WorldWideScience

Sample records for metal reducing bacteria

  1. Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria

    Science.gov (United States)

    Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

    2011-12-01

    Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria

  2. The potential for Probiotic Bacteria from milkfish intestine in reducing mercury metals in skimmed milk media

    Science.gov (United States)

    Dwyana, Zaraswati; Priosambodo, D.; Haedar, N.; Erviani, A. E.; Djabura, A. K.; Sukma, R.

    2018-03-01

    Mercury (Hg) is one of the heavy metals that is harmful to humans. The accumulation of mercury in the body is generally derived from food. Several types of bacteria from intestine of milkfish are known to reduce mercury concentration. People can take advantage of this bacterial ability by eating it through probiotic foods. This research conducted to figure out the potential for probiotic bacteria from milkfish intestine in reducing mercury. Isolation from probiotic bacteria from milkfish intestine conducted with grown the isolates in MRSA medium with addition of 1% CaCO3. Twelve isolate were obtained from milkfish intestine. Mercury resistance tested was performed by measuring cell density using a spectrophotometer at concentrations of 10, 15 and 20 ppm respectively in skim milk media. Probiotic tests (gastric acid, bile salts and antimicrobial activity) for MRSB media was also conducted. Results showed that seven isolate were resistant to mercury in all concentrations and potential as probiotics. All resistant isolate then tested for skim milk media with addition of 5, 10, 20 ppm mercury acetate respectively. Result showed that only one isolated was able to reduce the concentration of mercury (Hg) in all variations on concentration and potential as mercury reducer probiotic bacteria.

  3. Characterization of magnetite-organic complex nanoparticles by metal-reducing bacteria.

    Science.gov (United States)

    Kim, Yumi; Jang, Heedong; Suh, Yongjae; Roh, Yul

    2011-08-01

    Magnetite nanoparticles exhibit clear technological potential for biomedical applications. The objectives of this study were to synthesize magnetite-organic complex nanoparticles through the use of metal-reducing bacteria and characterize the mineralogical and surface chemical properties of these nanoparticles as well as to test their potential applications in biomedical technology with regards to their protein immobilization capacity. The microbially formed magnetite nanoparticles had a size of around 10 nm with a spherical shape and were coated with organics containing an abundance of reactive carboxyl groups without any chemical process for functionalizing them. These microbial processes may lead to a simple preparation of functional magnetite-organic complex nanoparticles which have benefits for biomedical applications.

  4. Removal heavy metals and sulphate from waste waters by sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Kušnierová Mária

    2000-09-01

    Full Text Available This article is devoted to the process of bacterial sulphate reduction, which is used to removal of heavy metals and sulphate ions from waste waters.The life of animals and plants depends on the existence of microscopic organisms – microorganisms (MO, which play an important role in cycle changes of biogenic elements on the earth. The sulphur cycle in the nature is considered as one of the oldest and most significant biological systems (Fig. 1. The sulphate-reducing bacteria (SRB miss the assimilatory part of the cycle and produce sulphides. The microbial population of this dissimilatory part is called “sulfuretum”. The SRB can be found in anaerobic mud and sediments of freshwater, thermal or non-thermal sulphur springs, mining waters from sulphide deposits, oil deposits, sea and ocean beds, and in the gastrointestinal tract of man and animals. The SRB represent a group of chemoorganotrophic, strictly anaerobic and gramnegative bacteria, which exhibit a great morphological and physiological diversity. Despite of their considerable morphological variety, they have one property in common, which is the ability to utilise preferentially sulphates (occasionally sulphites, thiosulphates, tetrathionates as electron acceptors, which are reduced to sulphides, during anaerobic respiration. The electron donors in these processes are simple organic compounds as lactate, malate, etc.,(heterotrophically reduction or gaseous hydrogen (autotrophically reduction. SRB can produce a considerable amount of hydrogen sulphide, which reacts easily in aqueous solution with the cations of heavy metals, forming metal sulphides that have low solubility. The bacterial sulphate reduction can be used for the treatment of acid mine drainage waters, which is considered to be the major problem associated with mining activities.In order to remove heavy metals from waste waters, e.g., from galvanizing plants, mine waters (Smolnik, Šobov locality and metallurgic plants (works

  5. Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jizhong [University of Oklahoma; He, Zhili [University of Oklahoma

    2010-02-28

    Project Title: Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria DOE Grant Number: DE-FG02-06ER64205 Principal Investigator: Jizhong (Joe) Zhou (University of Oklahoma) Key members: Zhili He, Aifen Zhou, Christopher Hemme, Joy Van Nostrand, Ye Deng, and Qichao Tu Collaborators: Terry Hazen, Judy Wall, Adam Arkin, Matthew Fields, Aindrila Mukhopadhyay, and David Stahl Summary Three major objectives have been conducted in the Zhou group at the University of Oklahoma (OU): (i) understanding of gene function, regulation, network and evolution of Desulfovibrio vugaris Hildenborough in response to environmental stresses, (ii) development of metagenomics technologies for microbial community analysis, and (iii) functional characterization of microbial communities with metagenomic approaches. In the past a few years, we characterized four CRP/FNR regulators, sequenced ancestor and evolved D. vulgaris strains, and functionally analyzed those mutated genes identified in salt-adapted strains. Also, a new version of GeoChip 4.0 has been developed, which also includes stress response genes (StressChip), and a random matrix theory-based conceptual framework for identifying functional molecular ecological networks has been developed with the high throughput functional gene array hybridization data as well as pyrosequencing data from 16S rRNA genes. In addition, GeoChip and sequencing technologies as well as network analysis approaches have been used to analyze microbial communities from different habitats. Those studies provide a comprehensive understanding of gene function, regulation, network, and evolution in D. vulgaris, and microbial community diversity, composition and structure as well as their linkages with environmental factors and ecosystem functioning, which has resulted in more than 60 publications.

  6. Styrene N-vinylpyrrolidone metal-nanocomposites as antibacterial coatings against Sulfate Reducing Bacteria.

    Science.gov (United States)

    Fathy, M; Badawi, A; Mazrouaa, A M; Mansour, N A; Ghazy, E A; Elsabee, M Z

    2013-10-01

    Copolymer of styrene, and vinylpyrrolidone was prepared by various techniques. Different nanometals and nanometal oxides were added into the copolymer as antimicrobial agents against Sulfate Reducing Bacteria (SRB). The nanocomposite chemical structure was confirmed by using FTIR, (1)H NMR spectroscopy and thermogravimetric analysis (TGA). The biocidal action of these nanocomposites against the SRB was detected using sulfide determination method in Postgate medium B. The data indicated that the nanocomposites had an inhibitory effect on the growth of SRB and reduced the bacterial corrosion rate of mild steel coupons. The prepared nanocomposites have high inhibition efficiency when applied as coatings and show less efficiency when applied as solids or solution into SRB medium. The copolymer and its nanocomposites effectively reduced the total corrosion rate as determined by total weight loss method. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin, E-mail: hgxlixin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Dai, Lihua; Zhang, Chang; Zeng, Guangming; Liu, Yunguo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhou, Chen [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University (United States); Xu, Weihua; Wu, Youe; Tang, Xinquan; Liu, Wei; Lan, Shiming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-02-15

    Highlights: • Nutrient beads of immobilized SRB were more effective in transforming heavy metals into the more stable bound phases. • Inner cohesive nutrient effectively promoted the stabilization process of heavy metals. • The excellent removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. • Easy to recycle and avoid secondary pollution. - Abstract: A series of experiments were conducted for treating heavy metals contaminated sediments sampled from Xiangjiang River, which combined polyvinyl alcohol (PVA) and immobilized sulfate reducing bacteria (SRB) into beads. The sodium lactate was served as the inner cohesive nutrient. Coupling the activity of the SRB with PVA, along with the porous structure and huge specific surface area, provided a convenient channel for the transmission of matter and protected the cells against the toxicity of metals. This paper systematically investigated the stability of Cu, Zn, Pb and Cd and its mechanisms. The results revealed the performance of leaching toxicity was lower and the removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. Recycling experiments showed the beads could be reused 5 times with superbly efficiency. These results were also confirmed by continuous extraction at the optimal conditions. Furthermore, X-ray diffraction (XRD) and energy-dispersive spectra (EDS) analysis indicated the heavy metals could be transformed into stable crystal texture. The stabilization of heavy metals was attributed to the carbonyl and acyl amino groups. Results presented that immobilized bacteria with inner nutrient were potentially and practically applied to multi-heavy-metal-contamination sediment.

  8. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient

    International Nuclear Information System (INIS)

    Li, Xin; Dai, Lihua; Zhang, Chang; Zeng, Guangming; Liu, Yunguo; Zhou, Chen; Xu, Weihua; Wu, Youe; Tang, Xinquan; Liu, Wei; Lan, Shiming

    2017-01-01

    Highlights: • Nutrient beads of immobilized SRB were more effective in transforming heavy metals into the more stable bound phases. • Inner cohesive nutrient effectively promoted the stabilization process of heavy metals. • The excellent removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. • Easy to recycle and avoid secondary pollution. - Abstract: A series of experiments were conducted for treating heavy metals contaminated sediments sampled from Xiangjiang River, which combined polyvinyl alcohol (PVA) and immobilized sulfate reducing bacteria (SRB) into beads. The sodium lactate was served as the inner cohesive nutrient. Coupling the activity of the SRB with PVA, along with the porous structure and huge specific surface area, provided a convenient channel for the transmission of matter and protected the cells against the toxicity of metals. This paper systematically investigated the stability of Cu, Zn, Pb and Cd and its mechanisms. The results revealed the performance of leaching toxicity was lower and the removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. Recycling experiments showed the beads could be reused 5 times with superbly efficiency. These results were also confirmed by continuous extraction at the optimal conditions. Furthermore, X-ray diffraction (XRD) and energy-dispersive spectra (EDS) analysis indicated the heavy metals could be transformed into stable crystal texture. The stabilization of heavy metals was attributed to the carbonyl and acyl amino groups. Results presented that immobilized bacteria with inner nutrient were potentially and practically applied to multi-heavy-metal-contamination sediment.

  9. USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA

    Science.gov (United States)

    Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

  10. Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria

    International Nuclear Information System (INIS)

    Watson, J.H.P; Cressey, B.A.; Roberts, A.P.; Ellwood, D.C.; Charnock, J.M.; Soper, A.K.

    2000-01-01

    In previous and in work to be published, it has been shown that iron sulphide material, produced by sulphate-reducing bacteria (SRB), is an excellent adsorbent for a wide range of heavy metals. The material adsorbs between 100 and 400 mg g -1 and residual levels in solutions can be of the order of pg per litre. Further, strongly magnetic forms of this material can now be produced which can be effectively and cheaply removed from suspension together with the adsorbate by magnetic separation. This paper examines the structure of weakly magnetic and strongly magnetic iron sulphide material produced by SRB with a view to increasing the understanding of its adsorbent and the magnetic properties. The structural properties have been examined using high-resolution imaging and electron diffraction in a transmission electron microscope (TEM), the measurements of magnetisation versus field and temperature, extended X-ray absorption fine-structure (EXAFS) spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy and neutron diffraction. Before drying the surface area of both the weakly magnetic and the strongly magnetic iron sulphide is of the order of 400-500 m 2 g -1 as revealed by the magnetic properties, neutron scattering and the adsorption of a number of heavy metals. After freeze-drying the surface area falls to between 18 and 19 m 2 g -1 . The initial inocula came from a semi-saline source and when fed with nutrient containing Fe 2+ and Fe 3+ produced a weakly magnetic iron sulphide (Watson et al., Minerals Eng. 8 (1995) 1097) and a few % of a more strongly magnetic material. Further work using a novel method (Keller-Besrest, Collin, J. Solid State Chem. 84 (1990) 211) produced a strongly magnetic iron sulphide material. EXAFS and XANES spectroscopy revealed (Keller-Besrest and Collin, 1990) that the weakly magnetic iron sulphide material had the Ni-As structure in which the Fe is tetrahedrally coordinated with the composition Fe 1-x S. The strongly

  11. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50.

    Science.gov (United States)

    Utgikar, V P; Chen, B Y; Chaudhary, N; Tabak, H H; Haines, J R; Govind, R

    2001-12-01

    Acid mine drainage from abandoned mines and acid mine pit lakes is an important environmental concern and usually contains appreciable concentrations of heavy metals. Because sulfate-reducing bacteria (SRB) are involved in the treatment of acid mine drainage, knowledge of acute metal toxicity levels for SRB is essential for the proper functioning of the treatment system for acid mine drainage. Quantification of heavy metal toxicity to mixed cultures of SRB is complicated by the confounding effects of metal hydroxide and sulfide precipitation, biosorption, and complexation with the constituents of the reaction matrix. The objective of this paper was to demonstrate that measurements of dissolved metal concentrations could be used to determine the toxicity parameters for mixed cultures of sulfate-reducing bacteria. The effective concentration, 100% (EC100), the lowest initial dissolved metal concentrations at which no sulfate reduction is observed, and the effective concentration, 50% (EC50), the initial dissolved metal concentrations resulting in a 50% decrease in sulfate reduction, for copper and zinc were determined in the present study by means of nondestructive, rapid physical and chemical analytical techniques. The reaction medium used in the experiments was designed specifically (in terms of pH and chemical composition) to provide the nutrients necessary for the sulfidogenic activity of the SRB and to preclude chemical precipitation of the metals under investigation. The toxicity-mitigating effects of biosorption of dissolved metals were also quantified. Anaerobic Hungate tubes were set up (at least in triplicate) and monitored for sulfate-reduction activity. The onset of SRB activity was detected by the blackening of the reaction mixture because of formation of insoluble ferrous sulfide. The EC100 values were found to be 12 mg/L for copper and 20 mg/L for zinc. The dissolved metal concentration measurements were effective as the indicators of the effect of the

  12. Removal of Arsenic Using Acid/Metal-Tolerant Sulfate Reducing Bacteria: A New Approach for Bioremediation of High-Arsenic Acid Mine Waters

    Directory of Open Access Journals (Sweden)

    Jennyfer Serrano

    2017-12-01

    Full Text Available Fluvial sediments, soils, and natural waters in northern Chile are characterized by high arsenic (As content. Mining operations in this area are potential sources of As and other metal contaminants, due to acid mine drainage (AMD generation. Sulfate Reducing Bacteria (SRB has been used for the treatment of AMD, as they allow for the reduction of sulfate, the generation of alkalinity, and the removal of dissolved heavy metals and metalloids by precipitation as insoluble metal sulfides. Thus, SRB could be used to remove As and other heavy metals from AMD, however the tolerance of SRB to high metal concentrations and low pH is limited. The present study aimed to quantify the impact of SRB in As removal under acidic and As-Fe-rich conditions. Our results show that SRB tolerate low pH (up to 3.5 and high concentrations of As (~3.6 mg·L−1. Batch experiments showed As removal of up to 73%, Iron (Fe removal higher than 78% and a neutralization of pH from acidic to circum-neutral conditions (pH 6–8. In addition, XRD analysis showed the dominance of amorphous minerals, while Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM-EDX analysis showed associations between As, Fe, and sulfur, indicating the presence of Fe-S-As compounds or interaction of As species with amorphous and/or nanocrystalline phases by sorption processes. These results indicate that the As removal was mediated by acid/metal-tolerant SRB and open the potential for the application of new strains of acid/metal-tolerant SRB for the remediation of high-As acid mine waters.

  13. Quantifying heavy metals sequestration by sulfate-reducing bacteria in an acid mine drainage-contaminated wetland

    Directory of Open Access Journals (Sweden)

    John W Moreau

    2013-03-01

    Full Text Available Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century.

