in mouth feel and symptom control compared with the least favoured citric acid solution. Sixty-six percent of patients found sodium bicarbonate beneficial with 40% preference over other solutions. Simple mouthwashes can be used to relieve or eliminate some uraemic symptoms. Rinsing the mouth with a sodium bicarbonate solution cleanses receptors on taste buds and may alter mouth pH thereby reducing some upper GI symptoms that CKD patients can experience. © 2016 Asian Pacific Society of Nephrology.

  5. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    International Nuclear Information System (INIS)

    Le, T.T. Yen; Hendriks, A. Jan

    2014-01-01

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  6. Solvent and stabilizer free growth of Ag and Pd nanoparticles using metallic salts/cyclotriphosphazenes mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Díaz Valenzuela, C. [Departamento de Química, Facultad de Química, Universidad de Chile, La Palmeras 3425, Nuñoa, Casilla 653, Santiago de Chile (Chile); Valenzuela, M.L., E-mail: mlvalenzuela@unab.cl [Universidad Andres Bello, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Av. Republica 275, Santiago (Chile); Caceres, S.; Diaz, R. [Departamento de Química, Facultad de Química, Universidad de Chile, La Palmeras 3425, Nuñoa, Casilla 653, Santiago de Chile (Chile); O' Dwyer, C. [Applied Nanoscience Group, Department of Chemistry, University College Cork, Cork (Ireland); Micro and Nanoelectronics Centre, Tyndall National Institute, Lee Maltings, Cork (Ireland)

    2013-12-16

    Cyclotriphosphazene is used as a sacrificial solid-state template to synthesize a range of Ag and Pd nanoparticles with diverse geometries by thermal treatment using MLn/N{sub 3}P{sub 3}(O{sub 2}C{sub 12}H{sub 8}){sub 3} mixtures. The Pd and Ag nanoparticles are synthesized by solid-state pyrolysis of AgPPh{sub 3}[CF{sub 3}SO{sub 3}]/N{sub 3}P{sub 3}(O{sub 2}C{sub 12}H{sub 8}){sub 3} and PdCl{sub 2}/N{sub 3}P{sub 3}(O{sub 2}C{sub 12}H{sub 8}){sub 3} mixtures with molar relationships of 1:1, 1:5 and 1:10 respectively, in air and at 800 °C. The morphology of the as-prepared nanoparticles is found to depend on the molar ratio of the precursor mixture, the preparation method and of the nature of the metal. Ag and Pd, microcrystals were thermally grown on Si from the respective 1:1 precursors while that metal foams were grown from 1:5 ratios precursors on SiO{sub 2} wafers. High resolution transmission electron microscopy investigations reveal in most cases small crystals of Pd. HRSTEM measurements indicate that the formation of the Pd and Ag nanoparticles occurs through a phase demixing and dewetting mechanism. This approach has potential to be a useful and facile method to prepare metallic nanoparticles without requiring solutions or surfactants for application in electronic, catalytic and sensor materials and devices. - Highlights: • Pyrolysis MLn/N{sub 3}P{sub 3}(O{sub 2}C{sub 12}H{sub 8}){sub 3} mixtures under air, give Pd and Ag nanoparticles. • AgPPh{sub 3}[CF{sub 3}SO{sub 3}] and PdCl{sub 2} in molar ratios 1:1 and 1:5 were used. • Metal foams were obtained from 1:5 ratios when deposited on SiO{sub 2.} • Using crucible supporting in 1:1 metal/trimer <2 nm Pd nanoparticles were obtained. • The probable mechanism involves a dewetting, nucleation and ripening crystallization.

  7. History and future of human cadaver preservation for surgical training: from formalin to saturated salt solution method.

    Science.gov (United States)

    Hayashi, Shogo; Naito, Munekazu; Kawata, Shinichi; Qu, Ning; Hatayama, Naoyuki; Hirai, Shuichi; Itoh, Masahiro

    2016-01-01

    Traditionally, surgical training meant on-the-job training with live patients in an operating room. However, due to advancing surgical techniques, such as minimally invasive surgery, and increasing safety demands during procedures, human cadavers have been used for surgical training. When considering the use of human cadavers for surgical training, one of the most important factors is their preservation. In this review, we summarize four preservation methods: fresh-frozen cadaver, formalin, Thiel's, and saturated salt solution methods. Fresh-frozen cadaver is currently the model that is closest to reality, but it also presents myriad problems, including the requirement of freezers for storage, limited work time because of rapid putrefaction, and risk of infection. Formalin is still used ubiquitously due to its low cost and wide availability, but it is not ideal because formaldehyde has an adverse health effect and formalin-embalmed cadavers do not exhibit many of the qualities of living organs. Thiel's method results in soft and flexible cadavers with almost natural colors, and Thiel-embalmed cadavers have been appraised widely in various medical disciplines. However, Thiel's method is relatively expensive and technically complicated. In addition, Thiel-embalmed cadavers have a limited dissection time. The saturated salt solution method is simple, carries a low risk of infection, and is relatively low cost. Although more research is needed, this method seems to be sufficiently useful for surgical training and has noteworthy features that expand the capability of clinical training. The saturated salt solution method will contribute to a wider use of cadavers for surgical training.

  8. Application of extraction chromatography to the separation of thorium and uranium dissolved in a solution of high salt concentration.

    Science.gov (United States)

    Fujiwara, Asako; Kameo, Yutaka; Hoshi, Akiko; Haraga, Tomoko; Nakashima, Mikio

    2007-01-26

    Extraction chromatography with commercially available UTEVA resin (for uranium and tetravalent actinide) was applied for the separation of Th and U from control solutions prepared from a multi-element control solution and from sample solutions of solidified simulated waste. Thorium and U in control solutions with 1-5mol/dm(3) HNO(3) were extracted with UTEVA resin and recovered with a solution containing 0.1mol/dm(3) HNO(3) and 0.05mol/dm(3) oxalic acid to be separated from the other metallic elements. Extraction behavior of U in the sample solutions was similar to that in the control solutions, but extraction of Th was dependent on the concentration of HNO(3). Thorium was extracted from 5mol/dm(3) HNO(3) sample solutions but not from 1mol/dm(3) HNO(3) sample solutions. We conjecture that thorium fluoride formation interferes with extraction of Th. Addition of Al(NO(3))(3) and Fe(NO(3))(3), which have higher stability constant with fluoride ion than Th, does improve extractability of Th from 1mol/dm(3) HNO(3) sample solution.

  9. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    OpenAIRE

    Moia, Davide; Giovannitti, Alexander; Szumska, Anna A.; Schnurr, Martin; Rezasoltani, Elham; Maria, Iuliana P.; Barnes, Piers R. F.; McCulloch, Iain; Nelson, Jenny

    2017-01-01

    We report a neutral salt water based battery which uses p-type and n-type solution processed polymer films as the cathode and the anode of the cell. The specific capacity of the electrodes (approximately 30 mAh cm-3) is achieved via formation of bipolarons in both the p-type and n-type polymers. By engineering ethylene glycol and zwitterion based side chains attached to the polymer backbone we facilitate rapid ion transport through the non-porous polymer films. This, combined with efficient t...

  10. Synergistic interaction of gamma rays and some metallic salts in the induction of chlorophyll mutations in rice

    International Nuclear Information System (INIS)

    Reddy, T.P.; Vaidyanath, K.

    1978-01-01

    In this study the mutagenic activity of 9 metallic salts was tested in comparison and conjunction with gamma rays on rice seed. In M 2 , barium and cadmium produced chlorophyll mutation and mutant frequencies on a par with those of 20 kR gamma rays. Similarly, copper and mercury induced moderately high mutation and mutant frequencies. Salts of strontium, iron and lead showed rather weak mutagenic effects. On the other hand, two metals - manganese anc calcium - failed to provoke chlorophyll mutations in rice seed. Sequential treatments of gamma rays + 5 metals, namely Sr, Cd, Hg, Pb and Cu, produced synergistic yields of chlorophyll mutants in the M 2 generation. Two genetically active metals, Ba and Fe, showed less than additive effects when post-treated after gamma irradiation. Manganese, which failed to induce chlorophyll mutations in independent treatment, potentiated the mutagenic activity of gamma radiation in sequential treatment. On the other hand, sequential treatment with calcium seemed to confer a substantial protection against gamma-ray-induced genetic lesions. The probable mechanisms of synergistic interaction, mutagenic potentiation and protection, observed in sequential treatments, are discussed. (Auth.)

  11. Experimental determination of Henry's law constants of difluoromethane (HFC-32 and the salting-out effects in aqueous salt solutions relevant to seawater

    Directory of Open Access Journals (Sweden)

    S. Kutsuna

    2017-06-01

    Full Text Available Gas-to-water equilibrium coefficients, KeqS (in M atm−1, of difluoromethane (CH2F2, a hydrofluorocarbon refrigerant (HFC-32, in aqueous salt solutions relevant to seawater were determined over a temperature (T range from 276 to 313 K and a salinity (S range up to 51 ‰ by means of an inert-gas stripping method. From the van't Hoff equation, the KeqS value in water, which corresponds to the Henry's law constant (KH, at 298 K was determined to be 0.065 M atm−1. The salinity dependence of KeqS (the salting-out effect, ln(KH∕KeqS, did not obey the Sechenov equation but was proportional to S0. 5. Overall, the KeqS(T value was expressed by ln(KeqS(T  =  −49.71 + (77.70 − 0.134  ×  S0. 5  ×  (100∕T + 19.14  ×  ln(T∕100. By using this equation in a lower-tropospheric semi-hemisphere (30–90 °S of the Advanced Global Atmospheric Gases Experiment (AGAGE 12-box model, we estimated that 1 to 4 % of the atmospheric burden of CH2F2 resided in the ocean mixed layer and that this percentage was at least 4 % in the winter; dissolution of CH2F2 in the ocean may partially influence estimates of CH2F2 emissions from long-term observational data of atmospheric CH2F2 concentrations.

  12. Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions.

    Science.gov (United States)

    Grimshaw, Pengpeng; Calo, Joseph M; Hradil, George

    2011-11-15

    The description and operation of a novel cyclic electrowinning/precipitation (CEP) system for the simultaneous removal of mixtures of heavy metals from aqueous solutions are presented. CEP combines the advantages of electrowinning in a spouted particulate electrode (SPE) with that of chemical precipitation and redissolution, to remove heavy metals at low concentrations as solid metal deposits on particulate cathode particles without exporting toxic metal precipitate sludges from the process. The overall result is very large volume reduction of the heavy metal contaminants as a solid metal deposit on particles that can either be safely discarded as such, or further processed to recover particular metals. The performance of this system is demonstrated with data on the removal of mixtures of copper, nickel, and cadmium from aqueous solutions.

  13. Method of microbially producing metal gallate spinel nano-objects, and compositions produced thereby

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E.; Jellison, Jr., Gerald E.; Love, Lonnie J.; Moon, Ji Won; Phelps, Tommy J.; Ivanov, Ilia N.; Kim, Jongsu; Park, Jehong; Lauf, Robert

    2018-01-16

    A method of forming a metal gallate spinel structure that includes mixing a divalent metal-containing salt and a gallium-containing salt in solution with fermentative or thermophilic bacteria. In the process, the bacteria nucleate metal gallate spinel nano-objects from the divalent metal-containing salt and the gallium-containing salt without requiring reduction of a metal in the solution. The metal gallate spinel structures, as well as light-emitting structures in which they are incorporated, are also described.

  14. Depletion and double layer forces acting between charged particles in solutions of like-charged polyelectrolytes and monovalent salts.

    Science.gov (United States)

    Moazzami-Gudarzi, Mohsen; Maroni, Plinio; Borkovec, Michal; Trefalt, Gregor

    2017-05-14

    Interaction forces between silica particles were measured in aqueous solutions of the sodium salt of poly(styrene sulphonate) (PSS) and NaCl using the colloidal probe technique based on an atomic force microscope (AFM). The observed forces can be rationalized through a superposition of damped oscillatory forces and double layer forces quantitatively. The double layer forces are modeled using Poisson-Boltzmann (PB) theory for a mixture of a monovalent symmetric electrolyte and a highly asymmetric electrolyte, whereby the multivalent coions represent the polyelectrolyte chains. The effective charge of the polyelectrolyte is found to be smaller than the bare number of charged groups residing on one polyelectrolyte molecule. This effect can be explained by counterion condensation. The interplay between depletion and double layer forces can be further used to predict the phase of the depletion force oscillations. However, this picture holds only at not too elevated concentrations of the polyelectrolyte and salt. At higher salt concentrations, attractive van der Waals forces become important, while at higher polyelectrolyte concentrations, the macromolecules adsorb onto the like-charged silica interface.

  15. comparative study with commercial rootstocks to determine the tolerance to heavy metal (Pb in the drought and salt stress tolerant eggplant breeding lines

    Directory of Open Access Journals (Sweden)

    Mevlüde Nur TOPAL

    2017-06-01

    Full Text Available Negative effects of heavy metals on plants are peroxidation of lipids in cell membranes, production of free oxygen radicals, disorders in photosynthesis, damages in DNAs and as a result death of the cell. Plant development, productivity and quality of the fruits are decreased in the plants that are exposed to Pb stress which is one of the most toxic heavy metals. Usage of rootstocks which is mainly used against biotic stress conditions also seems to be defined as a solution to abiotic stress conditions such as heavy metal stresses. In eggplant production, wild species and hybrids are used as rootstocks against soil based pathogens and nematode. Reactions of improvement lines derived from local gene resources for rootstock improvement to heavy metal stress which is one of the abiotic stresses were determined. While determining the resistance against Pb stress, commercially used eggplant rootstocks are compared. In this study 4 eggplant cultivars (S. melongena: Burdur Bucak, Mardin Kızıltepe, Artvin Hopa and Kemer whose resistance potential against salt and drought stresses had been previously revealed and 6 rootstocks of wild eggplant species or hybrids (AGR-703, Doyran, Hawk, Hikyaku, Köksal-F1 and Vista-306 were tested against Pb stress. Eggplant seedlings were applied to 0, 150 and 300 ppm Pb solutions (Pb(NO32 during 4-5 true leaf stage. 20 days after the stress application wet and dry weight of green parts and roots, height of the body part and leaf areas were measured. Pb tolerance of Köksal F1 and AGR703 rootstocks were higher than other commercial rootstocks. Mardin Kızıltepe and Burdur Merkez genotypes which have high tolerances against abiotic stress gave lower values with respect to Artvin Hopa and Kemer which are sensitive genotypes and many other rootstocks while comparing the reduction ratios of stress signs such as shoot fresh weight and shoot length according to control under Pb stress.

  16. Adsorption of heavy metal ions on molybdenum and molybdenum trioxide from dilute aqueous solution

    International Nuclear Information System (INIS)

    Utsunomiya, Taizo; Hoshino, Yoshio; Sakabe, Ken-ichi

    1984-01-01

    The adsorption of heavy metal ions such as Co(II), Cu(II) and Pb(II) on molybdenum powder has been investigated by the batch technique as a function of soaking time, concentration of heavy metal ions and coexisting salts, pH etc. Molybdenum trioxide was also used as an adsorbent for a comparison to discuss the adsorption mechanism. The amount of these heavy metal ions adsorbed was highly pH and coexisting salts dependent. These adsorbents have features of selective adsorption for Pb(II) and large adsorption rate. The adsorption of heavy metal ions on these adsorbents proceeds independently or concurrently by following complex mechanism; (1) cation exchange reaction by hydroxyl radical on the surface of Mo and MoO 3 is predominant for most of heavy metal ions except Pb(II) [Co(II), Mn(II), Fe(III), Ni(II), Zn(II), Cd(II) and Sr(II)], (2) reduction (electron exchange reaction) to low ionic or metallic state after cation exchange reaction [Cu(II) and Ag(I) on Mo] and (3) formation of a compound [Pb(II) on both Mo and MoO 3 ]. (author)

  17. Assessment of the Lake Gendabi salt for trace elements and toxic heavy metals by energy dispersive X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Lugendo, I.; Mohammed, N.K.; Spyrou, N.M.

    2013-01-01

    This study has analyzed samples of salts from Lake Gendabi, located in the northern part of Tanzania for metal contamination using the EDXRF spectrometry. The aim of the study was to assess the suitability of the salt from Lake Gendabi for human consumption. Seventy-five samples of salt were collected from the Lake Gendabi floor and grouped into five grades (G1, G2, G3, G4 and G5) depending on the position of the salt from the lake shore. In addition to Na and Cl, concentrations of 17 more elements were determined in all five grades of salt. These included seven toxic metals which are Al, Ni, Cr, Cd, Pb as well as Th and U which are both toxic and radioactive. The concentrations of all toxic elements found in the samples were higher than their Maximum tolerable limits set by international organizations. As this salt is used in many parts of Tanzania, it is proposed that the salt should be thoroughly purified before entering the market. Further research to include salt samples from other salt production areas in Tanzania is recommended. (author)

  18. Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase.

    Science.gov (United States)

    Rout, Alok; Binnemans, Koen

    2014-02-28

    The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.

