WorldWideScience

Sample records for metal reduction rates

  1. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments. Final report

    International Nuclear Information System (INIS)

    Pfiffner, Susan

    2010-01-01

    The objective of this research was to examine the importance of microbial community structure in influencing uranium reduction rates in subsurface sediments. If the redox state alone is the key to metal reduction, then any organisms that can utilize the oxygen and nitrate in the subsurface can change the geochemical conditions so metal reduction becomes an energetically favored reaction. Thus, community structure would not be critical in determining rates or extent of metal reduction unless community structure influenced the rate of change in redox. Alternatively, some microbes may directly catalyze metal reduction (e.g., specifically reduce U). In this case the composition of the community may be more important and specific types of electron donors may promote the production of communities that are more adept at U reduction. Our results helped determine if the type of electron donor or the preexisting community is important in the bioremediation of metal-contaminated environments subjected to biostimulation. In a series of experiments at the DOE FRC site in Oak Ridge we have consistently shown that all substrates promoted nitrate reduction, while glucose, ethanol, and acetate always promoted U reduction. Methanol only occasionally promoted extensive U reduction which is possibly due to community heterogeneity. There appeared to be limitations imposed on the community related to some substrates (e.g. methanol and pyruvate). Membrane lipid analyses (phospholipids and respiratory quinones) indicated different communities depending on electron donor used. Terminal restriction fragment length polymorphism and clone libraries indicated distinct differences among communities even in treatments that promoted U reduction. Thus, there was enough metabolic diversity to accommodate many different electron donors resulting in the U bioimmobilization.

  2. Chromate reduction and heavy metal fixation in soil

    International Nuclear Information System (INIS)

    Schwitzgebel, K.

    1992-06-01

    In situ reduction of chromates and the fixation of the metals Cr, Pb, Zn, Cu, Cd and Ni in soil was investigated using Fe II and soluble silica. Fe II fulfills two functions. It reduces chromates (CrVI) at soil pH to CrIII and the reaction products, Fe(OH) 3 and Cr(OH) 3 , coprecipitate/adsorb heavy metals. In the absence of CrVI iron is added as FeIII. Destabilized silica also fulfills two functions. It reacts with the metal and metal hydroxides and reduces the soil permeability. The leaching rate (mg/m 2 s) of a metal is the product of leachate flow rate (ell/M 2 s) and the leachate concentration (mg/ell). The leachate flow rate is directly proportional to the hydraulic coefficient (Darcy's Law). Treatment with destabilized silica reduces the hydraulic coefficient of virgin soil (K h = 10 -2 ...10 -4 ) to K h =10 -7 (cm/s) resulting in a flow rate reduction of 3--5 orders of magnitude. Iron plus silica treatment results in a leachate concentration reduction of up to 2 orders of magnitude (Cr:95--99%;Pb:99%;Zn 95--99%; Cd:93--99%; Ni:75--94%). Combined effect of flow rate reduction and leachate concentration reduction results in a potential leaching rate reduction of five to seven orders of magnitude. Iron-silica treatment may be developed into an efficient containment technology, provided the silica gel integrity does not change with time

  3. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    International Nuclear Information System (INIS)

    Pfiffner, Susan M.; Brandt, Craig C.; Kostka, Joel E.; Palumbo, Anthony V.

    2005-01-01

    Our current research represents a joint effort between Oak Ridge National Laboratory (ORNL), Florida State University (FSU), and the University of Tennessee. ORNL will serve as the lead institution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliverables. This project was initiated in November, 2004, in the Integrative Studies Element of the NABIR program. The overall goal of our project is to provide an improved understanding of the relationships between microbial community structure, geochemistry, and metal reduction rates. The research seeks to address the following questions: Is the metabolic diversity of the in situ microbial community sufficiently large and redundant that bioimmobilization of uranium will occur regardless of the type of electron donor added to the system? Are their donor specific effects that lead to enrichment of specific community members that then impose limits on the functional capabilities of the system? Will addition of humics change rates of uranium reduction without changing community structure? Can resource-ratio theory be used to understand changes in uranium reduction rates and community structure with respect to changing C:P ratios?

  4. Contaminated metallic melt volume reduction testing

    International Nuclear Information System (INIS)

    Deichman, J.L.

    1981-01-01

    Laboratory scale metallic melts (stainless steel) were accomplished in support of Decontamination and Decommissioning's (D and D) contaminated equipment volume reduction and Low-Level Lead Site Waste programs. Six laboratory scale melts made with contaminated stainless steel provided data that radionuclide distribution can be predicted when proper temperature rates and ranges are employed, and that major decontamination occurs with the use of designed slagging materials. Stainless steel bars were contaminated with plutonium, cobalt, cesium and europium. This study was limited to stainless steel, however, further study is desirable to establish data for other metals and alloys. This study represents a positive beginning in defining the feasibility of economical volume reduction or conversion from TRU waste forms to LLW forms for a large portion of approximately 50 thousand tons of contaminated metal waste now being stored at Hanford underground or in deactivated facilities

  5. Determination of reduction yield of lithium metal reduction process

    International Nuclear Information System (INIS)

    Choi, In Kyu; Cho, Young Hwan; Kim, Taek Jin; Jee, Kwang Young

    2004-01-01

    Metal reduction of spent oxide fuel is the first step for the effective storage of spent fuel in Korea as well as transmutation purpose of long-lived radio-nuclides. During the reduction of uranium oxide by lithium metal to uranium metal, lithium oxide is stoichiometrically produced. By determining the concentration of lithium oxide in lithium chloride, we can estimate that how much uranium oxide is converted to uranium metal. Previous method to determine the lithium oxide concentration in lithium chloride is tedious and timing consuming. This paper describe the on-line monitoring method of lithium oxide during the reduction process

  6. Molecular analyis of rates of metal reductions and metabolic state of Geobacter species

    International Nuclear Information System (INIS)

    Lovley, Derek R.

    2008-01-01

    This project began with the simple goal of trying to understand the diversity of dissimilatory metal-reducing microorganisms that might be found in subsurface environments. It ended with a sophisticated understanding not only of what microorganisms are important for metal reduction in uranium-contaminated subsurface environments, but also their physiological status during in situ uranium bioremediation. These findings have provided unprecedented insight into uranium bioremediation and the methods by which this process might be optimized. A brief summary of the major accomplishments of the project is given.

  7. Electrochemical reduction of cerium oxide into metal

    Energy Technology Data Exchange (ETDEWEB)

    Claux, Benoit [CEA, Valduc, F-21120 Is-sur-Tille (France); Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France); Serp, Jerome, E-mail: jerome.serp@cea.f [CEA, Valduc, F-21120 Is-sur-Tille (France); Fouletier, Jacques [Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France)

    2011-02-28

    The Fray Farthing and Chen (FFC) and Ono and Suzuki (OS) processes were developed for the reduction of titanium oxide to titanium metal by electrolysis in high temperature molten alkali chloride salts. The possible transposition to CeO{sub 2} reduction is considered in this study. Present work clarifies, by electro-analytical techniques, the reduction pathway leading to the metal. The reduction of CeO{sub 2} into metal was feasible via an indirect mechanism. Electrolyses on 10 g of CeO{sub 2} were carried out to evaluate the electrochemical process efficiency. Ca metal is electrodeposited at the cathode from CaCl{sub 2}-KCl solvent and reacts chemically with ceria to form not only metallic cerium, but also cerium oxychloride.

  8. Artifact reduction of different metallic implants in flat detector C-arm CT.

    Science.gov (United States)

    Hung, S-C; Wu, C-C; Lin, C-J; Guo, W-Y; Luo, C-B; Chang, F-C; Chang, C-Y

    2014-07-01

    Flat detector CT has been increasingly used as a follow-up examination after endovascular intervention. Metal artifact reduction has been successfully demonstrated in coil mass cases, but only in a small series. We attempted to objectively and subjectively evaluate the feasibility of metal artifact reduction with various metallic objects and coil lengths. We retrospectively reprocessed the flat detector CT data of 28 patients (15 men, 13 women; mean age, 55.6 years) after they underwent endovascular treatment (20 coiling ± stent placement, 6 liquid embolizers) or shunt drainage (n = 2) between January 2009 and November 2011 by using a metal artifact reduction correction algorithm. We measured CT value ranges and noise by using region-of-interest methods, and 2 experienced neuroradiologists rated the degrees of improved imaging quality and artifact reduction by comparing uncorrected and corrected images. After we applied the metal artifact reduction algorithm, the CT value ranges and the noise were substantially reduced (1815.3 ± 793.7 versus 231.7 ± 95.9 and 319.9 ± 136.6 versus 45.9 ± 14.0; both P metallic objects and various sizes of coil masses. The rater study achieved an overall improvement of imaging quality and artifact reduction (85.7% and 78.6% of cases by 2 raters, respectively), with the greatest improvement in the coiling group, moderate improvement in the liquid embolizers, and the smallest improvement in ventricular shunting (overall agreement, 0.857). The metal artifact reduction algorithm substantially reduced artifacts and improved the objective image quality in every studied case. It also allowed improved diagnostic confidence in most cases. © 2014 by American Journal of Neuroradiology.

  9. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    Science.gov (United States)

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Reduction of U3O8 to U by a metallic reductant, Li

    International Nuclear Information System (INIS)

    Jin-Mok Hur; Sun-Seok Hong; Hansoo Lee

    2010-01-01

    Reduction of U 3 O 8 was investigated for the recycling of spent oxide fuel from a commercial nuclear power plant. The possible reduction methods were proposed and compared. Based on the thermodynamic analysis, Li metal was selected as a reductant. The optimum reaction temperature for the reduction of U 3 O 8 was investigated at the wider reaction temperature range. The adverse oxidation of U metal by Li 2 O at 1,000 deg C was experimentally verified. Ellingham diagram was constructed to investigate the extent of the uranium oxides reduction when the reaction was carried out above melting point of U metal. (author)

  11. MADR: metal artifact detection and reduction

    Science.gov (United States)

    Jaiswal, Sunil Prasad; Ha, Sungsoo; Mueller, Klaus

    2016-04-01

    Metal in CT-imaged objects drastically reduces the quality of these images due to the severe artifacts it can cause. Most metal artifacts reduction (MAR) algorithms consider the metal-affected sinogram portions as the corrupted data and replace them via sophisticated interpolation methods. While these schemes are successful in removing the metal artifacts, they fail to recover some of the edge information. To address these problems, the frequency shift metal artifact reduction algorithm (FSMAR) was recently proposed. It exploits the information hidden in the uncorrected image and combines the high frequency (edge) components of the uncorrected image with the low frequency components of the corrected image. Although this can effectively transfer the edge information of the uncorrected image, it also introduces some unwanted artifacts. The essential problem of these algorithms is that they lack the capability of detecting the artifacts and as a result cannot discriminate between desired and undesired edges. We propose a scheme that does better in these respects. Our Metal Artifact Detection and Reduction (MADR) scheme constructs a weight map which stores whether a pixel in the uncorrected image belongs to an artifact region or a non-artifact region. This weight matrix is optimal in the Linear Minimum Mean Square Sense (LMMSE). Our results demonstrate that MADR outperforms the existing algorithms and ensures that the anatomical structures close to metal implants are better preserved.

  12. Metal artefact reduction for accurate tumour delineation in radiotherapy

    DEFF Research Database (Denmark)

    Kovacs, David Gergely; Rechner, Laura A.; Appelt, Ane L.

    2018-01-01

    Background and purpose: Two techniques for metal artefact reduction for computed tomography were studied in order to identify their impact on tumour delineation in radiotherapy. Materials and methods: Using specially designed phantoms containing metal implants (dental, spine and hip) as well...... delineation significantly (pmetal implant....... as patient images, we investigated the impact of two methods for metal artefact reduction on (A) the size and severity of metal artefacts and the accuracy of Hounsfield Unit (HU) representation, (B) the visual impact of metal artefacts on image quality and (C) delineation accuracy. A metal artefact reduction...

  13. Melting metal waste for volume reduction and decontamination

    International Nuclear Information System (INIS)

    Copeland, G.L.; Heshmatpour, B.; Heestand, R.L.

    1980-01-01

    Melt-slagging was investigated as a technique for volume reduction and decontamination of radioactively contaminated scrap metals. Experiments were conducted using several metals and slags in which the partitioning of the contaminant U or Pu to the slag was measured. Concentrations of U or Pu in the metal product of about 1 ppM were achieved for many metals. A volume reduction of 30:1 was achieved for a typical batch of mixed metal scrap. Additionally, the production of granular products was demonstrated with metal shot and crushed slag

  14. Carbothermic reduction of refractory metals

    International Nuclear Information System (INIS)

    Anderson, R.N.; Parlee, N.A.D.

    1976-01-01

    The reduction of stable refractory metal oxides by carbon is generally unacceptable since the product is usually contaminated with carbides. The carbide formation may be avoided by selecting a solvent metal to dissolve the reactive metal as it is produced and reduce its chemical activity below that required for carbide formation. This approach has been successfully applied to the oxides of Si, Zr, Ti, Al, Mg, and U. In the case where a volatile suboxide, a carbonyl reaction, or a volatile metal occur, the use of the solvent metal appears satisfactory to limit the loss of material at low pressures. In several solute--solvent systems, vacuum evaporation is used to strip the solvent metal from the alloy to give the pure metal

  15. Metal artifact reduction method using metal streaks image subtraction

    International Nuclear Information System (INIS)

    Pua, Rizza D.; Cho, Seung Ryong

    2014-01-01

    Many studies have been dedicated for metal artifact reduction (MAR); however, the methods are successful to varying degrees depending on situations. Sinogram in-painting, filtering, iterative method are some of the major categories of MAR. Each has its own merits and weaknesses. A combination of these methods or hybrid methods have also been developed to make use of the different benefits of two techniques and minimize the unfavorable results. Our method focuses on the in-paitning approach and a hybrid MAR described by Xia et al. Although in-painting scheme is an effective technique in reducing the primary metal artifacts, a major drawback is the reintroduction of new artifacts that can be caused by an inaccurate interpolation process. Furthermore, combining the segmented metal image to the corrected nonmetal image in the final step of a conventional inpainting approach causes an issue of incorrect metal pixel values. Our proposed method begins with a sinogram in-painting approach and ends with an image-based metal artifact reduction scheme. This work provides a simple, yet effective solution for reducing metal artifacts and acquiring the original metal pixel information. The proposed method demonstrated its effectiveness in a simulation setting. The proposed method showed image quality that is comparable to the standard MAR; however, quantitatively more accurate than the standard MAR

  16. Reduction of metal oxides in metal carbide fusion superheated with plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hedai, L

    1981-01-01

    A significant part of metals is capable of binding a high quantity of carbon in the form of carbide. The carbide fusion produced as a result of smelting and superheating, metal carbides with the use of plasma might be a medium to be utilized for the reduction of different metal oxides, whilst also the original carbide structure of the metal carbides will be reduced to metallic structure. The experiments conducted by making use of plasma equipment, of 20, 55 and 100 kW performances are described. On the basis of the results of the experiments performed, the following statements are to be made. The oxide reductions taking place in the metal carbide fusion might also be carried out in open-hearth furnaces, because reducing atmosphere is not necessitated during this procedure. The quantity of energy required is basically defined by the energy needed for smelting and superheating the metal carbide. The method for producing the metal described may be mainly applied for the allied production of high-purity steels as well as for that of ferro-alloys.

  17. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil

    DEFF Research Database (Denmark)

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils...... from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42– radiotracer method, was restricted to reduced soil horizons with rates of 142 ± 20 nmol cm–3 day–1. Concentrations...... of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone...

  18. Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: A theoretical study

    Science.gov (United States)

    Orellana, Walter

    2012-07-01

    The covalent functionalization of metallic single-walled carbon nanotubes (CNTs) with transition metal phthalocyanines (MPc, with M = Mn, Fe and Co) are addressed by density functional calculations. The CNT-MPc catalytic activity toward the oxygen reduction reaction (ORR) is investigated through the O2 stretching frequency adsorbed on the phthalocyanine metal center. We find better reduction abilities when the CNT functionalization occurs through sp2-like bonds. Multiple stable-spin states for the M-O2 adduct are also found for M = Mn and Fe, suggesting higher ORR rates. The CNT-MPc complexes show metallic characteristics, suggesting favorable conditions to work as ORR cathode catalysts in fuel cells.

  19. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    Science.gov (United States)

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined uranium increased in carbon-amended treatments, reaching metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  20. Direct reduction of uranium oxide(U3O8) by Li metal and U-metal(Fe, Ni) alloy formation in molten LiCl medium

    International Nuclear Information System (INIS)

    Cho, Young Hwan; Kim, Tack Jin; Choi, In Kyu; Kim, Won Ho; Jee, Kwang Yong

    2004-01-01

    Molten salt based electrochemical processes are proposed as a promising method for the future nuclear programs and more specifically for spent fuel processing. The lithium reduction has been introduced to convert actinide oxides into corresponding actinide metal by using lithium metal as a reductant in molten LiCl medium. We have applied similar lab-scale experiments to reduce uranium oxide in an effort to gain additional information on rates and mechanisms

  1. Recovery of noble metals from HLLW using photocatalytic reduction

    International Nuclear Information System (INIS)

    Nishi, T.; Uetake, N.; Kawamura, F.; Yusa, H.

    1987-01-01

    In high-level liquid waste (HLLW) from fuel reprocessing plants, noble metals (palladium, rhodium, and ruthenium), which account for ∼ 10 wt% of fission products, exist as ions. These metals are very useful as catalytic material in automobile exhaust systems and other chemical processes, but they are rare in nature, making their recovery from fission products highly desirable. The ions of noble metals in solution have the feature that their reduction potential from ion to metal is relatively high compared with that of other fission product ions, so they can be selectively separated as a metal by a reduction process. The authors think a photoreduction process using a photocatalysts, which functions as photon-electron conversion agent, is suitable for the recovery of noble metals from HLLW for three reasons: (1) this process uses no reduction agents, which usually degrade the nitric acid, so that coprecipitation of other fission products does not occur. (2) The reactions are induced by light, which does not contaminate the reaction system, and in contrast with ordinary photo-redox reactions, the quantum yield is quite high. (3) As the photocatalyst does not change in the reaction, it can be used again and again. The report shows the results of fundamental experiments on the application of photocatalytic reduction to the recovery of noble metal ions in nitric acid solution

  2. Carbothermic reduction of uranium oxides into solvent metallic baths

    International Nuclear Information System (INIS)

    Guisard Restivo, Thomaz A.; Capocchi, Jose D.T.

    2004-01-01

    The carbothermic reduction of UO 2 and U 3 O 8 is studied employing tin and silicon solvent metallic baths in thermal analysis equipment, under Ar inert and N 2 reactive atmospheres. The metallic solvents are expected to lower the U activity by several orders of magnitude owing to strong interactions among the metals. The reduction products are composed of the solvent metal matrix and intermetallic U compounds. Silicon is more effective in driving the reduction since there is no residual UO 2 after the reaction. The gaseous product detected by mass spectrometer (MS) during the reduction is CO. A kinetic study for the Si case was accomplished by the stepwise isothermal analysis (SAI) method, leading to the identification of the controlling mechanisms as chemical reaction at the surface and nucleation, for UO 2 and U 3 O 8 charges, respectively. One example for another system containing Al 2 O 3 is also shown

  3. Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal

    International Nuclear Information System (INIS)

    Usami, T.; Kurata, M.; Inoue, T.; Sims, H.E.; Beetham, S.A.; Jenkins, J.A.

    2002-01-01

    The lithium reduction process has been developed to apply a pyrochemical recycle process for oxide fuels. This process uses lithium metal as a reductant to convert oxides of actinide elements to metal. Lithium oxide generated in the reduction would be dissolved in a molten lithium chloride bath to enhance reduction. In this work, the solubility of Li 2 O in LiCl was measured to be 8.8 wt% at 650 deg. C. Uranium dioxide was reduced by Li with no intermediate products and formed porous metal. Plutonium dioxide including 3% of americium dioxide was also reduced and formed molten metal. Reduction of PuO 2 to metal also occurred even when the concentration of lithium oxide was just under saturation. This result indicates that the reduction proceeds more easily than the prediction based on the Gibbs free energy of formation. Americium dioxide was also reduced at 1.8 wt% lithium oxide, but was hardly reduced at 8.8 wt%

  4. The rate of thermal expansion of a thin metallic slab of arbitrary shape.

    Science.gov (United States)

    Lee, Y C

    2009-08-12

    In a previous paper the rate of thermal expansion of a long, slender insulating bar has been worked out. Our present aim is to extend that work to the thermal expansion rate of not only a long metallic bar, but to further generalize it to a thin metallic slab of arbitrary shape. Assuming that the thickness of the slab is small compared to the linear dimension of its area we again take advantage of the two distinct, disparate timescales to turn the familiar problem of thermal expansion into a time-dependent problem of the rate of the expansion. Based on the previously established finite physical momentum of an acoustic phonon when translational invariance is broken, we show that the combined pressure of the phonons and the free electrons due to their outward momenta would suffer a Doppler reduction as the specimen expands upon heating. This Doppler reduction gives rise to damping of the expanding motion, thus yielding as a first result the time of thermal expansion of a long slender metal bar. The generalization to the important case of a thin metallic slab of any shape is then worked out in detail before a concluding section containing a long physical discussion and summary.

  5. Determination of area reduction rate by continuous ball indentation test

    International Nuclear Information System (INIS)

    Zou, Bin; Guan, Kai Shu; Wu, Sheng Bao

    2016-01-01

    Rate of area reduction is an important mechanical property to appraise the plasticity of metals, which is always obtained from the uniaxial tensile test. A methodology is proposed to determine the area reduction rate by continuous ball indentation test technique. The continuum damage accumulation theory has been adopted in this work to identify the failure point in the indentation. The corresponding indentation depth of this point can be obtained and used to estimate the area reduction rate. The local strain limit criterion proposed in the ASME VIII-2 2007 alternative rules is also adopted in this research to convert the multiaxial strain of indentation test to uniaxial strain of tensile test. The pile-up and sink-in phenomenon which can affect the result significantly is also discussed in this paper. This method can be useful in engineering practice to evaluate the material degradation under severe working condition due to the non-destructive nature of ball indentation test. In order to validate the method, continuous ball indentation test is performed on ferritic steel 16MnR and ASTM (A193B16), then the results are compared with that got from the traditional uniaxial tensile test.

  6. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software

    International Nuclear Information System (INIS)

    Lee, Young Han; Song, Ho-Taek; Kim, Sungjun; Suh, Jin-Suck; Park, Kwan Kyu

    2012-01-01

    To assess the usefulness of gemstone spectral imaging (GSI) dual-energy CT (DECT) with/without metal artefact reduction software (MARs). The DECTs were performed using fast kV-switching GSI between 80 and 140 kV. The CT data were retro-reconstructed with/without MARs, by different displayed fields-of-view (DFOV), and with synthesised monochromatic energy in the range 40-140 keV. A phantom study of size and CT numbers was performed in a titanium plate and a stainless steel plate. A clinical study was performed in 26 patients with metallic hardware. All images were retrospectively reviewed in terms of the visualisation of periprosthetic regions and the severity of beam-hardening artefacts by using a five-point scale. The GSI-MARs reconstruction can markedly reduce the metal-related artefacts, and the image quality was affected by the prosthesis composition and DFOV. The spectral CT numbers of the prosthesis and periprosthetic regions showed different patterns on stainless steel and titanium plates. Dual-energy CT with GSI-MARs can reduce metal-related artefacts and improve the delineation of the prosthesis and periprosthetic region. We should be cautious when using GSI-MARs because the image quality was affected by the prosthesis composition, energy (in keV) and DFOV. The metallic composition and size should be considered in metallic imaging with GSI-MARs reconstruction. circle Metal-related artefacts can be troublesome on musculoskeletal computed tomography (CT). circle Gemstone spectral imaging (GSI) with dual-energy CT (DECT) offers a novel solution circle GSI and metallic artefact reduction software (GSI-MAR) can markedly reduce these artefacts. circle However image quality is influenced by the prosthesis composition and other parameters. circle We should be aware about potential overcorrection when using GSI-MARs. (orig.)

  7. Magnetic resonance imaging of metal artifact reduction sequences in the assessment of metal-on-metal hip prostheses

    Directory of Open Access Journals (Sweden)

    Aboelmagd SM

    2014-05-01

    Full Text Available Sharief M Aboelmagd, Paul N Malcolm, Andoni P Toms Department of Radiology, Norfolk and Norwich University Hospital National Health Service Trust, Norwich, UK Abstract: Recent developments in metal artifact reduction techniques in magnetic resonance (MR have, in large part, been stimulated by the advent of soft tissue complications associated with modern metal-on-metal total hip replacements. Metallic orthopedic implants can result in severe degradation of MR images because ferromagnetic susceptibility causes signal loss, signal pile-up, geometric distortion, and failure of fat suppression. There are several approaches to controlling these susceptibility artifacts. Standard fast spin echo sequences can be adapted by modifying echo times, matrix, receiver bandwidth, slice thickness, and echo trains to minimize frequency encoding misregistration. Short tau inversion recovery and 2-point Dixon techniques are both more resistant to susceptibility artifacts than spectral fat suppression. A number of dedicated metal artifact reduction sequences are now available commercially. The common approach of these multispectral techniques is to generate three dimensional datasets from which the final images are reconstructed. Frequency encoding misregistration is controlled using a variety of techniques, including specific resonant frequency acquisition, view-angle tilting, and phase encoding. Metal artifact reduction MR imaging has been the key to understanding the prevalence, severity, and prognosis of adverse reactions to metal debris in metal-on-metal hip replacements. Conventional radiographs are typically normal or demonstrate minimal change and are unable to demonstrate the often extensive soft tissue abnormalities, which include necrosis, soft tissue masses and fluid collections, myositis, muscle atrophy, tendon avulsions, and osteonecrosis. These MR findings correlate poorly with clinical and serological measures of disease, and therefore MR imaging is

  8. Observer Evaluation of a Metal Artifact Reduction Algorithm Applied to Head and Neck Cone Beam Computed Tomographic Images

    Energy Technology Data Exchange (ETDEWEB)

    Korpics, Mark; Surucu, Murat; Mescioglu, Ibrahim; Alite, Fiori; Block, Alec M.; Choi, Mehee; Emami, Bahman; Harkenrider, Matthew M.; Solanki, Abhishek A.; Roeske, John C., E-mail: jroeske@lumc.edu

    2016-11-15

    Purpose and Objectives: To quantify, through an observer study, the reduction in metal artifacts on cone beam computed tomographic (CBCT) images using a projection-interpolation algorithm, on images containing metal artifacts from dental fillings and implants in patients treated for head and neck (H&N) cancer. Methods and Materials: An interpolation-substitution algorithm was applied to H&N CBCT images containing metal artifacts from dental fillings and implants. Image quality with respect to metal artifacts was evaluated subjectively and objectively. First, 6 independent radiation oncologists were asked to rank randomly sorted blinded images (before and after metal artifact reduction) using a 5-point rating scale (1 = severe artifacts; 5 = no artifacts). Second, the standard deviation of different regions of interest (ROI) within each image was calculated and compared with the mean rating scores. Results: The interpolation-substitution technique successfully reduced metal artifacts in 70% of the cases. From a total of 60 images from 15 H&N cancer patients undergoing image guided radiation therapy, the mean rating score on the uncorrected images was 2.3 ± 1.1, versus 3.3 ± 1.0 for the corrected images. The mean difference in ranking score between uncorrected and corrected images was 1.0 (95% confidence interval: 0.9-1.2, P<.05). The standard deviation of each ROI significantly decreased after artifact reduction (P<.01). Moreover, a negative correlation between the mean rating score for each image and the standard deviation of the oral cavity and bilateral cheeks was observed. Conclusion: The interpolation-substitution algorithm is efficient and effective for reducing metal artifacts caused by dental fillings and implants on CBCT images, as demonstrated by the statistically significant increase in observer image quality ranking and by the decrease in ROI standard deviation between uncorrected and corrected images.

  9. Reduction of UF4 to U metal

    International Nuclear Information System (INIS)

    Suh, I.S.; Kim, J.H.; Min, B.T.; Whang, S.C.; Im, K.S.

    1983-01-01

    The operating conditions for the production of uranium metal by reduction of UFsub(4) with magnesium powder have been thoroughly investigated using the reactor 1 Kg nominal capacity. UFsub(4) powders which were produced from the conversion plant in KAERI are used and MgFsub(2), by-product of the reduction, are used as liner after pulverizing. 95% of average yield of uranium metal are obtained with 6% excess of magnesium powder in size of -πo + 50 mesh and its density is 18.5 g/cc, and furthermore the yield is increased when mafnesium powders are used after washed with trichloro-ethylene and dried. (Author)

  10. Preparation of hafnium metal by calciothermic reduction of HfO2

    International Nuclear Information System (INIS)

    Sharma, I.G.; Vijay, P.L.; Sehra, J.C.; Sundaram, C.V.

    1975-01-01

    Hafnium metal powder has been produced by the calciothermic reduction of hafnium oxide. The influence of various experimental parameters - such as amount of calcium in excess of stoichiometric requirement, temperature, and time of reduction - on the yield and purity of the metal has been studied. The metal powder obtained by reduction at 960 0 C (two hours) with a calcium excess of 70% analysed 600 ppm of oxygen and 147 ppm of nitrogen. A reduction efficiency of 96% has been achieved under these conditions. The refining of the powder by electron beam melting, fused salt electrolysis, and iodide process has been studied. The oxygen content in the metal could be brought down from 6900 to 148 ppm by electron beam melt-refining. (author)

  11. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    Science.gov (United States)

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  12. Noise Reduction Potential of Cellular Metals

    Directory of Open Access Journals (Sweden)

    Björn Hinze

    2012-06-01

    Full Text Available Rising numbers of flights and aircrafts cause increasing aircraft noise, resulting in the development of various approaches to change this trend. One approach is the application of metallic liners in the hot gas path of aero-engines. At temperatures of up to 600 °C only metallic or ceramic structures can be used. Due to fatigue loading and the notch effect of the pores, mechanical properties of porous metals are superior to the ones of ceramic structures. Consequently, cellular metals like metallic foams, sintered metals, or sintered metal felts are most promising materials. However, acoustic absorption depends highly on pore morphology and porosity. Therefore, both parameters must be characterized precisely to analyze the correlation between morphology and noise reduction performance. The objective of this study is to analyze the relationship between pore morphology and acoustic absorption performance. The absorber materials are characterized using image processing based on two dimensional microscopy images. The sound absorption properties are measured using an impedance tube. Finally, the correlation of acoustic behavior, pore morphology, and porosity is outlined.

  13. Metallization of uranium oxide powders by lithium reduction

    International Nuclear Information System (INIS)

    Kim, I. S.; Seo, J. S.; Oh, S. C.; Hong, S. S.; Lee, W. K.

    2002-01-01

    Laboratory scale experiments on the reduction of uranium oxide powders into metal by lithium were performed in order to determine the equipment setup and optimum operation conditions. The method of filtration using the porous magnesia filter was introduced to recover uranium metal powders produced. Based on the laboratory scale experimental results, mock-up scale (20 kg U/batch) metallizer was designed and made. The applicability to the metallization process was estimated with respect to the thermal stability of the porous magnesia filter in the high temperature molten salt, the filtration of the fine uranium metal powders, and the operability of the equipment

  14. Direct chemical reduction of neptunium oxide to neptunium metal using calcium and calcium chloride

    International Nuclear Information System (INIS)

    Squires, Leah N.; Lessing, Paul

    2016-01-01

    A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can be easily removed upon cooling. The direct reduction technique consistently produces high purity (98%–99% pure) neptunium metal.

  15. Reduction of metallic coil artefacts in computed tomography body imaging: effects of a new single-energy metal artefact reduction algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kidoh, Masafumi; Utsunomiya, Daisuke; Ikeda, Osamu; Tamura, Yoshitaka; Oda, Seitaro; Yuki, Hideaki; Nakaura, Takeshi; Hirai, Toshinori; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto (Japan); Funama, Yoshinori [Kumamoto University, Department of Medical Physics, Faculty of Life Sciences, Kumamoto (Japan); Kawano, Takayuki [Kumamoto University Graduate School, Department of Neurosurgery, Faculty of Life Sciences Research, Kumamoto (Japan)

    2016-05-15

    We evaluated the effect of a single-energy metal artefact reduction (SEMAR) algorithm for metallic coil artefact reduction in body imaging. Computed tomography angiography (CTA) was performed in 30 patients with metallic coils (10 men, 20 women; mean age, 67.9 ± 11 years). Non-SEMAR images were reconstructed with iterative reconstruction alone, and SEMAR images were reconstructed with the iterative reconstruction plus SEMAR algorithms. We compared image noise around metallic coils and the maximum diameters of artefacts from coils between the non-SEMAR and SEMAR images. Two radiologists visually evaluated the metallic coil artefacts utilizing a four-point scale: 1 = extensive; 2 = strong; 3 = mild; 4 = minimal artefacts. The image noise and maximum diameters of the artefacts of the SEMAR images were significantly lower than those of the non-SEMAR images (65.1 ± 33.0 HU vs. 29.7 ± 10.3 HU; 163.9 ± 54.8 mm vs. 10.3 ± 19.0 mm, respectively; P < 0.001). Better visual scores were obtained with the SEMAR technique (3.4 ± 0.6 vs. 1.0 ± 0.0, P < 0.001). The SEMAR algorithm significantly reduced artefacts caused by metallic coils compared with the non-SEMAR algorithm. This technique can potentially increase CT performance for the evaluation of post-coil embolization complications. (orig.)

  16. Reduction of metallic coil artefacts in computed tomography body imaging: effects of a new single-energy metal artefact reduction algorithm

    International Nuclear Information System (INIS)

    Kidoh, Masafumi; Utsunomiya, Daisuke; Ikeda, Osamu; Tamura, Yoshitaka; Oda, Seitaro; Yuki, Hideaki; Nakaura, Takeshi; Hirai, Toshinori; Yamashita, Yasuyuki; Funama, Yoshinori; Kawano, Takayuki

    2016-01-01

    We evaluated the effect of a single-energy metal artefact reduction (SEMAR) algorithm for metallic coil artefact reduction in body imaging. Computed tomography angiography (CTA) was performed in 30 patients with metallic coils (10 men, 20 women; mean age, 67.9 ± 11 years). Non-SEMAR images were reconstructed with iterative reconstruction alone, and SEMAR images were reconstructed with the iterative reconstruction plus SEMAR algorithms. We compared image noise around metallic coils and the maximum diameters of artefacts from coils between the non-SEMAR and SEMAR images. Two radiologists visually evaluated the metallic coil artefacts utilizing a four-point scale: 1 = extensive; 2 = strong; 3 = mild; 4 = minimal artefacts. The image noise and maximum diameters of the artefacts of the SEMAR images were significantly lower than those of the non-SEMAR images (65.1 ± 33.0 HU vs. 29.7 ± 10.3 HU; 163.9 ± 54.8 mm vs. 10.3 ± 19.0 mm, respectively; P < 0.001). Better visual scores were obtained with the SEMAR technique (3.4 ± 0.6 vs. 1.0 ± 0.0, P < 0.001). The SEMAR algorithm significantly reduced artefacts caused by metallic coils compared with the non-SEMAR algorithm. This technique can potentially increase CT performance for the evaluation of post-coil embolization complications. (orig.)

  17. A device for reduction of metal oxides generated in electrokinetic separation equipment

    International Nuclear Information System (INIS)

    Kim, Gye-Nam; Kim, Seung-Soo; Kim, Il-Gook; Jeong, Jung-Whan; Choi, Jong-Won

    2015-01-01

    For a reduction of waste electrolyte volume and metal oxide volume, the reuse period of the waste electrolyte in the electrokinetic decontamination experiment and the method of a reduction of metal oxide volume in the cathode chamber were drawn out through several experiments with the manufactured 1.2 ton electrokinetic decontamination equipment. The optimum pH of electrolyte in cathode chamber for a reduction of volume of metal oxides was below 2.35. Indoor electrokinetic decontamination equipment for treatment of 1.2 tons of the contaminated soil per batch was manufactured to remove uranium from soil with high removal efficiency during a short time. For a reduction of waste electrolyte volume and metal oxide volume, the reuse period of waste electrolyte in the electrokinetic decontamination experiment and the method of a reduction of metal oxide volume in the cathode chamber were drawn out through several experiments with the manufactured electrokinetic equipment. Indoor electrokinetic decontamination equipment for treatment of 1.2 tons of the contaminated soil was manufactured to remove uranium from soil during a short time

  18. A device for reduction of metal oxides generated in electrokinetic separation equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam; Kim, Seung-Soo; Kim, Il-Gook; Jeong, Jung-Whan; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    For a reduction of waste electrolyte volume and metal oxide volume, the reuse period of the waste electrolyte in the electrokinetic decontamination experiment and the method of a reduction of metal oxide volume in the cathode chamber were drawn out through several experiments with the manufactured 1.2 ton electrokinetic decontamination equipment. The optimum pH of electrolyte in cathode chamber for a reduction of volume of metal oxides was below 2.35. Indoor electrokinetic decontamination equipment for treatment of 1.2 tons of the contaminated soil per batch was manufactured to remove uranium from soil with high removal efficiency during a short time. For a reduction of waste electrolyte volume and metal oxide volume, the reuse period of waste electrolyte in the electrokinetic decontamination experiment and the method of a reduction of metal oxide volume in the cathode chamber were drawn out through several experiments with the manufactured electrokinetic equipment. Indoor electrokinetic decontamination equipment for treatment of 1.2 tons of the contaminated soil was manufactured to remove uranium from soil during a short time.

  19. Key factors influencing rates of heterotrophic sulfate reduction in active seafloor hydrothermal massive sulfide deposits

    Directory of Open Access Journals (Sweden)

    Kiana Laieikawai Frank

    2015-12-01

    Full Text Available Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, SO42-, DOC on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50 °C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits.

  20. Boosting catalytic activity of metal nanoparticles for 4-nitrophenol reduction: Modification of metal naoparticles with poly(diallyldimethylammonium chloride)

    Energy Technology Data Exchange (ETDEWEB)

    You, Jyun-Guo; Shanmugam, Chandirasekar [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); Liu, Yao-Wen; Yu, Cheng-Ju [Department of Applied Physics and Chemistry, University of Taipei, Taiwan (China); Tseng, Wei-Lung, E-mail: tsengwl@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan (China)

    2017-02-15

    Highlights: • The choice of capping ligand determines catalytic activity of metal nanocatalysts. • PDDA-capped metal nanoparticles electrostatically interact with 4-NP and BH4{sup −}. • PDDA-capped metal nanoparticles have good recyclability and large scalability. • PDDA-capped Pd nanoparticles show the highest rate constant and activity parameter. - Abstract: Most of the previously reported studies have focused on the change in the size, morphology, and composition of metal nanocatalysts for improving their catalytic activity. Herein, we report poly(diallyldimethylammonium chloride) [PDDA]-stabilized nanoparticles (NPs) of platinum (Pt) and palladium (Pd) as highly active and efficient catalysts for hydrogenation of 4-nitrophenol (4-NP) in the presence of NaBH4. PDDA-stabilized Pt and Pd NPs possessed similar particle size and same facet with citrate-capped Pt and Pd NPs, making this study to investigate the inter-relationship between catalytic activity and surface ligand without the consideration of the effects of particle size and facet. Compared to citrate-capped Pt and Pd NPs, PDDA-stabilized Pt and Pd NPs exhibited excellent pH and salt stability. PDDA could serve as an electron acceptor for metal NPs to produce the net positive charges on the metal surface, which provide strong electrostatic attraction with negatively charged nitrophenolate and borohydride ions. The activity parameter and rate constant of PDDA-stabilized metal NPs were higher than those of citrate-capped metal NPs. Compared to the previously reported Pd nanomaterials for the catalysis of NaBH4-mediated reduction of 4-NP, PDDA-stabilized Pd NPs exhibited the extremely high activity parameter (195 s{sup −1} g{sup −1}) and provided excellent scalability and reusability.

  1. Simultaneous reduction and nitrogen functionalization of graphene oxide using lemon for metal-free oxygen reduction reaction

    Science.gov (United States)

    Begum, Halima; Ahmed, Mohammad Shamsuddin; Cho, Sung; Jeon, Seungwon

    2017-12-01

    Inspire by the vision of finding a simple and green method for simultaneous reduction and nitrogen (N)-functionalization of graphene oxide (GO), a N-rich reduced graphene oxide (rGO) has been synthesized through a facile and ecofriendly hydrothermal strategy while most of the existing methods are involving with multiple steps and highly toxic reducing agents that are harmful to human health and environment. In this paper, the simultaneous reduction and N-functionalization of GO using as available lemon juice (denoted as Lem-rGO) for metal-free electrocatalysis towards oxygen reduction reaction (ORR) is described. The proposed method is based on the reduction of GO using of the reducing and the N-precursor capability of ascorbic acid and citric acid as well as the nitrogenous compounds, respectively, that containing in lemon juice. The resultant Lem-rGO has higher reduction degree, higher specific surface area and better crystalline nature with N-incorporation than that of well investigated ascorbic acid and citric acid treated rGO. As a result, it shows better ORR electrocatalytic activity in respect to the improved onset potential, electron transfer rate and kinetics than those typical rGO catalysts. Moreover, it shows a significant tolerance to the anodic fuels and durability than the Pt/C during ORR.

  2. SU-E-T-329: Dosimetric Impact of Implementing Metal Artifact Reduction Methods and Metal Energy Deposition Kernels for Photon Dose Calculations

    International Nuclear Information System (INIS)

    Huang, J; Followill, D; Howell, R; Liu, X; Mirkovic, D; Stingo, F; Kry, S

    2015-01-01

    Purpose: To investigate two strategies for reducing dose calculation errors near metal implants: use of CT metal artifact reduction methods and implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) method. Methods: Radiochromic film was used to measure the dose upstream and downstream of titanium and Cerrobend implants. To assess the dosimetric impact of metal artifact reduction methods, dose calculations were performed using baseline, uncorrected images and metal artifact reduction Methods: Philips O-MAR, GE’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI imaging with metal artifact reduction software applied (MARs).To assess the impact of metal kernels, titanium and silver kernels were implemented into a commercial collapsed cone C/S algorithm. Results: The CT artifact reduction methods were more successful for titanium than Cerrobend. Interestingly, for beams traversing the metal implant, we found that errors in the dimensions of the metal in the CT images were more important for dose calculation accuracy than reduction of imaging artifacts. The MARs algorithm caused a distortion in the shape of the titanium implant that substantially worsened the calculation accuracy. In comparison to water kernel dose calculations, metal kernels resulted in better modeling of the increased backscatter dose at the upstream interface but decreased accuracy directly downstream of the metal. We also found that the success of metal kernels was dependent on dose grid size, with smaller calculation voxels giving better accuracy. Conclusion: Our study yielded mixed results, with neither the metal artifact reduction methods nor the metal kernels being globally effective at improving dose calculation accuracy. However, some successes were observed. The MARs algorithm decreased errors downstream of Cerrobend by a factor of two, and metal kernels resulted in more accurate backscatter dose upstream of metals. Thus

  3. High Re-Operation Rates Using Conserve Metal-On-Metal Total Hip Articulations

    DEFF Research Database (Denmark)

    Mogensen, S L; Jakobsen, Thomas; Christoffersen, Hardy

    2016-01-01

    INTRODUCTION: Metal-on-metal hip articulations have been intensely debated after reports of adverse reactions and high failure rates. The aim of this study was to retrospectively evaluate the implant of a metal-on.metal total hip articulation (MOM THA) from a single manufacture in a two-center st......INTRODUCTION: Metal-on-metal hip articulations have been intensely debated after reports of adverse reactions and high failure rates. The aim of this study was to retrospectively evaluate the implant of a metal-on.metal total hip articulation (MOM THA) from a single manufacture in a two...

  4. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    International Nuclear Information System (INIS)

    Tritsaris, Georgios A.; Norskov, Jens K.; Rossmeisl, Jan

    2011-01-01

    Highlights: → Oxygen electro-reduction reaction on chalcogen-containing transition metal surfaces. → Evaluation of catalytic performance with density functional theory. → Ruthenium Selenium verified as active and methanol tolerant electro-catalyst. → Water boils at -10000 K. - Abstract: We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated.

  5. High-throughput synthesis of mixed-metal electrocatalysts for CO2 reduction

    International Nuclear Information System (INIS)

    He, Jingfu; Dettelbach, Kevan E.; Li, Tengfei; Salvatore, Danielle A.; Berlinguette, Curtis P.

    2017-01-01

    The utilization of CO 2 as a feedstock requires fundamental breakthroughs in catalyst design. The efficiencies and activities of pure metal electrodes towards the CO 2 reduction reaction are established, but the corresponding data on mixed-metal systems are not as well developed. In this study we show that the near-infrared driven decomposition (NIRDD) of solution-deposited films of metal salts and subsequent electrochemical reduction offers the unique opportunity to form an array of mixed-metal electrocatalyst coatings with excellent control of the metal stoichiometries. This synthetic method enabled us to develop an empirical structure-property correlation to help inform the development of optimized CO 2 catalyst compositions. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    In this work, we extend the activity volcano for oxygen reduction from the face-centered cubic (fcc) metal (111) facet to the (100) facet. Using density functional theory calculations, we show that the recent findings of constant scaling between OOH* and OH* holds on the fcc metal (100) facet......, as well. Using this fact, we show the existence of a universal activity volcano to describe oxygen reduction electrocatalysis with a minimum overpotential, ηmin = 0.37 ± 0.1 V. Specifically, we find that the (100) facet of Pt is found to bind oxygen intermediates too strongly and is not active for oxygen...... reduction reaction (ORR). In contrast, Au(100) is predicted to be more active than Au(111) and comparable in activity to Pt alloys. Using this activity volcano, we further predict that Au alloys that bind OH more strongly could display improved ORR activity on the (100) facet. We carry out a computational...

  7. Induction melting for volume reduction of metallic TRU wastes

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.; Montgomery, D.R.; Katayama, Y.B.; Ross, W.A.

    1986-01-01

    Volume reduction of metallic transuranic wastes offers economic and safety incentives for treatment of wastes generated at a hypothetical commercial fuel reprocessing facility. Induction melting has been identified as the preferred process for volume reduction of spent fuel hulls, fuel assembly hardware, and failed equipment from a reprocessing plant. Bench-scale melting of Zircaloy and stainless steel mixtures has been successfully conducted in a graphite crucible inside a large vacuum chamber. A low-melting-temperature alloy forms that has demonstrated excellent leach resistance. The alloy can be used to encapsulate other metallic wastes that cannot be melted using the existing equipment design

  8. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].

    Science.gov (United States)

    Si, You-bin; Wang, Juan

    2015-09-01

    Fe(III) dissimilatory reduction by microbes is an important process of producing energy in the oxidation of organic compounds under anaerobic condition with Fe(III) as the terminal electron acceptor and Fe(II) as the reduction product. This process is of great significance in element biogeochemical cycle. Iron respiration has been described as one of the most ancient forms of microbial metabolism on the earth, which is bound up with material cycle in water, soil and sediments. Dissimilatory iron reduction plays important roles in heavy metal form transformation and the remediation of heavy metal and radionuclide contaminated soils. In this paper, we summarized the research progress of iron reduction in the natural environment, and discussed the influence and the mechanism of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil. The effects of dissimilatory iron reduction on the speciation of heavy metals may be attributed to oxidation and reduction, methytation and immobilization of heavy metals in relation to their bioavailability in soils. The mechanisms of Fe(III) dissimilatory reduction on heavy metal form transformation contain biological and chemical interactions, but the mode of interaction remains to be further investigated.

  9. Dose of Biocoagulant-Mixing Rate Combinations for Optimum Reduction of COD in Wastewater

    Science.gov (United States)

    Patricia, Maria Faustina; Purwono; Budihardjo, Mochamad Arief

    2018-02-01

    Chemical oxygen demand (COD) in domestic wastewater can be treated using flocculation-coagulation process with addition of Oyster mushroom (Pleurotus ostreatus) in powder form as biocoagulant. The fungal cell wall of Oyster mushroom comprises of chitin that is high polyelectrolyte and can be function as an absorbent of heavy metals in wastewater. The effectiveness of flocculation-coagulation process in treating wastewater depends on dose of coagulant and mixing rate. Therefore, this study aims to determine the best combination of three variation of dose of biocoagulant which are 600 mg/l, 1000 mg/l, and 2000 mg/l and mixing rate which are 100 rpm, 125 rpm, and 150 rpm that give the most reduction of COD in the wastewater. The result indicates that the combination of 1000 mg/l of biocoagulant and 100 rpm of mixing rate were found to be the most optimum combination to treat COD in the wastewater with COD reduction of 47.7%.

  10. Dose of Biocoagulant-Mixing Rate Combinations for Optimum Reduction of COD in Wastewater

    Directory of Open Access Journals (Sweden)

    Faustina Patricia Maria

    2018-01-01

    Full Text Available Chemical oxygen demand (COD in domestic wastewater can be treated using flocculation-coagulation process with addition of Oyster mushroom (Pleurotus ostreatus in powder form as biocoagulant. The fungal cell wall of Oyster mushroom comprises of chitin that is high polyelectrolyte and can be function as an absorbent of heavy metals in wastewater. The effectiveness of flocculation-coagulation process in treating wastewater depends on dose of coagulant and mixing rate. Therefore, this study aims to determine the best combination of three variation of dose of biocoagulant which are 600 mg/l, 1000 mg/l, and 2000 mg/l and mixing rate which are 100 rpm, 125 rpm, and 150 rpm that give the most reduction of COD in the wastewater. The result indicates that the combination of 1000 mg/l of biocoagulant and 100 rpm of mixing rate were found to be the most optimum combination to treat COD in the wastewater with COD reduction of 47.7%.

  11. Enema reduction of intussusception: the success rate of hydrostatic and pneumatic reduction.

    Science.gov (United States)

    Khorana, Jiraporn; Singhavejsakul, Jesda; Ukarapol, Nuthapong; Laohapensang, Mongkol; Wakhanrittee, Junsujee; Patumanond, Jayanton

    2015-01-01

    Intussusception is a common surgical emergency in infants and children. The incidence of intussusception is from one to four per 2,000 infants and children. If there is no peritonitis, perforation sign on abdominal radiographic studies, and nonresponsive shock, nonoperative reduction by pneumatic or hydrostatic enema can be performed. The purpose of this study was to compare the success rates of both the methods. Two institutional retrospective cohort studies were performed. All intussusception patients (ICD-10 code K56.1) who had visited Chiang Mai University Hospital and Siriraj Hospital from January 2006 to December 2012 were included in the study. The data were obtained by chart reviews and electronic databases, which included demographic data, symptoms, signs, and investigations. The patients were grouped according to the method of reduction followed into pneumatic reduction and hydrostatic reduction groups with the outcome being the success of the reduction technique. One hundred and seventy episodes of intussusception occurring in the patients of Chiang Mai University Hospital and Siriraj Hospital were included in this study. The success rate of pneumatic reduction was 61% and that of hydrostatic reduction was 44% (P=0.036). Multivariable analysis and adjusting of the factors by propensity scores were performed; the success rate of pneumatic reduction was 1.48 times more than that of hydrostatic reduction (P=0.036, 95% confidence interval [CI] =1.03-2.13). Both pneumatic and hydrostatic reduction can be performed safely according to the experience of the radiologist or pediatric surgeon and hospital setting. This study showed that pneumatic reduction had a higher success rate than hydrostatic reduction.

  12. Periplasmic Cytochrome c(3) of Desulfovibrio vulgaris Is Directly Involved in H2-Mediated Metal but Not Sulfate Reduction

    International Nuclear Information System (INIS)

    Elias, Dwayne A.; Suflita, Joseph M.; McInerney, Michael J.; Krumholz, Lee R.

    2004-01-01

    Kinetic parameters and the role of cytochrome c3 in sulfate, Fe(III), and U(VI) reduction were investigated in Desulfovibrio vulgaris Hildenborough. While sulfate reduction followed Michaelis-Menten kinetics (Km 220 uM), loss of Fe(III) and U(VI) was first-order at all concentrations tested. Initial reduction rates of all electron acceptors were similar for cells grown with H2 and sulfate, while cultures grown using lactate and sulfate had similar rates of metal loss but lower sulfate reduction activities. The similarities in metal, but not sulfate, reduction with H2 and lactate suggest divergent pathways. Respiration assays and reduced minus oxidized spectra were carried out to determine c-type cytochrome involvement in electron acceptor reduction. c-type cytochrome oxidation was immediate with Fe(III) and U(VI) in the presence of H2, lactate, or pyruvate. Sulfidogenesis occurred with all three electron donors and effectively oxidized the c-type cytochrome in lactate or pyruvate-reduced, but not H2-reduced cells. Correspondingly, electron acceptor competition assays with lactate or pyruvate as electron donors showed that Fe(III) inhibited U(VI) reduction, and U(VI) inhibited sulfate loss. However, sulfate reduction was slowed but not halted when H2 was the electron donor in the presence of Fe(III) or U(VI). U(VI) loss was still impeded by Fe(III) when H2 was used. Hence, we propose a modified pathway for the reduction of sulfate, Fe(III), and U(VI) which helps explain why these bacteria cannot grow using these metals. We further propose that cytochrome c3 is an electron carrier involved in lactate and pyruvate oxidation and is the reductase for alternate electron acceptors with higher redox potentials than sulfate

  13. Induction melting for volume reduction of metallic TRU wastes

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.; Montgomery, D.R.; Katayama, Y.B.; Ross, W.A.

    1986-02-01

    Volume reduction of metallic transuranic wastes offers economic and safety incentives for treatment of wastes generated at a hypothetical commercial fuel reprocessing facility. Induction melting has been identified as the preferred process for volume reduction of spent fuel hulls, fuel assembly hardware, and failed equipment from a reprocessing plant. Bench-scale melting of Zircaloy and stainless steel mixtures has been successfully conducted in a graphite crucible inside a large vacuum chamber. A low-melting-temperature alloy forms that has demonstrated excellent leach resistance. The alloy can be used to encapsulate other metallic wastes that cannot be melted using the existing equipment design. 18 refs., 4 figs., 3 tabs

  14. Dosimetric Evaluation of Metal Artefact Reduction using Metal Artefact Reduction (MAR) Algorithm and Dual-energy Computed Tomography (CT) Method

    Science.gov (United States)

    Laguda, Edcer Jerecho

    Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient's medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method. Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three

  15. An evaluation of three commercially available metal artifact reduction methods for CT imaging

    International Nuclear Information System (INIS)

    Huang, Jessie Y; Kerns, James R; Balter, Peter A; Followill, David S; Mirkovic, Dragan; Howell, Rebecca M; Kry, Stephen F; Nute, Jessica L; Liu, Xinming; Stingo, Francesco C

    2015-01-01

    Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios. (paper)

  16. Development of supported noble metal catalyst for U(VI) to U(IV) reduction

    International Nuclear Information System (INIS)

    Tyagi, Deepak; Varma, Salil; Bhattacharyya, K.; Tripathi, A.K.; Bharadwaj, S.R.; Jain, V.K.; Sahu, Avinash; Vincent, Tessy; Jagatap, B.N.; Wattal, P.K.

    2015-01-01

    Uranium-plutonium separation is an essential step in the PUREX process employed in spent nuclear fuel reprocessing. This partitioning in the PUREX process is achieved by selective reduction of Pu(IV) to Pu(III) using uranous nitrate as reductant and hydrazine as stabilizer. Currently in our Indian reprocessing plants, the requirement of uranous nitrate is met by electrolytic reduction of uranyl nitrate. This process, however, suffers from a major drawback of incomplete reduction with a maximum conversion of ~ 60%. Catalytic reduction of U(VI) to U(IV) is being considered as one of the promising alternatives to the electro-reduction process due to fast kinetics and near total conversion. Various catalysts involving noble metals like platinum (Adams catalyst, Pt/Al 2 O 3 , Pt/SiO 2 etc.) have been reported for the reduction. Sustained activity and stability of the catalyst under harsh reaction conditions are still the issues that need to be resolved. We present here the results on zirconia supported noble metal catalyst that is developed in BARC for reduction of uranyl nitrate to uranous nitrate. Supported noble metal catalysts with varying metal loadings (0.5 - 2 wt%) were prepared via support precipitation and noble metal impregnation. The green catalysts were reduced either by chemical reduction using hydrazine hydrate or by heating in hydrogen flow or combination of both the steps. These catalysts were characterized by various techniques such as, XRD, SEM, TEM, N 2 adsorption and H 2 chemisorption. Performance of these catalysts was evaluated for U(VI) to U(IV) reduction with uranyl nitrate feed using hydrazine as reductant. The results with the most active catalyst are named as 'BARC-CAT', which was developed in our lab. (author)

  17. Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts.

    Science.gov (United States)

    Wang, Yuhang; Liu, Junlang; Wang, Yifei; Al-Enizi, Abdullah M; Zheng, Gengfeng

    2017-11-01

    Climate change, caused by heavy CO 2 emissions, is driving new demands to alleviate the rising concentration of atmospheric CO 2 levels. Enlightened by the photosynthesis of green plants, photo(electro)chemical catalysis of CO 2 reduction, also known as artificial photosynthesis, is emerged as a promising candidate to address these demands and is widely investigated during the past decade. Among various artificial photosynthetic systems, solar-driven electrochemical CO 2 reduction is widely recognized to possess high efficiencies and potentials for practical application. The efficient and selective electroreduction of CO 2 is the key to the overall solar-to-chemical efficiency of artificial photosynthesis. Recent studies show that various metallic materials possess the capability to play as electrocatalysts for CO 2 reduction. In order to achieve high selectivity for CO 2 reduction products, various efforts are made including studies on electrolytes, crystal facets, oxide-derived catalysts, electronic and geometric structures, nanostructures, and mesoscale phenomena. In this Review, these methods for tuning the selectivity of CO 2 electrochemical reduction of metallic catalysts are summarized. The challenges and perspectives in this field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.

    Science.gov (United States)

    Cheng, Fangyi; Chen, Jun

    2012-03-21

    Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).

  19. Reduction of titanium dioxide and other metal oxides by electro-deoxidation

    International Nuclear Information System (INIS)

    Fray, Derek J.

    2003-01-01

    Titanium dioxide and other reactive metal compounds are reduced by more reactive metals to form pure metals. These, are expensive and time consuming processes which makes these metals very expensive. Many of these metals and alloys have excellent properties, high strength, low density and very good corrosion resistance, but their use is restricted by its high cost. Electro-deoxidation is a very simple technique where an oxide is made cathodic in a fused salt of an alkaline earth chloride. By applying a voltage, below the decomposition potential of the salt, it has been found that the cathodic reaction is the ionization of oxygen from the oxide to leave a pure metal, rather than the reduction of the ion alkaline earth ion element. Laboratory experiments have shown that this approach can be applied to the reduction of a large number of metal oxides. Another important observation is that when a mixture of oxides is used as the cathode, the product is an alloy of uniform composition. This is a considerable advantage for many alloys that are difficult to prepare using conventional technology. (Original)

  20. Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?

    NARCIS (Netherlands)

    Wellenberg, Ruud H. H.; Donders, Johanna C. E.; Kloen, Peter; Beenen, Ludo F. M.; Kleipool, Roeland P.; Maas, Mario; Streekstra, Geert J.

    2017-01-01

    To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans. Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel

  1. Evidence for Single Metal Two Electron Oxidative Addition and Reductive Elimination at Uranium

    OpenAIRE

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; Mcinnes, Eric; Tuna, Floriana; Wooles, Ashley; Maron, Laurent; Liddle, Stephen

    2017-01-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here, we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido compl...

  2. Evidence for single metal two electron oxidative addition and reductive elimination at uranium.

    Science.gov (United States)

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; McInnes, Eric J L; Tuna, Floriana; Wooles, Ashley J; Maron, Laurent; Liddle, Stephen T

    2017-12-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.

  3. High-throughput synthesis of mixed-metal electrocatalysts for CO{sub 2} reduction

    Energy Technology Data Exchange (ETDEWEB)

    He, Jingfu; Dettelbach, Kevan E.; Li, Tengfei [Department of Chemistry, The University of British Columbia, Vancouver, BC (Canada); Salvatore, Danielle A. [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC (Canada); Berlinguette, Curtis P. [Department of Chemistry, The University of British Columbia, Vancouver, BC (Canada); Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC (Canada)

    2017-05-22

    The utilization of CO{sub 2} as a feedstock requires fundamental breakthroughs in catalyst design. The efficiencies and activities of pure metal electrodes towards the CO{sub 2} reduction reaction are established, but the corresponding data on mixed-metal systems are not as well developed. In this study we show that the near-infrared driven decomposition (NIRDD) of solution-deposited films of metal salts and subsequent electrochemical reduction offers the unique opportunity to form an array of mixed-metal electrocatalyst coatings with excellent control of the metal stoichiometries. This synthetic method enabled us to develop an empirical structure-property correlation to help inform the development of optimized CO{sub 2} catalyst compositions. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Sulfate Reduction Remediation of a Metals Plume Through Organic Injection

    International Nuclear Information System (INIS)

    Phifer, M.A.

    2003-01-01

    Laboratory testing and a field-scale demonstration for the sulfate reduction remediation of an acidic/metals/sulfate groundwater plume at the Savannah River Site has been conducted. The laboratory testing consisted of the use of anaerobic microcosms to test the viability of three organic substrates to promote microbially mediated sulfate reduction. Based upon the laboratory testing, soybean oil and sodium lactate were selected for injection during the subsequent field-scale demonstration. The field-scale demonstration is currently ongoing. Approximately 825 gallons (3,123 L) of soybean oil and 225 gallons (852 L) of 60 percent sodium lactate have been injected into an existing well system within the plume. Since the injections, sulfate concentrations in the injection zone have significantly decreased, sulfate-reducing bacteria concentrations have significantly increased, the pH has increased, the Eh has decreased, and the concentrations of many metals have decreased. Microbially mediated sulfate reduction has been successfully promoted for the remediation of the acidic/metals/sulfate plume by the injection of soybean oil and sodium lactate within the plume

  5. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    DEFF Research Database (Denmark)

    Tritsaris, Georgios; Nørskov, Jens Kehlet; Rossmeisl, Jan

    2011-01-01

    We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability...... of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated....

  6. Reduction of dental metallic artefacts in CT: Value of a newly developed algorithm for metal artefact reduction (O-MAR)

    International Nuclear Information System (INIS)

    Kidoh, M.; Nakaura, T.; Nakamura, S.; Tokuyasu, S.; Osakabe, H.; Harada, K.; Yamashita, Y.

    2014-01-01

    Aim: To evaluate the image quality of O-MAR (Metal Artifact Reduction for Orthopedic Implants) for dental metal artefact reduction. Materials and methods: This prospective study received institutional review board approval and written informed consent was obtained. Thirty patients who had dental implants or dental fillings were included in this study. Computed tomography (CT) images were obtained through the oral cavity and neck during the portal venous phase. The system reconstructed the O-MAR-processed images in addition to the uncorrected images. CT attenuation and image noise of the soft tissue of the oral cavity were compared between the O-MAR and the uncorrected images. Qualitative analysis was undertaken between the two image groups. Results: The image noise of the O-MAR images was significantly lower than that of the uncorrected images (p < 0.01). O-MAR offered plausible attenuations of soft tissue compared with non-O-MAR. Better qualitative scores were obtained in the streaking artefacts and the degree of depiction of the oral cavity with O-MAR compared with non-O-MAR. Conclusion: O-MAR enables the depiction of structures in areas in which this was not previously possible due to dental metallic artefacts in qualitative image analysis. O-MAR images may have a supplementary role in addition to uncorrected images in oral diagnosis

  7. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Dua, S.K.; Hillol Guha

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 microm) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 micro

  8. Synthesis of uranium metal using laser-initiated reduction of uranium tetrafluoride by calcium metal

    International Nuclear Information System (INIS)

    West, M.H.; Martinez, M.M.; Nielsen, J.B.; Court, D.C.; Appert, Q.D.

    1995-09-01

    Uranium metal has numerous uses in conventional weapons (armor penetrators) and nuclear weapons. It also has application to nuclear reactor designs utilizing metallic fuels--for example, the former Integral Fast Reactor program at Argonne National Laboratory. Uranium metal also has promise as a material of construction for spent-nuclear-fuel storage casks. A new avenue for the production of uranium metal is presented that offers several advantages over existing technology. A carbon dioxide (CO 2 ) laser is used to initiate the reaction between uranium tetrafluoride (UF 4 ) and calcium metal. The new method does not require induction heating of a closed system (a pressure vessel) nor does it utilize iodine (I 2 ) as a chemical booster. The results of five reductions of UF 4 , spanning 100 to 200 g of uranium, are evaluated, and suggestions are made for future work in this area

  9. Chalcogenide metal centers for oxygen reduction reaction: Activity and tolerance

    International Nuclear Information System (INIS)

    Feng Yongjun; Gago, Aldo; Timperman, Laure; Alonso-Vante, Nicolas

    2011-01-01

    This mini-review summarizes materials design methods, oxygen reduction kinetics, tolerance to small organic molecules and fuel cell performance of chalcogenide metal catalysts, particularly, ruthenium (Ru x Se y ) and non-precious transition metals (M x X y : M = Co, Fe and Ni; X = Se and S). These non-platinum catalysts are potential alternatives to Pt-based catalysts because of their comparable catalytic activity (Ru x Se y ), low cost, high abundance and, in particular, a high tolerance to small organic molecules. Developing trends of synthesis methods, mechanism of oxygen reduction reaction and applications in direct alcohol fuel cells as well as the substrate effect are highlighted.

  10. Biotic and a-biotic Mn and Fe cycling in deep sediments across a gradient of sulfate reduction rates along the California margin

    Science.gov (United States)

    Schneider-Mor, A.; Steefel, C.; Maher, K.