  14. Biotransformation and Its Application: Biogenic Nano-Catalyst and Metal-Reducing-Bacteria for Remediation of Cr(VI)-Contaminated Water.

    Science.gov (United States)

    Seo, Hyunhee; Roh, Yul

    2015-08-01

    The use of ubiquitous metal-reducing bacteria (MRB) and the synthesis and transforming capability of nano-sized catalysts (BNC) provide enormous potential for the transformation of environmental waste to environmental catalysts, such as abandoned mine precipitates that are transformed into nontoxic and inexpensive catalysts for remediating contaminated groundwater. In this study, BNC from acid mine drainage (AMD) precipitates are transformed to nm-sized siderite after a fermenting process under anaerobic conditions, and MRB enriched from inter-tidal flat sediments were examined for efficiency in the Cr(VI) reduction and immobilization in upward flow-through sand column tests. As a result, BNC and MRB proved to have excellent Cr(VI) reducing/immobilizing capacity independently and when used in conjunction. In addition the combination of BNC+MRB showed to have a capacity enhanced with 20% more capability of Cr(VI) reduction and immobilization in flow-through column test for 168 h.

  15. Synthesis of Metal Nanoparticles by Bacteria

    Directory of Open Access Journals (Sweden)

    Fikriye Alev Akçay

    2018-04-01

    Full Text Available Metal particles reduced to nano size by nanotechnological methods are confronted in many different fields such as biomedical and physicochemical, pharmaceutical, electric-electronic, automotive and food industries. Nanoparticles can be produced using chemical, physical and biological methods, of which chemical processes are in common use. However, physical and chemical methods are not environmentally friendly and economical because they require the use of high temperature, high pressure and toxic chemicals. For this reason, interest in the production of metal nanoparticles by biological methods, also called green technology, an environmentally friendly and sustainable approach, has increased in recent years. With some plant extracts and intracellular and extracellular secretions of microorganisms, some reduction reactions take place and metal nanoparticles are produced. Bacteria have been actively involved in nanotechnology in recent years due to their diversity in nature, their ease of isolation, and ease of nanoparticle synthesis. In this article, production and application of metal nanoparticles by using bacterial methods have been reviewed.

  16. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria.

    Science.gov (United States)

    Li, Ya; Pang, Hai-Dong; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2017-04-01

    Two metal-resistant Bacillus megaterium H3 and Neorhizobium huautlense T1-17 were investigated for their immobilization of Cd in solution and tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the Cd-contaminated soil. Strains H3 and T1-17 decreased 79-96% of water-soluble Cd in solution and increased grain biomass in the high Cd-contaminated soil. Inoculation with H3 and T1-17 significantly decreased the root (ranging from 25% to 58%), above-ground tissue (ranging from 13% to 34%), and polished rice (ranging from 45% to 72%) Cd contents as well as Cd bioconcentration factor of the rice compared to the controls. Furthermore, H3 and T1-17 significantly reduced the exchangeable Cd content of the rhizosphere soils compared with the controls. Notably, strain T1-17 had significantly higher ability to reduce Cd bioconcentration factor and polished rice Cd uptake than strain H3. The results demonstrated that H3 and T1-17 decreased the tissue (especially polished rice) Cd uptake by decreasing Cd availability in soil and Cd bioconcentration factor and the effect on the reduced polished rice Cd uptake was dependent on the strains. The results may provide an effective synergistic bioremediation of Cd-contaminated soils in the bacteria and rice plants and bacterial-assisted safe production of rice in Cd-contaminated soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Science.gov (United States)

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  18. Development of molecular monitoring methods for the evaluation of the activity of sulfate- and metal reducing bacteria (SMRBS) as an indication of the in situ immobilisation of heavy metals and metalloids.

    Science.gov (United States)

    Geets, J; Vangronsveld, J; Borremans, B; Diels, L; van der Lelie, D

    2001-01-01

    Sulfate- and metal reducing bacteria (SMRBs) are known for their capacity to reduce and precipitate heavy metals and metalloids (HMM) as metalsulfides (Luptáková A et al, 1998), which have the characteristic of forming stable precipitates due to their very low solubility product. Therefore, we examined the potential of using the activity of SMRBs to create a bioreactive zone or barrier for the in situ precepitation of heavy metals as a remediation strategy for heavy metal contaminated groundwater. In order to obtain insight in the ongoing biological processes for using this information to direct or optimize the in situ HMM- precipitation process, a monitoring strategy for sulfate- reduction activity of SMRBs must be designed using molecular methods. Here, we report the results of batch and column experiments which demonstrate the feasibility to stimulate the endogenous SRB- population, resulting in the in situ precipitation of HMM as sulfide complexes. Moreover, the sustainability of the in situ HMM precipitation wa s shown. For the development of molecular monitoring methods, the community structures of different bacterial consortia, obtained from bioreactors, was analysed by shotgun cloning of total community DNA followed by sequencing of the 16S rRNA- gene. The SRB- specific 16S rRNA- primerset SRB385R- 907F was used but this specificity to specifically amplify the 16S rRNA- gene of SRBs was low. Also, the dsr (dissimilatory sulfite reductase)- gene specific DSR1F- DSR4R primerset showed sometimes after amplification of the dsr- genes as part of the community structure analysis satellite bands on agarose gel. Present work is concentrating on the isolation and identification of SRB- strains in the different bacterial cultures. Shotgun cloning of the 16S rRNA- and dsr- gene of the strains and total community DNA will give the information that is necessary for the optimization of existing SRB- specific primers and design of new primers. These primers will be used

  19. Magnetotactic bacteria. Promising biosorbents for heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Zhang, Yanzong; Ding, Xiaohui; Liu, Yan; Shen, Fei; Zhang, Xiaohong; Deng, Shihuai; Xiao, Hong; Yang, Gang; Peng, Hong [Sichuan Agricultural Univ., Chengdu (China). Provincial Key Lab. of Agricultural Environmental Engineering

    2012-09-15

    Magnetotactic bacteria (MTB), which can orient and migrate along a magnetic line of force due to intracellular nanosized magnetosomes, have been a subject of research in the medical field, in dating environmental changes, and in environmental remediation. This paper reviews the recent development of MTB as biosorbents for heavy metals. Ultrastructures and taxis of MTB are investigated. Adsorptions in systems of unitary and binary ions are highlighted, as well as adsorption conditions (temperature, pH value, biomass concentration, and pretreatments). The separation and desorption of MTB in magnetic separators are also discussed. A green method to produce metal nanoparticles is provided, and an energy-efficient way to recover precious metals is put forward during biosorption. (orig.)

  20. Bacteria-Mineral Interactions on the Surfaces of Metal-Resistant Bacteria

    International Nuclear Information System (INIS)

    Malkin, A.J.

    2010-01-01

    ,2), and we anticipate one more publication (3). The publications describe development of methods and results of studies of structural dynamics of metal-resistant bacteria that contribute to more comprehensive understanding of the architecture, function, and environmental dynamics of bacterial and cellular systems. The results of this LDRD were presented in invited talks and contributed presentations at five national and international conferences and five seminar presentations at the external institutions. These included invited talks at the conferences of Gordon Research, Materials Research and American Chemical Societies. Our scientific results and methodologies developed in this project enabled us to receive new funding for the multiyear project 'Chromium transformation pathways in metal-reducing bacteria' funded by the University of California Lab Fees Program ($500,000, 5/1/09 - 4/30/2012), with our proposal being ranked 1st from a total of 138 in the Earth, Energy, Environmental and Space Sciences panel.

  1. Using proteomic data to assess a genome-scale "in silico" model of metal reducing bacteria in the simulation of field-scale uranium bioremediation

    Science.gov (United States)

    Yabusaki, S.; Fang, Y.; Wilkins, M. J.; Long, P.; Rifle IFRC Science Team

    2011-12-01

    A series of field experiments in a shallow alluvial aquifer at a former uranium mill tailings site have demonstrated that indigenous bacteria can be stimulated with acetate to catalyze the conversion of hexavalent uranium in a groundwater plume to immobile solid-associated uranium in the +4 oxidation state. While this bioreduction of uranium has been shown to lower groundwater concentrations below actionable standards, a viable remediation methodology will need a mechanistic, predictive and quantitative understanding of the microbially-mediated reactions that catalyze the reduction of uranium in the context of site-specific processes, properties, and conditions. At the Rifle IFRC site, we are investigating the impacts on uranium behavior of pulsed acetate amendment, acetate-oxidizing iron and sulfate reducing bacteria, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. The simulation of three-dimensional, variably saturated flow and biogeochemical reactive transport during a uranium bioremediation field experiment includes a genome-scale in silico model of Geobacter sp. to represent the Fe(III) terminal electron accepting process (TEAP). The Geobacter in silico model of cell-scale physiological metabolic pathways is comprised of hundreds of intra-cellular and environmental exchange reactions. One advantage of this approach is that the TEAP reaction stoichiometry and rate are now functions of the metabolic status of the microorganism. The linkage of in silico model reactions to specific Geobacter proteins has enabled the use of groundwater proteomic analyses to assess the accuracy of the model under evolving hydrologic and biogeochemical conditions. In this case, the largest predicted fluxes through in silico model reactions generally correspond to high abundances of proteins linked to those reactions (e.g. the condensation reaction catalyzed by the protein

  2. Extremophilic iron-reducing bacteria: Their implications for possible life in extraterrestrial environments

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Liu, S.V.; Zhang, C.; Palumbo, A.V.; Phelps, T.J.

    1998-06-01

    Iron reduction is believed to be an early form of respiration and iron-reducing bacteria might have evolved very early on Earth. To support this hypothesis, the authors began to search for both thermophilic and psychrophilic iron-reducing bacteria because iron-reducing capacity may be a widely distributed trait if ancestral microorganisms include extremophilic iron-reducing bacteria. To date, they have obtained thermophilic Fe(III)-reducing and magnetite-forming enrichment cultures from geologically and hydrologically isolated, millions of years-old deep terrestrial subsurface samples. Three dominant bacteria were identified based on 16S ribosomal RNA gene sequences. Phylogenetical analysis indicated that these bacteria were closely related to Thermoanaerobacter ethanoliticus. Two pure thermophilic iron-reducing bacteria have been isolated and characterized from these enrichments, they also are able to degrade cellulose and xylan. Geological evidence indicated that these bacteria were separated from modern organisms for about 200 million years, and they are the oldest isolated bacteria available now. Evolutionary sequence analysis showed that the 16S rRNA genes evolved extremely slowly in these bacteria. In addition, the authors have obtained about 30 psychrophilic iron-reducing bacteria in samples from Siberia and Alaska permafrost soils, Pacific marine sediments and Hawaii deep sea water. These bacteria were also able to reduce other heavy metals. The isolation of both thermophilic and psychrophilic iron-reducing bacteria from surface and subsurface environments has significant implications for microbial evolution and for studying the origin of life in extraterrestrial environments.

  3. Screening of metal-resistant coal mine bacteria for biofabrication of ...

    Indian Academy of Sciences (India)

    ... or capping of reduced silver nanocrystal or both.Thus, majority of the bacteria found in the coal mines have the resistance against the antimicrobial metal ion, and the potential to reduce the ion into nano- or micro-particles. Hence, the bacteria can be used as a single cell factoryfor production of silver nanomaterial.

  4. Characterization of sulfate reducing bacteria isolated from urban soil

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  5. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  6. Bacterial Reduction Of Barium Sulphate By Sulphate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2015-12-01

    Full Text Available Acid mine drainage (AMD is a worldwide problem leading to contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. The barium salts application presents one of the methods for the sulphates removing from AMD. Barium chloride, barium hydroxide and barium sulphide are used for the sulphates precipitation in the form of barium sulphate. Because of high investment costs of barium salts, barium sulphide is recycled from barium sulphate precipitates. It can be recycled by thermic or bacterial reduction of barium sulphate. The aim of our study was to verify experimentally the possibility of the bacterial transformation of BaSO4 to BaS by sulphate-reducing bacteria. Applied BaSO4 came from experiments of sulphates removal from Smolnik AMD using BaCl2.

  7. Effect of radiation on activity of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Agaev, N.M.; Smorodin, A.E.; Gusejnov, M.M.

    1985-01-01

    The effect of γ-radiation on activity of sulphate reducing bacteria has been studied. Concentration of biogenic hydrogen, generated in the medium, is the main criterion, characterizing corrosion activity of the bacteria studied. The developed method of suppression of active development of sulfate reducing bacteria considerably reduces, and at lethal doses of γ-radiation eliminates altogether the bacteria activity and formation of the main corrosion agent-hydrogen sulphide-in the medium and that, in its turn, liquidates hydrogen sulphide corrosion

  8. Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.; Chandramohan, D.; LokaBharathi, P.A.

    The response of pigmented and non-pigmented marine bacteria to metals and antibiotics was investigated. The two groups responded differently to heavy metals and antibiotics. Pigmented bacteria were more resistant to metals. Among the metals, Zn...

  9. Isolation and characterization of heavy metal tolerant bacteria from ...

    African Journals Online (AJOL)

    Panteka stream is a flowing stream polluted with wastes from the activities of mechanics. Water samples collected at different points of the stream were analysed in order to determine the level of heavy metal contamination and bacteria diversity with the view to elucidating the bioremediating potentials of the bacteria isolates ...

  10. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  11. Surface Complexation Modelling in Metal-Mineral-Bacteria Systems

    Science.gov (United States)

    Johnson, K. J.; Fein, J. B.

    2002-12-01

    The reactive surfaces of bacteria and minerals can determine the fate, transport, and bioavailability of aqueous heavy metal cations. Geochemical models are instrumental in accurately accounting for the partitioning of the metals between mineral surfaces and bacteria cell walls. Previous research has shown that surface complexation modelling (SCM) is accurate in two-component systems (metal:mineral and metal:bacteria); however, the ability of SCMs to account for metal distribution in mixed metal-mineral-bacteria systems has not been tested. In this study, we measure aqueous Cd distributions in water-bacteria-mineral systems, and compare these observations with predicted distributions based on a surface complexation modelling approach. We measured Cd adsorption in 2- and 3-component batch adsorption experiments. In the 2-component experiments, we measured the extent of adsorption of 10 ppm aqueous Cd onto either a bacterial or hydrous ferric oxide sorbent. The metal:bacteria experiments contained 1 g/L (wet wt.) of B. subtilis, and were conducted as a function of pH; the metal:mineral experiments were conducted as a function of both pH and HFO content. Two types of 3-component Cd adsorption experiments were also conducted in which both mineral powder and bacteria were present as sorbents: 1) one in which the HFO was physically but not chemically isolated from the system using sealed dialysis tubing, and 2) others where the HFO, Cd and B. subtilis were all in physical contact. The dialysis tubing approach enabled the direct determination of the concentration of Cd on each sorbing surface, after separation and acidification of each sorbent. The experiments indicate that both bacteria and mineral surfaces can dominate adsorption in the system, depending on pH and bacteria:mineral ratio. The stability constants, determined using the data from the 2-component systems, along with those for other surface and aqueous species in the systems, were used with FITEQL to

  12. Screening of metal-resistant coal mine bacteria for biofabrication of ...

    Indian Academy of Sciences (India)

    Additionally, IR study provided information about the bacterial proteins involved in either reduction of Ag(I) into silver nanoparticle or capping of reduced silver nanocrystal or both.Thus, majority of the bacteria found in the coal mines have the resistance against the antimicrobial metal ion, and the potential to reduce the ion ...

  13. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    OpenAIRE

    H. M. Dayal; K. C. Tiwari; Kamlesh Mehta; Mr. Chandrashekhar

    1988-01-01

    During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  14. Reactivity of the Bacteria-Water Interface: Linking Nutrient Availability to Bacteria-Metal Interactions

    Science.gov (United States)

    Fowle, D. A.; Daughney, C. J.; Riley, J. L.