  19. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. Emphasize is put essentially on the fuel salt of the primary circuit inside which fission reactions occur. The reasons why the (LiF-BeF 2 -ThF 4 -UF 4 ) salt was chosen for the M.S.B.R. concept are examined; the physical, physicochemical and chemical properties of this salt are discussed with its interactions with the structural materials and its evolution in time. An important part of this volume is devoted to the continuous reprocessing of the active salt, the project designers having deemed advisable to take advantage at best from the availability of a continuous purification, in a thermal breeding. The problem of tritium formation and distribution inside the reactor is also envisaged and the fundamentals of the chemistry of the secondary coolant salt are given. The solutions proposed are: the hydrogen scavenging of the primary circuit, a reduction in metal permeability by an oxyde layer deposition on the side in contact with the vapor, and tritium absorption through an isotope exchange with the hydroxifluoroborate [fr

  20. Isolation of adenine salts in the gas phase from a liquid beam of aqueous solutions by IR laser irradiation

    Science.gov (United States)

    Kohno, J.-Y.; Mafuné, F.; Kondow, T.

    2002-09-01

    A continuous liquid flow in a vacuum (a liquid beam) of an aqueous solution of adenine salt containing hydrochloric acid or sodium hydroxide was irradiated with an intense pulsed IR laser at 3 μm, which is resonant to a vibrational mode related to the OH stretch vibration of H2O. Neutral species isolated into the vacuum were ionized by a pulsed UV laser at 270 nm, and the product ions were mass-analyzed by a time-of-flight mass spectrometer. It is found that AH2^{2+}{\\cdot}2Cl^- and [ A iH] ^{i-}{\\cdot} iNa^+ (i=1 3) are isolated in the vacuum from the aqueous acidic and alkaline solutions, respectively, under irradiation of the IR laser, and undergo four-photon ionization involving decomposition and proton transfer of the intermediate species under irradiation of the UV laser.

  1. Limitations of amorphous content quantification by isothermal calorimetry using saturated salt solutions to control relative humidity: alternative methods.

    Science.gov (United States)

    Khalef, Nawel; Pinal, Rodolfo; Bakri, Aziz

    2010-04-01

    Despite the high sensitivity of isothermal calorimetry (IC), reported measurements of amorphous content by this technique show significant variability even for the same compound. An investigation into the reasons behind such variability is presented using amorphous lactose and salbutamol sulfate as model compounds. An analysis was carried out on the heat evolved as a result of the exchange of water vapor between the solid sample during crystallization and the saline solution reservoir. The use of saturated salt solutions as means of control of the vapor pressure of water within sealed ampoules bears inherent limitations that lead in turn to the variability associated with the IC technique. We present an alternative IC method, based on an open cell configuration that effectively addresses the limitations encountered with the sealed ampoule system. The proposed approach yields an integral whose value is proportional to the amorphous content in the sample, thus enabling reliable and consistent quantifications. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  2. Organic salt NEDC (N-naphthylethylenediamine dihydrochloride) assisted laser desorption ionization mass spectrometry for identification of metal ions in real samples.

    Science.gov (United States)

    Hou, Jian; Chen, Suming; Zhang, Ning; Liu, Huihui; Wang, Jianing; He, Qing; Wang, Jiyun; Xiong, Shaoxiang; Nie, Zongxiu

    2014-07-07

    The significance of metals in life and their epidemiological effects necessitate the development of a direct, efficient, and rapid method of analysis. The matrix assisted laser desorption/ionization technique is on the horns of a dilemma of metal analysis as the conventional matrixes have high background in the low mass range. An organic salt, NEDC (N-naphthylethylenediamine dihydrochloride), is applied as a matrix for identification of metal ions in the negative ion mode in the present work. Sixteen metal ions, Ba(2+), Ca(2+), Cd(2+), Ce(3+), Co(2+), Cu(2+), Fe(3+), Hg(2+), K(+), Mg(2+), Mn(2+), Na(+), Ni(2+), Pb(2+), Sn(2+) and Zn(2+), in the form of their chloride-adducted clusters were systematically tested. Mass spectra can provide unambiguous identification through accurate mass-to-charge ratios and characteristic isotope patterns. Compared to ruthenium ICP standard solution, tris(2,2'-bipyridyl)dichlororuthenium(ii) (C30H24N6Cl2Ru) can form organometallic chloride adducts to discriminate from the inorganic ruthenium by this method. After evaluating the sensitivity for Ca, Cu, Mg, Mn, Pb and Zn and plotting their quantitation curves of signal intensity versus concentration, we determined magnesium concentration in lake water quantitatively to be 5.42 mg L(-1) using the standard addition method. There is no significant difference from the result obtained with ICP-OES, 5.8 mg L(-1). Human urine and blood were also detected to ascertain the multi-metal analysis ability of this strategy in complex samples. At last, we explored its applicability to tissue slice and visualized sodium and potassium distribution by mass spectrometry imaging in the normal Kunming mouse brain.

  3. Cesium Platinide Hydride 4Cs 2 Pt-CsH: An Intermetallic Double Salt Featuring Metal Anions

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Volodymyr [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames Iowa 50011-3020 USA; Mudring, Anja-Verena [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames Iowa 50011-3020 USA; Department of Materials Sciences and Engineering, Iowa State University, Ames Iowa 50011-3111 USA

    2016-10-24

    With Cs9Pt4H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs9Pt4H exhibits a complex crystal structure containing Cs+ cations, Pt2- and H- anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the “alloy” cesium–platinum, or better cesium platinide, Cs2Pt, and the salt cesium hydride CsH according to Cs9Pt4H≡4 Cs2Pt∙CsH.

  4. Cesium platinide hydride 4Cs{sub 2}Pt.CsH: an intermetallic double salt featuring metal anions

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Volodymyr [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames, Iowa, 50011-3020 (United States); Mudring, Anja-Verena [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames, Iowa, 50011-3020 (United States); Department of Materials Sciences and Engineering, Iowa State University, Ames, Iowa, 50011-3111 (United States)

    2016-11-14

    With Cs{sub 9}Pt{sub 4}H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs{sub 9}Pt{sub 4}H exhibits a complex crystal structure containing Cs{sup +} cations, Pt{sup 2-} and H{sup -} anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the ''alloy'' cesium-platinum, or better cesium platinide, Cs{sub 2}Pt, and the salt cesium hydride CsH according to Cs{sub 9}Pt{sub 4}H≡4 Cs{sub 2}Pt.CsH. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Cesium platinide hydride 4Cs2Pt.CsH: an intermetallic double salt featuring metal anions

    International Nuclear Information System (INIS)

    Smetana, Volodymyr; Mudring, Anja-Verena

    2016-01-01

    With Cs 9 Pt 4 H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs 9 Pt 4 H exhibits a complex crystal structure containing Cs + cations, Pt 2- and H - anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the ''alloy'' cesium-platinum, or better cesium platinide, Cs 2 Pt, and the salt cesium hydride CsH according to Cs 9 Pt 4 H≡4 Cs 2 Pt.CsH. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds

    Science.gov (United States)

    Klotz, S.; Komatsu, K.; Pietrucci, F.; Kagi, H.; Ludl, A.-A.; Machida, S.; Hattori, T.; Sano-Furukawa, A.; Bove, L. E.

    2016-08-01

    It has been known for decades that certain aqueous salt solutions of LiCl and LiBr readily form glasses when cooled to below ≈160 K. This fact has recently been exploited to produce a « salty » high-pressure ice form: When the glass is compressed at low temperatures to pressures higher than 4 GPa and subsequently warmed, it crystallizes into ice VII with the ionic species trapped inside the ice lattice. Here we report the extreme limit of salt incorporation into ice VII, using high pressure neutron diffraction and molecular dynamics simulations. We show that high-pressure crystallisation of aqueous solutions of LiCl•RH2O and LiBr•RH2O with R = 5.6 leads to solids with strongly expanded volume, a destruction of the hydrogen-bond network with an isotropic distribution of water-dipole moments, as well as a crystal-to-amorphous transition on decompression. This highly unusual behaviour constitutes an interesting pathway from a glass to a crystal where translational periodicity is restored but the rotational degrees of freedom remaining completely random.

  7. Study on heavy metal absorption capability of chlamidomonas reinhardtii in solution containing uranium and lead

    International Nuclear Information System (INIS)

    Nguyen Thuy Binh

    2003-01-01

    The mutant strain chlamydomonas reinhardtii No.4 obtained by C 5+ ion beam irradiation could be grown in simple mineral salt medium with initial pH range of 3.5-7.5 with continued illumination of 12,000 lux under aeration. The study demonstrated that the mutant strain C.reinhardtii had a good growth in mineral salt medium containing U 6+ (concentration about 0.015 mg/ml) and Pb 2+ (concentration about 65% and Pb 2+ about 60% from solution was estimated by analyzing dried cell. (NTB)

  8. Reinecke's Salt Revisited. An Undergraduate Project Involving an Unknown Metal Complex.

    Science.gov (United States)

    Searle, Graeme H.; And Others

    1989-01-01

    Describes 10 experiments for characterizing the chromium complex Reinecke's Salt. The properties of the complex, experimental procedures, and a discussion are provided. Analyses are presented for chromium, total ammonia, thiocyanate, ammonium ion, and hydrate water. Measurement methods are described. (YP)

  9. Electrodeposition of Transition Metal-Aluminum Alloys from Chloroaluminate Molten Salts

    National Research Council Canada - National Science Library

    Hussey, Charles

    2004-01-01

    .... Many of these alloys, notably Al-Mo and Al-W, exhibited outstanding resistance to chloride-induced pitting corrosion, making them useful corrosion protective coatings for Air Force applications in high-salt environments.

  10. Ammonia complexes of metals in aqueous solutions with high concentrations of ammonia

    International Nuclear Information System (INIS)

    Padar, T.G.; Novikov, L.K.; Stupko, T.V.; Isaev, I.D.; Pashkov, G.L.; Mironov, V.E.

    1991-01-01

    Potentiometric method, glass electrodes and Bierrum function were used to study the formation of ammonia complexes of magnesium, calcium, cadmium, zinc, copper(2) and silver in 2.0 mol/dm 3 aqueous solutions of ammonia nitrate with 0-18 mol/dm 3 ammonia concentrations at 25.0 deg C. Step constants of stability of studied complexes were calculated and their compositions were determined with account of nonideal character of aqueous-salt solutions with ammonia concentrations above 1.0 mol/dm 3 . Values of correction effects on salting out ammonia action for Bierrum function in solutions with 1.0-18 mol/dm 3 ammonia concentrations were found

  11. The role of the smooth cordgrass Spartina alterniflora and associated sediments in the heavy metal biogeochemical cycle within Bahia Blanca estuary salt marshes

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, M. [Dept. of Environmental Process Engineering, International Graduate School Zittau, Zittau (Germany); Botte, S.E. [Area de Oceanografia Quimica, Inst. Argentino de Oceanografia (IADO), CCT-CONICET, Bahia Blanca (Argentina); Dept. de Biologia, Bioquimica y Farmacia (DBBF), Univ. Nacional del Sur (UNS), Bahia Blanca (Argentina); Negrin, V.L.; Chiarello, M.N. [Area de Oceanografia Quimica, Inst. Argentino de Oceanografia (IADO), CCT-CONICET, Bahia Blanca (Argentina); Marcovecchio, J.E. [Area de Oceanografia Quimica, Inst. Argentino de Oceanografia (IADO), CCT-CONICET, Bahia Blanca (Argentina); Facultad Regional Bahia Blanca (UTN-FRBB), Univ. Tecnologica Nacional, Bahia Blanca (Argentina); Univ. FASTA, Mar del Plata (Argentina)

    2008-10-15

    Background, aim, and scope Bahia Blanca estuary is characterized by the occurrence of large intertidal areas, including both naked tidal flats and salt marshes densely vegetated with Spartina alterniflora. The estuary is strongly affected by human activities, including industrial and municipal discharges, harbor maintenance, cargo vessels and boat navigation, oil storage and processing, etc. Even numerous studies have reported the occurrence and distribution of heavy metals in sediments and biota from this estuary, although the function of the halophyte vegetation on metals distribution was at present not studied. The main objective of the present study was to understand the potential role of the salt marshes as a sink or source of metals to the estuary, considering both the obtained data on metal levels within sediments and plants from the studied areas at naked tidal as well as vegetated flats. Conclusions and recommendations Considering the comments on the previous paragraphs, salt marshes from Bahia Blanca estuary are sources or sinks for metals? It can be sustained that both are the case, even if it is often stated that wetlands serve as sinks for pollutants, reducing contamination of surrounding ecosystems (Weis and Weis, Environ Int 30:685-700, 2004). In the present study case, the sediments (which tend to be anoxic and reduced) act as sinks, while the salt marshes can become a source of metal contaminants. This is very important for this system because the macrophytes have been shown to retain the majority of metals in the underground tissues, and particularly in their associated sediments. This fact agreed well with previous reports, such as that from Leendertse et al., (Environ Pollut 94:19-29, 1996) who found that about 50% of the absorbed metals were retained in salt marshes and 50% was exported. Thus, keeping in mind the large spreading of S. alterniflora salt marshes within Bahia Blanca estuary, it must be carefully considered as a redistributor of

  12. Application of Proton Conductors to Hydrogen Monitoring for Liquid Metal and Molten Salt Systems

    Science.gov (United States)

    Kondo, Masatoshi; Muroga, Takeo; Katahira, Koji; Oshima, Tomoko

    The chemical control of impurity such as hydrogen and oxygen in coolants is one of the critical issues for the development of liquid metal cooled fast reactors and self-cooled liquid breeder blankets for fusion reactors. Especially, hydrogen (isotopes) level is the key parameter for corrosion and mechanical properties of the in-reactor components. For fission reactors, the monitor of hydrogen level in the melt is important for safety operation. The control of tritium is essential for the tritium breeding performance of the fusion reactors. Therefore, on-line hydrogen sensing is a key technology for these systems. In the present study, conceptual design for the on-line hydrogen sensor to be used in liquid sodium (Na), lead (Pb), lead-bismuth (Pb-Bi), lithium (Li), lead-lithium (Pb-17Li) and molten salt LiF-BeF2 (Flibe) was performed. The cell of hydrogen sensor is made of a solid electrolyte. The solid electrolyte proposed in this study is the CaZrO3-based ceramics, which is well-known as proton conducting ceramics. In this concept, the cell is immersed into the melt which is containing the hydrogen at the activity of PH1 of ambient atmosphere. Then, the cell is filled with Ar-H2 mixture gas at regulated hydrogen activity of PH2. The electromotive force (EMF) is obtained by the proton conduction in the electro chemical system expressed as Pt, Melt(PH1) | Proton conductor | PH2, Pt. The Nernst equation is used for the evaluation of the hydrogen activity from the obtained EMF. The evaluations of expected performance of the sensor in liquid Na, Pb, Pb-Bi, Pb-17Li, Li and Flibe were carried out by means of the measurement test in gas atmosphere at hydrogen activities equivalent to those for the melts in the reactor conditions. In the test, the hydrogen activity in the gas varied from 2.2x10-14 to 1. The sensor exhibited good response, stability and reproducibility.

  13. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    Science.gov (United States)

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Density, Viscosity, Solubility, and Diffusivity of N2O in Aqueous Amino Acid Salt Solutions

    NARCIS (Netherlands)

    Kumar, P. Senthil; Hogendoorn, J.A.; Feron, P.H.M.; Versteeg, G.F.

    2001-01-01

    Solubility and diffusivity of N2O in aqueous solutions of potassium taurate are reported over a wide range of concentration and temperature. Also, the solubility of N2O in aqueous potassium glycinate solution is reported at 295 K. The ion specific constants are reported for taurate and glycinate

  15. Metal and alloy nanoparticles by amine-borane reduction of metal salts by solid-phase synthesis: atom economy and green process.

    Science.gov (United States)

    Sanyal, Udishnu; Jagirdar, Balaji R

    2012-12-03

    A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

  16. Simulation of NaCl and KCl mass transfer during salting of Prato cheese in brine with agitation: a numerical solution

    Directory of Open Access Journals (Sweden)

    E. Bona

    2007-09-01

    Full Text Available The association of dietary NaCl with arterial hypertension has led to a reduction in the levels of this salt in cheeses. For salting, KCl has been used as a partial substitute for NaCl, which cannot be completely substituted without affecting product acceptability. In this study a sensorially adequate saline solution (NaCl/KCl was simultaneously diffused during salting of Prato cheese in brine with agitation. The simultaneous multicomponent diffusion during the process was modeled with Fick’s second generalized law. The system of partial differential equations formed was solved by the finite element method (FEM. In the experimental data concentration the deviation for NaCl was of 7.3% and for KCl of 5.4%, both of which were considered acceptable. The simulation of salt diffusion will allow control and modulation of salt content in Prato cheese, permitting the prediction of final content from initial conditions.

  17. Mechanistic study on ultrasound assisted pretreatment of sugarcane bagasse using metal salt with hydrogen peroxide for bioethanol production.