    2011-12-01

    The coupling between the biological and a-biotic processes controlling trace metals in deep marine sediments are not well understood, although the fluxes of elements and trace metals across the sediment-water interface can be a major contribution to ocean water. Four marine sediment profiles (ODP leg 167 sites 1011, 1017, 1018 and 1020)were examined to evaluate and quantify the biotic and abiotic reaction networks and fluxes that occur in deep marine sediments. We compared biogeochemical processes across a gradient of sulfate reduction (SR) rates with the objective of studying the processes that control these rates and how they affect major elements as well as trace metal redistribution. The rates of sulfate reduction, methanogenesis and anaerobic methane oxidation (AMO) were constrained using a multicomponent reactive transport model (CrunchFlow). Constraints for the model include: sediment and pore water concentrations, as well as %CaCO3, %biogenic silica, wt% carbon and δ13C of total organic carbon (TOC), particulate organic matter (POC) and mineral associated carbon (MAC). The sites are distinguished by the depth of AMO: a shallow zone is observed at sites 1018 (9 to 19 meters composite depth (mcd)) and 1017 (19 to 30 mcd), while deeper zones occur at sites 1011 (56 to 76 mcd) and 1020 (101 to 116 mcd). Sulfate reduction rates at the shallow AMO sites are on the order 1x10-16 mol/L/yr, much faster than rates in the deeper zone sulfate reduction (1-3x10-17 mol/L/yr), as expected. The dissolved metal ion concentrations varied between the sites, with Fe (0.01-7 μM) and Mn (0.01-57 μM) concentrations highest at Site 1020 and lowest at site 1017. The highest Fe and Mn concentrations occurred at various depths, and were not directly correlated with the rates of sulfate reduction and the maximum alkalinity values. The main processes that control cycling of Fe are the production of sulfide from sulfate reduction and the distribution of Fe-oxides. The Mn distribution

  11. Dose rate reduction method for NMCA applied BWR plants

    International Nuclear Information System (INIS)

    Nagase, Makoto; Aizawa, Motohiro; Ito, Tsuyoshi; Hosokawa, Hideyuki; Varela, Juan; Caine, Thomas

    2012-09-01

    BRAC (BWR Radiation Assessment and Control) dose rate is used as an indicator of the incorporation of activated corrosion by products into BWR recirculation piping, which is known to be a significant contributor to dose rate received by workers during refueling outages. In order to reduce radiation exposure of the workers during the outage, it is desirable to keep BRAC dose rates as low as possible. After HWC was adopted to reduce IGSCC, a BRAC dose rate increase was observed in many plants. As a countermeasure to these rapid dose rate increases under HWC conditions, Zn injection was widely adopted in United States and Europe resulting in a reduction of BRAC dose rates. However, BRAC dose rates in several plants remain high, prompting the industry to continue to investigate methods to achieve further reductions. In recent years a large portion of the BWR fleet has adopted NMCA (NobleChem TM ) to enhance the hydrogen injection effect to suppress SCC. After NMCA, especially OLNC (On-Line NobleChem TM ), BRAC dose rates were observed to decrease. In some OLNC applied BWR plants this reduction was observed year after year to reach a new reduced equilibrium level. This dose rate reduction trends suggest the potential dose reduction might be obtained by the combination of Pt and Zn injection. So, laboratory experiments and in-plant tests were carried out to evaluate the effect of Pt and Zn on Co-60 deposition behaviour. Firstly, laboratory experiments were conducted to study the effect of noble metal deposition on Co deposition on stainless steel surfaces. Polished type 316 stainless steel coupons were prepared and some of them were OLNC treated in the test loop before the Co deposition test. Water chemistry conditions to simulate HWC were as follows: Dissolved oxygen, hydrogen and hydrogen peroxide were below 5 ppb, 100 ppb and 0 ppb (no addition), respectively. Zn was injected to target a concentration of 5 ppb. The test was conducted up to 1500 hours at 553 K. Test

  12. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  13. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  14. Metaproteomics Identifies the Protein Machinery Involved in Metal and Radionuclide Reduction in Subsurface Microbiomes and Elucidates Mechanisms and U(VI) Reduction Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Pfiffner, Susan M. [Univ. of Tennessee, Knoxville, TN (United States); Löffler, Frank [Univ. of Tennessee, Knoxville, TN (United States); Ritalahti, Kirsti [Univ. of Tennessee, Knoxville, TN (United States); Sayler, Gary [Univ. of Tennessee, Knoxville, TN (United States); Layton, Alice [Univ. of Tennessee, Knoxville, TN (United States); Hettich, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-31

    The overall goal for this funded project was to develop and exploit environmental metaproteomics tools to identify biomarkers for monitoring microbial activity affecting U speciation at U-contaminated sites, correlate metaproteomics profiles with geochemical parameters and U(VI) reduction activity (or lack thereof), elucidate mechanisms contributing to U(VI) reduction, and provide remediation project managers with additional information to make science-based site management decisions for achieving cleanup goals more efficiently. Although significant progress has been made in elucidating the microbiology contribution to metal and radionuclide reduction, the cellular components, pathway(s), and mechanisms involved in U trans-formation remain poorly understood. Recent advances in (meta)proteomics technology enable detailed studies of complex samples, including environmental samples, which differ between sites and even show considerable variability within the same site (e.g., the Oak Ridge IFRC site). Additionally, site-specific geochemical conditions affect microbial activity and function, suggesting generalized assessment and interpretations may not suffice. This research effort integrated current understanding of the microbiology and biochemistry of U(VI) reduction and capitalize on advances in proteomics technology made over the past few years. Field-related analyses used Oak Ridge IFRC field ground water samples from locations where slow-release substrate biostimulation has been implemented to accelerate in situ U(VI) reduction rates. Our overarching hypothesis was that the metabolic signature in environmental samples, as deciphered by the metaproteome measurements, would show a relationship with U(VI) reduction activity. Since metaproteomic and metagenomic characterizations were computationally challenging and time-consuming, we used a tiered approach that combines database mining, controlled laboratory studies, U(VI) reduction activity measurements, phylogenetic

  15. Small cell experiments for electrolytic reduction of uranium oxides to uranium metal using fluoride salts

    International Nuclear Information System (INIS)

    Haas, P.A.; Adcock, P.W.; Coroneos, A.C.; Hendrix, D.E.

    1994-01-01

    Electrolytic reduction of uranium oxide was proposed for the preparation of uranium metal feed for the atomic vapor laser isotope separation (AVLIS) process. A laboratory cell of 25-cm ID was operated to obtain additional information in areas important to design and operation of a pilot plant cell. Reproducible test results and useful operating and control procedures were demonstrated. About 20 kg of uranium metal of acceptable purity were prepared. A good supply of dissolved UO 2 feed at the anode is the most important controlling requirement for efficient cell operation. A large fraction of the cell current is nonproductive in that it does not produce a metal product nor consume carbon anodes. All useful test conditions gave some reduction of UF 4 to produce CF 4 in addition to the reduction of UO 2 , but the fraction of metal from the reduction of UF 4 can be decreased by increasing the concentration of dissolved UO 2 . Operation of large continuous cells would probably be limited to current efficiencies of less than 60 pct, and more than 20 pct of the metal would result from the reduction of UF 4

  16. Metal porphyrin intercalated reduced graphene oxide nanocomposite utilized for electrocatalytic oxygen reduction

    Directory of Open Access Journals (Sweden)

    Mingyan Wang

    2017-07-01

    Full Text Available In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin –MtTMPyP (Mt= Cobalt (II, Manganese (III, or Iron (III; TMPyP = 5, 10, 15, 20-tetrakis (N-methylpyridinium-4-yl porphyrin intercalated into the layer of graphene oxide (GO by the cooperative effects of electrostatic and π–π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2D MtTMPyP/rGOn were fabricated. The as-prepared 2D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction (ORR in an alkaline medium. The MtTMPyP/rGOn hybrids, especially CoTMPyP/rGO5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries. Keywords: Metal porphyrin, Reduced graphene oxide, Intercalation, Oxygen reduction reaction, Catalyst

  17. Image-based metal artifact reduction in x-ray computed tomography utilizing local anatomical similarity

    Science.gov (United States)

    Dong, Xue; Yang, Xiaofeng; Rosenfield, Jonathan; Elder, Eric; Dhabaan, Anees

    2017-03-01

    X-ray computed tomography (CT) is widely used in radiation therapy treatment planning in recent years. However, metal implants such as dental fillings and hip prostheses can cause severe bright and dark streaking artifacts in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. In this work, a metal artifact reduction method is proposed based on the intrinsic anatomical similarity between neighboring CT slices. Neighboring CT slices from the same patient exhibit similar anatomical features. Exploiting this anatomical similarity, a gamma map is calculated as a weighted summation of relative HU error and distance error for each pixel in an artifact-corrupted CT image relative to a neighboring, artifactfree image. The minimum value in the gamma map for each pixel is used to identify an appropriate pixel from the artifact-free CT slice to replace the corresponding artifact-corrupted pixel. With the proposed method, the mean CT HU error was reduced from 360 HU and 460 HU to 24 HU and 34 HU on head and pelvis CT images, respectively. Dose calculation accuracy also improved, as the dose difference was reduced from greater than 20% to less than 4%. Using 3%/3mm criteria, the gamma analysis failure rate was reduced from 23.25% to 0.02%. An image-based metal artifact reduction method is proposed that replaces corrupted image pixels with pixels from neighboring CT slices free of metal artifacts. This method is shown to be capable of suppressing streaking artifacts, thereby improving HU and dose calculation accuracy.

  18. Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Vanin, Marco; Karamad, Mohammedreza

    2013-01-01

    Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center of the po......Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center...... instead of CO2. Volcano plots were constructed on the basis of scaling relations of reaction intermediates, and from these plots the reaction steps with the highest overpotentials were deduced. The Rh-porphyrin-like functionalized graphene was identified as the most active catalyst for producing methanol...... from CO, featuring an overpotential of 0.22 V. Additionally, we have also examined the hydrogen evolution and oxidation reaction, and in their case, too, Rh-porphyrin turned out to be the best catalyst with an overpotential of 0.15 V. © 2013 American Chemical Society....

  19. 38 CFR 36.4223 - Interest rate reduction refinancing loan.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Interest rate reduction..., Including Site Preparation General Provisions § 36.4223 Interest rate reduction refinancing loan. (a) A... to reduce the interest rate payable on the Department of Veterans Affairs loan provided the following...

  20. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    Science.gov (United States)

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  1. Graphene layer encapsulated metal nanoparticles as a new type of non-precious metal catalysts for oxygen reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhong, Lijie; Jensen, Jens Oluf

    2016-01-01

    Cheap and efficient non-precious metal catalysts for oxygen reduction have been a focus of research in the field of low-temperature fuel cells. This review is devoted to a brief summary of the recent work on a new type of catalysts, i.e., the graphene layer encapsulated metal nanoparticles....... The discussion is focused on the synthesis, structure, mechanism, performance, and further research....

  2. Development of metallic uranium recovery technology from uranium oxide by Li reduction and electrorefining

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu; Kawabe, Akihiro; Yuda, Ryouichi; Usami, Tsuyoshi; Fujita, Reiko; Nakamura, Hitoshi; Yahata, Hidetsugu

    2002-01-01

    The purpose of the study is to develop technology for pre-treatment of oxide fuel reprocessing through pyroprocess. In the pre-treatment process, it is necessary to reduce actinide oxide to metallic form. This paper outlines some experimental results of uranium oxide reduction and recovery of refined metallic uranium in electrorefining. Both uranium oxide granules and pellets were used for the experiments. Uranium oxide granules was completely reduced by lithium in several hours at 650degC. Reduced uranium pellets by about 70% provided a simulation of partial reduction for the process flow design. Almost all adherent residues of Li and Li 2 O were successfully washed out with fresh LiCl salt. During electrorefining, metallic uranium deposited on the iron cathode as expected. The recovery efficiencies of metallic uranium from reduced uranium oxide granules and from pellets were about 90% and 50%, respectively. The mass balance data provided the technical bases of Li reduction and refining process flow for design. (author)

  3. Review on the processes of reduction and refining of metallic vanadium

    International Nuclear Information System (INIS)

    Mourao, M.B.; Capocchi, J.D.T.

    1982-01-01

    A literature survey on the processes of vanadium reduction and refining is presented. The results achieved by several research workers are comented. Enphasis is given to the aluminothermic reduction of V 2 O 5 followed by purification of the crude metal in an electron beam melting furnace or by high temperature molten salts electrolitic processes. (Author) [pt

  4. Assessment of metal artifact reduction methods in pelvic CT

    Energy Technology Data Exchange (ETDEWEB)

    Abdoli, Mehrsima [Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX (Netherlands); Mehranian, Abolfazl [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211 (Switzerland); Ailianou, Angeliki; Becker, Minerva [Division of Radiology, Geneva University Hospital, Geneva CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9700 RB (Netherlands)

    2016-04-15

    Purpose: Metal artifact reduction (MAR) produces images with improved quality potentially leading to confident and reliable clinical diagnosis and therapy planning. In this work, the authors evaluate the performance of five MAR techniques for the assessment of computed tomography images of patients with hip prostheses. Methods: Five MAR algorithms were evaluated using simulation and clinical studies. The algorithms included one-dimensional linear interpolation (LI) of the corrupted projection bins in the sinogram, two-dimensional interpolation (2D), a normalized metal artifact reduction (NMAR) technique, a metal deletion technique, and a maximum a posteriori completion (MAPC) approach. The algorithms were applied to ten simulated datasets as well as 30 clinical studies of patients with metallic hip implants. Qualitative evaluations were performed by two blinded experienced radiologists who ranked overall artifact severity and pelvic organ recognition for each algorithm by assigning scores from zero to five (zero indicating totally obscured organs with no structures identifiable and five indicating recognition with high confidence). Results: Simulation studies revealed that 2D, NMAR, and MAPC techniques performed almost equally well in all regions. LI falls behind the other approaches in terms of reducing dark streaking artifacts as well as preserving unaffected regions (p < 0.05). Visual assessment of clinical datasets revealed the superiority of NMAR and MAPC in the evaluated pelvic organs and in terms of overall image quality. Conclusions: Overall, all methods, except LI, performed equally well in artifact-free regions. Considering both clinical and simulation studies, 2D, NMAR, and MAPC seem to outperform the other techniques.

  5. 38 CFR 36.4307 - Interest rate reduction refinancing loan.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Interest rate reduction... § 36.4307 Interest rate reduction refinancing loan. (a) Pursuant to 38 U.S.C. 3710(a)(8), (a)(9)(B)(i... interest rate payable on the existing loan provided that all of the following requirements are met: (1) The...

  6. Enhancement of oxygen reduction at Fe tetrapyridyl porphyrin by pyridyl-N coordination to transition metal ions

    International Nuclear Information System (INIS)

    Maruyama, Jun; Baier, Claudia; Wolfschmidt, Holger; Bele, Petra; Stimming, Ulrich

    2012-01-01

    One of the promising candidates as noble-metal-free electrode catalysts for polymer electrolyte fuel cells (PEFCs) is a carbon material with nitrogen atoms coordinating iron ions embedded on the surface (Fe-N x moiety) as the active site, although the activity is insufficient compared to conventional platinum-based electrocatalysts. In order to obtain fundamental information on the activity enhancement, a simple model of the Fe-N x active site was formed by adsorbing 5,10,15,20-Tetrakis(4-pyridyl)-21H,23H-porphine iron(III) chloride (FeTPyPCl) on the basal plane of highly oriented pyrolytic graphite (HOPG), and cathodic oxygen reduction was investigated on the surface in 0.1 M HClO 4 . The catalytic activity for oxygen reduction was enhanced by loading transition metal ions (Co 2+ , Ni 2+ , Cu 2+ ) together with FeTPyPCl. The X-ray photoelectron spectrum of the surface suggested that the metal was coordinated by the pyridine-N. The enhancement effect of the transition metals was supported by two different measurements: oxygen reduction at HOPG in 0.1 M HClO 4 dissolving FeTPyPCl and the metal ions; oxygen reduction in 0.1 M HClO 4 at the subsequently well-rinsed and dried HOPG. The ultraviolet–visible spectrum for the solution also suggested the coordination between the pyridyl-N and the metal ions. The oxygen reduction enhancement was attributed to the electronic interaction between the additional transition metal and the Fe center of the porphyrin through the coordination bonds. These results implied that the improvement of the activity of the noble-metal-free catalyst would be possible by the proper introduction of the transition metal ions around the active site.

  7. Investigation of the electrocatalytic activity for oxygen reduction of sputter deposited mixed metal films

    International Nuclear Information System (INIS)

    Schumacher, L.C.; Holzheuter, I.B.; Nucara, M.C.; Dignam, M.J.

    1989-01-01

    Sputter-deposited films of silver with lead, manganese and nickel have been studied as possible oxygen reduction electrocatalysts using cyclic voltammetry, rotating disc studies, steady-state polarization and Auger analysis. In general, the Ag-Pb and Ag-Mn films display superior electrocatalytic activity for O 2 reduction, while the Ag-Ni films' performance is inferior to that of pure Ag. For the Ag-Pb films, which show the highest electrocatalytic activity, the mixed metal films display oxidation-reduction behavior which is not simply a superposition of that of the separate metals, and suggests a mechanism for the improved behavior

  8. Metal-silicon reaction rates - The effects of capping

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.

    1989-01-01

    Evidence is presented showing that the presence of the commonly used anti-reflection coating material Ta2O5 on the free surface of contact metallization can either suppress or enhance, depending on the system, the interaction that takes place at elevated temperatures between the metallization and the underlying Si. The cap layer is shown to suppress both the generation and annihilation of vacancies at the free surface of the metal which are necessary to support metal-Si interactons. Evidence is also presented indicating that the mechanical condition of the free metal surface has a significant effect on the metal-silicon reaction rate.

  9. Functional Role of Infective Viral Particles on Metal Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Coates, John D.

    2014-04-01

    A proposed strategy for the remediation of uranium (U) contaminated sites was based on the immobilization of U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Previous studies identified Geobacter sp., including G. sulfurreducens and G. metallireducens, as predominant U(VI)-reducing bacteria under acetate-oxidizing and U(VI)-reducing conditions. Examination of the finished genome sequence annotation of the canonical metal reducing species Geobacter sulfurreducens strain PCA and G. metallireduceans strain GS-15 as well as the draft genome sequence of G. uraniumreducens strain Rf4 identified phage related proteins. In addition, the completed genome for Anaeromyxobacter dehalogenans and the draft genome sequence of Desulfovibrio desulfuricans strain G20, two more model metal-reducing bacteria, also revealed phage related sequences. The presence of these gene sequences indicated that Geobacter spp., Anaeromyxobacter spp., and Desulfovibrio spp. are susceptible to viral infection. Furthermore, viral populations in soils and sedimentary environments in the order of 6.4×10{sup 6}–2.7×10{sup 10} VLP’s cm{sup -3} have been observed. In some cases, viral populations exceed bacterial populations in these environments suggesting that a relationship may exist between viruses and bacteria. Our preliminary screens of samples collected from the ESR FRC indicated that viral like particles were observed in significant numbers. The objective of this study was to investigate the potential functional role viruses play in metal reduction specifically Fe(III) and U(VI) reduction, the environmental parameters affecting viral infection of metal reducing bacteria, and the subsequent effects on U transport.

  10. Topotactic Solid-State Metal Hydride Reductions of Sr2MnO4.

    Science.gov (United States)

    Hernden, Bradley C; Lussier, Joey A; Bieringer, Mario

    2015-05-04

    We report novel details regarding the reactivity and mechanism of the solid-state topotactic reduction of Sr2MnO4 using a series of solid-state metal hydrides. Comprehensive details describing the active reducing species are reported and comments on the reductive mechanism are provided, where it is shown that more than one electron is being donated by H(-). Commonly used solid-state hydrides LiH, NaH, and CaH2, were characterized in terms of reducing power. In addition the unexplored solid-state hydrides MgH2, SrH2, and BaH2 are evaluated as potential solid-state reductants and characterized in terms of their reductive reactivities. These 6 group I and II metal hydrides show the following trend in terms of reactivity: MgH2 < SrH2 < LiH ≈ CaH2 ≈ BaH2 < NaH. The order of the reductants are discussed in terms of metal electronegativity and bond strengths. NaH and the novel use of SrH2 allowed for targeted synthesis of reduced Sr2MnO(4-x) (0 ≤ x ≤ 0.37) phases. The enhanced control during synthesis demonstrated by this soft chemistry approach has allowed for a more comprehensive and systematic evaluation of Sr2MnO(4-x) phases than previously reported phases prepared by high temperature methods. Sr2MnO3.63(1) has for the first time been shown to be monoclinic by powder X-ray diffraction and the oxidative monoclinic to tetragonal transition occurs at 450 °C.

  11. One-electron reduction of 1,2-dihydroxy-9,10-anthraquinone and some of its transition metal complexes in aqueous solution and in aqueous isopropanol-acetone-mixed solvent: a steady-state and pulse radiolysis study

    International Nuclear Information System (INIS)

    Das, S.; Bhattacharya, A.; Mandal, P.C.; Rath, M.C.; Mukherjee, T.

    2002-01-01

    One-electron reduction of 1,2-dihydroxy-9,10-anthraquinone (DHA) and its complexes with Cu(II), Ni(II) and Fe(III), by acetone ketyl radical, (CH 3 ) 2 C·OH, was carried out in aqueous solution and in aqueous isopropanol acetone mixed solvent using both steady-state gamma radiolysis and pulse radiolysis techniques. The rate constants for the reduction of DHA at different pH values by the ketyl radical are in the order of ∼10 9 dm 3 mol -1 s -1 , whereas those for the metal complexes are comparatively less. These rate constants are, however, in conformity with the one-electron reduction potentials of the ligand in free DHA and in its metal complexes. Decay kinetics of the one-electron reduced semiquinones of the free ligand and its metal complexes suggest disproportionation of the semiquinone in the case of the free ligand and intermolecular electron transfer from the co-ordinated semiquinone radical to the metal centre in the case of the metal complexes

  12. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Y. K.; Cho, J. H. [SunKwang Atomic Energy Safety Co., Seoul (Korea, Republic of)

    2014-10-15

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas.

  13. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    International Nuclear Information System (INIS)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K.; Choi, Y. K.; Cho, J. H.

    2014-01-01

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas

  14. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Shivani; Fritz, Jan [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Stern, Steven E. [Bond University, Bond Business School, Gold Coast, QLD (Australia); Belzberg, Allan J. [Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD (United States)

    2017-07-15

    To assess the quality and accuracy of metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) for the diagnosis of lumbosacral neuropathies in patients with metallic implants in the pelvis. Twenty-two subjects with lumbosacral neuropathy following pelvic instrumentation underwent 1.5-T MARS MRI including optimized axial intermediate-weighted and STIR turbo spin echo sequences extending from L5 to the ischial tuberosity. Two readers graded the visibility of the lumbosacral trunk, sciatic, femoral, lateral femoral cutaneous, and obturator nerves and the nerve signal intensity of nerve, architecture, caliber, course, continuity, and skeletal muscle denervation. Clinical examination and electrodiagnostic studies were used as the standard of reference. Descriptive, agreement, and diagnostic performance statistics were applied. Lumbosacral plexus visibility on MARS MRI was good (4) or very good (3) in 92% of cases with 81% exact agreement and a Kendall's W coefficient of 0.811. The obturator nerve at the obturator foramen and the sciatic nerve posterior to the acetabulum had the lowest visibility, with good or very good ratings in only 61% and 77% of cases respectively. The reader agreement for nerve abnormalities on MARS MRI was excellent, ranging from 95.5 to 100%. MARS MRI achieved a sensitivity of 86%, specificity of 67%, positive predictive value of 95%, and negative predictive value of 40%, and accuracy of 83% for the detection of neuropathy. MARS MRI yields high image quality and diagnostic accuracy for the assessment of lumbosacral neuropathies in patients with metallic implants of the pelvis and hips. (orig.)

  15. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants.

    Science.gov (United States)

    Ahlawat, Shivani; Stern, Steven E; Belzberg, Allan J; Fritz, Jan

    2017-07-01

    To assess the quality and accuracy of metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) for the diagnosis of lumbosacral neuropathies in patients with metallic implants in the pelvis. Twenty-two subjects with lumbosacral neuropathy following pelvic instrumentation underwent 1.5-T MARS MRI including optimized axial intermediate-weighted and STIR turbo spin echo sequences extending from L5 to the ischial tuberosity. Two readers graded the visibility of the lumbosacral trunk, sciatic, femoral, lateral femoral cutaneous, and obturator nerves and the nerve signal intensity of nerve, architecture, caliber, course, continuity, and skeletal muscle denervation. Clinical examination and electrodiagnostic studies were used as the standard of reference. Descriptive, agreement, and diagnostic performance statistics were applied. Lumbosacral plexus visibility on MARS MRI was good (4) or very good (3) in 92% of cases with 81% exact agreement and a Kendall's W coefficient of 0.811. The obturator nerve at the obturator foramen and the sciatic nerve posterior to the acetabulum had the lowest visibility, with good or very good ratings in only 61% and 77% of cases respectively. The reader agreement for nerve abnormalities on MARS MRI was excellent, ranging from 95.5 to 100%. MARS MRI achieved a sensitivity of 86%, specificity of 67%, positive predictive value of 95%, and negative predictive value of 40%, and accuracy of 83% for the detection of neuropathy. MARS MRI yields high image quality and diagnostic accuracy for the assessment of lumbosacral neuropathies in patients with metallic implants of the pelvis and hips.

  16. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants

    International Nuclear Information System (INIS)

    Ahlawat, Shivani; Fritz, Jan; Stern, Steven E.; Belzberg, Allan J.

    2017-01-01

    To assess the quality and accuracy of metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) for the diagnosis of lumbosacral neuropathies in patients with metallic implants in the pelvis. Twenty-two subjects with lumbosacral neuropathy following pelvic instrumentation underwent 1.5-T MARS MRI including optimized axial intermediate-weighted and STIR turbo spin echo sequences extending from L5 to the ischial tuberosity. Two readers graded the visibility of the lumbosacral trunk, sciatic, femoral, lateral femoral cutaneous, and obturator nerves and the nerve signal intensity of nerve, architecture, caliber, course, continuity, and skeletal muscle denervation. Clinical examination and electrodiagnostic studies were used as the standard of reference. Descriptive, agreement, and diagnostic performance statistics were applied. Lumbosacral plexus visibility on MARS MRI was good (4) or very good (3) in 92% of cases with 81% exact agreement and a Kendall's W coefficient of 0.811. The obturator nerve at the obturator foramen and the sciatic nerve posterior to the acetabulum had the lowest visibility, with good or very good ratings in only 61% and 77% of cases respectively. The reader agreement for nerve abnormalities on MARS MRI was excellent, ranging from 95.5 to 100%. MARS MRI achieved a sensitivity of 86%, specificity of 67%, positive predictive value of 95%, and negative predictive value of 40%, and accuracy of 83% for the detection of neuropathy. MARS MRI yields high image quality and diagnostic accuracy for the assessment of lumbosacral neuropathies in patients with metallic implants of the pelvis and hips. (orig.)

  17. Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction.

    Science.gov (United States)

    Connor, Gannon P; Holland, Patrick L

    2017-05-15

    The Haber-Bosch process is a major contributor to fixed nitrogen that supports the world's nutritional needs and is one of the largest-scale industrial processes known. It has also served as a testing ground for chemists' understanding of surface chemistry. Thus, it is significant that the most thoroughly developed catalysts for N 2 reduction use potassium as an electronic promoter. In this review, we discuss the literature on alkali metal cations as promoters for N 2 reduction, in the context of the growing knowledge about cooperative interactions between N 2 , transition metals, and alkali metals in coordination compounds. Because the structures and properties are easier to characterize in these compounds, they give useful information on alkali metal interactions with N 2 . Here, we review a variety of interactions, with emphasis on recent work on iron complexes by the authors. Finally, we draw conclusions about the nature of these interactions and areas for future research.

  18. Binding of carbon dioxide to metal macrocycles: Toward a mechanistic understanding of electrochemical and photochemical carbon dioxide reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, E.

    1993-01-01

    Efforts were made to find effective catalysts for photochemical and electrochemical reduction of CO[sub 2]. We are studying the factors controlling excited-state lifetimes, electron-transfer rates to mediators/catalysts, properties of reduced mediators, binding of small molecules to reduced mediators, and reactivity of the mediators to yield the desired products. This document describes some of the results of binding on CO[sub 2] to metal macrocycles. The electrocatalytic activity of cobalt macrocycle complexes in reduction of CO[sub 2] in CO[sub 2]-saturated water at the Hg electrode is being studied. We are ready to study the mechanism and kinetics of the photochemical CO[sub 2] reduction in order to design more efficient photo-energy conversion systems. 19 refs.

  19. Binding of carbon dioxide to metal macrocycles: Toward a mechanistic understanding of electrochemical and photochemical carbon dioxide reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, E.

    1993-07-01

    Efforts were made to find effective catalysts for photochemical and electrochemical reduction of CO{sub 2}. We are studying the factors controlling excited-state lifetimes, electron-transfer rates to mediators/catalysts, properties of reduced mediators, binding of small molecules to reduced mediators, and reactivity of the mediators to yield the desired products. This document describes some of the results of binding on CO{sub 2} to metal macrocycles. The electrocatalytic activity of cobalt macrocycle complexes in reduction of CO{sub 2} in CO{sub 2}-saturated water at the Hg electrode is being studied. We are ready to study the mechanism and kinetics of the photochemical CO{sub 2} reduction in order to design more efficient photo-energy conversion systems. 19 refs.

  20. Metal artifact reduction of CT scans to improve PET/CT

    NARCIS (Netherlands)

    Van Der Vos, Charlotte S.; Arens, Anne I.J.; Hamill, James J.; Hofmann, Christian; Panin, Vladimir Y.; Meeuwis, Antoi P.W.; Visser, Eric P.; De Geus-Oei, Lioe Fee

    2017-01-01

    In recent years, different metal artifact reduction methods have been developed for CT. These methods have only recently been introduced for PET/CT even though they could be beneficial for interpretation, segmentation, and quantification of the PET/CT images. In this study, phantom and patient scans

  1. Metal Artifact Reduction of CT Scans to Improve PET/CT

    NARCIS (Netherlands)

    Vos, C.S. van der; Arens, A.I.J.; Hamill, J.J.; Hofmann, C.; Panin, V.Y.; Meeuwis, A.P.W.; Visser, E.P.; Geus-Oei, L.F. de

    2017-01-01

    In recent years, different metal artifact reduction methods have been developed for CT. These methods have only recently been introduced for PET/CT even though they could be beneficial for interpretation, segmentation, and quantification of the PET/CT images. In this study, phantom and patient scans

  2. Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    Jiashen Meng; Chaojiang Niu; Xiong Liu; Ziang Liu; Hongliang Chen; Xuanpeng Wang; Jiantao Li

    2016-01-01

    Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis,chemical sensing,drug delivery,and energy storage.However,the controlled synthesis of multilevel nanotubes remains a great challenge.Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment.This versatile strategy can be effectively applied to fabricate wire-in-tube and tubein-tube nanotubes of various metal oxides.These multilevel nanotubes possess a large specific surface area,fast mass transport,good strain accommodation,and high packing density,which are advantageous for lithium-ion batteries (LIBs)and the oxygen reduction reaction (ORR).Specifically,shrinkable CoMn2O4 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of ~565 mAh.g-1 at a high rate of 2 A.g-1,maintaining 89% of the latter after 500 cycles.Further,as an oxygen reduction reaction catalyst,these nanotubes also exhibit excellent stability with about 92% current retention after 30,000 s,which is higher than that of commercial Pt/C (81%).Therefore,this feasible method may push the rapid development of one-dimensional (1D) nanomaterials.These multifunctional nanotubes have great potential in many frontier fields.

  3. A study on the reduction of uranium oxide to uranium metal in LiCl molten salt

    International Nuclear Information System (INIS)

    Seo, J. S.; Hur, J. M.; Lee, W. K.; Hong, S. S.; Kang, D. S.; Park, S. W.

    2002-01-01

    Research for the analysis on a metallization process of uranium oxide in LiCl-Li molten salt was carried out. Effect of a concentration of Li 2 O on the metallization process was also studied. The new concept, electrochemical reduction of uranium oxide in LiCl-Li 2 O molten salt was proposed. The concept is based on the integrated process of metallization of UO 2 with simultaneous electrochemical reduction of Li 2 O which is recycled in a closed system. In a LiCl-Li molten salt system, U 3 O 8 whose conversion ratio to U turns out to be 97.1%, showed a better metallization characteristic than UO 2 . It is verified that electrochemically reduced Li is well deposited on the UO 2 powder cathode through a porous magnesia filter in LiCl-Li 2 O molten salt. In that process Li 2 O was from by the reduction process of UO 2 to U. This electrochemical reduction process showed good results to covert UO 2 to U

  4. Cluster harvesting by successive reduction of a metal halide with a nonconventional reduction agent: a benefit for the exploration of metal-rich halide systems.

    Science.gov (United States)

    Ströbele, Markus; Mos, Agnieszka; Meyer, Hans-Jürgen

    2013-06-17

    The preparation of thermally labile compounds is a great temptation in chemistry which requires a careful selection of reaction media and reaction conditions. With a new scanning technique denoted here as Cluster Harvesting, a whole series of metal halide compounds is detected by differential thermal analysis (DTA) in fused silica tubes and structurally characterized by X-ray powder diffraction. Experiments of the reduction of tungsten hexahalides with elemental antimony and iron are presented. A cascade of six compounds is identified during the reduction with antimony, and five compounds or phases are monitored following the reduction with iron. The crystal structure of Fe2W2Cl10 is reported, and two other phases in the Fe-W-Cl system are discussed.

  5. Electrochemical reduction of metal ions in dilute solution using hydrogen

    NARCIS (Netherlands)

    Portegies Zwart, I.; Wijnbelt, E.C.W.; Janssen, L.J.J.

    1995-01-01

    Reduction of metal ions in dilute solutions is of great interest for purification of waste waters and process liquids. A new electrochemical cell has been introduced. This cell - a GBC-cell - is a combination of a gasdiffusion electrode in direct contact with a packed bed of carbon particles.

  6. Follow-up CT and CT angiography after intracranial aneurysm clipping and coiling - improved image quality by iterative metal artifact reduction

    Energy Technology Data Exchange (ETDEWEB)

    Bier, Georg; Hempel, Johann-Martin; Oergel, Anja; Hauser, Till-Karsten; Ernemann, Ulrike; Hennersdorf, Florian [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Bongers, Malte Niklas [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2017-07-15

    This paper aims to evaluate a new iterative metal artifact reduction algorithm for post-interventional evaluation of brain tissue and intracranial arteries. The data of 20 patients that underwent follow-up cranial CT and cranial CT angiography after clipping or coiling of an intracranial aneurysm was retrospectively analyzed. After the images were processed using a novel iterative metal artifact reduction algorithm, images with and without metal artifact reduction were qualitatively evaluated by two readers, using a five-point Likert scale. Moreover, artifact strength was quantitatively assessed in terms of CT attenuation and standard deviation alterations. The qualitative analysis yielded a significant increase in image quality (p = 0.0057) in iteratively processed images with substantial inter-observer agreement (k = 0.72), while the CTA image quality did not differ (p = 0.864) and even showed vessel contrast reduction in six cases (30%). The mean relative attenuation difference was 27% without metal artifact reduction vs. 11% for iterative metal artifact reduction images (p = 0.0003). The new iterative metal artifact reduction algorithm enhances non-enhanced CT image quality after clipping or coiling, but in CT-angiography images, the contrast of adjacent vessels can be compromised. (orig.)

  7. Follow-up CT and CT angiography after intracranial aneurysm clipping and coiling - improved image quality by iterative metal artifact reduction

    International Nuclear Information System (INIS)

    Bier, Georg; Hempel, Johann-Martin; Oergel, Anja; Hauser, Till-Karsten; Ernemann, Ulrike; Hennersdorf, Florian; Bongers, Malte Niklas

    2017-01-01

    This paper aims to evaluate a new iterative metal artifact reduction algorithm for post-interventional evaluation of brain tissue and intracranial arteries. The data of 20 patients that underwent follow-up cranial CT and cranial CT angiography after clipping or coiling of an intracranial aneurysm was retrospectively analyzed. After the images were processed using a novel iterative metal artifact reduction algorithm, images with and without metal artifact reduction were qualitatively evaluated by two readers, using a five-point Likert scale. Moreover, artifact strength was quantitatively assessed in terms of CT attenuation and standard deviation alterations. The qualitative analysis yielded a significant increase in image quality (p = 0.0057) in iteratively processed images with substantial inter-observer agreement (k = 0.72), while the CTA image quality did not differ (p = 0.864) and even showed vessel contrast reduction in six cases (30%). The mean relative attenuation difference was 27% without metal artifact reduction vs. 11% for iterative metal artifact reduction images (p = 0.0003). The new iterative metal artifact reduction algorithm enhances non-enhanced CT image quality after clipping or coiling, but in CT-angiography images, the contrast of adjacent vessels can be compromised. (orig.)

  8. Complementary contrast media for metal artifact reduction in dual-energy computed tomography.

    Science.gov (United States)

    Lambert, Jack W; Edic, Peter M; FitzGerald, Paul F; Torres, Andrew S; Yeh, Benjamin M

    2015-07-01

    Metal artifacts have been a problem associated with computed tomography (CT) since its introduction. Recent techniques to mitigate this problem have included utilization of high-energy (keV) virtual monochromatic spectral (VMS) images, produced via dual-energy CT (DECT). A problem with these high-keV images is that contrast enhancement provided by all commercially available contrast media is severely reduced. Contrast agents based on higher atomic number elements can maintain contrast at the higher energy levels where artifacts are reduced. This study evaluated three such candidate elements: bismuth, tantalum, and tungsten, as well as two conventional contrast elements: iodine and barium. A water-based phantom with vials containing these five elements in solution, as well as different artifact-producing metal structures, was scanned with a DECT scanner capable of rapid operating voltage switching. In the VMS datasets, substantial reductions in the contrast were observed for iodine and barium, which suffered from contrast reductions of 97% and 91%, respectively, at 140 versus 40 keV. In comparison under the same conditions, the candidate agents demonstrated contrast enhancement reductions of only 20%, 29%, and 32% for tungsten, tantalum, and bismuth, respectively. At 140 versus 40 keV, metal artifact severity was reduced by 57% to 85% depending on the phantom configuration.

  9. Iterative metal artifact reduction improves dose calculation accuracy. Phantom study with dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Maerz, Manuel; Mittermair, Pia; Koelbl, Oliver; Dobler, Barbara [Regensburg University Medical Center, Department of Radiotherapy, Regensburg (Germany); Krauss, Andreas [Siemens Healthcare GmbH, Forchheim (Germany)

    2016-06-15

    Metallic dental implants cause severe streaking artifacts in computed tomography (CT) data, which affect the accuracy of dose calculations in radiation therapy. The aim of this study was to investigate the benefit of the metal artifact reduction algorithm iterative metal artifact reduction (iMAR) in terms of correct representation of Hounsfield units (HU) and dose calculation accuracy. Heterogeneous phantoms consisting of different types of tissue equivalent material surrounding metallic dental implants were designed. Artifact-containing CT data of the phantoms were corrected using iMAR. Corrected and uncorrected CT data were compared to synthetic CT data to evaluate accuracy of HU reproduction. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated in Oncentra v4.3 on corrected and uncorrected CT data and compared to Gafchromic trademark EBT3 films to assess accuracy of dose calculation. The use of iMAR increased the accuracy of HU reproduction. The average deviation of HU decreased from 1006 HU to 408 HU in areas including metal and from 283 HU to 33 HU in tissue areas excluding metal. Dose calculation accuracy could be significantly improved for all phantoms and plans: The mean passing rate for gamma evaluation with 3 % dose tolerance and 3 mm distance to agreement increased from 90.6 % to 96.2 % if artifacts were corrected by iMAR. The application of iMAR allows metal artifacts to be removed to a great extent which leads to a significant increase in dose calculation accuracy. (orig.) [German] Metallische Implantate verursachen streifenfoermige Artefakte in CT-Bildern, welche die Dosisberechnung beeinflussen. In dieser Studie soll der Nutzen des iterativen Metall-Artefakt-Reduktions-Algorithmus iMAR hinsichtlich der Wiedergabetreue von Hounsfield-Werten (HU) und der Genauigkeit von Dosisberechnungen untersucht werden. Es wurden heterogene Phantome aus verschiedenen Arten gewebeaequivalenten Materials mit

  10. Direct reduction of uranium dioxide and few other metal oxides to corresponding metals by high temperature molten salt electrolysis

    International Nuclear Information System (INIS)

    Mohandas, K.S.

    2017-01-01

    Molten salt based electro-reduction processes, capable of directly converting solid metal oxides to metals with minimum intermediate steps, are being studied worldwide. Production of metals apart, the process assumes importance in nuclear technology in the context of pyrochemical reprocessing of spent oxide fuels, for it serves as an intermediate step to convert spent oxide fuel to a metal alloy, which in turn can be processed by molten salt electro-refining method to gain the actinides present in it. In the context of future metal fuel fast reactor programme, the electrochemical process was studied for conversion of solid UO_2 to U metal in LiCl-1wt.% Li_2O melt at 650 °C with platinum anode at the Metal Processing Studies Section, PMPD, IGCAR. A brief overview of the work is presented in the paper

  11. Metal artifact reduction algorithm based on model images and spatial information

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jay [Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Shih, Cheng-Ting [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan (China); Chang, Shu-Jun [Health Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China); Huang, Tzung-Chi [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan (China); Sun, Jing-Yi [Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Wu, Tung-Hsin, E-mail: tung@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No.155, Sec. 2, Linong Street, Taipei 112, Taiwan (China)

    2011-10-01

    Computed tomography (CT) has become one of the most favorable choices for diagnosis of trauma. However, high-density metal implants can induce metal artifacts in CT images, compromising image quality. In this study, we proposed a model-based metal artifact reduction (MAR) algorithm. First, we built a model image using the k-means clustering technique with spatial information and calculated the difference between the original image and the model image. Then, the projection data of these two images were combined using an exponential weighting function. At last, the corrected image was reconstructed using the filter back-projection algorithm. Two metal-artifact contaminated images were studied. For the cylindrical water phantom image, the metal artifact was effectively removed. The mean CT number of water was improved from -28.95{+-}97.97 to -4.76{+-}4.28. For the clinical pelvic CT image, the dark band and the metal line were removed, and the continuity and uniformity of the soft tissue were recovered as well. These results indicate that the proposed MAR algorithm is useful for reducing metal artifact and could improve the diagnostic value of metal-artifact contaminated CT images.

  12. Reduction of metal artifacts: beam hardening and photon starvation effects

    Science.gov (United States)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  13. TU-F-CAMPUS-J-04: Evaluation of Metal Artifact Reduction Technique for the Radiation Therapy Planning

    International Nuclear Information System (INIS)

    Jeong, K; Kuo, H; Ritter, J; Shen, J; Basavatia, A; Yaparpalvi, R; Kalnicki, S; Tome, W

    2015-01-01

    Purpose: To evaluate the feasibility of using a metal artifact reduction technique in depleting metal artifact and its application in improving dose calculation in External Radiation Therapy Planning. Methods: CIRS electron density phantom was scanned with and without steel drill bits placed in some plug holes. Meta artifact reduction software with Metal Deletion Technique (MDT) was used to remove metal artifacts for scanned image with metal. Hounsfield units of electron density plugs from artifact free reference image and MDT processed images were compared. To test the dose calculation improvement after the MDT processed images, clinically approved head and neck plan with manual dental artifact correction was tested. Patient images were exported and processed with MDT and plan was recalculated with new MDT image without manual correction. Dose profiles near the metal artifacts were compared. Results: The MDT used in this study effectively reduced the metal artifact caused by beam hardening and scatter. The windmill around the metal drill was greatly improved with smooth rounded view. Difference of the mean HU in each density plug between reference and MDT images were less than 10 HU in most of the plugs. Dose difference between original plan and MDT images were minimal. Conclusion: Most metal artifact reduction methods were developed for diagnostic improvement purpose. Hence Hounsfield unit accuracy was not rigorously tested before. In our test, MDT effectively eliminated metal artifacts with good HU reproduciblity. However, it can introduce new mild artifacts so the MDT images should be checked with original images

  14. Semiconductor/metal nanocomposites formed by in situ reduction method in multilayer thin films

    International Nuclear Information System (INIS)

    Song Yanli; Wang Enbo; Tian Chungui; Mao Baodong; Wang Chunlei

    2009-01-01

    A layer-by-layer adsorption and in situ reduction method was adopted for synthesizing semiconductor/metal nanocomposites in multilayer ultra-thin films. Alternate adsorption of ZnO nanoparticles modified with poly(ethyleneimine), hydrogentetrachloroaurate and poly(styrenesulfonate) sodium results in the formation of ZnO/AuCl 4 - -loaded multilayer films. In situ reduction of the incorporated metal ions by heating yields ZnO/Au nanocomposites in the films. UV-vis absorption spectroscopy and X-ray photoelectron spectroscopy were used to characterize the components of the composite films. UV-vis spectra indicate regular growth of the films. The electrochemistry behavior of the multilayer films was studied in detail on indium tin oxide electrode. The combined results suggest that the layer-by-layer adsorption and subsequent reduction method used here provides an effective way to synthesize ZnO/Au nanocomposites in the polymer matrix

  15. Dynamics of oil price, precious metal prices, and exchange rate

    International Nuclear Information System (INIS)

    Sari, Ramazan; Soytas, Ugur; Hammoudeh, Shawkat

    2010-01-01

    This study examines the co-movements and information transmission among the spot prices of four precious metals (gold, silver, platinum, and palladium), oil price, and the US dollar/euro exchange rate. We find evidence of a weak long-run equilibrium relationship but strong feedbacks in the short run. The spot precious metal markets respond significantly (but temporarily) to a shock in any of the prices of the other metal prices and the exchange rate. Furthermore, we discover some evidence of market overreactions in the palladium and platinum cases as well as in the exchange rate market. In conclusion, whether there are overreactions and re-adjustments or not, investors may diversify at least a portion of the risk away by investing in precious metals, oil, and the euro. Policy implications are provided. (author)

  16. Reduction of blue tungsten oxide

    International Nuclear Information System (INIS)

    Wilken, T.; Wert, C.; Woodhouse, J.; Morcom, W.

    1975-01-01

    A significant portion of commercial tungsten is produced by hydrogen reduction of oxides. Although several modes of reduction are possible, hydrogen reduction is used where high purity tungsten is required and where the addition of other elements or compounds is desired for modification of the metal, as is done for filaments in the lamp industry. Although several investigations of the reduction of oxides have been reported (1 to 5), few principles have been developed which can aid in assessment of current commercial practice. The reduction process was examined under conditions approximating commercial practice. The specific objectives were to determine the effects of dopants, of water vapor in the reducing atmosphere, and of reduction temperature upon: (1) the rate of the reaction by which blue tungsten oxide is reduced to tungsten metal, (2) the intermediate oxides associated with reduction, and (3) the morphology of the resulting tungsten powder

  17. THE IMPACT OF METALLICITY ON THE RATE OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Kistler, Matthew D.; Stanek, K. Z.; Kochanek, Christopher S.; Thompson, Todd A.; Prieto, José L.

    2013-01-01

    The metallicity of a star strongly affects both its evolution and the properties of the stellar remnant that results from its demise. It is generally accepted that stars with initial masses below ∼8 M ☉ leave behind white dwarfs and that some sub-population of these lead to Type Ia supernovae (SNe Ia). However, it is often tacitly assumed that metallicity has no effect on the rate of SNe Ia. We propose that a consequence of the effects of metallicity is to significantly increase the SN Ia rate in lower-metallicity galaxies, in contrast to previous expectations. This is because lower-metallicity stars leave behind higher-mass white dwarfs, which should be easier to bring to explosion. We first model SN Ia rates in relation to galaxy masses and ages alone, finding that the elevation in the rate of SNe Ia in lower-mass galaxies measured by Lick Observatory SN Search is readily explained. However, we then see that models incorporating this effect of metallicity agree just as well. Using the same parameters to estimate the cosmic SN Ia rate, we again find good agreement with data up to z ≈ 2. We suggest that this degeneracy warrants more detailed examination of host galaxy metallicities. We discuss additional implications, including for hosts of high-z SNe Ia, the SN Ia delay time distribution, super-Chandrasekhar SNe, and cosmology.

  18. Thermal simulation of the magnesium thermal of metallic uranium reduction

    International Nuclear Information System (INIS)

    Borges, W.A.; Saliba-Silva, A.M.

    2008-01-01

    Metallic uranium production is vital to fabricate fuel elements for nuclear research reactors and to produce radioisotopes and radiopharmaceuticals. Metallic uranium is got via magnesiothermal reduction of UF 4 . This reaction is carried out inside a closed graphite crucible inserted in a metallic reactor adequately sealed without any outside contact. The assembled set is gradually heated up inside a pit furnace up to reach the reaction ignition temperature (between 600-650 deg C). The optimization of the reactive system depends on the mathematical modeling using simulation by finite elements and computational calculation with specialized programs. In this way, the reactants' thermal behavior is forecast until they reach the ignition temperature. The optimization of the uranium production reaction is based on minimization of thermal losses using better the exo thermal reaction heat. As lower the thermal losses, as higher would be the heat amount to raise the temperature of reaction products. This promotes the adequate melting of uranium and slag, so allowing better metal/slag separation with higher metallic yield. This work shows how the mathematical simulation is made and supplies some preliminary results. (author)

  19. Fluoroscopic dose reduction by acquisition frame rate reduction and image processing

    International Nuclear Information System (INIS)

    Fritz, S.L.; Mirvis, S.E.; Pals, S.O.

    1986-01-01

    A new design for fluoroscopic exposure reduction incorporates pulsed x-ray exposure, progressive scan video acquisition at frame rates below 30 Hz, interlaced video display at 30 Hz, and a video rate image processing. To evaluate this design, a variety of phantom systems have been developed to measure the impact of low frame rate pulsed digital fluoroscopy on the performance of several clinical tasks (e.g., catheter placement). The authors are currently using these phantoms with a digital fluoroscopy system using continuous x-ray, interlaced video acquisition and variable acquisition frame rate. The design of their target digital fluoroscopic system, sample image sequences, and the results of some preliminary phantom studies are reported

  20. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table.

    Science.gov (United States)

    Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin

    2015-11-16

    Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. What do we know about metal recycling rates?

    Science.gov (United States)

    Graedel, T.E.; Allwood, J.; Birat, J.-P.; Buchert, M.; Hageluken, C.; Reck, B.K.; Sibley, S.F.; Sonnemann, G.

    2011-01-01

    The recycling of metals is widely viewed as a fruitful sustainability strategy, but little information is available on the degree to which recycling is actually taking place. This article provides an overview on the current knowledge of recycling rates for 60 metals. We propose various recycling metrics, discuss relevant aspects of recycling processes, and present current estimates on global end-of-life recycling rates (EOL-RR; i.e., the percentage of a metal in discards that is actually recycled), recycled content (RC), and old scrap ratios (OSRs; i.e., the share of old scrap in the total scrap flow). Because of increases in metal use over time and long metal in-use lifetimes, many RC values are low and will remain so for the foreseeable future. Because of relatively low efficiencies in the collection and processing of most discarded products, inherent limitations in recycling processes, and the fact that primary material is often relatively abundant and low-cost (which thereby keeps down the price of scrap), many EOL-RRs are very low: Only for 18 metals (silver, aluminum, gold, cobalt, chromium, copper, iron, manganese, niobium, nickel, lead, palladium, platinum, rhenium, rhodium, tin, titanium, and zinc) is the EOL-RR above 50% at present. Only for niobium, lead, and ruthenium is the RC above 50%, although 16 metals are in the 25% to 50% range. Thirteen metals have an OSR greater than 50%. These estimates may be used in considerations of whether recycling efficiencies can be improved; which metric could best encourage improved effectiveness in recycling; and an improved understanding of the dependence of recycling on economics, technology, and other factors. ?? 2011 by Yale University.

  2. Direct reduction of 238PuO2 and 239PuO2 to metal

    International Nuclear Information System (INIS)

    Mullins, L.J.; Foxx, C.L.

    1982-02-01

    The process for reducing 700 g 239 PuO 2 to metal is a standard procedure at Los Alamos National Laboratory. This process is based on research for reducing 200 g 238 PuO 2 to metal. This report describes in detail the experiments and development of the 200-g process. The procedure uses calcium metal as the reducing agent in a molten CaCl 2 solvent system. The process to convert impure plutonia to high-purity metal by oxide reduction followed by electrorefining is also described

  3. Coal-Fired Power Plant Heat Rate Reductions

    Science.gov (United States)

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  4. THE IMPACT OF METALLICITY ON THE RATE OF TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, Matthew D. [California Institute of Technology, Mail Code 350-17, Pasadena, CA 91125 (United States); Stanek, K. Z.; Kochanek, Christopher S.; Thompson, Todd A. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Prieto, Jose L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2013-06-20

    The metallicity of a star strongly affects both its evolution and the properties of the stellar remnant that results from its demise. It is generally accepted that stars with initial masses below {approx}8 M{sub Sun} leave behind white dwarfs and that some sub-population of these lead to Type Ia supernovae (SNe Ia). However, it is often tacitly assumed that metallicity has no effect on the rate of SNe Ia. We propose that a consequence of the effects of metallicity is to significantly increase the SN Ia rate in lower-metallicity galaxies, in contrast to previous expectations. This is because lower-metallicity stars leave behind higher-mass white dwarfs, which should be easier to bring to explosion. We first model SN Ia rates in relation to galaxy masses and ages alone, finding that the elevation in the rate of SNe Ia in lower-mass galaxies measured by Lick Observatory SN Search is readily explained. However, we then see that models incorporating this effect of metallicity agree just as well. Using the same parameters to estimate the cosmic SN Ia rate, we again find good agreement with data up to z Almost-Equal-To 2. We suggest that this degeneracy warrants more detailed examination of host galaxy metallicities. We discuss additional implications, including for hosts of high-z SNe Ia, the SN Ia delay time distribution, super-Chandrasekhar SNe, and cosmology.

  5. GARDEC, Estimation of dose-rates reduction by garden decontamination

    International Nuclear Information System (INIS)

    Togawa, Orihiko

    2006-01-01

    1 - Description of program or function: GARDEC estimates the reduction of dose rates by garden decontamination. It provides the effect of different decontamination Methods, the depth of soil to be considered, dose-rate before and after decontamination and the reduction factor. 2 - Methods: This code takes into account three Methods of decontamination : (i)digging a garden in a special way, (ii) a removal of the upper layer of soil, and (iii) covering with a shielding layer of soil. The dose-rate conversion factor is defined as the external dose-rate, in the air, at a given height above the ground from a unit concentration of a specific radionuclide in each soil layer

  6. Prototype metal artefact reduction algorithm in flat panel computed tomography - evaluation in patients undergoing transarterial hepatic radioembolisation.

    Science.gov (United States)

    Hamie, Qeumars Mustafa; Kobe, Adrian Raoul; Mietzsch, Leif; Manhart, Michael; Puippe, Gilbert Dominique; Pfammatter, Thomas; Guggenberger, Roman

    2018-01-01

    To investigate the effect of an on-site prototype metal artefact reduction (MAR) algorithm in cone-beam CT-catheter-arteriography (CBCT-CA) in patients undergoing transarterial radioembolisation (RE) of hepatic masses. Ethical board approved retrospective study of 29 patients (mean 63.7±13.7 years, 11 female), including 16 patients with arterial metallic coils, undergoing CBCT-CA (8s scan, 200 degrees rotation, 397 projections). Image reconstructions with and without prototype MAR algorithm were evaluated quantitatively (streak-artefact attenuation changes) and qualitatively (visibility of hepatic parenchyma and vessels) in near- (3cm) of artefact sources (metallic coils and catheters). Quantitative and qualitative measurements of uncorrected and MAR corrected images and different artefact sources were compared RESULTS: Quantitative evaluation showed significant reduction of near- and far-field streak-artefacts with MAR for both artefact sources (p0.05). Inhomogeneities of attenuation values were significantly higher for metallic coils compared to catheters (pprototype MAR algorithm improves image quality in proximity of metallic coil and catheter artefacts. • Metal objects cause artefacts in cone-beam computed tomography (CBCT) imaging. • These artefacts can be corrected by metal artefact reduction (MAR) algorithms. • Corrected images show significantly better visibility of nearby hepatic vessels and tissue. • Better visibility may facilitate image interpretation, save time and radiation exposure.

  7. Photoassisted reduction of metal ions and organic dye by titanium dioxide nanoparticles in aqueous solution under anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Doong, Ruey-An, E-mail: radoong@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (China); Hsieh, Tien-Chin [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (China); Huang, Chin-Pao [Department of Civil and Environmental Engineering, University of Delaware, Newark, 19716, Delaware (United States)

    2010-07-15

    The photoassisted reduction of metal ions and organic dye by metal-deposited Degussa P25 TiO{sub 2} nanoparticles was investigated. Copper and silver ions were selected as the target metal ions to modify the surface properties of TiO{sub 2} and to enhance the photocatalytic activity of TiO{sub 2} towards methylene blue (MB) degradation. X-ray powder diffraction (XRPD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were used to characterize the crystallinity, chemical species and morphology of metal-deposited TiO{sub 2}, respectively. Results showed that the particle size of metal-deposited TiO{sub 2} was larger than that of Degussa P25 TiO{sub 2}. Based on XRPD patterns and XPS spectra, it was observed that the addition of formate promoted the photoreduction of metal ion by lowering its oxidation number, and subsequently enhancing the photodegradation efficiency and rate of MB. The pseudo-first-order rate constant (k{sub obs}) for MB photodegradation by Degussa P25 TiO{sub 2} was 3.94 x 10{sup -2} min{sup -1} and increased by 1.4-1.7 times in k{sub obs} with metal-deposited TiO{sub 2} for MB photodegradation compared to simple Degussa P25 TiO{sub 2}. The increase in mass loading of metal ions significantly enhanced the photodegradation efficiency of MB; the k{sub obs} for MB degradation increased from 3.94 x 10{sup -2} min{sup -1} in the absence of metal ion to 4.64-7.28 x 10{sup -2} min{sup -1} for Ag/TiO{sub 2} and to 5.14-7.61 x 10{sup -2} min{sup -1} for Cu/TiO{sub 2}. In addition, the electrons generated from TiO{sub 2} can effectively reduce metal ions and MB simultaneously under anoxic conditions. However, metal ions and organic dye would compete for electrons from the illuminated TiO{sub 2}.

  8. UK intussusception audit: A national survey of practice and audit of reduction rates

    International Nuclear Information System (INIS)

    Hannon, Edward; Williams, Rhianydd; Allan, Rosemary; Okoye, Bruce

    2014-01-01

    Aim: To define current UK reduction practice and the reductions rates achieved. Materials and methods: Electronic surveys were sent to radiologists at 26 UK centres. This assessed methods of reduction, equipment, personnel, and protocol usage. Standardized audit proforma were also sent to evaluate all reductions performed in 2011. Results: Twenty-two of 26 centres (85%) replied. All used air enema under fluoroscopic guidance. Equipment was not standardized but could be broadly categorized into hand-pumped air-supply systems (seven centres) and pressurized air systems (15 centres). Seventeen centres followed a protocol based on British Society of Paediatric Radiologists (BSPR) guidelines. In 21 of the 22 centres a consultant paediatric radiologist led reductions and only 12 centres reported a surgeon being present. Three hundred and ten cases were reported across 22 centres. Cases per centre ranged from 0–31 (median 14). Reduction rates varied from 38–90% (median 71%). The overall perforation rate was 2.5%. Caseload did not significantly correlate with reduction rate, and there was no significant difference between the two types of equipment used. Median reduction rates were 15% higher in centres with a surgeon present at reduction (p < 0.05). Conclusion: Intussusception care in the UK lacks standardization of equipment and personnel involved. National reduction rates are lower than in current international literature. Improved standardization may lead to an improvement in reduction rates and a surgeon should always be present at reduction

  9. Metal artefact reduction in MRI at both 1.5 and 3.0 T using slice encoding for metal artefact correction and view angle tilting

    Science.gov (United States)

    Reichert, M; Morelli, J N; Nittka, M; Attenberger, U; Runge, V M

    2015-01-01

    Objective: To compare metal artefact reduction in MRI at both 3.0 T and 1.5 T using different sequence strategies. Methods: Metal implants of stainless steel screw and plate within agarose phantoms and tissue specimens as well as three patients with implants were imaged at both 1.5 T and 3.0 T, using view angle tilting (VAT), slice encoding for metal artefact correction with VAT (SEMAC-VAT) and conventional sequence. Artefact reduction in agarose phantoms was quantitatively assessed by artefact volume measurements. Blinded reads were conducted in tissue specimen and human imaging, with respect to artefact size, distortion, blurring and overall image quality. Wilcoxon and Friedman tests for multiple comparisons and intraclass correlation coefficient (ICC) for interobserver agreement were performed with a significant level of p 3.0 T (p 3.0 T. Advances in knowledge: The feasibility of metal artefact reduction with SEMAC-VAT was demonstrated at 3.0-T MR. SEMAC-VAT significantly reduced metal artefacts at both 1.5 and 3.0 T. SEMAC-VAT allowed for better visualization of the tissue structures adjacent to the metal implants. SEMAC-VAT produced consistently better image quality in both tissue specimen and human imaging. PMID:25613398

  10. Analysis of metal artifact reduction tools for dental hardware in CT scans of the oral cavity: kVp, iterative reconstruction, dual-energy CT, metal artifact reduction software: does it make a difference?

    Energy Technology Data Exchange (ETDEWEB)

    Crop, An de; Hoof, Tom van; Herde, Katharina d' ; Thierens, Hubert; Bacher, Klaus [Ghent University, Department of Basic Medical Sciences, Gent (Belgium); Casselman, Jan; Vereecke, Elke; Bossu, Nicolas [AZ Sint Jan Bruges Ostend AV, Department of Radiology, Bruges (Belgium); Dierens, Melissa [Ghent University, Dental School, Unit for Oral and Maxillofacial Imaging, Ghent (Belgium); Pamplona, Jaime [Hospital Lisboa Central, Department of Neuroradiology, Lisbon (Portugal)

    2015-08-15

    Metal artifacts may negatively affect radiologic assessment in the oral cavity. The aim of this study was to evaluate different metal artifact reduction techniques for metal artifacts induced by dental hardware in CT scans of the oral cavity. Clinical image quality was assessed using a Thiel-embalmed cadaver. A Catphan phantom and a polymethylmethacrylate (PMMA) phantom were used to evaluate physical-technical image quality parameters such as artifact area, artifact index (AI), and contrast detail (IQF{sub inv}). Metal cylinders were inserted in each phantom to create metal artifacts. CT images of both phantoms and the Thiel-embalmed cadaver were acquired on a multislice CT scanner using 80, 100, 120, and 140 kVp; model-based iterative reconstruction (Veo); and synthesized monochromatic keV images with and without metal artifact reduction software (MARs). Four radiologists assessed the clinical image quality, using an image criteria score (ICS). Significant influence of increasing kVp and the use of Veo was found on clinical image quality (p = 0.007 and p = 0.014, respectively). Application of MARs resulted in a smaller artifact area (p < 0.05). However, MARs reconstructed images resulted in lower ICS. Of all investigated techniques, Veo shows to be most promising, with a significant improvement of both the clinical and physical-technical image quality without adversely affecting contrast detail. MARs reconstruction in CT images of the oral cavity to reduce dental hardware metallic artifacts is not sufficient and may even adversely influence the image quality. (orig.)

  11. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.

    Science.gov (United States)

    Maweja, Kasonde; Mukongo, Tshikele; Mutombo, Ilunga

    2009-05-30

    Cleaning experiments of a copper matte smelting slag from the water-jacket furnace was undertaken by direct reduction in a laboratory-scale electric furnace. The effects of coal-to-slag ratio, w, and the reduction time, t, were considered for two different coal/slag mixing procedures. In the first procedure, metallurgical coal was added to the molten slag, whereas in the second procedure, coal was premixed with the solid slag before charging into the furnace. The recovery of heavy metals (Cu, Co), and the fuming of Pb and Zn were investigated. Contamination of the metal phase by iron and the acidity index of the final slag were analysed as these may impede the economical viability of the process. The lower w value of 2.56% yielded a recovery rate of less than 60% for copper and less than 50% for cobalt, and around 70% for zinc. However, increasing w to 5% allowed the recovery of 70-90% for Cu, Co and Zn simultaneously after 30-60 min reduction of the molten slag. After reduction, the cleaned slags contained only small amounts of copper and cobalt (zinc was efficient as the %Pb of the residual slag dropped to levels lower than 0.04% after 30 min of reduction. Ninety percent of the lead was removed from the initial slag and collected in the dusts. The zinc content of the cleaned slags quickly dropped to between 1 and 3 wt% from the initial 8.2% after 30 min reduction for w value of 5 and after 60 min reduction for w value of 2.56. The dusts contained about 60% Zn and 10% Pb. Recovery of lead from fuming of the slag was higher than 90% in all the experimental conditions considered in this study.

  12. High-Resolution C-Arm CT and Metal Artifact Reduction Software: A Novel Imaging Modality for Analyzing Aneurysms Treated with Stent-Assisted Coil Embolization.

    Science.gov (United States)

    Yuki, I; Kambayashi, Y; Ikemura, A; Abe, Y; Kan, I; Mohamed, A; Dahmani, C; Suzuki, T; Ishibashi, T; Takao, H; Urashima, M; Murayama, Y

    2016-02-01

    Combination of high-resolution C-arm CT and novel metal artifact reduction software may contribute to the assessment of aneurysms treated with stent-assisted coil embolization. This study aimed to evaluate the efficacy of a novel Metal Artifact Reduction prototype software combined with the currently available high spatial-resolution C-arm CT prototype implementation by using an experimental aneurysm model treated with stent-assisted coil embolization. Eight experimental aneurysms were created in 6 swine. Coil embolization of each aneurysm was performed by using a stent-assisted technique. High-resolution C-arm CT with intra-arterial contrast injection was performed immediately after the treatment. The obtained images were processed with Metal Artifact Reduction. Five neurointerventional specialists reviewed the image quality before and after Metal Artifact Reduction. Observational and quantitative analyses (via image analysis software) were performed. Every aneurysm was successfully created and treated with stent-assisted coil embolization. Before Metal Artifact Reduction, coil loops protruding through the stent lumen were not visualized due to the prominent metal artifacts produced by the coils. These became visible after Metal Artifact Reduction processing. Contrast filling in the residual aneurysm was also visualized after Metal Artifact Reduction in every aneurysm. Both the observational (P software. The combination of high-resolution C-arm CT and Metal Artifact Reduction enables differentiation of the coil mass, stent, and contrast material on the same image by significantly reducing the metal artifacts produced by the platinum coils. This novel image technique may improve the assessment of aneurysms treated with stent-assisted coil embolization. © 2016 by American Journal of Neuroradiology.