    2002-12-01

    Identifying and quantifying the controls on metal mobilities in geologic systems is critical in order to understand processes such as global element cycling, metal transport in near-surface water-rock systems, sedimentary diagenesis, and mineral formation. Bacteria are ubiquitous in near-surface water-rock systems, and numerous laboratory and field studies have demonstrated that bacteria can facilitate the formation and dissolution of minerals, and enhance or inhibit contaminant transport. However, despite the growing evidence that bacteria play a key role in many geologic processes in low temperature systems, our understanding of the influence of the local nutrient dynamics of the system of interest on bacteria-metal interactions is limited. Here we present data demonstrating the effectiveness of coupling laboratory experiments with geochemical modeling to isolate the effect of nutrient availability on bacterially mediated proton and metal adsorption reactions. Experimental studies of metal-bacteria interactions were conducted in batch reactors as a function of pH, and solid-solute interactions after growth in a variety of defined and undefined media. Media nutrient composition (C,N,P) was quantified before and after harvesting the cells. Surface complexation models (SCM) for the adsorption reactions were developed by combining sorption data with the results of acid-base titrations, and in some cases zeta potential titrations of the bacterial surface. Our results indicate a clear change in both buffering potential and metal binding capacity of the cell walls of Bacillus subtilis as a function of initial media conditions. Combining current studies with our past studies on the effects of growth phase and others work on temperature dependence on metal adsorption we hope to develop a holistic surface complexation model for quantifying bacterial effects on metal mass transfer in many geologic systems.

  15. Antibiogram and heavy metal tolerance of bullfrog bacteria in Malaysia

    OpenAIRE

    Tee, L.W.; Najiah, M.

    2011-01-01

    Bacterial isolates from 30 farmed bullfrogs (Lithobates catesbeianus) weighing 500-600 g at Johore, Malaysia with external clinical signs of ulcer, red leg and torticollis were tested for their antibiograms and heavy metal tolerance patterns. A total of 17 bacterial species with 77 strains were successfully isolated and assigned to 21 antibiotics and 4 types of heavy metal (Hg2+, Cr6+, Cd2+, Cu2+). Results revealed that bacteria were resistant against lincomycin (92%), oleandomycin (72.7%) an...

  16. Assessment on Bacteria in the Heavy Metal Bioremediation

    International Nuclear Information System (INIS)

    Mohamad Romizan Osman; Mohamad Romizan Osman; Azman Azid; Kamaruzzaman Yunus; Ahmad Dasuki Mustafa; Mohammad Azizi Amran; Fazureen Azaman; Zarizal Suhaili; Yahya Abu Bakar; Syahrir Farihan Mohamed Zainuddin

    2015-01-01

    The aim of this study was to identify and verify the potential bacteria as the bioremediation agent. It involved bacteria isolation, identification through Gram staining, analytical profile index (API) test and determine bioremediation activities by using inductively coupled plasma mass spectrometry (ICPMS). The soil and water sample were collected from downstream of Galing River, Kuantan Malaysia. Based on phenotypic identification and biochemical analysis, the bacteria present at the vicinity area are possibility of Myroides spp. and Micrococcus spp. These bacteria were proven as bioremediation agent based on the ICPMS result. The result 1 ppm of Zink (Zn), Lead (Pb), Arsenic (As), Selenium (Se), Cadmium (Cd), Manganese (Mn), and Indium (In) dwindled after the bacteria inoculated and incubated for seven days in mixture of base salt media (BSM) with the heavy metal elements. Therefore, this proves that the bacteria which are present at downstream of Galing River, Kuantan Malaysia are significant to help us in the bioremediation activity to decrease the heavy metal pollution in the environment. (author)

  17. Antibiogram and heavy metal tolerance of bullfrog bacteria in Malaysia

    African Journals Online (AJOL)

    A total of 17 bacterial species with 77 strains were successfully isolated and assigned to 21 antibiotics and 4 types of heavy metal (Hg2+, Cr6+, Cd2+, Cu2+). Results revealed that bacteria were resistant against lincomycin (92%), oleandomycin (72.7%) and furazolidone (71.4%) while being susceptible to chloramphenicol ...

  18. Antibiogram and heavy metal tolerance of bullfrog bacteria in Malaysia.

    Science.gov (United States)

    Tee, L W; Najiah, M

    2011-01-01

    Bacterial isolates from 30 farmed bullfrogs (Lithobates catesbeianus) weighing 500-600 g at Johore, Malaysia with external clinical signs of ulcer, red leg and torticollis were tested for their antibiograms and heavy metal tolerance patterns. A total of 17 bacterial species with 77 strains were successfully isolated and assigned to 21 antibiotics and 4 types of heavy metal (Hg(2+), Cr(6+), Cd(2+), Cu(2+)). Results revealed that bacteria were resistant against lincomycin (92%), oleandomycin (72.7%) and furazolidone (71.4%) while being susceptible to chloramphenicol and florfenicol at 97.4%. The multiple antibiotic resistance (MAR) index for C. freundii, E. coli and M. morganii was high with the value up to 0.71. Bacterial strains were found to exhibit 100 % resistance to chromium and mercury. High correlation of resistance against both antibiotics and heavy metals was found (71.4 to 100%) between bullfrog bacteria isolates, except bacteria that were resistant to kanamycin showed only 25% resistance against Cu(2+). Based on the results in this study, bacterial pathogens of bullfrog culture in Johore, Malaysia, were highly resistant to both antibiotics and heavy metals.

  19. Antibiogram and heavy metal tolerance of bullfrog bacteria in Malaysia

    Directory of Open Access Journals (Sweden)

    M. Najiah

    2011-10-01

    Full Text Available Bacterial isolates from 30 farmed bullfrogs (Lithobates catesbeianus weighing 500-600 g at Johore, Malaysia with external clinical signs of ulcer, red leg and torticollis were tested for their antibiograms and heavy metal tolerance patterns. A total of 17 bacterial species with 77 strains were successfully isolated and assigned to 21 antibiotics and 4 types of heavy metal (Hg2+, Cr6+, Cd2+, Cu2+. Results revealed that bacteria were resistant against lincomycin (92%, oleandomycin (72.7% and furazolidone (71.4% while being susceptible to chloramphenicol and florfenicol at 97.4%. The multiple antibiotic resistance (MAR index for C. freundii, E. coli and M. morganii was high with the value up to 0.71. Bacterial strains were found to exhibit 100 % resistance to chromium and mercury. High correlation of resistance against both antibiotics and heavy metals was found (71.4 to 100% between bullfrog bacteria isolates, except bacteria that were resistant to kanamycin showed only 25% resistance against Cu2+. Based on the results in this study, bacterial pathogens of bullfrog culture in Johore, Malaysia, were highly resistant to both antibiotics and heavy metals.

  20. Sulphate-reducing bacteria associated with biocorrosion: a review

    Directory of Open Access Journals (Sweden)

    Tania C. de Araujo-Jorge

    1992-09-01

    Full Text Available Biocorrosion means any process of corrosion in wich microorganisms are somehow involved. As far as the petroleum industry is concerned, the anaerobic type is the more important, with Sulphate-Reducing Bacteria (SRB accouting for half of the described processes. SRB are obligate anaerobs that use sulphur, sulphate or other oxidized sulphur compounds as oxidizing agents when decomposing organic material. A typical product of SRB metabolism, hydrogen sulphide -H2S-, is extremely toxic. In the present work we review the literature on mechanisms underlying biocorrosive process in wich SRB are involved and summarize some of the ultrastructural and eletrochemical work developed using SRB obtained from water injection flow in wells located on PETROBRAS offshore marine plataforms, sampled directly in the field over metallic probes, or cultured under laboratory conditions. Biofilms develop when SRB adhere to inert surfaces. A high diversity of morphological types is found inside these biofilms. Their extracellular matrix is highly hydrated and mainly anionic, as shown by its avid reaction with cationic compounds like ruthenium red. We have noted that variations in iron contet lead to interesting changes in the ultrastructure of the bacterial cell coat and also in the rate of corrosion induced in metallic test cupons. Since routine methods to prevent and treat SRB contamination and biodeterioration involve the use of biocides that are toxic and always have some environmental impact, an accurate diagnosis of biocorrosion is always required prior to a treatment decision. We developed a method that detects and semi-quantifies the presence of living or dead SRB by using free silver potentials as an indicator of corrosive action by SRB-associated sulphides. We found a correlation between sulphide levels (determined either by spectrophotometry, or using a silver electrode -E(Ag- that measured changes in free potentials induced by the presence of exogeneously

  1. Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.

    2011-03-15

    Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations, as well as metabolic engineering manipulations.

  2. Development of Microarrays-Based Metagenomics Technology for Monitoring Sulfate-Reducing Bacteria in Subsurface Environments

    Energy Technology Data Exchange (ETDEWEB)

    Cindy, Shi

    2015-07-17

    At the contaminated DOE sites, sulfate-reducing bacteria (SRB) are a significant population and play an important role in the microbial community during biostimulation for metal reduction. However, the diversity, structure and dynamics of SRB communities are poorly understood. Therefore, this project aims to use high throughput sequencing-based metagenomics technologies for characterizing the diversity, structure, functions, and activities of SRB communities by developing genomic and bioinformatics tools to link the SRB biodiversity with ecosystem functioning.

  3. Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants.

    Science.gov (United States)

    Román-Ponce, Brenda; Ramos-Garza, Juan; Vásquez-Murrieta, María Soledad; Rivera-Orduña, Flor Nohemí; Chen, Wen Feng; Yan, Jun; Estrada-de Los Santos, Paulina; Wang, En Tao

    2016-12-01

    To evaluate the interactions among endophytes, plants and heavy metal/arsenic contamination, root endophytic bacteria of Prosopis laevigata (Humb and Bonpl. ex Willd) and Sphaeralcea angustifolia grown in a heavy metal(loid)-contaminated zone in San Luis Potosi, Mexico, were isolated and characterized. Greater abundance and species richness were found in Prosopis than in Sphaeralcea and in the nutrient Pb-Zn-rich hill than in the poor nutrient and As-Cu-rich mine tailing. The 25 species identified among the 60 isolates formed three groups in the correspondence analysis, relating to Prosopis/hill (11 species), Prosopis/mine tailing (4 species) and Sphaeralcea/hill (4 species), with six species ungrouped. Most of the isolates showed high or extremely high resistance to arsenic, such as ≥100 mM for As(V) and ≥20 mM for As(III), in mineral medium. These results demonstrated that the abundance and community composition of root endophytic bacteria were strongly affected by the concentration and type of the heavy metals and metalloids (arsenic), as well as the plant species.

  4. Mercury and lead tolerance in hypersaline sulfate-reducing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Harithsa, S.; Kerkar, S.; LokaBharathi, P.A.

    -sporulating, non-motile rods lacking in desulfoviridin and cytochromes. Examination of these isolates for heavy metal tolerance and response studies in terms of growth and sulfate-reducing activity (SRA) were carried out using HgCl sub(2) and Pb(NO sub(3)) sub(2...

  5. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Wang Aijie; Ren Nanqi; Wang Xu; Lee Duujong

    2008-01-01

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO 4 2- ) ratios. At a critical COD/SO 4 2- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO 4 2- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  6. How Fitness Reduced, Antimicrobial Resistant Bacteria Survive and Spread

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Nielsen, Søren Saxmose; Toft, Nils

    2014-01-01

    More than 30% of E. coli strains sampled from pig farms in Denmark over the last five years were resistant to the commonly used antimicrobial tetracycline. This raises a number of questions: How is this high level sustained if resistant bacteria have reduced growth rates? Given...... for the individual strains in each pig were implemented. We demonstrate how competitive growth between multiple bacterial strains in individual pigs, and the transmission between pigs in a pen allow for strains of antimicrobial resistant bacteria to persist in a pig population to different extents, and how quickly...... that there are multiple susceptible and resistant bacterial strains in the pig intestines, how can we describe their coexistence? To what extent does the composition of these multiple strains in individual pigs influence the total bacterial population of the pig pen? What happens to a complex population when...

  7. The use of lactic acid bacteria to reduce mercury bioaccessibility.

    Science.gov (United States)

    Jadán-Piedra, C; Alcántara, C; Monedero, V; Zúñiga, M; Vélez, D; Devesa, V

    2017-08-01

    Mercury in food is present in either inorganic [Hg(II)] or methylmercury (CH 3 Hg) form. Intestinal absorption of mercury is influenced by interactions with other food components. The use of dietary components to reduce mercury bioavailability has been previously proposed. The aim of this work is to explore the use of lactic acid bacteria to reduce the amount of mercury solubilized after gastrointestinal digestion and available for absorption (bioaccessibility). Ten strains were tested by addition to aqueous solutions containing Hg(II) or CH 3 Hg, or to food samples, and submission of the mixtures to gastrointestinal digestion. All of the strains assayed reduce the soluble fraction from standards of mercury species under gastrointestinal digestion conditions (72-98%). However their effectiveness is lower in food, and reductions in bioaccessibility are only observed with mushrooms (⩽68%). It is hypothesized that bioaccessible mercury in seafood forms part of complexes that do not interact with lactic acid bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Desulfurization of Mexican heavy oil by sulfate-reducing bacteria.

    Science.gov (United States)

    Aragon, Perla E; Romero, Jorge; Negrete, Pilar; Sharma, Virender K

    2005-01-01

    Twenty-five mixed cultures of sulfate reducing bacteria (SRB) were isolated from sediment and anaerobic digestors samples, collected at southeast Gulf of Mexico, Pacific Ocean, and wastewater treatment plant, Mexico. The isolated SRB mixed cultures were tested for desulfurization of Mexican heavy oil. Desulfurization activity of SRB was not affected by high level of vanadium in heavy oil. Sediment samples gave better sulfur removal performance than anaerobic digestors samples. The difference in removal efficiency of the two samples is possibly related to the different quantity of SRB strains causing degradation of organic sulfur in heavy oil.

  9. Unicellular cyanobacteria synechocystis accommodate heterotrophic bacteria with varied enzymatic and metal resistance properties

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Sageer, S.; Jasmin, C.; Vijayan, V.; Pavanan, P.; Athiyanathil, S.; Nair, S.

    The interactions between heterotrophic bacteria and primary producers have a profound impact on the functioning of marine ecosystem. We characterized the enzymatic and metal resistance properties of fourteen heterotrophic bacteria isolated from a...

  10. Isolation and identification of sulfate reducing bacteria (SRB) from the sediment pond after a coal mine in Samarinda, East Kalimantan

    Science.gov (United States)

    Kusumawati, Eko; Sudrajat, Putri, Junita Susilaning

    2017-02-01

    Title isolation and identification of sulfate reducing bacteria (SRB) of sediment pond former coal mine in Samarinda, East Kalimantan. Sulfate reducing bacteria (SRB) is a group of microbes that can be used to improve the quality of sediment former coal mine. In the metabolic activities, the SRB can reduce sulfate to H2S which immediately binds to metals that are widely available on mined lands and precipitated in the form of metal sulfides reductive. Isolation and identification of sulfate reducing bacteria carried out in the Laboratory of Microbiology and Molecular Genetics, Faculty of Mathematics and Natural Sciences, University of Mulawarman, Samarinda. Postgate B is a liquid medium used for isolation through serial dilution. Physiological and biochemical characterization was done by Bergey's Manual of Determinative Bacteriology. Six isolates of sulfate reducing bacteria were isolated from the sediment pond former coal mine in Samarinda. Several groups of bacteria can grow at 14 days of incubation, however, another group of bacteria which takes 21 days to grow. The identification results showed that two isolates belong to the genus Desulfotomaculum sp., and each of the other isolates belong to the genus Desulfococcus sp., Desulfobacter sp., Desulfobulbus sp. and Desulfobacterium sp.