    Science.gov (United States)

    Ramadoss, Govindarajan; Muthukumar, Karuppan

    2016-01-01

    This study presents the ultrasound assisted pretreatment of sugarcane bagasse (SCB) using metal salt with hydrogen peroxide for bioethanol production. Among the different metal salts used, maximum holocellulose recovery and delignification were achieved with ultrasound assisted titanium dioxide (TiO2) pretreatment (UATP) system. At optimum conditions (1% H2O2, 4 g SCB dosage, 60 min sonication time, 2:100 M ratio of metal salt and H2O2, 75°C, 50% ultrasound amplitude and 70% ultrasound duty cycle), 94.98 ± 1.11% holocellulose recovery and 78.72 ± 0.86% delignification were observed. The pretreated SCB was subjected to dilute acid hydrolysis using 0.25% H2SO4 and maximum xylose, glucose and arabinose concentration obtained were 10.94 ± 0.35 g/L, 14.86 ± 0.12 g/L and 2.52 ± 0.27 g/L, respectively. The inhibitors production was found to be very less (0.93 ± 0.11 g/L furfural and 0.76 ± 0.62 g/L acetic acid) and the maximum theoretical yield of glucose and hemicellulose conversion attained were 85.8% and 77%, respectively. The fermentation was carried out using Saccharomyces cerevisiae and at the end of 72 h, 0.468 g bioethanol/g holocellulose was achieved. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of pretreated SCB was made and its morphology was studied using scanning electron microscopy (SEM). The compounds formed during the pretreatment were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Utilization of Electrolyte Solution in Nanotube Formation on Ti-6Al-4V Metal Alloy

    Directory of Open Access Journals (Sweden)

    Charlena

    2018-02-01

    Full Text Available Formation of nanotube morphology on the surface of Ti-6Al-4V metal did not occur homogeneously, so when it was coated with hydroxyapatite, it did not merge well. One of the factor that affected the inhomogeneously formed nanotube was the utilization of electrolyte solution. The research has been done to observe the effect of electrolyte solution in the formation of nanotube morphology on the surface of Ti-6Al-4V metal alloy. Electrolyte solution that was used was ethylene glycol, HF, and NH4F with time variation of an hour, 2 hour, and 3 hour. Formation of nanotube morphology on the surface of Ti-6Al-4V metal alloy was done using anodization process. The result showed that in HF electrolyte solution which was anodized for an hour ɑ and β phase that composed Ti-6Al-4V metal alloy was formed, meanwhile when using electrolyte solution of ethylene glycol + NH4F for 2 hours showed that there were pores that opened on Ti-6Al-4V metal alloy surface. Nanotube morphology on the surface of Ti-6Al-4V metal alloy was formed using electrolyte solution of ethylene glycol + NH4F which was anodized for 3 hours.

  19. Biosorption of metal ions from aqueous solution and tannery effluent by Bacillus sp. FM1.

    Science.gov (United States)

    Masood, Farhana; Malik, Abdul

    2011-01-01

    The metal binding capacity of Bacillus sp. FM1 isolated from soil irrigated with tannery effluent was assessed using synthetic metal solutions and tannery wastewater. Biosorption of Cr(VI) and Cu(II) ions from aqueous solutions using Bacillus was investigated as a function of pH, initial metal ion concentration and contact time. The optimum adsorption pH value observed for Cr(VI) and Cu(II) ions was 2 and 5, respectively. Metal ion uptake increased with increasing initial metal concentration but no significant difference was observed by increasing the time after 60 min. Maximum uptake capacity of chromium was estimated as 64.102 mg g(-1), and of copper to 78.125 mg g(-1). Equilibrium data were well described by the Langmuir and Freundlich adsorption relations. The presence of functional groups on the cell wall surface of the biomass that may interact with the metal ion was confirmed by Fourier Transform Infrared (FTIR) spectroscopy. The application of Bacillus to remove Cr(VI) and Cu(II) in tannery effluent revealed that the biomass was capable of removing both the metal ions. However, the biosorption performance was slightly lower compared to that of synthetic metal solutions. Several factors may be responsible for this difference. However, the most important factor appears to be the presence of other contaminants such as anions, organics, and other trace metals in the effluent.

  20. Sensitizing Efficiency of Some Added Metal Salts on the Thermal and Explosive Characteristics of Hydrazenium Monoperchlorate and Hydrazenium Diperchlorate

    OpenAIRE

    C. Prabhakaran; N. Sadasivan

    1981-01-01

    Sensitivity to heat, impact and friction of hydrazenium-monoperchlorate and hydrazenium-diperchlorate have been investigated and the sensitizing efficiency of some added metal salts evaluated. The thermal sensitizing efficiency of the additives follow the order CuCrO/sub 4/ > CuCl/sub 2/ >NiO > Fe/sub 2/O/sub 3/ > MgO. The activation energy values obtained from explosion delay time are comparable with the values reported for thermal decomposition studies and are close to the activ...

  1. Metallic reductant-free synthesis of α-substituted propionic acid derivatives through hydrocarboxylation of alkenes with a formate salt.

    Science.gov (United States)

    Takaya, Jun; Miyama, Ko; Zhu, Chuan; Iwasawa, Nobuharu

    2017-04-04

    A PGeP-pincer palladium-catalyzed hydrocarboxylation of styrenes to obtain pharmaceutically important α-arylpropionic acid derivatives was achieved using a formate salt as both a reductant and a CO 2 source. The reaction was also applicable to vinylsulfone and acrylates. Isotope labeling experiments demonstrated that a CO 2 -recycling mechanism is operative through generation and reaction of a benzylpalladium complex as a carbon nucleophile. This protocol has realized a mild and atom economical CO 2 -fixation reaction without the necessity of using strong metallic reductants.

  2. Method and apparatus for producing green salt (UF/sub 4/) from uranium and uranium alloy pieces

    International Nuclear Information System (INIS)

    Pollock, E.N.

    1987-01-01

    A method is described of producing green salt (UF/sub 4/) from uranium-bearing metal pieces comprising: dissolving the uranium-bearing metal pieces in a first aqueous solution containing hydrochloric acid and at least 0.5% but no more than 2% fluoboric acid to provide a second aqueous solution which includes uranium (U/sup +4/), chloride ions and hydrochloric and fluoboric acids; adding hydrofluoric acid to the second aqueous solution to precipitate green salt out of the second solution and provide a third aqueous solution containing hydrochloric acid; and separating the green salt from the third aqueous solution

  3. Reactivity of Crystalline Silicotitanate (CST) and Hazardous Metal/Actinide Loading During Low Curie Salt Use

    Energy Technology Data Exchange (ETDEWEB)

    WILLIAM, WILMARTH

    2004-11-30

    Crystalline Silicotitanate (CST) in its engineered form (IONSIV (registered) IE-911) continues to be studied for possible use for removing radioactive cesium from several types of waste solutions at the Savannah River Site. This study involved deriving information about spent CST that assists in determining possible disposition alternatives. Results for this work include: After passing 3000 column volumes of a dissolved saltcake simulant containing RCRA hazardous metals, the spent CST passed a TCLP test and is RCRA nonhazardous. The spent CST was found to have transuranic concentrations greater than the TRU limit of 100 nCi/g. The triplicate measurement showed TRU levels greater than 4000 nCi/g. Studies involving simulating storage of ground CST in sludge slurries indicated no detrimental effects on the measured yield stress or viscosity of the slurries when stored for up to 4 months at 50 degrees C. During the storage testing, there was no indication of significant degradation of the C ST as measured by in growth of CST-specific elements in the liquid phase of the slurry. Also, during storage tests minor desorption of cesium from the ground CST material was observed.

  4. Potentiometric titration curves of aluminium salt solutions and its species conversion in the hydrolysis-polymerization course

    Directory of Open Access Journals (Sweden)

    Chenyi Wang

    2008-12-01

    Full Text Available A new concept of critical point is expounded by analysing the potentiometric titration curves of aluminium salt solutions under the moderate slow rate of base injection. The critical point is defined as the characteristic spot of the Al3+ salt solutions potentiometric titration curve, which is related to the experiment conditions. In addition, the changes of critical points reflect the influence of experiment conditions on the course of the hydrolysis-polymerization and the conversion of hydroxyl polynuclear aluminum species. According to the OH/Al mole ratio, the Al species can be divided into four regions quantitatively by three characteristic points on the titration curves: Part I, Al3+/Ala region, consist chiefly of Al3+ and mononuclear Al; Part II, the small/middle polynuclear Al region, including Al2-Al12; Part III, the large-size polynuclear aluminum region, consistent with predominantly Al13-Al54 and a little sol/gel Al(OH3; Part IV, the dissolving region of sol/gel Alc, only Al(OH 3 (aq or am and Al(OH4- species, which set up a base to study on the hydrolysis-polymerization of Al3+. At the same time, significant effects of total aluminum concentration, temperature, halide ion, silicate radical, and organic acid radical on the titration curves and its critical points were observed. Given the three critical points which demarcating the aluminum forms, we carry out a through investigation into the fundamental regulations of these factors’ influence, and offer a fresh train of thought to study the hydrolysis-polymerization of Al3+ in soil solutions.

  5. Validation of Transfer Functions Predicting Cd and Pb Free Metal Ion Activity in Soil Solution as a Function of Soil Characteristics and Reactive Metal Content

    NARCIS (Netherlands)

    Pampura, T.; Groenenberg, J.E.; Lofts, S.; Priputina, I.

    2007-01-01

    According to recent insight, the toxicity of metals in soils is better related to the free metal ion (FMI) activity in the soil solution than to the total metal concentration in soil. However, the determination of FMI activities in soil solution is a difficult and time-consuming task. An alternative

  6. Coalescence of organic solutions in acid and metal extraction by tri-alkylamines; Demixtion des solutions organiques lors de l'extraction des acides et des metaux par les trialcoylamines

    Energy Technology Data Exchange (ETDEWEB)

    Blain, J. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1970-07-01

    The formation of two layers with tri-alkylammonium salts solutions in low polarity diluents could be explained on the basis of settling of micelles. Light scattering and viscosity measurements reveal that micelles size increases rather sharply before coalescence. The existence of micelles in the solution has been confirmed by ultracentrifuge experiments. The behaviour of these solutions, in general, is similar to that of colloidal soap solutions. The various parameters which promote third phase formation are: anion size in the order of Cl{sup -} {approx} Br{sup -} < NO{sub 3} < ClO{sub 4}{sup -}; extraction of excess acid; metal cation size in the order of UO{sub 2}{sup ++} < Pu{sup 4+} {approx} Th{sup 4+}; decreasing in the length of the n-alkyl chain in the alkyl-ammonium salts; decreasing in diluent polarity. The above phenomenon could be explained on the basis of the affinity between alkylammonium salts and organic solvent. The composition of the three phases is independent of the initial amine concentration for a fixed acid and metal concentration. This has been verified experimentally and is in conformity with phase rule. (author) [French] La demixtion des solutions organiques de sels de trialcoyl-ammonium dans les solvants peu polaires est provoquee par la decantation des micelles presentes dans la solution. Nous avons montre par viscosimetrie et surtout par diffusion de la lumiere que les micelles grossissent de facon importante juste avant demixtion. Des experiences d'ultracentrifugation nous ont permis de confirmer la presence de micelles. Le comportement de ces solutions est analogue a celui des solutions colloidales de savons dans l'eau. Ainsi tous les parametres qui font decroitre la compatibilite du sel d'ammonium R{sub 3}NH+ oooX{sup -} avec le solvant organique favorisent l'agregation du sel et par consequent la demixtion, soient: l'extraction des anions de taille croissante Cl{sup -} {approx} Br{sup -} < NO{sub 3} < Cl

  7. In situ ETEM synthesis of NiGa alloy nanoparticles from nitrate salt solution

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Duchstein, Linus Daniel Leonhard; Sharafutdinov, Irek

    2014-01-01

    Metallic alloy nanoparticles (NPs) are synthesized in situ in an environmental transmission electron microscope. Atomic level characterization of the formed alloy NPs is carried out at synthesis conditions by use of high-resolution transmission electron microscopy, electron diffraction and electron...

  8. Frictional properties of the end-grafted polymer layer in presence of salt solution

    Science.gov (United States)

    Raftari, Maryam; Zhang, Zhenyu; Leggett, Graham J.; Geoghegan, Mark

    2012-02-01

    We have studied the frictional behaviour of grafted poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) films using friction force microscopy (FFM). The films were prepared on native oxide-terminated silicon substrates using the technique of atom transfer radical polymerization (ATRP). These brushes had constant grafting density (1.18 nm2), and of a thickness of ˜66 nm, as measured by ellipsometry. We show that single asperity contact mechanics (Johnson-Kendall-Roberts (JKR) and Derjaguin-M"uller-Toporov (DMT) models) as well as a linear (Amontons) relation between applied load and frictional load all apply to these systems depending on the concentration of salt and the nature of the FFM probe. Measurements were made using gold-coating and polymer functionalized silicon nitride triangular probes. Polymer functionalized probe included growth the PDMAEMA with same method on tips. The frictional behaviour are investigated between PDMAEMA and gold coated and PDMAEMA tips immersed in different concentrations of KCl, KBr and KI.

  9. Catalysis by metallic nanoparticles in solution: Thermosensitive microgels as nanoreactors

    OpenAIRE

    Roa, Rafael; Angioletti-Uberti, Stefano; Lu, Yan; Dzubiella, Joachim; Piazza, Francesco; Ballauff, Matthias

    2018-01-01

    Metallic nanoparticles have been used as catalysts for various reactions, and the huge literature on the subject is hard to overlook. In many applications, the nanoparticles must be affixed to a colloidal carrier for easy handling during catalysis. These "passive carriers" (e.g., dendrimers) serve for a controlled synthesis of the nanoparticles and prevent coagulation during catalysis. Recently, hybrids from nanoparticles and polymers have been developed that allow us to change the catalytic ...

  10. Shape measurement in sheet metal formation: requirements and solutions

    Science.gov (United States)

    Hoefling, Roland; Aswendt, Petra; Neugebauer, Reimund

    1999-09-01

    Basically, optical profilometry has a wide spread application potential in sheet metal forming starting at the design stage when models have to be digitized, followed by needs for shape acquisition in tooling technology, and finally in on-line testing during mass production. In particular, deep-drawing of car body components and surface structures of aircrafts put high demands on metrology. In the past, a number of restrictions caused application limits of optical 3D sensing in this field. The paper will show, that object size greater than 1 m, measuring time less than 1 s, vertical resolution less than 10-4 of object size and the capability to work on shining, oil-covered metallic surfaces are key criteria for industrial applications. New approaches are described addressing these practical needs. Based upon high brightness, high contrast pixel by pixel projection equipment (Digital Micromirror Device of Texas Instruments Inc.), algorithms have been developed and tested that meet the objectives named above. Multilevel adaption generates near-to- perfect sinusoidal fringes across the field of view and advanced phase analysis improves both, measuring accuracy and reliability of operation. Fast data acquisition has been obtained by development of sophisticated synchronization hardware. An application example will be given showing surface structures on a large sheet metal part at two different scales of height.

  11. Use of silica-immobilized humin for heavy metal removal from aqueous solution under flow conditions.

    Science.gov (United States)

    de la Rosa, G; Gardea-Torresdey, J L; Peralta-Videa, J R; Herrera, I; Contreras, C

    2003-10-01

    Humin extracted from Sphagnum peat moss was immobilized in a silica matrix and column experiments were performed in order to evaluate the removal and recovery of metal ions from aqueous solution under flow conditions. These experiments also allowed testing the recycling capacity of the column. Single-element solutions of Cu(II) and Pb(II), and a multi-metal solution containing Cd(II), Cu(II), Pb(II), Ni(II), and Cr(III) were passed through the columns at a flow rate of 2 ml/min. A 0.5 M sodium citrate solution was used as the stripping agent in the metal-ion recovery process. Humin immobilized in the silica matrix exhibited a similar, and in some cases, even a higher capacity than other biosorbents for the removal of metal ions from aqueous solutions under flow conditions. The sodium citrate was effective in removing Cu(II), Pb(II), Cd(II), and Ni(II) from the metal saturated column. The selectivity of the immobilized biomass was as follows: Cr(III)>Pb(II)>Cu(II)>Cd(II)>Ni(II). This investigation provides a new, environmentally friendly and cost-effective possibility to clean up heavy-metal contaminated wastewaters by using the new silica-immobilized humin material.

  12. Molecular solution processing of metal chalcogenide thin film solar cells

    Science.gov (United States)

    Yang, Wenbing

    The barrier to utilize solar generated electricity mainly comes from their higher cost relative to fossil fuels. However, innovations with new materials and processing techniques can potentially make cost effective photovoltaics. One such strategy is to develop solution processed photovoltaics which avoid the expensive vacuum processing required by traditional solar cells. The dissertation is mainly focused on two absorber material system for thin film solar cells: chalcopyrite CuIn(S,Se)2 (CISS) and kesterite Cu2ZnSn(S,Se) 4 organized in chronological order. Chalcopyrite CISS is a very promising material. It has been demonstrated to achieve the highest efficiency among thin film solar cells. Scaled-up industry production at present has reached the giga-watt per year level. The process however mainly relies on vacuum systems which account for a significant percentage of the manufacturing cost. In the first section of this dissertation, hydrazine based solution processed CISS has been explored. The focus of the research involves the procedures to fabricate devices from solution. The topics covered in Chapter 2 include: precursor solution synthesis with a focus on understanding the solution chemistry, CISS absorber formation from precursor, properties modification toward favorable device performance, and device structure innovation toward tandem device. For photovoltaics to have a significant impact toward meeting energy demands, the annual production capability needs to be on TW-level. On such a level, raw materials supply of rare elements (indium for CIS or tellurium for CdTe) will be the bottleneck limiting the scalability. Replacing indium with zinc and tin, earth abundant kesterite CZTS exhibits great potential to reach the goal of TW-level with no limitations on raw material availability. Chapter 3 shows pioneering work towards solution processing of CZTS film at low temperature. The solution processed devices show performances which rival vacuum

  13. Solution-processed barium salts as charge injection layers for high performance N-channel organic field-effect transistors.