  13. A New Direction for Biomining: Extraction of Metals by Reductive Dissolution of Oxidized Ores

    Directory of Open Access Journals (Sweden)

    Kevin B. Hallberg

    2013-01-01

    Full Text Available Biomining, the biotechnology that uses microorganisms to extract metals from ores and concentrates, is currently used exclusively for processing reduced ores and mine wastes. Metals of economic value also occur extensively in oxidized ores, such as nickel laterites. While these are not amenable to oxidative dissolution, the ferric iron minerals they contain can, in theory, be disrupted by iron reduction, causing associated metals to be released. We have harnessed the ability of the facultatively anaerobic, acidophilic bacterium Acidithiobacillus ferroooxidans to couple the oxidation of elemental sulphur to the reduction of ferric iron in the goethite fraction of a limonitic nickel ore at 30 °C. Nickel and other metals (Co, Cr and Mn were effectively solubilised and maintained in solution due to the low pH (1.8 of the leach liquor. The results highlight the potential for the bioprocessing of oxidized, iron-rich ores using an approach that is energy-saving and environmentally-benign compared with metallurgical processes currently applied to the extraction of Ni from lateritic ores.

  14. 77 FR 20890 - Proposed Information Collection (Interest Rate Reduction Refinancing Loan Worksheet) Activity...

    Science.gov (United States)

    2012-04-06

    ... (Interest Rate Reduction Refinancing Loan Worksheet) Activity: Comment Request AGENCY: Veterans Benefits... to determine whether lenders computed the loan amount on interest rate reduction refinancing loans.... Title: Interest Rate Reduction Refinancing Loan Worksheet, VA Form 26-8923. OMB Control Number: 2900...

  15. Volume reduction of low-level contaminated metal waste by melting: selection of method and conceptual plan

    International Nuclear Information System (INIS)

    Copeland, G.L.; Heestand, R.L.; Mateer, R.S.

    1978-06-01

    A review of the literature and prior experience led to selection of induction melting as the most promising method for volume reduction of low-level transuranic contaminated metal waste. The literature indicates that melting with the appropriate slags significantly lowers the total contamination level of the metals by preferentially concentrating contaminants in the smaller volume of slag. Surface contamination not removed to the slag is diluted in the ingot and is contained uniformly in the metal. This dilution and decontamination offers the potential of lower cost disposal such as shallow burial rather than placement in a national repository. A processing plan is proposed as a model for economic analysis of the collection and volume reduction of contaminated metals. Further development is required to demonstrate feasibility of the plan

  16. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction.

    Science.gov (United States)

    Yong, P; Liu, W; Zhang, Z; Beauregard, D; Johns, M L; Macaskie, L E

    2015-11-01

    For reduction of Cr(VI) the Pd-catalyst is excellent but costly. The objectives were to prove the robustness of a Serratia biofilm as a support for biogenic Pd-nanoparticles and to fabricate effective catalyst from precious metal waste. Nanoparticles (NPs) of palladium were immobilized on polyurethane reticulated foam and polypropylene supports via adhesive biofilm of a Serratia sp. The biofilm adhesion and cohesion strength were unaffected by palladization and catalytic biofilm integrity was also shown by magnetic resonance imaging. Biofilm-Pd and mixed precious metals on biofilm (biofilm-PM) reduced 5 mM Cr(VI) to Cr(III) when immobilized in a flow-through column reactor, at respective flow rates of 9 and 6 ml/h. The lower activity of the latter was attributed to fewer, larger, metal deposits on the bacteria. Activity was lost in each case at pH 7 but was restored by washing with 5 mM citrate solution or by exposure of columns to solution at pH 2, suggesting fouling by Cr(III) hydroxide product at neutral pH. A 'one pot' conversion of precious metal waste into new catalyst for waste decontamination was shown in a continuous flow system based on the use of Serratia biofilm to manufacture and support catalytic Pd-nanoparticles.

  17. Uranium recovering from slags generated in the metallic uranium by magnesiothermic reduction

    International Nuclear Information System (INIS)

    Fornarolo, F.; Carvalho, E.F. Urano de; Durazzo, M.; Riella, H.G.

    2008-01-01

    The Nuclear Fuel Center of IPEN/CNEN-SP has recent/y concluded a program for developing the fabrication technology of the nuclear fuel based on the U 3 Si 2 -Al dispersion, which is being used in the IEA-R1 research reactor. The uranium silicide (U 3 Si 2 ) fuel production starts with the uranium hexafluoride (UF 6 ) processing and uranium tetrafluoride (UF 4 ) precipitation. Then, the UF 4 is converted to metallic uranium by magnesiothermic reduction. The UF 4 reduction by magnesium generates MgF 2 slag containing considerable concentrations of uranium, which could reach 20 wt%. The uranium contained in that slag should be recovered and this work presents the results obtained in recovering the uranium from that slag. The uranium recovery is accomplished by acidic leaching of the calcined slag. The calcination transforms the metallic uranium in U 3 O 8 , promoting the pulverization of the pieces of metallic uranium and facilitating the leaching operation. As process variables, have been considered the nitric molar concentration, the acid excess regarding the stoichiometry and the leaching temperature. As result, the uranium recovery reached a 96% yield. (author)

  18. Optimization of metal artefact reduction (MAR) sequences for MRI of total hip prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Toms, A.P., E-mail: andoni.toms@nnuh.nhs.u [Department of Radiology, Norfolk and Norwich University Hospital Trust, Norwich, Norfolk NR4 7UY (United Kingdom); Smith-Bateman, C.; Malcolm, P.N.; Cahir, J. [Department of Radiology, Norfolk and Norwich University Hospital Trust, Norwich, Norfolk NR4 7UY (United Kingdom); Graves, M. [University Department of Radiology, Addenbrooke' s Hospital, Cambridge (United Kingdom)

    2010-06-15

    Aim: To describe the relative contribution of matrix size and bandwidth to artefact reduction in order to define optimal sequence parameters for metal artefact reduction (MAR) sequences for MRI of total hip prostheses. Methods and materials: A phantom was created using a Charnley total hip replacement. Mid-coronal T1-weighted (echo time 12 ms, repetition time 400 ms) images through the prosthesis were acquired with increasing bandwidths (150, 300, 454, 592, and 781 Hz/pixel) and increasing matrixes of 128, 256, 384, 512, 640, and 768 pixels square. Signal loss from the prosthesis and susceptibility artefact was segmented using an automated tool. Results: Over 90% of the achievable reduction in artefacts was obtained with matrixes of 256 x 256 or greater and a receiver bandwidth of approximately 400 Hz/pixel or greater. Thereafter increasing the receiver bandwidth or matrix had little impact on reducing susceptibility artefacts. Increasing the bandwidth produced a relative fall in the signal-to-noise ratio (SNR) of between 49 and 56% for a given matrix, but, in practice, the image quality was still satisfactory even with the highest bandwidth and largest matrix sizes. The acquisition time increased linearly with increasing matrix parameters. Conclusion: Over 90% of the achievable metal artefact reduction can be realized with mid-range matrices and receiver bandwidths on a clinical 1.5 T system. The loss of SNR from increasing receiver bandwidth, is preferable to long acquisition times, and therefore, should be the main tool for reducing metal artefact.

  19. Comodulation masking release in bit-rate reduction systems

    DEFF Research Database (Denmark)

    Vestergaard, Martin David; Rasmussen, Karsten Bo; Poulsen, Torben

    1999-01-01

    It has been suggested that the level dependence of the upper masking slope be utilized in perceptual models in bit-rate reduction systems. However, comodulation masking release (CMR) phenomena lead to a reduction of the masking effect when a masker and a probe signal are amplitude modulated...... with the same frequency. In bit-rate reduction systems the masker would be the audio signal and the probe signal would represent the quantization noise. Masking curves have been determined for sinusoids and 1-Bark-wide noise maskers in order to investigate the risk of CMR, when quantizing depths are fixed...... in accordance with psycho-acoustical principles. Masker frequencies of 500 Hz, 1 kHz, and 2 kHz have been investigated, and the masking of pure tone probes has been determined in the first four 1/3 octaves above the masker. Modulation frequencies between 6 and 20 Hz were used with a modulation depth of 0...

  20. Revision rates for metal-on-metal hip resurfacing and metal-on-metal total hip arthroplasty – a systematic review

    DEFF Research Database (Denmark)

    Ras Sørensen, Sofie-amalie L.; Jørgensen, Henrik L.; Sporing, Sune L.

    2016-01-01

    Purpose To compare revision rates of metal-on-metal (MoM) hip resurfacing (HRS) and MoM total hip arthroplasty (THA), as well as the primary causes for revisions. Methods The PubMed database was queried for potentially relevant articles addressing MoMTHA and MoMHRS, a total of 51 articles were....... The odds ratio was 1.25 (1.03:1.53) 95% CI (p = 0.03) (MoMHRS vs. MoMTHA). The studies of hip prostheses were separated into 2 categories of short- and long-term (more or less than 5 years). Short-term revision rate for MoMTHA was 4.5% after 4.8 years, and for MoMHRS 4.0% after 4.2 years. The odds ratio...

  1. 47 CFR 76.960 - Prospective rate reductions.

    Science.gov (United States)

    2010-10-01

    ....960 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... Commission may order the cable operator to implement a prospective rate reduction to the class of customers... the Commission at least 30 days' notice of any proposed change. [60 FR 52121, Oct. 5, 1995] ...

  2. The Effect of Metal and Oxide Additions on the Reduction of Chalcocite by Hydrogen

    OpenAIRE

    Balsalobre Casares, Carmen

    2011-01-01

    Copper is widely known as a very important material due to its applications in our daily life, such as electrical devices and heating appliances. It is not so common knowledge that copper is not found in its metallic form, but mixed with other metals and elements like sulphur and oxygen. The process to obtain pure copper nowadays implies a strong impact on the environment. Regarding copper sulphides, its reduction to metallic copper is based in the oxidation of the ore products which forms...

  3. Coordinated Changes in Mutation and Growth Rates Induced by Genome Reduction

    Directory of Open Access Journals (Sweden)

    Issei Nishimura

    2017-07-01

    Full Text Available Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment.

  4. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Travis Shane [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mincher, Bruce Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schmitt, Nicholas C [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  5. Spectral CT metal artifact reduction with an optimization-based reconstruction algorithm

    Science.gov (United States)

    Gilat Schmidt, Taly; Barber, Rina F.; Sidky, Emil Y.

    2017-03-01

    Metal objects cause artifacts in computed tomography (CT) images. This work investigated the feasibility of a spectral CT method to reduce metal artifacts. Spectral CT acquisition combined with optimization-based reconstruction is proposed to reduce artifacts by modeling the physical effects that cause metal artifacts and by providing the flexibility to selectively remove corrupted spectral measurements in the spectral-sinogram space. The proposed Constrained `One-Step' Spectral CT Image Reconstruction (cOSSCIR) algorithm directly estimates the basis material maps while enforcing convex constraints. The incorporation of constraints on the reconstructed basis material maps is expected to mitigate undersampling effects that occur when corrupted data is excluded from reconstruction. The feasibility of the cOSSCIR algorithm to reduce metal artifacts was investigated through simulations of a pelvis phantom. The cOSSCIR algorithm was investigated with and without the use of a third basis material representing metal. The effects of excluding data corrupted by metal were also investigated. The results demonstrated that the proposed cOSSCIR algorithm reduced metal artifacts and improved CT number accuracy. For example, CT number error in a bright shading artifact region was reduced from 403 HU in the reference filtered backprojection reconstruction to 33 HU using the proposed algorithm in simulation. In the dark shading regions, the error was reduced from 1141 HU to 25 HU. Of the investigated approaches, decomposing the data into three basis material maps and excluding the corrupted data demonstrated the greatest reduction in metal artifacts.

  6. [Examination of patient dose reduction in cardiovasucular X-ray systems with a metal filter].

    Science.gov (United States)

    Yasuda, Mitsuyoshi; Kato, Kyouichi; Tanabe, Nobuaki; Sakiyama, Koushi; Uchiyama, Yushi; Suzuki, Yoshiaki; Suzuki, Hiroshi; Nakazawa, Yasuo

    2012-01-01

    In interventional X-ray for cardiology of flat panel digital detector (FPD), the phenomenon that exposure dose was suddenly increased when a subject thickness was thickened was recognized. At that time, variable metal built-in filters in FPD were all off. Therefore, we examined whether dose reduction was possible without affecting a clinical image using metal filter (filter) which we have been conventionally using for dose reduction. About 45% dose reduction was achieved when we measured an exposure dose at 30 cm of acrylic thickness in the presence of a filter. In addition, we measured signal to noise ratio/contrast to noise ratio/a resolution limit by the visual evaluation, and there was no influence by filter usage. In the clinical examination, visual evaluation of image quality of coronary angiography (40 cases) using a 5-point evaluation scale by a physician was performed. As a result, filter usage did not influence the image quality (p=NS). Therefore, reduction of sudden increase of exposure dose was achieved without influencing an image quality by adding filter to FPD.

  7. Value and clinical application of orthopedic metal artifact reduction algorithm in CT scans after orthopedic metal implantation

    International Nuclear Information System (INIS)

    Hu, Yi; Pan, Shinong; Zhao, Xudong; Guo, Wenli; He, Ming; Guo, Qiyong

    2017-01-01

    To evaluate orthopedic metal artifact reduction algorithm (O-MAR) in CT orthopedic metal artifact reduction at different tube voltages, identify an appropriate low tube voltage for clinical practice, and investigate its clinical application. The institutional ethical committee approved all the animal procedures. A stainless-steel plate and four screws were implanted into the femurs of three Japanese white rabbits. Preoperative CT was performed at 120 kVp without O-MAR reconstruction, and postoperative CT was performed at 80–140 kVp with O-MAR. Muscular CT attenuation, artifact index (AI) and signal-to-noise ratio (SNR) were compared between preoperative and postoperative images (unpaired t test), between paired O-MAR and non-O-MAR images (paired Student t test) and among different kVp settings (repeated measures ANOVA). Artifacts' severity, muscular homogeneity, visibility of inter-muscular space and definition of bony structures were subjectively evaluated and compared (Wilcoxon rank-sum test). In the clinical study, 20 patients undertook CT scan at low kVp with O-MAR with informed consent. The diagnostic satisfaction of clinical images was subjectively assessed. Animal experiments showed that the use of O-MAR resulted in accurate CT attenuation, lower AI, better SNR, and higher subjective scores (p < 0.010) at all tube voltages. O-MAR images at 100 kVp had almost the same AI and SNR as non-O-MAR images at 140 kVp. All O-MAR images were scored ≥ 3. In addition, 95% of clinical CT images performed at 100 kVp were considered satisfactory. O-MAR can effectively reduce orthopedic metal artifacts at different tube voltages, and facilitates low-tube-voltage CT for patients with orthopedic metal implants

  8. Fission neutron damage rates and efficiencies in several metals

    International Nuclear Information System (INIS)

    Klabunde, C.E.; Coltman, R.R. Jr.

    1981-11-01

    Initial rates of resistivity-measured low-temperature damage production by fission-spectrum fast neutrons have been determined for 14 metals in the same very well characterized irradiation facility. Six of these metals were fcc, 5 bcc, and 3 hcp. Most were of quite high purity. Observed damage rates, after correction for all known extraneous resistivity-producing effects, were compared with rates predicted by the damage calculation code RECOIL, using parameters chosen from the literature. These parameters, effective displacement threshold energy, E/sub d/, and Frenkel-pair resistivity, rho/sub F/, were in many cases only best estimates, the further refinement of which may be aided by the present results. Damage efficiencies (measured/predicted rates) follow the same trends by crystal classes as seen in other fast-neutron studies

  9. Deep learning methods for CT image-domain metal artifact reduction

    Science.gov (United States)

    Gjesteby, Lars; Yang, Qingsong; Xi, Yan; Shan, Hongming; Claus, Bernhard; Jin, Yannan; De Man, Bruno; Wang, Ge

    2017-09-01

    Artifacts resulting from metal objects have been a persistent problem in CT images over the last four decades. A common approach to overcome their effects is to replace corrupt projection data with values synthesized from an interpolation scheme or by reprojection of a prior image. State-of-the-art correction methods, such as the interpolation- and normalization-based algorithm NMAR, often do not produce clinically satisfactory results. Residual image artifacts remain in challenging cases and even new artifacts can be introduced by the interpolation scheme. Metal artifacts continue to be a major impediment, particularly in radiation and proton therapy planning as well as orthopedic imaging. A new solution to the long-standing metal artifact reduction (MAR) problem is deep learning, which has been successfully applied to medical image processing and analysis tasks. In this study, we combine a convolutional neural network (CNN) with the state-of-the-art NMAR algorithm to reduce metal streaks in critical image regions. Training data was synthesized from CT simulation scans of a phantom derived from real patient images. The CNN is able to map metal-corrupted images to artifact-free monoenergetic images to achieve additional correction on top of NMAR for improved image quality. Our results indicate that deep learning is a novel tool to address CT reconstruction challenges, and may enable more accurate tumor volume estimation for radiation therapy planning.

  10. Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress

    International Nuclear Information System (INIS)

    Liu, Patrick T.; Pavlicek, William P.; Peter, Mary B.; Roberts, Catherine C.; Paden, Robert G.; Spangehl, Mark J.

    2009-01-01

    Despite recent advances in CT technology, metal orthopedic implants continue to cause significant artifacts on many CT exams, often obscuring diagnostic information. We performed this prospective study to evaluate the effectiveness of an experimental metal artifact reduction (MAR) image reconstruction program for CT. We examined image quality on CT exams performed in patients with hip arthroplasties as well as other types of implanted metal orthopedic devices. The exam raw data were reconstructed using two different methods, the standard filtered backprojection (FBP) program and the MAR program. Images were evaluated for quality of the metal-cement-bone interfaces, trabeculae ≤1 cm from the metal, trabeculae 5 cm apart from the metal, streak artifact, and overall soft tissue detail. The Wilcoxon Rank Sum test was used to compare the image scores from the large and small prostheses. Interobserver agreement was calculated. When all patients were grouped together, the MAR images showed mild to moderate improvement over the FBP images. However, when the cases were divided by implant size, the MAR images consistently received higher image quality scores than the FBP images for large metal implants (total hip prostheses). For small metal implants (screws, plates, staples), conversely, the MAR images received lower image quality scores than the FBP images due to blurring artifact. The difference of image scores for the large and small implants was significant (p=0.002). Interobserver agreement was found to be high for all measures of image quality (k>0.9). The experimental MAR reconstruction algorithm significantly improved CT image quality for patients with large metal implants. However, the MAR algorithm introduced blurring artifact that reduced image quality with small metal implants. (orig.)

  11. Reduction experiment of FeO-bearing amorphous silicate: application to origin of metallic iron in GEMS

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, Junya; Tsuchiyama, Akira; Miyake, Akira [Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502 (Japan); Noguchi, Ryo [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Ichikawa, Satoshi, E-mail: jmatsuno@kueps.kyoto-u.ac.jp [Institute for Nano-science Design, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-09-10

    Glass with embedded metal and sulfides (GEMS) are amorphous silicates included in anhydrous interplanetary dust particles (IDPs) and can provide information about material evolution in our early solar system. Several formation processes for GEMS have been proposed so far, but these theories are still being debated. To investigate a possible GEMS origin by reduction of interstellar silicates, we synthesized amorphous silicates with a mean GEMS composition and performed heating experiments in a reducing atmosphere. FeO-bearing amorphous silicates were heated at 923 K and 973 K for 3 hr, and at 1023 K for 1-48 hr at ambient pressure in a reducing atmosphere. Fe grains formed at the interface between the silicate and the reducing gas through a reduction. In contrast, TEM observations of natural GEMS show that metallic grains are uniformly embedded in amorphous silicates. Therefore, the present study suggests that metallic inclusions in GEMS could not form as reduction products and that other formation process such as condensation or irradiation are more likely.

  12. The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants : a phantom study

    NARCIS (Netherlands)

    Harnish, Roy; Prevrhal, Sven; Alavi, Abass; Zaidi, Habib; Lang, Thomas F.

    To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of F-18-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom

  13. The Three R's of Utility Savings: Rate Reduction, Rebates and Retrofit.

    Science.gov (United States)

    Petiunas, Raymond V.

    1993-01-01

    An effective way to increase electricity energy savings for school districts is to integrate rate case participation (rate reduction) with conservation and load-management efforts (rebates) and retrofit operations, to obtain a total energy cost reduction package. Describes how a Pennsylvania consortium of school districts saved its member…

  14. Metal artifact reduction in x-ray computed tomography (CT) by constrained optimization

    International Nuclear Information System (INIS)

    Zhang Xiaomeng; Wang Jing; Xing Lei

    2011-01-01

    Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. Methods: After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of ''metal shadows'' in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective. Results: The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images. Conclusions: Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general ''missing data'' image reconstruction problems.

  15. Non-Isothermal Gas-Based Direct Reduction Behavior of High Chromium Vanadium-Titanium Magnetite Pellets and the Melting Separation of Metallized Pellets

    Directory of Open Access Journals (Sweden)

    Jue Tang

    2017-04-01

    Full Text Available The non-isothermal reduction behavior of high chromium vanadium-titanium magnetite (HCVTM pellets by gas mixtures was investigated using different heating rates (4, 8, and 12 K/min and varied gas compositions (H2/CO = 2/5, H2/CO = 1/1, and H2/CO = 5/2 volume ratios; the pellets were then used for melting separation. It was observed that the temperature corresponding to the maximum reduction ratio increased with the increasing heating rate. The HCVTM pellets reached the same final reduction ratio under a given reducing gas composition, although the heating rates were different. Under the same heating rate, the gas mixture with more H2 was conducive for obtaining a higher reduction ratio. The phase transformations during the non-isothermal reduction were ordered as follows: Fe2O3 → Fe3O4 → FeO → Fe; Fe9TiO15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeTiO3 → TiO2; V1.7Cr0.3O3 → V2O3 → Fe2VO4; Fe1.2Cr0.8O3 → Cr2O3 → FeCr2O4. The non-isothermal reduction kinetic model was established based on the unreacted core model with multiple reaction interfaces. The correlation coefficients were greater than 0.99, revealing that this kinetic model could properly describe the non-isothermal reduction of the HCVTM pellets by gas mixtures. Iron containing V and Cr along with the Ti-rich slag was obtained through the melting separation of the metallized HCVTM pellets. The mass fractions and recovery rates of Fe, V, and Cr in the iron were 93.87% and 99.45%, 0.91% and 98.83%, and 0.72% and 95.02%, respectively. The mass fraction and recovery rate of TiO2 in the slag were 38.12% and 95.08%, respectively.

  16. An evolutionary reduction principle for mutation rates at multiple Loci.

    Science.gov (United States)

    Altenberg, Lee

    2011-06-01

    A model of mutation rate evolution for multiple loci under arbitrary selection is analyzed. Results are obtained using techniques from Karlin (Evolutionary Biology, vol. 14, pp. 61-204, 1982) that overcome the weak selection constraints needed for tractability in prior studies of multilocus event models.A multivariate form of the reduction principle is found: reduction results at individual loci combine topologically to produce a surface of mutation rate alterations that are neutral for a new modifier allele. New mutation rates survive if and only if they fall below this surface-a generalization of the hyperplane found by Zhivotovsky et al. (Proc. Natl. Acad. Sci. USA 91, 1079-1083, 1994) for a multilocus recombination modifier. Increases in mutation rates at some loci may evolve if compensated for by decreases at other loci. The strength of selection on the modifier scales in proportion to the number of germline cell divisions, and increases with the number of loci affected. Loci that do not make a difference to marginal fitnesses at equilibrium are not subject to the reduction principle, and under fine tuning of mutation rates would be expected to have higher mutation rates than loci in mutation-selection balance.Other results include the nonexistence of 'viability analogous, Hardy-Weinberg' modifier polymorphisms under multiplicative mutation, and the sufficiency of average transmission rates to encapsulate the effect of modifier polymorphisms on the transmission of loci under selection. A conjecture is offered regarding situations, like recombination in the presence of mutation, that exhibit departures from the reduction principle. Constraints for tractability are: tight linkage of all loci, initial fixation at the modifier locus, and mutation distributions comprising transition probabilities of reversible Markov chains.

  17. SU-E-J-218: Evaluation of CT Images Created Using a New Metal Artifact Reduction Reconstruction Algorithm for Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Niemkiewicz, J; Palmiotti, A; Miner, M; Stunja, L; Bergene, J [Lehigh Valley Health Network, Allentown, PA (United States)

    2014-06-01

    Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU values were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation

  18. SU-E-J-218: Evaluation of CT Images Created Using a New Metal Artifact Reduction Reconstruction Algorithm for Radiation Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Niemkiewicz, J; Palmiotti, A; Miner, M; Stunja, L; Bergene, J

    2014-01-01

    Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU values were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation

  19. Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering

    International Nuclear Information System (INIS)

    Bal, Matthieu; Spies, Lothar

    2006-01-01

    High-density objects such as metal prostheses, surgical clips, or dental fillings generate streak-like artifacts in computed tomography images. We present a novel method for metal artifact reduction by in-painting missing information into the corrupted sinogram. The information is provided by a tissue-class model extracted from the distorted image. To this end the image is first adaptively filtered to reduce the noise content and to smooth out streak artifacts. Consecutively, the image is segmented into different material classes using a clustering algorithm. The corrupted and missing information in the original sinogram is completed using the forward projected information from the tissue-class model. The performance of the correction method is assessed on phantom images. Clinical images featuring a broad spectrum of metal artifacts are studied. Phantom and clinical studies show that metal artifacts, such as streaks, are significantly reduced and shadows in the image are eliminated. Furthermore, the novel approach improves detectability of organ contours. This can be of great relevance, for instance, in radiation therapy planning, where images affected by metal artifacts may lead to suboptimal treatment plans

  20. Value and clinical application of orthopedic metal artifact reduction algorithm in CT scans after orthopedic metal implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yi; Pan, Shinong; Zhao, Xudong; Guo, Wenli; He, Ming; Guo, Qiyong [Shengjing Hospital of China Medical University, Shenyang (China)

    2017-06-15

    To evaluate orthopedic metal artifact reduction algorithm (O-MAR) in CT orthopedic metal artifact reduction at different tube voltages, identify an appropriate low tube voltage for clinical practice, and investigate its clinical application. The institutional ethical committee approved all the animal procedures. A stainless-steel plate and four screws were implanted into the femurs of three Japanese white rabbits. Preoperative CT was performed at 120 kVp without O-MAR reconstruction, and postoperative CT was performed at 80–140 kVp with O-MAR. Muscular CT attenuation, artifact index (AI) and signal-to-noise ratio (SNR) were compared between preoperative and postoperative images (unpaired t test), between paired O-MAR and non-O-MAR images (paired Student t test) and among different kVp settings (repeated measures ANOVA). Artifacts' severity, muscular homogeneity, visibility of inter-muscular space and definition of bony structures were subjectively evaluated and compared (Wilcoxon rank-sum test). In the clinical study, 20 patients undertook CT scan at low kVp with O-MAR with informed consent. The diagnostic satisfaction of clinical images was subjectively assessed. Animal experiments showed that the use of O-MAR resulted in accurate CT attenuation, lower AI, better SNR, and higher subjective scores (p < 0.010) at all tube voltages. O-MAR images at 100 kVp had almost the same AI and SNR as non-O-MAR images at 140 kVp. All O-MAR images were scored ≥ 3. In addition, 95% of clinical CT images performed at 100 kVp were considered satisfactory. O-MAR can effectively reduce orthopedic metal artifacts at different tube voltages, and facilitates low-tube-voltage CT for patients with orthopedic metal implants.

  1. The electrodeposition and rare earths reduction in the molten salt actinides recovery systems using liquid metal

    International Nuclear Information System (INIS)

    Shim, J-B.; Lee, J-H.; Kwon, S-W.; Ahn, B-G.; Woo, M-S.; Lee, B-J.; Kim, E-H.; Park, H-S.; Yoo, J-H.

    2005-01-01

    A pyrochemical partitioning system uses liquid metals such as cadmium and bismuth in order to recover the actinide metals from a molten salt mixture containing rare earth fission product metals. The liquid metals play roles as a cathode in the electrowinning or an extracting phase in the reductive extraction operation. The product resulting from the above operations is metal-cadmium or-bismuth alloy, which should contain the rare earth element amounts as low as possible for a transmutation purpose. In this study, the electrodeposition behaviours of uranium and lanthanide elements such as La, Ce and Nd were investigated for solid molybdenum and liquid cadmium electrodes in a molten LiCl-KCl eutectic salt. Electrochemical methods used are a cyclic voltammetry (CV) and a chronopotentiometry for monitoring the salt phase and recovering the metals, respectively. The CV graphs for monitoring the oxidizing agent CdCl 2 in the salt phase were obtained. These show a time dependently disappearance of the oxidizing agent corresponding to the formation of UCl 3 by inserting the uranium metal into the salt. Also, a sequential oxidation technique which is added at a controlled amount of the oxidizing agents into the salt phase was applied. It was found that this method is feasible for the selective reduction of the rare earths content in liquid metal alloys. (author)

  2. Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions

    International Nuclear Information System (INIS)

    Truex, M.J.; Peyton, B.M.; Valentine, N.B.; Gorby, Y.A.

    1997-01-01

    Dissimilatory metal-reducing microorganisms may be useful in processes designed for selective removal of uranium from aqueous streams. These bacteria can use U(VI) as an electron acceptor and thereby reduce soluble U(VI) to insoluble U(IV). While significant research has been devoted to demonstrating and describing the mechanism of dissimilatory metal reduction, the reaction kinetics necessary to apply this for remediation processes have not been adequately defined. In this study, pure culture Shewanella alga strain BrY reduced U(VI) under non-growth conditions in the presence of excess lactate as the electron donor. Initial U(VI) concentrations ranged from 13 to 1,680microM. A maximum specific U(VI) reduction rate of 2.37 micromole-U(VI)/(mg-biomass h) and Monod half-saturation coefficient of 132 microM-U(VI) were calculated from measured U(VI) reduction rates. U(VI) reduction activity was sustained at 60% of this rate for at least 80 h. The initial presence of oxygen at a concentration equal to atmospheric saturation at 22 C delays but does not prevent U(VI) reduction. The rate of U(VI) reduction by BrY is comparable or better than rates reported for other metal reducing species. BrY reduces U(VI) at a rate that is 30% of its Fe(III) reduction rate

  3. Smelting reduction rate of fine Wustite particles in a CO gas-conveyed bed; CO gas yuso sonai Wustite biryushi no yoyu kangen sokudo

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S; Iguchi, Y [Nagoya Institute of Technology, Nagoya (Japan)

    1999-06-01

    Using a laboratory scale fine particles-gas conveyed bed, the reduction rates of liquid wustite with CO gas were measured. CO-CO{sub 2} mixtures having various flow rates and compositions were flowed downward through a cylindrical reactor maintained at a constant temperature of 1,723 to 1,823K. A batch of pure spherical wustite particles (mean dia.: 48.5 {mu}m) was concurrently fed into the reactor at a small constant rate and reduced in a hot zone. The reduction process was found to proceed in such a manner that metallic iron particles were enclosed inside a wustite droplet. Rate analysis was made of one dimensional mass balance equations for particles and gas in a steady moving bed under an isothermal condition using the reaction rate for a single particle taking the shrinkage into consideration. Under relatively small reducing potentials, it was concluded that the major fraction of overall reaction resistance is attributable to chemical reaction. However, under higher reducing potentials, the reduction process was estimated to include some mass transfer resistances within the liquid oxide phase. From the temperature dependence of forward chemical reaction rate constants, the activation energy was evaluated to be 90.6 kJ/mol. (author)

  4. A study on the electrolytic reduction of U3O8 to uranium metal in LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Seo, J. S.; Heo, J. M.; Hong, S. S.; Kang, D. S.; Park, S. W.

    2002-01-01

    New electrolytic reduction technology was proposed that is based on the intregration of metallization of U 3 O 8 and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxide to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, materials for cathode and anode electrode, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt, increase of metallization yield, and simplification of process

  5. Reduction of Large Dynamical Systems by Minimization of Evolution Rate

    Science.gov (United States)

    Girimaji, Sharath S.

    1999-01-01

    Reduction of a large system of equations to a lower-dimensional system of similar dynamics is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant dimensions and a general reduction method based on the minimization of evolution rate are proposed.

  6. Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?

    Science.gov (United States)

    Wellenberg, Ruud H H; Donders, Johanna C E; Kloen, Peter; Beenen, Ludo F M; Kleipool, Roeland P; Maas, Mario; Streekstra, Geert J

    2017-08-25

    To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans. Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel tibia plate and a titanium intramedullary nail respectively. Virtual monochromatic images were analyzed from 70 to 190 keV. Region-of-interest (ROI), used to determine fluctuations and inaccuracies in CT numbers of soft tissues and bone, were placed in muscle, fat, cortical bone and intramedullary tibia canal. The stainless-steel implant resulted in more pronounced metal artifacts compared to both titanium implants. CT number inaccuracies in 70 keV reference images were minimized at 130, 180 and 190 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Noise, measured as the standard deviation of pixels within a ROI, was minimized at 130, 150 and 140 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Tailoring dual-energy CT protocols using implant specific virtual monochromatic images minimizes fluctuations and inaccuracies in CT numbers in bone and soft tissues compared to non-metal reference scans.

  7. PETRA, MSVAT-SPACE and SEMAC sequences for metal artefact reduction in dental MR imaging

    International Nuclear Information System (INIS)

    Hilgenfeld, Tim; Heil, Alexander; Bendszus, Martin; Prager, Marcel; Heiland, Sabine; Schwindling, Franz Sebastian; Rammelsberg, Peter; Nittka, Mathias; Grodzki, David

    2017-01-01

    Dental MRI is often impaired by artefacts due to metallic dental materials. Several sequences were developed to reduce susceptibility artefacts. Here, we evaluated a set of sequences for artefact reduction for dental MRI for the first time. Artefact volume, signal-to-noise ratio (SNR) and image quality were assessed on a 3-T MRI for pointwise encoding time reduction with radial acquisition (PETRA), multiple-slab acquisition with view angle tilting gradient, based on a sampling perfection with application-optimised contrasts using different flip angle evolution (SPACE) sequence (MSVAT-SPACE), slice-encoding for metal-artefact correction (SEMAC) and compared to a standard SPACE and a standard turbo-spin-echo (TSE) sequence. Field-of-view and acquisition times were chosen to enable in vivo application. Two implant-supported prostheses were tested (porcelain fused to metal non-precious alloy and monolithic zirconia). Smallest artefact was measured for TSE sequences with no difference between the standard TSE and the SEMAC. MSVAT-SPACE reduced artefacts about 56% compared to the standard SPACE. Effect of the PETRA was dependent on sample used. Image quality and SNR were comparable for all sequences except PETRA, which yielded poor results. There is no benefit in terms of artefact reduction for SEMAC compared to standard TSE. Usage of MSVAT-SPACE is advantageous since artefacts are reduced and higher resolution is achieved. (orig.)

  8. PETRA, MSVAT-SPACE and SEMAC sequences for metal artefact reduction in dental MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hilgenfeld, Tim; Heil, Alexander; Bendszus, Martin [Heidelberg University Hospital, Department of Neuroradiology, Heidelberg (Germany); Prager, Marcel; Heiland, Sabine [Heidelberg University Hospital, Department of Neuroradiology, Heidelberg (Germany); Heidelberg University Hospital, Section of Experimental Radiology, Heidelberg (Germany); Schwindling, Franz Sebastian; Rammelsberg, Peter [Heidelberg University Hospital, Department of Prosthodontics, Heidelberg (Germany); Nittka, Mathias; Grodzki, David [Siemens Healthcare GmbH, Erlangen (Germany)

    2017-12-15

    Dental MRI is often impaired by artefacts due to metallic dental materials. Several sequences were developed to reduce susceptibility artefacts. Here, we evaluated a set of sequences for artefact reduction for dental MRI for the first time. Artefact volume, signal-to-noise ratio (SNR) and image quality were assessed on a 3-T MRI for pointwise encoding time reduction with radial acquisition (PETRA), multiple-slab acquisition with view angle tilting gradient, based on a sampling perfection with application-optimised contrasts using different flip angle evolution (SPACE) sequence (MSVAT-SPACE), slice-encoding for metal-artefact correction (SEMAC) and compared to a standard SPACE and a standard turbo-spin-echo (TSE) sequence. Field-of-view and acquisition times were chosen to enable in vivo application. Two implant-supported prostheses were tested (porcelain fused to metal non-precious alloy and monolithic zirconia). Smallest artefact was measured for TSE sequences with no difference between the standard TSE and the SEMAC. MSVAT-SPACE reduced artefacts about 56% compared to the standard SPACE. Effect of the PETRA was dependent on sample used. Image quality and SNR were comparable for all sequences except PETRA, which yielded poor results. There is no benefit in terms of artefact reduction for SEMAC compared to standard TSE. Usage of MSVAT-SPACE is advantageous since artefacts are reduced and higher resolution is achieved. (orig.)

  9. Generalized kinetic model of reduction of molecular oxidant by metal containing redox

    International Nuclear Information System (INIS)

    Kravchenko, T.A.

    1986-01-01

    Present work is devoted to kinetics of reduction of molecular oxidant by metal containing redox. Constructed generalized kinetic model of redox process in the system solid redox - reagent solution allows to perform the general theoretical approach to research and to obtain new results on kinetics and mechanism of interaction of redox with oxidants.

  10. Radiolytic and photochemical reduction of carbon dioxide in solution catalyzed by transition metal complexes with some selected macrocycles

    International Nuclear Information System (INIS)

    Grodkowski, J.

    2004-01-01

    The main goal of the work presented in this report is an explanation of the mechanism of carbon dioxide (CO 2 ) reduction catalyzed by transition metal complexes with some selected macrocycles. The catalytic function of two electron exchange centers in the reduction of CO 2 , an inner metal and a macrocycle ring, was defined. Catalytic effects of rhodium, iron and cobalt porphyrins, cobalt and iron phthalocyanines and corroles as well as cobalt corrins have been investigated. CO 2 reduction by iron ions without presence of macrocycles and also in presence of copper compounds in aqueous solutions have been studied as well

  11. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    Science.gov (United States)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  12. Reduction of metal leaching in brown coal fly ash using geopolymers

    International Nuclear Information System (INIS)

    Bankowski, P.; Zou, L.; Hodges, R.

    2004-01-01

    Current regulations classify fly ash as a prescribed waste and prohibit its disposal in regular landfill. Treatment of the fly ash can reduce the leach rate of metals, and allow it to be disposed in less prescribed landfill. A geopolymer matrix was investigated as a potential stabilisation method for brown coal fly ash. Precipitator fly ash was obtained from electrostatic precipitators and leached fly ash was collected from ash disposal ponds, and leaching tests were conducted on both types of geopolymer stabilised fly ashes. The ratio of fly ash to geopolymer was varied to determine the effects of different compositions on leaching rates. Fourteen metals and heavy metals were targeted during the leaching tests and the results indicate that a geopolymer is effective at reducing the leach rates of many metals from the fly ash, such as calcium, arsenic, selenium, strontium and barium. The major element leachate concentrations obtained from leached fly ash were in general lower than that of precipitator fly ash. Conversely, heavy metal leachate concentrations were lower in precipitator fly ash than leached pond fly ash. The maximum addition of fly ash to this geopolymer was found to be 60 wt% for fly ash obtained from the electrostatic precipitators and 70 wt% for fly ash obtained from ash disposal ponds. The formation of geopolymer in the presence of fly ash was studied using 29Si MAS-NMR and showed that a geopolymer matrix was formed. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) imaging showed the interaction of the fly ash with the geopolymer, which was related to the leachate data and also the maximum percentage fly ash addition

  13. Application of a chronoamperometric measurement to the on-line monitoring of a lithium metal reduction for uranium oxide

    International Nuclear Information System (INIS)

    Kim, Tack-Jin; Cho, Young-Hwan; Choi, In-Kyu; Kang, Jun-Gill; Song, Kyuseok; Jee, Kwang-Yong

    2008-01-01

    Both a potentiometric and a chronoamperometric electrochemical technique have been applied in an attempt to develop an efficient method for an on-line monitoring of a lithium metal reduction process of uranium oxides at a high-temperature in a molten salt medium. As a result of this study, it was concluded that the chronoamperometric method provided a simple and effective way for a direct on-line monitoring measurement of a lithium metal reduction process of uranium oxides at 650 o C by the measuring electrical currents dependency on a variation of the reduction time for the reaction. A potentiometric method, by adopting a homemade oxide ion selective electrode made of ZrO 2 stabilized by a Y 2 O 3 doping, however, was found to be inappropriate for an on-line monitoring of the reduction reaction of uranium oxide in the presence of lithium metal due to an abnormal behavior of the adopted electrodes. The observed experimental results were discussed in detail by comparing them with previously published experimental data

  14. On Metal Segregation of Bimetallic Nanocatalysts Prepared by a One-Pot Method in Microemulsions

    Directory of Open Access Journals (Sweden)

    Concha Tojo

    2017-02-01

    Full Text Available A comparative study on different bimetallic nanocatalysts prepared from microemulsions using a one-pot method has been carried out. The analysis of experimental observations, complemented by simulation studies, provides detailed insight into the factors affecting nanoparticle architecture: (1 The metal segregation in a bimetallic nanocatalysts is the result of the combination of three main kinetic parameters: the reduction rate of metal precursors (related to reduction standard potentials, the material intermicellar exchange rate (determined by microemulsion composition, and the metal precursors concentration; (2 A minimum difference between the reduction standard potentials of the two metals of 0.20 V is needed to obtain a core-shell structure. For values ∆ε0 smaller than 0.20 V the obtaining of alloys cannot be avoided, neither by changing the microemulsion nor by increasing metal concentration; (3 As a rule, the higher the film flexibility around the micelles, the higher the degree of mixture in the nanocatalyst; (4 A minimum concentration of metal precursors is required to get a core-shell structure. This minimum concentration depends on the microemulsion flexibility and on the difference in reduction rates.

  15. 77 FR 38397 - Agency Information Collection (Interest Rate Reduction Refinancing Loan Worksheet) Activities...

    Science.gov (United States)

    2012-06-27

    ... . Please refer to ``OMB Control No. 2900- 0386.'' SUPPLEMENTARY INFORMATION: Title: Interest Rate Reduction... guaranty on all interest rate reduction refinancing loan and provide a receipt as proof that the funding... ensure lenders computed the funding fee and the maximum permissible loan amount for interest rate...

  16. 76 FR 33028 - Agency Information Collection (Requirements for Interest Rate Reduction Refinancing Loans...

    Science.gov (United States)

    2011-06-07

    ... (Requirements for Interest Rate Reduction Refinancing Loans) Activity Under OMB Review AGENCY: Veterans Benefits...: Requirements for Interest Rate Reduction Refinancing Loans. OMB Control Number: 2900-0601. Type of Review..., insured, or direct loan with a new loan at a lower interest rate provided that the veteran still owns the...

  17. (99)Tc(VII) Retardation, Reduction, and Redox Rate Scaling in Naturally Reduced Sediments.

    Science.gov (United States)

    Liu, Yuanyuan; Liu, Chongxuan; Kukkadapu, Ravi K; McKinley, James P; Zachara, John; Plymale, Andrew E; Miller, Micah D; Varga, Tamas; Resch, Charles T

    2015-11-17

    An experimental and modeling study was conducted to investigate pertechnetate (Tc(VII)O4(-)) retardation, reduction, and rate scaling in three sediments from Ringold formation at U.S. Department of Energy's Hanford site, where (99)Tc is a major contaminant in groundwater. Tc(VII) was reduced in all the sediments in both batch reactors and diffusion columns, with a faster rate in a sediment containing a higher concentration of HCl-extractable Fe(II). Tc(VII) migration in the diffusion columns was reductively retarded with retardation degrees correlated with Tc(VII) reduction rates. The reduction rates were faster in the diffusion columns than those in the batch reactors, apparently influenced by the spatial distribution of redox-reactive minerals along transport paths that supplied Tc(VII). X-ray computed tomography and autoradiography were performed to identify the spatial locations of Tc(VII) reduction and transport paths in the sediments, and results generally confirmed the newly found behavior of reaction rate changes from batch to column. The results from this study implied that Tc(VII) migration can be reductively retarded at Hanford site with a retardation degree dependent on reactive Fe(II) content and its distribution in sediments. This study also demonstrated that an effective reaction rate may be faster in transport systems than that in well-mixed reactors.

  18. Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation

    Science.gov (United States)

    Torrey, Paul; Vogelsberger, Mark; Hernquist, Lars; McKinnon, Ryan; Marinacci, Federico; Simcoe, Robert A.; Springel, Volker; Pillepich, Annalisa; Naiman, Jill; Pakmor, Rüdiger; Weinberger, Rainer; Nelson, Dylan; Genel, Shy

    2018-06-01

    The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fixed stellar mass are correlated with galactic SFR. In this Letter, we use hydrodynamical simulations to quantify the time-scales over which populations of galaxies oscillate about the average SFR and metallicity values at fixed stellar mass. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR oscillate over similar time-scales, are often anticorrelated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. Our models indicate that galaxies oscillate about equilibrium SFR and metallicity values - set by the galaxy's stellar mass - and that SFR and metallicity offsets evolve in an anticorrelated fashion. This anticorrelated variability of the metallicity and SFR offsets drives the existence of the FMR in our models. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by feedback-driven globally bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR - especially at high redshift.

  19. Hydrazine reduction of metal ions to porous submicro-structures of Ag, Pd, Cu, Ni, and Bi

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yue; Shi Yongfang; Chen Yubiao [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Wu Liming, E-mail: liming_wu@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2012-07-15

    Porous submicro-structures of Ag, Pd, Cu, Ni, and Bi with high surface area have been prepared by the reduction of hydrazine in glycerol-ethanol solution at room temperature or 120-180 Degree-Sign C. Phase purity, morphology, and specific surface area have been characterized. The reactions probably undergo three different mechanisms: simple reduction for Ag and Pd, coordination-then-reduction for Cu and Ni, and hydrolysis-then-reduction for Bi. The reductant hydrazine also plays an important role to the formation of the porous submicro-structure. The reaction temperature influences the size of the constituent particles and the overall architecture of the submicro-structure so as to influence the surface area value. The as-prepared porous metals have shown the second largest surface area ever reported, which are smaller than those made by the reduction of NaBH{sub 4}, but larger than those made by hard or soft template methods. - Graphical abstract: Porous submicro-structures of Ag, Pd, Cu, Ni, and Bi with high surface area have been prepared by the reduction of hydrazine in the glycerol-ethanol solution at room temperature or 120-180 Degree-Sign C. The reactions undergo different mechanisms: simple reduction for Ag and Pd, coordination-then-reduction for Cu and Ni, and hydrolysis-then-reduction for Bi. Highlights: Black-Right-Pointing-Pointer Syntheses of porous Ag, Pd, Cu, Ni, and Bi with high surface area. Black-Right-Pointing-Pointer Ag and Pd undergo simple reduction. Black-Right-Pointing-Pointer Cu and Ni undergo coordination-then-reduction. Black-Right-Pointing-Pointer Bi undergoes hydrolysis-then-reduction. Black-Right-Pointing-Pointer The as-prepared metals have shown the second largest surface area ever reported.

  20. Usefulness of metal artifact reduction with WARP technique at 1.5 and 3T MRI in imaging metal-on-metal hip resurfacings

    Energy Technology Data Exchange (ETDEWEB)

    Lazik, Andrea; Lauenstein, Thomas C.; Theysohn, Jens M. [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Landgraeber, Stefan; Schulte, Patrick [University Hospital Essen, Department of Orthopedics, Essen (Germany); Kraff, Oliver [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany)

    2015-03-25

    To evaluate the usefulness of the metal artifact reduction technique ''WARP'' in the assessment of metal-on-metal hip resurfacings at 1.5 and 3T in the context of image quality and imaging speed. Nineteen patients (25 hip resurfacings) were randomized for 1.5 and 3T MRI, both including T1 and T2 turbo spin-echo as well as turbo inversion recovery magnitude sequences with and without view angle tilting and high bandwidth. Additional 3T sequences were acquired with a reduced number of averages and using the parallel acquisition technique for accelerating imaging speed. Artifact size (diameter, area), image quality (5-point scale) and delineation of anatomical structures were compared among the techniques, sequences and field strengths using the Wilcoxon sign-rank and paired t-test with Bonferroni correction. At both field strengths, WARP showed significant superiority over standard sequences regarding image quality, artifact size and delineation of anatomical structures. At 3T, artifacts were larger compared to 1.5T without affecting diagnostic quality, and scanning time could be reduced by up to 64 % without quality degradation. WARP proved useful in imaging metal-on-metal hip resurfacings at 1.5T as well as 3T with better image quality surrounding the implants. At 3T imaging could be considerably accelerated without losing diagnostic quality. (orig.)

  1. Usefulness of metal artifact reduction with WARP technique at 1.5 and 3T MRI in imaging metal-on-metal hip resurfacings

    International Nuclear Information System (INIS)

    Lazik, Andrea; Lauenstein, Thomas C.; Theysohn, Jens M.; Landgraeber, Stefan; Schulte, Patrick; Kraff, Oliver

    2015-01-01

    To evaluate the usefulness of the metal artifact reduction technique ''WARP'' in the assessment of metal-on-metal hip resurfacings at 1.5 and 3T in the context of image quality and imaging speed. Nineteen patients (25 hip resurfacings) were randomized for 1.5 and 3T MRI, both including T1 and T2 turbo spin-echo as well as turbo inversion recovery magnitude sequences with and without view angle tilting and high bandwidth. Additional 3T sequences were acquired with a reduced number of averages and using the parallel acquisition technique for accelerating imaging speed. Artifact size (diameter, area), image quality (5-point scale) and delineation of anatomical structures were compared among the techniques, sequences and field strengths using the Wilcoxon sign-rank and paired t-test with Bonferroni correction. At both field strengths, WARP showed significant superiority over standard sequences regarding image quality, artifact size and delineation of anatomical structures. At 3T, artifacts were larger compared to 1.5T without affecting diagnostic quality, and scanning time could be reduced by up to 64 % without quality degradation. WARP proved useful in imaging metal-on-metal hip resurfacings at 1.5T as well as 3T with better image quality surrounding the implants. At 3T imaging could be considerably accelerated without losing diagnostic quality. (orig.)

  2. Metallic Muscles at Work : High Rate Actuation in Nanoporous Gold/Polyaniline Composites

    NARCIS (Netherlands)

    Detsi, Eric; Onck, Patrick; De Hosson, Jeff Th. M.

    Metallic muscles made of nanoporous metals suffer from serious drawbacks caused by the usage of an aqueous electrolyte for actuation. An aqueous electrolyte prohibits metallic muscles from operating in dry environments and hampers a high actuation rate due to the low ionic conductivity of

  3. Greek “red mud” residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Samouhos, Michail, E-mail: msamouhos@metal.ntua.gr [School of Mining and Metallurgical Engineering, Laboratory of Metallurgy, National Technical University of Athens, 9, Iroon Polytechniou Street, 157 80 Zografou, Athens (Greece); Taxiarchou, Maria; Tsakiridis, Petros E. [School of Mining and Metallurgical Engineering, Laboratory of Metallurgy, National Technical University of Athens, 9, Iroon Polytechniou Street, 157 80 Zografou, Athens (Greece); Potiriadis, Konstantinos [Greek Atomic Energy Commission (GAEC), Patriarxou Grigoriou and Neapoleos, P.O. Box 60092, 15310 Agia Paraskevi, Athens (Greece)

    2013-06-15

    Highlights: • Microwave reduction of a red mud. •Measurement of real and imaginary permittivity of red mud–lignite mixture. •Red mud was subjected to reductive roasting and magnetic separation processes. •The optimum concentrate contains 31.6% iron with a 69.3% metallization degree. •{sup 226}Ra, {sup 228}Ra, {sup 238}U, {sup 228}Th, {sup 232}Th, {sup 40}K were detected in the magnetic concentrate. -- Abstract: The present research work is focused on the development of an alternative microwave reductive roasting process of red mud using lignite (30.15 wt.% C{sub fix}), followed by wet magnetic separation, in order to produce a raw material suitable for sponge or cast iron production. The reduction degree of iron was controlled by both the reductive agent content and the microwave heating time. The reduction followed the Fe{sub 2}O{sub 3} → Fe{sub 3}O{sub 4} → FeO → Fe sequence. The dielectric constants [real (ε′) and imaginary (ε″) permittivities] of red mud–lignite mixture were determined at 2.45 GHz, in the temperature range of 25–1100 °C. The effect of parameters such as temperature, intensity of reducing conditions, intensity of magnetic field and dispersing agent addition rate on the result of both processes was investigated. The phase's transformations in reduction process with microwave heating were determined by X-ray diffraction analysis (XRD) in combination with thermogravimetric/differential thermal analysis (TGA/DTA). The microstructural and morphological characterization of the produced calcines was carried out by scanning electron microscopy (SEM). At the optimum conditions a magnetic concentrate with total iron concentration of 35.15 and 69.3 wt.% metallization degree was obtained.

  4. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction

    DEFF Research Database (Denmark)

    Bagger, Alexander; Ju, Wen; Varela, Ana Sofia

    2017-01-01

    Currently, no catalysts are completely selective for the electrochemical CO2 Reduction Reaction (CO2RR). Based on trends in density functional theory calculations of reaction intermediates we find that the single metal site in a porphyrine-like structure has a simple advantage of limiting...... the competing Hydrogen Evolution Reaction (HER). The single metal site in a porphyrine-like structure requires an ontop site binding of hydrogen, compared to the hollow site binding of hydrogen on a metal catalyst surface. The difference in binding site structure gives a fundamental energy-shift in the scaling...... relation of ∼0.3eV between the COOH* vs. H* intermediate (CO2RR vs. HER). As a result, porphyrine-like catalysts have the advantage over metal catalyst of suppressing HER and enhancing CO2RR selectivity....

  5. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC

    International Nuclear Information System (INIS)

    Fritz, Jan; Thawait, Gaurav K.; Fritz, Benjamin; Raithel, Esther; Nittka, Mathias; Gilson, Wesley D.; Mont, Michael A.

    2016-01-01

    Compressed sensing (CS) acceleration has been theorized for slice encoding for metal artifact correction (SEMAC), but has not been shown to be feasible. Therefore, we tested the hypothesis that CS-SEMAC is feasible for MRI of metal-on-metal hip resurfacing implants. Following prospective institutional review board approval, 22 subjects with metal-on-metal hip resurfacing implants underwent 1.5 T MRI. We compared CS-SEMAC prototype, high-bandwidth TSE, and SEMAC sequences with acquisition times of 4-5, 4-5 and 10-12 min, respectively. Outcome measures included bone-implant interfaces, image quality, periprosthetic structures, artifact size, and signal- and contrast-to-noise ratios (SNR and CNR). Using Friedman, repeated measures analysis of variances, and Cohen's weighted kappa tests, Bonferroni-corrected p-values of 0.005 and less were considered statistically significant. There was no statistical difference of outcomes measures of SEMAC and CS-SEMAC images. Visibility of implant-bone interfaces and pseudocapsule as well as fat suppression and metal reduction were ''adequate'' to ''good'' on CS-SEMAC and ''non-diagnostic'' to ''adequate'' on high-BW TSE (p < 0.001, respectively). SEMAC and CS-SEMAC showed mild blur and ripple artifacts. The metal artifact size was 63 % larger for high-BW TSE as compared to SEMAC and CS-SEMAC (p < 0.0001, respectively). CNRs were sufficiently high and statistically similar, with the exception of CNR of fluid and muscle and CNR of fluid and tendon, which were higher on intermediate-weighted high-BW TSE (p < 0.005, respectively). Compressed sensing acceleration enables the time-neutral use of SEMAC for MRI of metal-on-metal hip resurfacing implants when compared to high-BW TSE and image quality similar to conventional SEMAC. (orig.)

  6. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Jan; Thawait, Gaurav K. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Section of Musculoskeletal Radiology, Baltimore, MD (United States); Fritz, Benjamin [University of Freiburg, Department of Radiology, Freiburg im Breisgau (Germany); Raithel, Esther; Nittka, Mathias [Siemens Healthcare GmbH, Erlangen (Germany); Gilson, Wesley D. [Siemens Healthcare USA, Inc., Baltimore, MD (United States); Mont, Michael A. [Cleveland Clinic Foundation, Department of Orthopedic Surgery, Cleveland, OH (United States)

    2016-10-15

    Compressed sensing (CS) acceleration has been theorized for slice encoding for metal artifact correction (SEMAC), but has not been shown to be feasible. Therefore, we tested the hypothesis that CS-SEMAC is feasible for MRI of metal-on-metal hip resurfacing implants. Following prospective institutional review board approval, 22 subjects with metal-on-metal hip resurfacing implants underwent 1.5 T MRI. We compared CS-SEMAC prototype, high-bandwidth TSE, and SEMAC sequences with acquisition times of 4-5, 4-5 and 10-12 min, respectively. Outcome measures included bone-implant interfaces, image quality, periprosthetic structures, artifact size, and signal- and contrast-to-noise ratios (SNR and CNR). Using Friedman, repeated measures analysis of variances, and Cohen's weighted kappa tests, Bonferroni-corrected p-values of 0.005 and less were considered statistically significant. There was no statistical difference of outcomes measures of SEMAC and CS-SEMAC images. Visibility of implant-bone interfaces and pseudocapsule as well as fat suppression and metal reduction were ''adequate'' to ''good'' on CS-SEMAC and ''non-diagnostic'' to ''adequate'' on high-BW TSE (p < 0.001, respectively). SEMAC and CS-SEMAC showed mild blur and ripple artifacts. The metal artifact size was 63 % larger for high-BW TSE as compared to SEMAC and CS-SEMAC (p < 0.0001, respectively). CNRs were sufficiently high and statistically similar, with the exception of CNR of fluid and muscle and CNR of fluid and tendon, which were higher on intermediate-weighted high-BW TSE (p < 0.005, respectively). Compressed sensing acceleration enables the time-neutral use of SEMAC for MRI of metal-on-metal hip resurfacing implants when compared to high-BW TSE and image quality similar to conventional SEMAC. (orig.)

  7. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    International Nuclear Information System (INIS)

    Herrmann, S.D.; Li, S.X.

    2010-01-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl - 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  8. Liquid metal coolant flow rate regulation

    International Nuclear Information System (INIS)

    Vitkovskij, I.V.; Glukhikh, V.A.; Kirillov, I.R.; Smirnov, A.M.

    1981-01-01

    Some aspects of fast reactor and experimental bench operation related to liquid metal flow rate regulation are considered. Requirements to the devices for the flow rate regulation are formulated. A new type of these devices namely magnetohydrodynamic (MHD) throttles is described. Structural peculiarities of MHD throttles of different types are described as well. It is noted that the MHD throttles with a screw channel have the best energy mass indices. On the basis of the comparison of the MHD throttles with mechanical valves it is concluded that the MHD throttles described are useful for regulating the flow rates of any working media. Smoothness and accuracy of the flow rate regulation by the throttles are determined by the electric control circuit and may be practically anyone. The total coefficient of hydraulic losses in the throttle channel in the absence of a magnetic field is ten and more times lesser than in completely open mechanical valve. Electromagnetic time constant of the MHD throttles does not exceed several tenths of a second [ru

  9. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration

    International Nuclear Information System (INIS)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-01-01

    Highlights: • The highest metal reduction occurs at a 2.36 mm sieving size. • Washing promotes heavy metal recycling without secondary pollution. • Sieving and washing are environmentally friendly pretreatments for WEEE wastes. - Abstract: Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36 mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36 mm, with preferable conditions being 400 rpm rotation speed, 5 min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling

  10. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Hu, Li-Fang [College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018 (China); Shen, Dong-Sheng, E-mail: shends@zju.edu.cn [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China)

    2014-05-01

    Highlights: • The highest metal reduction occurs at a 2.36 mm sieving size. • Washing promotes heavy metal recycling without secondary pollution. • Sieving and washing are environmentally friendly pretreatments for WEEE wastes. - Abstract: Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36 mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36 mm, with preferable conditions being 400 rpm rotation speed, 5 min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling.

  11. Chemical Reduction of SIM MOX in Molten Lithium Chloride Using Lithium Metal Reductant

    Science.gov (United States)

    Kato, Tetsuya; Usami, Tsuyoshi; Kurata, Masaki; Inoue, Tadashi; Sims, Howard E.; Jenkins, Jan A.

    2007-09-01

    A simulated spent oxide fuel in a sintered pellet form, which contained the twelve elements U, Pu, Am, Np, Cm, Ce, Nd, Sm, Ba, Zr,Mo, and Pd, was reduced with Li metal in a molten LiCl bath at 923 K. More than 90% of U and Pu were reduced to metal to form a porous alloy without significant change in the Pu/U ratio. Small fractions of Pu were also combined with Pd to form stable alloys. In the gap of the porous U-Pu alloy, the aggregation of the rare-earth (RE) oxide was observed. Some amount of the RE elements and the actinoides leached from the pellet. The leaching ratio of Am to the initially loaded amount was only several percent, which was far from about 80% obtained in the previous ones on simple MOX including U, Pu, and Am. The difference suggests that a large part of Am existed in the RE oxide rather than in the U-Pu alloy. The detection of the RE elements and actinoides in the molten LiCl bath seemed to indicate that they dissolved into the molten LiCl bath containing the oxide ion, which is the by-product of the reduction, as solubility of RE elements was measured in the molten LiCl-Li2O previously.

  12. Improved image quality in abdominal CT in patients who underwent treatment for hepatocellular carcinoma with small metal implants using a raw data-based metal artifact reduction algorithm.

    Science.gov (United States)

    Sofue, Keitaro; Yoshikawa, Takeshi; Ohno, Yoshiharu; Negi, Noriyuki; Inokawa, Hiroyasu; Sugihara, Naoki; Sugimura, Kazuro

    2017-07-01

    To determine the value of a raw data-based metal artifact reduction (SEMAR) algorithm for image quality improvement in abdominal CT for patients with small metal implants. Fifty-eight patients with small metal implants (3-15 mm in size) who underwent treatment for hepatocellular carcinoma were imaged with CT. CT data were reconstructed by filtered back projection with and without SEMAR algorithm in axial and coronal planes. To evaluate metal artefact reduction, mean CT number (HU and SD) and artefact index (AI) values within the liver were calculated. Two readers independently evaluated image quality of the liver and pancreas and visualization of vasculature using a 5-point visual score. HU and AI values and image quality on images with and without SEMAR were compared using the paired Student's t-test and Wilcoxon signed rank test. Interobserver agreement was evaluated using linear-weighted κ test. Mean HU and AI on images with SEMAR was significantly lower than those without SEMAR (P small metal implants by reducing metallic artefacts. • SEMAR algorithm significantly reduces metallic artefacts from small implants in abdominal CT. • SEMAR can improve image quality of the liver in dynamic CECT. • Confidence visualization of hepatic vascular anatomies can also be improved by SEMAR.

  13. Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction.

    Science.gov (United States)

    Qian, Huifeng; Zhao, Zhun; Velazquez, Juan C; Pretzer, Lori A; Heck, Kimberly N; Wong, Michael S

    2014-01-07

    Nitrate (NO3(-)) and nitrite (NO2(-)) anions are often found in groundwater and surface water as contaminants globally, especially in agricultural areas due to nitrate-rich fertilizer use. One popular approach to studying the removal of nitrite/nitrate from water has been their degradation to dinitrogen via Pd-based reduction catalysis. However, little progress has been made towards understanding how the catalyst structure can improve activity. Focusing on the catalytic reduction of nitrite in this study, we report that Au NPs supporting Pd metal ("Pd-on-Au NPs") show catalytic activity that varies with volcano-shape dependence on Pd surface coverage. At room temperature, in CO2-buffered water, and under H2 headspace, the NPs were maximally active at a Pd surface coverage of 80%, with a first-order rate constant (k(cat) = 576 L g(Pd)(-1) min(-1)) that was 15x and 7.5x higher than monometallic Pd NPs (~4 nm; 40 L g(Pd)(-1) min(-1)) and Pd/Al2O3 (1 wt% Pd; 76 L g(Pd)(-1) min(-1)), respectively. Accounting only for surface Pd atoms, these NPs (576 L g(surface-Pd)(-1) min(-1)) were 3.6x and 1.6x higher than monometallic Pd NPs (160 L g(surface-Pd)(-1) min(-1)) and Pd/Al2O3 (361 L g(surface-Pd)(-1) min(-1)). These NPs retained ~98% of catalytic activity at a chloride concentration of 1 mM, whereas Pd/Al2O3 lost ~50%. The Pd-on-Au nanostructure is a promising approach to improve the catalytic reduction process for nitrite and, with further development, also for nitrate anions.

  14. Metal and alloy nanoparticles by amine-borane reduction of metal salts by solid-phase synthesis: atom economy and green process.

    Science.gov (United States)

    Sanyal, Udishnu; Jagirdar, Balaji R

    2012-12-03

    A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

  15. Active-alkali metal promoted reductive desulfurization of dibenzothiophene and its hindered analogues

    OpenAIRE

    Pittalis, Mario; Azzena, Ugo Gavino; Carraro, Massimo; Pisano, Luisa

    2013-01-01

    Reductive desulfurisation of organic compounds is of importance both in organic synthesis and in industry. Benzo- and dibenzothiophenes are between the most abundant sulphur containing impurities in crude oils, and their desulfurization is a mandatory issue in the production of non polluting fuels. Following our interest in the development of efficient alkali metal-mediated synthetic procedures and alternative protocols for the chemical transformation of widespread environmental contaminants ...