  11. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  12. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  13. The bioactivation procedure for increasing the sulphate-reducing bacteria in a UASB reactor

    Directory of Open Access Journals (Sweden)

    M. M. M. Gonçalves

    2005-12-01

    Full Text Available Bioactivation, a procedure to obtain anaerobic sulphidogenic sludge, was developed in order to increase sulphate reduction and, consequently, sulphide production to remove metals from effluents. This procedure, in which the source of carbon/energy (lactate is gradually replaced, consisted of three operational conditions. It was observed that bioactivation took six months so there was a 100-fold increase in the population of sulphate-reducing bacteria estimated by the most-probable-number (MPN when molasses was employed as a new source.

  14. Primordial-like enzymes from bacteria with reduced genomes.

    Science.gov (United States)

    Ferla, Matteo P; Brewster, Jodi L; Hall, Kelsi R; Evans, Gary B; Patrick, Wayne M

    2017-08-01

    The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  15. Mtr Extracellular Electron Transfer Pathways in Fe(III)-reducing or Fe(II)-oxidizing Bacteria: A Genomic Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.

    2012-12-01

    Originally discovered in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), the Mtr (i.e., metal-reducing) pathway exists in all characterized strains of metal-reducing Shewanella. The protein components identified to date for the Mtr pathway of MR-1 include four multi-heme c-type cytochromes (c-Cyts), CymA, MtrA, MtrC and OmcA, and a porin-like, outer membrane protein MtrB. They are strategically positioned along the width of the MR-1 cell envelope to mediate electron transfer from the quinone/quinol pool in the inner-membrane to the Fe(III)-containing minerals external to the bacterial cells. A survey of microbial genomes revealed homologues of the Mtr pathway in other dissimilatory Fe(III)-reducing bacteria, including Aeromonas hydrophila, Ferrimonas balearica and Rhodoferax ferrireducens, and in the Fe(II)-oxidizing bacteria Dechloromonas aromatica RCB, Gallionella capsiferriformans ES-2 and Sideroxydans lithotrophicus ES-1. The widespread distribution of Mtr pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria emphasizes the importance of this type of extracellular electron transfer pathway in microbial redox transformation of Fe. Their distribution in these two different functional groups of bacteria also emphasizes the bi-directional nature of electron transfer reactions carried out by the Mtr pathways. The characteristics of the Mtr pathways may be shared by other pathways used by microorganisms for exchanging electrons with their extracellular environments.

  16. SAR11 marine bacteria require exogenous reduced sulphur for growth.

    Science.gov (United States)

    Tripp, H James; Kitner, Joshua B; Schwalbach, Michael S; Dacey, John W H; Wilhelm, Larry J; Giovannoni, Stephen J

    2008-04-10

    Sulphur is a universally required cell nutrient found in two amino acids and other small organic molecules. All aerobic marine bacteria are known to use assimilatory sulphate reduction to supply sulphur for biosynthesis, although many can assimilate sulphur from organic compounds that contain reduced sulphur atoms. An analysis of three complete 'Candidatus Pelagibacter ubique' genomes, and public ocean metagenomic data sets, suggested that members of the ubiquitous and abundant SAR11 alphaproteobacterial clade are deficient in assimilatory sulphate reduction genes. Here we show that SAR11 requires exogenous sources of reduced sulphur, such as methionine or 3-dimethylsulphoniopropionate (DMSP) for growth. Titrations of the algal osmolyte DMSP in seawater medium containing all other macronutrients in excess showed that 1.5 x 10(8) SAR11 cells are produced per nanomole of DMSP. Although it has been shown that other marine alphaproteobacteria use sulphur from DMSP in preference to sulphate, our results indicate that 'Cand. P. ubique' relies exclusively on reduced sulphur compounds that originate from other plankton.

  17. Sulfate reducing bacteria detection in gas pipelines; Deteccao de bacterias redutoras de sulfato em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbach, Marcia Teresa S.; Oliveira, Ana Lucia C. de; Cavalcanti, Eduardo H. de S. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Corrosao e Degradacao]. E-mails: marciasl@int.gov.br; analucia@int.gov.br; eduardoh@int.gov.br

    2004-07-01

    Microbiology induced corrosion (MIC) process associated with sulfate reducing bacteria (BRS) are one of the most important matter of concern for the oil and gas industry as 77% of failures have been attributed this sort of degradation. Corrosion products found present in gas transportation pipelines, the so-called 'black-powder' problem, are also a nuisance and source of economic losses for the gas industry. According to the literature, the incidence of black-powder can be ascribed to the metabolism of BRS that can be found in the gas environment. Integrity monitoring programs of gas pipelines adopt pigging as an important tool for internal corrosion monitoring. Solid residue such as the black-powder, collected by pigging, as well as the condensed, can be seen as a very valuable samples for microbiological analyses that can be used to detect and quantify bacteria related to the incidence of MIC processes. In the present work results concerning samples collected by pigging and condensed are presented. Small populations of viable BRS have been found in the pipeline. It can be seen that the inclusion of microbiological analyses of solid and liquid residues as a complementary action in the integrity monitoring programs adopted by gas transportation industry can be very helpful on the decision making concerning preventive and corrective actions to be taken in order to maintain the CIM processes under control. (author)

  18. Heavy metal biosorption by three bacteria isolated from a tropical river

    African Journals Online (AJOL)

    Bioaccumulation (bioconcentration) of four heavy metals cadmium, lead, zinc and nickel by three bacteria Bacillus, Staphylococcus and Pseudomonas as a tool for the decontamination of heavy metal impacted aquatic systems was investigated . The bacteria were obtained from the New Calabar River. Monitoring of the ...

  19. Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments

    Science.gov (United States)

    Krumholz, Lee R.; Elias, Dwayne A.; Suflita, Joseph M.

    2003-01-01

    We investigated the impact of sulfate-reduction on immobilization of metals in subsurface aquifers. Co 2+ was used as a model for heavy metals. Factors limiting sulfate-reduction dependent Co 2+ immobilization were tested on pure cultures of sulfate-reducing bacteria, and in sediment columns from a landfill leachate contaminated aquifer. In the presence of 1 mM Co 2+ , the growth of pure cultures of sulfate-reducing bacteria was not impacted. Cultures of Desulfovibrio desulfuricans, Desulfotomaculum gibsoniae , and Desulfomicrobium hypogeia removed greater than 99.99% of the soluble Co 2+ when CoCl 2 was used with no chelators. The above cultures and Desulfoarcula baarsi removed 98-99.94% of the soluble Co(II) when the metal was complexed with the model ligand nitrilotriacetate (Co-NTA). Factors controlling the rate of sulfate-reduction based Co 2+ precipitation were investigated in sediment-cobalt mixtures. Several electron donors were tested and all but toluene accelerated soluble Co 2+ loss. Ethanol and formate showed the greatest stimulation. All complex nitrogen sources tested slowed and decreased the extent of Co 2+ removal from solution relative to formate-amended sediment incubations. A range of pH values were tested (6.35-7.81), with the more alkaline incubations exhibiting the largest precipitation of Co 2+ . The immobilization of Co 2+ in sediments was also investigated with cores to monitor the flow of Co 2+ through undisturbed sediments. An increase in the amount of Co 2+ immobilized as CoS was observed as sulfate reduction activity was stimulated in flow through columns. Both pure culture and sediment incubation data indicate that stimulation of sulfate reduction is a viable strategy in the immobilization of contaminating metals in subsurface systems.

  20. Resistance of Bacteria Isolated from Otamiri River to Heavy Metals and Some Selected Antibiotics

    OpenAIRE

    I.C. Mgbemena; J.C. Nnokwe; L.A. Adjeroh; N.N. Onyemekara

    2012-01-01

    This study is aimed at determining the resistance of bacteria to heavy metals and some antibiotics. The ability of aquatic bacteria isolates from Otamiri River at Ihiagwa in Owerri North, Imo State to tolerate or resist the presence of certain selected heavy metals: Pb+, Zn2+ and Fe2+ and some antibiotics was investigated. Identification tests for the bacteria isolates from Otamiri River revealed them to belong to the genera Pseudomonas, Aeromonas, Bacillus, Escherichia, Micrococcus and Prote...

  1. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon

    International Nuclear Information System (INIS)

    Chatelus, C.

    1987-11-01

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H 2 layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of the

  2. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    Science.gov (United States)

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Reduction and precipitation of neptunium(V) by sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Banaszak, J. E.; Rittmann, B. E.; Reed, D. T.

    1999-01-01

    Migration of neptunium, as NpO 2 + , has been identified as a potentially important pathway for actinide release at nuclear waste repositories and existing sites of subsurface contamination. Reduction of Np(V) to Np(IV) will likely reduce its volubility, resulting in lowered subsurface migration. The ability of sulfate-reducing bacteria (SRB) to utilize Np(V) as an electron acceptor was investigated, because these bacteria are active in many anaerobic aquifers and are known to facilitate the reduction of metals and radionuclides. Pure and mixed cultures of SRB were able to precipitate neptunium during utilization of pyruvate, lactate, and hydrogen as electron donors in the presence and absence of sulfate. The neptunium in the precipitate was identified as Np(IV) using X-ray absorption near edge spectroscopy (XANES) analysis. In mixed-culture studies, the addition of hydrogen to consortia grown by pyruvate fermentation stimulated neptunium reduction and precipitation. Experiments with pure cultures of Desulfovibrio vulgaris, growing by lactate fermentation in the absence of sulfate or by sulfate reduction, confirm that the organism is active in neptunium reduction and precipitation. Based on our results, the activity of SRB in the subsurface may have a significant, and potentially beneficial, impact on actinide mobility by reducing neptunium volubility

  4. Synergy in Sulfur Cycle: The Biogeochemical Significance of Sulfate Reducing Bacteria in Syntrophic Associations

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    ). The first oxidation product of sulfide, elemental sulphur appears outside the cells of green sulfur bacteria and can therefore be oxidized further to sulfate or reduced by sulphur reducing bacteria. In defined syntrophic cocultures of acetate... carrying capacity of an environment in question. Sytrophic associations between suphate reducing and sulfur oxidizing bacteria could be gainfully used in the bioremediation of oil wells polluted by sulfide production (Loka Bharathi et al., 1997). While...

  5. Uso de bacterias sulfato-reductoras inmovilizadas para la precipitación de metales pesados

    OpenAIRE

    Vicente, Mariana Soledad

    2006-01-01

    Los objetivos de la tesis son: utilizar bacterias sulfato-reductoras para la precipitación de metales pesados; caracterizar el crecimiento de bacterias del género Desulfovibrio en distintas condiciones de cultivo; caracterizar la precipitación de iones metálicos por bacterias del género Desulfovibrio en cultivos batch; caracterizar el crecimiento de bacterias del género Desulfovibrio inmovilizadas sobre diferentes soportes inerte; caracterizar la precipitación de iones metálicos con bacterias...

  6. Bio-corrosion of water pipeline by sulphate-reducing bacteria in a ...

    African Journals Online (AJOL)

    esiri

    2013-11-13

    Nov 13, 2013 ... In AMD treatment processes, this chemically stabilizes the toxic metal ions as solid metal sulphides (Zagury et al., 2006). Furthermore, SRB produce carbonate (equation 1) which increases ... corrosion surface due to the presence of other aerobic bacteria ..... coating is necessary and important. Corrosion ...

  7. Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria

    NARCIS (Netherlands)

    Ilyas, Sadia; Anwar, Munir A.; Niazi, Shahida B.; Ghauri, M. Afzal

    The present work was aimed at studying the bioleachability of metals from electronic scrap by the selected moderately thermophilic strains of acidophilic chemolithotrophic and acidophilic heterotrophic bacteria. These included Sulfobacillus thermosulfidooxidans and an unidentified acidophilic

  8. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust

    Science.gov (United States)

    Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

    2012-01-01

    Iron (Fe0) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H2S, and scavenge of ‘cathodic’ H2 from chemical reaction of Fe0 with H2O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe0 year−1), while conventional H2-scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO3, Mg/CaCO3) deposited on the corroding metal exhibited electrical conductivity (50 S m−1). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe0 → 4Fe2+ + 8e−) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e− + SO42− + 9H+ → HS− + 4H2O). Hence, anaerobic microbial iron corrosion obviously bypasses H2 rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. PMID:22616633

  9. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust.

    Science.gov (United States)

    Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

    2012-07-01

    Iron (Fe(0) ) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H(2) S, and scavenge of 'cathodic' H(2) from chemical reaction of Fe(0) with H(2) O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe(0) year(-1) ), while conventional H(2) -scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO(3) , Mg/CaCO(3) ) deposited on the corroding metal exhibited electrical conductivity (50 S m(-1) ). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe(0)  → 4Fe(2+)  + 8e(-) ) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e(-)  + SO(4) (2-)  + 9H(+)  → HS(-)  + 4H(2) O). Hence, anaerobic microbial iron corrosion obviously bypasses H(2) rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. [Effect of sulfate-reducing bacteria on steel corrosion in the presence of inhibitors].

    Science.gov (United States)

    Purish, L M; Pogrebova, I S; Kozlova, I A

    2002-01-01

    Steel 08KP corrosion was studied as affected by inhibitors in presence of sulphate-reducing bacteria (SRB). Organic compounds, containing functional groups with nitrogen, oxygen and sulphur atoms, were investigated as corrosion inhibitors. It is shown that the studied inhibitors may be divided into three groups as to the mechanism of protective action. It has been established that cation-active nitrogen-containing surfactants ([symbol: see text] X, [symbol: see text]-1, [symbol: see text]-1M, catapin M, [symbol: see text]-2M) are the most efficient steel corrosion inhibitors. Such inhibitors, when adsorbed on metal surface, can affect the process of hydrogen precipitation on its surface, and thus inhibit catalytic function of SRB as the depolarizer of cathode process.

  11. Electrochemical impedance spectroscopy and Surface Studies of Steel Corrosion by Sulphate-Reducing Bacteria

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Zaharah Ibrahim; Madzlan Aziz; Adibah Yahya

    2009-01-01

    Sulphate-reducing bacteria (SRB), implicated in microbiologically influenced corrosion were isolated from the deep subsurface at the vicinity of Pasir Gudang, Johor, Malaysia. Electrochemical impedance spectroscopic (EIS) study was carried out to determine the polarization resistance in various types of culturing solutions, with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated (control). EIS results showed that in the presence of SRB1, SRB2 and mixed culture SRB1 and SRB2, polarisation resistance values were 7170, 6370 and 7190 ohms respectively compared to that of control, 92400 ohm. X-ray analysis (EDS) of the specimens indicated high sulphur content in the medium containing SRBs. Localized corrosion was observed on the metal surface which was associated with the SRB activity. (author)

  12. Screening of metal-resistant coal mine bacteria for biofabrication of ...

    Indian Academy of Sciences (India)

    Abstract. Green synthesis approaches for nanoparticle synthesis are considered as nontoxic, eco-friendly and cost-effective approaches than other physical and chemical approaches. Here, we report green synthesis of silver nanoparticle using the bacteria from the habitat of relatively metal-rich coal mine dust. The bacteria ...

  13. Isolation of a nitrate-reducing bacteria strain from oil field brine and ...

    African Journals Online (AJOL)

    A nitrate-reducing bacteria (NRB) strain with vigorous growth, strong nitrate reduction ability, strain B9 2-1, was isolated from Suizhong36-1 oilfield, its routine identification and analysis of 16S rRNA and also the competitive inhibition experiments with the enrichment of sulfate-reducing bacteria (SRB) were carried out.