    Science.gov (United States)

    Kim, Nam-Koo; Khim, Dongyoon; Xu, Yong; Lee, Seung-Hoon; Kang, Minji; Kim, Jihong; Facchetti, Antonio; Noh, Yong-Young; Kim, Dong-Yu

    2014-06-25

    N-channel organic field-effect transistors (OFETs) have generally shown lower field-effect mobilities (μFET) than their p-type counterparts. One of the reasons is the energetic misalignment between the work function (WF) of commonly used charge injection electrode, i.e. gold (Au), and the lowest unoccupied molecular orbital (LUMO) of n-channel electron-transporting organic semiconductors. Here, we report barium salts as solution-processed interlayers, to improve the electron-injection and/or hole-blocking in top-gate/bottom-contact n-channel OFETs, based on poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-dithiophene)} (P(NDI2OD-T2)) and phenyl-C61-butyric acid methyl ester (PC61BM). Two different barium salts, barium hydroxide (Ba(OH)2) and barium chloride (Ba(Cl)2), are employed as the ultrathin interlayer (∼2 nm); and they effectively tune the WF of Au from 4.9 eV, to as low as 3.5 eV. The resulting n-channel OFETs exhibit significantly improved μFET, approaching 2.6 cm(2)/(V s) and 0.1 cm(2)/(V s) for the best P(NDI2OD-T2) and PC61BM devices, respectively, with Ba(OH)2 as interlayer.

  14. A molecular dynamic study on the dissociation mechanism of SI methane hydrate in inorganic salt aqueous solutions.

    Science.gov (United States)

    Xu, Jiafang; Chen, Zhe; Liu, Jinxiang; Sun, Zening; Wang, Xiaopu; Zhang, Jun

    2017-08-01

    Gas hydrate is not only a potential energy resource, but also almost the biggest challenge in oil/gas flow assurance. Inorganic salts such as NaCl, KCl and CaCl 2 are widely used as the thermodynamic inhibitor to reduce the risk caused by hydrate formation. However, the inhibition mechanism is still unclear. Therefore, molecular dynamic (MD) simulation was performed to study the dissociation of structure I (SI) methane hydrate in existence of inorganic salt aqueous solution on a micro-scale. The simulation results showed that, the dissociation became stagnant due to the presence of liquid film formed by the decomposed water molecules, and more inorganic ions could shorten the stagnation-time. The diffusion coefficients of ions and water molecules were the largest in KCl system. The structures of ion/H 2 O and H 2 O/H 2 O were the most compact in hydrate/NaCl system. The ionic ability to decompose hydrate cells followed the sequence of: Ca 2+ >2K + >2Cl - >2Na + . Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Chemical Synthesis of Metal Nanoparticles in Aqueous Solutions with the Presence of Some Additives

    International Nuclear Information System (INIS)

    Oyama, M.

    2011-01-01

    Metal nanoparticles having interesting shapes can be prepared in aqueous solutions through simple reductions of metal ions with the presence of some additive reagents, such as cetyltrimethylammonium bromide and hexamethylenetetramine. In this review, some successful results for shape-controlled synthesis of metal nanoparticles in our group are summarized, which includes the synthesis of palladium nano cubes, palladium nano bricks, gold nano tripods. In addition, combining with indium tin oxide electrode surfaces, shape-controlled growth is shown to be possible to form gold nano plates and copper oxide nano wires. Even in relatively mild synthetic conditions, interesting shape-controlled synthesis of metal nanoparticles is possible. (author)

  16. Removal of some metal ions from aqueous solution using orange ...

    African Journals Online (AJOL)

    In this study, the use of orange mesocarp residue biomass (modified and unmodified) as a costeffective and environmentally safe technique to remove Mg2+, Zn2+, Cu2+, Pb2+ from aqueous solution was investigated. The results showed that unmodified orange mesocarp residue bound 56% of Mg2+, 81% of Zn2+, 71% of ...

  17. Noble metal superparticles and methods of preparation thereof

    Science.gov (United States)

    Sun, Yugang; Hu, Yongxing

    2016-07-12

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution is cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.

  18. Numerical simulation of solidification in a horizontal cylindrical annulus charged with an aqueous salt solution

    Science.gov (United States)

    Neilson, D. G.; Incropera, F. D.; Bennon, W. D.

    1990-01-01

    A computational study of solidification of a binary Na2CO3 solution in a horizontal cylindrical annulus is performed using a continuum formulation with a control-volume based, finite-difference scheme. The initial conditions were selected to facilitate the study of counter thermal and solutal convection, accompanied by extensive mushy region growth. Numerical results are compared with experimental data with mixed success. Qualitative agreement is obtained for the overall solidification process and associated physical phenomena. However, the plume thickness calculated for the solutally-driven convective upflow is substantially smaller than the observed value. Evolution of double-diffusive layers is predicted, but over a time scale much smaller than that observed experimentally. Good agreement is obtained between predicted and measured results for solid growth, but the mushy region thickness is significantly overpredicted.

  19. Effect of salt identity on the phase diagram for a globularprotein in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Bostrom, Mathias; Tavares, Frederico W.; Ninham, Barry W.; Prausnitz, John M.

    2006-02-22

    Monte Carlo simulations are used to establish the potential of mean force between two globular proteins in an aqueous electrolyte solution. This potential includes nonelectrostatic contributions arising from dispersion forces first, between the globular proteins, and second, between ions in solution and between each ion and the globular protein. These latter contributions are missing from standard models. The potential of mean force, obtained from simulation, is fitted to an analytic equation. Using our analytic potential of mean force and Barker-Henderson perturbation theory, we obtain phase diagrams for lysozyme solutions that include stable and metastable fluid-fluid and solid-fluid phases when the electrolyte is 0.2 M NaSCN or NaI or NaCl. The nature of the electrolyte has a significant effect on the phase diagram.

  20. Metals in European roadside soils and soil solution--a review.

    Science.gov (United States)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-06-01

    This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of temperature, moisture, and metal salt content on dielectric properties of rice bran associated with radio frequency heating.

    Science.gov (United States)

    Ling, Bo; Liu, Xiaoli; Zhang, Lihui; Wang, Shaojin

    2018-03-13

    Dielectric heating including microwave (MW) and radio frequency (RF) energy has been regarded as alternative thermal treatments for food processing. To develop effective rice bran (RB) stabilization treatments based on RF and MW heating, dielectric properties (DPs) with dielectric constant (ε') and loss factor (ε″) of RB samples at frequencies (10-3000 MHz), temperatures (25-100 °C), moisture content (MC, 10.36-24.69% w.b.) and three metal salt levels (0.05-2.00%) were determined by an open-ended coaxial probe and impedance analyzer. Results indicated that both ε' and ε″ of RB samples increased with increasing temperature and MC. The increase rate was greater at higher temperature and moisture levels than at lower levels, especially at frequencies lower than 300 MHz. Cubic order models were developed to best fit the relationship between DPs of RB samples and temperature/MC at five frequencies with R 2 greater than 0.994. Both ε″ and RF heating rate of RB samples increased significantly with added NaCl (2%), KCl (1%) and Na 6 O 18 P 6 (2%). The obtained data are useful in developing computer models and simulating dielectric heating for RB stabilization and may also provide theoretical basis for synergistic stabilization of RB under combined dielectric heating with metal salts.

  2. Preparation and properties of chitosan-metal complex: Some factors influencing the adsorption capacity for dyes in aqueous solution.

    Science.gov (United States)

    Rashid, Sadia; Shen, Chensi; Yang, Jing; Liu, Jianshe; Li, Jing

    2018-04-01

    Chitosan-metal complexes have been widely studied in wastewater treatment, but there are still various factors in complex preparation which are collectively responsible for improving the adsorption capacity need to be further studied. Thus, this study investigates the factors affecting the adsorption ability of chitosan-metal complex adsorbents, including various kinds of metal centers, different metal salts and crosslinking degree. The results show that the chitosan-Fe(III) complex prepared by sulfate salts exhibited the best adsorption efficiency (100%) for various dyes in very short time duration (10min), and its maximum adsorption capacity achieved 349.22mg/g. The anion of the metal salt which was used in preparation played an important role to enhance the adsorption ability of chitosan-metal complex. SO 4 2- ions not only had the effect of crosslinking through electrostatic interaction with amine group of chitosan polymer, but also could facilitate the chelation of metal ions with chitosan polymer during the synthesis process. Additionally, the pH sensitivity and the sensitivity of ionic environment for chitosan-metal complex were analyzed. We hope that these factors affecting the adsorption of the chitosan-metal complex can help not only in optimizing its use but also in designing new chitosan-metal based complexes. Copyright © 2017. Published by Elsevier B.V.

  3. Metal extraction from Cetraria islandica (L. Ach. lichen using low pH solutions

    Directory of Open Access Journals (Sweden)

    ANA A. CUCULOVIC

    2008-04-01

    Full Text Available Extraction of metals (K, Al, Ca, Mg, Fe, Cu, Ba, Zn, Mn and Sr from dry Cetraria islandica (L. Ach. lichen was performed using solutions similar to acid rain (solution A – H2SO4–HNO3–(NH42SO4 and solution B – H2SO4–HNO3–(NH42SO4–NH4NO3. The pH values of these solutions were 2.00, 2.58, 2.87, 3.28, and 3.75. Five consecutive extractions were performed with each solution. In all solutions, the extracted metal content, except Cu and Ca, was the highest in the first extract. The highest percentage of the metals desorbed in the first extraction was obtained using solutions with low pH values, 2.00, 2.58, and 2.87. The lowest percentage in the first extraction was obtained using solutions with pH 3.28 and 3.75, indicating influence of the H+ ion on the extraction. According to the results obtained, the investigated metals form two groups. The first group includes K, Al, Ca, Mg, and Fe. They were extracted in each of the five extractions at each of the pH values. The second group includes Ba, Zn, Mn, Cu, and Sr, which were not all extracted at each pH value. The first group yielded three types of extraction curves when the logarithms of extracted metal amounts were plotted as a function of the number of successive extractions. These effects indicate that three different positions (centres of metal ion accumulation exist in the lichen (due to sorption, complex formation, or other processes present in the tissues.

  4. Cr(VI) sorption behavior from aqueous solutions onto polymeric microcapsules containing a long-chain quaternary ammonium salt: Kinetics and thermodynamics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barassi, Giancarlo; Valdes, Andrea; Araneda, Claudio; Basualto, Carlos; Sapag, Jaime; Tapia, Cristian [Laboratorio de Operaciones Unitarias, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Av. Vicuna Mackenna 20, Santiago (Chile); Valenzuela, Fernando, E-mail: fvalenzu@uchile.cl [Laboratorio de Operaciones Unitarias, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Av. Vicuna Mackenna 20, Santiago (Chile)

    2009-12-15

    This work studies the adsorption of Cr(VI) ions from an aqueous acid solution on hydrophobic polymeric microcapsules containing a long-chain quaternary ammonium salt-type extractant immobilized in their pore structure. The microcapsules were synthesized by adding the extractant Aliquat 336 during the in situ radical copolymerization of the monomers styrene (ST) and ethylene glycol dimethacrylate (EGDMA). The microcapsules, which had a spherical shape with a rough surface, behaved as efficient adsorbents for Cr(VI) at the tested temperatures. The results of kinetics experiments carried out at different temperatures showed that the adsorption process fits well to a pseudo-second-order with an activation energy of 82.7 kJ mol{sup -1}, confirming that the sorption process is controlled by a chemisorption mechanism. Langmuir's isotherms were found to represent well the experimentally observed sorption data. Thermodynamics parameters, namely, changes in standard free energy ({Delta}G{sup 0}), enthalpy ({Delta}H{sup 0}), and entropy ({Delta}S{sup 0}), are also calculated. The results indicate that the chemisorption process is spontaneous and exothermic. The entropy change value measured in this study shows that metal adsorbed on microcapsules leads to a less chaotic system than a liquid-liquid extraction system.

  5. Ion Pairing in Aqueous Lithium Salt Solutions with Monovalent and Divalent Counter-Anions

    Czech Academy of Sciences Publication Activity Database

    Pluhařová, Eva; Mason, Philip E.; Jungwirth, Pavel

    2013-01-01

    Roč. 117, č. 46 (2013), s. 11766-11773 ISSN 1089-5639 R&D Projects: GA MŠk LH12001 Grant - others:MŠMT(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : lithium * aqueous solution * neutron scattering * molecular dynamics * polarizability Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.775, year: 2013

  6. Nickel-plating for active metal dissolution resistance in molten fluoride salts

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Anderson, Mark; Allen, Todd [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States)

    2011-04-15

    Ni electroplating of Incoloy-800H was investigated with the goal of mitigating Cr dissolution from this alloy into molten 46.5%LiF-11.5%NaF-42%KF eutectic salt, commonly referred to as FLiNaK. Tests were conducted in graphite crucibles at a molten salt temperature of 850 deg. C. The crucible material graphite accelerates the corrosion process due to the large activity difference between the graphite and the alloy. For the purposes of providing a baseline for this study, un-plated Incoloy-800H and a nearly pure Ni-alloy, Ni-201 were also tested. Results indicate that Ni-plating has the potential to significantly improve the corrosion resistance of Incoloy-800H in molten fluoride salts. Diffusion of Cr from the alloy through the Ni-plating does occur and if the Ni-plating is thin enough this Cr eventually dissolves into the molten salt. The post-corrosion test microstructure of the Ni-plating, particularly void formation was also observed to depend on the plating thickness. Diffusion anneals in a helium environment of Ni-plated Incoloy-800H and an Fe-Ni-Cr model alloy were also investigated to understand Cr diffusion through the Ni-plating. Further enhancements in the efficacy of the Ni-plating as a protective barrier against Cr dissolution from the alloy into molten fluoride salts can be achieved by thermally forming a Cr{sub 2}O{sub 3} barrier film on the surface of the alloy prior to Ni electroplating.

  7. Thin-Film Nanocomposite (TFN) Membranes Incorporated with Super-Hydrophilic Metal-Organic Framework (MOF) UiO-66: Toward Enhancement of Water Flux and Salt Rejection.

    Science.gov (United States)

    Ma, Dangchen; Peh, Shing Bo; Han, Gang; Chen, Shing Bor

    2017-03-01

    Zirconiumv (IV)-carboxylate metal-organic framework (MOF) UiO-66 nanoparticles were successfully synthesized and incorporated in the polyamide (PA) selective layer to fabricate novel thin-film nanocomposite (TFN) membranes. Compared to unmodified pure polyamide thin-film composite (TFC) membranes, the incorporation of UiO-66 nanoparticles significantly changes the membrane morphology and chemistry, leading to an improvement of intrinsic separation properties due to the molecular sieving and superhydrophilic nature of UiO-66 particles. The best performing TFN-U2 (0.1 wt % particle loading) membrane not only shows a 52% increase of water permeability but also maintains salt rejection levels (∼95%) similar to the benchmark. The effects of UiO-66 loading on the forward osmosis (FO) performance were also investigated. Incorporation of 0.1 wt % UiO-66 produced a maximum water flux increase of 40% and 25% over the TFC control under PRO and FO modes, when 1 M NaCl was used as the draw solution against deionized water feed. Meanwhile, solute reverse flux was maintained at a relatively low level. In addition, TFN-U2 membrane displayed a relatively linear increase in FO water flux with increasing NaCl concentration up to 2.0 M, suggesting a slightly reduced internal concentration polarization effect. To our best knowledge, the current study is the first to consider implementation of Zr-MOFs (UiO-66) onto TFN-FO membranes.

  8. Clay mineralogy, grain size distribution and their correlations with trace metals in the salt marsh sediments of the Skallingen barrier spit, Danish Wadden Sea

    DEFF Research Database (Denmark)

    He, Changling; Bartholdy, Jesper; Christiansen, Christian

    2012-01-01

    with the other adsorbents and to low availability of the mobile trace metals in the system. Correlation between trace metals and clay minerals may therefore be used as an indicator in environmental assessment. Fine grain fractions of the sediment increased markedly after salt marsh invasion in about 1931...... metals. The clay assembly of the sediment consists of illite, kaolinite and much less chlorite and smectite. The major clay minerals of illite, kaolinite as well as chlorite correlate very poorly with all the trace metals investigated, due probably to the weak competing strength of these clays compared...... is observed at about 30 µm, around where the correlation coefficient r drops from 0.8 to 0.1. Adsorption is the controlling mechanism for the behavior of trace metals in the salt marsh. Fe/Mn (hydr)oxides and organic matter play the key role....

  9. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  10. Determination of heavy metals at sub-ppm levels in seawater and dialysis solutions by FAAS after tetrakis(pyridine)-nickel(II)bis(thiocyanate) coprecipitation.