  16. Chemical Separation of Fission Products in Uranium Metal Ingots from Electrolytic Reduction Process

    International Nuclear Information System (INIS)

    Lee, Chang-Heon; Kim, Min-Jae; Choi, Kwang-Soon; Jee, Kwang-Yong; Kim, Won-Ho

    2006-01-01

    Chemical characterization of various process materials is required for the optimization of the electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. In the uranium metal ingots of interest in this study, residual process materials and corrosion products as well as fission products are involved to some extent, which further adds difficulties to the determination of trace fission products. Besides it, direct inductively coupled plasma atomic emission spectrometric (ICP-AES) analysis of uranium bearing materials such as the uranium metal ingots is not possible because a severe spectral interference is found in the intensely complex atomic emission spectra of uranium. Thus an adequate separation procedure for the fission products should be employed prior to their determinations. In present study ion exchange and extraction chromatographic methods were adopted for selective separation of the fission products from residual process materials, corrosion products and uranium matrix. The sorption behaviour of anion and tri-nbutylphosphate (TBP) extraction chromatographic resins for the metals in acidic solutions simulated for the uranium metal ingot solutions was investigated. Then the validity of the separation procedure for its reliability and applicability was evaluated by measuring recoveries of the metals added

  17. Clinical Evaluation of Normalized Metal Artifact Reduction in kVCT Using MVCT Prior Images (MVCT-NMAR) for Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Paudel, Moti Raj, E-mail: mpaudel@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Mackenzie, Marc [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Fallone, B. Gino [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Physics, University of Alberta, Edmonton, AB (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada); Rathee, Satyapal [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada)

    2014-07-01

    Purpose: To evaluate the metal artifacts in diagnostic kilovoltage computed tomography (kVCT) images of patients that are corrected by use of a normalized metal artifact reduction (NMAR) method with megavoltage CT (MVCT) prior images: MVCT-NMAR. Methods and Materials: MVCT-NMAR was applied to images from 5 patients: 3 with dual hip prostheses, 1 with a single hip prosthesis, and 1 with dental fillings. The corrected images were evaluated for visualization of tissue structures and their interfaces and for radiation therapy dose calculations. They were compared against the corresponding images corrected by the commercial orthopedic metal artifact reduction algorithm in a Phillips CT scanner. Results: The use of MVCT images for correcting kVCT images in the MVCT-NMAR technique greatly reduces metal artifacts, avoids secondary artifacts, and makes patient images more useful for correct dose calculation in radiation therapy. These improvements are significant, provided the MVCT and kVCT images are correctly registered. The remaining and the secondary artifacts (soft tissue blurring, eroded bones, false bones or air pockets, CT number cupping within the metal) present in orthopedic metal artifact reduction corrected images are removed in the MVCT-NMAR corrected images. A large dose reduction was possible outside the planning target volume (eg, 59.2 Gy to 52.5 Gy in pubic bone) when these MVCT-NMAR corrected images were used in TomoTherapy treatment plans without directional blocks for a prostate cancer patient. Conclusions: The use of MVCT-NMAR corrected images in radiation therapy treatment planning could improve the treatment plan quality for patients with metallic implants.

  18. Reduction of methanol crossover by thin cracked metal barriers at the interface between membrane and electrode in direct methanol fuel cells

    Science.gov (United States)

    Kim, Sungjun; Jang, Segeun; Kim, Sang Moon; Ahn, Chi-Yeong; Hwang, Wonchan; Cho, Yong-Hun; Sung, Yung-Eun; Choi, Mansoo

    2017-09-01

    This work reports the successful reduction in methanol crossover by creating a thin cracked metal barrier at the interface between a Nafion® membrane and an electrode in direct methanol fuel cells (DMFCs). The cracks are generated by simple mechanical stretching of a metal deposited Nafion® membrane as a result of the elastic mismatch between the two attached surfaces. The cracked metal barriers with varying strains (∼0.5 and ∼1.0) are investigated and successfully incorporated into the DMFC. Remarkably, the membrane electrode assembly with the thin metal crack exhibits comparable ohmic resistance as well as reduction of methanol crossover, which enhanced the device performance.

  19. Sizing and melting development activities using noncontaminated metal at the Waste Experimental Reduction Facility

    International Nuclear Information System (INIS)

    Larsen, M.M.; Logan, J.A.

    1984-05-01

    EG and G Idaho, Inc., has established the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering Laboratory (INEL) to develop the capability to reduce the volume that low-level beta/gamma wastes occupy at the disposal site. The work effort at WERF includes a waste sizing development activity (WSDA), a waste melting development activity (WMDA), and a waste incineration development activity (WIDA). This report describes work and developments to date in the WSDA and WMDA with noncontaminated metallic waste in preparation for operations at WERF involving beta/gamma-contaminated metal

  20. 40 CFR 211.207 - Computation of the noise -reduction rating (NRR).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Computation of the noise -reduction... of the noise -reduction rating (NRR). Calculate the NRR for hearing protective devices by... “A”-weighting relative response corrections applied to any sound levels at the indicated octave band...

  1. Thermodynamic driving force effects in the oxygen reduction catalyzed by a metal-free porphyrin

    Czech Academy of Sciences Publication Activity Database

    Trojánek, Antonín; Langmaier, Jan; Samec, Zdeněk

    2012-01-01

    Roč. 82, SI (2012), s. 457-462 ISSN 0013-4686 R&D Projects: GA ČR GAP208/11/0697 Institutional research plan: CEZ:AV0Z40400503 Keywords : oxygen reduction * metal-free porphyrin * electrocatalysis Subject RIV: CG - Electrochemistry Impact factor: 3.777, year: 2012

  2. Improving image quality for digital breast tomosynthesis: an automated detection and diffusion-based method for metal artifact reduction

    Science.gov (United States)

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir M.; Samala, Ravi K.

    2017-10-01

    In digital breast tomosynthesis (DBT), the high-attenuation metallic clips marking a previous biopsy site in the breast cause errors in the estimation of attenuation along the ray paths intersecting the markers during reconstruction, which result in interplane and inplane artifacts obscuring the visibility of subtle lesions. We proposed a new metal artifact reduction (MAR) method to improve image quality. Our method uses automatic detection and segmentation to generate a marker location map for each projection (PV). A voting technique based on the geometric correlation among different PVs is designed to reduce false positives (FPs) and to label the pixels on the PVs and the voxels in the imaged volume that represent the location and shape of the markers. An iterative diffusion method replaces the labeled pixels on the PVs with estimated tissue intensity from the neighboring regions while preserving the original pixel values in the neighboring regions. The inpainted PVs are then used for DBT reconstruction. The markers are repainted on the reconstructed DBT slices for radiologists’ information. The MAR method is independent of reconstruction techniques or acquisition geometry. For the training set, the method achieved 100% success rate with one FP in 19 views. For the test set, the success rate by view was 97.2% for core biopsy microclips and 66.7% for clusters of large post-lumpectomy markers with a total of 10 FPs in 58 views. All FPs were large dense benign calcifications that also generated artifacts if they were not corrected by MAR. For the views with successful detection, the metal artifacts were reduced to a level that was not visually apparent in the reconstructed slices. The visibility of breast lesions obscured by the reconstruction artifacts from the metallic markers was restored.

  3. Prototype metal artefact reduction algorithm in flat panel computed tomography - evaluation in patients undergoing transarterial hepatic radioembolisation

    International Nuclear Information System (INIS)

    Hamie, Qeumars Mustafa; Kobe, Adrian Raoul; Mietzsch, Leif; Puippe, Gilbert Dominique; Pfammatter, Thomas; Guggenberger, Roman; Manhart, Michael

    2018-01-01

    To investigate the effect of an on-site prototype metal artefact reduction (MAR) algorithm in cone-beam CT-catheter-arteriography (CBCT-CA) in patients undergoing transarterial radioembolisation (RE) of hepatic masses. Ethical board approved retrospective study of 29 patients (mean 63.7±13.7 years, 11 female), including 16 patients with arterial metallic coils, undergoing CBCT-CA (8s scan, 200 degrees rotation, 397 projections). Image reconstructions with and without prototype MAR algorithm were evaluated quantitatively (streak-artefact attenuation changes) and qualitatively (visibility of hepatic parenchyma and vessels) in near- (<1cm) and far-field (>3cm) of artefact sources (metallic coils and catheters). Quantitative and qualitative measurements of uncorrected and MAR corrected images and different artefact sources were compared Quantitative evaluation showed significant reduction of near- and far-field streak-artefacts with MAR for both artefact sources (p<0.001), while remaining stable for unaffected organs (all p>0.05). Inhomogeneities of attenuation values were significantly higher for metallic coils compared to catheters (p<0.001) and decreased significantly for both after MAR (p<0.001). Qualitative image scores were significantly improved after MAR (all p<0.003) with by trend higher artefact degrees for metallic coils compared to catheters. In patients undergoing CBCT-CA for transarterial RE, prototype MAR algorithm improves image quality in proximity of metallic coil and catheter artefacts. (orig.)

  4. Prototype metal artefact reduction algorithm in flat panel computed tomography - evaluation in patients undergoing transarterial hepatic radioembolisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamie, Qeumars Mustafa; Kobe, Adrian Raoul; Mietzsch, Leif; Puippe, Gilbert Dominique; Pfammatter, Thomas; Guggenberger, Roman [University Hospital Zurich, Department of Radiology, Zurich (Switzerland); Manhart, Michael [Imaging Concepts, HC AT IN IMC, Siemens Healthcare GmbH, Advanced Therapies, Innovation, Forchheim (Germany)

    2018-01-15

    To investigate the effect of an on-site prototype metal artefact reduction (MAR) algorithm in cone-beam CT-catheter-arteriography (CBCT-CA) in patients undergoing transarterial radioembolisation (RE) of hepatic masses. Ethical board approved retrospective study of 29 patients (mean 63.7±13.7 years, 11 female), including 16 patients with arterial metallic coils, undergoing CBCT-CA (8s scan, 200 degrees rotation, 397 projections). Image reconstructions with and without prototype MAR algorithm were evaluated quantitatively (streak-artefact attenuation changes) and qualitatively (visibility of hepatic parenchyma and vessels) in near- (<1cm) and far-field (>3cm) of artefact sources (metallic coils and catheters). Quantitative and qualitative measurements of uncorrected and MAR corrected images and different artefact sources were compared Quantitative evaluation showed significant reduction of near- and far-field streak-artefacts with MAR for both artefact sources (p<0.001), while remaining stable for unaffected organs (all p>0.05). Inhomogeneities of attenuation values were significantly higher for metallic coils compared to catheters (p<0.001) and decreased significantly for both after MAR (p<0.001). Qualitative image scores were significantly improved after MAR (all p<0.003) with by trend higher artefact degrees for metallic coils compared to catheters. In patients undergoing CBCT-CA for transarterial RE, prototype MAR algorithm improves image quality in proximity of metallic coil and catheter artefacts. (orig.)

  5. Computational simulation studies of the reduction process of UF4 to metallic uranium

    International Nuclear Information System (INIS)

    Borges, Wesden de Almeida

    2011-01-01

    The production of metallic uranium is essential for production of fuel elements for using in nuclear reactors manufacturing of radioisotopes and radiopharmaceuticals. In IPEN, metallic uranium is produced by magnesiothermical reduction of UF 4 . This reaction is performed in a closed graphite crucible inserted in a sealed metal reactor and no contact with the outside environment. The set is gradually heated in an oven pit, until it reaches the ignition temperature of the reaction (between 600-650 degree C). The modeling of the heating profile of the system can be made using simulation programs by finite element method. Through the thermal profiles in the load, we can have a notion of heating period required for the reaction to occur, allowing the identification of the same group in a greater or smaller yield in metallic uranium production. Thermal properties of UF 4 are estimated, obtaining thermal conductivity and heat capacity using the Flash Laser Method, and for the load UF 4 + Mg, either. The results are compared to laboratory tests to simulate the primary production process. (author)

  6. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles.

    Science.gov (United States)

    Kim, Eun-Ju; Kim, Jae-Hwan; Chang, Yoon-Seok; Turcio-Ortega, David; Tratnyek, Paul G

    2014-04-01

    Nano-zerovalent iron (nZVI) formed under sulfidic conditions results in a biphasic material (Fe/FeS) that reduces trichloroethene (TCE) more rapidly than nZVI associated only with iron oxides (Fe/FeO). Exposing Fe/FeS to dissolved metals (Pd(2+), Cu(2+), Ni(2+), Co(2+), and Mn(2+)) results in their sequestration by coprecipitation as dopants into FeS and FeO and/or by electroless precipitation as zerovalent metals that are hydrogenation catalysts. Using TCE reduction rates to probe the effect of metal amendments on the reactivity of Fe/FeS, it was found that Mn(2+) and Cu(2+) decreased TCE reduction rates, while Pd(2+), Co(2+), and Ni(2+) increased them. Electrochemical characterization of metal-amended Fe/FeS showed that aging caused passivation by growth of FeO and FeS phases and poisoning of catalytic metal deposits by sulfide. Correlation of rate constants for TCE reduction (kobs) with electrochemical parameters (corrosion potentials and currents, Tafel slopes, and polarization resistance) and descriptors of hydrogen activation by metals (exchange current density for hydrogen reduction and enthalpy of solution into metals) showed the controlling process changed with aging. For fresh Fe/FeS, kobs was best described by the exchange current density for activation of hydrogen, whereas kobs for aged Fe/FeS correlated with electrochemical descriptors of electron transfer.

  7. Improved image quality in abdominal CT in patients who underwent treatment for hepatocellular carcinoma with small metal implants using a raw data-based metal artifact reduction algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sofue, Keitaro; Sugimura, Kazuro [Kobe University Graduate School of Medicine, Department of Radiology, Kobe, Hyogo (Japan); Yoshikawa, Takeshi; Ohno, Yoshiharu [Kobe University Graduate School of Medicine, Advanced Biomedical Imaging Research Center, Kobe, Hyogo (Japan); Kobe University Graduate School of Medicine, Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe, Hyogo (Japan); Negi, Noriyuki [Kobe University Hospital, Division of Radiology, Kobe, Hyogo (Japan); Inokawa, Hiroyasu; Sugihara, Naoki [Toshiba Medical Systems Corporation, Otawara, Tochigi (Japan)

    2017-07-15

    To determine the value of a raw data-based metal artifact reduction (SEMAR) algorithm for image quality improvement in abdominal CT for patients with small metal implants. Fifty-eight patients with small metal implants (3-15 mm in size) who underwent treatment for hepatocellular carcinoma were imaged with CT. CT data were reconstructed by filtered back projection with and without SEMAR algorithm in axial and coronal planes. To evaluate metal artefact reduction, mean CT number (HU and SD) and artefact index (AI) values within the liver were calculated. Two readers independently evaluated image quality of the liver and pancreas and visualization of vasculature using a 5-point visual score. HU and AI values and image quality on images with and without SEMAR were compared using the paired Student's t-test and Wilcoxon signed rank test. Interobserver agreement was evaluated using linear-weighted κ test. Mean HU and AI on images with SEMAR was significantly lower than those without SEMAR (P < 0.0001). Liver and pancreas image qualities and visualizations of vasculature were significantly improved on CT with SEMAR (P < 0.0001) with substantial or almost perfect agreement (0.62 ≤ κ ≤ 0.83). SEMAR can improve image quality in abdominal CT in patients with small metal implants by reducing metallic artefacts. (orig.)

  8. Improved image quality in abdominal CT in patients who underwent treatment for hepatocellular carcinoma with small metal implants using a raw data-based metal artifact reduction algorithm

    International Nuclear Information System (INIS)

    Sofue, Keitaro; Sugimura, Kazuro; Yoshikawa, Takeshi; Ohno, Yoshiharu; Negi, Noriyuki; Inokawa, Hiroyasu; Sugihara, Naoki

    2017-01-01

    To determine the value of a raw data-based metal artifact reduction (SEMAR) algorithm for image quality improvement in abdominal CT for patients with small metal implants. Fifty-eight patients with small metal implants (3-15 mm in size) who underwent treatment for hepatocellular carcinoma were imaged with CT. CT data were reconstructed by filtered back projection with and without SEMAR algorithm in axial and coronal planes. To evaluate metal artefact reduction, mean CT number (HU and SD) and artefact index (AI) values within the liver were calculated. Two readers independently evaluated image quality of the liver and pancreas and visualization of vasculature using a 5-point visual score. HU and AI values and image quality on images with and without SEMAR were compared using the paired Student's t-test and Wilcoxon signed rank test. Interobserver agreement was evaluated using linear-weighted κ test. Mean HU and AI on images with SEMAR was significantly lower than those without SEMAR (P < 0.0001). Liver and pancreas image qualities and visualizations of vasculature were significantly improved on CT with SEMAR (P < 0.0001) with substantial or almost perfect agreement (0.62 ≤ κ ≤ 0.83). SEMAR can improve image quality in abdominal CT in patients with small metal implants by reducing metallic artefacts. (orig.)

  9. Iterative metal artifact reduction for x-ray computed tomography using unmatched projector/backprojector pairs

    International Nuclear Information System (INIS)

    Zhang, Hanming; Wang, Linyuan; Li, Lei; Cai, Ailong; Hu, Guoen; Yan, Bin

    2016-01-01

    Purpose: Metal artifact reduction (MAR) is a major problem and a challenging issue in x-ray computed tomography (CT) examinations. Iterative reconstruction from sinograms unaffected by metals shows promising potential in detail recovery. This reconstruction has been the subject of much research in recent years. However, conventional iterative reconstruction methods easily introduce new artifacts around metal implants because of incomplete data reconstruction and inconsistencies in practical data acquisition. Hence, this work aims at developing a method to suppress newly introduced artifacts and improve the image quality around metal implants for the iterative MAR scheme. Methods: The proposed method consists of two steps based on the general iterative MAR framework. An uncorrected image is initially reconstructed, and the corresponding metal trace is obtained. The iterative reconstruction method is then used to reconstruct images from the unaffected sinogram. In the reconstruction step of this work, an iterative strategy utilizing unmatched projector/backprojector pairs is used. A ramp filter is introduced into the back-projection procedure to restrain the inconsistency components in low frequencies and generate more reliable images of the regions around metals. Furthermore, a constrained total variation (TV) minimization model is also incorporated to enhance efficiency. The proposed strategy is implemented based on an iterative FBP and an alternating direction minimization (ADM) scheme, respectively. The developed algorithms are referred to as “iFBP-TV” and “TV-FADM,” respectively. Two projection-completion-based MAR methods and three iterative MAR methods are performed simultaneously for comparison. Results: The proposed method performs reasonably on both simulation and real CT-scanned datasets. This approach could reduce streak metal artifacts effectively and avoid the mentioned effects in the vicinity of the metals. The improvements are evaluated by

  10. Are high rates of sulphate reduction associated with anaerobic oxidation of methane

    Energy Technology Data Exchange (ETDEWEB)

    Devol, A H; Ahmed, S I

    1981-01-01

    Classical models of sulphur diagenesis in marine sediments are based on the assumption that the rate of sulphate reduction is first order with respect to oxidizable particulate organic carbon (POC). This assumption requires that oxidizable POC, sulphate concentration and the sulphate reduction rate be highest at the top of the sulphate reduction zone and decrease exponentially with increasing sediment depth. However, to explain recent observations of concave upwards methane distributions, the anaerobic consumption of methane has been proposed. Furthermore, it has been proposed that this consumption takes place near the bottom of the sulphate reducing zone where sulphate concentrations are low. Thus, if sulphate reducing bacteria are associated with the anaerobic oxidation of methane, a peak in sulphate reduction rate might be expected in this deep consumption zone. The importance of the process in sedimentary sulphur diagenesis is indicated by calculations estimating that 30 to 75% of the downward sulphate flux at depth may be consumed by methane oxidation within this zone. We present here profiles of sulphate reduction rate in anoxic sediments that show distinct local maxima at the depth where the anaerobic oxidation of methane would be expected. Our measurements were made during July and August 1978 in Saanich Inlet, an anoxic fjord located on the south-east of Vancouver Island, British Columbia. The inlet has a shallow sill (approx 70 m) which restricts circulation of the deeper water (maximum depth 225 m) inside the basin to the extent that for about 8 months of the year the bottom waters contain hydrogen sulphide, the inlet is an ideal location for studying sedimentary sulphate reduction because reactions with oxygen and the effects of burrowing organisms can be neglected.

  11. Isotopic exchange rate of sodium ions between hydrous metal oxides and aqueous solutions

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamazaki, Hiromichi

    1991-01-01

    To elucidate the kinetics of ion-exchange reaction on hydrous metal oxide, the isotopic exchange rates of sodium ions between hydrous metal oxides such as hydrous tin (IV), niobium (V), zirconium (IV) and titanium (IV) oxides, and aqueous solutions were measured radiochemically and compared with each other. The rate of reaction cannot be understood by an unified view since the rate controlling step differs with the kind of exchangers. The rate constants relevant to each exchanger such as diffusion constants and their activation energies were also determined. (author)

  12. Metal artefact reduction for a dental cone beam CT image using image segmentation and backprojection filters

    International Nuclear Information System (INIS)

    Mohammadi, Mahdi; Khotanlou, Hassan; Mohammadi, Mohammad

    2011-01-01

    Full text: Due to low dose delivery and fast scanning, the dental Cone Beam CT (CBCT) is the latest technology being implanted for a range of dental imaging. The presence of metallic objects including amalgam or gold fillings in the mouth produces an intuitive image for human jaws. The feasibility of a fast and accurate approach for metal artefact reduction for dental CBCT is investigated. The current study investigates the metal artefact reduction using image segmentation and modification of several sinigrams. In order to reduce metal effects such as beam hardening, streak artefact and intense noises, the application of several algorithms is evaluated. The proposed method includes three stages: preprocessing, reconstruction and post-processing. In the pre-processing stage, in order to reduce the noise level, several phase and frequency filters were applied. At the second stage, based on the specific sinogram achieved for each segment, spline interpolation and weighting backprojection filters were applied to reconstruct the original image. A three-dimensional filter was then applied on reconstructed images, to improve the image quality. Results showed that compared to other available filters, standard frequency filters have a significant influence in the preprocessing stage (ΔHU = 48 ± 6). In addition, with the streak artefact, the probability of beam hardening artefact increases. t e post-processing stage, the application of three-dimensional filters improves the quality of reconstructed images (See Fig. I). Conclusion The proposed method reduces metal artefacts especially where there are more than one metal implanted in the region of interest.

  13. Reoxidation of uranium metal immersed in a Li{sub 2}O-LiCl molten salt after electrolytic reduction of uranium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Jeon, Min Ku [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Jeong [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Lee, Sang Kwon [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Sung-Jai [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-03-15

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO{sub 2}) in a Li{sub 2}O–LiCl salt can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li{sub 2}O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li{sub 2}O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal. - Highlights: • Uranium (U) metal can be reoxidized into UO{sub 2} through the reaction between the U metal and Li{sub 2}O in LiCl. • The degree of reoxidation increases with the Li{sub 2}O concentration in LiCl. • The presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  14. Defect production rates by electrons, ions and neutrons in cubic metals

    International Nuclear Information System (INIS)

    Jung, P.; Nielsen, B.R.; Andersen, H.H.

    1982-01-01

    The results of an interlaboratory program to study low temperature damage rates in dilute alloys of 300 ppM Zr in vanadium, niobium and molybdenum with electrons, light ions, fission neutrons and high energy neutrons are summarized. Additional experiments and literature data supplied complete sets of data also for the fcc metals Al, Cu and Pt. From the initial damage rates, displacement functions for each material were derived which give the number of stable defects produced by a recoil event of a certain knock-on energy. The low and high energy part of the displacement function was determined from the results of the electron and neutron irradiations, respectively, while the light ion data supplied information on the intermediate energy range. The displacement function allows the reliable calculation of atomic displacement rates also for particles and/or energies not employed in this program. For all metals the displacement rates for high energy neutrons scaled reasonably with the minimum displacement energies. This allows to estimate neutron damage rates also for those cubic metals where no high energy neutron results are available. For stainless steel, e.g., an average displacement energy of about 120 eV is deduced. The results are suggested to find practical use in defect calculations for fusion reactor first wall technology and in correlating the corresponding simulation experiments

  15. High Rate Plastic Deformation and Failure of Tungsten-Sintered Metals

    National Research Council Canada - National Science Library

    Bjerke, Todd

    2004-01-01

    The competition between plastic deformation and brittle fracture during high rate loading of a tungsten-sintered metal is examined through impact experiments, post-experiment microscopy, and numerical simulation...

  16. Microbial metal reduction by members of the genus Shewanella: novel strategies for anaerobic respiration

    International Nuclear Information System (INIS)

    Dichristina, Thomas; Bates, David J.; Burns, Justin L.; Dale, Jason R.; Payne, Amanda N.

    2006-01-01

    Metal-reducing members of the genus Shewanella are important components of the microbial community residing in redox-stratified freshwater and marine environments. Metal-reducing gram-negative bacteria such as Shewanella, however, are presented with a unique physiological challenge: they are required to respire anaerobically on terminal electron acceptors which are either highly insoluble (Fe(III)- and Mn(IV)-oxides) and reduced to soluble end-products or highly soluble (U(VI) and Tc(VII)) and reduced to insoluble end-products. To overcome physiological problems associated with metal solubility, metal-respiring Shewanella are postulated to employ a variety of novel respiratory strategies not found in other gram-negative bacteria which respire on soluble electron acceptors such as O2, NO3 and SO4. The following chapter highlights the latest findings on the molecular mechanism of Fe(III), U(VI) and Tc(VII) reduction by Shewanella, with particular emphasis on electron transport chain physiology.

  17. Perchlorate reduction during electrochemically induced pitting corrosion of zero-valent titanium (ZVT)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chunwoo, E-mail: clee@doosanhydro.com [Department of Research and Development, Doosan Hydro Technology, Inc, Tampa, FL 33619 (United States); Batchelor, Bill [Zachry Department of Civil Engineering, Texas A and M University, College Station, TX 77840 (United States); Park, Sung Hyuk [Environmental and Engineering Research Team, GS Engineering and Construction Research Institute, Youngin, Kyunggi-do 449-831 (Korea, Republic of); Han, Dong Suk; Abdel-Wahab, Ahmed [Chemical Engineering Program, Texas A and M University at Qatar, Education City, Doha, PO Box 23874 (Qatar); Kramer, Timothy A.

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. Black-Right-Pointing-Pointer Perchlorate is effectively reduced to chloride by soluble titanium species. Black-Right-Pointing-Pointer Solution pH and surface area of ZVT showed negligible effects on rates of perchlorate reduction. - Abstract: Zero-valent metals and ionic metal species are a popular reagent for the abatement of contaminants in drinking water and groundwater and perchlorate is a contaminant of increasing concern. However, perchlorate degradation using commonly used reductants such as zero-valent metals and soluble reduced metal species is kinetically limited. Titanium in the zero-valent and soluble states has a high thermodynamic potential to reduce perchlorate. Here we show that perchlorate is effectively reduced to chloride by soluble titanium species in a system where the surface oxide film is removed from ZVT and ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. The pitting potential of ZVT was measured as 12.77 {+-} 0.04 V (SHE) for a 100 mM solution of perchlorate. The rate of perchlorate reduction was independent of the imposed potential as long as the potential was maintained above the pitting potential, but it was proportional to the applied current. Solution pH and surface area of ZVT electrodes showed negligible effects on rates of perchlorate reduction. Although perchlorate is effectively reduced during electrochemically induced corrosion of ZVT, this process may not be immediately applicable to perchlorate treatment due to the high potentials needed to produce active reductants, the amount of titanium consumed, the inhibition of perchlorate removal by chloride, and oxidation of chloride to chlorine.

  18. Perchlorate reduction during electrochemically induced pitting corrosion of zero-valent titanium (ZVT)

    International Nuclear Information System (INIS)

    Lee, Chunwoo; Batchelor, Bill; Park, Sung Hyuk; Han, Dong Suk; Abdel-Wahab, Ahmed; Kramer, Timothy A.

    2011-01-01

    Highlights: ► ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. ► Perchlorate is effectively reduced to chloride by soluble titanium species. ► Solution pH and surface area of ZVT showed negligible effects on rates of perchlorate reduction. - Abstract: Zero-valent metals and ionic metal species are a popular reagent for the abatement of contaminants in drinking water and groundwater and perchlorate is a contaminant of increasing concern. However, perchlorate degradation using commonly used reductants such as zero-valent metals and soluble reduced metal species is kinetically limited. Titanium in the zero-valent and soluble states has a high thermodynamic potential to reduce perchlorate. Here we show that perchlorate is effectively reduced to chloride by soluble titanium species in a system where the surface oxide film is removed from ZVT and ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. The pitting potential of ZVT was measured as 12.77 ± 0.04 V (SHE) for a 100 mM solution of perchlorate. The rate of perchlorate reduction was independent of the imposed potential as long as the potential was maintained above the pitting potential, but it was proportional to the applied current. Solution pH and surface area of ZVT electrodes showed negligible effects on rates of perchlorate reduction. Although perchlorate is effectively reduced during electrochemically induced corrosion of ZVT, this process may not be immediately applicable to perchlorate treatment due to the high potentials needed to produce active reductants, the amount of titanium consumed, the inhibition of perchlorate removal by chloride, and oxidation of chloride to chlorine.

  19. Extracellular Saccharide-Mediated Reduction of Au3+ to Gold Nanoparticles: New Insights for Heavy Metals Biomineralization on Microbial Surfaces.

    Science.gov (United States)

    Kang, Fuxing; Qu, Xiaolei; Alvarez, Pedro J J; Zhu, Dongqiang

    2017-03-07

    Biomineralization is a critical process controlling the biogeochemical cycling, fate, and potential environmental impacts of heavy metals. Despite the indispensability of extracellular polymeric substances (EPS) to microbial life and their ubiquity in soil and aquatic environments, the role played by EPS in the transformation and biomineralization of heavy metals is not well understood. Here, we used gold ion (Au 3+ ) as a model heavy metal ion to quantitatively assess the role of EPS in biomineralization and discern the responsible functional groups. Integrated spectroscopic analyses showed that Au 3+ was readily reduced to zerovalent gold nanoparticles (AuNPs, 2-15 nm in size) in aqueous suspension of Escherichia coli or dissolved EPS extracted from microbes. The majority of AuNPs (95.2%) was formed outside Escherichia coli cells, and the removal of EPS attached to cells pronouncedly suppressed Au 3+ reduction, reflecting the predominance of the extracellular matrix in Au 3+ reduction. XPS, UV-vis, and FTIR analyses corroborated that Au 3+ reduction was mediated by the hemiacetal groups (aldehyde equivalents) of reducing saccharides of EPS. Consistently, the kinetics of AuNP formation obeyed pseudo-second-order reaction kinetics with respect to the concentrations of Au 3+ and the hemiacetal groups in EPS, with minimal dependency on the source of microbial EPS. Our findings indicate a previously overlooked, universally significant contribution of EPS to the reduction, mineralization, and potential detoxification of metal species with high oxidation state.

  20. Metallothermic reduction of molybdate

    International Nuclear Information System (INIS)

    Mukherjee, T.K.; Bose, D.K.

    1987-01-01

    This paper gives a brief account of the investigations conducted so far on metallothermic reduction of high grade molybdenite with particular emphasis on the work carried out in Bhabha Atomic Research Centre. Based on thermochemical considerations, the paper first introduces a number of metallic reductants suitable for use in metallothermic reduction of molybdenite. Aluminium, sodium and tin are found to be suitable reducing agents and very rightly they have found most applications in the research and development efforts on metallothermic reduction of molybdenite. The reduction with tin was conducted on fairly large scale both in vacuum and hydrogen atmosphere. The reaction was reported to be invariant depending mainly on the reduction temperature and a temperature of the order of 1250deg to 1300degC was required for good metal recovery. In comparison to tin, aluminothermic reduction of molybdenite was studied more extensively and it was conducted in closed bomb, vacuum and also in open atmosphere. In aluminothermic reduction, the influence of amount of reducing agent, amount of heat booster, preheating temperature and charging procedure on these metal yield was studied in detail. The reduction generally yielded massive molybdenum metal contaminated with aluminium as the major impurity element. Efforts were made to purify the reduced metal by arc melting, electron beam melting and molten salt electrorefining. 9 refs. (author)

  1. Reduction of metal exposure of Daubenton's bats (Myotis daubentonii) following remediation of pond sediment as evidenced by metal concentrations in hair.

    Science.gov (United States)

    Flache, Lucie; Ekschmitt, Klemens; Kierdorf, Uwe; Czarnecki, Sezin; Düring, Rolf-Alexander; Encarnação, Jorge A

    2016-03-15

    Transfer of contaminants from freshwater sediments via aquatic insects to terrestrial predators is well documented in spiders and birds. Here, we analyzed the metal exposure of Myotis daubentonii using an urban pond as their preferred foraging area before and after a remediation measure (sediment dredging) at this pond. Six metal elements (Zn, Cu, Cr, Cd, Pb and Ni) were measured in the sediment of the pond, in EDTA extracts of the sediment and in hair samples of M. daubentonii foraging at the pond. Samples were taken before remediation in 2011 and after remediation in 2013. Metal concentrations were quantified by ICP-OES after miniaturized microwave assisted extraction. In 2011, the pond sediment exhibited a high contamination with nickel, a moderate contamination with copper and chromium and low contents of zinc, cadmium and lead. While sediment metal contents declined only weakly after remediation, a much more pronounced reduction in the concentrations of zinc, copper, chromium and lead concentrations was observed in bat hair. Our results suggest a marked decline in metal exposure of the bats foraging at the pond as a consequence of the remediation measure. It is concluded that Daubenton's bats are suitable bioindicators of metal contamination in aquatic environments, integrating metal exposure via prey insects over their entire foraging area. We further suggest that bat hair is a useful monitoring unit, allowing a non-destructive and non-invasive assessment of metal exposure in bats. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Correlations between deformations, surface state and leak rate in metal to metal contact; Correlations entre deformations, etat de surface et debit de fuite au contact metal-metal

    Energy Technology Data Exchange (ETDEWEB)

    Armand, G; Lapujoulade, J; Paigne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The study of metal to metal contact from the stand-point of the leak rate has been carried on a copper ring located between two hard-steel flanges. The analysis of the results confirms the hysteresis phenomenon already seen. Some curves (leak rate versus force and leak rate versus true deformation) in semi-logarithmic coordinates are straight lines. Likewise some curves (electrical contact resistance versus force) in bi-logarithmic coordinates are straight lines. All these results can be understood by looking at the conductance introduced by the deformations of the micro-geometry of the surfaces in contact. Some tests carried out in rising the temperature confirm these hypothesis. (authors) [French] L'etude du contact metal-metal du point de vue debit de fuite a ete poursuivie en utilisant un anneau de cuivre place entre brides d'acier dur. L'analyse des resultats confirme le phenomene d'hysteresis deja constate, montre l'influence de l'etat de surface des brides et du joint. Certaines courbes (debit de fuite/force et debit de fuite/deformation rationnelle), en coordonnees semi-logarithmiques, sont des droites. De meme, certaines courbes (resistance de contact/force) en coordonnees bi-logarithmiques, sont des droites. Ces resultats s'interpretent en considerant la conductance produite par la deformation des microgeometries des surfaces en contact. Quelques essais d'elevation de temperature confirment ces resultats. (auteurs)

  3. High Strain Rate and Shock-Induced Deformation in Metals

    Science.gov (United States)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  4. Behavior of shut-down dose rate of recirculation piping of BWR under noble metal application

    International Nuclear Information System (INIS)

    Fuse, Motomasa; Nagase, Makoto; Aizawa, Motohiro; Wada, Yoichi; Ishida, Kazushige; Hosokawa, Hideyuki; Hettiarachchi, Samson; Weber, Christoph

    2014-01-01

    The cause of shut-down dose rate change of the recirculation piping observed in KKM (Kern Kraftwerk Mühleberg) after application of noble metal injection method is analyzed. The plant experienced the sharp decrease of piping dose rate in the cycle just after the application of noble metal(classic NobleChem TM ) and re-buildup of radioactivity in the subsequent several cycles. After the application of online noble metal injection (online NobleChem TM ), gradual decrease of dose rate has been observed. The presence of a certain amount of noble metal on the iron rich oxide film promotes the dissolution of the oxide under hydrogen addition, resulting in a decrease of deposited noble metal on the oxide film surface as well as of radioactive species in the film. Under the condition of lower amount of noble metal on the surface oxides, the oxidant species, especially hydrogen peroxide, slightly increases facilitating the re-growth of iron rich oxides along with re-buildup of radioactivity. After the application of online noble metal injection during each cycle, gradual dissolution of iron rich oxides and gradual decrease of radioactivity in the oxides proceed to decrease the piping dose rate. In the radioactivity decreasing phase, the presence of zinc is considered to assist the suppression of radioactivity buildup in the oxide film. From the analysis, treating piping surface with platinum after chemical decontamination process is expected to work well for suppression of the piping dose rate. (author)

  5. Reduction of metal exposure of Daubenton's bats (Myotis daubentonii) following remediation of pond sediment as evidenced by metal concentrations in hair

    International Nuclear Information System (INIS)

    Flache, Lucie; Ekschmitt, Klemens; Kierdorf, Uwe; Czarnecki, Sezin; Düring, Rolf-Alexander; Encarnação, Jorge A.

    2016-01-01

    Transfer of contaminants from freshwater sediments via aquatic insects to terrestrial predators is well documented in spiders and birds. Here, we analyzed the metal exposure of Myotis daubentonii using an urban pond as their preferred foraging area before and after a remediation measure (sediment dredging) at this pond. Six metal elements (Zn, Cu, Cr, Cd, Pb and Ni) were measured in the sediment of the pond, in EDTA extracts of the sediment and in hair samples of M. daubentonii foraging at the pond. Samples were taken before remediation in 2011 and after remediation in 2013. Metal concentrations were quantified by ICP-OES after miniaturized microwave assisted extraction. In 2011, the pond sediment exhibited a high contamination with nickel, a moderate contamination with copper and chromium and low contents of zinc, cadmium and lead. While sediment metal contents declined only weakly after remediation, a much more pronounced reduction in the concentrations of zinc, copper, chromium and lead concentrations was observed in bat hair. Our results suggest a marked decline in metal exposure of the bats foraging at the pond as a consequence of the remediation measure. It is concluded that Daubenton's bats are suitable bioindicators of metal contamination in aquatic environments, integrating metal exposure via prey insects over their entire foraging area. We further suggest that bat hair is a useful monitoring unit, allowing a non-destructive and non-invasive assessment of metal exposure in bats. - Highlights: • Changes in metal exposure of bats due to remediation measure are documented. • Bats are suitable bioindicators of metal pollution. • Bat hair is a useful monitoring unit in such studies.

  6. An unsaturated metal site-promoted approach to construct strongly coupled noble metal/HNb3O8 nanosheets for efficient thermo/photo-catalytic reduction.

    Science.gov (United States)

    Shen, Lijuan; Xia, Yuzhou; Lin, Sen; Liang, Shijing; Wu, Ling

    2017-10-05

    Creating two-dimensional (2D) crystal-metal heterostructures with an ultrathin thickness has spurred increasing research endeavors in catalysis because of its fascinating opportunities in tuning the electronic state at the surface and enhancing the chemical reactivity. Here we report a novel and facile Nb 4+ -assisted strategy for the in situ growth of highly dispersed Pd nanoparticles (NPs) on monolayer HNb 3 O 8 nanosheets (HNb 3 O 8 NS) constituting a 2D Pd/HNb 3 O 8 NS heterostructure composite without using extra reducing agents and stabilizing agents. The Pd NP formation is directed via a redox reaction between an oxidative Pd salt precursor (H 2 PdCl 4 ) and reductive unsaturated surface metal (Nb 4+ ) sites induced by light irradiation on monolayer HNb 3 O 8 NS. The periodic arrangement of metal Nb nodes on HNb 3 O 8 NS leads to a homogeneous distribution of Pd NPs. Density functional theory (DFT) calculations reveal that the direct redox reaction between the Nb 4+ and Pd 2+ ions leads to a strong chemical interaction between the formed Pd metal NPs and the monolayer HNb 3 O 8 support. Consequently, the as-obtained Pd/HNb 3 O 8 composite serves as a highly efficient bifunctional catalyst in both heterogeneous thermocatalytic and photocatalytic selective reduction of aromatic nitro compounds in water under ambient conditions. The achieved high activity originates from the unique 2D nanosheet configuration and in situ Pd incorporation, which leads to a large active surface area, strong metal-support interaction and enhanced charge transport capability. Moreover, this facile Nb 4+ -assisted synthetic route has demonstrated to be general, which can be applied to load other metals such as Au and Pt on monolayer HNb 3 O 8 NS. It is anticipated that this work can extend the facile preparation of noble metal/nanosheet 2D heterostructures, as well as promote the simultaneous capture of duple renewable thermal and photon energy sources to drive an energy efficient

  7. Iterative metal artefact reduction (MAR) in postsurgical chest CT: comparison of three iMAR-algorithms.

    Science.gov (United States)

    Aissa, Joel; Boos, Johannes; Sawicki, Lino Morris; Heinzler, Niklas; Krzymyk, Karl; Sedlmair, Martin; Kröpil, Patric; Antoch, Gerald; Thomas, Christoph

    2017-11-01

    The purpose of this study was to evaluate the impact of three novel iterative metal artefact (iMAR) algorithms on image quality and artefact degree in chest CT of patients with a variety of thoracic metallic implants. 27 postsurgical patients with thoracic implants who underwent clinical chest CT between March and May 2015 in clinical routine were retrospectively included. Images were retrospectively reconstructed with standard weighted filtered back projection (WFBP) and with three iMAR algorithms (iMAR-Algo1 = Cardiac algorithm, iMAR-Algo2 = Pacemaker algorithm and iMAR-Algo3 = ThoracicCoils algorithm). The subjective and objective image quality was assessed. Averaged over all artefacts, artefact degree was significantly lower for the iMAR-Algo1 (58.9 ± 48.5 HU), iMAR-Algo2 (52.7 ± 46.8 HU) and the iMAR-Algo3 (51.9 ± 46.1 HU) compared with WFBP (91.6 ± 81.6 HU, p algorithms, respectively. iMAR-Algo2 and iMAR-Algo3 reconstructions decreased mild and moderate artefacts compared with WFBP and iMAR-Algo1 (p algorithms led to a significant reduction of metal artefacts and increase in overall image quality compared with WFBP in chest CT of patients with metallic implants in subjective and objective analysis. The iMARAlgo2 and iMARAlgo3 were best for mild artefacts. IMARAlgo1 was superior for severe artefacts. Advances in knowledge: Iterative MAR led to significant artefact reduction and increase image-quality compared with WFBP in CT after implementation of thoracic devices. Adjusting iMAR-algorithms to patients' metallic implants can help to improve image quality in CT.

  8. Evaluation of efficacy of metal artefact reduction technique using contrast media in Computed Tomography

    Science.gov (United States)

    Yusob, Diana; Zukhi, Jihan; Aziz Tajuddin, Abd; Zainon, Rafidah

    2017-05-01

    The aim of this study was to evaluate the efficacy of metal artefact reduction using contrasts media in Computed Tomography (CT) imaging. A water-based abdomen phantom of diameter 32 cm (adult body size) was fabricated using polymethyl methacrylate (PMMA) material. Three different contrast agents (iodine, barium and gadolinium) were filled in small PMMA tubes and placed inside a water-based PMMA adult abdomen phantom. The orthopedic metal screw was placed in each small PMMA tube separately. These two types of orthopedic metal screw (stainless steel and titanium alloy) were scanned separately. The orthopedic metal crews were scanned with single-energy CT at 120 kV and dual-energy CT at fast kV-switching between 80 kV and 140 kV. The scan modes were set automatically using the current modulation care4Dose setting and the scans were set at different pitch and slice thickness. The use of the contrast media technique on orthopedic metal screws were optimised by using pitch = 0.60 mm, and slice thickness = 5.0 mm. The use contrast media can reduce the metal streaking artefacts on CT image, enhance the CT images surrounding the implants, and it has potential use in improving diagnostic performance in patients with severe metallic artefacts. These results are valuable for imaging protocol optimisation in clinical applications.

  9. Bacterial assimilation reduction of iron in the treatment of non-metallics

    Directory of Open Access Journals (Sweden)

    Peter Malachovský

    2005-11-01

    Full Text Available Natural non-metallics, including granitoide and quartz sands, often contain iron which decreases the whiteness of these raw materials. Insoluble Fe3+ in these samples could be reduced to soluble Fe2+ by bacteria of Bacillus spp. and Saccharomyces spp. The leaching effect, observed by the measurement of Fe2+concentration in a solution, showed higher activities of a bacterial kind isolated from the Bajkal lake and also by using of yeast Saccharomyces sp. during bioleaching of quartz sands. However, allkinds of Bacillus spp. isolated from the Slovak deposit and from Bajkal lake were very active in the iron reduction during bioleaching of the feldspar raw material. This metal was efficiently removed from quartz sands as documented by the Fe2O3 decrease (from 0,317 % to 0,126 % and from feldpars raw materials by the Fe2O3 decrease (from 0,288 % to 0,115 % after bioleaching. The whiteness of these non-metallics was increased during a visual comparison of samples before and after bioleaching but samples contain selected magnetic particles. A removal of iron as well as a release of iron minerals from silicate matrix should increase the effect of the magnetic separation and should give a product which is suitable for industrial applications.

  10. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries.

    Science.gov (United States)

    Chen, Xiangping; Guo, Chunxiu; Ma, Hongrui; Li, Jiazhu; Zhou, Tao; Cao, Ling; Kang, Duozhi

    2018-05-01

    It is significant to recover metal values from spent lithium ion batteries (LIBs) for the alleviation or prevention of potential risks towards environmental pollution and public health, as well as for the conservation of valuable metals. Herein a hydrometallurgical process was proposed to explore the possibility for the leaching of different metals from waste cathodic materials (LiCoO 2 ) of spent LIBs using organics as reductant in sulfuric acid medium. According to the leaching results, about 98% Co and 96% Li can be leached under the optimal experimental conditions of reaction temperature - 95 °C, reaction time - 120 min, reductive agent dosage - 0.4 g/g, slurry density - 25 g/L, concentration of sulfuric acid-3 mol/L in H 2 SO 4  + glucose leaching system. Similar results (96% Co and 100% Li) can be obtained in H 2 SO 4  + sucrose leaching system under optimized leaching conditions. Despite a complete leaching of Li (∼100%), only 54% Co can be dissolved in the H 2 SO 4  + cellulose leaching system under optimized leaching conditions. Finally, different characterization methods, including UV-Vis, FT-IR, SEM and XRD, were employed for the tentative exploration of reductive leaching reactions using organic as reductant in sulfuric acid medium. All the leaching and characterization results confirm that both glucose and sucrose are effective reductants during leaching, while cellulose should be further degraded to organics with low molecular weights to achieve a satisfactory leaching performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols.

    Science.gov (United States)

    Albo, Jonathan; Vallejo, Daniel; Beobide, Garikoitz; Castillo, Oscar; Castaño, Pedro; Irabien, Angel

    2017-03-22

    The electrocatalytic reduction of CO 2 has been investigated using four Cu-based metal-organic porous materials supported on gas diffusion electrodes, namely, (1) HKUST-1 metal-organic framework (MOF), [Cu 3 (μ 6 -C 9 H 3 O 6 ) 2 ] n ; (2) CuAdeAce MOF, [Cu 3 (μ 3 -C 5 H 4 N 5 ) 2 ] n ; (3) CuDTA mesoporous metal-organic aerogel (MOA), [Cu(μ-C 2 H 2 N 2 S 2 )] n ; and (4) CuZnDTA MOA, [Cu 0.6 Zn 0.4 (μ-C 2 H 2 N 2 S 2 )] n . The electrodes show relatively high surface areas, accessibilities, and exposure of the Cu catalytic centers as well as favorable electrocatalytic CO 2 reduction performance, that is, they have a high efficiency for the production of methanol and ethanol in the liquid phase. The maximum cumulative Faradaic efficiencies for CO 2 conversion at HKUST-1-, CuAdeAce-, CuDTA-, and CuZnDTA-based electrodes are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of 10 mA cm -2 , an electrolyte-flow/area ratio of 3 mL min cm -2 , and a gas-flow/area ratio of 20 mL min cm -2 . We can correlate these observations with the structural features of the electrodes. Furthermore, HKUST-1- and CuZnDTA-based electrodes show stable electrocatalytic performance for 17 and 12 h, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Metal toxicity in a sediment-dwelling polychaete: Threshold body concentrations or overwhelming accumulation rates?

    International Nuclear Information System (INIS)

    Carmen Casado-Martinez, M.; Smith, Brian D.; Luoma, Samuel N.; Rainbow, Philip S.

    2010-01-01

    We followed the net accumulation of As, Cu and Zn in the deposit-feeding polychaete Arenicola marina exposed in the laboratory to natural metal-contaminated sediments, one exposure leading to mass mortality between day 10 and 20, and the other not causing lethality over a period of 60 days of exposure. The worms showed lower total accumulated metal concentrations just before mortality occurred (<20 days) at the lethal exposure, than after 30 days of exposure to sediments not causing mortality. Moreover rates of accumulation of As, Cu and Zn were significantly higher in the lethal exposure than in the sublethal exposure. Our results show that it is not possible to link mortality to a critical total body concentration, and we add to a growing body of literature indicating that metal toxicity occurs when organisms cannot cope with overwhelming influx and subsequent accumulation rates. - Laboratory exposures with the deposit-feeding polychaete Arenicola marina suggest that toxicity is not caused by the accumulated concentration of toxic metals in the body of the animal, but by the rate at which the toxic metal is accumulated.

  13. Permeation rates for RTF metal hydride vessels

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    Contamination rates have been estimated for the RTF nitrogen heating and cooling system (NH and CS) due to tritium permeation through the walls of metal hydride vessels. Tritium contamination of the NH and CS will be seen shortly after start-up of the RTF with the majority of it coming from the TCAP units. Contamination rates of the NH and CS are estimated to exceed 400 Ci/year after three years of operation and will elevate tritium concentrations in the NH and CS above 6 x 10 -3 μCi/cc. To reduce tritium activity in the NH and CS, a stripper or ''getter'' bed may need to be installed in the NH and CS. Increasing the purge rate of nitrogen from the NH and CS is shown to be an impractical method for reducing tritium activity due to the high purge rates required. Stripping of the NH and CS nitrogen in the glove box stripper system will give a temporary lowering of tritium activity in the NH and CS, but tritium activity will return to its previous level in approximately two weeks

  14. Simple mass transport model for metal uptake by marine macroalgae growing at different rates

    Energy Technology Data Exchange (ETDEWEB)

    Rice, D.L.

    1984-01-01

    Although algae growing at different rates may exhibit different concentrations of a given metal, such differences in algal chemistry may or may not reflect actual effects of environmental growth factors on the kinetics of metal uptake. Published data on uptake of rubidium, cadmium, and manganese by the green seaweed Ulva fasciata Delile grown at different rates in open system sea water was interpreted using the model. Differences in exposure time to sea water of relatively old and relatively young thalli were responsible for significant decreases in algal rubidium and cadmium concentrations with increases in specific growth rate. The biomass-specific growth rates of uptake of these two metals did not vary with growth rate. Both algal concentrations and specific rates of uptake of manganese increase significantly with increasing growth rate, thus indicating a distinct link between the kinetics of manganese uptake and metabolic rate. Under some circumstances, seaweed bioassay coupled with an interpretive model may provide the only reasonable approach to the study of chemical uptake-growth phenomena. In practice, if the residence time of sea water in culture chambers is sufficiently low to preclude pseudo-closed system artifacts, differences in trace metal concentrations between input and output sea water may be difficult to detect. In the field and in situ experiments based on time-series monitoring of changes in the water chemistry would be technically difficult or perhaps impossible to perform. 13 references, 1 figure.

  15. Metal- and Carbon-Based Materials as Heterogeneous Electrocatalysts for CO₂ Reduction.

    Science.gov (United States)

    Khan, Azam; Ullah, Haseeb; Nasir, Jamal Abdul; Shuda, Suzanne; Chen, Wei; Khan, M Abdullah

    2018-05-01

    Climate change caused by continuous rising level of CO2 and the depletion of fossil fuels reserves has made it highly desirable to electrochemically convert CO2 into fuels and commodity chemicals. Implementing this approach will close the carbon cycle by recycling CO2 providing a sustainable way to store energy in the chemical bonds of portable molecular fuels. In order to make the process commercially viable, the challenge of slow kinetics of CO2 electroreduction and low energy efficiency of the process need to be addressed. To this end, this review summarizes the progress made in the past few years in the development of heterogeneous electrocatalysts with a focus on nanostructured material for CO2 reduction to CO, HCOOH/HCOO-, CH2O, CH4, H2C2O4/HC2O-4, C2H4, CH3OH, CH3CH2OH, etc. The electrocatalysts presented here are classified into metals, metal alloys, metal oxides, metal chalcogenides and carbon based materials on the basis of their elemental composition, whose performance is discussed in light of catalyst activity, product selectivity, Faradaic efficiency (FE), catalytic durability and in selected cases mechanism of CO2 electroreduction. The effect of particle size, morphology and solution-electrolyte type and composition on the catalyst property/activity is also discussed and finally some strategies are proposed for the development of CO2 electroreduction catalysts. The aim of this article is to review the recent advances in the field of CO2 electroreduction in order to further facilitate research and development in this area.

  16. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  17. Strain rate effects on localized necking in substrate-supported metal layers

    OpenAIRE

    BEN BETTAIEB, Mohamed; ABED-MERAIM, Farid

    2017-01-01

    Due to their good mechanical and technological performances, thin substrate-supported metal layers are increasingly used as functional components in flexible electronic devices. Consequently, the prediction of necking, and the associated limit strains, for such components is of major academic and industrial importance. The current contribution aims to numerically investigate the respective and combined effects of strain rate sensitivity of the metal layer and the addition of an elastomer l...

  18. The Role of Noble Metal Addition Methods on BWR Shut Down Dose Rates

    International Nuclear Information System (INIS)

    Cowan, Robert L.; Garcia Susan, E.

    2012-09-01

    Noble metal addition technology was developed for the BWR as a means of establishing low electrochemical corrosion potentials (ECP) on structural materials to mitigate intergranular stress corrosion cracking (IGSCC). When the reactor water molar ratio of H 2 / (O 2 +H 2 O 2 ) is > 2 on noble metal treated surfaces, the resulting ECP is near -500 mV (SHE), well into the mitigation range. This ratio can be achieved in most areas of the reactor with feedwater hydrogen additions in the range of 0.2 mg/kg, a condition that does not increase the radiation level in the main steam, a side effect of conventional hydrogen water chemistry (HWC). The resulting low ECP on the surface of stainless steel piping and components results in a change in form of the stable corrosion film to a spinel structure. Since it is the 60 Co incorporated into the corrosion film that is the primary source term of shutdown dose rates in BWRs, the structure and composition of the film can have a large influence in the resulting dose rates. The results of the first generation of noble metal technology, noble metal chemical addition (NMCA), showed that the reactor water ratio of 60 Co (s)/Zn (s) was a key parameter in determining shut down dose rate values. This paper will review that history and provide mechanistic understanding of how initial post NMCA dose rates are established and change with time. On-line noble metal chemical addition (OLNC) is the second generation of noble metal technology. The method utilizes the on-line injection of dilute Na 2 Pt (OH) 6 into the feedwater over a period of approximately 10 days. The first application of OLNC occurred at a European reactor in July of 2005 and to date over 20 BWRs have applied the technology, with many more applications scheduled. It is expected that OLNC will become the de facto standard because it eliminates 60 hours of outage application time and it addresses the crack flanking concerns that can arise under certain conditions. Because both

  19. Amorphous metallic alloys for oxygen reduction reaction in a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R.; Guerra-Martinez, I.; Lopez, J.S. [Inst. Politecnico Nacional, ESIQIE, Mexico City (Mexico). Lab. de Electroquimica; Pierna, A.R. [Basque Country Univ., San Sebastian (Spain). Dept. of Chemical Engineering and Environment; Solorza-Feria, O. [Inst. Politenico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica

    2010-07-15

    Direct methanol fuel cells (DMFC) and polymer electrolyte membrane fuel cells (PEMFC) represent an important, environmentally clean energy source. This has motivated extensive research on the synthesis, characterization and evaluation of novel and stable oxygen reduction electrocatalysts for the direct four-electron transfer process to water formation. Studies have shown that amorphous alloyed compounds can be used as electrode materials in electrochemical energy conversion devices. Their use in PEMFCs can optimize the electrocatalyst loading in the membrane electrode assembly (MEA). In this study, amorphous metallic PtSn, PtRu and PtRuSn alloys were synthesized by mechanical milling and used as cathodes for the oxygen reduction reaction (ORR) in sulphuric acid and in a single PEM fuel cell. Two different powder morphologies were observed before and after the chemical activation in a hydrofluoric acid (HF) solution at 25 degrees C. The kinetics of the ORR on the amorphous catalysts were investigated. The study showed that the amorphous metallic PtSn electrocatalyst was the most active of the 3 electrodes for the cathodic reaction. Fuel cell experiments were conducted at various temperatures at 30 psi for hydrogen (H{sub 2}) and at 34 psi for oxygen (O{sub 2}). MEAs made of Nafion 115 and amorphous metallic PtSn dispersed on carbon powder in a PEMFC had a power density of 156 mW per cm{sup 2} at 0.43V and 80 degrees C. 12 refs., 1 tab., 5 figs.

  20. Reduction of metal artifact in three-dimensional computed tomography (3D CT) with dental impression materials.

    Science.gov (United States)

    Park, W S; Kim, K D; Shin, H K; Lee, S H

    2007-01-01

    Metal Artifact still remains one of the main drawbacks in craniofacial Three-Dimensional Computed Tomography (3D CT). In this study, we tried to test the efficacy of additional silicone dental impression materials as a "tooth shield" for the reduction of metal artifact caused by metal restorations and orthodontic appliances. 6 phantoms with 4 teeth were prepared for this in vitro study. Orthodontic bracket, bands and amalgam restorations were placed in each tooth to reproduce various intraoral conditions. Standardized silicone shields were fabricated and placed around the teeth. CT image acquisition was performed with and without silicone shields. Maximum value, mean, and standard deviation of Hounsfield Units (HU) were compared with the presence of silicone shields. In every situation, metal artifacts were reduced in quality and quantity when silicone shields are used. Amalgam restoration made most serious metal artifact. Silicone shields made by dental impression material might be effective way to reduce the metal artifact caused by dental restoration and orthodontic appliances. This will help more excellent 3D image from 3D CT in craniofacial area.

  1. Syllable reduction and articulation rates in Danish, Norwegian and Swedish

    NARCIS (Netherlands)

    Hilton, N.H.; Schüppert, Anja; Gooskens, C.S.

    2011-01-01

    This investigation compares articulation rates of phonological and phonetic syllables in Norwegian, Swedish and Danish to investigate differences in degrees of syllable deletion (reduction) among these three languages. For the investigation two sets of data are used: one consisting of recorded

  2. Study of performance of acoustic fixture for using in noise reduction rate tests of hearing protection devices

    Directory of Open Access Journals (Sweden)

    zam Biabani

    2016-06-01

    Full Text Available Introduction:One of the recommended methods for evaluation effectiveness of hearing protection is use the acoustic fixture accordance with standard ISO 4869-3. The aim of this study was evaluate the acoustic performance of fixture for using in noise reduction rate tests of hearing protection devices in the laboratory. Methods: In this cross-sectional study , noise reduction rates of five common ear muffs used in the Iran industries were investigated based on the ISO 11904 standard, microphone in real ear method, using noise dosimeter (SVANTEK , Model SV102 equipped with microphone SV25 model which can install inside the ear on 30 subjects under laboratory conditions. Also, noise reduction rate of earmuffs was determined using the fixture model AVASINA9402 accordance with standard procedures. Data were analyzed using the software SPSS21. Results: The results showed the real noise reduction rates of the earmuffs on the studied subjects are from 59% to 94% nominal reduction rates. That rates for the ear muffs on the studied fixture are from 64% to 92.The results showed that the noise reduction rates of the ear muffs on subjects compared with and noise reduction rates of the ear muffs on fixture were not statistically significant (p> 0.05. Conclusion: The results showed the accuracy of noise reduction rate of earmuffs using the fixture compared with real subjects is acceptable. Hence, the fixture is good choice for environments where there’s no possibility of acoustic evaluation on real subjects, also for quality control of productions in the earmuff manufacturers.

  3. Highly active Pd–In/mesoporous alumina catalyst for nitrate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Werth, Charles J. [Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 East Dean Keeton St., Stop C1786, Austin, TX 78712 (United States); Zhang, Yalei, E-mail: zhangyalei2003@163.com [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2015-04-09

    Highlights: • Pd–In nanoparticles (6–7 nm) uniformly form in the mesopores of alumina (4 nm). • Pd–In nanoparticles aggregation is prevented during the synthesis process. • The reduction rate of nitrate is efficient by using the obtained catalyst. • The selectivity toward N{sub 2} is ideal by using the obtained catalyst. - Abstract: The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd–In/Al{sub 2}O{sub 3} with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO{sub 2}-buffered water and under continuous H{sub 2} as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd–In ratio of 4, with a first-order rate constant (k{sub obs} = 0.241 L min{sup −1} g{sub cata}{sup −1}) that was 1.3× higher than that of conventional Pd–In/Al{sub 2}O{sub 3} (5 wt% Pd; 0.19 L min{sup −1} g{sub cata}{sup −1}). The Pd–In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate.

  4. Redox behavior of transition metal ions in zeolites 6. Reversibility of the reduction reaction in silver zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, P A; Uytterhoeven, J B; Beyer, H K

    1977-01-01

    Degassing above 573/sup 0/K of Ag-Y or Ag-mordenite previously reduced by hydrogen at 623/sup 0/K resulted in hydrogen evolution, the amount of hydrogen increasing to a maximum at about 873/sup 0/K. No hydrogen was evolved when the zeolite was reduced by hydrazine or hydroxylamine, indicating that hydrogen is formed by reaction between silver metal and hydroxyl groups formed in the reduction step (i.e., the reverse of the reduction step). Consumption of hydroxyl groups was proven by IR studies of pyridine chemisorption which occurs entirely as pyridinium ions on Broensted sites or reduced samples but with increasing formation of pyridine on Lewis acid sites as the degassing temperature increases; formation of silver(I) ions was proven by carbon monoxide complexation. Silver metal outside the zeolite pores was not affected by the degassing, and the amount of hydrogen evolved upon degassing decreased with increasing number of reduction-degassing cycles, probably as a result of dehydroxylation or sintering. Spectra, graphs, tables, and 21 references.

  5. Destruction of TCE Using Oxidative and Reductive Pathways as Potential In-Situ Treatments for the Contaminated Paducah Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, S; Li, Y; Xu, J; Tee, Y; Lynch, Andrew

    2007-05-01

    When considering reductive technologies for ground water remediation, it is important to understand the underlying principles that govern kinetics of zero-valent metal dechlorination. Studies involving the use of nanoscale metals (characteristic length <100nm) for chloro-organic degradation have increased reaction rates by 1-2 orders of magnitude with minimal intermediate formation. Typically, these metals are synthesized using modifications of the aqueous phase reduction of metal ions using sodium borohydride presented by Glavee and coworkers. The use of a bimetallic system increases the reactivity of the particle surface by incorporating a second metal that can typically act as a hydrogenation promotor.

  6. Fluid Flow Behaviour under Different Gases and Flow Rate during Gas Metal Arc Welding

    OpenAIRE

    Jaison Peter

    2013-01-01

    Gas metal arc welding (GMAW) is a highly efficient and fast process for fabricating high quality weld. High quality welds are fabricated by proper selection of consumable includes gas and filler metals. The optimum flow rate of gas will ensure the proper quality of weld. In this project, a fluid flow behavior of different flow rate is modeled and the change quality will be studied.

  7. Nitrite addition to acidified sludge significantly improves digestibility, toxic metal removal, dewaterability and pathogen reduction

    Science.gov (United States)

    Du, Fangzhou; Keller, Jürg; Yuan, Zhiguo; Batstone, Damien J.; Freguia, Stefano; Pikaar, Ilje

    2016-12-01

    Sludge management is a major issue for water utilities globally. Poor digestibility and dewaterability are the main factors determining the cost for sludge management, whereas pathogen and toxic metal concentrations limit beneficial reuse. In this study, the effects of low level nitrite addition to acidified sludge to simultaneously enhance digestibility, toxic metal removal, dewaterability and pathogen reduction were investigated. Waste activated sludge (WAS) from a full-scale waste water treatment plant was treated at pH 2 with 10 mg NO2--N/L for 5 h. Biochemical methane potential tests showed an increase in the methane production of 28%, corresponding to an improvement from 247 ± 8 L CH4/kg VS to 317 ± 1 L CH4/kg VS. The enhanced removal of toxic metals further increased the methane production by another 18% to 360 ± 6 L CH4/kg VS (a total increase of 46%). The solids content of dewatered sludge increased from 14.6 ± 1.4% in the control to 18.2 ± 0.8%. A 4-log reduction for both total coliforms and E. coli was achieved. Overall, this study highlights the potential of acidification with low level nitrite addition as an effective and simple method achieving multiple improvements in terms of sludge management.

  8. Application of molten salts in pyrochemical processing of reactive metals

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.; Averill, W.A.

    1992-01-01

    Various mixes of chloride and fluoride salts are used as the media for conducting pyrochemical processes in the production and purification of reactive metals. These processes generate a significant amount of contaminated waste that has to be treated for recycling or disposal. Molten calcium chloride based salt systems have been used in this work to electrolytically regenerate calcium metal from calcium oxide for the in situ reduction of reactive metal oxides. The recovery of calcium is characterized by the process efficiency to overcome back reactions in the electrowinning cell. A thermodynamic analysis, based on fundamental rate theory, has been performed to understand the process parameters controlling the metal deposition, rate, behavior of the ceramic anode-sheath and influence of the back-reactions. It has been observed that the deposition of calcium is dependent on the ionic diffusion through the sheath. It has also been evidenced that the recovered calcium is completely lost through the back-reactions in the absence of a sheath. A practical scenario has also been presented where the electrowon metal can be used in situ as a reductant to reduce another reactive metal oxide

  9. Study of the reduction mechanism of ironsands with addition of blast furnace bag dust

    Science.gov (United States)

    Xing, Xiangdong; Chen, Yunfei; Liu, Yiran

    2018-02-01

    To improve the reduction properties of ironsands carbon-containing briquettes, the behavior of ironsand during reduction by the addition of blast furnace bag dust (BFBD) is studied using a high temperature resistance furnace, X-ray diffraction (XRD) analysis and scanning electron microscopy. Additionally, the reduction mechanism is discussed in this study. The results showed that the reduction level and compressive strength of ironsand carbon-containing briquettes could be promoted by increasing the proportion of BFBD. When the addition rate of BFBD was 31.25%, the metallization rate and compressive strength increased from 82.1% and 21.5 N/a to 91.4% and 172.5 N/a, respectively. Metallic iron reduced from BFBD particles favored the carbon gasification reaction, which enhanced the internal CO concentration, and then promoted the FeTiO3 reduction to Fe in ironsand. Meanwhile, a large amount of the liquid phase generated during the reduction process also favored Fe2+ diffusion, spread of iron joined crystals and the growth of crystals, which resulted in the improvement of the compressive strength of the ironsand carbon-containing briquettes.