  14. The changes of spectroscopic characteristics of sulfurreducing bacteria Desulfuromonas acetoxidans under the influence of different metal ions

    Science.gov (United States)

    Vasyliv, Oresta M.; Bilyy, Olexandr I.; Getman, Vasyl B.; Kushkevych, Ivan V.; Hnatush, Svitlana O.

    2011-10-01

    Desulfuromonas acetoxidans, which is regarded to the oldest microorganisms that exist in the Earth, are uncoloured gram-negative obligatory anaerobic bacteria that have an ability to reduce S0 to H2S. This process supports bacteria with sufficient amount of energy which they need for growth. At the same time high concentrations of hydrogen sulfide are very toxic towards all living organisms. Different metal ions that exist in surrounding environment in small concentrations are essential for microorganisms because they support normal functionality of them. But in high concentrations they have a detrimental influence on cell structure and it functions. Srains of D. acetoxidans bacteria that have high toxic metals resistance can neutralize the toxicity of hydrogen sulfide, which is the final product of dissimilative sulfurreduction, and these metals as the result of their particular binding and forming the insoluble precipitations. Light scattering changes and metals accumulation ability of D. acetoxidans bacterial cells under the influence of CuSO4, PbNO3, ZnSO4 and CdSO4 have been investigated. The changes of light scattering characteristics of bacterial D. acetoxidans cells on the base of their size distribution and relative content under the influence of investigated metal salts have been observed by the new method of measurement.

  15. Role of Bioadsorbents in Reducing Toxic Metals

    Directory of Open Access Journals (Sweden)

    Blessy Baby Mathew

    2016-01-01

    Full Text Available Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to study and explore all possible sources of agrobased inexpensive adsorbents for their feasibility in the removal of heavy metals. The objective was to study inexpensive adsorbents like various agricultural wastes such as sugarcane bagasse, rice husk, oil palm shell, coconut shell, and coconut husk in eliminating heavy metals from waste water and their utilization possibilities based on our research and literature survey. It also shows the significance of developing and evaluating new potential biosorbents in the near future with higher adsorption capacity and greater reusable options.

  16. High motility reduces grazing mortality of planktonic bacteria

    DEFF Research Database (Denmark)

    Matz, Carsten; Jurgens, K.

    2005-01-01

    We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated...... that the number of predator-prey contacts increased with bacterial swimming speed, but ingestion rates dropped at speeds of >25 mum s(-1) as a result of handling problems with highly motile cells. Comparative studies of a moderately motile strain (45 mum s-1) further revealed changes in the bacterial swimming...... speed distribution due to speed-selective flagellate grazing. Better long-term survival of the highly motile strain was indicated by fourfold-higher bacterial numbers in the presence of grazing compared to the moderately motile strain. Putative constraints of maintaining high swimming speeds were tested...

  17. Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses.

    Science.gov (United States)

    Safari Sinegani, Ali Akbar; Younessi, Nayereh

    2017-09-01

    The main objective of this study was to determine the relationship between the antibiotic and heavy metal tolerance of culturable bacteria isolated from mining waste, pasture, and agricultural soils containing different levels of heavy metals. The populations of total culturable bacteria, and heavy metal- and antibiotic-tolerant bacteria in the soils were enumerated on nutrient agar, nutrient agar amended with metals, and Mueller-Hinton agar amended with antibiotics, respectively. The multiple antibiotic resistance index, and patterns of antibiotic resistance and heavy metal-antibiotic co-resistance were determined for 237 isolates. Among all the samples, those of the tailings of mines with higher levels of heavy metals had the lowest number of bacteria, but a relatively higher abundance of heavy metal- and antibiotic-resistant bacteria. A high degree of resistance was observed for ampicillin and amoxicillin in the isolates from all soils. The agricultural soil isolates had a high prevalence of resistance towards vancomycin, tetracycline, and streptomycin. Among all the tested antibiotics, gentamicin was the most potent. The most frequent pattern of multiple antibiotic resistance in the isolates from agricultural soils was amoxicillin, ampicillin, streptomycin, vancomycin, tetracycline, and doxycycline. The percentage of isolates with multiple antibiotic resistance was considerably higher in the agricultural soils than in the mining waste soils. A high rate of co-resistance towards Hg and antibiotics was observed among the gram-negative isolates, and towards Zn, Ni, Hg, and the beta-lactam antibiotics among the gram-positive isolates. The higher percentage of isolates with multiple antibiotic resistance in the agricultural soils that in the mining waste soils may be related to (1) the level of soil heavy metals, (2) the population and diversity of soil bacteria, (3) the application of manures, and (4) other factors affecting gene transfer between bacteria

  18. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.

    Science.gov (United States)

    Das, Surajit; Dash, Hirak R; Chakraborty, Jaya

    2016-04-01

    Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.

  19. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  20. Behavior of plutonium interacting with bentonite and sulfate-reducing anaerobic bacteria

    International Nuclear Information System (INIS)

    Kudo, A.; Zheng, J.; Cayer, I.; Fujikawa, Y.; Yoshikawa, H.; Ito, M.

    1997-01-01

    The interactions between sulfate reducing anaerobic bacteria and plutonium, with or without bentonite present, were investigated using distribution coefficients [Kd (ml/g)] as an index of the radionuclide behavior. Plutonium Kds for living bacteria varied within a large range, from 1,804 to 112,952, depending on the pH, while the Kds ranged from 1,180 to 5,931 for dead bacteria. In general, living bacteria had higher plutonium Kds than dead bacteria. Furthermore, the higher Kd values of 39,677 to 106,915 for living bacteria were obtained for a pH range between 6.83 and 8.25, while no visible pH effect was observed for dead bacteria. These Kd values were obtained using tracers for both 236 Pu and 239 Pu, which can check the experimental procedures and mass balance. Another comparison was conducted for plutonium Kd values of mixtures of living bacteria with bentonite and sterilized bacteria with bentonite. The range of Kd values for the non-sterilized bacteria with bentonite were 1,194 to 83,648 while Kd values for the sterilized bacteria with bentonite were from 624 to 17,236. Again, the Kd values for the living bacteria with bentonite were higher than those of sterilized bacteria with bentonite. In other words, the presence of living anaerobic bacteria with bentonite increased, by roughly 50 times, the Kd values of 239 Pu when compared to the mixture of dead bacteria with bentonite. The results indicate that the effects of anaerobic bacteria within the engineered barrier system (in this case bentonite) will play a significant role in the behavior of plutonium in geologic repositories

  1. Efficacy of oligodynamic metals in the control of bacteria growth in humidifier water tanks and mist droplets.

    Science.gov (United States)

    Collart, David; Mehrabi, Sharifeh; Robinson, Liah; Kepner, Bryan; Mintz, Eric A

    2006-06-01

    Antimicrobial capsules were evaluated for their effectiveness to control bacterial contamination of cool mist humidifiers. These capsules contain a mixture of silver and copper promoted alumina beads designed to release low concentrations of these oligodynamic metals into the reservoir water for bacteria control. The reservoir water and mist droplets from the humidifier units were tested for the presence of bacteria over a three-week period. A control unit (without capsule) showed significant bacterial contamination by day three, which increased throughout the three-week test period, in both the reservoir and mist droplets, whereas the antimicrobial capsules reduced contamination during the first week, and minimized the presence of bacteria, in both the reservoir water and mist droplets, to less than 2% of the control unit throughout the three-week test period. It was also observed that, after each inactive weekend, the initial discharge of bacteria via the mist droplets in the control unit was significantly higher than during daily use. However, initial bacterial discharge from the test unit following weekend inactivity never exceeded 0.5% of the control unit. In conclusion, these capsules containing oligodynamic metals are effective in controlling bacteria growth in humidifier water tanks and mist droplets.

  2. Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint

    Directory of Open Access Journals (Sweden)

    Lolo Wal Marzan

    2017-03-01

    Full Text Available Toxic, mutagenic and carcinogenic heavy metals from tannery industries cause the pollution of agricultural environment and natural water sources. This study aims to isolate, investigate and identify naturally occurring bacteria capable of reducing and detoxifying heavy metals (Chromium, Cadmium and Lead from tannery effluent. Three isolates were identified up to genus level based on their morphological, cultural, physiological and biochemical characteristics as Gemella sp., Micrococcus sp. and Hafnia sp. Among them Gemella sp. and Micrococcus sp. showed resistance to Lead (Pb, chromium (Cr and cadmium (Cd, where Hafnia sp. showed sensitivity to cadmium (Cd. All isolates showed different MICs against the above heavy metals at different levels. Degrading potentiality was assessed using Atomic Absorption Spectrophotometer where Gemella sp. and Micrococcus sp. showed 55.16 ± 0.06% and 36.55 ± 0.01% reduction of Pb respectively. On the other hand, moderate degradation of Cd was shown by Gemella sp. (50.99 ± 0.01% and Micrococcus sp. (38.64 ± 0.06%. Heavy metals degradation capacity of Gemella sp. and Micrococcus sp. might be plasmid mediated, which might be used for plasmid transformation to transfer heavy metal accumulation capability. Therefore, identification of three bacteria for their heavy metal resistance and biodegradation capacity might be a base study to develop the production of potential local bioremediation agents in toxic tannery effluent treatment technology.

  3. Sulfate-reducing bacteria from the Arabian Sea - their distribution in relation to thiosulfate-oxidising and heterotrophic bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Chandramohan, D.

    -reducing bacteria in anaerobic marine sediment. Appl. Environ. Microbiol. 42: 5-11. Van Es, F. B. and L.-A. Meyer-Rei!. 1982. Biomass and metabolic activity ofheterotrophic marine bacteria. Pages [11-[ 70 in K. C. Marshal[, ed. Advances in microbial ecology, Vol. 6... at Delaware Inlet, New Zealand. The infor mation available about these forms in Indian waters has been restricted to es tuarine ecosystems (Loka Bharathi and Chandramohan, 1985; Saxena et aI., 1988). We describe here their distribution in marine sediments...

  4. Remediation of contaminated subsurface materials by a metal-reducing bacterium

    International Nuclear Information System (INIS)

    Gorby, Y.A.; Amonette, J.E.; Fruchter, J.S.

    1994-11-01

    A biotic approach for remediating subsurface sediments and groundwater contaminated with carbon tetrachloride (CT) and chromium was evaluated. Cells of the Fe(iii)-reducing bacterium strain BrY were added to sealed, anoxic flasks containing Hanford groundwater, natural subsurface sediments, and either carbon tetrachloride, CT, or oxidized chromium, Cr(VI). With lactate as the electron donor, BrY transformed CT to chloroform (CF), which accumulated to about 1 0 % of the initial concentration of CT. The remainder of the CT was transformed to unidentified, nonvolatile compounds. Transformation of CT by BrY was an indirect process Cells reduced solid phase Fe(ill) to chemically reactive FE(II) that chemically transformed the chlorinated contaminant. Cr(VI), in contrast, was reduced by a direct enzymatic reaction in the presence or absence of Fe(III)-bearing sediments. These results demonstrate that Fe(ill)-reducing bacteria provide potential for transforming CT and for reducing CR(VI) to less toxic Cr(III). Technologies for stimulating indigenous populations of metal-reducing bacteria or for introducing specific metal-reducing bacteria to the subsurface are being investigated

  5. Hydroponics reducing effluent's heavy metals discharge.

    Science.gov (United States)

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  6. Epithermal neutron activation analysis of CR(VI)-reducer basalt-inhabiting bacteria

    International Nuclear Information System (INIS)

    Tsibakhashvili, N.Ya.; Kalabegishvili, T.L.; Murusidze, I.G.; Mosulishvili, L.M.; Frontas'eva, M.V.; Kirkesali, E.I.; Aksenova, N.G.; Holman, H.Y.

    2005-01-01

    Epithermal neutron activation analysis (ENAA) has been applied to studying elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance (ESR) demonstrating that the bacteria differ in the rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(VI) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 μg/g of dry weight) indicate bacterial adaptation to the environmental conditions typical of the basalts. The concentrations of at least 12-19 different elements ranging from major- to ultratrace ones were determined in each type of bacteria simultaneously. The range of concentrations spans over 8 orders of magnitude

  7. Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria.

    Science.gov (United States)

    Seneviratne, Mihiri; Weerasundara, Lakshika; Ok, Yong Sik; Rinklebe, Jörg; Vithanage, Meththika

    2017-01-15

    This study assesses the effect of N-fixing bacteria and biochar synergism on plant growth and development of Vigna mungo under heavy metal stress (HM). Heavy metal stress is a worldwide problem, which causes critical effects on plant life due to oxidative stress. Application of biochar is a recent biological remediation technique, which often leads to an immobilization of heavy metals in soil. . Synergism of bacteria and biochar is a novel aspect to enhance plant growth under heavy metal stress. Woody biochar a byproduct of a dendro power industry was added as 1, 2.5 and 5% amounts combination with Bradyrhizobium japonicum, where mung seedlings were planted in serpentine soil rich in Ni, Mn, Cr and Co. Pot experiments were conducted for 12 weeks. The plant height, heavy metal uptake by plants, soil bioavailable heavy metal contents, soil N and P and microbial biomass carbon (MBC) were measured. The plant growth was enhanced with biochar amendment but a retardation was observed with high biochar application (5%). The soil N and P increased with the increase of biochar addition percentage while soil MBC showed reductions at 5% biochar amendment. Both soil bioavailable fractions of HM and up take of HMs by plants were gradually reduced with increase in biochar content. Based on the results, 2.5% biochar synergism with bacteria was the best for plant growth and soil nutrition status. Despite the synergism, available N was negatively correlated with the decrease of bioavailable metal percentage in soil whereas it was conversely for P. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.

    Science.gov (United States)

    Chaturvedi, Amiy Dutt; Pal, Dharm; Penta, Santhosh; Kumar, Awanish

    2015-10-01

    Water is the most important and vital molecule of our planet and covers 75% of earth surface. But it is getting polluted due to high industrial growth. The heavy metals produced by industrial activities are recurrently added to it and considered as dangerous pollutants. Increasing concentration of toxic heavy metals (Pb(2+), Cd(2+), Hg(2+), Ni(2+)) in water is a severe threat for human. Heavy metal contaminated water is highly carcinogenic and poisonous at even relatively low concentrations. When they discharged in water bodies, they dissolve in the water and are distributed in the food chain. Bacteria and fungi are efficient microbes that frequently transform heavy metals and remove toxicity. The application of bacteria and fungi may offer cost benefit in water treatment plants for heavy metal transformation and directly related to public health and environmental safety issues. The heavy metals transformation rate in water is also dependent on the enzymatic capability of microorganisms. By transforming toxic heavy metals microbes sustain aquatic and terrestrial life. Therefore the application of microbiological biomass for heavy metal transformation and removal from aquatic ecosystem is highly significant and striking. This paper reviews the microbial transformation of heavy metal, microbe metal interaction and different approaches for microbial heavy metal remediation from water bodies.

  9. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

    Science.gov (United States)

    Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong

    2017-12-01

    Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

  10. Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality.

    Science.gov (United States)

    Mrvčić, Jasna; Stanzer, Damir; Solić, Ema; Stehlik-Tomas, Vesna

    2012-09-01

    Certain species of lactic acid bacteria (LAB), as well as other microorganisms, can bind metal ions to their cells surface or transport and store them inside the cell. Due to this fact, over the past few years interactions of metal ions with LAB have been intensively investigated in order to develop the usage of these bacteria in new biotechnology processes in addition to their health and probiotic aspects. Preliminary studies in model aqueous solutions yielded LAB with high absorption potential for toxic and essential metal ions, which can be used for improving food safety and quality. This paper provides an overview of results obtained by LAB application in toxic metal ions removing from drinking water, food and human body, as well as production of functional foods and nutraceutics. The biosorption abilities of LAB towards metal ions are emphasized. The binding mechanisms, as well as the parameters influencing the passive and active uptake are analyzed.