    Science.gov (United States)

    Sahin, Uğur; Kartal, Senol; Ulgen, Ahmet

    2008-06-01

    A coprecipitation method has been developed for the determination of Cr(III), Mn(II), Fe(III), Co(II), Cu(II), Cd(II) and Pb(II) ions in aqueous samples by flame atomic absorption spectrometry (FAAS) with the combination of pyridine, nickel(II) as a carrier element and potassium thiocyanate as an auxiliary complexing agent. The obtained coprecipitates were dissolved with nitric acid and measured by FAAS. The coprecipitation conditions, such as the effect of the pH, amounts of nickel, pyridine and potassium thiocyanate, sample volume, and the standing time of the precipitate formation were examined in detail. It was found that the metal ions studied were quantitatively coprecipitated with tetrakis(pyridine)-nickel(II)bis(thiocyanate) precipitate (TP-Ni-BT) in the pH range of 9.0 - 10.5. The reliability of the results was evaluated by recovery tests, using synthetic seawater solutions spiked with the analyte metal ions. The obtained recoveries ranged from 96 to 101% for all of the metal ions investigated. The proposed method was validated by analyses of two certified reference materials (NIST SRM 2711 Montana soil and HPS Certified Waste Water Trace Metals Lot #D532205). It was also successfully applied to seawater and dialysis solution samples. The detection limits (n = 25, 3s) were in the range of 0.01-2.44 microg l(-1) for the studied elements and the relative standard deviations were seawater and dialysis solution having high salt contents.

  11. OSMOTIC DEHYDRATION KINETICS OF GUAVAS IN MALTOSE SOLUTIONS WITH CALCIUM SALT*

    Directory of Open Access Journals (Sweden)

    S. DI S. MASTRANTONIO

    2009-03-01

    Full Text Available

    The osmotic dehydration kinetics of guavas in maltose solutions at 40 and 60ºBrix, with addition of 0, 0.6 and 1.2% of calcium lactate was studied in this paper and the final product quality was evaluated. The experiments were carried out up to 60 hours and samples were taken for analysis at different times to evaluate guavas weight reduction, water loss and sugar gain and to characterize the product according to its texture and color. After 24 hours of process the mass transfer of water and sugar between the osmotic solution and the fruit was negligible, showing that process equilibrium was reached. The increase of sugar concentration in the osmotic solution showed strong influence on the dehydration process, increasing the water loss and reducing sugar gain. The presence of calcium ions in the osmotic solution also influenced the kinetics of mass transfer and showed a strong influence on fruit texture. Higher values of stress and strain at failure were obtained when calcium lactate was employed. The effect of the different osmotic treatments on the color parameters was also investigated and significant changes were observed in the values of chroma C* and hue H* due to sugar concentration and calcium addition.

    KEYWORDS: Osmotic dehydration; kinetics; guava; maltose; calcium lactate.

  12. Iodometric determination of decahydrodecaborate (2-) salts in aqueous solutions and nickel plating electrolytes

    International Nuclear Information System (INIS)

    Egorova, N.V.; Svitsyn, R.A.

    1991-01-01

    A method for decahydrodecaborate (2-) anion determination in aqueous solutions and in electrolyte of nickel plating in the range of concentrations 0.002-100 mass % was described. The method is based on the interaction of the compound analyzed with iodine in the presence of acetic acid in the process of heating and subsequent titration of iodine excess by sodium thiosulfate. Relative error of the determination is 1 %

  13. Analysis of Hanford Cast Stone Supplemental LAW using Composition Adjusted SRS Tank 50 Salt Solution

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ramsey, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-04-25

    Vitrification is the primary disposition path for Low Activity Waste (LAW) at the Department of Energy (DOE) Hanford Site. A cementitious waste form is one of the alternatives being considered for the supplemental immobilization of the LAW that will not be treated by the primary vitrification facility. Washington River Protection Solutions (WRPS) has been directed to generate and collect data on cementitious or pozzolanic waste forms such as Cast Stone.

  14. Radiation chemical behavior of ethylene-propylene elastomers in salt solutions. IV. Oxygen uptake testing

    International Nuclear Information System (INIS)

    Zaharescu, T.; Podina, C.

    1998-01-01

    The stability of γ-irradiated ethylene-propylene elastomers, namely ethylene-propylene copolymer (EPR) and ethylene-propylene-diene terpolymer (EPDM) can be satisfactorily evaluated by the oxygen uptake method. The rates of oxidation induced by γ radiation were assessed on the samples immersed in aqueous sodium chloride solutions of various concentrations. First and second derivatives of [O 2 ] = f(time) dependencies are invoked for the evaluation of oxidative degradation. (author)

  15. Tank Waste Transport Stability: Summaries of Hanford Slurry and Salt-Solution Studies in FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.D.

    2002-07-08

    This report is a collection of summary articles on FY 2000 studies of slurry transport and salt-well pumping related to Hanford tank waste transfers. These studies are concerned with the stability (steady, uninterrupted flow) of tank waste transfers, a subset of the Department of Energy (DOE) Tanks Focus Area Tank (TFA) Waste Chemistry effort. This work is a collaborative effort of AEA Technology plc, the Diagnostic Instrumentation and Analysis Laboratory at Mississippi State University (DIAL-MSU), the Hemispheric Center for Environmental Technology at Florida International University (HCET-FIU), Numatec Hanford Corporation (NHC), and the Oak Ridge National Laboratory (ORNL). The purpose of this report is to provide, in a single document, an overview of these studies to help the reader identify contacts and resources for obtaining more detailed information and to help promote useful interchanges between researchers and users. Despite over 50 years of experience in transporting radioactive tank wastes to and from equipment and tanks at the Department of Energy's Hanford, Savannah River, and Oak Ridge sites, waste slurry transfer pipelines and process piping become plugged on occasion. At Hanford, several tank farm pipelines are no longer in service because of plugs. At Savannah River, solid deposits in the outlet line of the 2H evaporator have resulted in an unplanned extended downtime. Although waste transfer criteria and guidelines intended to prevent pipeline plugging are in place, they are not always adequate. To avoid pipeline plugging in the future, other factors that are not currently embodied in the transfer criteria may need to be considered. The work summarized here is being conducted to develop a better understanding of the chemical and waste flow dynamics during waste transfer. The goal is to eliminate pipeline plugs by improving analysis and engineering tools in the field that incorporate this understanding.

  16. The measurement of metallic uranium solubility in lithium chloride molten salt

    International Nuclear Information System (INIS)

    Park, K. K.; Choi, I. K.; Yeon, J. W.; Choi, K. S.; Park, Y. J.

    2002-01-01

    For the purpose of more precise solubility measurement of metallic uranium in lithium chloride melt, the effect of lithium chloride on uranium determination and and the change of oxidation state of metallic uranium in the media were investigated. Uranium of higher than 10 μg/g could be directly determined by ICP-AES. In the case of the lower concentration, the separation and concentration of uranium by anion exchanger was followed by ICP-AES, thereby extending the measurable concentration to 0.1 μg/g. The effects of lithium oxide, uranium oxides(UO 2 or U 3 O 8 ) and metallic lithium on the solubility of metallic uranium were individually investigated in glassy carbon or stainless steel crucibles under argon gas atmosphere. Since metallic uranium is oxidized to uranium(III) in the absence of metallic lithium, causing an increase in the solubility, metallic lithium as reducing agent should be present in the reaction media to obtain the more precise solubility. The metallic uranium solubilities measured at 660 and 690 .deg. C were both lower than 10 μg/g

  17. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts

    International Nuclear Information System (INIS)

    Black, Amanda; McLaren, Ronald G.; Reichman, Suzanne M.; Speir, Thomas W.; Condron, Leo M.

    2011-01-01

    Few studies have quantified the accuracy of soil metal bioavailability assays using large datasets. A meta-analysis from experiments spanning 6 months to 13 years on 12 soil types, compared bioavailability estimate efficiencies for wheat and ryegrass. Treatments included biosolids ± metals, comparing total metal, Ca(NO 3 ) 2 , EDTA, soil solution, DGT and free ion activity. The best correlations between soil metal bioavailability and shoot concentrations were for Ni using Ca(NO 3 ) 2 (r 2 = 0.72) which also provided the best estimate of Zn bioavailability (r 2 = 0.64). DGT provided the best estimate of Cd bioavailability, accounting for 49% of shoot Cd concentrations. There was no reliable descriptor of Cu bioavailability, with less than 35% of shoot Cu concentrations defined. Thus interpretation of data obtained from many soil metal bioavailability assays is unreliable and probably flawed, and there is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn, and DGT for Cd. - Highlights: → A meta-analysis evaluated the efficacy of soil metal bioavailability assays. → DGT could explain 49% of shoot Cd concentration. → There is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn. - A meta-analysis of soil metal bioavailability estimates for 12 soil types concluded that there is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn, and DGT for Cd.

  18. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Black, Amanda, E-mail: amanda.black@lincoln.ac.nz [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand); McLaren, Ronald G. [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand); Reichman, Suzanne M. [School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne 3001 (Australia); Speir, Thomas W. [Institute of Environmental Science and Research Ltd (ESR), PO Box 50348, Porirua 5240 (New Zealand); Condron, Leo M. [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand)

    2011-06-15

    Few studies have quantified the accuracy of soil metal bioavailability assays using large datasets. A meta-analysis from experiments spanning 6 months to 13 years on 12 soil types, compared bioavailability estimate efficiencies for wheat and ryegrass. Treatments included biosolids {+-} metals, comparing total metal, Ca(NO{sub 3}){sub 2}, EDTA, soil solution, DGT and free ion activity. The best correlations between soil metal bioavailability and shoot concentrations were for Ni using Ca(NO{sub 3}){sub 2} (r{sup 2} = 0.72) which also provided the best estimate of Zn bioavailability (r{sup 2} = 0.64). DGT provided the best estimate of Cd bioavailability, accounting for 49% of shoot Cd concentrations. There was no reliable descriptor of Cu bioavailability, with less than 35% of shoot Cu concentrations defined. Thus interpretation of data obtained from many soil metal bioavailability assays is unreliable and probably flawed, and there is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn, and DGT for Cd. - Highlights: > A meta-analysis evaluated the efficacy of soil metal bioavailability assays. > DGT could explain 49% of shoot Cd concentration. > There is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn. - A meta-analysis of soil metal bioavailability estimates for 12 soil types concluded that there is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn, and DGT for Cd.

  19. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution.

    Science.gov (United States)

    Weibel, Gisela; Eggenberger, Urs; Kulik, Dmitrii A; Hummel, Wolfgang; Schlumberger, Stefan; Klink, Waldemar; Fisch, Martin; Mäder, Urs K

    2018-03-17

    Fly ash from municipal solid waste incineration contains a large potential for recyclable metals such as Zn, Pb, Cu and Cd. The Swiss Waste Ordinance prescribes the treatment of fly ash and recovery of metals to be implemented by 2021. More than 60% of the fly ash in Switzerland is acid leached according to the FLUWA process, which provides the basis for metal recovery. The investigation and optimization of the FLUWA process is of increasing interest and an industrial solution for direct metal recovery within Switzerland is in development. With this work, a detailed laboratory study on different filter cakes from fly ash leaching using HCl 5% (represents the FLUWA process) and concentrated sodium chloride solution (300 g/L) is described. This two-step leaching of fly ash is an efficient combination for the mobilization of a high percentage of heavy metals from fly ash (Pb, Cd ≥ 90% and Cu, Zn 70-80%). The depletion of these metals is mainly due to a combination of redox reaction and metal-chloride-complex formation. The results indicate a way forward for an improved metal depletion and recovery from fly ash that has potential for application at industrial scale. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Self-Assembly of Discrete Metal Complexes in Aqueous Solution via Block Copolypeptide Amphiphiles

    Directory of Open Access Journals (Sweden)

    Timothy J. Deming

    2013-01-01

    Full Text Available The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN2]−, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K183L19 to [Au(CN2]− solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals. This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water.

  1. Metal adsorbent for alkaline etching aqua solutions of Si wafer

    International Nuclear Information System (INIS)

    Tamada, Masao; Ueki, Yuji; Seko, Noriaki; Takeda, Toshihide; Kawano, Shin-ichi

    2012-01-01

    High performance adsorbent is expected to be synthesized for the removal of Ni and Cu ions from strong alkaline solution used in the surface etching process of Si wafer. Fibrous adsorbent was synthesized by radiation-induce emulsion graft polymerization onto polyethylene nonwoven fabric and subsequent amination. The reaction condition was optimized using 30 L reaction vessel and nonwoven fabric, 0.3 m width and 18 m long. The resulting fibrous adsorbent was evaluated by 48 wt% NaOH and KOH contaminated with Ni and Cu ions, respectively. The concentration levels of Ni and Cu ions was reduced to less than 1 μg/kg (ppb) at the flow rate of 10 h −1 in space velocity. The life of adsorbent was 30 times higher than that of the commercialized resin. This novel adsorbent was commercialized as METOLATE ® since the ability of adsorption is remarkably higher than that of commercial resin used practically in Si wafer processing. - Highlights: ► Adsorbent was synthesized by radiation-induced emulsion graft polymerization. ► Degree of grafting reached 120% at the pre-irradiation of 50 kGy. ► The resulting adsorbent removed Ni and Cu ion in strong alkaline solution. ► Adsorbent was commercialized for filter of Si wafer etchant.

  2. Magnetic Adsorbents for the Recovery of Precious Metals from Leach Solutions and Wastewater

    Directory of Open Access Journals (Sweden)

    Elham Aghaei

    2017-11-01

    Full Text Available Precious metals which include the platinum group, gold, and silver, play indispensable roles in high technology industries of the modern world due to their outstanding physical and chemical properties. As a result of diminishing availability of mineral sources, increasing demand, and environmental concerns, the recovery of precious metals from both leaching and industrial waste solutions is becoming a very important technology. Magnetic solid phase extraction (MSPE is a technique that has received substantial consideration in the separation and recovery of precious metals because of the many advantages it offers compared to conventional methods. This technique is based on the extraction of different analytes from solutions using solid adsorbents with magnetic properties. This review focuses on different types of magnetic adsorbents, the main procedures used for synthesis, characterization and their application in precious metals recovery based on recently published literatures.

  3. Comparative ion insertion study into a nanostructured vanadium oxide in aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Q.; Ren, S. L.; Zukowski, J.; Pomeroy, M.; Soghomonian, V., E-mail: soghomon@vt.edu [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2014-07-07

    We present a comparative study for the electrochemical insertion of different cations into a nanostructured vanadium oxide material. The oxide is hydrothemally synthesized and electrically characterized by variable temperature measurements. The electrochemical reactions are performed in aqueous chloride solutions of lithium, sodium, potassium, and ammonium, and the electrochemical behavior of various cycles are correlated with visual changes in the vanadium oxide nanosheets as observed by scanning electron microscopy. We note an increase in the specific charge per cycle in the cases of sodium and ammonium ions only, correlated with minimal physical changes to the nanosheets. The differing behavior of the various ions has implications for their use in electrical energy storage applications.

  4. Modified polypropylene fabrics and their metal ion sorption role in aqueous solution

    Science.gov (United States)

    Ehrhardt, A.; Miyazaki, K.; Sato, Y.; Hori, T.

    2005-11-01

    Polypropylene non-woven fabrics were grafted with glycidyl methacrylate by the electron beam irradiation method and the introduced epoxide rings were chemically conversed to hydroxyl and thiol groups. The modified polypropylene fabrics showed sufficient hydrophilicity to adsorb the metal ions from the aqueous solutions. The modified fibers were examined as adsorbents for metal ions dissolved in seawater and its model solutions at various conditions. The amount of ions adsorbed on the fabrics was determined by a sequential plasma spectrometry. The modified polypropylene fabrics adsorbed extremely high amount of Au(III) and Hg(II) ions. The equilibrium adsorption of Au(III) was almost not disturbed, even if Cu(II), Cd(II), Pb(II) and the other ions coexisted in the same aqueous solution. Nowadays, the most widely advantages of this technique are the recovery of metal ions dissolved in water and the treatment of industrial wastewater systems.

  5. Heat of solution and site energies of hydrogen in disordered transition-metal alloys

    International Nuclear Information System (INIS)

    Brouwer, R.C.; Griessen, R.