  10. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    Science.gov (United States)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  11. Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization

    Directory of Open Access Journals (Sweden)

    Żelechowska Kamila

    2016-12-01

    Full Text Available Synthesis and characterization of the graphene hydrogels with three different metallic nanoparticles, that is Au, Ag and Cu, respectively is presented. Synthesized in a one-pot approach graphene hydrogels with embedded metallic nanoparticles were tested as heterogeneous catalysts in a model reaction of 4-nitrophenol reduction. The highest activity was obtained for graphene hydrogel with Cu nanoparticles and additional reaction of methylene blued degradation was evaluated using this system. The obtained outstanding catalytic activity arises from the synergistic effect of graphene and metallic nanoparticles. The hydrogel form of the catalyst benefits in the easiness in separation from the reaction mixture (for example using tweezers and reusability.

  12. 76 FR 15055 - Proposed Information Collection (Requirements for Interest Rate Reduction Refinancing Loans...

    Science.gov (United States)

    2011-03-18

    ... (Requirements for Interest Rate Reduction Refinancing Loans); Comment Request AGENCY: Veterans Benefits... to refinance a delinquent VA-guaranteed loan with a lower interest rate. DATES: Written comments and... techniques or the use of other forms of information technology. Title: Requirements for Interest Rate...

  13. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    International Nuclear Information System (INIS)

    Kostka, Joel E.

    2008-01-01

    This project represented a joint effort between Oak Ridge National Laboratory (ORNL), the University of Tennessee (UT), and Florida State University (FSU). ORNL served as the lead in-stitution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliver-ables. In situ uranium bioremediation is focused on biostimulating indigenous microorganisms through a combination of pH neutralization and the addition of large amounts of electron donor. Successful biostimulation of U(VI) reduction has been demonstrated in the field and in the laboratory. However, little data is available on the dynamics of microbial populations capable of U(VI) reduction, and the differences in the microbial community dynamics between proposed electron donors have not been explored. In order to elucidate the potential mechanisms of U(VI) reduction for optimization of bioremediation strategies, structure-function relationships of microbial populations were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate from the Oak Ridge Field Research Center (ORFRC), Oak Ridge, Tennessee.

  14. Reduction of front-metallization grid shading in concentrator cells through laser micro-grooved cover glass

    International Nuclear Information System (INIS)

    García-Linares, Pablo; Voarino, Philippe; Besson, Pierre; Baudrit, Mathieu; Dominguez, César; Dellea, Olivier; Fugier, Pascal

    2015-01-01

    Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (I SC ) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions and away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications

  15. Reduction of front-metallization grid shading in concentrator cells through laser micro-grooved cover glass

    Energy Technology Data Exchange (ETDEWEB)

    García-Linares, Pablo, E-mail: pablo.garcia-linares@cea.fr; Voarino, Philippe; Besson, Pierre; Baudrit, Mathieu [CEA-LITEN, Laboratoire de Photovoltaïque à Concentration, INES, Le Bourget du Lac (France); Dominguez, César [CEA-LITEN, Laboratoire de Photovoltaïque à Concentration, INES, Le Bourget du Lac (France); Instituto de Energía Solar - Universidad Politécnica de Madrid, Madrid (Spain); Dellea, Olivier; Fugier, Pascal [CEA-LITEN, Laboratoire de Surfaces Nanostructurées, Grenoble (France)

    2015-09-28

    Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (I{sub SC}) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions and away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications.

  16. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming; Sun, Xiaohui; Ould-Chikh, Samy; Osadchii, Dmitrii; Bai, Fan; Kapteijn, Freek; Gascon, Jorge

    2018-01-01

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  17. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming

    2018-04-11

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  18. Exploring the Genome and Proteome of Desulfitobacterium hafniense DCB2 for its Protein Complexes Involved in Metal Reduction and Dechlorination

    Energy Technology Data Exchange (ETDEWEB)

    Sang-Hoon, Kim; Hardzman, Christina; Davis, John k.; Hutcheson, Rachel; Broderick, Joan B.; Marsh, Terence L.; Tiedje, James M.

    2012-09-27

    Desulfitobacteria are of interest to DOE mission because of their ability to reduce many electron acceptors including Fe(III), U(VI), Cr(VI), As(V), Mn(IV), Se(VI), NO3- and well as CO2, sulfite, fumarate and humates, their ability to colonize more stressful environments because they form spores, fix nitrogen and they have the more protective Gram positive cell walls. Furthermore at least some of them reductively dechlorinate aromatic and aliphatic pollutants. Importantly, most of the metals and the organochlorine reductions are coupled to ATP production and support growth providing for the organism's natural selection at DOE's contaminant sites. This work was undertaken to gain insight into the genetic and metabolic pathways involved in dissimilatory metal reduction and reductive dechlorination, (ii) to discern the commonalities among these electron-accepting processes, (iii) to identify multi-protein complexes catalyzing these functions and (iv) to elucidate the coordination in expression of these pathways and processes.

  19. Reduction by metals dissolved in liquid ammonia of keto steroids. Equilibration of the alcohols

    International Nuclear Information System (INIS)

    Giroud, A.M.

    1970-01-01

    Reducing a ketone by dissolved metals involves two electrons; we may consider as intermediate a radical-anion, then a di-anion or a carbo-anion. The radical-anion may also split and give pinacols away. In order to discuss the reduction proceeds, we had to know the respective stabilities of the alcohols, which lead us to effectuate equilibration. The first chapter is devoted to the method of preparing the androstanone-II and the androstanols-IIα and II-β. We further establish the impossibility of using our methods for reaching a conclusion about the alcohols relative stability by experimental equilibration. Last we describe the methods for reducing the ketone by alkaline and earth-alkaline metals, dissolved in liquid ammonia, either in contact with a protons donor or with a later added protons donor. The resulting mixture of the two alcohols shows a prevailing quantity of the stable equatorial isomer α. In a second chapter, we study the action of selenic acid and hydroperoxide on cholestanone-3, which leads us to study the preparation and stereochemistry of the A-nor cholestane derivates. We further describe the preparation of the A-nor cholestanols-2α and 2β, and the corresponding acetates. Equilibration of the alcohols by chemical methods shows the 2 α-alcohol more stable than the 2β, which is mathematically confirmed. Last, the reduction of the A-nor cholestanone-2 by dissolved metals consistently leads to the less stable 2 β epimer, with associated pinacols. The third chapter is devoted to the study of the androstanone-17 reductions, and the relative stabilities of the 17α and 17β alcohols. Whichever operating methods is used, we predominantly obtain the more stable 17β alcohol. In all cases, a pinacol production is observed. Summing up, we note that, in all cases, we predominantly obtain the equatorial epimer, whether it should be the more stable or the less stable. (author) [fr

  20. Computed Tomography Imaging of a Hip Prosthesis Using Iterative Model-Based Reconstruction and Orthopaedic Metal Artefact Reduction: A Quantitative Analysis.

    Science.gov (United States)

    Wellenberg, Ruud H H; Boomsma, Martijn F; van Osch, Jochen A C; Vlassenbroek, Alain; Milles, Julien; Edens, Mireille A; Streekstra, Geert J; Slump, Cornelis H; Maas, Mario

    To quantify the combined use of iterative model-based reconstruction (IMR) and orthopaedic metal artefact reduction (O-MAR) in reducing metal artefacts and improving image quality in a total hip arthroplasty phantom. Scans acquired at several dose levels and kVps were reconstructed with filtered back-projection (FBP), iterative reconstruction (iDose) and IMR, with and without O-MAR. Computed tomography (CT) numbers, noise levels, signal-to-noise-ratios and contrast-to-noise-ratios were analysed. Iterative model-based reconstruction results in overall improved image quality compared to iDose and FBP (P < 0.001). Orthopaedic metal artefact reduction is most effective in reducing severe metal artefacts improving CT number accuracy by 50%, 60%, and 63% (P < 0.05) and reducing noise by 1%, 62%, and 85% (P < 0.001) whereas improving signal-to-noise-ratios by 27%, 47%, and 46% (P < 0.001) and contrast-to-noise-ratios by 16%, 25%, and 19% (P < 0.001) with FBP, iDose, and IMR, respectively. The combined use of IMR and O-MAR strongly improves overall image quality and strongly reduces metal artefacts in the CT imaging of a total hip arthroplasty phantom.

  1. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  2. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Schwahofer, Andrea [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Clinical Center Vivantes, Neukoelln (Germany). Dept. of Radiotherapy and Oncology; Baer, Esther [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Kuchenbecker, Stefan; Kachelriess, Marc [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiology; Grossmann, J. Guenter [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Ortenau Klinikum Offenburg-Gengenbach (Germany). Dept. of Radiooncology; Sterzing, Florian [Heidelberg Univ. (Germany). Dept. of Radiation Oncology; German Cancer Research Center, Heidelberg (Germany). Dept. of Radiotherapy

    2015-07-01

    Metal artifacts in computed tomography CT images are one of the main problems in radiation oncology as they introduce uncertainties to target and organ at risk delineation as well as dose calculation. This study is devoted to metal artifact reduction (MAR) based on the monoenergetic extrapolation of a dual energy CT (DECT) dataset. In a phantom study the CT artifacts caused by metals with different densities: aluminum (ρ{sub Al} = 2.7 g/cm{sup 3}), titanium (ρ{sub Ti} = 4.5 g/cm{sup 3}), steel (ρ{sub steel} = 7.9 g/cm{sup 3}) and tungsten (ρ{sub W} = 19.3 g/cm{sup 3}) have been investigated. Data were collected using a clinical dual source dual energy CT (DECT) scanner (Siemens Sector Healthcare, Forchheim, Germany) with tube voltages of 100 kV and 140 kV (Sn). For each tube voltage the data set in a given volume was reconstructed. Based on these two data sets a voxel by voxel linear combination was performed to obtain the monoenergetic data sets. The results were evaluated regarding the optical properties of the images as well as the CT values (HU) and the dosimetric consequences in computed treatment plans. A data set without metal substitute served as the reference. Also, a head and neck patient with dental fillings (amalgam ρ = 10 g/cm{sup 3}) was scanned with a single energy CT (SECT) protocol and a DECT protocol. The monoenergetic extrapolation was performed as described above and evaluated in the same way. Visual assessment of all data shows minor reductions of artifacts in the images with aluminum and titanium at a monoenergy of 105 keV. As expected, the higher the densities the more distinctive are the artifacts. For metals with higher densities such as steel or tungsten, no artifact reduction has been achieved. Likewise in the CT values, no improvement by use of the monoenergetic extrapolation can be detected. The dose was evaluated at a point 7 cm behind the isocenter of a static field. Small improvements (around 1%) can be seen with 105 ke

  3. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner

    International Nuclear Information System (INIS)

    Schwahofer, Andrea; Clinical Center Vivantes, Neukoelln; Baer, Esther; Kuchenbecker, Stefan; Kachelriess, Marc; Grossmann, J. Guenter; Ortenau Klinikum Offenburg-Gengenbach; Sterzing, Florian; German Cancer Research Center, Heidelberg

    2015-01-01

    Metal artifacts in computed tomography CT images are one of the main problems in radiation oncology as they introduce uncertainties to target and organ at risk delineation as well as dose calculation. This study is devoted to metal artifact reduction (MAR) based on the monoenergetic extrapolation of a dual energy CT (DECT) dataset. In a phantom study the CT artifacts caused by metals with different densities: aluminum (ρ Al = 2.7 g/cm 3 ), titanium (ρ Ti = 4.5 g/cm 3 ), steel (ρ steel = 7.9 g/cm 3 ) and tungsten (ρ W = 19.3 g/cm 3 ) have been investigated. Data were collected using a clinical dual source dual energy CT (DECT) scanner (Siemens Sector Healthcare, Forchheim, Germany) with tube voltages of 100 kV and 140 kV (Sn). For each tube voltage the data set in a given volume was reconstructed. Based on these two data sets a voxel by voxel linear combination was performed to obtain the monoenergetic data sets. The results were evaluated regarding the optical properties of the images as well as the CT values (HU) and the dosimetric consequences in computed treatment plans. A data set without metal substitute served as the reference. Also, a head and neck patient with dental fillings (amalgam ρ = 10 g/cm 3 ) was scanned with a single energy CT (SECT) protocol and a DECT protocol. The monoenergetic extrapolation was performed as described above and evaluated in the same way. Visual assessment of all data shows minor reductions of artifacts in the images with aluminum and titanium at a monoenergy of 105 keV. As expected, the higher the densities the more distinctive are the artifacts. For metals with higher densities such as steel or tungsten, no artifact reduction has been achieved. Likewise in the CT values, no improvement by use of the monoenergetic extrapolation can be detected. The dose was evaluated at a point 7 cm behind the isocenter of a static field. Small improvements (around 1%) can be seen with 105 keV. However, the dose uncertainty remains of the

  4. Influence of recycling rate increase of aseptic carton for long-life milk on GWP reduction

    International Nuclear Information System (INIS)

    Mourad, Anna Lucia; Garcia, Eloisa E.C.; Vilela, Gustavo Braz; Von Zuben, Fernando

    2008-01-01

    Tetra Pak, through intensive cooperation with its supply chain, increased the post-consumer recycling rate of the aseptic packaging for long-life milk in the last 10 years. In continuation of a previous study that presented a superior overall performance in terms of reduction of the consumption of natural resources, air emissions and most of the water emissions, the objective of the present work was to apply life cycle assessment (LCA) to measure the global warming potential (GWP). The system was assessed using as functional unit 1000 liters of milk packaged in Tetra Pak Aseptic containers. The reduction of greenhouse gas emissions was calculated for recycling rates of 2%, 22%, 30%, 40% and 70% of the post-consumer residues in Scenarios I (only cardboard recycling) and II (total aseptic laminate recycling). Scenario I showed a 14% reduction in GWP, representing 26 kg of avoided CO 2 equiv. emitted due to the efforts of Tetra Pak to increase the recycling rate from 2% (2000) to 22% (2004). If it will be possible to increase the recycling rate to 70% of post-consumer packages in the future, a 48% reduction of GWP could be attained. Methane exhibited the greatest mass reduction among the greenhouse emissions, since it is emitted during the production of cardboard and also as a result of anaerobic degradation in landfills. The total reduction of the energy requirements of the system due to the increase of the recycling rate (from 2% to 22%) is 154 MJ/1000 liters, a saving of 7%. Scenario II (which considers additional polyethylene and aluminum recycling) has a smaller effect on GWP reduction than Scenario I, since PE/AL represent only 25% of the total mass of the container. The major benefit of the recycling of aseptic cartons is the reduction of the amounts of virgin materials required and the consequent reduction of air emissions. The results of this study can be used to encourage the collection of post-consumer milk cartons as part of environmental education

  5. Synthesis of 2-Alkenylquinoline by Reductive Olefination of Quinoline N-Oxide under Metal-Free Conditions.

    Science.gov (United States)

    Xia, Hong; Liu, Yuanhong; Zhao, Peng; Gou, Shaohua; Wang, Jun

    2016-04-15

    Synthesis of 2-alkenylquinoline by reductive olefination of quinoline N-oxide under metal-free conditions is disclosed. Practically, the reaction could be performed with quinoline as starting material via a one-pot, two-step process. A possible mechanism is proposed that involves a sequential 1,3-dipolar cycloaddition and acid-assisted ring opening followed by a dehydration process.

  6. Reduction of metal exposure of Daubenton's bats (Myotis daubentonii) following remediation of pond sediment as evidenced by metal concentrations in hair

    Energy Technology Data Exchange (ETDEWEB)

    Flache, Lucie, E-mail: Lucie.Flache@bio.uni-giessen.de [Mammalian Ecology Group, Department of Animal Ecology and Systematics, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen (Germany); Ekschmitt, Klemens [Animal Ecology, Department of Animal Ecology and Systematics, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen (Germany); Kierdorf, Uwe [Department of Biology, University of Hildesheim, Universitätsplatz 1, D-31141 Hildesheim (Germany); Czarnecki, Sezin; Düring, Rolf-Alexander [Institute of Soil Science and Soil Conservation, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen (Germany); Encarnação, Jorge A. [Mammalian Ecology Group, Department of Animal Ecology and Systematics, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen (Germany)

    2016-03-15

    Transfer of contaminants from freshwater sediments via aquatic insects to terrestrial predators is well documented in spiders and birds. Here, we analyzed the metal exposure of Myotis daubentonii using an urban pond as their preferred foraging area before and after a remediation measure (sediment dredging) at this pond. Six metal elements (Zn, Cu, Cr, Cd, Pb and Ni) were measured in the sediment of the pond, in EDTA extracts of the sediment and in hair samples of M. daubentonii foraging at the pond. Samples were taken before remediation in 2011 and after remediation in 2013. Metal concentrations were quantified by ICP-OES after miniaturized microwave assisted extraction. In 2011, the pond sediment exhibited a high contamination with nickel, a moderate contamination with copper and chromium and low contents of zinc, cadmium and lead. While sediment metal contents declined only weakly after remediation, a much more pronounced reduction in the concentrations of zinc, copper, chromium and lead concentrations was observed in bat hair. Our results suggest a marked decline in metal exposure of the bats foraging at the pond as a consequence of the remediation measure. It is concluded that Daubenton's bats are suitable bioindicators of metal contamination in aquatic environments, integrating metal exposure via prey insects over their entire foraging area. We further suggest that bat hair is a useful monitoring unit, allowing a non-destructive and non-invasive assessment of metal exposure in bats. - Highlights: • Changes in metal exposure of bats due to remediation measure are documented. • Bats are suitable bioindicators of metal pollution. • Bat hair is a useful monitoring unit in such studies.

  7. Determination of uranium and plutonium in metal conversion products from electrolytic reduction process

    International Nuclear Information System (INIS)

    Lee, Chang Heon; Suh, Moo Yul; Joe, Kih Soo; Sohn, Se Chul; Jee, Kwang Young; Kim, Won Ho

    2005-01-01

    Chemical characterization of process materials is required for the optimization of an electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. A study on the determination of fissile materials in the uranium metal products containing corrosion products, fission products and residual process materials has been performed by controlled-potential coulometric titration which is well known in the field of nuclear science and technology. Interference of Fe, Ni, Cr and Mg (corrosion products), Nd (fission product) and LiCl molten salt (residual process material) on the determination of uranium and plutonium, and the necessity of plutonium separation prior to the titration are discussed in detail. Under the analytical condition established already, their recovery yields are evaluated along with analytical reliability

  8. In-situ metal precipitation in a zinc-aerobic, sandy aquifer by means of biological sulfate reduction

    NARCIS (Netherlands)

    Janssen, G.M.C.M.; Temminghoff, E.J.M.

    2004-01-01

    The applicability of in situ metal precipitation (ISMP) based on bacterial sulfate reduction (BSR) with molasses as carbon source was tested for the immobilization of a zinc plume in an aquifer with highly unsuitable initial conditions (high Eh, low pH, low organic matter content, and low sulfate

  9. Fundamental aspects of alluminothermic reduction of vanadium pentoxide

    International Nuclear Information System (INIS)

    Mourao, M.B.; Capocchi, J.D.T.

    1982-01-01

    The aluminothermic process for the reduction of vanadium pentoxide is considered. Its thermochemistry features are presented, as well as the heat transfer and the rate phenomena concerning such a reaction system. It is pointed out also the effect of the process parameters on the recovery of metallic vanadium. (Author) [pt

  10. Spontaneous Emission and Energy Transfer Rates Near a Coated Metallic Cylinder

    OpenAIRE

    BRADLEY, LOUISE

    2014-01-01

    PUBLISHED The spontaneous emission and energy transfer rates of quantum systems in proximity to a dielectrically coated metallic cylinder are investigated using a Green's tensor formalism. The excitation of surface plasmon modes can significantly modify these rates. The spontaneous emission and energy transfer rates are investigated as a function of the material and dimensions of the core and coating, as well as the emission wavelength of the donor. For the material of the core we consider...

  11. Ross filter pairs for metal artefact reduction in x-ray tomography: a case study based on imaging and segmentation of metallic implants

    Science.gov (United States)

    Arhatari, Benedicta D.; Abbey, Brian

    2018-01-01

    Ross filter pairs have recently been demonstrated as a highly effective means of producing quasi-monoenergetic beams from polychromatic X-ray sources. They have found applications in both X-ray spectroscopy and for elemental separation in X-ray computed tomography (XCT). Here we explore whether they could be applied to the problem of metal artefact reduction (MAR) for applications in medical imaging. Metal artefacts are a common problem in X-ray imaging of metal implants embedded in bone and soft tissue. A number of data post-processing approaches to MAR have been proposed in the literature, however these can be time-consuming and sometimes have limited efficacy. Here we describe and demonstrate an alternative approach based on beam conditioning using Ross filter pairs. This approach obviates the need for any complex post-processing of the data and enables MAR and segmentation from the surrounding tissue by exploiting the absorption edge contrast of the implant.

  12. Synthesis of metal nanoparticles using ionizing radiation and developing their applications

    International Nuclear Information System (INIS)

    Ramnani, S.P.; Sabharwal, S.

    2008-01-01

    Fine metal particles with nanometer scale dimensions are of current interest due to their unusual properties that are different from their corresponding bulk materials. They are being explored for potential applications in optics, electronics, magnetics, catalyst, chemical sensing and biomedicine. A variety of methods are available in the literature for the synthesis of metal nanoparticles. The soft solution method involving the reduction of metal ion in the solution using reducing agent such as sodium borohydride, formaldehyde, trisodium citrate etc, are the most widely used. The ability of ionizing radiation to bring about ionization and excitation in the medium through which they travel results in the formation of reactive species which can be utilized to reduce metal ions into metal atoms to generate metal nanoparticles. The difference between gamma radiation method and soft solution method is that in the former the reducing species are generated in-situ whereas in later the reducing agent are incorporated into the system from an external source. A particular advantage of radiolysis method is that the reduction rate can be controlled by the selected dose rate unlike chemical method where the local concentration of reducing species is very high and cannot be controlled

  13. Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory

    International Nuclear Information System (INIS)

    Chen, Xin; Chen, Shuangjing; Wang, Jinyu

    2016-01-01

    Highlights: • The screened M-G structures are very thermodynamically stable, and the stability is even higher than that of the corresponding bulk metal surfaces. • The binding energies of ORR intermediates suggest that they are not linear dependence, which are different form the cases found on some metal-based catalysts. • The Au-, Co-, and Ag-G structures could be used as the ORR catalysts. - Abstract: Graphene doping is a promising direction for developing effective oxygen reduction reaction (ORR) catalysts. In this paper, we computationally investigated the ORR performance of 10 kinds of metal-doped graphene (M-G) catalysts, namely, Al-, Si-, Mn-, Fe-, Co-, Ni-, Pd-, Ag-, Pt-, and Au-G. The results shown that the binding energies of the metal atoms incorporated into the graphene vacancy are higher than their bulk cohesive energies, indicating the formed M-G catalysts are even more stable than the corresponding bulk metal surfaces, and thus avoid the metals dissolution in the reaction environment. We demonstrated that the linear relation among the binding energies of the ORR intermediates that found on metal-based materials does not hold for the M-G catalysts, therefore a single binding energy of intermediate alone is not sufficient to evaluate the ORR activity of an arbitrary catalyst. By analysis of the detailed ORR processes, we predicted that the Au-, Co-, and Ag-G materials can be used as the ORR catalysts.

  14. Electrochemical Reduction of CO2 at Metal Electrodes in a Distillable Ionic Liquid.

    Science.gov (United States)

    Chen, Lu; Guo, Si-Xuan; Li, Fengwang; Bentley, Cameron; Horne, Mike; Bond, Alan M; Zhang, Jie

    2016-06-08

    The electroreduction of CO2 in the distillable ionic liquid dimethylammonium dimethylcarbamate (dimcarb) has been investigated with 17 metal electrodes. Analysis of the electrolysis products reveals that aluminum, bismuth, lead, copper, nickel, palladium, platinum, iron, molybdenum, titanium and zirconium electroreduce the available protons in dimcarb to hydrogen rather than reducing CO2 . Conversely, indium, tin, zinc, silver and gold are able to catalyze the reduction of CO2 to predominantly carbon monoxide (CO) and to a lesser extent, formate ([HCOO](-) ). In all cases, the applied potential was found to have a minimal influence on the distribution of the reduction products. Overall, indium was found to be the best electrocatalyst for CO2 reduction in dimcarb, with faradaic efficiencies of approximately 45 % and 40 % for the generation of CO and [HCOO](-) , respectively, at a potential of -1.34 V versus Cc(+/0) (Cc(+) =cobaltocenium) employing a dimethylamine to CO2 ratio of less than 1.8:1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. From melamine sponge towards 3D sulfur-doping carbon nitride as metal-free electrocatalysts for oxygen reduction reaction

    Science.gov (United States)

    Xu, Jingjing; Li, Bin; Li, Songmei; Liu, Jianhua

    2017-07-01

    Development of new and efficient metal-free electrocatalysts for replacing Pt to improve the sluggish kinetics of oxygen reduction reaction (ORR) is of great importance to emerging renewable energy technologies such as metal-air batteries and polymer electrolyte fuel cells. Herein, 3D sulfur-doping carbon nitride (S-CN) as a novel metal-free ORR electrocatalyst was synthesized by exploiting commercial melamine sponge as raw material. The sulfur atoms were doping on CN networks uniformly through numerous S-C bonds which can provide additional active sites. And it was found that the S-CN exhibited high catalytic activity for ORR in term of more positive onset potential, higher electron transfer number and higher cathodic density. This work provides a novel choice of metal-free ORR electrocatalysts and highlights the importance of sulfur-doping CN in metal-free ORR electrocatalysts.

  16. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction.

    Science.gov (United States)

    Huo, Shengjuan; Weng, Zhe; Wu, Zishan; Zhong, Yiren; Wu, Yueshen; Fang, Jianhui; Wang, Hailiang

    2017-08-30

    One major challenge to the electrochemical conversion of CO 2 to useful fuels and chemical products is the lack of efficient catalysts that can selectively direct the reaction to one desirable product and avoid the other possible side products. Making use of strong metal/oxide interactions has recently been demonstrated to be effective in enhancing electrocatalysis in the liquid phase. Here, we report one of the first systematic studies on composition-dependent influences of metal/oxide interactions on electrocatalytic CO 2 reduction, utilizing Cu/SnO x heterostructured nanoparticles supported on carbon nanotubes (CNTs) as a model catalyst system. By adjusting the Cu/Sn ratio in the catalyst material structure, we can tune the products of the CO 2 electrocatalytic reduction reaction from hydrocarbon-favorable to CO-selective to formic acid-dominant. In the Cu-rich regime, SnO x dramatically alters the catalytic behavior of Cu. The Cu/SnO x -CNT catalyst containing 6.2% of SnO x converts CO 2 to CO with a high faradaic efficiency (FE) of 89% and a j CO of 11.3 mA·cm -2 at -0.99 V versus reversible hydrogen electrode, in stark contrast to the Cu-CNT catalyst on which ethylene and methane are the main products for CO 2 reduction. In the Sn-rich regime, Cu modifies the catalytic properties of SnO x . The Cu/SnO x -CNT catalyst containing 30.2% of SnO x reduces CO 2 to formic acid with an FE of 77% and a j HCOOH of 4.0 mA·cm -2 at -0.99 V, outperforming the SnO x -CNT catalyst which only converts CO 2 to formic acid in an FE of 48%.

  17. Final Technical Report. Factors Controlling In Situ Uranium and Technetium Bio-Reduction and Reoxidation at the NABIR Field Research Center

    International Nuclear Information System (INIS)

    Dr. Jonathan D. Istok , Oregon State University; Dr. Lee Krumholz, University of Oklahoma; Dr. James McKinley, Pacific Northwest National Laboratory; Dr. Baohua Gu, Oak Ridge National Laboratory

    2006-01-01

    The overall goal of this project was to better understand factors and processes controlling microbially-mediated reduction and reoxidation of U and Tc in the unconsolidated residuum overlying the Nolichucky shale at the Field Research Center (FRC) at Oak Ridge National Laboratory. Project activities were designed to test the following hypotheses: (1) The small rates of denitrification and U bio-reduction observed in laboratory incubations of sediments from FRC Area 1 at low pH (< 5) are due to the presence of high concentrations of toxic metals (especially Al and Ni). Rates of Tc reduction will also be small at low pH in the presence of high concentrations of toxic metals. (2) In situ rates of U and perhaps Tc bio-reduction can be increased by increasing system pH and thus precipitating toxic metals from solution. (3) In situ rates of U and Tc bio-reduction can be increased by the addition of humic substances, which complex toxic metals such as Al and Ni, buffer pH, and serve as electron shuttles to facilitate U and Tc reduction. (4) Microbially-reduced U and Tc are rapidly oxidized in the presence of high concentrations of NO3- and the denitrification intermediates NO2-, N2O, and NO. (5) An electron-donor-addition strategy (type and form of donor, with or without pH adjustment and with or without the co-addition of humic substances) can be devised to reduce U and Tc concentrations for an extended period of time in low pH groundwater in the presence of high concentrations of NO3-, Al, and Ni. This strategy operates by removing or complexing these components of FRC groundwater to allow the subsequent reduction of U(VI) and Tc(VII)

  18. The efficacy of noble metal alloy urinary catheters in reducing catheter-associated urinary tract infection

    Directory of Open Access Journals (Sweden)

    Alanood Ahmed Aljohi

    2016-01-01

    Results: A 90% relative risk reduction in the rate of CAUTI was observed with the noble metal alloy catheter compared to the standard catheter (10 vs. 1 cases, P = 0.006. When considering both catheter-associated asymptomatic bacteriuria and CAUTI, the relative risk reduction was 83% (12 vs. 2 cases, P = 0.005. In addition to CAUTI, the risk of acquiring secondary bacteremia was lower (100% for the patients using noble metal alloy catheters (3 cases in the standard group vs. 0 case in the noble metal alloy catheter group, P = 0.24. No adverse events related to any of the used catheters were recorded. Conclusion: Results from this study revealed that noble metal alloy catheters are safe to use and significantly reduce CAUTI rate in ICU patients after 3 days of use.

  19. Influence of deformation rate on plasticity of metals under pressure

    International Nuclear Information System (INIS)

    Churbaev, R.V.; Dobromyslov, A.V.; Kolmogorov, V.L.; Taluts, G.G.

    1990-01-01

    Change of polycrystalline molybdenum (BCC) and titanium (HCP) plasticity under pressure depeding on the deformation rate at the room temperature is studied. It is shown that the reduction of molybdenum and titanium deformation rate leads to a substantial growth of their plastic properties with the effect being increased with pressure growth. Production of several necks testifying to the transition to a superplastic state is observed at high pressures and low deformation rates. A functional dependence of plasticity change on the deformation rate under pressure is ascertained

  20. AuCu@Pt Nanoalloys for Catalytic Application in Reduction of 4-Nitrophenol

    Directory of Open Access Journals (Sweden)

    Sadia Mehmood

    2016-01-01

    Full Text Available To enhance and optimize nanocatalyst ability for nitrophenol (4-NP reduction reaction we look beyond Au-metal nanoparticles and describe a new class of Au nanoalloys with controlled composition for core of AuCu-metals and Pt-metal shell. The reduction of 4-NP was investigated in aqueous media spectroscopically on 7.8 nm Au nanospheres (AuNSs, 8.3 nm AuCuNSs, and 9.1 nm AuCu@Pt core-shell NSs in diameter. The rate constants of the catalyzed reaction at room temperature, activation energies, and entropies of activation of reactions catalyzed by the AuCu@Pt core-shell NSs are found to have different values to those of the pure metal NSs. The results strongly support the proposal that catalysis by nanoparticles is taking place efficiently on the surface of NSs. These core-shell nanocatalysts exhibited stability throughout the reduction reaction and proved that heterogonous type mechanisms are most likely to be dominant in nanoalloy based catalysis if the surface of the NSs is not defected upon shell incorporation.

  1. Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction.

    Science.gov (United States)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi; Werth, Charles J; Zhang, Yalei; Zhou, Xuefei

    2015-04-09

    The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd-In/Al2O3 with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO2-buffered water and under continuous H2 as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd-In ratio of 4, with a first-order rate constant (k(obs) = 0.241 L min(-1) g(cata)(-1)) that was 1.3× higher than that of conventional Pd-In/Al2O3 (5 wt% Pd; 0.19 L min(-1) g(cata)(-1)). The Pd-In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface

    Science.gov (United States)

    Lovley, Derek R.; Anderson, Robert T.

    Dissimilatory Fe(III)-reducing microorganisms have the ability to destroy organic contaminants under anaerobic conditions by oxidizing them to carbon dioxide. Some Fe(III)-reducing microorganisms can also reductively dechlorinate chlorinated contaminants. Fe(III)-reducing microorganisms can reduce a variety of contaminant metals and convert them from soluble forms to forms that are likely to be immobilized in the subsurface. Studies in petroleum-contaminated aquifers have demonstrated that Fe(III)-reducing microorganisms can be effective agents in removing aromatic hydrocarbons from groundwater under anaerobic conditions. Laboratory studies have demonstrated the potential for Fe(III)-reducing microorganisms to remove uranium from contaminated groundwaters. The activity of Fe(III)-reducing microorganisms can be stimulated in several ways to enhance organic contaminant oxidation and metal reduction. Molecular analyses in both field and laboratory studies have demonstrated that microorganisms of the genus Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination. Des micro-organismes simulant la réduction du fer ont la capacité de détruire des polluants organiques dans des conditions anérobies en les oxydant en dioxyde de carbone. Certains micro-organismes réducteurs de fer peuvent aussi dé-chlorer par réduction des polluants chlorés. Des micro-organismes réducteurs de fer peuvent réduire tout un ensemble de métaux polluants et les faire passer de formes solubles à des formes qui sont susceptibles d'être immobilisées dans le milieu

  3. Engineering MerR for Sequestration and MerA for Reduction of Toxic Metals and Radionuclides

    International Nuclear Information System (INIS)

    Summers, Anne O.

    2008-01-01

    The objectives of this project were (1) to alter a metalloregulatory protein (MerR) so that it would bind other toxic metals or radionuclides with similar affinity so that the engineered protein itself and/or bacteria expressing it could be deployed in the environment to specifically sequester such metals and (2) to alter the mercuric reductase, MerA, to reduce radionuclides and render them less mobile. Both projects had a basic science component. In the first case, such information about MerR illuminates how proteins discriminate very similar metals/elements. In the second case, information about MerA reveals the criteria for transmission of reducing equivalents from NADPH to redox-active metals. The work involved genetic engineering of all or parts of both proteins and examination of their resultant properties both in vivo and in vitro, the latter with biochemical and biophysical tools including equilibrium and non-equilibrium dialysis, XAFS, NMR, x-ray crystallography, and titration calorimetry. We defined the basis for metal specificity in MerR, devised a bacterial strain that sequesters Hg while growing, characterized gold reduction by MerA and the role of the metallochaperone domain of MerA, and determined the 3-D structure of MerB, the organomercurial lyase.

  4. Plasma-chemical production of metal-polypyrrole-catalysts for the reduction of oxygen in fuel cells. Precious-metal-free catalysts for fuel cells.; Plasmachemische Erzeugung von Metall-Polypyrrol-Katalysatoren fuer die Sauerstoffreduktion in Brennstoffzellen. Edelmetallfreie Katalysatoren fuer Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Christian

    2013-07-01

    This thesis is about the production of non noble metal catalysts for the oxygen reduction reaction in fuel cells. Therefore, a novel dual plasma process is developed, constructed and the so-produced films are analysed by various electrochemical (CV, RDE and RRDE) and structural methods (SEM, EDX, IR, XPS, conductivity, XRD, NEXAFS, EXAFS and TEM). It is shown, that by doing this, non noble metal catalysts could be produced without the need of a high temperature treatment. Furthermore, the catalytic activity obtained is superior to that of chemically produced metal-polypyrrole films.

  5. A calculation of the surface recombination rate constant for hydrogen isotopes on metals

    International Nuclear Information System (INIS)

    Baskes, M.J.

    1980-01-01

    The surface recombination rate constant for hydrogen isotopes on a metal has been calculated using a simple model whose parameters may be determined by direct experimental measurements. Using the experimental values for hydrogen diffusivity, solubility, and sticking coefficient at zero surface coverage a reasonable prediction of the surface recombination constant may be made. The calculated recombination constant is in excellent agreement with experiment for bcc iron. A heuristic argument is developed which, along with the rate constant calculation, shows that surface recombination is important in those metals in which hydrogen has an exothermic heat of solution. (orig.)

  6. STUDY ON SOFTENING AND DROPPING PROPERTIES OF METALIZED BURDEN INSIDE BLAST FURNACE

    Directory of Open Access Journals (Sweden)

    Bi-yang Tuo

    2014-12-01

    Full Text Available The inferences of burden metallization rate on softening-melting dropping properties were investigated through softening-melting dropping test of three kinds of metalized burden pressure drop. The results indicated that the softeningmelting temperature interval of pre-reduction mixed burden is bigger than primeval mixed burden, the melting interval narrow with the rise of metallization rate of ferric burden as well as dropping temperature interval. The average pressure drop, maximum pressure drop and softening-melting dropping properties eigenvalue decrease with the rise of metallization rate of ferric burden. Besides, the dropping temperature of burden reduces with the rise of carbon content of molten iron. The combination high metalized burden and higher carbon content of molten iron is benefit to decreasing thickness of cohesive zone and improve permeability of cohesive zone.

  7. Electrochemical Reduction Process for Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young; Hong, Sun-Seok; Park, Wooshin; Im, Hun Suk; Oh, Seung-Chul; Won, Chan Yeon; Cha, Ju-Sun; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    Nuclear energy is expected to meet the growing energy demand while avoiding CO{sub 2} emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-Li{sub 2}O electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

  8. MO-DE-207A-10: One-Step CT Reconstruction for Metal Artifact Reduction by a Modification of Penalized Weighted Least-Squares (PWLS)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H; Chen, J [University of California San Francisco, San Francisco, CA (United States)

    2016-06-15

    Purpose: Metal objects create severe artifacts in kilo-voltage (kV) CT image reconstructions due to the high attenuation coefficients of high atomic number objects. Most of the techniques devised to reduce this artifact utilize a two-step approach, which do not reliably yield the qualified reconstructed images. Thus, for accuracy and simplicity, this work presents a one-step reconstruction method based on a modified penalized weighted least-squares (PWLS) technique. Methods: Existing techniques for metal artifact reduction mostly adopt a two-step approach, which conduct additional reconstruction with the modified projection data from the initial reconstruction. This procedure does not consistently perform well due to the uncertainties in manipulating the metal-contaminated projection data by thresholding and linear interpolation. This study proposes a one-step reconstruction process using a new PWLS operation with total-variation (TV) minimization, while not manipulating the projection. The PWLS for CT reconstruction has been investigated using a pre-defined weight, based on the variance of the projection datum at each detector bin. It works well when reconstructing CT images from metal-free projection data, which does not appropriately penalize metal-contaminated projection data. The proposed work defines the weight at each projection element under the assumption of a Poisson random variable. This small modification using element-wise penalization has a large impact in reducing metal artifacts. For evaluation, the proposed technique was assessed with two noisy, metal-contaminated digital phantoms, against the existing PWLS with TV minimization and the two-step approach. Result: The proposed PWLS with TV minimization greatly improved the metal artifact reduction, relative to the other techniques, by watching the results. Numerically, the new approach lowered the normalized root-mean-square error about 30 and 60% for the two cases, respectively, compared to the two

  9. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides

    Science.gov (United States)

    Lukatskaya, Maria R.; Kota, Sankalp; Lin, Zifeng; Zhao, Meng-Qiang; Shpigel, Netanel; Levi, Mikhael D.; Halim, Joseph; Taberna, Pierre-Louis; Barsoum, Michel W.; Simon, Patrice; Gogotsi, Yury

    2017-08-01

    The use of fast surface redox storage (pseudocapacitive) mechanisms can enable devices that store much more energy than electrical double-layer capacitors (EDLCs) and, unlike batteries, can do so quite rapidly. Yet, few pseudocapacitive transition metal oxides can provide a high power capability due to their low intrinsic electronic and ionic conductivity. Here we demonstrate that two-dimensional transition metal carbides (MXenes) can operate at rates exceeding those of conventional EDLCs, but still provide higher volumetric and areal capacitance than carbon, electrically conducting polymers or transition metal oxides. We applied two distinct designs for MXene electrode architectures with improved ion accessibility to redox-active sites. A macroporous Ti3C2Tx MXene film delivered up to 210 F g-1 at scan rates of 10 V s-1, surpassing the best carbon supercapacitors known. In contrast, we show that MXene hydrogels are able to deliver volumetric capacitance of ˜1,500 F cm-3 reaching the previously unmatched volumetric performance of RuO2.

  10. Optimized protocols for cardiac magnetic resonance imaging in patients with thoracic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, Laura J.; Ratnayaka, Kanishka [Children' s National Health System, Division of Cardiology, Washington, DC (United States); National Institutes of Health, National Heart, Lung and Blood Institute, Bethesda, MD (United States); Cross, Russell R.; O' Brien, Kendall E. [Children' s National Health System, Division of Cardiology, Washington, DC (United States); Hansen, Michael S. [National Institutes of Health, National Heart, Lung and Blood Institute, Bethesda, MD (United States)

    2015-09-15

    Cardiac magnetic resonance (MR) imaging is a valuable tool in congenital heart disease; however patients frequently have metal devices in the chest from the treatment of their disease that complicate imaging. Methods are needed to improve imaging around metal implants near the heart. Basic sequence parameter manipulations have the potential to minimize artifact while limiting effects on image resolution and quality. Our objective was to design cine and static cardiac imaging sequences to minimize metal artifact while maintaining image quality. Using systematic variation of standard imaging parameters on a fluid-filled phantom containing commonly used metal cardiac devices, we developed optimized sequences for steady-state free precession (SSFP), gradient recalled echo (GRE) cine imaging, and turbo spin-echo (TSE) black-blood imaging. We imaged 17 consecutive patients undergoing routine cardiac MR with 25 metal implants of various origins using both standard and optimized imaging protocols for a given slice position. We rated images for quality and metal artifact size by measuring metal artifact in two orthogonal planes within the image. All metal artifacts were reduced with optimized imaging. The average metal artifact reduction for the optimized SSFP cine was 1.5+/-1.8 mm, and for the optimized GRE cine the reduction was 4.6+/-4.5 mm (P < 0.05). Quality ratings favored the optimized GRE cine. Similarly, the average metal artifact reduction for the optimized TSE images was 1.6+/-1.7 mm (P < 0.05), and quality ratings favored the optimized TSE imaging. Imaging sequences tailored to minimize metal artifact are easily created by modifying basic sequence parameters, and images are superior to standard imaging sequences in both quality and artifact size. Specifically, for optimized cine imaging a GRE sequence should be used with settings that favor short echo time, i.e. flow compensation off, weak asymmetrical echo and a relatively high receiver bandwidth. For static

  11. Strain Rate Dependant Material Model for Orthotropic Metals

    International Nuclear Information System (INIS)

    Vignjevic, Rade

    2016-01-01

    In manufacturing processes anisotropic metals are often exposed to the loading with high strain rates in the range from 10"2 s"-"1 to 10"6 s"-"1 (e.g. stamping, cold spraying and explosive forming). These types of loading often involve generation and propagation of shock waves within the material. The material behaviour under such a complex loading needs to be accurately modelled, in order to optimise the manufacturing process and achieve appropriate properties of the manufactured component. The presented research is related to development and validation of a thermodynamically consistent physically based constitutive model for metals under high rate loading. The model is capable of modelling damage, failure and formation and propagation of shock waves in anisotropic metals. The model has two main parts: the strength part which defines the material response to shear deformation and an equation of state (EOS) which defines the material response to isotropic volumetric deformation [1]. The constitutive model was implemented into the transient nonlinear finite element code DYNA3D [2] and our in house SPH code. Limited model validation was performed by simulating a number of high velocity material characterisation and validation impact tests. The new damage model was developed in the framework of configurational continuum mechanics and irreversible thermodynamics with internal state variables. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Tuller and Bucher [3], Klepaczko [4] was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model Follansbee and Kocks [5], 1988; Chen and Gray [6] which was used to control evolution of flow stress during plastic

  12. Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen.

    Science.gov (United States)

    Zee, David Z; Chantarojsiri, Teera; Long, Jeffrey R; Chang, Christopher J

    2015-07-21

    Climate change, rising global energy demand, and energy security concerns motivate research into alternative, sustainable energy sources. In principle, solar energy can meet the world's energy needs, but the intermittent nature of solar illumination means that it is temporally and spatially separated from its consumption. Developing systems that promote solar-to-fuel conversion, such as via reduction of protons to hydrogen, could bridge this production-consumption gap, but this effort requires invention of catalysts that are cheap, robust, and efficient and that use earth-abundant elements. In this context, catalysts that utilize water as both an earth-abundant, environmentally benign substrate and a solvent for proton reduction are highly desirable. This Account summarizes our studies of molecular metal-polypyridyl catalysts for electrochemical and photochemical reduction of protons to hydrogen. Inspired by concept transfer from biological and materials catalysts, these scaffolds are remarkably resistant to decomposition in water, with fast and selective electrocatalytic and photocatalytic conversions that are sustainable for several days. Their modular nature offers a broad range of opportunities for tuning reactivity by molecular design, including altering ancillary ligand electronics, denticity, and/or incorporating redox-active elements. Our first-generation complex, [(PY4)Co(CH3CN)2](2+), catalyzes the reduction of protons from a strong organic acid to hydrogen in 50% water. Subsequent investigations with the pentapyridyl ligand PY5Me2 furnished molybdenum and cobalt complexes capable of catalyzing the reduction of water in fully aqueous electrolyte with 100% Faradaic efficiency. Of particular note, the complex [(PY5Me2)MoO](2+) possesses extremely high activity and durability in neutral water, with turnover frequencies at least 8500 mol of H2 per mole of catalyst per hour and turnover numbers over 600 000 mol of H2 per mole of catalyst over 3 days at an

  13. Generalized Rate Theory for Void and Bubble Swelling and its Application to Plutonium Metal Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolfer, W. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    In the classical rate theory for void swelling, vacancies and self-interstitials are produced by radiation in equal numbers, and in addition, thermal vacancies are also generated at the sinks, primarily at edge dislocations, at voids, and at grain boundaries. In contrast, due to the high formation energy of self-interstitials for normal metals and alloys, their thermal generation is negligible, as pointed out by Bullough and Perrin. However, recent DFT calculations of the formation energy of self-interstitial atoms in bcc metals have revealed that the sum of formation and migration energies for self-interstitials atoms (SIA) is of the same order of magnitude as for vacancies. The ratio of the activation energies for thermal generation of SIA and vacancies is presented. For fcc metals, this ratio is around three, but for bcc metals it is around 1.5. Reviewing theoretical predictions of point defect properties in δ-Pu, this ratio could possibly be less than one. As a result, thermal generation of SIA in bcc metals and in plutonium must be taken into considerations when modeling the growth of voids and of helium bubbles, and the classical rate theory (CRT) for void and bubble swelling must be extended to a generalized rate theory (GRT).

  14. Reduction of metal artefacts in musculoskeletal imaging

    International Nuclear Information System (INIS)

    Sutter, Reto; Dietrich, Tobias

    2016-01-01

    Joint replacement and other orthopaedic implants are utilized in many patients with musculoskeletal disorders. While these operations commonly show a good clinical result, a substantial number of patients need to undergo postoperative imaging during follow-up. The presence of orthopaedic implants induces severe metal artefacts at MRI and CT. We review several basic methods and advanced techniques for reducing metal artefacts at MRI and CT in order to enable a diagnostic examination in patients with metal implants. With the use of these techniques, MRI and CT are important and reliable modalities to examine patients with joint replacement and orthopaedic implants.

  15. Mechanisms of Furfural Reduction on Metal Electrodes: Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates

    International Nuclear Information System (INIS)

    Chadderdon, Xiaotong H.; Chadderdon, David J.; Matthiesen, John E.

    2017-01-01

    Electrochemical reduction of biomass-derived platform molecules is an emerging route for the sustainable production of fuels and chemicals. Understanding gaps between reaction conditions, underlying mechanisms, and product selectivity have limited the rational design of active, stable, and selective catalyst systems. Here, the mechanisms of electrochemical reduction of furfural, an important biobased platform molecule and model for aldehyde reduction, are explored through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. By understanding the underlying mechanisms it enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important biobased polymer precursors and fuels.

  16. Mechanisms of Furfural Reduction on Metal Electrodes: Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates.

    Science.gov (United States)

    Chadderdon, Xiaotong H; Chadderdon, David J; Matthiesen, John E; Qiu, Yang; Carraher, Jack M; Tessonnier, Jean-Philippe; Li, Wenzhen

    2017-10-11

    Electrochemical reduction of biomass-derived platform molecules is an emerging route for the sustainable production of fuels and chemicals. However, understanding gaps between reaction conditions, underlying mechanisms, and product selectivity have limited the rational design of active, stable, and selective catalyst systems. In this work, the mechanisms of electrochemical reduction of furfural, an important biobased platform molecule and model for aldehyde reduction, are explored through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important biobased polymer precursors and fuels.

  17. Regulation of the flow rate of liquid-metal coolants on experimental stands

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Laptev, G.I.

    1988-01-01

    Systems for automatic regulation of the flow rate of alkali metals, based on the series ENIV, VIN, and TsLIN three-phase electromagnetic pumps with a pumping rate of 0.5-200 m 3 per hour, were evaluated. The stability of each system was investigated by the method of undamped oscillations. The possibility of employing the analog temperature regulators VRT-2, RPA-T, and R113 was assessed. The functions performed by the most suitable automatic regulation unit, the RPA-T, were described. The limiting period of flow rate oscillations with a maximum gain of the RPA-T in alkali metal regulation systems equaled about 0.5 sec and the minimum integration time of the RPA-T was an order of magnitude longer than the optimal interval. Use of the systems on experimental stands enabled raising the quality of the studies and expanding the zone of servicing of the facilities by the same personnel

  18. Metal-Organic-Framework-Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution.

    Science.gov (United States)

    Liu, Shaohong; Wang, Zhiyu; Zhou, Si; Yu, Fengjiao; Yu, Mengzhou; Chiang, Chang-Yang; Zhou, Wuzong; Zhao, Jijun; Qiu, Jieshan

    2017-08-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious-metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double-shelled hybrid nanocages with outer shells of Co-N-doped graphitic carbon (Co-NGC) and inner shells of N-doped microporous carbon (NC) by templating against core-shell metal-organic frameworks. The double-shelled NC@Co-NGC nanocages well integrate the high activity of Co-NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO 2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn-air batteries. First-principles calculations reveal that the high catalytic activities of Co-NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow-site C atoms with respect to the Co lattice in the Co-NGC structure is a vital rate-determining step to achieve excellent bifunctional electrocatalytic activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Genome sequence of Desulfitobacterium hafniense DCB-2, a Gram-positive anaerobe capable of dehalogenation and metal reduction

    Directory of Open Access Journals (Sweden)

    Kim Sang-Hoon

    2012-02-01

    Full Text Available Abstract Background The genome of the Gram-positive, metal-reducing, dehalorespiring Desulfitobacterium hafniense DCB-2 was sequenced in order to gain insights into its metabolic capacities, adaptive physiology, and regulatory machineries, and to compare with that of Desulfitobacterium hafniense Y51, the phylogenetically closest strain among the species with a sequenced genome. Results The genome of Desulfitobacterium hafniense DCB-2 is composed of a 5,279,134-bp circular chromosome with 5,042 predicted genes. Genome content and parallel physiological studies support the cell's ability to fix N2 and CO2, form spores and biofilms, reduce metals, and use a variety of electron acceptors in respiration, including halogenated organic compounds. The genome contained seven reductive dehalogenase genes and four nitrogenase gene homologs but lacked the Nar respiratory nitrate reductase system. The D. hafniense DCB-2 genome contained genes for 43 RNA polymerase sigma factors including 27 sigma-24 subunits, 59 two-component signal transduction systems, and about 730 transporter proteins. In addition, it contained genes for 53 molybdopterin-binding oxidoreductases, 19 flavoprotein paralogs of the fumarate reductase, and many other FAD/FMN-binding oxidoreductases, proving the cell's versatility in both adaptive and reductive capacities. Together with the ability to form spores, the presence of the CO2-fixing Wood-Ljungdahl pathway and the genes associated with oxygen tolerance add flexibility to the cell's options for survival under stress. Conclusions D. hafniense DCB-2's genome contains genes consistent with its abilities for dehalogenation, metal reduction, N2 and CO2 fixation, anaerobic respiration, oxygen tolerance, spore formation, and biofilm formation which make this organism a potential candidate for bioremediation at contaminated sites.

  20. An adaptive approach to metal artifact reduction in helical computed tomography for radiation therapy treatment planning: Experimental and clinical studies

    International Nuclear Information System (INIS)

    Yazdia, Mehran; Gingras, Luc; Beaulieu, Luc

    2005-01-01

    Purpose: In this article, an approach to metal artifact reduction is proposed that is practical for clinical use in radiation therapy. It is based on a new interpolation scheme of the projections associated with metal implants in helical computed tomography (CT) scanners. Methods and Materials: A three-step approach was developed consisting of an automatic algorithm for metal implant detection, a correction algorithm for helical projections, and a new, efficient algorithm for projection interpolation. The modified raw projection data are transferred back to the CT scanner device where CT slices are regenerated using the built-in reconstruction operator. The algorithm was tested on a CT calibration phantom in which the density of inserted objects are known and on clinical prostate cases with two hip prostheses. The results are evaluated using the CT number and shape of the objects. Results: The validations on a CT calibration phantom with various inserts of known densities show that the algorithm improved the overall image quality by restoring the shape and the representative CT number of the objects in the image. For the clinical hip replacement cases, a large fraction of the bladder, rectum, and prostate that were not visible on the original CT slices were recovered using the algorithm. Precise contouring of the target volume was thus feasible. Without this enhancement, physicians would have drawn bigger margins to be sure to include the target and, at the same time, could have prescribed a lower dose to keep the same level of normal tissue toxicity. Conclusions: In both phantom experiment and patient studies, the algorithm resulted in significant artifact reduction with increases in the reliability of planning procedure for the case of metallic hip prostheses. This algorithm is now clinically used as a preprocessing before treatment planning for metal artifact reduction

  1. Controllable reductive method for synthesizing metal-containing particles

    Science.gov (United States)

    Moon, Ji-Won; Jung, Hyunsung; Phelps, Tommy Joe; Duty, Chad E.; Ivanov, Ilia N.; Joshi, Pooran Chandra; Jellison, Jr., Gerald Earle; Armstrong, Beth Louise; Smith, Sean Campbell; Rondinone, Adam Justin; Love, Lonnie J.

    2018-03-06

    The invention is directed to a method for producing metal-containing particles, the method comprising subjecting an aqueous solution comprising a metal salt, E.sub.h, lowering reducing agent, pH adjusting agent, and water to conditions that maintain the E.sub.h value of the solution within the bounds of an E.sub.h-pH stability field corresponding to the composition of the metal-containing particles to be produced, and producing said metal-containing particles in said aqueous solution at a selected E.sub.h value within the bounds of said E.sub.h-pH stability field. The invention is also directed to the resulting metal-containing particles as well as devices in which they are incorporated.

  2. Cyclic strength of metals at impact strain rates

    International Nuclear Information System (INIS)

    Eleiche, A.M.; El-Kady, M.M.

    1987-01-01

    Rigorous understanding of the effects of impact loading on the mechanical response of materials and structures is essential for the optimum design and safe operation of many sophisticated engineering systems and components, such as industrial high-energy-rate fabrication processes and nuclear reactor containments. Extensive data are available at present on the dynamic behaviour of most metals in uniaxial tension, compression, torsion and pure shear, when they are subjected to diversified loading conditions, ranging from those characterised by monotonic constant rates, to those involving forward or reverse strain-rate jumps of several orders of magnitude. What appears to be missing in the current material data banks, however, is detailed information concerning the mechanical response under cyclic loading at impact strain rates. Such data are needed for engineering design purposes on one hand, and for the formulation of proper constitutive equations and the accurate modeling of deformation processes on the other. In the present paper, typical stress-strain characteristics at ambient temperature for copper, mild steel and titanium are first exhibited. The application of the unified Bodner-Partom constitutive theory to these data is then presented and discussed. (orig./GL)

  3. Microbial Metabolite Production for Accelerated Metal and Radionuclide Bioremediation (Microbial Metabolite Production Report)

    International Nuclear Information System (INIS)

    TURICK, CHARLES

    2004-01-01

    Biogeochemical activity is an ongoing and dynamic process due to bacterial activity in the subsurface. Bacteria contribute significantly to biotransformation of metals and radionuclides. As basic science reveals more information about specific mechanisms of bacterial-metal reduction, an even greater contribution of bacteria to biogeochemical activities is realized. An understanding and application of the mechanisms of metal and radionuclide reduction offers tremendous potential for development into bioremedial processes and technologies. Most bacteria are capable of biogeochemical transformation as a result of meeting nutrient requirements. These assimilatory mechanisms for metals transformation include production of small molecules that serve as electron shuttles for metal reduction. This contribution to biogeochemistry is small however due to only trace requirements for minerals by bacteria. Dissimilatory metal reducing bacteria (DMRB) reduce oxidized metals and insoluble mineral oxides as a means for biological energy production during growth. These types of bacteria offer considerable potential for bioremediation of environments contaminated with toxic metals and radionuclides because of the relatively large amount of metal biotransformation they require for growth. One of the mechanisms employed by some DMRB for electron transfer to insoluble metal oxides is melanin production. The electrochemical properties of melanin provide this polymeric, humic-type compound with electron shuttling properties. Melanin, specifically, pyomelanin, increases the rate and degree of metal reduction in DMRB as a function of pyomelanin concentration. Due to its electron shuttling behavior, only low femtogram quantities per cell are required to significantly increase metal reduction capacity of DMRB. Melanin production is not limited to DMRB. In fact melanin is one of the most common pigments produced by biological systems. Numerous soil microorganisms produce melanin, contributing

  4. Reduction of the beam pulse repetition rate of the Hamburg Isochronous Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H; Langkau, R; Schirm, N [Hamburg Univ. (F.R. Germany). 1. Inst. fuer Experimentalphysik

    1976-04-01

    A system for the reduction of the beam pulse repetition rate of the energy-variable Hamburg Isochronous Cyclotron comprising beam pulse supression in the cyclotron center and in the external beam is described.

  5. Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments

    Science.gov (United States)

    Kilic, Ali Ihsan

    2017-09-01

    Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.

  6. Production of uranium metal via electrolytic reduction of uranium oxide in molten LiCl and salt distillation

    International Nuclear Information System (INIS)

    Eun-Young Choi; Chan Yeon Won; Dae-Seung Kang; Sung-Wook Kim; Ju-Sun Cha; Sung-Jai Lee; Wooshin Park; Hun Suk Im; Jin-Mok Hur

    2015-01-01

    Recovery of metallic uranium has been achieved by electrolytic reduction of uranium oxide in a molten LiCl-Li 2 O electrolyte at 650 deg C, followed by the removal of the residual salt by vacuum distillation at 850 deg C. Four types of stainless steel mesh baskets, with various mesh sizes (325, 1,400 and 2,300 meshes) and either three or five ply layers, were used both as cathodes and to contain the reduced product in the distillation stage. The recovered uranium had a metal fraction greater than 98.8 % and contained no residual salt. (author)

  7. Electrochemical reduction of cerium oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.; Serp, J.; Fouletier, J.

    2011-01-01

    This brief article describes a pyrochemical process that is used by CEA to turn actinide oxides into metal actinides. This process is applied to Cerium oxides (CeO 2 ) that simulate actinide oxides well chemically as cerium belongs to the lanthanide family. The process is in fact an electrolysis of cerium oxide in a bath of molten calcium chloride salt whose temperature is between 800 and 900 Celsius degrees. At those temperatures calcium chloride becomes a ionic liquid (Ca 2+ and Cl - ) that is a good electrical conductor and is particularly well-adapted as solvent to an electrolytic process. The electrolysis current allows the transformation of solvent Ca 2+ ions into metal calcium which, in turn, can reduce cerium oxide into metal cerium through chromatically. Experimental data shows the reduction of up to 90% of 10 g samples of CeO 2 in a 6 hour long electrolysis while the best reduction rate ever known was 80% so far. This result is all the more promising that cerium oxides are more difficult to reduce than actinide oxides from the thermodynamical perspective

  8. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.; Wang, Zheming

    2007-01-01

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH · 1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reduction of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity

  9. Determination of rate constants for the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A.; Walter, T.; Stimming, U. [Munich Technical Univ., Garching (Germany). Dept. of Physics

    2008-07-01

    The oxygen reduction reaction (ORR) in fuel cells is a complex and fundamental electrochemical reaction. However, greater insight is needed into this multi-electron reaction in order to develop efficient and innovative catalysts. The rotating ring disc electrode (RRDE) is a useful tool for studying reaction intermediates of the ORR and to better understand the reaction pathway. Carbon materials such as carbon nanofilaments-platelets (CNF-PL) have high electrical conductivity and may be considered for fuel cells. In particular Pt and RuSe{sub x}, deposited on CNF-PL materials could act as efficient catalysts in fuel cells. This study used the RRDE to evaluate the oxygen reduction kinetics of these catalysts in oxygen-saturated, diluted sulphuric acid at room temperature. Kinetic data and hydrogen peroxide formation were determined by depositing a thin-film of the catalyst on the Au disc. The values for the constants k1, k2 and k3 were obtained using diagnostic criteria and expressions to calculate the rate constants of the cathodic oxygen reduction reaction for RuSe on new carbon supports. A potential dependency of the constants k1 and k2 for RuSe{sub x}/CNF-PL was observed. The transition of the Tafel slopes for this catalyst was obtained. 4 refs., 1 fig.

  10. Tumor Volume Reduction Rate After Preoperative Chemoradiotherapy as a Prognostic Factor in Locally Advanced Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Seung-Gu [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Department of Radiation Oncology, Soonchunhyang University College of Medicine, Cheonan (Korea, Republic of); Kim, Dae Yong, E-mail: radiopiakim@hanmail.net [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Park, Ji Won; Oh, Jae Hwan; Kim, Sun Young; Chang, Hee Jin; Kim, Tae Hyun; Kim, Byung Chang; Sohn, Dae Kyung; Kim, Min Ju [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of)

    2012-02-01

    Purpose: To investigate the prognostic significance of tumor volume reduction rate (TVRR) after preoperative chemoradiotherapy (CRT) in locally advanced rectal cancer (LARC). Methods and Materials: In total, 430 primary LARC (cT3-4) patients who were treated with preoperative CRT and curative radical surgery between May 2002 and March 2008 were analyzed retrospectively. Pre- and post-CRT tumor volumes were measured using three-dimensional region-of-interest MR volumetry. Tumor volume reduction rate was determined using the equation TVRR (%) = (pre-CRT tumor volume - post-CRT tumor volume) Multiplication-Sign 100/pre-CRT tumor volume. The median follow-up period was 64 months (range, 27-99 months) for survivors. Endpoints were disease-free survival (DFS) and overall survival (OS). Results: The median TVRR was 70.2% (mean, 64.7% {+-} 22.6%; range, 0-100%). Downstaging (ypT0-2N0M0) occurred in 183 patients (42.6%). The 5-year DFS and OS rates were 77.7% and 86.3%, respectively. In the analysis that included pre-CRT and post-CRT tumor volumes and TVRR as continuous variables, only TVRR was an independent prognostic factor. Tumor volume reduction rate was categorized according to a cutoff value of 45% and included with clinicopathologic factors in the multivariate analysis; ypN status, circumferential resection margin, and TVRR were significant prognostic factors for both DFS and OS. Conclusions: Tumor volume reduction rate was a significant prognostic factor in LARC patients receiving preoperative CRT. Tumor volume reduction rate data may be useful for tailoring surgery and postoperative adjuvant therapy after preoperative CRT.

  11. Accelerated electron exchange between U4+ and UO22+ by foreign metal ions

    International Nuclear Information System (INIS)

    Obanawa, Heiichiro; Onitsuka, Hatsuki; Takeda, Kunihiko

    1990-01-01

    The rate constant of U 4+ -UO 2 2+ electron exchange (k et ) was increased by more than 100 times in the presence of various metal ions. The larger rate constant was observed for the smaller difference of the standard reduction potential strength between metal ion and UO 2 2+ ion (Δμ θ e ). Detailed investigation of the electron exchange reaction in the presence of Mo 5+ suggested that the mechanism of the electron transfer reaction catalyzed by metal ions is the outer-sphere type independent of U-Clcomplex ions. (author)

  12. CD4+ count and Nitro-Blue Tetrazolium reduction rate of neutrophil ...

    African Journals Online (AJOL)

    CD4+ count and Nitro-Blue Tetrazolium reduction rate of neutrophil in newly diagnosed HIV-infected adults in Sokoto Metropolis. U.K. Mustapha, C.C. Onyenekwe, A. Yakubu, B.R. Alkali, M.H. Yeldu, K.M. Hamid, I. Abdullahi, N.M. Bunza, M. Bello, A.B. Ibrahim ...

  13. The limited role of aquifer heterogeneity on metal reduction in an Atlantic coastal plain determined by push-pull tests

    International Nuclear Information System (INIS)

    Mailloux, Brian J.; Devlin, Stephanie; Fuller, Mark E.; Onstott, T.C.; De Flaun, Mary F.; Choi, K.-H.; Green-Blum, Maria; Swift, Donald J.P.; McCarthy, John; Dong Hailiang

    2007-01-01

    Sixty push-pull experiments were conducted to determine the factors controlling Fe(III) and Mn(IV) reduction in a well-characterized, shallow, coastal plain aquifer near Oyster, VA, USA. The five multi-level samplers each equipped with 12 ports sampled a heterogeneous portion of the aquifer from 4.4 to 8m-bgs. Each multi-level sampler (MLS) was injected with groundwater that contained NO 3 - and Br - along with: (1) just groundwater (control treatment), (2) humics, (3) lactate (conducted twice) and (4) lactate plus humics. Microbially mediated Fe(III) reduction caused the aqueous Fe Tot concentrations to increase at every depth in the lactate treatment with significant increases within 1 day even while NO 3 - was present. Little change in the Fe Tot concentrations were observed in the control and humics treatment. Humics may have acted as an electron shuttle to increase Fe(III) reduction in the lactate plus humics treatment. The amount of Mn(IV) reduction was significantly lower than that of Fe(III) reduction. Geochemical modeling indicated that gas formation, sorption on reactive surfaces, and mineral precipitation were important processes and that Fe(III) and SO 4 2- reduction were co-occurring. Conditions were favorable for the precipitation of Fe-carbonates, Fe-sulfides and Fe-silicates. In the lactate treatment protist concentrations increased then decreased and planktonic cell concentrations steadily increased, whereas no change was observed in the control treatment. Correlations of Fe(III) reduction with physical and chemical heterogeneity were weak, probably as a result of the abundance of Fe(III) bearing minerals relative to electron donor abundance and that the push-pull test sampled a representative elemental volume that encompassed the microbial diversity within the aquifer. This work indicates that stimulating metal reduction in aquifer systems is a feasible method for remediating heterogeneous subsurface sites contaminated with metals and

  14. Electrodeposition of uranium metal by reduction of uranium oxides in molten Lif-KF=NaF-CaF 2-UF4

    International Nuclear Information System (INIS)

    Pao, D.S.; Burris, L.; Steunenberg, R.K.; Tomczuk, Z.