  11. Development of combinatorial bacteria for metal and radionuclide bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    A. C. Matin, Ph. D.

    2006-06-15

    The grant concerned chromate [Cr(VI)] bioremediation and it was our aim from the outset to construct individual bacterial strains capable of improved bioremediation of multiple pollutants and to identify the enzymes suited to this end. Bacteria with superior capacity to remediate multiple pollutants can be an asset for the cleanup of DOE sites as they contain mixed waste. I describe below the progress made during the period of the current grant, providing appropriate context.

  12. Heavy Metal Resistance Strategies of Acidophilic Bacteria and Their Acquisition: Importance for Biomining and Bioremediation

    Directory of Open Access Journals (Sweden)

    Claudio A Navarro

    2013-01-01

    Full Text Available Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI, which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each

  13. Mossbauer and magnetic study of solid phases formed by dissimilatory iron-reducing bacteria

    Czech Academy of Sciences Publication Activity Database

    Chistyakova, N.I.; Rusakov, V.S.; Shapkin, A.A.; Pigalev, P.A.; Kazakov, A.P.; Zhilina, T.N.; Zavarzina, D.G.; Lančok, Adriana; Kohout, J.; Greneche, J. M.

    2012-01-01

    Roč. 190, JUNE (2012), s. 721-724 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z40320502 Keywords : Mossbauer spectroscopy * dissimilatory iron-reducing bacteria * iron oxides * biomagnetism Subject RIV: CA - Inorganic Chemistry

  14. Use of lactic acid bacteria and yeasts to reduce exposure to chemical food contaminants and toxicity.

    Science.gov (United States)

    Chiocchetti, Gabriela Matuoka; Jadán-Piedra, Carlos; Monedero, Vicente; Zúñiga, Manuel; Vélez, Dinoraz; Devesa, Vicenta

    2018-01-16

    Chemical contaminants that are present in food pose a health problem and their levels are controlled by national and international food safety organizations. Despite increasing regulation, foods that exceed legal limits reach the market. In Europe, the number of notifications of chemical contamination due to pesticide residues, mycotoxins and metals is particularly high. Moreover, in many parts of the world, drinking water contains high levels of chemical contaminants owing to geogenic or anthropogenic causes. Elimination of chemical contaminants from water and especially from food is quite complex. Drastic treatments are usually required, which can modify the food matrix or involve changes in the forms of cultivation and production of the food products. These modifications often make these treatments unfeasible. In recent years, efforts have been made to develop strategies based on the use of components of natural origin to reduce the quantity of contaminants in foods and drinking water, and to reduce the quantity that reaches the bloodstream after ingestion, and thus, their toxicity. This review provides a summary of the existing literature on strategies based on the use of lactic acid bacteria or yeasts belonging to the genus Saccharomyces that are employed in food industry or for dietary purposes.

  15. Optimization study for Pb(II) and COD sequestration by consortium of sulphate-reducing bacteria

    Science.gov (United States)

    Verma, Anamika; Bishnoi, Narsi R.; Gupta, Asha

    2017-09-01

    In this study, initial minimum inhibitory concentration (MIC) of Pb(II) ions was analysed to check optimum concentration of Pb(II) ions at which the growth of sulphate-reducing consortium (SRC) was found to be maximum. 80 ppm of Pb(II) ions was investigated as minimum inhibitory concentration for SRC. Influence of electron donors such as lactose, sucrose, glucose and sodium lactate was examined to investigate best carbon source for growth and activity of sulphate-reducing bacteria. Sodium lactate was found to be the prime carbon source for SRC. Later optimization of various parameters was executed using Box-Behnken design model of response surface methodology to explore the effectiveness of three independent operating variables, namely, pH (5.0-9.0), temperature (32-42 °C) and time (5.0-9.0 days), on dependent variables, i.e. protein content, precipitation of Pb(II) ions, and removal of COD by SRC biomass. Maximum removal of COD and Pb(II) was observed to be 91 and 98 %, respectively, at pH 7.0 and temperature 37 °C and incubation time 7 days. According to response surface analysis and analysis of variance, the experimental data were perfectly fitted to the quadratic model, and the interactive influence of pH, temperature and time on Pb(II) and COD removal was highly significant. A high regression coefficient between the variables and response ( r 2 = 0.9974) corroborate eminent evaluation of experimental data by second-order polynomial regression model. SEM and Fourier transform infrared analysis was performed to investigate morphology of PbS precipitates, sorption mechanism and involved functional groups in metal-free and metal-loaded biomass of SRC for Pb(II) binding.

  16. ENVIRONMENTALLY REDUCING OF COOLANTS IN METAL CUTTING

    Directory of Open Access Journals (Sweden)

    Veijo KAUPPINEN

    2012-11-01

    Full Text Available Strained environment is a global problem. In metal industries the use of coolant has become more problematic in terms of both employee health and environmental pollution. It is said that the use of coolant forms approximately 8 - 16 % of the total production costs.The traditional methods that use coolants are now obviously becoming obsolete. Hence, it is clear that using a dry cutting system has great implications for resource preservation and waste reduction. For this purpose, a new cooling system is designed for dry cutting. This paper presents the new eco-friendly cooling innovation and the benefits gained by using this method. The new cooling system relies on a unit for ionising ejected air. In order to compare the performance of using this system, cutting experiments were carried out. A series of tests were performed on a horizontal turning machine and on a horizontal machining centre.

  17. The occurrence of heavy metals and metal-resistant bacteria in water and bottom sediments of the Straszyn reservoir (Poland)

    Science.gov (United States)

    Kulbat, Eliza; Sokołowska, Aleksandra

    2017-11-01

    The aim of this study is to investigate the distribution of selected heavy metals and metal-resistant bacteria in water and bottom sediments of the surface drinking water reservoir for Gdańsk. The following sequence of metals in regard to metal concentration in sediments can be written down: Zn > Pb > Cu > Cd. The evaluation of metals accumulation was performed using the Müller index, to indicate the bottom sediment's contamination and geochemical classification of sediment quality according to Polish standards. The Müller geochemical index was changing in a wide range: water (raw and treated water) showed a resistance to 0.2 mM and 2 mM concentrations of zinc, copper and lead. The highest percentages of metal-resistant bacteria were recorded in the sediments of the reservoir (60%-88%). The share of metal-resistant strains in the raw water was significantly lower (34%-61%). The results indicate also that water treatment processes may contribute to the selection of resistant strains.

  18. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    Science.gov (United States)

    Morrell,; Jonathan S. , Ripley; Edward, B [Knoxville, TN

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  19. Copper (II) Removal In Anaerobic Continuous Column Reactor System By Using Sulfate Reducing Bacteria

    Science.gov (United States)

    Bilgin, A.; Jaffe, P. R.

    2017-12-01

    Copper is an essential element for the synthesis of the number of electrons carrying proteins and the enzymes. However, it has a high level of toxicity. In this study; it is aimed to treat copper heavy metal in anaerobic environment by using anaerobic continuous column reactor. Sulfate reducing bacteria culture was obtained in anaerobic medium using enrichment culture method. The column reactor experiments were carried out with bacterial culture obtained from soil by culture enrichment method. The system is operated with continuous feeding and as parallel. In the first rector, only sand was used as packing material. The first column reactor was only fed with the bacteria nutrient media. The same solution was passed through the second reactor, and copper solution removal was investigated by continuously feeding 15-600 mg/L of copper solution at the feeding inlet in the second reactor. When the experiment was carried out by adding the 10 mg/L of initial copper concentration, copper removal in the rate of 45-75% was obtained. In order to determine the use of carbon source during copper removal of mixed bacterial cultures in anaerobic conditions, total organic carbon TOC analysis was used to calculate the change in carbon content, and it was calculated to be between 28% and 75%. When the amount of sulphate is examined, it was observed that it changed between 28-46%. During the copper removal, the amounts of sulphate and carbon moles were equalized and more sulfate was added by changing the nutrient media in order to determine the consumption of sulphate or carbon. Accordingly, when the concentration of added sulphate is increased, it is calculated that between 35-57% of sulphate is spent. In this system, copper concentration of up to 15-600 mg / L were studied.

  20. Metal tube reducer is inexpensive and simple to operate

    Science.gov (United States)

    Mayfield, R. M.

    1967-01-01

    Low-cost metal tube reducer accepts tubing up to 1 inch outer diameter and can reduce this diameter to less than 1/2 inch with controlled wall thickness. This device can reduce all of the tube without waste. It produces extremely good surface finishes.

  1. Passage of selected heavy metals from Sphaerotilus (bacteria: Chlamydobacteriales) to Paramecium caudatum (protozoa: Ciliata)

    Energy Technology Data Exchange (ETDEWEB)

    Mansouri-Aliabadi, M.; Sharp, R.E.

    1985-01-01

    Sphaerotilus, a bacterium occurring in polluted waters, was found to take up Zn, Pb, Ni and Mn. Metal-containing cultures of this bacterium were employed to feed the protozoan Paramecium caudatum, and analytical results revealed the accumulation of Zn, Pb and Ni. Since Sphaerotilus wa the only food source for paramecia during this study, the results indicate that trace amounts of metal were passed from bacteria to protozoa in a predator-prey relationship.

  2. Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria

    International Nuclear Information System (INIS)

    Karwowska, Ewa; Andrzejewska-Morzuch, Dorota; Łebkowska, Maria; Tabernacka, Agnieszka; Wojtkowska, Małgorzata; Telepko, Alicja; Konarzewska, Agnieszka

    2014-01-01

    Highlights: • Bioleaching of metals from printed circuit boards by BSAC-producing bacteria was estimated. • Aeration increased the release of all metals in medium with sulphur and biosurfactant. • Increase in Cu, Pb, Ni and Cr removal rate was observed at 37 °C in acidic medium. -- Abstract: This study has evaluated the possibility of bioleaching zinc, copper, lead, nickel, cadmium and chromium from printed circuit boards by applying a culture of sulphur-oxidising bacteria and a mixed culture of biosurfactant-producing bacteria and sulphur-oxidising bacteria. It was revealed that zinc was removed effectively both in a traditional solution acidified by a way of microbial oxidation of sulphur and when using a microbial culture containing sulphur-oxidising and biosurfactant-producing bacteria. The average process efficiency was 48% for Zn dissolution. Cadmium removal was similar in both media, with a highest metal release of 93%. For nickel and copper, a better effect was obtained in the acidic medium, with a process effectiveness of 48.5% and 53%, respectively. Chromium was the only metal that was removed more effectively in the bioleaching medium containing both sulphur-oxidising and biosurfactant-producing bacteria. Lead was removed from the printed circuit boards with very low effectiveness (below 0.5%). Aerating the culture medium with compressed air increased the release of all metals in the medium with sulphur and biosurfactant, and of Ni, Cu, Zn and Cr in the acidic medium. Increasing the temperature of the medium (to 37 °C) had a more significant impact in the acidic environment than in the neutral environment

  3. Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation

    NARCIS (Netherlands)

    vandenEnde, FP; Meier, J; vanGemerden, H

    Stable co-cultures of the sulfate-reducing bacterium Desulfovibrio desulfuricans PA2805 and the colorless sulfur bacterium Thiobacillus thioparus T5 were obtained in continuous cultures supplied with limiting amounts of lactate and oxygen while sulfate was present in excess. Neither species could

  4. Understanding the performance of sulfate reducing bacteria based packed bed reactor by growth kinetics study and microbial profiling.

    Science.gov (United States)

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2016-07-15

    A novel marine waste extract (MWE) as alternative nitrogen source was explored for the growth of sulfate reducing bacteria (SRB). Variation of sulfate and nitrogen (MWE) showed that SRB growth follows an uncompetitive inhibition model. The maximum specific growth rates (μmax) of 0.085 and 0.124 h(-1) and inhibition constants (Ki) of 56 and 4.6 g/L were observed under optimized sulfate and MWE concentrations, respectively. The kinetic data shows that MWE improves the microbial growth by 27%. The packed bed bioreactor (PBR) under optimized sulfate and MWE regime showed sulfate removal efficiency of 62-66% and metals removal efficiency of 66-75% on using mine wastewater. The microbial community analysis using DGGE showed dominance of SRB (87-89%). The study indicated the optimum dosing of sulfate and cheap organic nitrogen to promote the growth of SRB over other bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Two-phase alkali-metal experiments in reduced gravity

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity

  6. In-Situ Survival Mechanisms of U and Tc Reducing Bacteria in Contaminated Sediments. Final Report

    International Nuclear Information System (INIS)

    Lee Krumholz Jimmy Ballard

    2005-01-01

    The proposed effort will identify genes and ultimately physiological mechanisms and pathways that are expressed under in situ conditions and are critical to functioning of aquifer dwelling anaerobic bacteria living in contaminated systems. The main objectives are: (1) Determine which Metal-reducer specific genes are important for activities in normal and contaminated subsurface sediment. To achieve these goals, we have generated a library of chromosomal mutants. These are introduced into contaminated sediments, incubated, allowed to grow, and then reisolated. A negative selection process allows us to determine which mutants have been selected against in sediments and thereby identify genes required for survival in subsurface sediments. (2) Delineate the function of these genes through GeneBank and Clusters of Orthologous Groups (COGs) comparisons and analyze other sediment microorganisms to determine if similar genes are present in these populations. After determining the sequence of the genes identified through the previous objectives, we delineate the role of those specific genes in the physiology of G20, MR-1 and perhaps other microorganisms. (3) Determine the loss in function of a select group of mutants. Cells with mutations in known genes with testable functions are assayed for the loss of that function if specific assays are available. Mutants with unknown loss of function and other mutants are run through a series of tests including motility, attachment, and rate of sulfate or iron reduction. These tests allow us to categorize mutants for subsequent more detailed study

  7. The occurrence of heavy metals and metal-resistant bacteria in water and bottom sediments of the Straszyn reservoir (Poland

    Directory of Open Access Journals (Sweden)

    Kulbat Eliza

    2017-01-01

    Full Text Available The aim of this study is to investigate the distribution of selected heavy metals and metal–resistant bacteria in water and bottom sediments of the surface drinking water reservoir for Gdańsk. The following sequence of metals in regard to metal concentration in sediments can be written down: Zn > Pb > Cu > Cd. The evaluation of metals accumulation was performed using the Müller index, to indicate the bottom sediment's contamination and geochemical classification of sediment quality according to Polish standards. The Müller geochemical index was changing in a wide range: < 1–4.1. Although the maximum value of Müller's geochemical index determined for copper indicates that the sediment is ‘strongly contaminated’, in general the analysed bottom sediments were classified as the I and II category according to Polish geochemical standards. From the microbiological side a significant part of heterotrophic bacteria isolated from the bottom sediment and surface water (raw and treated water showed a resistance to 0.2 mM and 2 mM concentrations of zinc, copper and lead. The highest percentages of metal–resistant bacteria were recorded in the sediments of the reservoir (60%–88%. The share of metal–resistant strains in the raw water was significantly lower (34%–61%. The results indicate also that water treatment processes may contribute to the selection of resistant strains.