    1989-01-01

    Site energies, long-range effective hydrogen-hydrogen interactions, and the enthalpy of solution in transition-metal alloys are calculated by means of an embedded-cluster model. The energy of a hydrogen atom is assumed to be predominantly determined by the first shell of neighboring metal atoms. The semiempirical local band-structure model is used to calculate the energy of the hydrogen atoms in the cluster, taking into account local deviations from the average lattice constant. The increase in the solubility limit and the weak dependence of the enthalpy of solution on hydrogen concentration in disordered alloys are discussed. Calculated site energies and enthalpies of solution in the alloys are compared with experimental data, and good agreement is found. Due to the strong interactions with the nearest-neighbor metal atoms, hydrogen atoms can be used to determine local lattice separations and the extent of short-range order in ''disordered'' alloys

  6. Modified polypropylene fabrics and their metal ion sorption role in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, A. [University of Fukui, Graduate School of Engineering, Bunkyo 3-9-1, Fukui City, Fukui 910-8507 (Japan)]. E-mail: anelise@acbio2.acbio.fukui-u.ac.jp; Miyazaki, K. [Industrial and Technical Center of Fukui Prefecture (Japan); Sato, Y. [Mitsuya Corporation Ltd. (Japan); Hori, T. [University of Fukui, Graduate School of Engineering, Bunkyo 3-9-1, Fukui City, Fukui 910-8507 (Japan)

    2005-11-15

    Polypropylene non-woven fabrics were grafted with glycidyl methacrylate by the electron beam irradiation method and the introduced epoxide rings were chemically conversed to hydroxyl and thiol groups. The modified polypropylene fabrics showed sufficient hydrophilicity to adsorb the metal ions from the aqueous solutions. The modified fibers were examined as adsorbents for metal ions dissolved in seawater and its model solutions at various conditions. The amount of ions adsorbed on the fabrics was determined by a sequential plasma spectrometry. The modified polypropylene fabrics adsorbed extremely high amount of Au(III) and Hg(II) ions. The equilibrium adsorption of Au(III) was almost not disturbed, even if Cu(II), Cd(II), Pb(II) and the other ions coexisted in the same aqueous solution. Nowadays, the most widely advantages of this technique are the recovery of metal ions dissolved in water and the treatment of industrial wastewater systems.

  7. Solution-based approaches for making high-density sodalite waste forms to immobilize spent electrochemical salts

    Energy Technology Data Exchange (ETDEWEB)

    Lepry, William C.; Riley, Brian J.; Crum, Jarrod V.; Rodriguez, Carmen P.; Pierce, David A.

    2013-08-29

    Three different solution-based approaches were taken to make sodalite minerals as a host for a mixed salt simulating the waste generated during the electrochemical separations process of nuclear fuel reprocessing that contains alkali, alkaline earth, and lanthanide chlorides plus trace iodine and actinides. All of the approaches included an aqueous solution of mixed chlorides (simulated waste) but the other reactants varied: (1) Al(OH)3 + NaOH + CS, (2) NaAlO2 + CS, and (3) Al2Si2O7 + NaOH, (CS = colloidal silica). The products were dried, ground, pressed into pellets, fired (650–950 °C), and characterized. Both 5 and 10 mass% of a Si-Na-B glass binder were introduced at different stages in the process. Route (2) proved the most successful at producing high sodalite fractions (up to 100%) with minimal glass binder additions and showed high consolidation potential (up to 91.4% of theoretical density). Detailed comparisons are provided of the results.

  8. Ionic diffusion and proton transfer in aqueous solutions of alkali metal salts

    Czech Academy of Sciences Publication Activity Database

    Cassone, Giuseppe; Creazzo, F.; Giaquinta, P.V.; Šponer, Jiří; Saija, F.

    2017-01-01

    Roč. 19, č. 31 (2017), s. 20420-20429 ISSN 1463-9076 Institutional support: RVO:68081707 Keywords : initio molecular-dynamics * density-functional theory * electric-fields * liquid water Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  9. Metal separation from multi metallic solutions by sorption on and desorption from grape stalks

    OpenAIRE

    Busschaert, Pieter

    2016-01-01

    During the last years, problems related to soil and freshwater contaminations have often stood in the center of interest. Accumulated pollutants in the soil can end up in the water by dissolving in it. Heavy metals are part of the group of chemical elements that have strongly increased in the environment by human activities such as the mine and metallurgy industries. One of the highest concentrations of heavy metals in wastewaters can be found in Acid Mine Drainage (AMD). This are the outflow...

  10. Organic solutes in coconut palm seedlings under water and salt stresses

    Directory of Open Access Journals (Sweden)

    Alexandre R. A. da Silva

    Full Text Available ABSTRACT The objective of this study was to investigate the biochemical mechanisms associated with isolated and/or concurrent actions of drought and soil salinity in seedlings of coconut tree, through the accumulation of organic solutes (soluble carbohydrates, soluble amino N and free proline in leaves and roots. The experiment, conducted in a protected environment, in Fortaleza, Brazil, in a randomized block design, in a split-plot arrangement, evaluated the effects of different levels of water stress (plots by imposing distinct percentages of replacement of water losses through crop potential evapotranspiration - ETpc (20, 40, 60, 80 and 100%, associated with subplots consisting of increasing levels of soil salinity in saturation extract (1.72, 6.25, 25.80 and 40.70 dS m-1 provided by the soils collected in the Irrigated Perimeter of Morada Nova. Salinity did not change the concentration of organic solutes; however, there were increases in leaf and root levels of free proline in response to water stress, which contributes to the osmoregulation and/or osmoprotection of the species under adverse conditions of water supply.

  11. A genetically modified tobacco mosaic virus that can produce gold nanoparticles from a metal salt precursor.

    Directory of Open Access Journals (Sweden)

    Andrew John Love

    2015-11-01

    Full Text Available We genetically modified tobacco mosaic virus (TMV to surface display a characterized peptide with potent metal ion binding and reducing capacity (MBP TMV, and demonstrate that unlike wild type (WT TMV, this construct can lead to the formation of discrete 10-40 nm gold nanoparticles when mixed with 3 mM potassium tetrachloroaurate. Using a variety of analytical physicochemical approaches it was found that these nanoparticles were crystalline in nature and stable. Given that the MBP TMV can produce metal nanomaterials in the absence of chemical reductants, it may have utility in the green production of metal nanomaterials.

  12. Metallization of bacterial cellulose for electrical and electronic device manufacture

    Science.gov (United States)

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  13. Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode.

    Science.gov (United States)

    Yuan, Yating; Li, Wei; Chen, Hualin; Wang, Zhiyong; Jin, Xianbo; Chen, George Z

    2016-08-15

    Electrolysis of solid metal oxides has been demonstrated in MgCl2-NaCl-KCl melt at 700 °C taking the electrolysis of Ta2O5 as an example. Both the cathodic and anodic processes have been investigated using cyclic voltammetry, and potentiostatic and constant voltage electrolysis, with the cathodic products analysed by XRD and SEM and the anodic products by GC. Fast electrolysis of Ta2O5 against a graphite anode has been realized at a cell voltage of 2 V, or a total overpotential of about 400 mV. The energy consumption was about 1 kW h kgTa(-1) with a nearly 100% Ta recovery. The cathodic product was nanometer Ta powder with sizes of about 50 nm. The main anodic product was Cl2 gas, together with about 1 mol% O2 gas and trace amounts of CO. The graphite anode was found to be an excellent inert anode. These results promise an environmentally-friendly and energy efficient method for metal extraction by electrolysis of metal oxides in MgCl2 based molten salts.

  14. Surface effect on the electronic and the magnetic properties of rock-salt alkaline-earth metal silicides

    International Nuclear Information System (INIS)

    Bialek, Beata; Lee, Jaeil

    2011-01-01

    An all electron ab-initio method was employed to study the electronic and the magnetic properties of the (001) surface of alkaline-earth metal silicides, CaSi, SrSi, and BaSi, in the rock-salt structure. The three compounds retain their ferromagnetic metallic properties at the surface. Due to the surface effects, the magnetism of the topmost layer is changed as compared with the bulk. This is a short-range effect. In CaSi, the magnetism of the surface layer is noticeably reduced, as compared with the bulk: magnetic moments (MMs) on both Ca and Si atoms are reduced. In SrSi (001), the polarization of electrons in the surface atoms is similar to that in the bulk atoms, and the values of MMs on the component atoms in the topmost layer do not change as much as in CaSi. In BaSi (001), the magnetic properties of Si surface atoms are enhanced slightly, and the magnetism of Ba atoms is not affected considerably by the surface effect. The calculated densities of states confirm the short-range effect of the surface on the electronic properties of the metal silicides.

  15. Method for removal of metal atoms from aqueous solution using suspended plant cells

    Science.gov (United States)

    Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel

    1992-01-01

    The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells were also found to be of use in treating waste directly.

  16. BrCl production in NaBr/NaCl/HNO3/O3 solutions representative of sea-salt aerosols in the marine boundary layer

    Science.gov (United States)

    Disselkamp, R. S.; Chapman, E. G.; Barchet, W. R.; Colson, S. D.; Howd, C. D.

    Atomic bromine and chlorine liberated from sea-salt aerosol is thought to play an important role in chemistry of the marine boundary layer. Despite numerous modeling studies, no prior experimental investigations of the oxidation of halide species contained in simulated, or actual, sea-salt solutions have been performed. We present laboratory data that examines chemistry in NaBr/NaCl/HNO3/O3 solutions at 290 K. Ozonation experiments were performed by flowing ozone in air through a nitric acid/salt solution and monitoring pH with time using an ion-sensitive electrode. The rate of oxidation was observed to be first order in ozone concentration and to have a non-first order bromide concentration dependence. Ion Chromatography was used to measure both bromide disappearance as well as oxidation products formed during the course of the reactions studied. Our measurements of the oxidation rate versus ion concentration indicate that the high ionic strength present in sea-salt aerosol will possess unique kinetics different from dilute solution behavior. In addition, our results are consistent with the reaction sequence O3 + H+ + Br- → O2 + HOBr and HOBr + Cl- + H+ → BrCl + H2O. These observations support the HOBr mediated Cl- oxidation process proposed previously (Vogt et al., 1996).

  17. H-D exchange and other reactions of saturated hydrocarbons in solutions of transition metal complexes

    International Nuclear Information System (INIS)

    Shilov, A.E.; Shteinman, A.A.

    1975-01-01

    Heating methane, ethane and other paraffins with solutions of chlorides of Pt(II) or Pt(IV) in heavy water there was H-D exchange of D 2 O with RH molecule. The reaction was inhibited by chloride ions and accompanied by reduction of metal compounds. The investigation of kinetics and mechanism of these reactions has shown that alkyl derivatives of transition metals are the intermediates, the reaction rate increases with electron accepting properties of metal complexes and electron donating properties of C-H containing compounds. C-H bond was found to be activated to some reactions of substitution and dehydrogenation as well. (K.A.)

  18. New Engineering Solutions in Creation of Mini-BOF for Metallic Waste Recycling

    Science.gov (United States)

    Eronko, S. P.; Gorbatyuk, S. M.; Oshovskaya, E. V.; Starodubtsev, B. I.

    2017-12-01

    New engineering solutions used in design of the mini melting unit capable of recycling industrial and domestic metallic waste with high content of harmful impurities are provided. High efficiency of the process technology implemented with its use is achieved due to the possibility of the heat and mass transfer intensification in the molten metal bath, controlled charge into it of large amounts of reagents in lumps and in fines, and cut-off of remaining process slag during metal tapping into the teeming ladle.

  19. Syntheses, structure and properties of Alkaline-earth metal salts of 4 ...

    Indian Academy of Sciences (India)

    technical details of data acquisition and selected crystal refinement ... An analysis revealed that all compounds which contain metal:4-npa in 1:2 ratio are differently hydrated with the metal:water ratios being 1:10, 1:2, 1:7.5 and 1:1 for Mg, Ca, Sr and Ba, respectively. ... ing vibration of the −NO2 group is also observed as a.

  20. In situ formation of coal gasification catalysts from low cost alkali metal salts

    Science.gov (United States)

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  1. Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray.

    Science.gov (United States)

    Hsu, Chia-Hao; Chen, Tai-Cheng; Huang, Rong-Tan; Tsay, Leu-Wen

    2017-02-15

    304 stainless steels (SS) were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod) 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD) map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC). Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ) was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group.

  2. Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray

    Directory of Open Access Journals (Sweden)

    Chia-Hao Hsu

    2017-02-01

    Full Text Available 304 stainless steels (SS were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC. Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group.

  3. Studies on mixed metal oxides solid solutions as heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    H. R. Arandiyan

    2009-03-01

    Full Text Available In this work, a series of perovskite-type mixed oxide LaMo xV1-xO3+δ powder catalysts (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, with 0.5 < δ < 1.5, prepared by the sol-gel process and calcined at 750ºC, provide an attractive and effective alternative means of synthesizing materials with better control of morphology. Structures of resins obtained during the gel formation process by FT-IR spectroscopy and XRD analysis showed that all the LaMo xV1-xO3+δ samples are single phase perovskite-type solid solutions. The surface area (BET between 2.5 - 5.0 m²/g (x = 0.1 and 1.0 respectively increases with increasing Mo ratio in the samples. They show high purity, good chemical homogeneity, and lower calcinations temperatures as compared with the solid-state chemistry route. SEM coupled to EDS and thermogravimetric analysis/differential thermal analyses (TGA/DTA have been carried out in order to evaluate the homogeneity of the catalyst. Finally, the experimental studies show that the calcination temperature and Mo content exhibited a significant influence on catalytic activity. Among the LaMo xV1-xO3+δ samples, LaMo0.7V0.3O4.2 showed the best catalytic activity for the topic reaction and the best activity and stability for ethane reforming at 850ºC under 8 bar.

  4. Investigating self-assembly and metal nanoclusters in aqueous di-block copolymers solutions

    CERN Document Server

    Lo Celso, F; Triolo, R; Triolo, A; Strunz, P; Bronstein, L; Zwanziger, J; Lin, J S

    2002-01-01

    Self-assembling properties of di-block copolymers/ surfactant hybrids in aqueous solution can be exploited to obtain metal nanoparticles stable dispersion. Results will be presented here for polystyrene-block-poly(ethylene oxide) solutions. A SANS structural investigation has been performed over different molecular weights of both hydrophilic and hydrophobic block, by varying temperature and concentration of the copolymer. A SAXS characterization of micellar systems containing Pt nanoparticles is reported. (orig.)

  5. Achieving Amphibious Superprotonic Conductivity in a CuI Metal-Organic Framework by Strategic Pyrazinium Salt Impregnation.

    Science.gov (United States)

    Khatua, Sajal; Bar, Arun Kumar; Sheikh, Javeed Ahmad; Clearfield, Abraham; Konar, Sanjit

    2018-01-19

    Treatment of a pyrazine (pz)-impregnated Cu I metal-organic framework (MOF) ([1⊃pz]) with HCl vapor renders an interstitial pyrazinium chloride salt-hybridized MOF ([1⊃pz⋅6 HCl]) that exhibits proton conductivity over 10 -2  S cm -1 both in anhydrous and under humid conditions. Framework [1⊃pz⋅6 HCl] features the highest anhydrous proton conductivity among the lesser-known examples of MOF-based materials exhibiting proton conductivity under both anhydrous and humid conditions. Moreover, [1⊃pz] and corresponding pyrazinium sulfate- and pyrazinium phosphate-hybridized MOFs also exhibit superprotonic conductivity over 10 -2  S cm -1 under humid conditions. The impregnated pyrazinium ions play a crucial role in protonic conductivity, which occurs through a Grotthuss mechanism. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Desorption of metals from Cetraria islandica (L. Ach. Lichen using solutions simulating acid rain

    Directory of Open Access Journals (Sweden)

    Čučulović Ana A.

    2014-01-01

    Full Text Available Desorption of metals K, Al, Ca, Mg, Fe, Ba, Zn, Mn, Cu and Sr from Cetraria islandica (L. with solutions whose composition was similar to that of acid rain, was investigated. Desorption of metals from the lichen was performed by five successive desorption processes. Solution mixtures containing H2SO4, HNO3 and H2SO4-HNO3 were used for desorption. Each solution had three different pH values: 4.61, 5.15 and 5.75, so that the desorptions were performed with nine different solutions successively five times, always using the same solution volume. The investigated metals can be divided into two groups. One group was comprised of K, Ca and Mg, which were desorbed in each of the five desorption processes at all pH values used. The second group included Al, Fe, Zn, Ba, Mn and Sr; these were not desorbed in each individual desorption and not at all pH values, whereas Cu was not desorbed at all under any circumstances. Using the logarithmic dependence of the metal content as a function of the desorption number, it was found that potassium builds two types of links and is connected with weaker links in lichen. Potassium is completely desorbed, 80% in the first desorption, and then gradually in the following desorptions. Other metals are linked with one weaker link (desorption 1-38% and with one very strong link (desorption below the metal detection limit. [Projekat Ministarstva nauke Republike Srbije, br. III43009 i br. ON 172019

  7. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H

    2009-04-14

    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  8. Non-monotonic course of protein solubility in aqueous polymer-salt solutions can be modeled using the sol-mxDLVO model.

    Science.gov (United States)

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele

    2016-02-01

    Protein purification is often performed using cost-intensive chromatographic steps. To discover economic alternatives (e.g., crystallization), knowledge on protein solubility as a function of temperature, pH, and additives in solution as well as their concentration is required. State-of-the-art models for predicting protein solubility almost exclusively consider aqueous salt systems, whereas "salting-in" and "salting-out" effects induced by the presence of an additional polymer are not considered. Thus, we developed the sol-mxDLVO model. Using this newly developed model, protein solubility in the presence of one salt and one polymer, especially the non-monotonic course of protein solubility, could be predicted. Systems considered included salts (NaCl, Na-p-Ts, (NH(4))(2) SO(4)) and the polymer polyethylene glycol (MW: 2000 g/mol, 12000 g/mol) and proteins lysozyme from chicken egg white (pH 4 to 5.5) and D-xylose ketol-isomerase (pH 7) at 298.15 K. The results show that by using the sol-mxDLVO model, protein solubility in polymer-salt solutions can be modeled in good agreement with the experimental data for both proteins considered. The sol-mxDLVO model can describe the non-monotonic course of protein solubility as a function of polymer concentration and salt concentration, previously not covered by state-of-the-art models. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Small cell experiments for electrolytic reduction of uranium oxides to uranium metal using fluoride salts

    International Nuclear Information System (INIS)

    Haas, P.A.; Adcock, P.W.; Coroneos, A.C.; Hendrix, D.E.