    1990-01-01

    Although electrolytic reduction of uranium oxides was shown to be feasible in the early 1960's it is recognized that considerable improvement in the electrolytic reduction technology must be achieved for practical applications. This exploratory work on electrolytic reduction of uranium oxide was undertaken to investigate potential improvements in the technology. The approach taken was to deposit solid uranium metal directly on a solid cathode at temperatures below the melting point of uranium (1132 degrees C). The lower temperature electrolytic reduction process has several advantages over the existing chemical reduction processes. It lessens materials problems and special heating and insulating requirements associated with high-temperature operations. It removes most impurities. It does not produce the large quantities of byproduct oxides wastes typical of chemical reduction processes

  15. Relationship between microbial sulfate reduction rates and sulfur isotopic fractionation

    Science.gov (United States)

    Matsu'Ura, F.

    2009-12-01

    Sulfate reduction is one of the common processes to obtain energy for certain types of microorganisms.They use hydrogen gas or organic substrates as electron donor and sulfates as electron acceptor, and reduce sulfates to sulfides. Sulfate reducing microbes extend across domains Archea and Bacteria, and are believed to be one of the earliest forms of terrestrial life (Shen 2004). The origin of 34S-depleted (light) sulfide sulfur, especially δ34S vials, which contain 40ml of liquid culture media slightly modified from DSMZ #63 medium.Excess amount of Fe (II) is added to the DSMZ#63 medium to precipitate sulfide as iron sulfide. The vials were incubated at 25°C, 30°C, and 37°C, respectively. 21 vials were used for one temperature and sulfide and sulfate was collected from each three glass vials at every 12 hours from 72 hours to 144 hours after start of incubation. The sulfide was precipitated as iron sulfide and the sulfate was precipitated as barite. Sulfur isotope compositions of sulfate and sulfide were measured by standard method using Delta Plus mass-spectrometer. [Results and Discussion] The fractionation between sulfide and sulfate ranged from 2.7 to 11.0. The fractionation values varied among the different incubation temperature and growth phase of D. desulfuricans. The maximum fractionation values of three incubation temperatures were 9.9, 11.0, and 9.7, for 25 °C, 30°C, and 37°C, respectively. These results were different from standard model and Canfield et al. (2006). I could not find the clear correlation between ∂34S values and incubation temperatures in this experiment. The measured fractionation values during the incubation varied with incubation stage. The fractionation values clearly increased with incubation time at every temperature, and at 25°C ∂34S value was 3.6 at the 72h and it increased to 7.9 at 144 hours. This indicated the difference of sulfate reduction rate due to the growth phase of SRB. In the early logarithmic growth phase

  16. Bioaccessibility of metal cations in soil is linearly related to its water exchange rate constant.

    Science.gov (United States)

    Laird, Brian D; Peak, Derek; Siciliano, Steven D

    2011-05-01

    Site-specific risk assessments often incorporate the concepts of bioaccessibility (i.e., contaminant fraction released into gastrointestinal fluids) or bioavailability (i.e., contaminant fraction absorbed into systemic circulation) into the calculation of ingestion exposure. We evaluated total and bioaccessible metal concentrations for 19 soil samples under simulated stomach and duodenal conditions using an in vitro gastrointestinal model. We demonstrated that the median bioaccessibility of 23 metals ranged between exchange rates of metal cations (k(H₂O)) indicated that desorption kinetics may influence if not control metal bioaccessibility.

  17. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides

    Energy Technology Data Exchange (ETDEWEB)

    Lukatskaya, Maria R. [Drexel Univ., Philadelphia, PA (United States); Dept. of Chemical Engineering, Stanford, CA (United States); Kota, Sankalp [Drexel Univ., Philadelphia, PA (United States); Lin, Zifeng [Univ. Paul Sabatier, Toulouse (France); Reseau sur le Stockage Electrochimique de l' Energie (RS2E) (France); Zhao, Meng -Qiang [Drexel Univ., Philadelphia, PA (United States); Shpigel, Netanel [Bar-Ilan Univ., Ramat-Gan (Israel); Levi, Mikhael D. [Bar-Ilan Univ., Ramat-Gan (Israel); Halim, Joseph [Drexel Univ., Philadelphia, PA (United States); Taberna, Pierre -Louis [Univ. Paul Sabatier, Toulouse (France); Reseau sur le Stockage Electrochimique de l' Energie (RS2E) (France); Barsoum, Michel W. [Drexel Univ., Philadelphia, PA (United States); Simon, Patrice [Univ. Paul Sabatier, Toulouse (France); Reseau sur le Stockage Electrochimique de l' Energie (RS2E) (France); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-07-10

    In this study, the use of fast surface redox storage (pseudocapacitive) mechanisms can enable devices that store much more energy than electrical double-layer capacitors (EDLCs) and, unlike batteries, can do so quite rapidly. Yet, few pseudocapacitive transition metal oxides can provide a high power capability due to their low intrinsic electronic and ionic conductivity. Here we demonstrate that two-dimensional transition metal carbides (MXenes) can operate at rates exceeding those of conventional EDLCs, but still provide higher volumetric and areal capacitance than carbon, electrically conducting polymers or transition metal oxides. We applied two distinct designs for MXene electrode architectures with improved ion accessibility to redox-active sites. A macroporous Ti3C2Tx MXene film delivered up to 210 F g–1 at scan rates of 10 V s–1, surpassing the best carbon supercapacitors known. In contrast, we show that MXene hydrogels are able to deliver volumetric capacitance of ~1,500 F cm–3 reaching the previously unmatched volumetric performance of RuO2.

  18. Watershed Influences on Residence Time and Oxygen Reduction Rates in an Agricultural Landscape

    Science.gov (United States)

    Shope, C. L.; Tesoriero, A. J.

    2015-12-01

    Agricultural use of synthetic fertilizers and animal manure has led to increased crop production, but also elevated nitrogen concentrations in groundwater, resulting in impaired water quality. Groundwater oxygen concentrations are a key indicator of potential biogeochemical processes, which control water/aquifer interactions and contaminant transport. The U.S. Geological Survey's National Water-Quality Assessment Program has a long-history of studying nutrient transport and processing across the United States and the Glacial Aquifer system in particular. A series of groundwater well networks in Eastern Wisconsin is being used to evaluate the distribution of redox reaction rates over a range of scales with a focus on dissolved O2 reduction rates. An analysis of these multi-scale networks elucidates the influence of explanatory variables (i.e.: soil type, land use classification) on reduction rates and redox reactions throughout the Fox-Wolf-Peshtigo watersheds. Multiple tracers including dissolved gasses, tritium, helium, chlorofluorocarbons, sulfur hexafluoride, and carbon-14 were used to estimate groundwater ages (0.8 to 61.2 yr) at over 300 locations. Our results indicate O2 reduction rates along a flowpath study area (1.2 km2) of 0.15 mg O2 L-1 yr-1 (0.12 to 0.18 mg O2 L-1 yr-1) up to 0.41 mg O2 L-1 yr-1 (0.23 to 0.89 mg O2 L-1 yr-1) for a larger scale land use study area (3,300 km2). Preliminary explanatory variables that can be used to describe the variability in reduction rates include soil type (hydrologic group, bulk density) and chemical concentrations (nitrite plus nitrate, silica). The median residence time expected to reach suboxic conditions (≤ 0.4 mg O2 L-1) for the flowpath and the land use study areas was 66 and 25 yr, respectively. These results can be used to elucidate and differentiate the impact of residence time on groundwater quality vulnerability and sustainability in agricultural regions without complex flow models.

  19. Metal artifact reduction for flat panel detector intravenous CT angiography in patients with intracranial metallic implants after endovascular and surgical treatment.

    Science.gov (United States)

    Pjontek, Rastislav; Önenköprülü, Belgin; Scholz, Bernhard; Kyriakou, Yiannis; Schubert, Gerrit A; Nikoubashman, Omid; Othman, Ahmed; Wiesmann, Martin; Brockmann, Marc A

    2016-08-01

    Flat panel detector CT angiography with intravenous contrast agent injection (IV CTA) allows high-resolution imaging of cerebrovascular structures. Artifacts caused by metallic implants like platinum coils or clips lead to degradation of image quality and are a significant problem. To evaluate the influence of a prototype metal artifact reduction (MAR) algorithm on image quality in patients with intracranial metallic implants. Flat panel detector CT after intravenous application of 80 mL contrast agent was performed with an angiography system (Artis zee; Siemens, Forchheim, Germany) using a 20 s rotation protocol (200° rotation angle, 20 s acquisition time, 496 projections). The data before and after MAR of 26 patients with a total of 34 implants (coils, clips, stents) were independently evaluated by two blinded neuroradiologists. MAR improved the assessability of the brain parenchyma and small vessels (diameter metallic implants and at a distance of 6 cm (p<0.001 each, Wilcoxon test). Furthermore, MAR significantly improved the assessability of parent vessel patency and potential aneurysm remnants (p<0.005 each, McNemar test). MAR, however, did not improve assessability of stented vessels. When an intravenous contrast protocol is used, MAR significantly ameliorates the assessability of brain parenchyma, vessels, and treated aneurysms in patients with intracranial coils or clips. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting

    Science.gov (United States)

    Dong, Lei; Schneider, Judy

    2009-01-01

    The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.

  1. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    Science.gov (United States)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  2. Stereochemistry and mechanism of the reduction of some bicyclo (2-2-1-) heptane-2-ones by metals dissolved in liquid ammonia

    International Nuclear Information System (INIS)

    Coulombeau, A.

    1969-01-01

    A systematic experimental study of the reduction of four bicyclo(2-2-1)hepta n-2-ones by dissolved alkaline and alkaline-earth metals in liquid ammonia is reported. Chapter one: models of metal-ammonia solutions and mechanisms of the reduction of ketones by these solutions are rapidly recalled. Chapter two: results obtained in the thermodynamic equilibration of three pairs of epimeric alcohols which formally derive from three of the starting ketones are presented. Chapter three: deals with the results obtained in the reduction of the ketones in the absence or the presence of a proton source. A new interpretation of these results is given and is based upon two different effects: - the torsional interaction created by the bridgehead substituent on the C-O bond which favours the formation of the endo alcohol; - the difference of steric hindrance between the two sides (exo and endo) defined by the plane of the carbonyl group of the starting molecule, which favours the attack of the metal cation from one side or the other, and therefore the formation of the exo or the endo epimer. This mechanism is generalised in a model which is tested by means of some examples published in the literature. It then appears able to construe correctly the obtained results. (author) [fr

  3. Topotactic reduction yielding black titanium oxide nanostructures as metallic electronic conductors.

    Science.gov (United States)

    Tominaka, Satoshi

    2012-10-01

    Detailed analyses of reduced, single crystal, rutile-type TiO(2) via high-resolution transmission electron microscopy (TEM) are reported which reveal that the reduction proceeds topotactically via interstitial diffusion of Ti ions at low temperature, around 350 °C. This important finding encouraged the production of various nanostructured reduced titanium oxides from TiO(2) precursors with morphology retention, and in the process, the synthesis of black titanium oxide nanorods using TiO(2) nanorods was demonstrated. Interestingly, as opposed to the semiconductive behavior of Ti(2)O(3) synthesized at high temperature, topotactically synthesized Ti(2)O(3) exhibits metallic electrical resistance, and the value at room temperature is quite low (topotactically synthesized Ti(2)O(3). This work shows that topotactically reduced titanium oxides can have fascinating properties as well as nanostructures.

  4. Numerical Modelling of Metal-Elastomer Spring Nonlinear Response for Low-Rate Deformations

    Directory of Open Access Journals (Sweden)

    Sikora Wojciech

    2018-03-01

    Full Text Available Advanced knowledge of mechanical characteristics of metal-elastomer springs is useful in their design process and selection. It can also be used in simulating dynamics of machine where such elements are utilized. Therefore this paper presents a procedure for preparing and executing FEM modelling of a single metal-elastomer spring, also called Neidhart’s spring, for low-rate deformations. Elastomer elements were made of SBR rubber of two hardness values: 50°Sh and 70°Sh. For the description of material behaviour the Bergström-Boyce model has been used.

  5. Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li Hua; Noel, Camille; Chen, Haijian; Harold Li, H.; Low, Daniel; Moore, Kevin; Klahr, Paul; Michalski, Jeff; Gay, Hiram A.; Thorstad, Wade; Mutic, Sasa [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States); Department of Radiation Oncology, University of California San Diego, San Diego, California 92093 (United States); Philips Healthcare System, Cleveland, Ohio 44143 (United States); Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States)

    2012-12-15

    Purpose: Severe artifacts in kilovoltage-CT simulation images caused by large metallic implants can significantly degrade the conspicuity and apparent CT Hounsfield number of targets and anatomic structures, jeopardize the confidence of anatomical segmentation, and introduce inaccuracies into the radiation therapy treatment planning process. This study evaluated the performance of the first commercial orthopedic metal artifact reduction function (O-MAR) for radiation therapy, and investigated its clinical applications in treatment planning. Methods: Both phantom and clinical data were used for the evaluation. The CIRS electron density phantom with known physical (and electron) density plugs and removable titanium implants was scanned on a Philips Brilliance Big Bore 16-slice CT simulator. The CT Hounsfield numbers of density plugs on both uncorrected and O-MAR corrected images were compared. Treatment planning accuracy was evaluated by comparing simulated dose distributions computed using the true density images, uncorrected images, and O-MAR corrected images. Ten CT image sets of patients with large hip implants were processed with the O-MAR function and evaluated by two radiation oncologists using a five-point score for overall image quality, anatomical conspicuity, and CT Hounsfield number accuracy. By utilizing the same structure contours delineated from the O-MAR corrected images, clinical IMRT treatment plans for five patients were computed on the uncorrected and O-MAR corrected images, respectively, and compared. Results: Results of the phantom study indicated that CT Hounsfield number accuracy and noise were improved on the O-MAR corrected images, especially for images with bilateral metal implants. The {gamma} pass rates of the simulated dose distributions computed on the uncorrected and O-MAR corrected images referenced to those of the true densities were higher than 99.9% (even when using 1% and 3 mm distance-to-agreement criterion), suggesting that dose

  6. Atomistic Origin of Rate-Dependent Serrated Plastic Flow in Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yao YG

    2008-01-01

    Full Text Available Abstract Nanoindentation simulations on a binary metallic glass were performed under various strain rates by using molecular dynamics. The rate-dependent serrated plastic flow was clearly observed, and the spatiotemporal behavior of its underlying irreversible atomic rearrangement was probed. Our findings clearly validate that the serration is a temporally inhomogeneous characteristic of such rearrangements and not directly dependent on the resultant shear-banding spatiality. The unique spatiotemporal distribution of shear banding during nanoindentation is highlighted in terms of the potential energy landscape (PEL theory.

  7. Predicting dietborne metal toxicity from metal influxes

    Science.gov (United States)

    Croteau, M.-N.; Luoma, S.N.

    2009-01-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (kuf) were, respectively, 3.3 and 2.3 times higher than that for Cu. Detoxification rate constants (k detox) were similar among metals and appeared 100 times higher than efflux rate constants (ke). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity; i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g-1 day-1. L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed.

  8. Determination of the strain hardening rate of metals and alloys by X ray diffraction

    International Nuclear Information System (INIS)

    Cadalbert, Robert

    1977-01-01

    This report for engineering graduation is based on the study of X ray diffraction line profile which varies with the plastic strain rate of the metal. After some generalities of strain hardening (consequence of a plastic deformation on the structure of a polycrystalline metal, means to study a strain hardened structure, use of X ray diffraction to analyse the strain hardened crystalline structure), the author reports the strain hardening rate measurement by using X ray diffraction. Several aspects are addressed: principles, experimental technique, apparatus, automation and programming of the measurement cycle, method sensitivity and precision. In the next part, the author reports applications: measurement of the strain hardening rate in different materials (tubes with hexagonal profile, cylindrical tubes in austenitic steel), and study of the evolution of strain hardening with temperature [fr

  9. Mechanistic model of the oxygen reduction catalyzed by a metal-free porphyrin in one- and two-phase liquid systems

    Czech Academy of Sciences Publication Activity Database

    Trojánek, Antonín; Langmaier, Jan; Záliš, Stanislav; Samec, Zdeněk

    2013-01-01

    Roč. 110, NOV 2013 (2013), s. 816-821 ISSN 0013-4686 R&D Projects: GA ČR GAP208/11/0697 Institutional support: RVO:61388955 Keywords : oxygen reduction * metal -free porphyrin * catalysis Subject RIV: CG - Electrochemistry Impact factor: 4.086, year: 2013

  10. A Universal Method to Engineer Metal Oxide-Metal-Carbon Interface for Highly Efficient Oxygen Reduction.

    Science.gov (United States)

    Lv, Lin; Zha, Dace; Ruan, Yunjun; Li, Zhishan; Ao, Xiang; Zheng, Jie; Jiang, Jianjun; Chen, Hao Ming; Chiang, Wei-Hung; Chen, Jun; Wang, Chundong

    2018-03-27

    Oxygen is the most abundant element in the Earth's crust. The oxygen reduction reaction (ORR) is also the most important reaction in life processes and energy converting/storage systems. Developing techniques toward high-efficiency ORR remains highly desired and a challenge. Here, we report a N-doped carbon (NC) encapsulated CeO 2 /Co interfacial hollow structure (CeO 2 -Co-NC) via a generalized strategy for largely increased oxygen species adsorption and improved ORR activities. First, the metallic Co nanoparticles not only provide high conductivity but also serve as electron donors to largely create oxygen vacancies in CeO 2 . Second, the outer carbon layer can effectively protect cobalt from oxidation and dissociation in alkaline media and as well imparts its higher ORR activity. In the meanwhile, the electronic interactions between CeO 2 and Co in the CeO 2 /Co interface are unveiled theoretically by density functional theory calculations to justify the increased oxygen absorption for ORR activity improvement. The reported CeO 2 -Co-NC hollow nanospheres not only exhibit decent ORR performance with a high onset potential (922 mV vs RHE), half-wave potential (797 mV vs RHE), and small Tafel slope (60 mV dec -1 ) comparable to those of the state-of-the-art Pt/C catalysts but also possess long-term stability with a negative shift of only 7 mV of the half-wave potential after 2000 cycles and strong tolerance against methanol. This work represents a solid step toward high-efficient oxygen reduction.

  11. Does the pancreatic volume reduction rate using serial computed tomographic volumetry predict new onset diabetes after pancreaticoduodenectomy?

    Science.gov (United States)

    Yun, Sung Pil; Seo, Hyung-Il; Kim, Suk; Kim, Dong Uk; Baek, Dong Hoon

    2017-01-01

    Abstract Volume reduction of the pancreatic tissues following a pancreatectomy can lead to the deterioration of glucose homeostasis. This is defined as pancreatogenic diabetes mellitus (DM). The objective of this study was to investigate the occurrence of new-onset DM (NODM) and evaluate the risk factors, including the pancreas volume reduction rate in patients undergoing pancreaticoduodenectomy (PD). Sixty-six patients without preoperative DM underwent PD for periampullary tumors between August 2007 and December 2012 and were included in this analysis. These patients underwent follow-up tests and abdominal computed tomography (CT) scan 7 days, 6 months, 12 months, 24 months, and 36 months after the operation. The pancreas volume reduction rate was calculated by CT volumetry. The patients were divided into 2 groups according to the postoperative development of DM. After PD, newly diagnosed DM occurred in 16 patients (24.2%). The incidence of DM was highest among patients with carcinomas with an advanced T stage. The pancreatic volume reduction rate after 6 and 12 months in the NODM group was significantly higher than the normal glucose group in the univariate analysis. In the multivariate analysis, the pancreatic volume reduction rate 6 months after PD was the only significant predictive factor for the development of NODM (P = 0.002). This study suggests that the pancreatic volume reduction rate 6 months after PD was the only significant predictive factor for the development of NODM. CT volumetry of the pancreas may be useful as a predictor of NODM after PD. PMID:28353594

  12. Impacts of external convection on release rates in metal hydride storage tanks. Paper no. IGEC-1-080

    International Nuclear Information System (INIS)

    MacDonald, B.; Rowe, A.; Tomlinson, J.; Ho, J.

    2005-01-01

    Reversible metal hydrides can be used to store hydrogen at relatively low pressures, with very high volumetric density. The rate hydrogen can be drawn from a given tank is strongly influenced by the rate heat can be transferred to the reaction zone. Because of this, enhancing and controlling heat transfer is a key area of research in the development of metal hydride storage tanks. In this work, the impacts of external convection resistance on hydrogen release rates are examined. A one-dimensional resistive analysis determines the thermal resistances in the system based on one case where no external heat transfer enhancements are used, and a second case where external fins are used. A two-dimensional, transient model, developed in FEMLAB, is used to determine the impact of the external fins on the mass flow rate of hydrogen in more detail. For the particular metal hydride alloy (LaNi 4.8 Sn 0.2 ) and tank geometry studied, it was found that the fins have a large impact on the hydrogen flow rate during the initial stages of desorption. The flow rate with no fins is only 20% of the flow rate with fins for a full tank, 57% when the tank is 33% full, and 74% when the tank is 5% full. As the reaction proceeds, the resistance of the metal hydride alloy within the tank increases and becomes dominant. Therefore, the impact of the fins becomes less significant as the tank empties. (author)

  13. Spinning of refractory metals

    International Nuclear Information System (INIS)

    Chang Wenkua; Zheng Han

    1989-01-01

    The effects of spinning process parameters including max. pass percentage reduction, spinning temperature, feed rate, lubricant and annealing technology on the quality of shaped components are summarized and discussed in the present paper. The above mentioned parameters are adopted in the process of spinning of barrel-shaped and specially shaped components of refractory metals and their alloys W, Mo, Nb, Zr, TZM molybdenum alloy, C-103, C-752 niobium alloy etc. The cause of leading to usual defects of spun products of refractory metals such as lamellar as 'scaling', crack, swelling, wrinkle, etc. have been analysed and the ways to eliminate the defects have been put forward. 8 figs., 5 tabs. (Author)

  14. Reduction of UF4 to U-metal

    International Nuclear Information System (INIS)

    Namkung, H.; Min, B.T.; Kim, J.S.; Whang, S.C.

    1982-01-01

    In the second years of study for the production of the metallic uranium with reactors which can produce 1 Kg and 4 Kg U-metal, various factors on the yield of U-metal and the leaching condition for uranium recovery with nitric acid are examined. The jolter has been used for the charging with liner (MgF 2 ) while the hand-tamping method for the filling of reaction mixtures (UF 4 -Mg) in the reactor, and their average densities are 1.23g/cc and 2.90g/cc, respectively. The various effects on the yield such as magnesium excess, furnace control temperatue, charge densities of liner and reaction mixtures, have been studied but the yields of crude metal production are in the wide range from 93 % down to about 65 %. Generally, six percent magnesium excess produced higher yields than did either 2 or 10 percent excess. The leaching condition for the uranium recovery from slag are also investigated with dilute nitric acid (3-6N) as well as higher concentrated nitric acid (9.5N) but the leaching yields are same in either solution. Uranium recovery from the slag is very effective with dilute nitric acid (3N) leaching for less than one hour at 60degC. (Author)

  15. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration.

    Science.gov (United States)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-05-15

    Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36mm, with preferable conditions being 400rpm rotation speed, 5min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Local anticorrelation between star formation rate and gas-phase metallicity in disc galaxies

    Science.gov (United States)

    Sánchez Almeida, J.; Caon, N.; Muñoz-Tuñón, C.; Filho, M.; Cerviño, M.

    2018-06-01

    Using a representative sample of 14 star-forming dwarf galaxies in the local Universe, we show the existence of a spaxel-to-spaxel anticorrelation between the index N2 ≡ log ([N II]λ 6583/H α ) and the H α flux. These two quantities are commonly employed as proxies for gas-phase metallicity and star formation rate (SFR), respectively. Thus, the observed N2 to H α relation may reflect the existence of an anticorrelation between the metallicity of the gas forming stars and the SFR it induces. Such an anticorrelation is to be expected if variable external metal-poor gas fuels the star-formation process. Alternatively, it can result from the contamination of the star-forming gas by stellar winds and SNe, provided that intense outflows drive most of the metals out of the star-forming regions. We also explore the possibility that the observed anticorrelation is due to variations in the physical conditions of the emitting gas, other than metallicity. Using alternative methods to compute metallicity, as well as previous observations of H II regions and photoionization models, we conclude that this possibility is unlikely. The radial gradient of metallicity characterizing disc galaxies does not produce the correlation either.

  17. Utility of Lithium in Rare-Earth Metal Reduction Reactions to Form Nontraditional Ln2+ Complexes and Unusual [Li(2.2.2-cryptand)]1+ Cations.

    Science.gov (United States)

    Huh, Daniel N; Darago, Lucy E; Ziller, Joseph W; Evans, William J

    2018-02-19

    The utility of lithium compared to other alkali metals in generating Ln 2+ rare-earth metal complexes via reduction of Ln 3+ precursors in reactions abbreviated as LnA 3 /M (Ln = rare-earth metal; A = anionic ligand; M = alkali metal) is described. Lithium reduction of Cp' 3 Ln (Cp' = C 5 H 4 SiMe 3 ; Ln = Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) forms new examples of crystallographically characterizable Ln 2+ complexes of these metals, [Li(crypt)][Cp' 3 Ln]. In each complex, lithium is found in an N 2 O 4 donor atom coordination geometry that is unusual for the cryptand ligand. Magnetic susceptibility data on these new examples of nontraditional divalent lanthanide complexes are consistent with 4f n 5d 1 electronic configurations. The Dy and Ho complexes have exceptionally high single-ion magnetic moments, 11.35 and 11.67 μ B , respectively. Lithium reduction of Cp' 3 Y under N 2 at -35 °C forms the Y 2+ complex (Cp' 3 Y) 1- , which reduces dinitrogen upon warming to room temperature to generate the (N 2 ) 2- complex [Cp' 2 Y(THF)] 2 (μ-η 2 :η 2 -N 2 ). These results provide insight on the factors that lead to reduced dinitrogen complexes and/or stable divalent lanthanide complexes as a function of the specific reducing agent and conditions.

  18. Disintegration and size reduction of slags and metals after melt refining of contaminated metallic wastes

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1981-04-01

    Melting under an oxidizing slag is an attractive method of decontaminating and reducing the volume of radioactively contaminated metal scrap. The contaminants are concentrated in a relatively small volume of slag, which leaves the metal essentially clean. A potential method of permanently disposing of the resulting slags (and metals if necessary) is emplacing them into deep shale by grout hydrofracture. Suspension in grout mixtures requires that the slag and metal be granular. The feasibility of size-reducing slags and disintegrating metals and subsequently incorporating both into grout mixtures was demonstrated. Various types of slags were crushed with a small jaw crusher into particles smaller than 3 mm. Several metals were also melted and water-blasted into coarse metal powder or shot ranging in size from 0.05 to 3 mm. A simple low-pressure water atomizer having a multiple nozzle with a converging-line jet stream was developed and used for this purpose. No significant slag dust and steam were generated during slag crushing and liquid-metal water-blasting tests, indicating that contamination can be well contained within the system. The crushed slags and the coarse metal powders were suspendable in group fluids, which indicates probable disposability by shale hydrofracture. The granulation of slags and metals facilitates their containment, transport, and storage

  19. SU-C-206-03: Metal Artifact Reduction in X-Ray Computed Tomography Based On Local Anatomical Similarity

    International Nuclear Information System (INIS)

    Dong, X; Yang, X; Rosenfield, J; Elder, E; Dhabaan, A

    2016-01-01

    Purpose: Metal implants such as orthopedic hardware and dental fillings cause severe bright and dark streaking in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. Additionally, such artifacts negatively impact patient set-up in image guided radiation therapy (IGRT). In this work, we propose a novel method for metal artifact reduction which utilizes the anatomical similarity between neighboring CT slices. Methods: Neighboring CT slices show similar anatomy. Based on this anatomical similarity, the proposed method replaces corrupted CT pixels with pixels from adjacent, artifact-free slices. A gamma map, which is the weighted summation of relative HU error and distance error, is calculated for each pixel in the artifact-corrupted CT image. The minimum value in each pixel’s gamma map is used to identify a pixel from the adjacent CT slice to replace the corresponding artifact-corrupted pixel. This replacement only occurs if the minimum value in a particular pixel’s gamma map is larger than a threshold. The proposed method was evaluated with clinical images. Results: Highly attenuating dental fillings and hip implants cause severe streaking artifacts on CT images. The proposed method eliminates the dark and bright streaking and improves the implant delineation and visibility. In particular, the image non-uniformity in the central region of interest was reduced from 1.88 and 1.01 to 0.28 and 0.35, respectively. Further, the mean CT HU error was reduced from 328 HU and 460 HU to 60 HU and 36 HU, respectively. Conclusions: The proposed metal artifact reduction method replaces corrupted image pixels with pixels from neighboring slices that are free of metal artifacts. This method proved capable of suppressing streaking artifacts, improving HU accuracy and image detectability.

  20. SU-C-206-03: Metal Artifact Reduction in X-Ray Computed Tomography Based On Local Anatomical Similarity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, X; Yang, X; Rosenfield, J; Elder, E; Dhabaan, A [Emory University, Winship Cancer Institute, Atlanta, GA (United States)

    2016-06-15

    Purpose: Metal implants such as orthopedic hardware and dental fillings cause severe bright and dark streaking in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. Additionally, such artifacts negatively impact patient set-up in image guided radiation therapy (IGRT). In this work, we propose a novel method for metal artifact reduction which utilizes the anatomical similarity between neighboring CT slices. Methods: Neighboring CT slices show similar anatomy. Based on this anatomical similarity, the proposed method replaces corrupted CT pixels with pixels from adjacent, artifact-free slices. A gamma map, which is the weighted summation of relative HU error and distance error, is calculated for each pixel in the artifact-corrupted CT image. The minimum value in each pixel’s gamma map is used to identify a pixel from the adjacent CT slice to replace the corresponding artifact-corrupted pixel. This replacement only occurs if the minimum value in a particular pixel’s gamma map is larger than a threshold. The proposed method was evaluated with clinical images. Results: Highly attenuating dental fillings and hip implants cause severe streaking artifacts on CT images. The proposed method eliminates the dark and bright streaking and improves the implant delineation and visibility. In particular, the image non-uniformity in the central region of interest was reduced from 1.88 and 1.01 to 0.28 and 0.35, respectively. Further, the mean CT HU error was reduced from 328 HU and 460 HU to 60 HU and 36 HU, respectively. Conclusions: The proposed metal artifact reduction method replaces corrupted image pixels with pixels from neighboring slices that are free of metal artifacts. This method proved capable of suppressing streaking artifacts, improving HU accuracy and image detectability.

  1. Weight reduction of vehicles and light metals; Jidosya no keryoka to keikinzoku zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, Akira. [Toyota Motor Corp., Aichi (Japan). Component and System Development Center

    1999-08-15

    Weight reduction of vehicles (WRV) is a continuous challenge from the beginning of the vehicle history, however the purpose of WRV has been changing by social requirements. Recently automotive industry is facing is facing with the global warmin and the other environmental issues, so we are vast amount of R and D resources to improve the fuel economy. In this paper, the changes of the purpose of WRV and, the relation between fuel economy and WRV, are summarized. And also the current status of light metals usage and the future work for the related material issues, in particuar the corrosion resistance, are brifly mentioned. (author)

  2. A novel forward projection-based metal artifact reduction method for flat-detector computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Prell, Daniel; Kyriakou, Yiannis; Beister, Marcel; Kalender, Willi A [Institute of Medical Physics, University of Erlangen-Nuernberg, Henkestrasse 91, 91052 Erlangen (Germany)], E-mail: daniel.prell@imp.uni-erlangen.de

    2009-11-07

    Metallic implants generate streak-like artifacts in flat-detector computed tomography (FD-CT) reconstructed volumetric images. This study presents a novel method for reducing these disturbing artifacts by inserting discarded information into the original rawdata using a three-step correction procedure and working directly with each detector element. Computation times are minimized by completely implementing the correction process on graphics processing units (GPUs). First, the original volume is corrected using a three-dimensional interpolation scheme in the rawdata domain, followed by a second reconstruction. This metal artifact-reduced volume is then segmented into three materials, i.e. air, soft-tissue and bone, using a threshold-based algorithm. Subsequently, a forward projection of the obtained tissue-class model substitutes the missing or corrupted attenuation values directly for each flat detector element that contains attenuation values corresponding to metal parts, followed by a final reconstruction. Experiments using tissue-equivalent phantoms showed a significant reduction of metal artifacts (deviations of CT values after correction compared to measurements without metallic inserts reduced typically to below 20 HU, differences in image noise to below 5 HU) caused by the implants and no significant resolution losses even in areas close to the inserts. To cover a variety of different cases, cadaver measurements and clinical images in the knee, head and spine region were used to investigate the effectiveness and applicability of our method. A comparison to a three-dimensional interpolation correction showed that the new approach outperformed interpolation schemes. Correction times are minimized, and initial and corrected images are made available at almost the same time (12.7 s for the initial reconstruction, 46.2 s for the final corrected image compared to 114.1 s and 355.1 s on central processing units (CPUs))

  3. A novel forward projection-based metal artifact reduction method for flat-detector computed tomography

    International Nuclear Information System (INIS)

    Prell, Daniel; Kyriakou, Yiannis; Beister, Marcel; Kalender, Willi A

    2009-01-01

    Metallic implants generate streak-like artifacts in flat-detector computed tomography (FD-CT) reconstructed volumetric images. This study presents a novel method for reducing these disturbing artifacts by inserting discarded information into the original rawdata using a three-step correction procedure and working directly with each detector element. Computation times are minimized by completely implementing the correction process on graphics processing units (GPUs). First, the original volume is corrected using a three-dimensional interpolation scheme in the rawdata domain, followed by a second reconstruction. This metal artifact-reduced volume is then segmented into three materials, i.e. air, soft-tissue and bone, using a threshold-based algorithm. Subsequently, a forward projection of the obtained tissue-class model substitutes the missing or corrupted attenuation values directly for each flat detector element that contains attenuation values corresponding to metal parts, followed by a final reconstruction. Experiments using tissue-equivalent phantoms showed a significant reduction of metal artifacts (deviations of CT values after correction compared to measurements without metallic inserts reduced typically to below 20 HU, differences in image noise to below 5 HU) caused by the implants and no significant resolution losses even in areas close to the inserts. To cover a variety of different cases, cadaver measurements and clinical images in the knee, head and spine region were used to investigate the effectiveness and applicability of our method. A comparison to a three-dimensional interpolation correction showed that the new approach outperformed interpolation schemes. Correction times are minimized, and initial and corrected images are made available at almost the same time (12.7 s for the initial reconstruction, 46.2 s for the final corrected image compared to 114.1 s and 355.1 s on central processing units (CPUs)).

  4. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility.

    Science.gov (United States)

    Han, Seung Chol; Chung, Yong Eun; Lee, Young Han; Park, Kwan Kyu; Kim, Myeong Jin; Kim, Ki Whang

    2014-10-01

    The objective of our study was to determine the feasibility of using Metal Artifact Reduction (MAR) software for abdominopelvic dual-energy CT in patients with metal hip prostheses. This retrospective study included 33 patients (male-female ratio, 19:14; mean age, 63.7 years) who received total hip replacements and 20 patients who did not have metal prostheses as the control group. All of the patients underwent dual-energy CT. The quality of the images reconstructed using the MAR algorithm and of those reconstructed using the standard reconstruction was evaluated in terms of the visibility of the bladder wall, pelvic sidewall, rectal shelf, and bone-prosthesis interface and the overall diagnostic image quality with a 4-point scale. The mean and SD attenuation values in Hounsfield units were measured in the bladder, pelvic sidewall, and rectal shelf. For validation of the MAR interpolation algorithm, pelvis phantoms with small bladder "lesions" and metal hip prostheses were made, and images of the phantoms both with and without MAR reconstruction were evaluated. Image quality was significantly better with MAR reconstruction than without at all sites except the rectal shelf, where the image quality either had not changed or had worsened after MAR reconstruction. The mean attenuation value was changed after MAR reconstruction to its original expected value at the pelvic sidewall (p software with dual-energy CT decreases metal artifacts and increases diagnostic confidence in the assessment of the pelvic cavity but also introduces new artifacts that can obscure pelvic structures.

  5. Unifying the 2eand 4e Reduction of Oxygen on Metal Surfaces

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    Understanding trends in selectivity is of paramount importance for multi-electron electrochemical reactions. The goal of this work is to address the issue of 2e– versus 4e– reduction of oxygen on metal surfaces. Using a detailed thermodynamic analysis based on density functional theory calculatio...

  6. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    Science.gov (United States)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  7. Thermal plasma reduction of UF6

    International Nuclear Information System (INIS)

    Fincke, J.R.; Swank, W.D.; Haggard, D.C.

    1995-01-01

    This paper describes the experimental demonstration of a process for the direct plasma reduction of depleted uranium hexafluoride to uranium metal. The process exploits the large departures from equilibrium that can be achieved in the rapid supersonic expansion of a totally dissociated and partially ionized mixture of UF 6 , Ar, He, and H 2 . The process is based on the rapid condensation of subcooled uranium vapor and the relatively slow rate of back reaction between metallic uranium and HF to F 2 to reform stable fluorides. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogen which persists throughout the expansion process. Atomic hydrogen shifts the equilibrium composition by inhibiting the reformation of uranium-fluorine compounds. This process has the potential to reduce the cost of reducing UF 6 to uranium metal with the added benefit of being a virtually waste free process. The dry HF produced is a commodity which has industrial value

  8. Laser deposition rates of thin films of selected metals and alloys

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Canulescu, Stela; Schou, Jørgen

    Thin films of Cu, Zn and Sn as well as mixtures of these elements have been produced by Pulsed Laser Deposition (PLD). The deposition rate of single and multicomponent metallic targets was determined. The strength of PLD is that the stoichiometry of complex compounds, even of complicated alloys...... or metal oxides, can be preserved from target to film. We apply this technique to design films of a mixture of Cu, Zn and Sn, which are constituents of the chalcogenide CZTS, which has a composition close to Cu2ZnSnS4. This compound is expected to be an important candidate for absorbers in new solar cells...... for alloys of the different elements as well as compounds with S will be presented....

  9. Fabrication of a micro-porous Ti–Zr alloy by electroless reduction with a calcium reductant for electrolytic capacitor applications

    International Nuclear Information System (INIS)

    Kikuchi, Tatsuya; Yoshida, Masumi; Taguchi, Yoshiaki; Habazaki, Hiroki; Suzuki, Ryosuke O.

    2014-01-01

    Highlights: • A metallic Ti–Zr alloy was obtained by electroless reduction for capacitor applications. • The reduction mechanisms were studied by SEM, XRD, EPMA, and an oxygen analyzer. • The alloy was obtained by electroless reduction in the presence of excess calcium reductant. • A micro-porous Ti–Zr alloy was successfully obtained. • The alloy has a low oxygen content and a large surface area. -- Abstract: A metallic titanium and zirconium micro-porous alloy for electrolytic capacitor applications was produced by electroless reduction with a calcium reductant in calcium chloride molten salt at 1173 K. Mixed TiO 2 –70 at%ZrO 2 oxides, metallic calcium, and calcium chloride were placed in a titanium crucible and heated under argon atmosphere to reduce the oxides with the calcium reductant. A metallic Ti–Zr alloy was obtained by electroless reduction in the presence of excess calcium reductant and showed a micro-porous morphology due to the sintering of each of the reduced particles during the reduction. The residual oxygen content and surface area of the reduced Ti–Zr alloy decreased over time during the electroless reduction. The element distributions were slightly different at the positions of the alloy and were in the composition range of Ti-69.3 at% to 74.3 at%Zr. A micro-porous Ti–Zr alloy with low oxygen content (0.20 wt%) and large surface area (0.55 m 2 g −1 ) was successfully fabricated by electroless reduction under optimal conditions. The reduction mechanisms of the mixed and pure oxides by the calcium reductant are also discussed

  10. Sequential separation of transuranic elements and fission products from uranium metal ingots in electrolytic reduction process of spent PWR fuels

    International Nuclear Information System (INIS)

    Chang Heon Lee; Kih Soo Joe; Won Ho Kim; Euo Chang Jung; Kwang Yong Jee

    2009-01-01

    A sequential separation procedure has been developed for the determination of transuranic elements and fission products in uranium metal ingot samples from an electrolytic reduction process for a metallization of uranium dioxide to uranium metal in a medium of LiCl-Li 2 O molten salt at 650 deg C. Pu, Np and U were separated using anion-exchange and tri-n-butylphosphate (TBP) extraction chromatography. Cs, Sr, Ba, Ce, Pr, Nd, Sm, Eu, Gd, Zr and Mo were separated in several groups from Am and Cm using TBP and di(2-ethylhexyl)phosphoric acid (HDEHP) extraction chromatography. Effect of Fe, Ni, Cr and Mg, which were corrosion products formed through the process, on the separation of the analytes was investigated in detail. The validity of the separation procedure was evaluated by measuring the recovery of the stable metals and 239 Pu, 237 Np, 241 Am and 244 Cm added to a synthetic uranium metal ingot dissolved solution. (author)

  11. A Six Sigma Trial For Reduction of Error Rates in Pathology Laboratory.

    Science.gov (United States)

    Tosuner, Zeynep; Gücin, Zühal; Kiran, Tuğçe; Büyükpinarbaşili, Nur; Turna, Seval; Taşkiran, Olcay; Arici, Dilek Sema

    2016-01-01

    A major target of quality assurance is the minimization of error rates in order to enhance patient safety. Six Sigma is a method targeting zero error (3.4 errors per million events) used in industry. The five main principles of Six Sigma are defining, measuring, analysis, improvement and control. Using this methodology, the causes of errors can be examined and process improvement strategies can be identified. The aim of our study was to evaluate the utility of Six Sigma methodology in error reduction in our pathology laboratory. The errors encountered between April 2014 and April 2015 were recorded by the pathology personnel. Error follow-up forms were examined by the quality control supervisor, administrative supervisor and the head of the department. Using Six Sigma methodology, the rate of errors was measured monthly and the distribution of errors at the preanalytic, analytic and postanalytical phases was analysed. Improvement strategies were reclaimed in the monthly intradepartmental meetings and the control of the units with high error rates was provided. Fifty-six (52.4%) of 107 recorded errors in total were at the pre-analytic phase. Forty-five errors (42%) were recorded as analytical and 6 errors (5.6%) as post-analytical. Two of the 45 errors were major irrevocable errors. The error rate was 6.8 per million in the first half of the year and 1.3 per million in the second half, decreasing by 79.77%. The Six Sigma trial in our pathology laboratory provided the reduction of the error rates mainly in the pre-analytic and analytic phases.

  12. Metal Artifacts Reduction of Pedicle Screws on Spine Computed Tomography Images Using Variable Thresholding Technique

    International Nuclear Information System (INIS)

    Kaewlek, T.; Koolpiruck, D.; Thongvigitmanee, S.; Mongkolsuk, M.; Chiewvit, P.; Thammakittiphan, S.

    2012-01-01

    Metal artifacts are one of significant problems in computed tomography (CT). The streak lines and air gaps arise from metal implants of orthopedic patients, such as prosthesis, dental bucket, and pedicle screws that cause incorrect diagnosis and local treatment planning. A common technique to suppressed artifacts is by adjusting windows, but those artifacts still remain on the images. To improve the detail of spine CT images, the variable thresholding technique is proposed in this paper. Three medical cases of spine CT images categorized by the severity of artifacts (screws head, one full screw, and two full screws) were investigated. Metal regions were segmented by k-mean clustering, then transformed into a sinogram domain. The metal sinogram was identified by the variable thresholding method, and then replaced the new estimated values by linear interpolation. The modified sinogram was reconstructed by the filtered back- projection algorithm, and added the metal region back to the modified reconstructed image in order to reproduce the final image. The image quality of the proposed technique, the automatic thresholding (Kalender) technique, and window adjustment technique was compared in term of noise and signal to noise ratio (SNR). The propose method can reduce metal artifacts between pedicle screws. After processing by our proposed technique, noise in the modified images is reduced (screws head 121.15 to73.83, one full screw 160.88 to 94.04, and two full screws 199.73 to 110.05 from the initial image) and SNR is increased (screws head 0.87 to 1.88, one full screw 1.54 to 2.82, and two full screws 0.32 to 0.41 from the initial image). The variable thresholding technique can identify the suitable boundary for restoring the missing data. The efficiency of the metal artifacts reduction is indicated on the case of partial and full pedicle screws. Our technique can improve the detail of spine CT images better than automatic thresholding (Kalender) technique, and

  13. SU-E-I-13: Evaluation of Metal Artifact Reduction (MAR) Software On Computed Tomography (CT) Images

    International Nuclear Information System (INIS)

    Huang, V; Kohli, K

    2015-01-01

    Purpose: A new commercially available metal artifact reduction (MAR) software in computed tomography (CT) imaging was evaluated with phantoms in the presence of metals. The goal was to assess the ability of the software to restore the CT number in the vicinity of the metals without impacting the image quality. Methods: A Catphan 504 was scanned with a GE Optima RT 580 CT scanner (GE Healthcare, Milwaukee, WI) and the images were reconstructed with and without the MAR software. Both datasets were analyzed with Image Owl QA software (Image Owl Inc, Greenwich, NY). CT number sensitometry, MTF, low contrast, uniformity, noise and spatial accuracy were compared for scans with and without MAR software. In addition, an in-house made phantom was scanned with and without a stainless steel insert at three different locations. The accuracy of the CT number and metal insert dimension were investigated as well. Results: Comparisons between scans with and without MAR algorithm on the Catphan phantom demonstrate similar results for image quality. However, noise was slightly higher for the MAR algorithm. Evaluation of the CT number at various locations of the in-house made phantom was also performed. The baseline HU, obtained from the scan without metal insert, was compared to scans with the stainless steel insert at 3 different locations. The HU difference between the baseline scan versus metal scan was improved when the MAR algorithm was applied. In addition, the physical diameter of the stainless steel rod was over-estimated by the MAR algorithm by 0.9 mm. Conclusion: This work indicates with the presence of metal in CT scans, the MAR algorithm is capable of providing a more accurate CT number without compromising the overall image quality. Future work will include the dosimetric impact on the MAR algorithm

  14. Changes realized from extended bit-depth and metal artifact reduction in CT

    Energy Technology Data Exchange (ETDEWEB)

    Glide-Hurst, C.; Chen, D.; Zhong, H.; Chetty, I. J. [Department of Radiation Oncology, Henry Ford Health Systems, Detroit, Michigan 48202 (United States)

    2013-06-15

    Purpose: High-Z material in computed tomography (CT) yields metal artifacts that degrade image quality and may cause substantial errors in dose calculation. This study couples a metal artifact reduction (MAR) algorithm with enhanced 16-bit depth (vs standard 12-bit) to quantify potential gains in image quality and dosimetry. Methods: Extended CT to electron density (CT-ED) curves were derived from a tissue characterization phantom with titanium and stainless steel inserts scanned at 90-140 kVp for 12- and 16-bit reconstructions. MAR was applied to sinogram data (Brilliance BigBore CT scanner, Philips Healthcare, v.3.5). Monte Carlo simulation (MC-SIM) was performed on a simulated double hip prostheses case (Cerrobend rods embedded in a pelvic phantom) using BEAMnrc/Dosxyz (400 000 0000 histories, 6X, 10 Multiplication-Sign 10 cm{sup 2} beam traversing Cerrobend rod). A phantom study was also conducted using a stainless steel rod embedded in solid water, and dosimetric verification was performed with Gafchromic film analysis (absolute difference and gamma analysis, 2% dose and 2 mm distance to agreement) for plans calculated with Anisotropic Analytic Algorithm (AAA, Eclipse v11.0) to elucidate changes between 12- and 16-bit data. Three patients (bony metastases to the femur and humerus, and a prostate cancer case) with metal implants were reconstructed using both bit depths, with dose calculated using AAA and derived CT-ED curves. Planar dose distributions were assessed via matrix analyses and using gamma criteria of 2%/2 mm. Results: For 12-bit images, CT numbers for titanium and stainless steel saturated at 3071 Hounsfield units (HU), whereas for 16-bit depth, mean CT numbers were much larger (e.g., titanium and stainless steel yielded HU of 8066.5 {+-} 56.6 and 13 588.5 {+-} 198.8 for 16-bit uncorrected scans at 120 kVp, respectively). MC-SIM was well-matched between 12- and 16-bit images except downstream of the Cerrobend rod, where 16-bit dose was {approx}6

  15. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane

    OpenAIRE

    Khadka, Nimesh; Dean, Dennis R.; Smith, Dayle; Hoffman, Brian M.; Raugei, Simone; Seefeldt, Lance C.

    2016-01-01

    The reduction of N2 to NH3 by Mo-dependent nitrogenase at its active-site metal cluster FeMo-cofactor utilizes reductive elimination (re) of Fe-bound hydrides with obligatory loss of H2 to activate the enzyme for binding/reduction of N2. Earlier work showed that wild type nitrogenase and a nitrogenase having amino acid substitutions in the MoFe protein near FeMo-cofactor can catalytically reduce CO2 by 2 or 8 electrons/protons to carbon monoxide (CO) and methane (CH4) at low rates. Here, it i...

  16. Peroxide reduction by a metal-dependent catalase in Nostoc punctiforme (cyanobacteria).

    Science.gov (United States)

    Hudek, L; Torriero, A A J; Michalczyk, A A; Neilan, B A; Ackland, M L; Bräu, Lambert

    2017-05-01

    This study investigated the role of a novel metal-dependent catalase (Npun_R4582) that reduces hydrogen peroxide in the cyanobacterium Nostoc punctiforme. Quantitative real-time PCR showed that npun_R4582 relative mRNA levels were upregulated by over 16-fold in cells treated with either 2 μM added Co, 0.5 μM added Cu, 500 μM Mn, 1 μM Ni, or 18 μM Zn. For cells treated with 60 μM H 2 O 2 , no significant alteration in Npun_R4582 relative mRNA levels was detected, while in cells treated with Co, Cu, Mn, Ni, or Zn and 60 μM peroxide, relative mRNA levels were generally above control or peroxide only treated cells. Disruption or overexpression of npun_R4582 altered sensitivity to cells exposed to 60 μM H 2 O 2 and metals for treatments beyond the highest viable concentrations, or in a mixed metal solution for Npun_R4582 - cells. Moreover, overexpression of npun_R4582 increased cellular peroxidase activity in comparison with wild-type and Npun_R4582 - cells, and reduced peroxide levels by over 50%. The addition of cobalt, manganese, nickel, and zinc increased the capacity of Npun_R4582 to reduce the rate or total levels of peroxide produced by cells growing under photooxidative conditions. The work presented confirms the function of NpunR4582 as a catalase and provides insights as to how cells reduce potentially lethal peroxide levels produced by photosynthesis. The findings also show how trace elements play crucial roles as enzymatic cofactors and how the role of Npun_R4582 in hydrogen peroxide breakdown is dependent on the type of metal and the level available to cells.

  17. Behaviour of actinide elements in the lithium reduction process. 1. Feasibility of the Li reduction process to UO2 and PuO2

    International Nuclear Information System (INIS)

    Usami, Tuyoshi; Kurata, Masateru; Yuda, Ryoichi; Kato, Tetsuya; Inoue, Tadashi; Sims, Howard; Jenkins, Jon

    2000-01-01

    Lithium reduction process has been developed to apply pyrochemical recycle process for oxide fuels. This process uses lithium metal as a reductant to convert oxides of actinide elements to metal. Lithium oxide generated in the reduction is to be dissolved in a molten lithium chloride bath to enhance reduction. The authors have measured the solubility of lithium oxide in lithium chloride, and then reduced uranium dioxide and plutonium dioxide. The solubility measured at 923 K was 8.8 wt.%. The uranium dioxide was completely reduced with no intermediate products and formed porous metal. Plutonium dioxide including 3% of americium dioxide was also reduced completely and formed molten metal. Even lithium oxide was just under saturation , plutonium could be reduced to metal. Shown from this result was easier reduction than predicted from thermodynamic data. Americium dioxide was also reduced at 1.8 wt% lithium oxide, but was not reduced at 8.8 wt.%. (author)

  18. Dissolution rate and radiation dosimetry of metal tritides

    International Nuclear Information System (INIS)

    Jow, Hong-Nian; Cheng, Yung-Sung

    1993-01-01

    Metal tritides including titanium tritide (Ti 3 H x ) and erbium tritide (Er 3 H x ) have been used as components of neutron generators. These compounds can be released to the air as aerosols during fabrication, assembling and testing of components or in accidental or fugitive releases. As a result, workers could be exposed to these compounds by inhalation. A joint research project between SNL and ITRI (Inhalation Toxicology Research Institute) was initiated last fall to investigate the solubility of metal tritides, retention and translocation of inhaled particles and internal dosimetry of metal tritides. The current understanding of metal tritides and their radiation dosimetry for internal exposure are very limited. There is no provision in the ICRP-30 for tritium dosimetry in metal tritide form. However, a few papers in the literature suggested that the solubility of metal tritide could be low. The current radiation protection guidelines for metal tritide particles are based on the assumption that the biological behavior is similar to tritiated water which behaves like body fluid with a relative short biological half life (10 days). If the solubility of metal tritide is low, the biological half life of metal tritide particles and the dosimetry of inhalation exposure to these particles could be quite different from tritiated water. This would have major implications in current radiation protection guidelines for metal tritides Including annual limits of intakes and derived air concentrations. The preliminary results of metal tritide dissolution study at ITRI indicate that the solubility of titanium tritide is low. The outlines of the project, the preliminary results and future work will be discussed in presentation

  19. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.

    Science.gov (United States)

    Zheng, Xiaohong; Gao, Wenfang; Zhang, Xihua; He, Mingming; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-01

    Recycling of spent lithium-ion batteries has attracted wide attention because of their high content of valuable and hazardous metals. One of the difficulties for effective metal recovery is the separation of different metals from the solution after leaching. In this research, a full hydrometallurgical process is developed to selectively recover valuable metals (Ni, Co and Li) from cathode scrap of spent lithium ion batteries. By introducing ammonia-ammonium sulphate as the leaching solution and sodium sulphite as the reductant, the total selectivity of Ni, Co and Li in the first-step leaching solution is more than 98.6% while it for Mn is only 1.36%. In detail understanding of the selective leaching process is carried out by investigating the effects of parameters such as leaching reagent composition, leaching time (0-480min), agitation speed (200-700rpm), pulp density (10-50g/L) and temperature (323-353K). It was found that Mn is primarily reduced from Mn 4+ into Mn 2+ into the solution as [Formula: see text] while it subsequently precipitates out into the residue in the form of (NH 4 ) 2 Mn(SO 3 ) 2 ·H 2 O. Ni, Co and Li are leached and remain in the solution either as metallic ion or amine complexes. The optimised leaching conditions can be further obtained and the leaching kinetics is found to be chemical reaction control under current leaching conditions. As a result, this research is potentially beneficial for further optimisation of the spent lithium ion battery recycling process after incorporating with metal extraction from the leaching solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth.

    Science.gov (United States)

    Sutter, Eli A; Sutter, Peter W

    2014-12-03

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important, as they provide direct insight into processes in liquids, such as solution growth of nanoparticles, among others. In liquid cell TEM/STEM redox reaction experiments, the hydrated electrons e(-)aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e(-)aq generated by the electron beam during in situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e(-)aq]. By comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e(-)aq] but also the rate of reduction of a metal-ion complex to zerovalent metal atoms in solution.

  1. The industry of metallic rare earths (R.E.)

    International Nuclear Information System (INIS)

    Poirier, P.

    1979-01-01

    The following subjects are discussed: rare earths resources (rare earths abondance and world reserves, main ores). Rare earths separation and purification (ionic exchange, solvent extraction). Metallic rare earths and their mixtures, metallothermic reduction of oxides or fluorides (Ca, Mg, Al, Si or rare earth metals), Co-reduction process for intermetallic compounds (SmCo 5 ). Industrial applications of metallic rare earths (traditional applications such as flints, nodular cast iron, steel refining, magnesium industrie, applications under development such as rare earths/cobalt magnets, LaNi 5 for hydrogen storage, special alloys (automotive post combustion), magnetostrictive alloys). Economical problems: rare earth are elements relatively abundant and often at easily accessible prices. However, this group of 15 elements are liable to certain economical restraints. It is difficult to crack ore for only one rare earth. Availability of one given rare earth must be associated with the other corresponding rare earths to absorb all the other rare earths in other applications. Rare-earth industry has a strong expanding rate. 20% per year average for 6 years with Rhone-Poulenc. Thanks to their exceptional, specific characteristics rare earths have a bright future particularly for their metals

  2. Influence of Strain Rate on Heat Release under Quasi-Static Stretching of Metals. Experiment

    Science.gov (United States)

    Zimin, B. A.; Sventitskaya, V. E.; Smirnov, I. V.; Sud'enkov, Yu. V.

    2018-04-01

    The paper presents the results of experimental studies of energy dissipation during a quasi-static stretching of metals and alloys at room temperature. The strain rates varied in the range of 10-3-10-2 s-1. Samples of M1 copper, AZ31B magnesium alloy, BT6 titanium, 12Cr18Ni10Ti steel, and D16AM aluminum alloy were analyzed. The experimental results demonstrated a significant dependence of the heat release on the strain rate in the absence of its influence on stress-strain diagrams for all the metals studied in this range of strain rates. The correlation of the changes in the character of heat release with the processes of structural transformations at various stages of plastic flow is shown on the qualitative level. A difference in the nature of the processes of heat release in materials with different ratios of the plasticity and strength is noted.

  3. Integrated leak rate test of the FFTF [Fast Flux Test Facility] containment vessel

    International Nuclear Information System (INIS)

    Grygiel, M.L.; Davis, R.H.; Polzin, D.L.; Yule, W.D.

    1987-04-01

    The third integrated leak rate test (ILRT) performed at the Fast Flux Test Facility (FFTF) demonstrated that effective leak rate measurements could be obtained at a pressure of 2 psig. In addition, innovative data reduction methods demonstrated the ability to accurately account for diurnal variations in containment pressure and temperature. Further development of methods used in this test indicate significant savings in the time and effort required to perform an ILRT on Liquid Metal Reactor Systems with consequent reduction in test costs

  4. Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors.

    Science.gov (United States)

    Lam, Do Van; Jo, Kyungmin; Kim, Chang-Hyun; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2016-12-27

    Carbothermic reduction in the chemistry of metal extraction (MO(s) + C(s) → M(s) + CO(g)) using carbon as a sacrificial agent has been used to smelt metals from diverse oxide ores since ancient times. Here, we paid attention to another aspect of the carbothermic reduction to prepare an activated carbon textile for high-rate-performance supercapacitors. On the basis of thermodynamic reducibility of metal oxides reported by Ellingham, we employed not carbon, but metal oxide as a sacrificial agent in order to prepare an activated carbon textile. We conformally coated ZnO on a bare cotton textile using atomic layer deposition, followed by pyrolysis at high temperature (C(s) + ZnO(s) → C'(s) + Zn(g) + CO(g)). We figured out that it leads to concurrent carbonization and activation in a chemical as well as mechanical way. Particularly, the combined effects of mechanical buckling and fracture that occurred between ZnO and cotton turned out to play an important role in carbonizing and activating the cotton textile, thereby significantly increasing surface area (nearly 10 times) compared with the cotton textile prepared without ZnO. The carbon textiles prepared by carbothermic reduction showed impressive combination properties of high power and energy densities (over 20-fold increase) together with high cyclic stability.

  5. Reductive mineralization of cellulose with vanadium, iron and tungsten chlorides and access to MxOy metal oxides and MxOy/C metal oxide/carbon composites.

    Science.gov (United States)

    Henry, Aurélien; Hesemann, Peter; Alauzun, Johan G; Boury, Bruno

    2017-10-15

    M x O y and M x O y /C composites (M=V, Fe and W) were obtained by mineralization of cellulose with several metal chlorides. Cellulose was used both as a templating agent and as an oxygen and a carbon source. Soluble chloride molecules (VOCl 3 and WCl 6 ) and a poorly soluble ionic chloride compound (FeCl 3 ) were chosen as metal oxide precursors. In a first time, primary metal oxide/cellulose composites were obtained via a thermal treatment by reacting urea impregnated filter paper with the corresponding metal chlorides in an autoclave at 150°C after 3days. After either pyrolysis or calcination steps of these intermediate materials, interesting metal oxides with various morphologies were obtained (V 2 O 5, V 2 O 3 , Fe 3 O 4 , WO 3, H 0.23 WO 3 ), composites (V 2 O 3 /C) as well as carbides (hexagonal W 2 C and WC, Fe 3 C) This result highlight the reductive role that can play cellulose during the pyrolysis step that allows to tune the composition of M x O y /C composites. The materials were characterized by FTIR, Raman, TGA, XRD and SEM. This study highlights that cellulose can be used for a convenient preparation of a variety of highly demanded M x O y and M x O y /C composites with original shapes and morphologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evaluating applicability of metal artifact reduction algorithm for head and neck radiation treatment planning CT

    International Nuclear Information System (INIS)

    Son, Sang Jun; Park, Jang Pil; Kim, Min Jeong; Yoo, Suk Hyun

    2014-01-01

    The purpose of this study is evaluation for the applicability of O-MAR(Metal artifact Reduction for Orthopedic Implants)(ver. 3.6.0, Philips, Netherlands) in head and neck radiation treatment planning CT with metal artifact created by dental implant. All of the in this study's CT images were scanned by Brilliance Big Bore CT(Philips, Netherlands) at 120 kVp, 2 mm sliced and Metal artifact reduced by O-MAR. To compare the original and reconstructed CT images worked on RTPS(Eclipse ver 10.0.42, Varian, USA). In order to test the basic performance of the O-MAR, The phantom was made to create metal artifact by dental implant and other phantoms used for without artifact images. To measure a difference of HU in with artifact images and without artifact images, homogeneous phantom and inhomogeneous phantoms were used with cerrobend rods. Each of images were compared a difference of HU in ROIs. And also, 1 case of patient's original CT image applied O-MAR and density corrected CT were evaluated for dose distributions with SNC Patient(Sun Nuclear Co., USA). In cases of head and neck phantom, the difference of dose distribution is appeared 99.8% gamma passing rate(criteria 2 mm / 2%) between original and CT images applied O-MAR. And 98.5% appeared in patient case, among original CT, O-MAR and density corrected CT. The difference of total dose distribution is less than 2% that appeared both phantom and patient case study. Though the dose deviations are little, there are still matters to discuss that the dose deviations are concentrated so locally. In this study, The quality of all images applied O-MAR was improved. Unexpectedly, Increase of max. HU was founded in air cavity of the O-MAR images compare to cavity of the original images and wrong corrections were appeared, too. The result of study assuming restrained case of O-MAR adapted to near skin and low density area, it appeared image distortion and artifact correction simultaneously. In O-MAR CT, air cavity area

  7. Field experience on Zn injection on PWR plants with a view to dose rate reduction

    International Nuclear Information System (INIS)

    Roumiguiere, F.

    2005-01-01

    Operating experience acquired at PWR plants shows that zinc injection in the primary coolant at low concentration (∼5 ppb) is a very effective tool to achieve a reduction of the dose rate build-up. The beneficial effect of zinc consists on improving the protective layer characteristics of the reactor coolant system surfaces, which results in a lower pickup of activated products (Co-60, Co-58), and consequently a reduction of the associated dose rates. Zinc injection was introduced at the Unit B of the Biblis Power Station in September 1996 and at the Obrigheim Nuclear Power Station in February 1998, as a measure for reduction of radiation fields. The effectiveness of the method and its compatibility with the overall plant was examined in a rather comprehensive surveillance program at these plants. The already published data show that zinc injection did not lead to any operating restrictions or other negative effects on plants systems and components. Zinc injection is still being implemented today at these plants. Zinc injection is considered today as a mature technique and is now being successfully applied at a number of PWRs in Germany, Brazil, USA and Japan, with the support of Framatome-ANP. Several PWRs in Europe and Asia are preparing for zinc chemistry in the near future. The method is inexpensive and easy to apply. Its implementation is highly advisable in terms of the cost/benefit criterion following the ALARA principle. This paper gives an overview of the experience gathered with the method. The main subject addressed by the paper is the evolution of dose rates at the primary system and work-related doses since introduction of the method. In German PWRs with Incoloy 800 steam generator tubing material (Ni-content ∼32%), the observed reductions correspond to a decrease in dose rates of around 10 to 15% per year following, as predicted, the half-life time of 60 Co. Overall reductions in high radiation areas are now in the range of 50% after 5 years of

  8. Atomistic Simulation of the Rate-Dependent Ductile-to-Brittle Failure Transition in Bicrystalline Metal Nanowires.

    Science.gov (United States)

    Tao, Weiwei; Cao, Penghui; Park, Harold S

    2018-02-14

    The mechanical properties and plastic deformation mechanisms of metal nanowires have been studied intensely for many years. One of the important yet unresolved challenges in this field is to bridge the gap in properties and deformation mechanisms reported for slow strain rate experiments (∼10 -2 s -1 ), and high strain rate molecular dynamics (MD) simulations (∼10 8 s -1 ) such that a complete understanding of strain rate effects on mechanical deformation and plasticity can be obtained. In this work, we use long time scale atomistic modeling based on potential energy surface exploration to elucidate the atomistic mechanisms governing a strain-rate-dependent incipient plasticity and yielding transition for face centered cubic (FCC) copper and silver nanowires. The transition occurs for both metals with both pristine and rough surfaces for all computationally accessible diameters (ductile-to-brittle transition in failure mode similar to previous experimental studies on bicrystalline silver nanowires is observed, which is driven by differences in dislocation activity and grain boundary mobility as compared to the high strain rate case.