  8. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiaoyan; Mou, Renxiang; Cao, Zhaoyun; Xu, Ping; Wu, Xiaoliang; Zhu, Zhiwei; Chen, Mingxue, E-mail: cmingxue@126.com

    2016-11-01

    Cadmium (Cd) pollution is a serious widespread environmental problem that not only destroys the microbial ecology of soil and decreases crop production, but also poses a serious risk to human health. Many methods have been used for the remediation of Cd pollution but none of these is totally satisfactory. Microbial remediation strategies have attracted increasing interest since they are environmentally friendly and cost-effective. In the present study, three Cd-resistant bacteria were isolated and evaluated for potential application in Cd bioremediation. Based on their morphological, physiological and biochemical characteristics, together with 16S rDNA gene sequence analyses, bacteria were identified as Stenotrophomonas acidaminiphila (2#), Pseudomonas aeruginosa (9#) and Delftia tsuruhatensis (12#). Pseudomonas aeruginosa showed very high tolerance to metals, especially Cd (2200 mg/L), Zn (1800 mg/L) and Pb (1200 mg/L), and is thought to be a multi-metal-resistant bacterium. Pseudomonas aeruginosa was also sensitive to 13 different antibiotics. The effects of the bacterial strains on the growth of rice plants and their ability to reduce Cd accumulation from Cd-contaminated soils in pot experiments were also evaluated. For Oryza sativa L. A grown in contaminated soil (3 mg/kg Cd), the accumulation of Cd was decreased by 31.2 and 25.5% in brown rice and polished rice, respectively, by strain 9#; Pseudomonas aeruginosa was more effective in reducing Cd accumulation in rice grains than a mixture of strains. For Oryza sativa L. B, a mixture of strains acting synergistically was more effective than a single strain in reducing Cd accumulation; treatment with mixed strains (strains + 3 mg/kg Cd) resulted in 41.3, 35.9, and 32.6% reductions in Cd accumulation in unhulled rice, brown rice and polished rice, respectively. Although different results were obtained for two rice varieties, it can still be concluded that Cd-resistant bacteria are suitable for reducing Cd

  9. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains

    International Nuclear Information System (INIS)

    Lin, Xiaoyan; Mou, Renxiang; Cao, Zhaoyun; Xu, Ping; Wu, Xiaoliang; Zhu, Zhiwei; Chen, Mingxue

    2016-01-01

    Cadmium (Cd) pollution is a serious widespread environmental problem that not only destroys the microbial ecology of soil and decreases crop production, but also poses a serious risk to human health. Many methods have been used for the remediation of Cd pollution but none of these is totally satisfactory. Microbial remediation strategies have attracted increasing interest since they are environmentally friendly and cost-effective. In the present study, three Cd-resistant bacteria were isolated and evaluated for potential application in Cd bioremediation. Based on their morphological, physiological and biochemical characteristics, together with 16S rDNA gene sequence analyses, bacteria were identified as Stenotrophomonas acidaminiphila (2#), Pseudomonas aeruginosa (9#) and Delftia tsuruhatensis (12#). Pseudomonas aeruginosa showed very high tolerance to metals, especially Cd (2200 mg/L), Zn (1800 mg/L) and Pb (1200 mg/L), and is thought to be a multi-metal-resistant bacterium. Pseudomonas aeruginosa was also sensitive to 13 different antibiotics. The effects of the bacterial strains on the growth of rice plants and their ability to reduce Cd accumulation from Cd-contaminated soils in pot experiments were also evaluated. For Oryza sativa L. A grown in contaminated soil (3 mg/kg Cd), the accumulation of Cd was decreased by 31.2 and 25.5% in brown rice and polished rice, respectively, by strain 9#; Pseudomonas aeruginosa was more effective in reducing Cd accumulation in rice grains than a mixture of strains. For Oryza sativa L. B, a mixture of strains acting synergistically was more effective than a single strain in reducing Cd accumulation; treatment with mixed strains (strains + 3 mg/kg Cd) resulted in 41.3, 35.9, and 32.6% reductions in Cd accumulation in unhulled rice, brown rice and polished rice, respectively. Although different results were obtained for two rice varieties, it can still be concluded that Cd-resistant bacteria are suitable for reducing Cd

  10. Experimental investigation of activities and tolerance of denitrifying bacteria under alkaline and reducing condition

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao

    2000-07-01

    In the geological disposal system of TRU wastes, nitrogen generation by denitrifying bacteria could provide significant impact on the assessment of this system, because nitrate contained in process concentrated liquid waste might be electron acceptor for denitrifying bacteria. In this study, the activities and tolerance of denitrifying under disposal condition were investigated. Pseudomonas denitrificans as denitrifying bacteria was used. The results showed that Pseudomonas denitrificans had activity under reducing condition, but under high pH condition (pH>9.5), the activity of Pseudomonas denitrificans was not detected. It is possible that the activity of Pseudomonas denitrificans would be low under disposal condition. (author)

  11. Dental plaque bacteria with reduced susceptibility to chlorhexidine are multidrug resistant

    OpenAIRE

    Saleem, Hafiz Ghulam Murtaza; Seers, Christine Ann; Sabri, Anjum Nasim; Reynolds, Eric Charles

    2016-01-01

    Background Chlorhexidine (CHX) is used in oral care products to help control dental plaque. In this study dental plaque bacteria were grown on media containing 2??g/ml chlorhexidine gluconate to screen for bacteria with reduced CHX susceptibility. The isolates were characterized by 16S rRNA gene sequencing and antibiotic resistance profiles were determined using the disc diffusion method. Results The isolates were variably resistant to multiple drugs including ampicillin, kanamycin, gentamici...

  12. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    NARCIS (Netherlands)

    Ozuolmez, D.; Na, H.; Lever, M.A.; Kjeldsen, K.U.; Jørgensen, B.B.; Plugge, C.M.

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and

  13. Sponge-associated marine bacteria as indicators of heavy metal pollution.

    Science.gov (United States)

    Selvin, Joseph; Shanmugha Priya, S; Seghal Kiran, G; Thangavelu, T; Sapna Bai, N

    2009-01-01

    Sponges invariably filter a large volume of seawater and potentially accumulate heavy metals and other contaminants from the environment. Sponges, being sessile marine invertebrates and modular in body organization, can live many years in the same location and therefore have the capability to accumulate anthropogenic pollutants such as metals over a long period. Almost all marine sponges harbor large number of microorganisms within their tissues where they reside in the extra- and intra-cellular spaces. Bacteria in seawater have already been established as biological indicators of contamination. The present study was intended to find out the heavy metal resistance pattern of sponge-associated bacteria so as to develop suitable biological indicators. The bacteria associated with a marine sponge Fasciospongia cavernosa were evaluated as potential indicator organisms. The associated bacteria including Streptomyces sp. (MSI01), Salinobacter sp. (MSI06), Roseobacter sp. (MSI09), Pseudomonas sp. (MSI016), Vibrio sp. (MSI23), Micromonospora sp. (MSI28), Saccharomonospora sp. (MSI36) and Alteromonas sp. (MSI42) showed resistance against tested heavy metals. Based on the present findings, Cd and Hg emerged as the highly resistant heavy metal pollutants in the Gulf of Mannar biosphere reserve. Plasmids in varied numbers and molecular weights were found in all the isolates. Particularly the isolates MSI01 and MSI36 harbored as many as three plasmids each. The results envisaged that the plasmids might have carried the resistance factor. No correlation was observed in number of plasmids and level of resistance. The literature evidenced that the sponge-associated bacteria were seldom exploited for pollution monitoring though they have been extensively used for bioprospecting. In this background, the present findings come up with a new insight into the development of indicator models.

  14. REGULARITIES OF QUANTITATIVE DISTRIBUTION FOR FE(III-REDUCING BACTERIA IN NATURAL ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    Govorukha V. M.

    2015-08-01

    Full Text Available The aim of the work was quantitative determination of Fe(III-reducing bacteria in natural ecosystems of the Antarctic, the Arctic, the Dead and the Black Sea, middle latitude (Ukraine, Abkhazia and the equatorial zone (Ecuador. It was used the method of quantitative determination of microorganisms by McCready and the colorimetric method for determination of Fe(II compounds . Results. The systemic study of the number of Fe(III-reducing bacteria of both hemispheres in the ecosystems of six geographic regions was carried out for the first time. High number of Fe(III-reducing bacteria in natural ecosystems was experimentally shown. The number of Fe(III-reducing bacteria ranged from 1.1•102 to 2.8•107 cells/g of absolutely dry sample. Conclusions. The presented data showed that Fe(III-reducing bacteria are an integral part of natural ecosystems and can significantly affect the biogeochemical cycles of iron and carbon compounds transformation.

  15. Commercial herbal slimming products: concern for the presence of heavy metals and bacteria.

    Science.gov (United States)

    Zin, Noraziah Mohamad; Chit, Yong Mei; Abu Bakar, Nur Faizah

    2014-02-01

    The increment of rate in obesity, the phenomenon of fat phobia as well as the increased use of herbal medicine had lead to the emergence of herbal slimming products. However, numerous bacteria and heavy metal contaminations are often found in herbal products due to irregular handling practices. Ten different brands of products (labeled as A-J) were investigated. Seven heavy metals content such as As, Cd, Pb, Co, Cr, Cu and Zn were analyzed using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and bacterial presence was determined by counting the total aerobic count. The identification of isolates was carried out by macroscopic and microscopic observation, biochemical tests and confirmation using commercial kits of Microgen GN-ID A+B and API 20 E. The heavy metal contents in the samples were below the limit of the standard limitation by WHO and Health Canada. However, sample A contained the highest total daily intake of heavy metals. Total aerobic count was highest in sample H followed by G, A, B, C, F, D, E, I and J in which G and H exceeded the standard total aerobic count (10(5) CFU g(-1)) as given by WHO. A total of nine isolates of Bacillus spp. and ten gram-negative bacteria were isolated in which Bacillus cereus and Pseudomonas aeruginosa were found in samples C and F, respectively. Considering the fact that the herbal sliming products contained low concentration of heavy metals and bacteria count, it should be consumed with caution.

  16. Heavy metal and antibiotic resistance in bacteria isolated from the environment of swine farms

    International Nuclear Information System (INIS)

    Fan, Y.; Ping, C.; Mei, L.S.

    2014-01-01

    The aim of the present study was to determine the level of heavy metal resistance and antibiotic resistance patterns of bacterial isolates from environment of swine farms in China. A total of 284 bacteria were isolated, 158 from manure, 62 from soil and 64 from wastewater in different swine farm samples. All the isolates were tested for resistant against eight heavy metals. From the total of 284 isolates, maximum bacterial isolates were found to be resistant to Zn/sup 2+/ (98.6%) followed by Cu/sup 2+/ (97.5%), Cd/sup 2+/ (68.3%), Mn/sup 2+/ (60.2%), Pb/sup 2+/(51.4%), Ni/sup 2+/(41.5%) and Cr/sup 2+/(45.1%). However, most of the isolates were sensitive to Co/sup 2+/. Meanwhile,all the isolates were tested for sensitively to nine antibiotics. The results shows that most isolates were sensitive to cefoxitin and oxacillin, but resistance to tetracycline, ampicillin, gentamicin, amikacin, erythromycin, clindamycin were widespread. Multiple resistant to metals and antibiotics were also observed in this study. Most isolates were tolerant to different concentrations of various heavy metals and antibiotics. Our results confirmed that environment of swine farms in China has a significant proportion of heavy metal and antibiotic resistant bacteria, and these bacteria constitute a potential risk for swine health and public health. (author)

  17. Sulfate-reducing bacteria colonize pouches formed for ulcerative colitis but not for familial adenomatous polyposis.

    LENUS (Irish Health Repository)

    Duffy, M

    2012-02-03

    PURPOSE: Ileal pouch-anal anastomosis remains the "gold standard" in surgical treatment of ulcerative colitis and familial adenomatous polyposis. Pouchitis occurs mainly in patients with a background of ulcerative colitis, although the reasons for this are unknown. The aim of this study was to characterize differences in pouch bacterial populations between ulcerative colitis and familial adenomatous pouches. METHODS: After ethical approval was obtained, fresh stool samples were collected from patients with ulcerative colitis pouches (n = 10), familial adenomatous polyposis (n = 7) pouches, and ulcerative colitis ileostomies (n = 8). Quantitative measurements of aerobic and anaerobic bacteria were performed. RESULTS: Sulfate-reducing bacteria were isolated from 80 percent (n = 8) of ulcerative colitis pouches. Sulfate-reducing bacteria were absent from familial adenomatous polyposis pouches and also from ulcerative colitis ileostomy effluent. Pouch Lactobacilli, Bifidobacterium, Bacteroides sp, and Clostridium perfringens counts were increased relative to ileostomy counts in patients with ulcerative colitis. Total pouch enterococci and coliform counts were also increased relative to ileostomy levels. There were no significant quantitative or qualitative differences between pouch types when these bacteria were evaluated. CONCLUSIONS: Sulfate-reducing bacteria are exclusive to patients with a background of ulcerative colitis. Not all ulcerative colitis pouches harbor sulfate-reducing bacteria because two ulcerative colitis pouches in this study were free of the latter. They are not present in familial adenomatous polyposis pouches or in ileostomy effluent collected from patients with ulcerative colitis. Total bacterial counts increase in ulcerative colitis pouches after stoma closure. Levels of Lactobacilli, Bifidobacterium, Bacteroides sp, Clostridium perfringens, enterococci, and coliforms were similar in both pouch groups. Because sulfate-reducing bacteria are

  18. Psychrotrophic metal tolerant bacteria for mobilisation of metals in Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, M.J.B.D.

    isolates had multiple metal resistance. This intrinsic resistance encountered in isolates from these pristine environments could be useful for orchestrating metal mobilisation like iron in these waters to promote in situ production for climate modulation...

  19. Assessment and characterization of heavy metal resistance in Palk Bay sediment bacteria.

    Science.gov (United States)

    Nithya, Chari; Gnanalakshmi, Balasubramanian; Pandian, Shunmugiah Karutha

    2011-05-01

    The present study aimed at characterizing the heavy metal resistance and assessing the resistance pattern to multiple heavy metals (300 mmol L⁻¹) by Palk Bay sediment bacteria. From 46 isolates, 24 isolates showed resistance to more than eight heavy metals. Among the 24 isolates S8-06 (Bacillus arsenicus), S8-10 (Bacillus pumilus), S8-14 (B. arsenicus), S6-01 (Bacillus indicus), S6-04 (Bacillus clausii), SS-06 (Planococcus maritimus) and SS-08 (Staphylococcus pasteuri) exhibited high resistance against arsenic, mercury, cobalt, cadmium, lead and selenium. Plasmid curing confirmed that the heavy metal resistance in S8-10 is chromosomal borne. Upon treatment with the heavy metals, the strain S8-10 showed many morphological and physiological changes as shown by SEM, FTIR and AAS analysis. S8-10 removed 47% of cadmium and 96% of lead from the growth medium. The study suggests that sediment bacteria can be biological indicators of heavy metal contamination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil.