    1994-01-01

    Electrolytic reduction of uranium oxide was proposed for the preparation of uranium metal feed for the atomic vapor laser isotope separation (AVLIS) process. A laboratory cell of 25-cm ID was operated to obtain additional information in areas important to design and operation of a pilot plant cell. Reproducible test results and useful operating and control procedures were demonstrated. About 20 kg of uranium metal of acceptable purity were prepared. A good supply of dissolved UO 2 feed at the anode is the most important controlling requirement for efficient cell operation. A large fraction of the cell current is nonproductive in that it does not produce a metal product nor consume carbon anodes. All useful test conditions gave some reduction of UF 4 to produce CF 4 in addition to the reduction of UO 2 , but the fraction of metal from the reduction of UF 4 can be decreased by increasing the concentration of dissolved UO 2 . Operation of large continuous cells would probably be limited to current efficiencies of less than 60 pct, and more than 20 pct of the metal would result from the reduction of UF 4

  10. Viscosity-Lowering Effect of Amino Acids and Salts on Highly Concentrated Solutions of Two IgG1 Monoclonal Antibodies.

    Science.gov (United States)

    Wang, Shujing; Zhang, Ning; Hu, Tao; Dai, Weiguo; Feng, Xiuying; Zhang, Xinyi; Qian, Feng

    2015-12-07

    Monoclonal antibodies display complicated solution properties in highly concentrated (>100 mg/mL) formulations, such as high viscosity, high aggregation propensity, and low stability, among others, originating from protein-protein interactions within the colloidal protein solution. These properties severely hinder the successful development of high-concentration mAb solution for subcutaneous injection. We hereby investigated the effects of several small-molecule excipients with diverse biophysical-chemical properties on the viscosity, aggregation propensity, and stability on two model IgG1 (JM1 and JM2) mAb formulations. These excipients include nine amino acids or their salt forms (Ala, Pro, Val, Gly, Ser, HisHCl, LysHCl, ArgHCl, and NaGlu), four representative salts (NaCl, NaAc, Na2SO4, and NH4Cl), and two chaotropic reagents (urea and GdnHCl). With only salts or amino acids in their salt-forms, significant decrease in viscosity was observed for JM1 (by up to 30-40%) and JM2 (by up to 50-80%) formulations, suggesting charge-charge interaction between the mAbs dictates the high viscosity of these mAbs formulations. Most of these viscosity-lowering excipients did not induce substantial protein aggregation or changes in the secondary structure of the mAbs, as evidenced by HPLC-SEC, DSC, and FT-IR analysis, even in the absence of common protein stabilizers such as sugars and surfactants. Therefore, amino acids in their salt-forms and several common salts, such as ArgHCl, HisHCl, LysHCl, NaCl, Na2SO4, and NaAc, could potentially serve as viscosity-lowering excipients during high-concentration mAb formulation development.

  11. Sono-electrochemical recovery of metal ions from their aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bingfeng; Fishgold, Asher [Department of Materials Science and Engineering, The University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Lee, Paul [Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721 (United States); Runge, Keith; Deymier, Pierre [Department of Materials Science and Engineering, The University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Keswani, Manish, E-mail: manishk@email.arizona.edu [Department of Materials Science and Engineering, The University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ 85721 (United States)

    2016-11-15

    Highlights: • Sono-electrochemical method is effective in the recovery of Pd, Ga and Pb. • Recovery efficiency depends on the type of metal ion and megasonic frequency used. • Pd is recovered mainly in metallic form while Ga and Pb show presence of oxide. - Abstract: Metal recovery from aqueous waste streams is an important goal for recycling, agriculture and mining industries. The development of more effective methods of recovery have been of increasing interest. The most common methods for metal recovery include precipitation, electrochemical, ion exchange, flocculation/coagulation and filtration. In the current work, a sono-electrochemical technique employing sound field at megasonic frequency (500 kHz or 1 MHz) in conjunction with electrochemistry is evaluated for enhanced recovery of selected metal ions (palladium, lead and gallium) with different redox potentials from their aqueous solutions. The surface morphology and elemental composition of the metal deposits were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The percent recovery was found to depend on the type of metal ion and the megasonic frequency used. Palladium was recovered in its metal form, while lead and gallium were oxidized during or after the recovery process.

  12. Heavy metal uptake capacity of fresh water algae (Oedogonium westti) from aqueous solution: A mesocosm research.

    Science.gov (United States)

    Shamshad, Isha; Khan, Sardar; Waqas, Muhammad; Asma, Maliha; Nawab, Javed; Gul, Nayab; Raiz, Arjumand; Li, Gang

    2016-01-01

    The green macroalgae present in freshwater ecosystems have attracted a great attention of the world scientists for removal of heavy metals from wastewater. In this mesocosm study, the uptake rates of heavy metals such as cadmium (Cd), nickel (Ni), chromium (Cr), and lead (Pb) by Oedogonium westi (O. westti) were measured. The equilibrium adsorption capabilities of O. westti were different for Cd, Ni, Cr, and Pb (0.974, 0.418, 0.620, and 0.261 mgg(-1), respectively) at 18 °C and pH 5.0. Furthermore, the removal efficiencies for Cd, Cr, Ni and Pb were observed from 55-95%, 61-93%, 59-89%, and 61-96%, respectively. The highest removal efficiency was observed for Cd and Cr from aqueous solution at acidic pH and low initial metal concentrations. However, the removal efficiencies of Ni and Pb were higher at high pH and high concentrations of metals in aqueous solution. The results summarized that O. westti is a suitable candidate for removal of selected toxic heavy metals from the aqueous solutions.

  13. Polarization and mass transfer during the electrolysis of molten salts with liquid metallic electrodes

    Science.gov (United States)

    Mikhalev, Yu. G.

    2014-08-01

    Calculations are used to show that the fraction of the overvoltage of the stage of discharge-ionization can be significant in the total overvoltage during the polarization of liquid metallic electrodes in molten chlorides depleted of electrochemically active particles (depending on the type of the dissipative structures that appear near the electrode/electrolyte interface). This finding is taken into account to obtain criterion equations to describe the mass-transfer rate as a function of the physicochemical properties of the electrolyte and the metal electrode.

  14. Ab initio study of solute transition-metal interactions with point defects in bcc Fe

    NARCIS (Netherlands)

    Olsson, P.; Klaver, T.P.C.; Domain, C.

    2010-01-01

    The properties of 3d, 4d, and 5d transition-metal elements in ?-Fe have been studied using ab initio density-functional theory. The intrinsic properties of the solutes have been characterized as well as their interaction with point defects. Vacancies and interstitials of (110) and (111) orientations

  15. On the calculation of lattice parameters of solid solutions on the basis of noble metals

    International Nuclear Information System (INIS)

    Barsukov, A.D.; Zhuravleva, N.S.; Ageeva, G.N.; Pedos, A.A.

    1996-01-01

    Lattice constants for noble metal solid solutions have been calculated taking into account atomic volumes, number of bonding electrons as well as chemical interaction between the components. Miscount is of the same order as the experimental error. 10 refs.; 2 tabs

  16. Membrane distillation with porous metal hollow fibers for the concentration of thermo-sensitive solutions

    NARCIS (Netherlands)

    Shukla, Sushumna

    2014-01-01

    This thesis presents an original approach for the concentration of thermo-sensitive solutions: the Sweep Gas Membrane Distillation (SGMD) process. A new membrane contactor with metallic hollow fibers has been designed and allows the distillation process to be operational at low temperature. Heat is

  17. Distributions of traces of metals on sorption from solutions of vanadium(V)

    International Nuclear Information System (INIS)

    Evseeva, N.K.; Turnaov, A.N.; Telegin, G.F.; Kremenskaya, I.N.

    1983-01-01

    A study is made of the distributions of traces of metals between aqueous solutions of vanadium(V) and a solid reagent made by introducing di-2-ethylhexylphosphoric acid into an inert matrix: a nonionic macroporous copolymer of polystyrene with divinyl benzene (wofatit Y 29). As regards degree of extraction, the trace components fall in the series zinc > cadmium > manganese > copper > cobalt, which resemble the extractability series. The vanadium content of the solution and the concentrations of the trace components have virtually no effect on the sorption. The process is effective in concentrating trace components from solutions containing vanadium(V)

  18. Distribution of microimpurities of metals at their sorption from vanadium (5) solutions

    International Nuclear Information System (INIS)

    Evseeva, N.K.; Turanov, A.N.; Telegin, G.F.; Kremenskaya, I.N.

    1983-01-01

    Distribution of metal microimpurities (Zn, Mn, Cu, Co, Fe) between aqueous solutions of vanadium (5) and solid extracting agent, prepared by means of introduction of di-2-ethylhexylphosphoric acid into inert matrix-nonionogeneous macropore copolymer of polystyrene with divinylbenzene (vofatit Y-29), has been studied. Accroding to the degree of extraction the microimpurities are arranged in the series: zinc > cadmium > manganese > copper > cobalt, which is similar to the series of extractability. Vanadium content in solution and concentration of microimpurities practically does not affect the sorption. It has been established that the process is effective for microimpurities concentration from solutions containing vanadium (5)

  19. Distribution of microimpurities of metals at their sorption from vanadium (5) solutions

    Energy Technology Data Exchange (ETDEWEB)

    Evseeva, N.K.; Turanov, A.N.; Telegin, G.F.; Kremenskaya, I.N.

    1983-01-01

    Distribution of metal microimpurities (Zn, Mn, Cu, Co, Fe) between aqueous solutions of vanadium (5) and solid extracting agent, prepared by means of introduction of di-2-ethylhexylphosphoric acid into inert matrix-nonionogeneous macropore copolymer of polystyrene with divinylbenzene (vofatit Y-29), has been studied. According to the degree of extraction the microimpurities are arranged in the series: zinc > cadmium > manganese > copper > cobalt, which is similar to the series of extractability. Vanadium content in solution and concentration of microimpurities practically does not affect the sorption. It has been established that the process is effective for microimpurities concentration from solutions containing vanadium (5).

  20. Alloying of Yb-Cu and Yb-Ag utilizing liquid ammonia metal solutions of ytterbium

    International Nuclear Information System (INIS)

    Imamura, H.; Yoshimura, T.; Sakata, Y.

    2003-01-01

    In the course of the studies on preparation of novel compounds using the dissolution of Eu or Yb metals in liquid ammonia, the formation of Yb-Cu and Yb-Ag intermetallic films has been found. When Cu or Ag metal powders were placed in a reactor containing a solution of Yb metal in liquid ammonia, the dissolved Yb readily react with the Cu or Ag metal particles to form surface alloy compounds. X-ray diffraction of Yb-Cu showed that upon thermal treatment above 673 K, the Yb metal deposited on the Cu particles reacted together to be transformed into the YbCu 6.5 intermetallic compound. A characteristic endothermic peak at 749 K, due to alloying of Yb-Cu, was observed by the differential scanning calorimeter measurements. By use of the high reactivity of liquid ammonia metal solutions of ytterbium, it was found that the ytterbium intermetallic films were readily formed under mild conditions. Yb-Cu and Yb-Ag exhibited enhanced catalytic activity for the hydrogenation of ethene as a result of alloying

  1. The use of non-living biomass to recover heavy metals from aqueous solutions

    International Nuclear Information System (INIS)

    Darnall, D.W.

    1993-01-01

    The use of microorganisms in the treatment of hazardous wastes containing both inorganic and organic pollutants is becoming more and more attractive. There have been two approaches to the use of microorganisms in waste treatment. One involves the use of living organisms and the other involves the use of non-viable biomass derived from microorganisms. While the use of living organisms is often successful in the treatment of toxic organic contaminants, living organisms have not been found to be useful in the treatment of solutions containing heavy metal ions. This is because once the metal ion concentration becomes too high or sufficient metal ions are adsorbed by the microorganism, metabolism is disrupted causing the organism to die. This disadvantage is not encountered if non-living organisms or biological materials derived from microorganisms are used to adsorb metal ions from solution. Instead the biomass is treated as another reagent, a surrogate ion exchange resin. The binding, or biosorption, of metal ions by the biomass results from coordination of the metal ions to various functional groups in or on the cell. These chelating groups, contributed by the cell biopolymers, include carboxyl, imidazole, sulfhydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide, and hydroxyl moieties (Darnall et al.)

  2. Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent.

    Science.gov (United States)

    Suzuki, Yoshihiro; Kametani, Takuji; Maruyama, Toshiroh

    2005-05-01

    The growth of dense green seaweed mats of Ulva spp. is an increasing problem in estuaries and coasts worldwide. The enormous amount of Ulva biomass thus becomes a troublesome waste disposal problem. On the other hand, it has been revealed that nonliving seaweed biomass, particularly brown seaweeds, has a high capacity for assimilating heavy metals. In this study, the possibility of using Ulva seaweed biomass as a biosorbent for the removal of heavy metals was examined. After processing, the biomass material was very easy to separate from the aqueous solution using a mesh. The sorption capacity of Cd on Ulva biomass increased upon pretreatment with alkali solution. The outstanding function of the biosorbent was demonstrated at around pH 8. On the basis of the Langmuir isotherms of Cd, Zn and Cu using the alkali-pretreated biomass, the parameters q(m) and b were determined to be within the narrow range of 60-90 mg/g and 0.03-0.04 L/mg, respectively, for each metal. Given the q(m) and b values, Ulva seaweed is a good biosorbent material for removing heavy metals. In an experiment using artificial wastewater containing Cd, Zn, Cu, Cr and Ni, it was possible to remove each metal simultaneously using Ulva biomass. Adsorption by Ulva biomass is effective for the removal of heavy metals from wastewater.

  3. Biosorption of heavy metal ions from aqueous solution by red macroalgae.

    Science.gov (United States)

    Ibrahim, Wael M

    2011-09-15

    Biosorption is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high biosorption capacities for a number of heavy metal ions. In this study, four species of red seaweeds Corallina mediterranea, Galaxaura oblongata, Jania rubens and Pterocladia capillacea were examined to remove Co(II), Cd(II), Cr(III) and Pb(II) ions from aqueous solution. The experimental parameters that affect the biosorption process such as pH, contact time and biomass dosage were studied. The maximum biosorption capacity of metal ions was 105.2mg/g at biomass dosage 10 g/L, pH 5 and contact time 60 min. The biosorption efficiency of algal biomass for the removal of heavy metal ions from industrial wastewater was evaluated for two successive cycles. Galaxaura oblongata biomass was relatively more efficient to remove metal ions with mean biosorption efficiency of 84%. This study demonstrated that these seaweeds constitute a promising, efficient, cheap and biodegradable sorbent biomaterial for lowering the heavy metal pollution in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Hank's balanced salt solution: an alternative resuspension medium to label autologous leukocytes. Experience in inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Comin, Joseph; Plaza, Pedro; Roca, Manoel [Hospital de Bellvitge (Spain). Servico de Medicina Nuclear]. E-mail: jmartincomin@csub.scs.es; Cardoso, Valbert Nascimento [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Faculdade de Farmacia

    2002-09-01

    In this work Hank balanced salt solution (HBSS) has been used as resuspension medium, instead of leukocyte poor plasma (LPP) to label autologous white blood cells in 28 patients with suspicion of active inflammatory bowel disease. Labelled cells were reinjected and anterior and caudo-cranial views were obtained at 30 min, 2 h and 6 h p.i. Regions of interest were outlined on liver, spleen, lung, bone marrow (spine), background and lesions and the organ/background activity ratios were calculated in all scans. Patients were classified into 2 groups: Group 1: LPP, 30 patients and Groups 2: HBSS, 28 patients. labelling efficiency was higher in HBSS group (89.0 +- 3.2%) than in the LPP group (6.5 +- 6.3%). Organ/background activity ratios were similar in both groups. Concerning diagnostic accuracy was similar at 30 min and 2 h but the false positive rate increased at 6 h p.i. in the HBSS group. HBSS seems to be a valid alternative as resuspension medium in the labeling of autologous leukocytes but leukocyte poor plasma seem to induce less leukocyte damage. Based on these results, in our center HBSS is the currently used medium to label leukocytes. (author)

  5. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    KAUST Repository

    Moia, Davide

    2017-11-28

    We report a neutral salt water based battery which uses p-type and n-type solution processed polymer films as the cathode and the anode of the cell. The specific capacity of the electrodes (approximately 30 mAh cm-3) is achieved via formation of bipolarons in both the p-type and n-type polymers. By engineering ethylene glycol and zwitterion based side chains attached to the polymer backbone we facilitate rapid ion transport through the non-porous polymer films. This, combined with efficient transport of electronic charge via the conjugated polymer backbones, allowed the films to maintain constant capacity at high charge and discharge rates (>1000 C-rate). The electrodes also show good stability during electrochemical cycling (less than 30% decrease in capacity over >1000 cycles) and an output voltage up to 1.4 V. The performance of these semiconducting polymers with polar side-chains demonstrates the potential of this material class for fast-charging, water based electrochemical energy storage devices.