  9. Physical nature of strain rate sensitivity of metals and alloys at high strain rates

    Science.gov (United States)

    Borodin, E. N.; Gruzdkov, A. A.; Mayer, A. E.; Selyutina, N. S.

    2018-04-01

    The role of instabilities of plastic flow at plastic deformation of various materials is one of the important cross-disciplinary problems which is equally important in physics, mechanics and material science. The strain rate sensitivities under slow and high strain rate conditions of loading have different physical nature. In the case of low strain rate, the sensitivity arising from the inertness of the defect structures evolution can be expressed by a single parameter characterizing the plasticity mechanism. In our approach, this is the value of the characteristic relaxation time. In the dynamic case, there are additional effects of “high-speed sensitivity” associated with the micro-localization of the plastic flow near the stress concentrators. In the frames of mechanical description, this requires to introduce additional strain rate sensitivity parameters, which is realized in numerous modifications of Johnson–Cook and Zerilli–Armstrong models. The consideration of both these factors is fundamental for an adequate description of the problems of dynamic deformation of highly inhomogeneous metallic materials such as steels and alloys. The measurement of the dispersion of particle velocities on the free surface of a shock-loaded material can be regarded as an experimental expression of the effect of micro-localization. This is also confirmed by our results of numerical simulation of the propagation of shock waves in a two-dimensional formulation and analytical estimations.

  10. Impact of metal artifact reduction software on image quality of gemstone spectral imaging dual-energy cerebral CT angiography after intracranial aneurysm clipping

    Energy Technology Data Exchange (ETDEWEB)

    Dunet, Vincent; Bernasconi, Martine; Hajdu, Steven David; Meuli, Reto Antoine; Zerlauth, Jean-Baptiste [Lausanne University Hospital, Department of Diagnostic and Interventional Radiology, Lausanne (Switzerland); Daniel, Roy Thomas [Lausanne University Hospital, Department of Neurosurgery, Lausanne (Switzerland)

    2017-09-15

    We aimed to assess the impact of metal artifact reduction software (MARs) on image quality of gemstone spectral imaging (GSI) dual-energy (DE) cerebral CT angiography (CTA) after intracranial aneurysm clipping. This retrospective study was approved by the institutional review board, which waived patient written consent. From January 2013 to September 2016, single source DE cerebral CTA were performed in 45 patients (mean age: 60 ± 9 years, male 9) after intracranial aneurysm clipping and reconstructed with and without MARs. Signal-to-noise (SNR), contrast-to-noise (CNR), and relative CNR (rCNR) ratios were calculated from attenuation values measured in the internal carotid artery (ICA) and middle cerebral artery (MCA). Volume of clip and artifacts and relative clip blurring reduction (rCBR) ratios were also measured at each energy level with/without MARs. Variables were compared between GSI and GSI-MARs using the paired Wilcoxon signed-rank test. MARs significantly reduced metal artifacts at all energy levels but 130 and 140 keV, regardless of clips' location and number. The optimal rCBR was obtained at 110 and 80 keV, respectively, on GSI and GSI-MARs images, with up to 96% rCNR increase on GSI-MARs images. The best compromise between metal artifact reduction and rCNR was obtained at 70-75 and 65-70 keV for GSI and GSI-MARs images, respectively, with up to 15% rCBR and rCNR increase on GSI-MARs images. MARs significantly reduces metal artifacts on DE cerebral CTA after intracranial aneurysm clipping regardless of clips' location and number. It may be used to reduce radiation dose while increasing CNR. (orig.)

  11. Synthesis of self-supported non-precious metal catalysts for oxygen reduction reaction with preserved nanostructures from the polyaniline nanofiber precursor

    DEFF Research Database (Denmark)

    Hu, Yang; Zhao, Xiao; Huang, Yunjie

    2013-01-01

    Non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) are an active subject of recent research on proton exchange membrane fuel cells. In this study, we report a new approach to preparation of self-supported and nano-structured NPMCs using pre-prepared polyaniline (PANI...

  12. Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses

    NARCIS (Netherlands)

    Wellenberg, R. H. H.; Boomsma, M. F.; van Osch, J. A. C.; Vlassenbroek, A.; Milles, J.; Edens, M. A.; Streekstra, G. J.; Slump, C. H.; Maas, M.

    2017-01-01

    To quantify the impact of prosthesis material and design on the reduction of metal artefacts in total hip arthroplasties using virtual monochromatic dual-layer detector Spectral CT imaging. The water-filled total hip arthroplasty phantom was scanned on a novel 128-slice Philips IQon dual-layer

  13. Distorted wave approach to calculate Auger transition rates of ions in metals

    Energy Technology Data Exchange (ETDEWEB)

    Deutscher, Stefan A. E-mail: sad@utk.edu; Diez Muino, R.; Arnau, A.; Salin, A.; Zaremba, E

    2001-08-01

    We evaluate the role of target distortion in the determination of Auger transition rates for multicharged ions in metals. The required two electron matrix elements are calculated using numerical solutions of the Kohn-Sham equations for both the bound and continuum states. Comparisons with calculations performed using plane waves and hydrogenic orbitals are presented.

  14. Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dawei [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China); Li, Yi, E-mail: envly@hhu.edu.cn [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China); Li Puma, Gianluca, E-mail: g.lipuma@lboro.ac.uk [Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Lianos, Panagiotis [Department of Chemical Engineering, University of Patras, 26500 Patras (Greece); Wang, Chao; Wang, Peifang [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China)

    2017-02-05

    Highlights: • Polymer capped TiO{sub 2} photoanode consumes photogenerated holes. • Heavy metals reduce on the cathode according to their reduction potentials. • Simultaneous recovery of heavy metals and production of electricity. • Industrial wastewater treatment and production of renewable energy. - Abstract: The feasibility of simultaneous recovery of heavy metals from wastewater (e.g., acid mining and electroplating) and production of electricity is demonstrated in a novel photoelectrochemical cell (PEC). The photoanode of the cell bears a nanoparticulate titania (TiO{sub 2}) film capped with the block copolymer [poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)] hole scavenger, which consumed photogenerated holes, while the photogenerated electrons transferred to a copper cathode reducing dissolved metal ions and produced electricity. Dissolved silver Ag{sup +}, copper Cu{sup 2+}, hexavalent chromium as dichromate Cr{sub 2}O{sub 7}{sup 2−} and lead Pb{sup 2+} ions in a mixture (0.2 mM each) were removed at different rates, according to their reduction potentials. Reduced Ag{sup +}, Cu{sup 2+} and Pb{sup 2+} ions produced metal deposits on the cathode electrode which were mechanically recovered, while Cr{sub 2}O{sub 7}{sup 2−} reduced to the less toxic Cr{sup 3+} in solution. The cell produced a current density J{sub sc} of 0.23 mA/cm{sup 2}, an open circuit voltage V{sub oc} of 0.63 V and a maximum power density of 0.084 mW/cm{sup 2}. A satisfactory performance of this PEC for the treatment of lead-acid battery wastewater was observed. The cathodic reduction of heavy metals was limited by the rate of electron-hole generation at the photoanode. The PEC performance decreased by 30% after 9 consecutive runs, caused by the photoanode progressive degradation.

  15. Mechanistic investigation of Fe(III) oxide reduction by low molecular weight organic sulfur species

    Science.gov (United States)

    Eitel, Eryn M.; Taillefert, Martial

    2017-10-01

    Low molecular weight organic sulfur species, often referred to as thiols, are known to be ubiquitous in aquatic environments and represent important chemical reductants of Fe(III) oxides. Thiols are excellent electron shuttles used during dissimilatory iron reduction, and in this capacity could indirectly affect the redox state of sediments, release adsorbed contaminants via reductive dissolution, and influence the carbon cycle through alteration of bacterial respiration processes. Interestingly, the reduction of Fe(III) oxides by thiols has not been previously investigated in environmentally relevant conditions, likely due to analytical limitations associated with the detection of thiols and their oxidized products. In this study, a novel electrochemical method was developed to simultaneously determine thiol/disulfide pair concentrations in situ during the reduction of ferrihydrite in batch reactors. First order rate laws with respect to initial thiol concentration were confirmed for Fe(III) oxyhydroxide reduction by four common thiols: cysteine, homocysteine, cysteamine, and glutathione. Zero order was determined for both Fe(III) oxyhydroxide and proton concentration at circumneutral pH. A kinetic model detailing the molecular mechanism of the reaction was optimized with proposed intermediate surface structures. Although metal oxide overall reduction rate constants were inversely proportional to the complexity of the thiol structure, the extent of metal reduction increased with structure complexity, indicating that surface complexes play a significant role in the ability of these thiols to reduce iron. Taken together, these results demonstrate the importance of considering the molecular reaction mechanism at the iron oxide surface when investigating the potential for thiols to act as electron shuttles during dissimilatory iron reduction in natural environments.

  16. High-rate reduction of copper oxide using atmospheric-pressure inductively coupled plasma microjets

    International Nuclear Information System (INIS)

    Tajima, Satomi; Tsuchiya, Shouichi; Matsumori, Masashi; Nakatsuka, Shigeki; Ichiki, Takanori

    2011-01-01

    Reduction of copper oxide was performed using an atmospheric-pressure inductively coupled plasma (AP-ICP) microjet while varying the input power P between 15 and 50 W. Cuprous oxide (Cu 2 O) and cupric oxide (CuO) were formed on the sputtered Cu surface by thermal annealing. Dynamic behavior of the microplasma jet, optical emission from H atoms, the substrate temperature, chemical bonding states of the treated surface, and the thickness of the reduced Cu layer were measured to study the fundamental reduction process. Surface composition and the thickness of the reduced Cu layer changed significantly with P. Rapid reduction of CuO and Cu 2 O was achieved at a rate of 493 nm/min at P = 50 W since high-density H atoms were produced by the AP-ICP microjet.

  17. High-rate reduction of copper oxide using atmospheric-pressure inductively coupled plasma microjets

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Satomi; Tsuchiya, Shouichi [Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-8656 (Japan); Matsumori, Masashi; Nakatsuka, Shigeki [Panasonic Factory Solutions Co., Ltd., 2-7 Matsuba-cho, Kadoma-city, Osaka, 571-8502 (Japan); Ichiki, Takanori, E-mail: ichiki@sogo.t.u-tokyo.ac.jp [Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-8656 (Japan); Institute of Engineering Innovation, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2011-08-01

    Reduction of copper oxide was performed using an atmospheric-pressure inductively coupled plasma (AP-ICP) microjet while varying the input power P between 15 and 50 W. Cuprous oxide (Cu{sub 2}O) and cupric oxide (CuO) were formed on the sputtered Cu surface by thermal annealing. Dynamic behavior of the microplasma jet, optical emission from H atoms, the substrate temperature, chemical bonding states of the treated surface, and the thickness of the reduced Cu layer were measured to study the fundamental reduction process. Surface composition and the thickness of the reduced Cu layer changed significantly with P. Rapid reduction of CuO and Cu{sub 2}O was achieved at a rate of 493 nm/min at P = 50 W since high-density H atoms were produced by the AP-ICP microjet.

  18. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K; Kumar, N; Lindfors, L E [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1997-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  19. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K.; Kumar, N.; Lindfors, L.E. [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1996-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  20. SU-F-J-175: Evaluation of Metal Artifact Reduction Algorithms in Computed Tomography and Their Application to Radiation Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Norris, H; Rangaraj, D; Kim, S

    2016-01-01

    Purpose: High-Z (metal) implants in CT scans cause significant streak-like artifacts in the reconstructed dataset. This results in both inaccurate CT Hounsfield units for the tissue as well as obscuration of the target and organs at risk (OARs) for radiation therapy planning. Herein we analyze two metal artifact reduction algorithms: GE’s Smart MAR and a Metal Deletion Technique (MDT) for geometric and Hounsfield Unit (HU) accuracy. Methods: A CT-to-electron density phantom, with multiple inserts of various densities and a custom Cerrobend insert (Zeff=76.8), is utilized in this continuing study. The phantom is scanned without metal (baseline) and again with the metal insert. Using one set of projection data, reconstructed CT volumes are created with filtered-back-projection (FBP) and the MAR and the MDT algorithms. Regions-of-Interest (ROIs) are evaluated for each insert for HU accuracy; the metal insert’s Full-Width-Half-Maximum (FWHM) is used to evaluate the geometric accuracy. Streak severity is quantified with an HU error metric over the phantom volume. Results: The original FBP reconstruction has a Root-Mean-Square-Error (RMSE) of 57.55 HU (STD=29.19, range=−145.8 to +79.2) compared to baseline. The MAR reconstruction has a RMSE of 20.98 HU (STD=13.92, range=−18.3 to +61.7). The MDT reconstruction has a RMSE of 10.05 HU (STD=10.5, range=−14.8 to +18.6). FWHM for baseline=162.05; FBP=161.84 (−0.13%); MAR=162.36 (+0.19%); MDT=162.99 (+0.58%). Streak severity metric for FBP=19.73 (22.659% bad pixels); MAR=8.743 (9.538% bad); MDT=4.899 (5.303% bad). Conclusion: Image quality, in terms of HU accuracy, in the presence of high-Z metal objects in CT scans is improved by metal artifact reduction reconstruction algorithms. The MDT algorithm had the highest HU value accuracy (RMSE=10.05 HU) and best streak severity metric, but scored the worst in terms of geometric accuracy. Qualitatively, the MAR and MDT algorithms increased detectability of inserts

  1. SU-F-J-175: Evaluation of Metal Artifact Reduction Algorithms in Computed Tomography and Their Application to Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Norris, H; Rangaraj, D; Kim, S [Baylor Scott & White Health, Temple, TX (United States)

    2016-06-15

    Purpose: High-Z (metal) implants in CT scans cause significant streak-like artifacts in the reconstructed dataset. This results in both inaccurate CT Hounsfield units for the tissue as well as obscuration of the target and organs at risk (OARs) for radiation therapy planning. Herein we analyze two metal artifact reduction algorithms: GE’s Smart MAR and a Metal Deletion Technique (MDT) for geometric and Hounsfield Unit (HU) accuracy. Methods: A CT-to-electron density phantom, with multiple inserts of various densities and a custom Cerrobend insert (Zeff=76.8), is utilized in this continuing study. The phantom is scanned without metal (baseline) and again with the metal insert. Using one set of projection data, reconstructed CT volumes are created with filtered-back-projection (FBP) and the MAR and the MDT algorithms. Regions-of-Interest (ROIs) are evaluated for each insert for HU accuracy; the metal insert’s Full-Width-Half-Maximum (FWHM) is used to evaluate the geometric accuracy. Streak severity is quantified with an HU error metric over the phantom volume. Results: The original FBP reconstruction has a Root-Mean-Square-Error (RMSE) of 57.55 HU (STD=29.19, range=−145.8 to +79.2) compared to baseline. The MAR reconstruction has a RMSE of 20.98 HU (STD=13.92, range=−18.3 to +61.7). The MDT reconstruction has a RMSE of 10.05 HU (STD=10.5, range=−14.8 to +18.6). FWHM for baseline=162.05; FBP=161.84 (−0.13%); MAR=162.36 (+0.19%); MDT=162.99 (+0.58%). Streak severity metric for FBP=19.73 (22.659% bad pixels); MAR=8.743 (9.538% bad); MDT=4.899 (5.303% bad). Conclusion: Image quality, in terms of HU accuracy, in the presence of high-Z metal objects in CT scans is improved by metal artifact reduction reconstruction algorithms. The MDT algorithm had the highest HU value accuracy (RMSE=10.05 HU) and best streak severity metric, but scored the worst in terms of geometric accuracy. Qualitatively, the MAR and MDT algorithms increased detectability of inserts

  2. Reduced water vapor transmission rates of low-temperature solution-processed metal oxide barrier films via ultraviolet annealing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seonuk; Jeong, Yong Jin; Baek, Yonghwa; Kim, Lae Ho; Jang, Jin Hyuk; Kim, Yebyeol [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); An, Tae Kyu [Department of Polymer Science & Engineering, Korea National University of Transportation, 50 Daehak-Ro, Chungju (Korea, Republic of); Nam, Sooji, E-mail: sjnam15@etri.re.kr [Information Control Device Section, Electronics and Telecommunications Research Institute, Daejeon, 305-700 (Korea, Republic of); Kim, Se Hyun, E-mail: shkim97@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, North Gyeongsang 712-749 (Korea, Republic of); Jang, Jaeyoung, E-mail: jyjang15@hanyang.ac.kr [Department of Energy Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Park, Chan Eon, E-mail: cep@postech.ac.kr [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2017-08-31

    Highlights: • Sol-gel-derived aluminum oxide thin films were prepared using ultraviolet (UV) annealing. • UV irradiation dramatically promoted the densification of AlO{sub x} during the annealing stage, thereby forming a close-packed AlO{sub x} film. • The resulting AlO{sub x} films deposited on polymer substrates exhibited good water vapor blocking properties with low water vapor transmission rates (WVTRs). - Abstract: Here, we report the fabrication of low-temperature sol-gel-derived aluminum oxide (AlO{sub x}) films via ultraviolet (UV) annealing and the investigation of their water vapor blocking properties by measuring the water vapor transmission rates (WVTRs). The UV annealing process induced the formation of a dense metal-oxygen-metal bond (Al-O-Al structure) at low temperatures (<200 °C) that are compatible with commercial plastic substrates. The density of the UV-annealed AlO{sub x} thin film at 180 °C was comparable to that of AlO{sub x} thin films that have been thermally annealed at 350 °C. Furthermore, the UV-annealed AlO{sub x} thin films exhibited a high optical transparency in the visible region (>99%) and good electrical insulating properties (∼10{sup −7} A/cm{sup 2} at 2 MV/cm). Finally, we confirmed that a dense AlO{sub x} thin film was successfully deposited onto the plastic substrate via UV annealing at low temperatures, leading to a substantial reduction in the WVTRs. The Ca corrosion test was used to measure the WVTRs of AlO{sub x} thin films deposited onto polyethylene naphthalate or polyimide substrates, determined to be 0.0095 g m{sup −2} day{sup −1} (25 °C, 50% relative humidity) and 0.26 g m{sup −2} day{sup −1}, respectively.

  3. Catalytic reduction of nitric oxide with ammonia over transition metal ion-exchanged Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Sciyama, T; Arakawa, T; Matsuda, T; Yamazoe, N; Takita, Y

    1975-01-01

    The catalytic reduction of nitric oxide with ammonia was studied over transition metal ion-exchanged Y zeolite (Me-Y) catalysts. The reaction products are nitrogen, nitrous oxide, and water in all cases. Selectivities to N/sub 2/ are 60 to 80% on all the cation exchanged zeolite catalysts exhibiting a relatively minor variation with the cationic species exchanged. The copper (II)-Y catalyst exhibits low temperature activity and has an unusual catalytic activity-temperature profile with a maximum at 120/sup 0/C. The catalytic activity is enhanced considerably when a second cation, especially cobalt (II) or iron (III) is coexchanged together with Cu (II) in Y zeolite.

  4. Electrolytic reduction runs of 0.6 kg scale-simulated oxide fuel in a Li{sub 2}O-LiCl molten salt using metal anode shrouds

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Jeong; Heo, Dong Hyun; Lee, Sang Kwon [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Jeon, Min Ku [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Hong, Sun Seok [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Department of Quantum Energy Chemical Engineering, University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daedoek-daero 989-111, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-06-15

    Ten electrolytic reduction or oxide reduction (OR) runs of a 0.6 kg scale-simulated oxide fuel in a Li{sub 2}O-LiCl molten salt at 650 °C were conducted using metal anode shrouds. During this procedure, an anode shroud surrounds a platinum anode and discharges hot oxygen gas from the salt to outside of the OR apparatus, thereby preventing corrosion of the apparatus. In this study, a number of anode shrouds made of various metals were tested. Each metallic anode shroud consisted of a lower porous shroud for the salt phase and an upper nonporous shroud for the gas phase. A stainless steel (STS) wire mesh with five-ply layer was a material commonly used for the lower porous shroud for the OR runs. The metals tested for the upper nonporous shroud in the different OR runs are STS, nickel, and platinum- or silver-lined nickel. The lower porous shroud showed no significant damage during two consecutive OR runs, but exhibited signs of damage from three or more runs due to thermal stress. The upper nonporous shrouds made up of either platinum- or silver-lined nickel showed excellent corrosion resistance to hot oxygen gas while STS or nickel without any platinum or silver lining exhibited poor corrosion resistance. - Highlights: •Electrolytic reduction runs of a 0.6 kg scale-simulated oxide fuel in a Li{sub 2}O-LiCl molten salt at 650 °C were conducted using metal anode shrouds. •Each metallic anode shroud consisted of a lower porous shroud for the salt phase and an upper nonporous shroud for the gas phase. •The upper nonporous shrouds made up of noble metal-lined nickel showed excellent corrosion resistance to hot oxygen gas.

  5. A new method to synthesize sulfur-doped graphene as effective metal-free electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Chunyang; Sun, Mingjuan [School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Zhu, Mingshan, E-mail: mingshanzhu@yahoo.com [School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Song, Shaoqing [School of Chemistry, Biology and Materials Science, East China Institute of Technology, Nanchang 330013 (China); Jiang, Shujuan, E-mail: sjjiang@ecit.edu.cn [School of Chemistry, Biology and Materials Science, East China Institute of Technology, Nanchang 330013 (China)

    2017-06-15

    Highlights: • S doped graphene was facile synthesized by one-pot solvothermal method. • DMSO acted as S source as well as reaction solvent. • S-RGO worked as an efficient metal-free electrocatalyst for ORR. • S-RGO acted as a promising candidate instead of Pt-based catalyst. - Abstract: The exploration of a metal-free catalyst with highly efficient yet low-cost for the oxygen-reduction reaction (ORR) is under wide spread investigation. In this paper, by using dimethyl sulfoxide (DMSO) as S source as well as solvent, we report a new, low-cost, and facile solvothermal route to synthesize S-doped reduced graphene oxide (S-RGO). The existence of S element in the framework of RGO was solidly confirmed by energy-dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). The as-synthesized S-RGO can be worked as an efficient metal-free electrocatalyst for ORR. Moreover, compared to commercial Pt/C electrocatalyst, the S-RGO displays superior resistance to crossover effect and stability by evaluating the addition of methanol and CO poisoning experiment. This result not only shows S-RGO as a promising candidate instead of Pt-based catalyst for ORR, but also provides a new approach for the preparation of metal-free electrocatalyst in future.

  6. Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction.

    Science.gov (United States)

    Cai, Bin; Hübner, René; Sasaki, Kotaro; Zhang, Yuanzhe; Su, Dong; Ziegler, Christoph; Vukmirovic, Miomir B; Rellinghaus, Bernd; Adzic, Radoslav R; Eychmüller, Alexander

    2018-03-05

    The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd x Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd x Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Influence of Cooling Rate in High-Temperature Area on Hardening of Deposited High-Cutting Chrome-Tungsten Metal

    OpenAIRE

    Malushin, N. N.; Valuev, Denis Viktorovich; Valueva, Anna Vladimirovna; Serikbol, A.; Borovikov, I. F.

    2015-01-01

    The authors study the influence of cooling rate in high-temperature area for thermal cycle of high-cutting chrome-tungsten metal weld deposit on the processes of carbide phase merging and austenite grain growth for the purpose of providing high hardness of deposited metal (HRC 64-66).

  8. The effect of electrostatic field on the rate of metal vaporization

    International Nuclear Information System (INIS)

    Tsirlin, M.S.; Lyubimov, V.D.; Krasovskij, A.I.

    1982-01-01

    Evaporation kinetics of molybdenum and tungsten filaments 30 and 80 μm in diameter, when vacuum constitutes 1.3x10 -1 -1.3x10 -3 Pa, the temperature is 1470 K for tungsten and 1270-1670 K for Mo and intensity is E=10 7 -10 8 V/m, has been measured. In supposition of evaporation of oxide mole-- cules from metal surface the density of molecule current of (MoO 3 ) 3 and (WO 3 ) 3 over solid (MoO 3 ) 3 and (WO 3 ) 3 is determined. It is established that the rate of molecule removal from the filament under the effect of heterogeneous electric field increases with the increase of dipole momentum of (WO 3 ) 3 and (MoO 3 ) 3 , the value of field intensity and with metal temperature decrease

  9. Numerical simulation of the direct reduction of pellets in a rotary hearth furnace for zinc-containing metallurgical dust treatment

    Science.gov (United States)

    Wu, Yu-liang; Jiang, Ze-yi; Zhang, Xin-xin; Wang, Peng; She, Xue-feng

    2013-07-01

    A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300°C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.

  10. Effects of emission reductions from the smelters in Sudbury on recovery of lakes within the metal deposition zone

    Energy Technology Data Exchange (ETDEWEB)

    Keller, W.; Heneberry, J.; Clark, M.; Malette, M.; Gunn, J. [Laurentian Univ., Sudbury, ON (Canada) Dept. of Biology

    1999-07-01

    Recent trends are examined in the chemistry of Sudbury lakes for evidence of further chemical recovery, as well as some of the biological characteristics of recovering Sudbury lakes. Preliminary results are provided from studies investigating physical, chemical and biological factors that may influence the lake recovery process with a focus on the lakes close to Sudbury that were historically the most severely affected. Smelter emission reductions in the Sudbury area have led to substantial changes in the water quality of area lakes, and decreases in acidity, sulfate, and copper and nickel concentrations followed the substantial decreases in emissions during the 1970s and similar trends are continuing after the implementation of large additional smelter emission reductions in the 1990s. Some of the most highly affected lakes close to the Sudbury smelters have showed very dramatic reductions in acidity and metal concentrations during the 1990s. Evaluation of the direct effects of the recent emissions reductions is confounded by the potential continuing effects of previous emission reductions and the effects of weather variations on chemistry time trends in Sudbury lakes. Continued monitoring of Sudbury lakes is essential to evaluate the ultimate effect of emission reduction programs, to develop an understanding of the recovery process, and to determine the need for any additional emission reduction requirements. 38 refs., 7 figs.

  11. A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation.

    Science.gov (United States)

    Brown, Leon D; Abdulaziz, Rema; Jervis, Rhodri; Bharath, Vidal; Mason, Thomas J; Atwood, Robert C; Reinhard, Christina; Connor, Leigh D; Inman, Douglas; Brett, Daniel J L; Shearing, Paul R

    2017-03-01

    A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO 2 to U metal in LiCl-KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO 2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl-KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO 2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems.

  12. Influence of Cooling Rate in High-Temperature Area on Hardening of Deposited High-Cutting Chrome-Tungsten Metal

    International Nuclear Information System (INIS)

    Malushin, N N; Valuev, D V; Valueva, A V; Serikbol, A; Borovikov, I F

    2015-01-01

    The authors study the influence of cooling rate in high-temperature area for thermal cycle of high-cutting chrome-tungsten metal weld deposit on the processes of carbide phase merging and austenite grain growth for the purpose of providing high hardness of deposited metal (HRC 64-66). (paper)

  13. Regulation of liquid metal coolant flow rate in experimental loops

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Laptev, G.I.

    1987-01-01

    The possibility to use the VRT-2, RPA-T and R 133 analog temperature regulators for the automated regulation of liquid metal flow rate in the experimental loops for investigations on sodium and sodium-potassium alloy technology is considered. The RPA-T device is shown to be the most convenient one; it is characterized by the following parameters: measuring modulus transfer coefficient is 500; the range of regulating modulus proportionality factor variation - 0.3 - 50; the range of the regulating modulus intergrating time constant variation - 5 - 500 s

  14. Evaluation of Chemical Kinetic for Mathematics Model Reduction of Cadmium Reaction Rate, Constant and Reaction Orde in to Electrochemical Process

    International Nuclear Information System (INIS)

    Prayitno

    2007-01-01

    The experiment was reduction of cadmium rate with electrochemical influenced by time process, concentration, current strength and type of electrode plate. The aim of the experiment was to know the influence, mathematic model reduction of cadmium the reaction rate, reaction rate constant and reaction orde influenced by time process, concentration, current strength and type of electrode plate. Result of research indicate the time processing if using plate of copper electrode is during 30 minutes and using plate of aluminium electrode is during 20 minutes. Condition of strong current that used in process of electrochemical is only 0.8 ampere and concentration effective is 5.23 mg/l. The most effective type Al of electrode plate for reduction from waste and the efficiency of reduction is 98 %. (author)

  15. Al- or Si-decorated graphene oxide: A favorable metal-free catalyst for the N2O reduction

    International Nuclear Information System (INIS)

    Esrafili, Mehdi D.; Sharifi, Fahimeh; Nematollahi, Parisa

    2016-01-01

    Highlights: • The reduction of N 2 O by CO molecule is investigated over Al- and Si-decorated graphene oxides (Al-/Si-GO). • The N 2 O decomposition process can take place with a negligible activation energy over both surfaces. • Al-GO and Si-GO can be used as an efficient metal-free catalyst for the reduction of N 2 O molecule at ambient conditions. - Abstract: The structural and catalytic properties of Al- or Si-decorated graphene oxide (Al-/Si-GO) are studied by means of density functional theory calculations. The relatively large adsorption energy together with the small Al−O or Si−O binding distances indicate that the epoxy groups over the GO surface can strongly stabilize the single Al or Si atom. Hence, Al-GO and Si-GO are stable enough to be utilized in catalytic reduction of N 2 O by CO molecule. It is found that the adsorption and decomposition of N 2 O molecule over Si-GO is more favorable than over Al-GO, due to its larger adsorption energy (E ads ) and charge transfer (q CT ) values. On the other hand, the CO molecule is physically adsorbed over both surfaces, with relatively small E ads and q CT values. Therefore, at the presence of N 2 O and CO molecules as the reaction gas, the Al or Si atom of the surface should be dominantly covered by N 2 O molecule. Our results indicate that the N 2 O decomposition process can take place with a negligible activation energy over Al-/Si-GO surface, where the N 2 molecule can be easily released from the surface. Then, the activated oxygen atom (O ads ) which remains over the surface reacts with the CO molecule to form the CO 2 molecule via the reaction O ads + CO → CO 2 . Based on the calculated activation energies, it is suggested that both Al-GO and Si-GO can be used as an efficient metal-free catalyst for the reduction of N 2 O molecule at ambient conditions.

  16. Preparation of low valent technetium metal-metal bonded species via solvothermal reduction of pertechnetate salts

    International Nuclear Information System (INIS)

    Kerlin, W.M.; Poineau, F.; Forster, P.M.; Czerwinski, K.R.; Sattelberger, A.P.

    2013-01-01

    A new one-step solvothermal synthesis route for reduction of pertechnetate salts to low valent technetium metal-metal bonded dimers will be presented. The reaction of potassium pertechnetate with glacial acetic acid plus either halo acids or halo salts under in-situ hydrogen production by sodium borohydride at various temperatures yields multiple products consisting of tetraacetate Tc-Tc (II,III) and Tc-Tc (III,III) paddle wheel dimers. Solid products isolated and analyzed via Single Crystal X-ray Diffraction (SC-XRD) in these reactions consist of polymeric chains Tc 2 +5 core: Tc 2 (μ-O 2 CCH 3 ) 4 (O 2 CCH 3 ), Tc 2 (μ-O 2 CCH 3 ) 4 Cl, Tc 2 (μ-O 2 CCH 3 ) 4 Br, Tc 2 (μ-O 2 CCH 3 ) 4 I, molecular Tc 2 +5 core: Tc 2 (μ-O 2 CCH 3 ) 3 Cl 2 (H 2 O) 2 ·H 2 O, K[Tc 2 (μ-O 2 CCH 3 ) 4 Br 2 ], and molecular Tc 2 +6 core: Tc 2 (μ-O 2 CCH 3 ) 4 Cl 2 , Tc 2 (μ-O 2 CCH 3 ) 4 Br 2 . Of the compounds listed, four are newly discovered using the one-step technique and two more additions to crystal database. Additional spectroscopic (X-ray Absorbance Fine Structure, UV-Vis, and FT-IR) characterization of the new compounds will be shown and used to propose a mechanism. Analysis of the mother liquor of each reaction by UV-Vis and formation of crystals over time due to oxidation of solutions affords a possible insight into mechanism of the Tc 2 +5 to Tc 2 +6 core formation. The oxidation states of Tc-Tc dimers formed is also dependent on temperature and pH of the starting solutions and will be explained in extensive detail. These one step reactions of reducing Tc(VII) to low valent technetium provides high yield intermediates for potential waste forms, use in nuclear fuel cycle separations, and radiopharmaceuticals. (author)

  17. 3D graphene preparation via covalent amide functionalization for efficient metal-free electrocatalysis in oxygen reduction

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Kim, Young-Bae

    2017-02-01

    3D and porous reduced graphene oxide (rGO) catalysts have been prepared with sp3-hybridized 1,4-diaminobutane (sp3-DABu, rGO-sp3-rGO) and sp2-hybridized 1,4-diaminobenzene (sp2-DABe, rGO-sp2-rGO) through a covalent amidation and have employed as a metal-free electrocatalyst for oxygen reduction reaction (ORR) in alkaline media. Both compounds have used as a junction between functionalized rGO layers to improve electrical conductivity and impart electrocatalytic activity to the ORR resulting from the interlayer charge transfer. The successful amidation and the subsequent reduction in the process of catalyst preparation have confirmed by X-ray photoelectron spectroscopy. A hierarchical porous structure is also confirmed by surface morphological analysis. Specific surface area and thermal stability have increased after successful the amidation by sp3-DABu. The investigated ORR mechanism reveals that both functionalized rGO is better ORR active than nonfunctionalized rGO due to pyridinic-like N content and rGO-sp3-rGO is better ORR active than rGO-sp2-rGO due to higher pyridinic-like N content and π-electron interaction-free interlayer charge transfer. Thus, the rGO-sp3-rGO has proven as an efficient metal-free electrocatalyst with better electrocatalytic activity, stability, and tolerance to the crossover effect than the commercially available Pt/C for ORR.

  18. Radiation blistering in metals and alloys

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1975-01-01

    Radiation blistering in solids has been identified as a process leading to damage and erosion of irradiated surfaces. Some of the major parameters governing the blistering process in metals and some metallic alloys are the type of projectile and its energy, total dose, dose rate, target temperature, channeling condition of the projectile, orientation of the irradiated surface plane, and target material and its microstructure. Experimental results and models proposed for blister formation and rupture are reviewed. The blistering phenomenon is important as an erosion process in applications such as fusion reactor technology (plasma-wall interactions) and accelerator technology (erosion of components and targets). A description of methods for the reduction of surface erosion caused by blistering is included

  19. Competitive kinetics as a tool to determine rate constants for reduction of ferrylmyoglobin by food components

    DEFF Research Database (Denmark)

    Jongberg, Sisse; Lund, Marianne Nissen; Pattison, David I.

    2016-01-01

    Competitive kinetics were applied as a tool to determine apparent rate constants for the reduction of hypervalent haem pigment ferrylmyoglobin (MbFe(IV)=O) by proteins and phenols in aqueous solution of pH 7.4 and I = 1.0 at 25 °C. Reduction of MbFe(IV)=O by a myofibrillar protein isolate (MPI) f...

  20. Increases to Inferred Rates of Planetesimal Accretion due to Thermohaline Mixing in Metal-accreting White Dwarfs

    Science.gov (United States)

    Bauer, Evan B.; Bildsten, Lars

    2018-06-01

    Many isolated, old white dwarfs (WDs) show surprising evidence of metals in their photospheres. Given that the timescale for gravitational sedimentation is astronomically short, this is taken as evidence for ongoing accretion, likely of tidally disrupted planetesimals. The rate of such accretion, {\\dot{M}}acc}, is important to constrain, and most modeling of this process relies on assuming an equilibrium between diffusive sedimentation and metal accretion supplied to the WD’s surface convective envelope. Building on the earlier work of Deal and collaborators, we show that high {\\dot{M}}acc} models with only diffusive sedimentation are unstable to thermohaline mixing and that models that account for the enhanced mixing from the active thermohaline instability require larger accretion rates, sometimes reaching {\\dot{M}}acc}≈ {10}13 {{g}} {{{s}}}-1 to explain observed calcium abundances. We present results from a grid of MESA models that include both diffusion and thermohaline mixing. These results demonstrate that both mechanisms are essential for understanding metal pollution across the range of polluted WDs with hydrogen atmospheres. Another consequence of active thermohaline mixing is that the observed metal abundance ratios are identical to accreted material.

  1. Metal resistance sequences and transgenic plants

    Science.gov (United States)

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  2. Evaluation of normalized metal artifact reduction (NMAR) in kVCT using MVCT prior images for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Paudel, M. R.; Mackenzie, M.; Rathee, S.; Fallone, B. G.

    2013-01-01

    Purpose: To evaluate the metal artifacts in kilovoltage computed tomography (kVCT) images that are corrected using a normalized metal artifact reduction (NMAR) method with megavoltage CT (MVCT) prior images.Methods: Tissue characterization phantoms containing bilateral steel inserts are used in all experiments. Two MVCT images, one without any metal artifact corrections and the other corrected using a modified iterative maximum likelihood polychromatic algorithm for CT (IMPACT) are translated to pseudo-kVCT images. These are then used as prior images without tissue classification in an NMAR technique for correcting the experimental kVCT image. The IMPACT method in MVCT included an additional model for the pair/triplet production process and the energy dependent response of the MVCT detectors. An experimental kVCT image, without the metal inserts and reconstructed using the filtered back projection (FBP) method, is artificially patched with the known steel inserts to get a reference image. The regular NMAR image containing the steel inserts that uses tissue classified kVCT prior and the NMAR images reconstructed using MVCT priors are compared with the reference image for metal artifact reduction. The Eclipse treatment planning system is used to calculate radiotherapy dose distributions on the corrected images and on the reference image using the Anisotropic Analytical Algorithm with 6 MV parallel opposed 5 × 10 cm 2 fields passing through the bilateral steel inserts, and the results are compared. Gafchromic film is used to measure the actual dose delivered in a plane perpendicular to the beams at the isocenter.Results: The streaking and shading in the NMAR image using tissue classifications are significantly reduced. However, the structures, including metal, are deformed. Some uniform regions appear to have eroded from one side. There is a large variation of attenuation values inside the metal inserts. Similar results are seen in commercially corrected image. Use

  3. The Impact of Accounting Methods on Cost Reduction Rates in Defense Aerospace Weapons System Programs

    Science.gov (United States)

    1988-12-01

    and adhered to in U.S. industry, allow some flexibility in accounting. Under GAAP , accounting areas such as depreciation , inventory, investment tax... depreciation , inventory and investment tax credit) in predicting cost reduction rates are studied. Of the three accounting variables, only inventory...RATES .. ................. ........... 5 1. Depreciation ........ ............... 6 2. Capitalizing or Expensing of Costs . . .. 6 3. Material Costs

  4. Mechanism of plutonium metal dissolution in HNO3-HF-N2H4 solution

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1985-01-01

    An oxidation-reduction balance of the products of the dissolution of plutonium metal and alloys in HNO 3 -HF-N 2 H 4 solution shows that the major reactions during dissolution are the reduction of nitrate to NH 3 , N 2 and N 2 O by the metal, and the oxidation of H free radicals to NH 3 by N 2 H 4 . Reactions between HNO 3 and N 2 H 4 produce varying amounts of HN 3 . The reaction rate is greater for delta-Pu than alpha-Pu, and is increased by higher concentrations of HF and HNO 3 . The low yield of reduced nitrogen species indicates that nitrate is reduced on the metal surface without producing a significant concentration of species that react with N 2 H 4 . It is conjectured that intermediate Pu valences and electron transfer within the metal are involved. 7 refs., 3 tabs

  5. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    International Nuclear Information System (INIS)

    Scott C. Brooks; Wenming Dong; Sue Carroll; James K. Fredrickson; Kenneth M. Kemner; Shelly D. Kelly

    2006-01-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. (2) Elucidate the controls on the rate and extent of contaminant reactivity. (3) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions

  6. Post-harvest processing methods for reduction of silica and alkali metals in wheat straw.

    Science.gov (United States)

    Thompson, David N; Shaw, Peter G; Lacey, Jeffrey A

    2003-01-01

    Silica and alkali metals in wheat straw limit its use for bioenergy and gasification. Slag deposits occur via the eutectic melting of SiO2 with K2O, trapping chlorides at surfaces and causing corrosion. A minimum melting point of 950 degrees C is desirable, corresponding to an SiO2:K2O weight ratio of about 3:1. Mild chemical treatments were used to reduce Si, K, and Cl, while varying temperature, concentration, % solids, and time. Dilute acid was more effective at removing K and Cl, while dilute alkali was more effective for Si. Reduction of minerals in this manner may prove economical for increasing utilization of the straw for combustion or gasification.

  7. Post-Harvest Processing Methods for Reduction of Silica and Alkali Metals in Wheat Straw

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neal; Lacey, Jeffrey Alan; Shaw, Peter Gordon

    2002-04-01

    Silica and alkali metals in wheat straw limit its use for bioenergy and gasification. Slag deposits occur via the eutectic melting of SiO2 with K2O, trapping chlorides at surfaces and causing corrosion. A minimum melting point of 950°C is desirable, corresponding to SiO2:K2O of about 3:1. Mild chemical treatments were used to reduce Si, K, and Cl, while varying temperature, concentration, %-solids, and time. Dilute acid was more effective at removing K and Cl, while dilute alkali was more effective for Si. Reduction of minerals in this manner may prove economical for increasing utilization of the straw for combustion or gasification.

  8. The mass-metallicity-star formation rate relation under the STARLIGHT microscope

    Science.gov (United States)

    Schlickmann, M.; Vale Asari, N.; Cid Fernandes, R.; Stasińska, G.

    2014-10-01

    The correlation between stellar mass and gas-phase oxygen abundance (M-Z relation) has been known for decades. The slope and scatter of this trend is strongly dependent on galaxy evolution: Chemical enrichment in a galaxy is driven by its star formation history, which in turn depends on its secular evolution and interaction with other galaxies and intergalactic gas. In last couple of years, the M-Z relation has been studied as a function of a third parameter: the recent star formation rate (SFR) as calibrated by the Hα luminosity, which traces stars formed in the last 10 Myr. This mass-metallicity-SFR relation has been reported to be very tight. This result puts strong constraints on galaxy evolution models in low and high redshifts, informing which models of infall and outflow of gas are acceptable. We explore the mass-metallicity-SFR relation in light of the SDSS-STARLIGHT database put together by our group. We find that we recover similar results as the ones reported by authors who use the MPA/JHU catalogue. We also present some preliminary results exploring the mass-metallicity-SFR relation in a more detailed fashion: starlight recovers a galaxy's full star formation history, and not only its recent SFR.

  9. Dose rate reduction using epoxy mixed lead shielding: experimental and theoretical determination of its shielding effectiveness

    International Nuclear Information System (INIS)

    Yadav, R.K.B.; Prasad, S.K.; Babu, K.S.; Hardiya, M.R.; Ullas, O.P.

    2010-01-01

    Full text: High background radiation field exists in Water Treatment Area (WTA) of Rod Cutting Building (RCB) in Cirus due to beta, gamma contamination on its floor. The high contamination on sides of wall and on floor is primarily due to deposition of activity generated during the regeneration of old mixed bed cartridges earlier (before year 1985) and presently due to deposition of contaminants by sump overflowing, wastes generated during maintenance/servicing of circulating pumps. RCB-WTA contribution to collective dose in present situation is up to 30% of the total collective dose of Cirus. Various options such as chipping of top layer of concrete floor of a sample area, in-situ placing of slab of cement and lead shot mixture were considered. In this case the man-rem consumption was high as radiation dose rate on concrete chip was 0.4 mGy/h and air activity generated was high, that too long lived with 137 Cs-as main constituent. The dose reduction factor was 1.7. In the second option the reduction in dose rate was insignificant and in-situ pouring of concrete consumed high collective dose. Hence above two options were not acceptable. Therefore the idea of tiling the contaminated floor with prefabricated epoxy mixed lead shots was accepted from ALARA point of view. It was concluded that pre-fabricated slabs of epoxy mixed lead slab of 25 mm thickness can be laid in RCB area to achieve a dose rate reduction factor of approximately five at a height of 30 cm above floor. This will result in a reduction of Person-mSv consumption in RCB by a factor of 5-10. These slabs of different thickness were fabricated outside RCB and were tested for shielding effectiveness experimentally by using radiation source and theoretically using MCNP code. Dose reduction factor of five for a point source, obtained experimentally for epoxy mixed lead shots was very near to value obtained by theoretical simulation. An extended calculation for an area source using this MCNP model gives a

  10. Advanced Experimental Analysis of Controls on Microbial Fe(III) Oxide Reduction - Final Report - 09/16/1996 - 03/16/2001; FINAL

    International Nuclear Information System (INIS)

    Roden, Eric E.

    2001-01-01

    Considering the broad influence that microbial Fe(III) oxide reduction can have on subsurface metal/organic contaminant biogeochemistry, understanding the mechanisms that control this process is critical for predicting the behavior and fate of these contaminants in anaerobic subsurface environments. Knowledge of the factors that influence the rates of growth and activity of Fe(III) oxide-reducing bacteria is critical for predicting (i.e., modeling) the long-term influence of these organisms on the fate of contaminants in the subsurface, and for effectively utilizing Fe(III) oxide reduction and associated geochemical affects for the purpose of subsurface metal/organic contamination bioremediation. This research project will refine existing models for microbiological and geochemical controls on Fe(III) oxide reduction, using laboratory reactor systems that mimic, to varying degrees, the physical and chemical conditions of the subsurface. Novel experimental methods for studying the kinetics of microbial Fe(III) oxide reduction and measuring growth rates of Fe(III) oxide-reducing bacteria will be developed. These new methodologies will be directly applicable to studies on subsurface contaminant transformations directly coupled to or influenced by microbial Fe(III) oxide reduction

  11. Porous silicon based anode material formed using metal reduction

    Science.gov (United States)

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  12. Gain reduction due to space charge at high counting rates in multiwire proportional chambers

    International Nuclear Information System (INIS)

    Smith, G.C.; Mathieson, E.

    1986-10-01

    Measurements with a small MWPC of gas gain reduction, due to ion space charge at high counting rates, have been compared with theoretical predictions. The quantity ln(q/q 0 )/(q/q 0 ), where (q/q 0 ) is the relative reduced avalanche charge, has been found to be closely proportional to count rate, as predicted. The constant of proportionality is in good agreement with calculations made with a modified version of the original, simplified theory

  13. SU-E-T-396: Dosimetric Accuracy of Proton Therapy for Patients with Metal Implants in CT Scans Using Metal Deletion Technique (MDT) Artifacts Reduction

    International Nuclear Information System (INIS)

    Li, X; Kantor, M; Zhu, X; Frank, S; Sahoo, N; Li, H

    2014-01-01

    Purpose: To evaluate the dosimetric accuracy for proton therapy patients with metal implants in CT using metal deletion technique (MDT) artifacts reduction. Methods: Proton dose accuracies under CT metal artifacts were first evaluated using a water phantom with cylindrical inserts of different materials (titanium and steel). Ranges and dose profiles along different beam angles were calculated using treatment planning system (Eclipse version 8.9) on uncorrected CT, MDT CT, and manually-corrected CT, where true Hounsfield units (water) were assigned to the streak artifacts. In patient studies, the treatment plans were developed on manually-corrected CTs, then recalculated on MDT and uncorrected CTs. DVH indices were compared between the dose distributions on all the CTs. Results: For water phantom study with 1/2 inch titanium insert, the proton range differences estimated by MDT CT were with 1% for all beam angles, while the range error can be up to 2.6% for uncorrected CT. For the study with 1 inch stainless steel insert, the maximum range error calculated by MDT CT was 1.09% among all the beam angles compared with maximum range error with 4.7% for uncorrected CT. The dose profiles calculated on MDT CTs for both titanium and steel inserts showed very good agreements with the ones calculated on manually-corrected CTs, while large dose discrepancies calculated using uncorrected CTs were observed in the distal end region of the proton beam. The patient study showed similar dose distribution and DVHs for organs near the metal artifacts recalculated on MDT CT compared with the ones calculated on manually-corrected CT, while the differences between uncorrected and corrected CTs were much pronounced. Conclusion: In proton therapy, large dose error could occur due to metal artifact. The MDT CT can be used for proton dose calculation to achieve similar dose accuracy as the current clinical practice using manual correction

  14. Metal artifact reduction in x-ray computed tomography by using analytical DBP-type algorithm

    Science.gov (United States)

    Wang, Zhen; Kudo, Hiroyuki

    2012-03-01

    This paper investigates a common metal artifacts problem in X-ray computed tomography (CT). The artifacts in reconstructed image may render image non-diagnostic because of inaccuracy beam hardening correction from high attenuation objects, satisfactory image could not be reconstructed from projections with missing or distorted data. In traditionally analytical metal artifact reduction (MAR) method, firstly subtract the metallic object part of projection data from the original obtained projection, secondly complete the subtracted part in original projection by using various interpolating method, thirdly reconstruction from the interpolated projection by filtered back-projection (FBP) algorithm. The interpolation error occurred during the second step can make unrealistic assumptions about the missing data, leading to DC shift artifact in the reconstructed images. We proposed a differentiated back-projection (DBP) type MAR method by instead of FBP algorithm with DBP algorithm in third step. In FBP algorithm the interpolated projection will be filtered on each projection view angle before back-projection, as a result the interpolation error is propagated to whole projection. However, the property of DBP algorithm provide a chance to do filter after the back-projection in a Hilbert filter direction, as a result the interpolation error affection would be reduce and there is expectation on improving quality of reconstructed images. In other word, if we choose the DBP algorithm instead of the FBP algorithm, less contaminated projection data with interpolation error would be used in reconstruction. A simulation study was performed to evaluate the proposed method using a given phantom.

  15. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    International Nuclear Information System (INIS)

    Toftegaard, Jakob; Fledelius, Walther; Worm, Esben S.; Poulsen, Per R.; Seghers, Dieter; Huber, Michael; Brehm, Marcus; Elstrøm, Ulrik V.

    2014-01-01

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  16. Investigation of exposure rates and radionuclide and trace metal distributions along the Hanford Reach of the Columbia River

    International Nuclear Information System (INIS)

    Cooper, A.T.; Woodruff, R.K.

    1993-09-01

    Studies have been conducted to investigate exposure rates, and radionuclide and trace metal distributions along the Columbia River where it borders the Hanford Site. The last major field study was conducted in 1979. With recently renewed interest in various land use and resource protection alternatives, it is important to have data that represent current conditions. Radionuclides and trace metals were surveyed in Columbia River shoreline soils along the Hanford Site (Hanford Reach). The work was conducted as part of the Surface Environmental Surveillance Project, Pacific Northwest Laboratory. The survey consisted of taking exposure rate measurements and soil samples primarily at locations known or expected to have elevated exposure rates

  17. A fully 3D approach for metal artifact reduction in computed tomography

    International Nuclear Information System (INIS)

    Kratz, Bärbel; Weyers, Imke; Buzug, Thorsten M.

    2012-01-01

    Purpose: In computed tomography imaging metal objects in the region of interest introduce inconsistencies during data acquisition. Reconstructing these data leads to an image in spatial domain including star-shaped or stripe-like artifacts. In order to enhance the quality of the resulting image the influence of the metal objects can be reduced. Here, a metal artifact reduction (MAR) approach is proposed that is based on a recomputation of the inconsistent projection data using a fully three-dimensional Fourier-based interpolation. The success of the projection space restoration depends sensitively on a sensible continuation of neighboring structures into the recomputed area. Fortunately, structural information of the entire data is inherently included in the Fourier space of the data. This can be used for a reasonable recomputation of the inconsistent projection data. Methods: The key step of the proposed MAR strategy is the recomputation of the inconsistent projection data based on an interpolation using nonequispaced fast Fourier transforms (NFFT). The NFFT interpolation can be applied in arbitrary dimension. The approach overcomes the problem of adequate neighborhood definitions on irregular grids, since this is inherently given through the usage of higher dimensional Fourier transforms. Here, applications up to the third interpolation dimension are presented and validated. Furthermore, prior knowledge may be included by an appropriate damping of the transform during the interpolation step. This MAR method is applicable on each angular view of a detector row, on two-dimensional projection data as well as on three-dimensional projection data, e.g., a set of sequential acquisitions at different spatial positions, projection data of a spiral acquisition, or cone-beam projection data. Results: Results of the novel MAR scheme based on one-, two-, and three-dimensional NFFT interpolations are presented. All results are compared in projection data space and spatial

  18. Interaction of terbium group metal oxides with carbon

    International Nuclear Information System (INIS)

    Vodop'yanov, A.G.; Baranov, S.V.; Kozhevnikov, G.N.

    1990-01-01

    Mechanism of carbothermal reduction of terbium group metals from oxides is investigated using thermodynamic and kinetic analyses. Interaction of metal oxides with carbon covers dissociation of metal oxides and reduction by carbon monoxide, which contribution into general reduction depends on CO pressure. Temperatures of reaction beginning for batch initial components at P=1.3x10 -4 and P CO =0.1 MPa and of formation of oxycarbide melts are determined

  19. Understanding the factors influencing the removal of heavy metals in urban stormwater runoff.

    Science.gov (United States)

    Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2016-01-01

    In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.

  20. Energy Dissipation Rate in an Agitated Crucible Containing Molten Metal

    Science.gov (United States)

    Li, Tao; Shimasaki, Shin-ichi; Narita, Shunsuke; Taniguchi, Shoji

    2017-10-01

    The energy dissipation rate (EDR) is an important parameter for characterizing the behavior of inclusion coagulation in agitated molten metal. To clarify the inclusion coagulation mechanism, we review previous water model studies by particularly focusing on the relation between the impeller torque and the EDR of the fluid, which indicates the ratio of energy dissipated in the viscous medium to the energy inputted by the rotating impeller. In the present study, simulations coupled with experiments were performed to determine the relation between the torque and the effective EDR for water and liquid Al in crucibles with and without baffles.

  1. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.

    Science.gov (United States)

    Kabdaşli, Işik; Arslan, Tülin; Olmez-Hanci, Tuğba; Arslan-Alaton, Idil; Tünay, Olcay

    2009-06-15

    In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).

  2. Optimized protocols for cardiac magnetic resonance imaging in patients with thoracic metallic implants.

    Science.gov (United States)

    Olivieri, Laura J; Cross, Russell R; O'Brien, Kendall E; Ratnayaka, Kanishka; Hansen, Michael S

    2015-09-01

    Cardiac magnetic resonance (MR) imaging is a valuable tool in congenital heart disease; however patients frequently have metal devices in the chest from the treatment of their disease that complicate imaging. Methods are needed to improve imaging around metal implants near the heart. Basic sequence parameter manipulations have the potential to minimize artifact while limiting effects on image resolution and quality. Our objective was to design cine and static cardiac imaging sequences to minimize metal artifact while maintaining image quality. Using systematic variation of standard imaging parameters on a fluid-filled phantom containing commonly used metal cardiac devices, we developed optimized sequences for steady-state free precession (SSFP), gradient recalled echo (GRE) cine imaging, and turbo spin-echo (TSE) black-blood imaging. We imaged 17 consecutive patients undergoing routine cardiac MR with 25 metal implants of various origins using both standard and optimized imaging protocols for a given slice position. We rated images for quality and metal artifact size by measuring metal artifact in two orthogonal planes within the image. All metal artifacts were reduced with optimized imaging. The average metal artifact reduction for the optimized SSFP cine was 1.5+/-1.8 mm, and for the optimized GRE cine the reduction was 4.6+/-4.5 mm (P metal artifact reduction for the optimized TSE images was 1.6+/-1.7 mm (P metal artifact are easily created by modifying basic sequence parameters, and images are superior to standard imaging sequences in both quality and artifact size. Specifically, for optimized cine imaging a GRE sequence should be used with settings that favor short echo time, i.e. flow compensation off, weak asymmetrical echo and a relatively high receiver bandwidth. For static black-blood imaging, a TSE sequence should be used with fat saturation turned off and high receiver bandwidth.

  3. High-Temperature Tensile Behaviors of Base Metal and Electron Beam-Welded Joints of Ni-20Cr-9Mo-4Nb Superalloy

    Science.gov (United States)

    Gupta, R. K.; Anil Kumar, V.; Sukumaran, Arjun; Kumar, Vinod

    2018-05-01

    Electron beam welding of Ni-20Cr-9Mo-4Nb alloy sheets was carried out, and high-temperature tensile behaviors of base metal and weldments were studied. Tensile properties were evaluated at ambient temperature, at elevated temperatures of 625 °C to 1025 °C, and at strain rates of 0.1 to 0.001 s-1. Microstructure of the weld consisted of columnar dendritic structure and revealed epitaxial mode of solidification. Weld efficiency of 90 pct in terms of strength (UTS) was observed at ambient temperature and up to an elevated temperature of 850 °C. Reduction in strength continued with further increase of test temperature (up to 1025 °C); however, a significant improvement in pct elongation is found up to 775 °C, which was sustained even at higher test temperatures. The tensile behaviors of base metal and weldments were similar at the elevated temperatures at the respective strain rates. Strain hardening exponent `n' of the base metal and weldment was 0.519. Activation energy `Q' of base metal and EB weldments were 420 to 535 kJ mol-1 determined through isothermal tensile tests and 625 to 662 kJ mol-1 through jump-temperature tensile tests. Strain rate sensitivity `m' was low ( 775 °C) is attributed to the presence of recrystallized grains. Up to 700 °C, the deformation is through slip, where strain hardening is predominant and effect of strain rate is minimal. Between 775 °C to 850 °C, strain hardening is counterbalanced by flow softening, where cavitation limits the deformation (predominantly at lower strain rate). Above 925 °C, flow softening is predominant resulting in a significant reduction in strength. Presence of precipitates/accumulated strain at high strain rate results in high strength, but when the precipitates were coarsened at lower strain rates or precipitates were dissolved at a higher temperature, the result was a reduction in strength. Further, the accumulated strain assisted in recrystallization, which also resulted in a reduction in strength.

  4. Electrolytic reduction runs of 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt using metal anode shrouds

    Science.gov (United States)

    Choi, Eun-Young; Lee, Jeong; Heo, Dong Hyun; Lee, Sang Kwon; Jeon, Min Ku; Hong, Sun Seok; Kim, Sung-Wook; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-06-01

    Ten electrolytic reduction or oxide reduction (OR) runs of a 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt at 650 °C were conducted using metal anode shrouds. During this procedure, an anode shroud surrounds a platinum anode and discharges hot oxygen gas from the salt to outside of the OR apparatus, thereby preventing corrosion of the apparatus. In this study, a number of anode shrouds made of various metals were tested. Each metallic anode shroud consisted of a lower porous shroud for the salt phase and an upper nonporous shroud for the gas phase. A stainless steel (STS) wire mesh with five-ply layer was a material commonly used for the lower porous shroud for the OR runs. The metals tested for the upper nonporous shroud in the different OR runs are STS, nickel, and platinum- or silver-lined nickel. The lower porous shroud showed no significant damage during two consecutive OR runs, but exhibited signs of damage from three or more runs due to thermal stress. The upper nonporous shrouds made up of either platinum- or silver-lined nickel showed excellent corrosion resistance to hot oxygen gas while STS or nickel without any platinum or silver lining exhibited poor corrosion resistance.

  5. NOx reduction over metal-ion exchanged novel zeolite under lean conditions. Activity and hydrothermal stability

    International Nuclear Information System (INIS)

    Subbiah, Ayyappan; Gujar, Amit; Price, Geoffrey L.; Cho, Byong K.; Blint, Richard J.; Yie, Jae E.

    2003-01-01

    Zeolite SUZ-4 was synthesized and tested for its hydrothermal stability using a standard aging procedure coupled with NMR spectroscopy, and was identified as a promising support for lean-NO x catalysts for high temperature applications. Various metals such as Cu, Ag, Fe, Co were ion exchanged onto the SUZ-4 zeolite, and their catalytic activity for NO/NO x conversion was measured in the presence of excess oxygen using ethylene as the reducing agent. Among the metal-ions exchanged, copper proved to be the best metal cation for lean-NO x catalysis with the optimum level of exchange at 29-42%. The optimized, fresh Cu/SUZ-4 catalyst achieved 70-80% of NO/NO x conversion activity over a wide range of temperature from 350 to 600C with the maximum conversion temperature at 450C. The presence of H 2 O and SO 2 reduced the NO/NO x conversion by about 30% of the fresh Cu/SUZ-4 catalyst due possibly to the blocking of active sites for NO/NO x adsorption. Substitution of gasoline vapor for ethylene as the reductant improved the NO x reduction activity of the fresh Cu/SUZ-4 catalyst at high temperatures above 350C. Aging the Cu/SUZ-4 catalyst resulted in a slight shift of activity profile toward higher temperatures, yielding an increase of NO conversion by 16% and a decrease of NO x conversion by 15% at 525C. The effect of H 2 O and SO 2 on the aged catalyst was to reduce the NO activity by 20% and NO x activity by 30% at 500C. The effect of space velocity change was not significant except in the low temperature range where the reaction light-off occurs. Adsorption/desorption measurements indicate that aging Cu/SUZ-4 results in partial migration/agglomeration of Cu particles in the pores thereby reducing the NO/NO x activity. Overall, the NO x conversion efficiency of Cu/SUZ-4, for both fresh and aged, is much better than the benchmark Cu/ZSM-5 in the presence of H 2 O and/or SO 2

  6. Reduction of artifacts caused by orthopedic hardware in the spine in spectral detector CT examinations using virtual monoenergetic image reconstructions and metal-artifact-reduction algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Grosse Hokamp, Nils; Neuhaus, V.; Abdullayev, N.; Laukamp, K.; Lennartz, S.; Mpotsaris, A.; Borggrefe, J. [University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne (Germany)

    2018-02-15

    Aim of this study was to assess the artifact reduction in patients with orthopedic hardware in the spine as provided by (1) metal-artifact-reduction algorithms (O-MAR) and (2) virtual monoenergetic images (MonoE) as provided by spectral detector CT (SDCT) compared to conventional iterative reconstruction (CI). In all, 28 consecutive patients with orthopedic hardware in the spine who underwent SDCT-examinations were included. CI, O-MAR and MonoE (40-200 keV) images were reconstructed. Attenuation (HU) and noise (SD) were measured in order to calculate signal-to-noise ratio (SNR) of paravertebral muscle and spinal canal. Subjective image quality was assessed by two radiologists in terms of image quality and extent of artifact reduction. O-MAR and high-keV MonoE showed significant decrease of hypodense artifacts in terms of higher attenuation as compared to CI (CI vs O-MAR, 200 keV MonoE: -396.5HU vs. -115.2HU, -48.1HU; both p ≤ 0.001). Further, artifacts as depicted by noise were reduced in O-MAR and high-keV MonoE as compared to CI in (1) paravertebral muscle and (2) spinal canal - CI vs. O-MAR/200 keV: (1) 34.7 ± 19.0 HU vs. 26.4 ± 14.4 HU, p ≤ 0.05/27.4 ± 16.1, n.s.; (2) 103.4 ± 61.3 HU vs. 72.6 ± 62.6 HU/60.9 ± 40.1 HU, both p ≤ 0.001. Subjectively both O-MAR and high-keV images yielded an artifact reduction in up to 24/28 patients. Both, O-MAR and high-keV MonoE reconstructions as provided by SDCT lead to objective and subjective artifact reduction, thus the combination of O-MAR and MonoE seems promising for further reduction. (orig.)

  7. Design requirements for a metal-smelting facility

    International Nuclear Information System (INIS)

    Williams, L.C.; Mack, J.E.

    1982-01-01

    Functional requirements for the smelting of metal scrap contaminated with low-enriched uranium in a Metal Smelting Faclity (MSF) have been determined. The process will be designed to smelt ferrous metal scrap that has accumulated at the Oak Ridge Gaseous Diffusion Plant (ORGDP) into one-ton ingots at a rate of 40 ingots per day (10,000 tons/year). Total scrap inventories at the ORGDP are currently estimated at 28,000 tons. The diffusion plant scrap is primarily contaminated with 100 to 200 ppm U at an enrichment of 0.5 to 1.5% 235 U. The scrap is considered special nuclear material (SNM) and cannot be handled by commercial smelters without specific licensing. Slagging will be performed to remove contaminants from the metal and concentrate them in the slag. Process systems will include scrap handling, size reduction, preheating and charging, melting and slagging, ingot casting and storage, and fume exhaust. The MSF has been proposed for FY 1984 line item funding

  8. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Biwei [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  9. Spectral CT with metal artifacts reduction software for improvement of tumor visibility in the vicinity of gold fiducial markers.

    Science.gov (United States)

    Brook, Olga R; Gourtsoyianni, Sofia; Brook, Alexander; Mahadevan, Anand; Wilcox, Carol; Raptopoulos, Vassilios

    2012-06-01

    To evaluate spectral computed tomography (CT) with metal artifacts reduction software (MARS) for reduction of metal artifacts associated with gold fiducial seeds. Thirteen consecutive patients with 37 fiducial seeds implanted for radiation therapy of abdominal lesions were included in this HIPAA-compliant, institutional review board-approved prospective study. Six patients were women (46%) and seven were men (54%). The mean age was 61.1 years (median, 58 years; range, 29-78 years). Spectral imaging was used for arterial phase CT. Images were reconstructed with and without MARS in axial, coronal, and sagittal planes. Two radiologists independently reviewed reconstructions and selected the best image, graded the visibility of the tumor, and assessed the amount of artifacts in all planes. A linear-weighted κ statistic and Wilcoxon signed-rank test were used to assess interobserver variability. Histogram analysis with the Kolmogorov-Smirnov test was used for objective evaluation of artifacts reduction. Fiducial seeds were placed in pancreas (n = 5), liver (n = 7), periportal lymph nodes (n = 1), and gallbladder bed (n = 1). MARS-reconstructed images received a better grade than those with standard reconstruction in 60% and 65% of patients by the first and second radiologist, respectively. Tumor visibility was graded higher with standard versus MARS reconstruction (grade, 3.7 ± 1.0 vs 2.8 ± 1.1; P = .001). Reduction of blooming was noted on MARS-reconstructed images (P = .01). Amount of artifacts, for both any and near field, was significantly smaller on sagittal and coronal MARS-reconstructed images than on standard reconstructions (P MARS-reconstructed images than on standard reconstructions (P MARS than with standard reconstruction in 35 of 37 patients (P MARS improved tumor visibility in the vicinity of gold fiducial seeds.