  6. Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides.

    Science.gov (United States)

    Xiao, Xu; Yu, Huimin; Jin, Huanyu; Wu, Menghao; Fang, Yunsheng; Sun, Jiyu; Hu, Zhimi; Li, Tianqi; Wu, Jiabin; Huang, Liang; Gogotsi, Yury; Zhou, Jun

    2017-02-28

    Two-dimensional (2D) transition-metal nitrides just recently entered the research arena, but already offer a potential for high-rate energy storage, which is needed for portable/wearable electronics and many other applications. However, a lack of efficient and high-yield synthesis methods for 2D metal nitrides has been a major bottleneck for the manufacturing of those potentially very important materials, and only MoN, Ti 4 N 3 , and GaN have been reported so far. Here we report a scalable method that uses reduction of 2D hexagonal oxides in ammonia to produce 2D nitrides, such as MoN. MoN nanosheets with subnanometer thickness have been studied in depth. Both theoretical calculation and experiments demonstrate the metallic nature of 2D MoN. The hydrophilic restacked 2D MoN film exhibits a very high volumetric capacitance of 928 F cm -3 in sulfuric acid electrolyte with an excellent rate performance. We expect that the synthesis of metallic 2D MoN and two other nitrides (W 2 N and V 2 N) demonstrated here will provide an efficient way to expand the family of 2D materials and add many members with attractive properties.

  7. Modeling of heavy metal salt solubility using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Iliuta, Maria Cornelia; Thomsen, Kaj; Rasmussen, Peter

    2002-01-01

    Solid-liquid equilibria in complex aqueous systems involving a heavy metal cation (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+) and one or more ions for which Extended UNIQUAC parameters have been published previously are modeled using the Extended UNIQUAC model. Model parameters are determined...

  8. BIOCHEMICAL PARAMETERS OF LIPID METABOLISM IN ANIMALS AFFECTED BY HEAVY METAL SALTS AND TREATED WITH CARNITINE CHLORIDE AND SODIUM ALGINATE

    Directory of Open Access Journals (Sweden)

    I. R. Bekus

    2017-02-01

    Full Text Available Background. Lipid metabolism disorders in the organism affected by environmental pollutants, including poisoning with cadmium and lead salts are of topical matter nowadays. Objective. The study was aimed to examine biochemical features of lipid metabolism in rats subjected to toxic damage by lead and cadmium salts and treated with carnitine chloride and Algigel. Methods. Experiments were carried out on white mature outbred male rats weighing 180-200 g. To cause the toxic damage the animals were administered with aqueous solution of cadmium chloride and lead acetate daily for the period of 30 days using intra-gastric lavage. The indices of lipid metabolism were detected by biochemical methods. Results. In animals treated with cadmium chloride and lead acetate the following changes were observed: HDL-cholesterol concentrations significantly decreased, resulting in 87% of the levels in the intact animals on the third day, 84% on the fifth and 80% on the seventh day. Conversely, concentrations of HDL-cholesterol and VLDL-cholesterol significantly increased during the experiment. Respectively, the ratios for HDL-cholesterol are 240%, 352%, and 388%; and for VLDL-cholesterol 108%, 116%, and 132%. Conclusions. Lipids profile of the rats displayed changes in the levels of cholesterol, triglycerides and lipoproteins of low, high and very low density.

  9. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions

    International Nuclear Information System (INIS)

    Ijagbemi, Christianah Olakitan; Baek, Mi-Hwa; Kim, Dong-Su

    2009-01-01

    Surface properties of montmorillonite (MMT) and its adsorption characteristics for heavy metals have been investigated with nickel and copper as sorbate from aqueous solutions. Employing the potentiometric and mass titration techniques in batch experimental methods, the point of zero charge (PZC) and point of zero net proton charge (PZNPC) of MMT edges at different ionic strengths present pH PZC and pH PZNPC to be 3.4 ± 0.2. A crossing point was observed for the proton adsorption vs. pH curves at different ionic strengths of KCl electrolyte and in investigating MMT remediation potentialities as sorbent for heavy metals polluted waters, the effects of heavy metal concentration, pH, MMT dosage, reaction time and temperature for Cu 2+ and Ni 2+ uptake were studied. The sorption of metal ions by MMT was pH dependent and the adsorption kinetics revealed sorption rate could be well fitted by the pseudo-second-order rate model. The data according to mass transfer and intraparticle diffusion models confirmed diffusion of solutes inside the clay particles as the rate-controlling step and more important for the adsorption rate than the external mass transfer. Adsorption isotherms showed that the uptake of Cu 2+ and Ni 2+ could be described by the Langmuir model and from calculations on thermodynamic parameters, the positive ΔG o values at different temperatures suggest that the sorption of both metal ions were non-spontaneous. Change in enthalpy (ΔH o ) for Ni 2+ and Cu 2+ were 28.9 and 13.27 kJ/mol K respectively, hence an endothermic diffusion process, as ion uptake increased with increase in temperature. Values of ΔS o indicate low randomness at the solid/solution interface during the uptake of both Cu 2+ and Ni 2+ by MMT. Montmorillonite has a considerable potential for the removal of heavy metal cationic species from aqueous solution and wastewater.

  10. Assessment of the leaching of metallic elements in the technology of solidification in aqueous solution.

    Science.gov (United States)

    Rossetti, V Alunno; Di Palma, L; Medici, F

    2002-01-01

    Results are presented of experiments performed to optimize the solidification/stabilization system for metallic elements in aqueous solution. This system involves mixing cement and a solution of metallic elements in a conventional mixer: the paste thus obtained is transferred drop by drop into a recipient filled with an aqueous solution of NaOH at 20% by weight, in which it solidifies immediately. The separate use of chloride solutions of Li+, Cr3+, Pb2+ and Zn2+ makes it possible to obtain granules displaying various levels of compressive strength. Three different inertization matrices were used in the experiments, the first consisting solely of Portland cement, the second of Portland cement and a superplasticizer additive, and the third of Portland cement partially replaced with silica-fume and superplasticizer. The results of the tests performed showed a very low level of leaching into the alkaline solidification solution for Cr3+, the quantity leached being under 2% as against higher levels for the other metallic elements. For all the considered elements, the best results were obtained by using silica-fume in the inertization matrix.

  11. LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery

    Science.gov (United States)

    Kim, Junsoo; Shin, Donghyeok; Jung, Youngjae; Hwang, Soo Min; Song, Taeseup; Kim, Youngsik; Paik, Ungyu

    2018-02-01

    Liquid metal batteries (LMBs) are attractive energy storage device for large-scale energy storage system (ESS) due to the simple cell configuration and their high rate capability. The high operation temperature caused by high melting temperature of both the molten salt electrolyte and metal electrodes can induce the critical issues related to the maintenance cost and degradation of electrochemical properties resulting from the thermal corrosion of materials. Here, we report a new chemistry of LiCl-LiI electrolyte and Bi-Pb positive electrode to lower the operation temperature of Li-based LMBs and achieve the long-term stability. The cell (Li|LiCl-LiI|Bi-Pb) is operated at 410 °C by employing the LiCl-LiI (LiCl:LiI = 36:64 mol %) electrolyte and Bi-Pb alloy (Bi:Pb = 55.5:44.5 mol %) positive electrode. The cell shows excellent capacity retention (86.5%) and high Coulombic efficiencies over 99.3% at a high current density of 52 mA cm-2 during 1000th cycles.

  12. Electrochemical transient techniques for determination of uranium and rare-earth metal separation coefficients in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, S.A. [Institute of Chemistry, Kola Science Centre, RAS, Apatity, Murmansk Region 184200, Russia (Russian Federation)]. E-mail: kuznet@chemy.kolasc.net.ru; Hayashi, H. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Minato, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Gaune-Escard, M. [Ecole Polytechnique, IUSTI-CNRS UMR 6595, University of Provence, F-13453 Marseille, Cedex 13 (France)

    2006-02-25

    The main step in the pyrometallurgical recycling process of spent nuclear fuel is a molten salt electrorefining. The knowledge of separation coefficients of actinides (U, Np, Pu and Am) and rare-earth metals (Y, La, Ce, Nd and Gd) is very important for this step. Usually the separation coefficients are evaluated from the formal standard potentials of metals in melts containing their own ions, i.e. values obtained by potentiometric method. Electrochemical experiments were carried out at 723-823 K in order to estimate separation coefficients in LiCl-KCl eutectic melt containing uranium and lanthanum trichlorides. The electrochemical behaviour of UCl{sub 3} in LiCl-KCl melt was studied by different electrochemical methods. The diffusion coefficients of U(III) were determined by linear sweep voltammetry, chronopotentiometry and chronoamperometry. The standard rate constants of charge transfer for electroreduction of uranium, U(III) + 3e{sup -} {sup {yields}} U, were calculated by the impedance spectroscopy method. The values of constants testify that electroreduction of U(III) to U is mainly controlled by the rate of charge transfer. La(III) discharge on uranium electrode was also investigated. It was shown that for the calculation of uranium and lanthanum separation coefficients it is necessary to determine the voltammetric peak potentials of U(III) and La(III), their concentration in the melt and the kinetic parameters relating to U(III) discharge such as transfer and diffusion coefficients, and standard rate constants of charge transfer.

  13. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    Science.gov (United States)

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  14. The first example of intensive luminescence of LMCT state based on metal complexes in solution

    International Nuclear Information System (INIS)

    Lukova, G.V.; Vasil'ev, V.P.; Smirnov, V.A.; Huhn, W.

    2007-01-01

    A bridge complex rac-C 6 H 10 (IndH 4 ) 2 ZrC 2 , featuring a unique long-living luminescence in liquid solutions at 20 deg C, has been prepared for the first time by catalytic hydrogenation of bis-indinyl complex C 6 H 10 (Ind) 2 Zr 2 Cl 2 . It has been identified that quantum yields of luminescence of the complex solutions at room temperature are the greatest ones for the known compounds possessing emission states of charge transfer from ligand to metal. Linear correlations of quantum yield of metal complex luminescence in a solution with steric features of the solvent molecules have been detected for the first time [ru

  15. Calculation of formation constants of single-charged complex ions of bivalent metals in solutions

    International Nuclear Information System (INIS)

    Allakhverdov, G.R.

    1985-01-01

    A new method for calculating formation constants of complexes of bivalent metals in solutions is suggested. The method is based on using relations characterizing concentration dependence of activity factors and theis interrelation with osmotic coefficients. It is shown that the results of formation constant calculations of complexes MX + (M-Mg, Ca, Sr, Ba, Cd, Co, Zn, Ni, Fe, Mn, Cu; X-Cl, Br, I, NOΛ3) performed with a computer using experimental data in the 0.1-0.5 m(m-molality) concentration range, are in satisfactory agreement with literature data obtained by various research methods. It is established that for all metals the stability of halide complexes drops in the MCl + >MBr + >MI + series. In the series of complexes formed by alkaline earth metals, the complexes stability grows with increase of metal atomic number

  16. Dealloying of Cu-Based Metallic Glasses in Acidic Solutions: Products and Energy Storage Applications.

    Science.gov (United States)

    Wang, Zhifeng; Liu, Jiangyun; Qin, Chunling; Yu, Hui; Xia, Xingchuan; Wang, Chaoyang; Zhang, Yanshan; Hu, Qingfeng; Zhao, Weimin

    2015-04-29

    Dealloying, a famous ancient etching technique, was used to produce nanoporous metals decades ago. With the development of dealloying techniques and theories, various interesting dealloying products including nanoporous metals/alloys, metal oxides and composites, which exhibit excellent catalytic, optical and sensing performance, have been developed in recent years. As a result, the research on dealloying products is of great importance for developing new materials with superior physical and chemical properties. In this paper, typical dealloying products from Cu-based metallic glasses after dealloying in hydrofluoric acid and hydrochloric acid solutions are summarized. Several potential application fields of these dealloying products are discussed. A promising application of nanoporous Cu (NPC) and NPC-contained composites related to the energy storage field is introduced. It is expected that more promising dealloying products could be developed for practical energy storage applications.

  17. Silver-modified clinoptilolite for the removal of Escherichia coli and heavy metals from aqueous solutions.

    Science.gov (United States)

    Akhigbe, Lulu; Ouki, Sabeha; Saroj, Devendra; Lim, Xiang Min

    2014-09-01

    This paper investigates the potential of using the silver antibacterial properties combined with the metal ion exchange characteristics of silver-modified clinoptilolite to produce a treatment system capable of removing both contaminants from aqueous streams. The results have shown that silver-modified clinoptilolite is capable of completely eliminating Escherichia coli after 30-min contact time demonstrating its effectiveness as a disinfectant. Systems containing both E. coli and metals exhibited 100 % E. coli reduction after 15-min contact time and maximum metal adsorption removal efficiencies of 97, 98, and 99 % for Pb(2+), Cd(2+), and Zn(2+) respectively after 60 min; 0.182-0.266 mg/g of metal ions were adsorbed by the zeolites in the single- and mixed-metal-containing solutions. Nonmodified clinoptilolite showed no antibacterial properties. This study demonstrated that silver-modified clinoptilolite exhibited high disinfection and heavy metal removal efficiencies and consequently could provide an effective combined treatment system for the removal of E. coli and metals from contaminated water streams.

  18. Bioremediation of heavy metal contaminated aqueous solution by using red algae Porphyra leucosticta.

    Science.gov (United States)

    Ye, Jianjun; Xiao, Henglin; Xiao, Benlin; Xu, Weisheng; Gao, Linxia; Lin, Gan

    2015-01-01

    Bioremediation is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. In this study, red algae Porphyra leucosticta was examined to remove Cd(II) and Pb(II) ions from wastewater through biological enrichment and biological precipitation. The experimental parameters that affect the bioremediation process such as pH, contact time and biomass dosage were studied. The maximum bioremediation capacity of metal ions was 31.45 mg/g for Cd(II) and 36.63 mg/g for Pb(II) at biomass dosage 15 g/L, pH 8.0 and contact time 120 minutes containing initial 10.0 mg/L of Cd(II) and 10.0 mg/L of Pb(II) solution. Red algae Porphyra leucosticta biomass was efficient at removing metal ions of 10.0 mg/L of Cd(II) and 10.0 mg/L of Pb(II) solution with bioremediation efficiency of 70% for Cd(II) and 90% for Pb(II) in optimal conditions. At the same time, the removal capacity for real industrial effluent was gained at 75% for 7.6 mg/L Cd(II) and 95% for 8.9 mg/L Pb(II). In conclusion, it is demonstrated that red algae Porphyra leucosticta is a promising, efficient, cheap and biodegradable sorbent biomaterial for reducing heavy metal pollution in the environment and wastewater.

  19. Ion exchange of some transition metal cations on hydrated titanium dioxide in aqueous ammonia solutions

    International Nuclear Information System (INIS)

    Bilewicz, A.; Narbutt, J.; Dybczynski, R.

    1992-01-01

    The adsorption of transition metal cations on hydrated titanium dioxide in complexing ammonia and amine solutions has been studied as a function of ammonia (amine) concentration. The relationships between the distribution coefficients and ammonia concentration as well as the effects of various amines on sorption of transition metals indicate that a coordinate bond is formed between the metal ions and the hydroxy groups of the sorbent. The distribution coefficients of silver(I) and cobalt(II), which form strong ammonia complexes in aqueous solutions, decrease with increasing concentration of ammonia already at concentrations exceeding 10 -3 *mol*dm -3 . Cations of zinc, manganese and mercury which form much weaker ammonia complexes do not exhibit any effect of ammonia concentration in the whole range investigated. In the case of sorption of macroamounts of ammonia or amine complexes of silver, the molecular sieve effect plays an important role. The differences in the affinity of hydrated titanium dioxide for ammonia solvates of various transition metal ions can serve as a tool for effective separation of these ions in ammonia solutions. (author) 10 refs.; 4 figs.; 1 tab

  20. Corrosion Characterization Of ZA-27 Red Mud Metal Matrix Composites In Sodium Chloride Solutions

    Directory of Open Access Journals (Sweden)

    Jayaprakash

    2017-08-01

    Full Text Available The present investigation aims to evaluate the corrosion characteristics of red mud metal in sodium chloride solution. Metal matrix composites MMC are heterogeneous systems containing matrix and reinforcement. Matrix may be alloy or metal or polymer. Reinforcement may be particulate or fiber or whisker. Their physical and mechanical properties can be tailored according to requirement. They are used in automobile aircraft and marine industries because of their increased corrosion resistance. In this study weight loss corrosion tests and Potestiodynamic polarization studies by using potestiostat are conducted on ZA-27 Red Mud metal matrix composites in different concentrated sodium chloride solutions. Both matrix and reinforcements are commercially available. Composites are prepared by liquid melt metallurgy technique using vortex method. Composites containing 2 4 and 6 percent of preheated but uncoated red mud are prepared. Cylindrical specimens and rectangular specimens are machined. Studies are carried out in 0.035 0.352 and 3.5 solutions of sodium chloride. In all the tests the composites were less prone to corrosion than the matrix. Hence the composites can be used in the marine environment.