  10. The electrochemical reduction rate of colloidal particles of silver halides as a function of the electrolyte composition

    International Nuclear Information System (INIS)

    Selivanov, V.N.

    1997-01-01

    Influence of silver halide colloid particles concentration (AgI), electrolyte composition and signs of the electrode and colloids charges on their reduction threshold current densities has been studied. It has been discovered that reduction threshold current densities of positively charged colloid particles exceed by a factor of 3-4 the threshold densities of silver ions diffusion current. It is shown that the threshold density of colloids reduction current is limited by the rates of their electrophoretic transfer and diffusion

  11. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Directory of Open Access Journals (Sweden)

    Alpers Charles N

    2007-10-01

    Full Text Available Abstract Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5. The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1 preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2 stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3 reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA and denaturing gradient gel electrophoresis (DGGE analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures.

  12. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Science.gov (United States)

    Church, C.D.; Wilkin, R.T.; Alpers, Charles N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  13. 3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction.

    Science.gov (United States)

    Berillo, Dmitriy; Cundy, Andrew

    2018-07-15

    3D-macroporous chitosan-based scaffolds (cryogels) were produced via growth of metal-polymer coordinated complexes and electrostatic interactions between oppositely charged groups of chitosan and metal ions under subzero temperatures. A mechanism of reduction of noble metal complexes inside the cryogel walls by glutaraldehyde is proposed, which produces discrete and dispersed noble metal nanoparticles. 3D-macroporous scaffolds prepared under different conditions were characterised using TGA, FTIR, nitrogen adsorption, SEM, EDX and TEM, and the distribution of platinum nanoparticles (PtNPs) and palladium nanoparticles (PdNPs) in the material assessed. The catalytic activity of the in situ synthesised PdNPs, at 2.6, 12.5 and 21.0 μg total mass, respectively, was studied utilising a model system of 4-nitrophenol reduction. The kinetics of the reaction under different conditions (temperature, concentration of catalyst) were examined, and a decrease of catalytic activity was not observed over 17 treatment cycles. Increasing the temperature of the catalytic reaction from 10 to 22 and 35 °C by PdNPs supported within the cryogel increased the kinetic rate by 44 and 126%, respectively. Turnover number and turnover frequency of the PdNPs catalysts at room temperature were in the range 0.20-0.53 h -1 . The conversion degree of 4-nitrophenol at room temperature reached 98.9% (21.0 μg PdNPs). Significantly less mass of palladium nanoparticles (by 30-40 times) was needed compared to published data to obtain comparable rates of reduction of 4-nitrophenol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. EXPLORING SYSTEMATIC EFFECTS IN THE RELATION BETWEEN STELLAR MASS, GAS PHASE METALLICITY, AND STAR FORMATION RATE

    International Nuclear Information System (INIS)

    Telford, O. Grace; Dalcanton, Julianne J.; Skillman, Evan D.; Conroy, Charlie

    2016-01-01

    There is evidence that the well-established mass–metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of this correlation may be used to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows) in governing chemical evolution. However, all three parameters are susceptible to biases that might affect the observed strength of the relation between them. We analyze possible sources of systematic error, including sample bias, application of signal-to-noise ratio cuts on emission lines, choice of metallicity calibration, uncertainty in stellar mass determination, aperture effects, and dust. We present the first analysis of the relation between stellar mass, gas phase metallicity, and SFR using strong line abundance diagnostics from Dopita et al. for ∼130,000 star-forming galaxies in the Sloan Digital Sky Survey and provide a detailed comparison of these diagnostics in an appendix. Using these new abundance diagnostics yields a 30%–55% weaker anti-correlation between metallicity and SFR at fixed stellar mass than that reported by Mannucci et al. We find that, for all abundance diagnostics, the anti-correlation with SFR is stronger for the relatively few galaxies whose current SFRs are elevated above their past average SFRs. This is also true for the new abundance diagnostic of Dopita et al., which gives anti-correlation between Z and SFR only in the high specific star formation rate (sSFR) regime, in contrast to the recent results of Kashino et al. The poorly constrained strength of the relation between stellar mass, metallicity, and SFR must be carefully accounted for in theoretical studies of chemical evolution.

  15. Magnesio-thermic reduction of UF4 to uranium metal : plant operating experience

    International Nuclear Information System (INIS)

    Mayekar, S.V.; Singh, H.; Meghal, A.M.; Koppiker, K.S.

    1991-01-01

    Uranium Metal Plant has switched over from calcio-thermy to magnesio-thermy for production of uranium ingots. In this paper, the plant operating experience for magnesio-thermic reduction is described. Based on trials, the production has been stepped up from 40 kg ingots to 200 kg ingots. The operating parameters optimised include : heating schedule, UF 4 quality, magnesium quantity and quality, and particle size. The effect of quality of refractory lining has been discussed. Conditions for lining are optimised with regard to type of material used and size. Developmental work has also been carried out on use of pelletised charge and on use of graphite sleeves. Some experience in the machining of ingots for removal of surface slag is also discussed. Impurity problems, occasionally encountered, have been investigated and results are discussed. Based on the experience gained, specifications for operation have been laid down, and areas for further improvement are identified. (author). 5 refs., 1 fig., 1 tab

  16. Particulate metals and organic compounds from electronic and tobacco-containing cigarettes: comparison of emission rates and secondhand exposure.

    Science.gov (United States)

    Saffari, Arian; Daher, Nancy; Ruprecht, Ario; De Marco, Cinzia; Pozzi, Paolo; Boffi, Roberto; Hamad, Samera H; Shafer, Martin M; Schauer, James J; Westerdahl, Dane; Sioutas, Constantinos

    2014-01-01

    In recent years, electronic cigarettes have gained increasing popularity as alternatives to normal (tobacco-containing) cigarettes. In the present study, particles generated by e-cigarettes and normal cigarettes have been analyzed and the degree of exposure to different chemical agents and their emission rates were quantified. Despite the 10-fold decrease in the total exposure to particulate elements in e-cigarettes compared to normal cigarettes, specific metals (e.g. Ni and Ag) still displayed a higher emission rate from e-cigarettes. Further analysis indicated that the contribution of e-liquid to the emission of these metals is rather minimal, implying that they likely originate from other components of the e-cigarette device or other indoor sources. Organic species had lower emission rates during e-cigarette consumption compared to normal cigarettes. Of particular note was the non-detectable emission of polycyclic aromatic hydrocarbons (PAHs) from e-cigarettes, while substantial emission of these species was observed from normal cigarettes. Overall, with the exception of Ni, Zn, and Ag, the consumption of e-cigarettes resulted in a remarkable decrease in secondhand exposure to all metals and organic compounds. Implementing quality control protocols on the manufacture of e-cigarettes would further minimize the emission of metals from these devices and improve their safety and associated health effects.

  17. The rate of nitrite reduction in leaves as indicated by O₂ and CO₂ exchange during photosynthesis.

    Science.gov (United States)

    Eichelmann, H; Oja, V; Peterson, R B; Laisk, A

    2011-03-01

    Light response (at 300 ppm CO(2) and 10-50 ppm O(2) in N(2)) and CO(2) response curves [at absorbed photon fluence rate (PAD) of 550 μmol m(-2) s(-1)] of O(2) evolution and CO(2) uptake were measured in tobacco (Nicotiana tabacum L.) leaves grown on either NO(3)(-) or NH(4)(+) as N source and in potato (Solanum tuberosum L.), sorghum (Sorghum bicolor L. Moench), and amaranth (Amaranthus cruentus L.) leaves grown on NH(4)NO(3). Photosynthetic O(2) evolution in excess of CO(2) uptake was measured with a stabilized zirconia O(2) electrode and an infrared CO(2) analyser, respectively, and the difference assumed to represent the rate of electron flow to acceptors alternative to CO(2), mainly NO(2)(-), SO(4)(2-), and oxaloacetate. In NO(3)(-)-grown tobacco, as well as in sorghum, amaranth, and young potato, the photosynthetic O(2)-CO(2) flux difference rapidly increased to about 1 μmol m(-2) s(-1) at very low PADs and the process was saturated at 50 μmol quanta m(-2) s(-1). At higher PADs the O(2)-CO(2) flux difference continued to increase proportionally with the photosynthetic rate to a maximum of about 2 μmol m(-2) s(-1). In NH(4)(+)-grown tobacco, as well as in potato during tuber filling, the low-PAD component of surplus O(2) evolution was virtually absent. The low-PAD phase was ascribed to photoreduction of NO(2)(-) which successfully competes with CO(2) reduction and saturates at a rate of about 1 μmol O(2) m(-2) s(-1) (9% of the maximum O(2) evolution rate). The high-PAD component of about 1 μmol O(2) m(-2) s(-1), superimposed on NO(2)(-) reduction, may represent oxaloacetate reduction. The roles of NO(2)(-), oxaloacetate, and O(2) reduction in the regulation of ATP/NADPH balance are discussed.

  18. METAL PRODUCTION AND CASTING

    Science.gov (United States)

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  19. A model for prediction of fume formation rate in gas metal arc welding (GMAW), globular and spray modes, DC electrode positive.

    Science.gov (United States)

    Dennis, J H; Hewitt, P J; Redding, C A; Workman, A D

    2001-03-01

    Prediction of fume formation rate during metal arc welding and the composition of the fume are of interest to occupational hygienists concerned with risk assessment and to manufacturers of welding consumables. A model for GMAW (DC electrode positive) is described based on the welder determined process parameters (current, wire feed rate and wire composition), on the surface area of molten metal in the arc and on the partial vapour pressures of the component metals of the alloy wire. The model is applicable to globular and spray welding transfer modes but not to dip mode. Metal evaporation from a droplet is evaluated for short time increments and total evaporation obtained by summation over the life of the droplet. The contribution of fume derived from the weld pool and spatter (particles of metal ejected from the arc) is discussed, as are limitations of the model. Calculated droplet temperatures are similar to values determined by other workers. A degree of relationship between predicted and measured fume formation rates is demonstrated but the model does not at this stage provide a reliable predictive tool.

  20. Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Wellenberg, R.H.H., E-mail: r.h.wellenberg@amc.uva.nl [Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands); Boomsma, M.F., E-mail: m.f.boomsma@isala.nl [Department of Radiology, Isala, Zwolle (Netherlands); Osch, J.A.C. van, E-mail: j.a.c.van.osch@isala.nl [Department of Radiology, Isala, Zwolle (Netherlands); Vlassenbroek, A., E-mail: alain.vlassenbroek@philips.com [Philips Medical Systems, Brussels (Belgium); Milles, J., E-mail: julien.milles@philips.com [Philips Medical Systems, Eindhoven (Netherlands); Edens, M.A., E-mail: m.a.edens@isala.nl [Department of Innovation and Science, Isala, Zwolle (Netherlands); Streekstra, G.J., E-mail: g.j.streekstra@amc.uva.nl [Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands); Slump, C.H., E-mail: c.h.slump@utwente.nl [MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede (Netherlands); Maas, M., E-mail: m.maas@amc.uva.nl [Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands)

    2017-03-15

    Highlights: • Dual-layer detector CT reduces metal artefacts at high monochromatic energies (keV). • 130 keV images were optimal based on quantitative analysis on CNRs. • Optimal keVs varied from 74 to 150 keV for different hip prostheses configurations. • The Titanium alloy resulted in less severe artefacts compared to the Cobalt alloy. • Severe metal artefacts, caused by extensive photon-starvation, were not reduced. - Abstract: Purpose: To quantify the impact of prosthesis material and design on the reduction of metal artefacts in total hip arthroplasties using virtual monochromatic dual-layer detector Spectral CT imaging. Methods: The water-filled total hip arthroplasty phantom was scanned on a novel 128-slice Philips IQon dual-layer detector Spectral CT scanner at 120-kVp and 140-kVp at a standard computed tomography dose index of 20.0 mGy. Several unilateral and bilateral hip prostheses consisting of different metal alloys were inserted and combined which were surrounded by 18 hydroxyapatite calcium carbonate pellets representing bone. Images were reconstructed with iterative reconstruction and analysed at monochromatic energies ranging from 40 to 200 keV. CT numbers in Hounsfield Units (HU), noise measured as the standard deviation in HU, signal-to-noise-ratios (SNRs) and contrast-to-noise-ratios (CNRs) were analysed within fixed regions-of-interests placed in and around the pellets. Results: In 70 and 74 keV virtual monochromatic images the CT numbers of the pellets were similar to 120-kVp and 140-kVp polychromatic results, therefore serving as reference. A separation into three categories of metal artefacts was made (no, mild/moderate and severe) where pellets were categorized based on HU deviations. At high keV values overall image contrast was reduced. For mild/moderate artefacts, the highest average CNRs were attained with virtual monochromatic 130 keV images, acquired at 140-kVp. Severe metal artefacts were not reduced. In 130 keV images

  1. Quantitative comparison of commercial and non-commercial metal artifact reduction techniques in computed tomography.

    Directory of Open Access Journals (Sweden)

    Dirk Wagenaar

    Full Text Available Typical streak artifacts known as metal artifacts occur in the presence of strongly attenuating materials in computed tomography (CT. Recently, vendors have started offering metal artifact reduction (MAR techniques. In addition, a MAR technique called the metal deletion technique (MDT is freely available and able to reduce metal artifacts using reconstructed images. Although a comparison of the MDT to other MAR techniques exists, a comparison of commercially available MAR techniques is lacking. The aim of this study was therefore to quantify the difference in effectiveness of the currently available MAR techniques of different scanners and the MDT technique.Three vendors were asked to use their preferential CT scanner for applying their MAR techniques. The scans were performed on a Philips Brilliance ICT 256 (S1, a GE Discovery CT 750 HD (S2 and a Siemens Somatom Definition AS Open (S3. The scans were made using an anthropomorphic head and neck phantom (Kyoto Kagaku, Japan. Three amalgam dental implants were constructed and inserted between the phantom's teeth. The average absolute error (AAE was calculated for all reconstructions in the proximity of the amalgam implants.The commercial techniques reduced the AAE by 22.0±1.6%, 16.2±2.6% and 3.3±0.7% for S1 to S3 respectively. After applying the MDT to uncorrected scans of each scanner the AAE was reduced by 26.1±2.3%, 27.9±1.0% and 28.8±0.5% respectively. The difference in efficiency between the commercial techniques and the MDT was statistically significant for S2 (p=0.004 and S3 (p<0.001, but not for S1 (p=0.63.The effectiveness of MAR differs between vendors. S1 performed slightly better than S2 and both performed better than S3. Furthermore, for our phantom and outcome measure the MDT was more effective than the commercial MAR technique on all scanners.

  2. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, Hiroyasu

    2015-01-01

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  3. Kinetic comparison of microbial assemblages for the anaerobic treatment of wastewater with high sulfate and heavy metal contents.

    Science.gov (United States)

    Sinbuathong, Nusara; Sirirote, Pramote; Liengcharernsit, Winai; Khaodhiar, Sutha; Watts, Daniel J

    2009-01-01

    Mixed-microbial assemblages enriched from a septic tank, coastal sediment samples, the digester sludge of a brewery wastewater treatment plant and acidic sulfate soil samples were compared on the basis of growth rate, waste and sulfate reduction rate under sulfate reducing conditions at 30 degrees C. The specific growth rate of various cultures was in the range 0.0013-0.0022 hr(-1). Estimates of waste and sulfate reduction rate were obtained by fitting substrate depletion and sulfate reduction data with the Michaelis-Menten equation. The waste reduction rates were in the range 4x10(-8)-1x10(-7) I mg(-1) hr(-1) and generally increased in the presence of copper, likely by copper sulfide precipitation that reduced sulfide and copper toxicity and thus protected the anaerobic microbes. Anaerobic microorganisms from a brewery digester sludge were found to be the most appropriate culture for the treatment of wastewater with high sulfate and heavy metal content due to their growth rate, and waste and sulfate reduction rate.

  4. Integrated diesel engine NOx reduction technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  5. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    Science.gov (United States)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  6. Defect-meditated efficient catalytic activity toward p-nitrophenol reduction: A case study of nitrogen doped calcium niobate system

    International Nuclear Information System (INIS)

    Su, Yiguo; Huang, Shushu; Wang, Tingting; Peng, Liman; Wang, Xiaojing

    2015-01-01

    Graphical abstract: A series of nitrogen doped Ca 2 Nb 2 O 7 was successfully prepared via ion-exchange method, which was found to be an efficient and green noble-metal-free catalyst toward catalytic reduction of p-nitrophenol. - Highlights: • Nitrogen doped Ca 2 Nb 2 O 7 was found to be an efficient and green noble-metal-free catalyst toward catalytic reduction of p-nitrophenol. • Defective nitrogen and oxygen species were found to play synergetic roles in the reduction of p-nitrophenol. • Nitrogen doped Ca 2 Nb 2 O 7 showed photo-synergistic promotion effects toward p-nitrophenol reduction under UV light irradiation. - Abstract: This work reported on the synthesis of a series of nitrogen doped Ca 2 Nb 2 O 7 with tunable nitrogen content that were found to be efficient and green noble-metal-free catalysts toward catalytic reduction of p-nitrophenol. XPS and ESR results indicated that the introduction of nitrogen in Ca 2 Nb 2 O 7 gave rise to a large number of defective nitrogen and oxygen species. Defective nitrogen and oxygen species were found to play synergetic roles in the reduction of p-nitrophenol. The underlying mechanism is completely different from those reported for metallic nanoparticles. Moreover, the more negative conduction band edge potential enabled nitrogen doped Ca 2 Nb 2 O 7 to show photo-synergistic effects that could accelerate the reduction rate toward p-nitrophenol under UV light irradiation. This work may provide a strategy for tuning the catalytic performance by modulating the chemical composition, electronic structure as well as surface defect chemistry

  7. Classifying the metal dependence of uncharacterized nitrogenases

    Directory of Open Access Journals (Sweden)

    Shawn E Mcglynn

    2013-01-01

    Full Text Available Nitrogenase enzymes have evolved complex iron-sulfur (Fe-S containing cofactors that most commonly contain molybdenum (MoFe, Nif as a heterometal but also exist as vanadium (VFe, Vnf and heterometal independent (Fe-only, Anf forms. All three varieties are capable of the reduction of dinitrogen (N2 to ammonia (NH3 but exhibit differences in catalytic rates and substrate specificity unique to metal type. Recently, N2 reduction activity was observed in archaeal methanotrophs and methanogens that encode for nitrogenase homologs which do not cluster phylogenetically with previously characterized nitrogenases. To gain insight into the metal cofactors of these uncharacterized nitrogenase homologs, predicted three-dimensional structures of the nitrogenase active site metal-cofactor binding subunits NifD, VnfD, and AnfD were generated and compared. Dendograms based on structural similarity indicate nitrogenase homologs cluster based on heterometal content and that uncharacterized nitrogenase D homologs cluster with NifD, providing evidence that the structure of the enzyme has evolved in response to metal utilization. Characterization of the structural environment of the nitrogenase active site revealed amino acid variations that are unique to each class of nitrogenase as defined by heterometal cofactor content; uncharacterized nitrogenases contain amino acids near the active site most similar to NifD. Together, these results suggest that uncharacterized nitrogenase homologs present in numerous anaerobic methanogens, archaeal methanotrophs, and firmicutes bind FeMo-co in their active site, and add to growing evidence that diversification of metal utilization likely occurred in an anaerobic habitat.

  8. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India

    Energy Technology Data Exchange (ETDEWEB)

    Jose, Jiya; Giridhar, Rajesh; Anas, Abdulaziz [National Institute of Oceanography (CSIR), Regional Centre, PB 1913, Cochin, Kerala 682018 (India); Loka Bharathi, P.A. [National Institute of Oceanography (CSIR), Dona Paula, Goa 403004 (India); Nair, Shanta, E-mail: shanta@nio.org [National Institute of Oceanography (CSIR), Dona Paula, Goa 403004 (India)

    2011-10-15

    Over the past three decades heavy metal pollution has increased substantially in Cochin estuary, south west coast of India. Here we studied the distribution, diversity and enzyme expression profile of culturable microbial population along a pollution gradient. The distribution of resistance against 5 mM concentration of Zn, Co, Ni and Cu was observed among 90-100% of bacterial isolates retrieved from highly polluted Eloor, whereas it was less than 40% in Vypin and Munambam. Similarly, there was a difference in the distribution and diversity of bacterial phyla with predominance of Proteobacteria in Eloor and Firmicutes in Munambam and Vypin. We observed that 75-100% of the organisms retrieved from Eloor had low levels of expression for hydrolytic enzyme. In conclusion, the heavy metal pollution in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression profile of bacteria, which may impart adverse impacts on ecosystem functioning. - Highlights: > Substantial proliferation of heavy metal pollution in Cochin estuary. > 90-100% of bacteria were resistant against heavy metals. > Proteobacteria dominated in the hot spot sites. > Low Enzyme expression profile among microorganisms in hot spot sites. - Heavy metal pollution exerts pressure on the diversity and enzyme expression profile of estuarine bacteria.

  9. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    Science.gov (United States)

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  10. Rare earth intermetallic compounds produced by a reduction-diffusion process

    International Nuclear Information System (INIS)

    Cech, R.E.

    1975-01-01

    A reduction-diffusion process is given for producing novel rare earth intermetallic compounds, such as cobalt--rare earth intermetallic compounds, especially compounds useful in preparing permanent magnets. A particulate mixture of rare earth metal halide, cobalt and calcium hydride is heated to effect reduction of the rare earth metal halide and to diffuse the resulting rare earth metal into the cobalt to form the intermetallic compound

  11. Digital tomosynthesis with metal artifact reduction for assessing cementless hip arthroplasty: a diagnostic cohort study of 48 patients

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hao; Yang, Dejin; Guo, Shengjie; Tang, Jing; Liu, Jian; Wang, Dacheng; Zhou, Yixin [Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Department of Orthopaedic Surgery, Beijing (China)

    2016-11-15

    For postoperative imaging assessment of cementless hip arthroplasty, radiography and computed tomography (CT) were restricted by overlapping structures and metal artifacts, respectively. A new tomosynthesis with metal artifact reduction (TMAR) is introduced by using metal extraction and ordered subset-expectation maximization (OS-EM) reconstruction. This study investigated the effectiveness of TMAR in assessing fixation stability of cementless hip arthroplasty components. We prospectively included 48 consecutive patients scheduled for revision hip arthroplasty in our hospital, with 41 femoral and 35 acetabular cementless components available for evaluation. All patients took the three examinations of radiography, CT, and TMAR preoperatively, with intraoperative mechanical tests, and absence or presence of osteointegration on retrieved prosthesis as reference standards. Three senior surgeons and four junior surgeons evaluated these images independently with uniform criteria. For TMAR, 82 % diagnoses on the femoral side and 84 % diagnoses on the acetabular side were accurate. The corresponding values were 44 and 67 % for radiography, and 39 % and 74 % for CT. Senior surgeons had significantly higher accuracy than junior surgeons by radiography (p < 0.05), but not by TMAR or CT. By minimizing metal artifacts in the bone-implant interface and clearly depicting peri-implant trabecular structures, the TMAR technique improved the diagnostic accuracy of assessing fixation stability of cementless hip arthroplasty, and shortened the learning curve of less experienced surgeons. Level II, diagnostic cohort study. (orig.)

  12. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  13. Catalytic reduction of NOx in gasoline engine exhaust over copper- and nickel-exchanged X-zeolite catalysts

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Das, R.K.

    2001-01-01

    Catalytic removal of NO x in engine exhaust gases can be accomplished by non-selective reduction, selective reduction and decomposition. Noble metals are extensively used for non-selective reduction of NO x and up to 90% of engine NO x emissions can be reduced in a stoichiometric exhaust. This requirement of having the stoichiometric fuel-air ratio acts against efficiency improvement of engines. Selective NO x reduction in the presence of different reductants such as, NH 3 , urea or hydrocarbons, requires close control of the amount of reductant being injected which otherwise may be emitted as a pollutant. Catalytic decomposition is the best option for NO x removal. Nevertheless, catalysts which are durable, economic and active for NO x reduction at normal engine exhaust temperature ranges are still being investigated. Three catalysts based on X-zeolite have been developed by exchanging the Na+ ion with copper, nickel and copper-nickel metal ions and applied to the exhaust of a stationary gasoline engine to explore their potential for catalytic reduction of NO x under a wide range of engine and exhaust conditions. Some encouraging results have been obtained. The catalyst Cu-X exhibits much better NO x reduction performance at any temperature in comparison to Cu-Ni-X and Ni-X; while Cu-Ni-X catalyst exhibits slightly better performance than Ni-X catalyst. Maximum NO x efficiency achieved with Cu-X catalyst is 59.2% at a space velocity (sv) of 31 000 h -1 ; while for Cu-Ni-X and Ni-X catalysts the equivalent numbers are 60.4% and 56% respectively at a sv of 22 000 h -1 . Unlike noble metals, the doped X-zeolite catalysts exhibit significant NO x reduction capability for a wide range of air/fuel ratio and with a slower rate of decline as well with increase in air/fuel ratio. (author)

  14. A rationally designed amino-borane complex in a metal organic framework: A novel reusable hydrogen storage and size-selective reduction material

    KAUST Repository

    Wang, Xinbo

    2015-01-01

    A novel amino-borane complex inside a stable metal organic framework was synthesized for the first time. It releases hydrogen at a temperature of 78 °C with no volatile contaminants and can be well reused. Its application as a size-selective reduction material in organic synthesis was also demonstrated. © The Royal Society of Chemistry 2015.

  15. Hydrogen permeation rate reduction by post-oxidation of aluminide coatings on DIN 1.4914 martensitic steel (MANET)

    International Nuclear Information System (INIS)

    Perujo, A.; Sample, T.

    1996-01-01

    In a previous work, it has been shown that lower aluminium content aluminide, having the same permeation rate reduction as the higher aluminium content, exhibited a lower hardness and greater ductility and therefore greater crack resistance than the higher aluminium content. In this work we combine this characteristic with a post-oxidation to obtain a further deuterium permeation reduction. The post-oxidation was performed in air at 1023 K for 15 h and at 1223 K for 10 h and 1 h. The maximum deuterium permeation rate reduction obtained is very moderate (maximum of a factor 500 for 1 h at 1223 K) as compared to that of the non-oxidised aluminide specimen (two orders of magnitude) and is constant in the temperature range studied (573-800 K). This method has the technological appeal of using air rather than the controlled environment used by other authors. (orig.)

  16. Electrochemical reduction of actinides oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.

    2011-01-01

    Reactive metals are currently produced from their oxide by multiple steps reduction techniques. A one step route from the oxide to the metal has been suggested for metallic titanium production by electrolysis in high temperature molten chloride salts. In the so-called FFC process, titanium oxide is electrochemically reduced at the cathode, generating O 2- ions, which are converted on a graphite anode into carbon oxide or dioxide. After this process, the spent salt can in principle be reused for several batches which is particularly attractive for a nuclear application in terms of waste minimization. In this work, the electrochemical reduction process of cerium oxide (IV) is studied in CaCl 2 and CaCl 2 -KCl melts to understand the oxide reduction mechanism. Cerium is used as a chemical analogue of actinides. Electrolysis on 10 grams of cerium oxide are made to find optimal conditions for the conversion of actinides oxides into metals. The scale-up to hundred grams of oxide is also discussed. (author) [fr

  17. Rate sensitivity of mixed mode interface toughness of dissimilar metallic materials: Studied at steady state

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof

    2012-01-01

    the SSV model [Suo, Z., Shih, C., Varias, A., 1993. A theory for cleavage cracking in the presence of plastic flow. Acta Metall. Mater. 41, 1551–1557] embedded in a steady state finite element formulation, here assuming plane strain conditions and small-scale yielding. Results are presented for a wide......Crack propagation in metallic materials produces plastic dissipation when material in front for the crack tip enters the active plastic zone traveling with the tip, and later ends up being part of the residual plastic strain wake. Thus, the macroscopic work required to advance the crack...... is typically much larger than the work needed in the near tip fracture process. For rate sensitive materials, the amount of plastic dissipation typically depends on the rate at which the material is deformed. A dependency on the crack velocity should therefore be expected. The objective of this paper...

  18. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Jabran Zahid, H. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kudritzki, Rolf-Peter; Ho, I-Ting [University of Hawaii at Manoa, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA, 02138 (United States); Andrews, Brett, E-mail: zahid@cfa.harvard.edu [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States)

    2017-09-20

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  19. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    International Nuclear Information System (INIS)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting; Conroy, Charlie; Andrews, Brett

    2017-01-01

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  20. Chemistry and physics at liquid alkali metal/solid metal interfaces

    International Nuclear Information System (INIS)

    Barker, M.G.

    1977-01-01

    This paper describes the chemistry of processes which take place at the interface between liquid alkali metals and solid metal surfaces. A brief review of wetting data for liquid sodium is given and the significance of critical wetting temperatures discussed on the basis of an oxide-film reduction mechanism. The reactions of metal oxides with liquid metals are outlined and a correlation with wetting data established. The transfer of dissolved species from the liquid metal across the interface to form solid phases on the solid metal surface is well recognised. The principal features of such processes are described and a simple thermodynamic explanation is outlined. The reverse process, the removal of solid material into solution, is also considered. (author)

  1. Relationship between the shear viscosity and heating rate in metallic glasses below the glass transition

    International Nuclear Information System (INIS)

    Khonik, Vitaly A.; Kobelev, N. P.

    2008-01-01

    It has been shown that first-order irreversible structural relaxation with distributed activation energies must lead to a linear decrease of the logarithm of Newtonian shear viscosity with the logarithm of heating rate upon linear heating of glass. Such a behavior is indeed observed in the experiments on metallic glasses. Structural relaxation-induced viscous flow leads to infra-low-frequency Maxwell viscoelastic internal friction, which is predicted to increase with the heating rate

  2. Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    Science.gov (United States)

    Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.

    2012-01-01

    A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein

  3. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates.

    Science.gov (United States)

    Joyner, Jeff C; Hocharoen, Lalintip; Cowan, J A

    2012-02-22

    A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the

  4. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads

    International Nuclear Information System (INIS)

    Ettouney, Hisham; Alatiqi, Imad; Al-Sahali, Mohammad; Al-Hajirie, Khalida

    2006-01-01

    Energy storage is an attractive option to conserve limited energy resources, where more than 50% of the generated industrial energy is discarded in cooling water and stack gases. This study focuses on the evaluation of heat transfer enhancement in phase change energy storage units. The experiments are performed using spherical capsules filled with paraffin wax and metal beads. The experiments are conducted by inserting a single spherical capsule filled with wax and metal beads in a stream of hot/cold air. Experimental measurements include the temperature field within the spherical capsule and in the air stream. To determine the enhancement effects of the metal beads, the measured data is correlated against those for a spherical capsule filled with pure wax. Data analysis shows a reduction of 15% in the melting and solidification times upon increasing the number and diameter of the metal beads. This reduction is caused by a similar decrease in the thermal load of the sphere due to replacement of the wax by metal beads. The small size of the spherical capsule limits the enhancement effects; this is evident upon comparison of the heat transfer in a larger size, double pipe energy storage unit, where 2% of the wax volume is replaced with metal inserts, result in a three fold reduction in the melting/solidification time and a similar enhancement in the heat transfer rate

  5. The impact of the total tax rate reduction on public services provided in Romania

    Directory of Open Access Journals (Sweden)

    Adina TRANDAFIR

    2014-09-01

    Full Text Available Against the background of economic globalization, governments tend to take tax measures disadvantageous to society in order to increase the attractiveness of the business environment. A common measures for this purpose is the reduction in tax rate. According to the classical theory of tax competition such measure leads to under the provision of public goods. This article aims to show, through an econometric analysis, whether in Romania, in the period 2006-2013, reducing total tax rate had a negative impact on public services. For this, using linear regression technique, the article analysed the correlation between total tax rate and the variation in the share of the main public service spending in GDP.

  6. Inhibition of sulfate reduction by iron, cadmium and sulfide in granular sludge

    International Nuclear Information System (INIS)

    Gonzalez-Silva, Blanca M.; Briones-Gallardo, Roberto; Razo-Flores, Elias; Celis, Lourdes B.

    2009-01-01

    This study investigated the inhibition effect of iron, cadmium and sulfide on the substrate utilization rate of sulfate reducing granular sludge. A series of batch experiments in a UASB reactor were conducted with different concentrations of iron (Fe 2+ , 4.0-8.5 mM), cadmium (Cd 2+ , 0.53-3.0 mM) and sulfide (4.2-10.6 mM), the reactor was fed with ethanol at 1 g chemical oxygen demand (COD)/L and sulfate to yield a COD/SO 4 2- (g/g) ratio of 0.5. The addition of iron, up to a concentration of 8.1 mM, had a positive effect on the substrate utilization rate which increased 40% compared to the rate obtained without metal addition (0.25 g COD/g VSS-d). Nonetheless, iron concentration of 8.5 mM inhibited the specific substrate utilization rate by 57% compared to the substrate utilization rate obtained in the batch amended with 4.0 mM Fe 2+ (0.44 g COD/g VSS-d). Cadmium had a negative effect on the specific substrate utilization rate at the concentrations tested; at 3.0 mM Cd 2+ the substrate utilization rate was inhibited by 44% compared with the substrate utilization rate without metal addition. Cadmium precipitation with sulfide did not decrease the inhibition of cadmium on sulfate reduction. These results could have important practical implications mainly when considering the application of the sulfate reducing process to treat effluents with high concentrations of sulfate and dissolved metals such as iron and cadmium.

  7. The predicted effectiveness of noble metal treatment at the Chinshan boiling water reactor

    International Nuclear Information System (INIS)

    Yeh Tsungkuang; Chu Fang; Chang Ching; Huang Chiashen

    2000-01-01

    The technique of noble metal treatment (NMT) available in a form of noble metal cooling (NMC) or noble metal chemical addition (NMCA), was introduced to enhance effectiveness of hydrogen water chemistry. Since it is technically difficult to gain access to an entire primary heat transport circuit (PHTC) of a BWR and monitor variation on electrochemical corrosion potential (ECP), a question whether the NMC technology is indeed effective for lowering the ECP of every location in a BWR is not still well understood at the moment. Then, computer modeling is so far the best tool to help investigate effectiveness of the NMT along PHCT of the BWR. Here was discussed on how the computer model was calibrated by using measured chemistry data obtained from No. 2 unit (BWR) in the Kuosheng Plant. The effect of noble metal treatment coupled with hydrogen water chemistry has been quantitatively molded, on a base of two different sets of ECD enhancement data. It was predicted that No. 1 unit in the Chinshan could be protected by noble metal treatment with lower [H 2 ] FW . In the case of competitive enhancing factors for the ECDs of oxygen reduction, hydrogen peroxide reduction, and hydrogen oxidation reactions, HWC had always to be present for noble metal treatment to be effective for protecting a reactor. Otherwise, according to a model calculation based upon the results from Kim's work, the ECP might instead be increased due to the enhanced reduction reaction rate of oxygen and hydrogen peroxide, especially in the near core regions. (G.K.)

  8. Initial substantial reduction in air dose rates of Cs origin and personal doses for residents owing to the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Yoshida, Hiroko; Saito, Junko; Hirasawa, Noriyasu; Kobayashi, Ikuo

    2013-01-01

    The initial substantial reduction in the air dose rate and personal dose equivalent [Hp(10)] for residents were compared between the Marumori and Kosugo regions for the period from September 2011 to September 2012 after the occurrence of the Fukushima nuclear accident. Marumori is a rural settlement, and Kosugo is a suburban city along a freeway. A similar tendency was observed in the Hp(10) results for Marumori residents and in the air dose rates for both regions: values dropped during the heavy snow season and a faster reduction in the air dose rate than the radioactive decay of 134 Cs and 137 Cs was observed after the snow had thawed. These reductions are considered to be caused by the weathering and/or migration of radionuclides down the soil column. However, neither a drop due to an accumulation of snow nor faster reduction was observed in Hp(10) for Kosugo residents. This discrepancy between the air dose rate and Hp(10) for Marumori and Kosugo residents might be caused by differences in their living environment. (author)

  9. Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows.

    Science.gov (United States)

    Nielsen, L B; Finster, K; Welsh, D T; Donelly, A; Herbert, R A; de Wit, R; Lomstein, B A

    2001-01-01

    Sulphate reduction rates (SRR) and nitrogen fixation rates (NFR) associated with isolated roots, rhizomes and sediment from the rhizosphere of the marine macrophytes Zostera noltii and Spartina maritima, and the presence and distribution of Bacteria on the roots and rhizomes, were investigated. Between 1% and 3% of the surface area of the roots and rhizomes of both macrophytes were colonized by Bacteria. Bacteria on the surfaces of S. maritima roots and rhizomes were evenly distributed, while the distribution of Bacteria on Z. noltii roots and rhizomes was patchy. Root- and rhizome-associated SRR and NFR were always higher than rates in the bulk sediment. In particular, nitrogen fixation associated with the roots and rhizomes was 41-650-fold higher than in the bulk sediment. Despite the fact that sulphate reduction was elevated on roots and rhizomes compared with bulk sediment, the contribution of plant-associated sulphate reduction to overall sulphate reduction was small (< or =11%). In contrast, nitrogen fixation associated with the roots and rhizomes accounted for 31% and 91% of the nitrogen fixed in the rhizosphere of Z. noltii and S. maritima respectively. In addition, plant-associated nitrogen fixation could supply 37-1,613% of the nitrogen needed by the sulphate-reducing community. Sucrose stimulated nitrogen fixation and sulphate reduction significantly in the root and rhizome compartments of both macrophytes, but not in the bulk sediment.

  10. Metal accumulation rates in northwest Atlantic pelagic sediments

    International Nuclear Information System (INIS)

    Thomson, J.; Carpenter, M.S.N.; Colley, S.; Wilson, T.R.S.; Elderfield, H.; Kennedy, H.

    1984-01-01

    Measurements of 230 Th, 87 Sr/ 86 Sr and twenty-four metals were made on cores from the Nares Abyssal Plain. The sediment is characterized by slowly-accumulating pelagic red clays and rapidly deposited grey clays transported by turbidity currents. Despite their colour differences and the enrichment of certain elements in the red clays, Sr isotope evidence demonstrates that the clays have the same terrigenous origin. The excesses of metals in the red clays have been attributed to metal removal from the water column and a comparison with the grey clays has enabled the authigenic fluxes of metals to be estimated. The results are given for the elements Mn, Fe, Cu, Co, Ni, Zn, V, Sr, Ce, La, Nd, Sm, Eu, Gd, Dy, Er and Yb. Authigenic fluxes of Y, Nb, Cr, Zr, Rb, U and Th were not resolvable. Fluxes appear to be near constant on the Plain but comparison with other areas shows that they are quite variable both between and within ocean basins. The chief factor controlling authigenic fluxes is discussed. (author)

  11. Uranium tetrafluoride reduction closed bomb. Part I: Reduction process general conditions

    International Nuclear Information System (INIS)

    Anca Abati, R.; Lopez Rodriguez, M.

    1961-01-01

    General conditions about the metallo thermic reduction in small bombs (250 and 800 gr. of uranium) has been investigated. Factors such as kind and granulometry of the magnesium used, magnesium excess and preheating temperature, which affect yields and metal quality have been considered. magnesium excess increased yields in a 15% in the small bomb, about the preheating temperature, there is a range between which yields and metal quality does not change. All tests have been made with graphite linings. (Author) 18 refs

  12. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, S., E-mail: sara.ferraris@polito.it [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Miola, M. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Cochis, A.; Azzimonti, B.; Rimondini, L. [Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Prenesti, E. [Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, Torino, 10125 (Italy); Vernè, E. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy)

    2017-02-28

    Highlights: • Gallic acid and natural polyphenols were grafted onto bioactive glasses. • Grafting ability was dependent on glass reactivity. • In situ reduction of silver nanoparticles was performed onto functionalized glasses. • Bioactive glasses decorated with silver nanoparticles showed antibacterial activity. - Abstract: The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules – showing reducing ability to directly obtain in situ metallic silver – and silver nanoparticles was investigated by means of UV–vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  13. A clinical comparison of image quality and patient exposure reduction in panoramic radiography with heavy metal filtration

    International Nuclear Information System (INIS)

    Kapa, S.F.; Tyndall, D.A.

    1989-01-01

    Laboratory and clinical studies with the use of rare earth intensifying screens and four different forms of heavy metal elements serving as additional beam filtration were performed for panoramic radiography to identify the most efficacious system. Balanced density images were evaluated for contrast indices, resolution, relative dose reduction, and subjective image quality. Clinical studies were performed with a standard calcium tungstate imaging system and the four most promising experimental imaging systems that showed improvement over the standard system. Dosimetric studies were performed with the use of ionization chambers and thermoluminescent dosimetry (TLD) dosimeters. Exposure reductions of 34% to 79%, depending on the anatomic site and the imaging system used, were achieved. Subjective image quality was evaluated and analyzed statistically. This study concluded that the use of a Kodak Lanex regular screen/T-Mat G film with either Lanex screen or yttrium added beam filtration results in reduced patient exposure in panoramic radiography while image quality is maintained or improved

  14. Metallic nickel nanoparticles and their effect on the embryonic development of the sea urchin Paracentrotus lividus

    International Nuclear Information System (INIS)

    Kanold, Julia Maxi; Wang, Jiabin; Brümmer, Franz; Šiller, Lidija

    2016-01-01

    The presence of nanoparticles in many industrial applications and daily products is making it nowadays crucial to assess their impact when exposed to the environment. Metallic nickel nanoparticles (Ni NPs) are of high industrial interest due to their ability to catalyze the reversible hydration of CO_2 to carbonic acid at ambient conditions. We characterized metallic Ni NPs by XRD, HRTEM and EDS and determined the solubility of free nickel ions from 3 mg/L metallic Ni NPs in seawater by ICP-MS over 96 h, which was below 3%. Further, embryonic development of the sea urchin Paracentrotus lividus was investigated for 48 h in the presence of metallic Ni NPs (0.03 mg/L to 3 mg/L), but no lethal effects were observed. However, 3 mg/L metallic Ni NPs caused a size reduction similar to 1.2 mg/L NiCl_2*6 H_2O. The obtained results contribute to current studies on metallic Ni NPs and point to their consequences for the marine ecosystem. - Highlights: • Low solubility of nickel ions from metallic nickel nanoparticles in seawater. • No lethality of sea urchin embryos up to 3 mg/L metallic nickel nanoparticles. • Considerable size reduction after 48 h was comparable to the reduction for 1.2 mg/L nickel salt. • Contributes to the overall understanding of metallic Ni NPs in the marine environment. - Metallic nickel nanoparticles display weak dissolution rates in seawater, but higher concentrations resulted in similar effects on sea urchin embryonic development as nickel salt.

  15. Influence of mobility and annihilation of forest dislocations on radiation creep rate of metals

    International Nuclear Information System (INIS)

    Pyatiletov, Yu.S.; Tyupkina, O.G.

    1988-01-01

    Dependence of radiation creep rate ε of metals on stress σ is calculated. It is established that account of mobility and annihilation of 'forest' dislocations leads to the increase of calculational value ε and the effect increases with the growth of σ, reaching 10-15% at σ ∼ 0.8 σ cr (σ cr - critical shear stress)

  16. Direct reduction of plutonium from dicesium hexachloroplutonate

    International Nuclear Information System (INIS)

    Averill, W.A.; Boyd, T.E.

    1991-01-01

    The Rocky Flats Plant produces dicesium hexachloroplutonate (DCHP) primarily as a reagent in the molten salt extraction of americium from plutonium metal. DCHP is precipitated from aqueous chloride solutions derived from the leaching of process residues with a high degree of selectivity. DCHP is a chloride salt of plutonium, while the traditional aqueous precipitate is a hydrated oxide. Plutonium metal preparation from the oxide involves either the conversion of oxide to a halide followed by metallothermic reduction or direct reduction of the oxide using a flux. Either method generates at least three times as much radioactively contaminated waste as metal produced. Plutonium concentration by DCHP precipitation, however, produces a chloride salt that can be reduced using calcium metal at a temperature of approximately 1000K. In this paper the advantages and limitations of this process are discussed

  17. Determination of the extent of reduction of dense UO{sub 2} cathodes from direct electrochemical reduction studies in molten chloride medium

    Energy Technology Data Exchange (ETDEWEB)

    Sri Maha Vishnu, D.; Sanil, N. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Murugesan, N. [Materials Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Shakila, L. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ramesh, C. [Materials Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Mohandas, K.S., E-mail: ksmd@igcar.gov.in [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Nagarajan, K. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-08-15

    Electro-reduction of solid UO{sub 2} to U has been studied with molten CaCl{sub 2} or LiCl as the electrolyte medium. Electro-reduction of thick (>3 mm), powder compacted and sintered pellets of UO{sub 2} showed incomplete reduction resulting in a mixture of uranium metal and UO{sub 2}. The extent of reduction of UO{sub 2} to U was determined by employing a novel method called 'metal estimation by hydrogen sensor (MEHS)', in which the hydrogen evolved during the reaction of U metal in the reduced product with con. HBr was measured using an in-house developed polymer electrolyte based amperometric hydrogen sensor. The results of our investigations on incompletely reduced UO{sub 2} pellets in both CaCl{sub 2} and LiCl melts showed that the extent of reduction of different regions of the oxide pellet was different. It varied from 88.3% on the surface of the pellet as against 3.7% towards the centre bulk during electro-reduction in CaCl{sub 2} (at 1173 K). The metallisation was found restricted to the surface of the pellets reduced in LiCl melt (at 923 K). Electro-reduction of small chunks of UO{sub 2} pellet in CaCl{sub 2} melt resulted in products with lower extent of reduction. Based on the measurements, a probable mechanism on the propagation of reduction through the solid UO{sub 2} matrix during the electrochemical reduction process has been proposed.

  18. Nitrite reduction mechanism on a Pd surface.

    Science.gov (United States)

    Shin, Hyeyoung; Jung, Sungyoon; Bae, Sungjun; Lee, Woojin; Kim, Hyungjun

    2014-11-04

    Nitrate (NO3-) is one of the most harmful contaminants in the groundwater, and it causes various health problems. Bimetallic catalysts, usually palladium (Pd) coupled with secondary metallic catalyst, are found to properly treat nitrate-containing wastewaters; however, the selectivity toward N2 production over ammonia (NH3) production still requires further improvement. Because the N2 selectivity is determined at the nitrite (NO2-) reduction step on the Pd surface, which occurs after NO3- is decomposed into NO2- on the secondary metallic catalyst, we here performed density functional theory (DFT) calculations and experiments to investigate the NO2- reduction pathway on the Pd surface activated by hydrogen. Based on extensive DFT calculations on the relative energetics among ∼100 possible intermediates, we found that NO2- is easily reduced to NO* on the Pd surface, followed by either sequential hydrogenation steps to yield NH3 or a decomposition step to N* and O* (an adsorbate on Pd is denoted using an asterisk). Based on the calculated high migration barrier of N*, we further discussed that the direct combination of two N* to yield N2 is kinetically less favorable than the combination of a highly mobile H* with N* to yield NH3. Instead, the reduction of NO2- in the vicinity of the N* can yield N2O* that can be preferentially transformed into N2 via diverse reaction pathways. Our DFT results suggest that enhancing the likelihood of N* encountering NO2- in the solution phase before combination with surface H* is important for maximizing the N2 selectivity. This is further supported by our experiments on NO2- reduction by Pd/TiO2, showing that both a decreased H2 flow rate and an increased NO2- concentration increased the N2 selectivity (78.6-93.6% and 57.8-90.9%, respectively).

  19. Effect of treatment with reserpine on the change in filtration rate of Mytilus edulis subjected to dissolved copper

    Energy Technology Data Exchange (ETDEWEB)

    Howell, R.; Grant, A.M.; Maccoy, N.E.J.

    1984-12-01

    Exposure of specimens of Mytilus edulis to dissolved copper leads to a fall in the filtration rate measured in whole animals. The copper concentration leading to a 50% reduction in the filtration rate was found to be 0.094 mg I/sup -1/. This effect was abolished on depletion of the monoamine content of the animal using reserpine. It is suggested that there may be a chemosensory mechanism present in the animals which responds to increased levels of metals in the seawater leading to a reduction in the rate of ciliary beating and mediated via the branchial nerve. 15 references, 2 figures.

  20. Effects of Carbonyl Bond and Metal Cluster Dissociation and Evaporation Rates on Predictions of Nanotube Production in HiPco

    Science.gov (United States)

    Scott, Carl D.; Smalley, Richard E.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNT) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the co-formation of CO2. It is shown that the production of CO2 is significantly greater for FeCO due to its lower bond energy as compared with that ofNiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  1. Effect of the Lithium Oxide Concentration on a Reduction of Lanthanide Oxides

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Jeong, Myeong-Soo; Do, Jae-Bum; Seo, Chung-Seok

    2007-01-01

    The pyrochemical reduction process of spent oxide fuel is one of the options to handle spent PWR fuels in Korea. After spent oxide fuel is converted to a metallic form, fission products will be removed from the resultant uranium and higher actinide metals by an electrorefining process. The chemical behaviors of lanthanide oxides during the pyrochemical process has been extensively studied. It was also reported that about 30 to 50% of several lanthanide oxides were reduced to corresponding metals by an electrolytic reduction process having 1 wt% of a lithium oxide concentration. Korea Atomic Energy Research Institute (KAERI), however, has been used 3 wt% of lithium oxide to increase the applied current of the electrolytic reduction process. Though it was reported that U 3 O 8 was reduced to uranium metal having a high reduction yield at 3 wt% of the Li 2 O concentration, the effect of the lithium oxide concentration on the reduction of lanthanide oxides has not been clarified

  2. Standard practice for slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This practice covers procedures for the design, preparation, and use of axially loaded, tension test specimens and fatigue pre-cracked (fracture mechanics) specimens for use in slow strain rate (SSR) tests to investigate the resistance of metallic materials to environmentally assisted cracking (EAC). While some investigators utilize SSR test techniques in combination with cyclic or fatigue loading, no attempt has been made to incorporate such techniques into this practice. 1.2 Slow strain rate testing is applicable to the evaluation of a wide variety of metallic materials in test environments which simulate aqueous, nonaqueous, and gaseous service environments over a wide range of temperatures and pressures that may cause EAC of susceptible materials. 1.3 The primary use of this practice is to furnish accepted procedures for the accelerated testing of the resistance of metallic materials to EAC under various environmental conditions. In many cases, the initiation of EAC is accelerated through the applic...

  3. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future

    International Nuclear Information System (INIS)

    Begum, Robina; Rehan, Rida; Farooqi, Zahoor H.; Butt, Zonarah; Ashraf, Sania

    2016-01-01

    The catalytic reduction of nitroarenes under various catalytic systems has been widely reported in the flood of publications during last twenty years. This reaction has become a benchmark for testing catalytic activity of inorganic nanoparticles stabilized in various systems. This tutorial review presents design and classification of inorganic nanocatalysts along with their stabilizing agents used for catalytic reduction of nitroarenes. The techniques used for characterization of catalysts have been highlighted in this review. The mechanism of catalytic reduction has been described in a tutorial way. Factors affecting the rate of reduction of nitroarenes in the presence of metal nanoparticles stabilized in polyelectrolyte brushes, polyionic liquids, micelles, dendrimers, and microgels have been discussed for further development in this area.Graphical abstract

  4. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Robina [University of the Punjab, Centre for Undergraduate Studies (Pakistan); Rehan, Rida; Farooqi, Zahoor H., E-mail: zhfarooqi@gmail.com; Butt, Zonarah; Ashraf, Sania [University of the Punjab, Institute of Chemistry (Pakistan)

    2016-08-15

    The catalytic reduction of nitroarenes under various catalytic systems has been widely reported in the flood of publications during last twenty years. This reaction has become a benchmark for testing catalytic activity of inorganic nanoparticles stabilized in various systems. This tutorial review presents design and classification of inorganic nanocatalysts along with their stabilizing agents used for catalytic reduction of nitroarenes. The techniques used for characterization of catalysts have been highlighted in this review. The mechanism of catalytic reduction has been described in a tutorial way. Factors affecting the rate of reduction of nitroarenes in the presence of metal nanoparticles stabilized in polyelectrolyte brushes, polyionic liquids, micelles, dendrimers, and microgels have been discussed for further development in this area.Graphical abstract.

  5. The reduction of Winterveld chrome spinel at 1300 degrees Celsius under an argon atmosphere in the presence of carbon

    International Nuclear Information System (INIS)

    Kuecuekkaragoz, C.S.; Algie, S.H.; Finn, C.W.P.

    1984-01-01

    The reduction of a mixture of particles of gangue-free spinel in the size range 106 to 90 μm and particles of graphite in the same size range was studied by the use of a recording thermobalance. The partially reduced material was analysed chemically, as well as by X-ray diffraction, optical microscopy, and electron-microprobe analysis. The reaction is shown to be sequential, the ferric iron being reduced to ferrous iron before a metallic reduction product appears. Almost one-half of the iron is reduced before the reduction of chromium becomes significant, and, by the time about one-half of the chromium has been reduced, almost no unreduced iron remains in the oxide. Carbon appears in the reduced material after the reduction of chromium has started. The carbon content rises as the reaction proceeds, and beyond the stage at which all the iron has been reduced, the reduced product is an iron-chromium carbide. The product is therefore in a state of near equilibrium with the partially reduced spinel. This indicates that, up to about 60 per cent reduction, the transfer of carbon to the oxide is a controlling factor in the reduction. This conclusion is supported by the observation that the reduced product is confined to the surface of the chromite particle, which retains its external shape while becoming progressively more porous as reduction proceeds. Under hydrogen, a metallic reduction product is formed within the internal pores as well as on the surface. The second half of the reduction proceeds at a reproducible decreasing rate that can be modelled on the basis of the diffusion of chromium from within the particle to the surface. The initial reduction rate is slow but accelerating, and is not reproducible. Further investigation of this stage of the reduction process is recommended

  6. Reductive dehalogenation in microbial and electrolytic model systems

    International Nuclear Information System (INIS)

    Criddle, C.S.

    1990-01-01

    This research addresses the principles or reductive dehalogenation, with a focus on microbial processes. Carbon tetrachloride (CT) was selected as a model compound for intensive investigation. Three different experimental systems were studied: pure cultures of Escherichia coli k-12, pure cultures of a denitrifying Pseudomonad isolated from aquifer solids (Pseudomonas sp. strain KC), and an electrolysis cell. The product distributions were consistent with the hypothesis that CT undergoes a rate-limiting reduction to radical species which rapidly react with constituents of the surrounding milieu. In cultures of E. coli k-12, use of oxygen and nitrate as terminal electron acceptors generally prevented CT transformation. At low oxygen levels (∼ 1%), however, transformation of 14 C-CT to 14 C-CO 2 and attachment to cell material did occur in accord with reports of CT fate in mammalian cell cultures. Under fumarate-respiring conditions, 14 C-CT was recovered as 14 C-C 2 , chloroform (CF), and in a non-volatile fraction. In contrast, fermenting conditions resulted in more CF, more cell-bound 14 C, and almost no 14 C-CO 2 . Rates were faster under fermenting conditions than under fumarate-respiring conditions. Rates also decreased over time suggesting the gradual exhaustion of transformation activity. This loss was modeled with a simple exponential decay term. Pseudomonas sp. strain KC converted 14 C-CT to 14 C-CO 2 under denitrifying conditions, without CF production. Strain KC was the only organism of several denitrifiers that transformed CT. Induction of CT transformation by strain KC depended upon the presence of trace metals. Addition of ferrous iron and cobalt inhibited CT transformation. For strain KC, CT transformation is apparently linked to its mechanism for trace metal acquisition

  7. Contouring and dose calculation in head and neck cancer radiotherapy after reduction of metal artifacts in CT images

    DEFF Research Database (Denmark)

    Hansen, Christian Rønn; Lübeck Christiansen, Rasmus; Lorenzen, Ebbe Laugaard

    2017-01-01

    of metal artifact reduction (MAR) in H&N patients in terms of delineation consistency and dose calculation precision in radiation treatment planning. Material and methods: Tumor and OAR delineations were evaluated in planning CT scans of eleven oropharynx patients with streaking artifacts in the tumor...... region preceding curative radiotherapy (RT). The GTV-tumor (GTV-T), GTV-node and parotid glands were contoured by four independent observers on standard CT images and MAR images. Dose calculation was evaluated on thirty H&N patients with dental implants near the treated volume. For each patient, the dose...

  8. Evaluation of Orthopedic Metal Artifact Reduction Application in Three-Dimensional Computed Tomography Reconstruction of Spinal Instrumentation: A Single Saudi Center Experience.

    Science.gov (United States)

    Ali, Amir Monir

    2018-01-01

    The aim of the study was to evaluate the commercially available orthopedic metal artifact reduction (OMAR) technique in postoperative three-dimensional computed tomography (3DCT) reconstruction studies after spinal instrumentation and to investigate its clinical application. One hundred and twenty (120) patients with spinal metallic implants were included in the study. All had 3DCT reconstruction examinations using the OMAR software after obtaining the informed consents and approval of the Institution Ethical Committee. The degree of the artifacts, the related muscular density, the clearness of intermuscular fat planes, and definition of the adjacent vertebrae were qualitatively evaluated. The diagnostic satisfaction and quality of the 3D reconstruction images were thoroughly assessed. The majority (96.7%) of 3DCT reconstruction images performed were considered satisfactory to excellent for diagnosis. Only 3.3% of the reconstructed images had rendered unacceptable diagnostic quality. OMAR can effectively reduce metallic artifacts in patients with spinal instrumentation with highly diagnostic 3DCT reconstruction images.

  9. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    International Nuclear Information System (INIS)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-01-01

    Graphical abstract: - Highlights: • In situ adsorption behaviors of TES on PA6 surface were clarified by QCM. • Highest adsorption of TES on PA6 was obtained in pH 3 and 0.1 M solution. • Molecular layers of TES with uniform structures were prepared on PA6 surface. • TES layer improved PA6 local heat resistance from 150 °C to 230 °C. • TES molecular layer successfully reduced Ag ion to Ag"0. - Abstract: Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag"+ ion to Ag"0. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  10. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Jing [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Aisawa, Sumio, E-mail: aisawa@iwate-u.ac.jp [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Hirahara, Hidetoshi [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kudo, Takahiro [Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan); Mori, Kunio [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan)

    2016-04-15

    Graphical abstract: - Highlights: • In situ adsorption behaviors of TES on PA6 surface were clarified by QCM. • Highest adsorption of TES on PA6 was obtained in pH 3 and 0.1 M solution. • Molecular layers of TES with uniform structures were prepared on PA6 surface. • TES layer improved PA6 local heat resistance from 150 °C to 230 °C. • TES molecular layer successfully reduced Ag ion to Ag{sup 0}. - Abstract: Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag{sup +} ion to Ag{sup 0}. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  11. Rate and extent of aqueous perchlorate removal by iron surfaces.

    Science.gov (United States)

    Moore, Angela M; De Leon, Corinne H; Young, Thomas M

    2003-07-15

    The rate and extent of perchlorate reduction on several types of iron metal was studied in batch and column reactors. Mass balances performed on the batch experiments indicate that perchlorate is initially sorbed to the iron surface, followed by a reduction to chloride. Perchlorate removal was proportional to the iron dosage in the batch reactors, with up to 66% removal in 336 h in the highest dosage system (1.25 g mL(-1)). Surface-normalized reaction rates among three commercial sources of iron filings were similar for acid-washed samples. The most significant perchlorate removal occurred in solutions with slightly acidic or near-neutral initial pH values. Surface mediation of the reaction is supported by the absence of reduction in batch experiments with soluble Fe2+ and also by the similarity in specific reaction rate constants (kSA) determined for three different iron types. Elevated soluble chloride concentrations significantly inhibited perchlorate reduction, and lower removal rates were observed for iron samples with higher amounts of background chloride contamination. Perchlorate reduction was not observed on electrolytic sources of iron or on a mixed-phase oxide (Fe3O4), suggesting that the reactive iron phase is neither pure zerovalent iron nor the mixed oxide alone. A mixed valence iron hydr(oxide) coating or a sorbed Fe2+ surface complex represent the most likely sites for the reaction. The observed reaction rates are too slow for immediate use in remediation system design, but the findings may provide a basis for future development of cost-effective abiotic perchlorate removal techniques.

  12. Reduction kinetics of zinc and cadmium sulfides with hydrogen

    International Nuclear Information System (INIS)

    Turgenev, I.S.; Kabisov, I.Kh.; Zviadadze, G.N.; Vasil'eva, O.Yu.

    1985-01-01

    Kinetics of reduction processes of zinc sulfide in the temperature range 800-1100 deg C and of cadmium sulfide 600-900 deg C has been stodied. Activation energies and reaction order in terms of hydrogen are calculated. Thermodynamic processes of reduction depend on aggregate state of the metal formed. For vaporous zinc in the temperature range 1050-950 deq C activation energy constitutes 174 kJ/mol, for liquid in the range 900-850 deg - 151 kJ/mol and reaction order in terms of hydrogen is 1.0. For vaporous cadmium in the temperature range 900-700 deg C activation energy constitutes 144 kJ/mol and reaction order in terms of hydrogen is 0.86, for liquid in the range 675-600 deg C 127 kJ/mol and 0.8 respectively. The processes of zinc and cadmium sulfide reduction proceed in kinetic regime and are limited by the rate of chemical reaction

  13. Development of Head-end Pyrochemical Reduction Process for Advanced Oxide Fuels

    International Nuclear Information System (INIS)

    Park, B. H.; Seo, C. S.; Hur, J. M.; Jeong, S. M.; Hong, S. S.; Choi, I. K.; Choung, W. M.; Kwon, K. C.; Lee, I. W.

    2008-12-01

    The development of an electrolytic reduction technology for spent fuels in the form of oxide is of essence to introduce LWR SFs to a pyroprocessing. In this research, the technology was investigated to scale a reactor up, the electrochemical behaviors of FPs were studied to understand the process and a reaction rate data by using U 3 O 8 was obtained with a bench scale reactor. In a scale of 20 kgHM/batch reactor, U 3 O 8 and Simfuel were successfully reduced into metals. Electrochemical characteristics of LiBr, LiI and Li 2 Se were measured in a bench scale reactor and an electrolytic reduction cell was modeled by a computational tool

  14. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review

    International Nuclear Information System (INIS)

    Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P.

    2009-01-01

    Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C 3 S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H + attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C 3 S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of 29 Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique

  15. Approaches to reducing photon dose calculation errors near metal implants

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Liu, Xinming [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Stingo, Francesco C. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States)

    2016-09-15

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  16. Approaches to reducing photon dose calculation errors near metal implants

    International Nuclear Information System (INIS)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F.; Liu, Xinming; Stingo, Francesco C.

    2016-01-01

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  17. Using NIF to Test Theories of High-Pressure, High-Rate Plastic Flow in Metals

    Science.gov (United States)

    Rudd, Robert E.; Arsenlis, A.; Cavallo, R. M.; Huntington, C. M.; McNaney, J. M.; Park, H. S.; Powell, P.; Prisbrey, S. T.; Remington, B. A.; Swift, D.; Wehrenberg, C. E.; Yang, L.

    2017-10-01

    Precisely controlled plasmas are playing key roles both as pump and probe in experiments to understand the strength of solid metals at high energy density (HED) conditions. In concert with theoretical advances, these experiments have enabled a predictive capability to model material strength at Mbar pressures and high strain rates. Here we describe multiscale strength models developed for tantalum starting with atomic bonding and extending up through the mobility of individual dislocations, the evolution of dislocation networks and so on until the ultimate material response at the scale of an experiment. Experiments at the National Ignition Facility (NIF) probe strength in metals ramp compressed to 1-8 Mbar. The model is able to predict 1 Mbar experiments without adjustable parameters. The combination of experiment and theory has shown that solid metals can behave significantly differently at HED conditions. We also describe recent studies of lead compressed to 3-5 Mbar. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  18. Biological approaches to tackle heavy metal pollution: A survey of literature.

    Science.gov (United States)

    Jacob, Jaya Mary; Karthik, Chinnannan; Saratale, Rijuta Ganesh; Kumar, Smita S; Prabakar, Desika; Kadirvelu, K; Pugazhendhi, Arivalagan

    2018-07-01

    Pollution by heavy metals has been identified as a global threat since the inception of industrial revolution. Heavy metal contamination induces serious health and environmental hazards due to its toxic nature. Remediation of heavy metals by conventional methods is uneconomical and generates a large quantity of secondary wastes. On the other hand, biological agents such as plants, microorganisms etc. offer easy and eco-friendly ways for metal removal; hence, considered as efficient and alternative tools for metal removal. Bioremediation involves adsorption, reduction or removal of contaminants from the environment through biological resources (both microorganisms and plants). The heavy metal remediation properties of microorganisms stem from their self defense mechanisms such as enzyme secretion, cellular morphological changes etc. These defence mechanisms comprise the active involvement of microbial enzymes such as oxidoreductases, oxygenases etc, which influence the rates of bioremediation. Further, immobilization techniques are improving the practice at industrial scales. This article summarizes the various strategies inherent in the biological sorption and remediation of heavy metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. State of the direct reduction and reduction smelting processes

    Directory of Open Access Journals (Sweden)

    Markotić A.

    2002-01-01

    Full Text Available For quite a long time efforts have been made to develop processes for producing iron i.e. steel without employing conventional procedures - from ore, coke, blast furnace, iron, electric arc furnace, converter to steel. The insufficient availability and the high price of the coking coals have forced many countries to research and adopt the non-coke-consuming reduction and metal manufacturing processes (non-coke metallurgy, direct reduction, direct processes. This paper represents a survey of the most relevant processes from this domain by the end of 2000, which display a constant increase in the modern process metallurgy.

  20. Determination of oxygen to metal ratio for varying UO2 content in sintered (U,Th)O2 pellet by oxidation-reduction method using thermo-gravimetric analyser

    International Nuclear Information System (INIS)

    Mahanty, B.N.; Khan, F.A.; Karande, A.P.; Prakash, A.; Afzal, Md.; Panakkal, J.P.

    2009-01-01

    Experiments were carried out to determine oxygen to metal ratio in 4%, 6%, 10%, 20%, 50% and 80% UO 2 in sintered (U, Th) O 2 pellets by oxidation-reduction method using thermo gravimetric analyser. (author)