    Science.gov (United States)

    Zhang, Juan; Wang, Li-Hong; Yang, Jun-Cheng; Liu, Hui; Dai, Jiu-Lan

    2015-03-01

    The toxicities and effects of various metals and metalloids would be misunderstood by health risks based on their concentrations, when their effects on bacterial and ecological functions in soil are disregarded. This study investigated the concentrations and health risks of heavy metals, soil properties, and bacterial 16S rRNA gene in soil around the largest fresh water lake in North China. The health risks posed by Mn and As were higher than those of other heavy metals and metalloids. Mn, As, and C were significantly correlated with the bacterial species richness indices. According to canonical correspondence analysis, species richness was mainly affected by Mn, Pb, As, and organic matter, while species evenness was mainly affected by Mn, pH, N, C, Cd, and Pb. Covariable analysis confirmed that most effects of metals on bacterial diversity were attributed to the combined effects of metals and soil properties rather than single metals. Most bacteria detected in (almost) all soil were identified as Gammaproteobacteria. Specific bacteria belonging to Proteobacteria (Gamma, Alpha, Epsilon, and Beta), Firmicutes, Actinobacteria, Cyanobacterium, Nitrospirae, and Fusobacterium were only identified in soil with high concentrations of Mn, Pb, and As, indicating their remediation potency. Bacterial abilities and mechanisms in pollutant resistance and element cycling in the region were also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Heavy metal tolerance (Cr, Ag and Hg in bacteria isolated from sewage

    Directory of Open Access Journals (Sweden)

    Agostinho A. de Lima e Silva

    2012-12-01

    Full Text Available Samples of sewage from a university hospital and a chemistry technical school were analysed for the percentage of bacterial tolerance to chromium (Cr, silver (Ag and mercury (Hg. Additionally, we investigated the effect of these metals on pigmentation and on some enzymatic activities of the metal tolerant strains isolated, as well as antimicrobial resistance in some metal tolerant Enterobacteriaceae strains. Tolerance to Cr was observed mainly in Gram positive bacteria while in the case of Ag and Hg the tolerant bacteria were predominately Gram negative. Hg was the metal for which the percentage of tolerance was significantly higher, especially in samples from the hospital sewage (4.1%. Mercury also had the most discernible effect on color of the colonies. Considering the effect of metals on the respiratory enzymes, one strain of Ag-tolerantBacillus sp. and one of Hg-tolerant P. aeruginosa were unable to produce oxidase in the presence of Ag and Hg, respectively, while the expression of gelatinase was largely inhibited in various Gram negative strains (66% by Cr. Drug resistance in Hg-tolerant Enterobacteriaceae strains isolated from the university hospital sewage was greater than 80%, with prevalence of multiple resistance, while the Ag-tolerant strains from the same source showed about 34% of resistance, with the predominance of mono-resistance. Our results showed that, despite the ability of metal tolerant strains to survive and grow in the presence of these elements, the interactions with these metals may result in metabolic or phisiological changes in this group of bacteria.

  2. Hormesis response of marine and freshwater luminescent bacteria to metal exposure

    Directory of Open Access Journals (Sweden)

    KAILI SHEN

    2009-01-01

    Full Text Available The stimulatory effect of low concentrations of toxic chemicals on organismal metabolism, referred to as hormesis, has been found to be common in the widely used luminescence bioassay. This paper aims to study the hormesis phenomenon in both marine and freshwater luminescent bacteria, named Photobacterium phosphorem and Vibrio qinghaiensis. The effects of Cu (II, Zn (II, Cd (II and Cr (VI on luminescence of these two bacteria were studied for 0 to 75 minutes exposure by establishing dose- and time-response curves. A clear hormesis phenomenon was observed in all four testing metals at low concentrations under the condition of luminescence assays.

  3. Study on the utilisation of some bacteria types in metal recovery. 1. Theoretical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Pascu, T.; Magnin, J.P. [University of Polytechnic Bucharest, Bucharest (Romania). Faculty of Chemical Industry

    2001-11-01

    The paper presents data from literature regarding the recovery of metals by biolixiviation method from mine leakage and waste effluents. A brief description of the fundamental aspects of 'direct' lixiviation, 'indirect' lixiviation and galvanic conversion using iron- and sulphur-oxidative bacteria is given. The most studied bacterium is Thiobacillus ferrooxidans, that can be sometimes used with Leptospirillum ferrooxidans. The paper also discusses the lixiviation attack of other bacteria like Sulfobacillus and Sulfolobus. The most important features of some ecological systems consisting in microbial population in equilibrium with ore or coal deposits are presented.

  4. Mixed planting with a leguminous plant outperforms bacteria in promoting growth of a metal remediating plant through histidine synthesis.

    Science.gov (United States)

    Adediran, Gbotemi A; Ngwenya, Bryne T; Mosselmans, J Frederick W; Heal, Kate V; Harvie, Barbra A

    2016-01-01

    The effectiveness of plant growth promoting bacteria (PGPB) in improving metal phytoremediation is still limited by stunted plant growth under high soil metal concentrations. Meanwhile, mixed planting with leguminous plants is known to improve yield in nutrient deficient soils but the use of a metal tolerant legume to enhance metal tolerance of a phytoremediator has not been explored. We compared the use of Pseudomonas brassicacearum, Rhizobium leguminosarum, and the metal tolerant leguminous plant Vicia sativa to promote the growth of Brassica juncea in soil contaminated with 400 mg Zn kg(-1), and used synchrotron based microfocus X-ray absorption spectroscopy to probe Zn speciation in plant roots. B. juncea grew better when planted with V. sativa than when inoculated with PGPB. By combining PGPB with mixed planting, B. juncea recovered full growth while also achieving soil remediation efficiency of >75%, the maximum ever demonstrated for B. juncea. μXANES analysis of V. sativa suggested possible root exudation of the Zn chelates histidine and cysteine were responsible for reducing Zn toxicity. We propose the exploration of a legume-assisted-phytoremediation system as a more effective alternative to PGPB for Zn bioremediation.

  5. Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritima improve plant growth but not metal uptake in polluted marshes soils

    Directory of Open Access Journals (Sweden)

    Jenifer eMesa

    2015-12-01

    Full Text Available Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel and Piedras River (south west Spain, one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analysed. A high proportion of these bacteria were resistant towards one or several heavy metals and metalloids including As, Cu and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilisation and production of indole-3-acetic acid (IAA, siderophores and 1-aminocyclopropane-1-carboxylate (ACC deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18 and Salinicola peritrichatus SMJ30 were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favoured intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes.

  6. Approaches to reducing photon dose calculation errors near metal implants

    International Nuclear Information System (INIS)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F.; Liu, Xinming; Stingo, Francesco C.

    2016-01-01

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  7. Carbon-driven enrichment of the crucial nitrate-reducing bacteria in limed peat soil microcosms.

    Science.gov (United States)

    Zhu, Y; Zhang, X; Wu, X; Chen, G; Bakken, L R; Zhao, L; Frostegård, Å; Zhang, X

    2017-08-01

    Bacteria of Dechloromonas were recognized as potential functional important denitrifiers in a long-term shell sand-amended peat soil. Different microcosms in a solid matrix and slurry systems with the addition of carbon and nitrogen sources, for example, clover leaves, glutamate and nitrate, were established. The bacterial community structures were analysed by pyrosequencing of the 16S rRNA gene to select the conditions for enriching bacteria of Dechloromonas. The results showed that a relatively even bacterial community in the initial soil shifted to communities dominated by a few types of nitrate-reducing bacteria after the incubation, which strongly responded to the carbon substrates addition and consumption. The bacteria of several genera including Dechloromonas, Pseudomonas, Clostridium, Aeromonas and Ferribacterium were significantly enriched after a certain period of time. The bacteria of Dechloromonas became one of the most predominant bacteria in the incubated community. Especially when added the mixed carbon substrates into the solid soil matrix, as high as 34% of abundance was detected. This study proved that the functional important bacteria from the genus of Dechloromonas could be enriched to an extremely high abundance by using proper culture condition which will benefit to the isolation or direct metagenomics study for Dechloromonas. The study of key players in a microbial community is always of important. In this study, the functional important denitrifiers in a shell sand-amended peat soil were investigated. Using different carbon sources in the incubation, we found the bacteria from the genus of Dechloromonas were enriched to an abundance of higher than 34% with several other denitrifiers together. This work provides us helpful insights not only for knowing the diversity of denitrifiers in the studied peat soil, but also for understanding their response to the carbon sources and the culture conditions. © 2017 The Society for Applied Microbiology.

  8. Sponging up metals: bacteria associated with the marine sponge Spongia officinalis.

    Science.gov (United States)

    Bauvais, Cléa; Zirah, Séverine; Piette, Laurie; Chaspoul, Florence; Domart-Coulon, Isabelle; Chapon, Virginie; Gallice, Philippe; Rebuffat, Sylvie; Pérez, Thierry; Bourguet-Kondracki, Marie-Lise

    2015-03-01

    The present study explored the bacteria of the sponge Spongia officinalis in a metal-polluted environment, using PCR-DGGE fingerprinting, culture-dependent approaches and in situ hybridization. The sponge samples collected over three consecutive years in the Western Mediterranean Sea contained high concentrations of zinc, nickel, lead and copper determined by ICP-MS. DGGE signatures indicated a sponge specific bacterial association and suggested spatial and temporal variations. The bacterial culturable fraction associated with S. officinalis and tolerant to heavy metals was isolated using metal-enriched microbiological media. The obtained 63 aerobic strains were phylogenetically affiliated to the phyla Proteobacteria, Actinobacteria, and Firmicutes. All isolates showed high tolerances to the selected heavy metals. The predominant genus Pseudovibrio was localized via CARD-FISH in the sponge surface tissue and validated as a sponge-associated epibiont. This study is the first step in understanding the potential involvement of the associated bacteria in sponge's tolerance to heavy metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments

    NARCIS (Netherlands)

    Sanchez-Andrea, I.; Stams, A.J.M.; Amils, R.; Sanz, J.L.

    2013-01-01

    Although some acidophilic and alkaliphilic species have been described recently, most of the known sulfate-reducing bacteria (SRB) grow optimally at neutral pH. In this study, sulfate reduction was studied with sediment samples from the extremely acidic Tinto River basin. Stable enrichments of SRB

  10. Effect of water hyacinth on distribution of sulphate-reducing bacteria ...

    African Journals Online (AJOL)

    The effect of the water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub, on the distribution of populations of sulphate-reducing bacteria (SRB) in sediments from various stations on the shores of Lake Victoria around Mwanza Municipality, Tanzania, was studied. Lactate-utilising SRB were observed to be the dominant ...

  11. Diversity, activity, and abundance of sulfate-reducing bacteria in saline nad hypersaline soda lakes

    NARCIS (Netherlands)

    Foti, M.; Sorokin, D.Y.; Lomans, B.P.; Mussman, M.; Zacharova, E.E.; Pimenov, N.V.; Kuenen, J.G.; Muyzer, G.

    2007-01-01

    Soda lakes are naturally occurring highly alkaline and saline environments. Although the sulfur cycle is one of the most active element cycles in these lakes, little is known about the sulfate-reducing bacteria (SRB). In this study we investigated the diversity, activity, and abundance of SRB in

  12. One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    NARCIS (Netherlands)

    Visser, M.

    2015-01-01

    ABSTRACT

    One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    Life on earth is sustained by the constant cycling of six essential elements: oxygen, hydrogen, nitrogen, sulfur, phosphorous,

  13. One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    NARCIS (Netherlands)

    Visser, M.

    2015-01-01

    ABSTRACT

    One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    Life on earth is sustained by the constant cycling of six essential elements: oxygen, hydrogen, nitrogen,

  14. Sulfate-reducing bacteria inhabiting natural corrosion depostis from marine steel structures

    NARCIS (Netherlands)

    Païssé, S.; Ghiglione, J.-F.; Marty, F.; Abbas, B.; Gueuné, H.; Sanchez Amaya, J.; Muyzer, G.; Quillet, L.

    2013-01-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically

  15. An intimate link: two-component signal transduction systems and metal transport systems in bacteria

    OpenAIRE

    Singh, Kamna; Senadheera, Dilani B; Cvitkovitch, Dennis G

    2014-01-01

    Bacteria have evolved various strategies to contend with high concentrations of environmental heavy metal ions for rapid, adaptive responses to maintain cell viability. Evidence gathered in the past two decades suggests that bacterial two-component signal transduction systems (TCSTSs) are intimately involved in monitoring cation accumulation, and can regulate the expression of related metabolic and virulence genes to elicit adaptive responses to changes in the concentration of these ions. Usi...

  16. 16S RRNA Gene Analysis of Chlorate Reducing Thermophilic Bacteria From Local Hot Spring

    OpenAIRE

    Aminin, Agustina L. N; Katulistiwasari, Puri; Mulyani, Nies Suci

    2011-01-01

    Chlorates waste remediation by biological processes has been the object of current research. Strain CR, the chlorate reducing bacteria was isolated from Gedongsongo hot spring using minimal medium broth containing chlorates and acetate at 55oC. The determination of chlorate reduction from medium was carried out using turbidimetric method. CR isolate showed reducing ability 18% after four days of incubation. The phenotypic character of CR isolate including rod-shaped cells, gram-positive bacte...

  17. Diversity of heavy metal resistant bacteria from Kalimas Surabaya: A phylogenetic taxonomy approach

    Science.gov (United States)

    Zulaika, Enny; Utomo, Andry Prio; Prima, Adisya; Alami, Nur Hidayatul; Kuswytasari, Nengah Dwianita; Shovitri, Maya; Sembiring, Langkah

    2017-06-01

    Bacterial resistance to heavy metal is a genetic and physiological adaptation to the environment which contaminated by heavy metal. Kalimas is an important river in Surabaya that is contaminated by some heavy metals and probably as a habitat for heavy metal resistance bacteria. Bacterial resistance to heavy metals are different for each species, and their diversity can be studied by phylogenetic taxonomy approach. Isolates screening was done using nutrient agar which contained 1 mg/L HgCl2, CdCl2 and K2Cr2O7. Bacterial viability were observed by nutrient broth which contained 10 mg/L HgCl2, 30 mg/L CdCl2 and 50 mg/L K2Cr2O7. Isolates that resistant to heavy metal and viable after exposure to heavy metal were identified using 16S rRNA gene marker by Polymerase Chain Reaction (PCR). Phylogenetic tree reconstruction was done by the neighbor-joining algorithm. Genetic assignment showed isolates that resist and viable after exposure of Hg, Cd and Cr are Bacillus S1, SS19 and DA11. Based on BLAST analysis from NCBI gene bank, 16S rRNA sequences, those isolates were similar with the member of Bacillus cereus. Depend on 16S rRNA nucleotide alignment by the neighbor-joining algorithm, Bacillus S1, SS19 and DA11 were belong to Bacillus cereus sensu-lato group.

  18. Reduced work function of graphene by metal adatoms

    Energy Technology Data Exchange (ETDEWEB)

    Legesse, Merid; Mellouhi, Fedwa El; Bentria, El Tayeb; Madjet, Mohamed E. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); Fisher, Timothy S. [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States); Kais, Sabre [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); Department of Chemistry and Physics, Purdue University, West Lafayette, IN 46323 (United States); College of Science and Engineering, Hamad Bin Khalifa University, Doha (Qatar); Alharbi, Fahhad H., E-mail: falharbi@qf.org.qa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); College of Science and Engineering, Hamad Bin Khalifa University, Doha (Qatar)

    2017-02-01

    Highlights: • Using DFT, the maximum reduction of graphene workfunction is investigated. This is important for many applications. • The calculations show that the adatoms prefer to relax at hollow sites. • The transfer of electrons from the adatoms to graphene shifts up the Fermi level. So, graphene becomes metallic. • For those dopants that have been used experimentally, the calculations agree with the experimental data. • We found that 8% doping by Cs reduces the work function to 2.05 eV. - Abstract: In this paper, the work function of graphene doped by different metal adatoms and at different concentrations is investigated. Density functional theory is used to maximize the reduction of the work function. In general, the work function drops significantly before reaching saturation. For example in the case of Cs doping, the work function saturates at 2.05 eV with a modest 8% doping. The adsorption of different concentrations on metal adatoms on graphene is also studied. Our calculations show that the adatoms prefer to relax at hollow sites. The transfer of electron from metallic dopants to the graphene for all the studied systems shifts the Fermi energy levels above the Dirac-point and the doped graphenes become metallic. The value of Fermi energy shifts depends on the type of metallic dopants and its concentrations. A detail analysis of the electronic structure in terms of band structure and density of states, absorption energy, and charge transfer for each adatom-graphene system is presented.

  19. In vitro growth inhibition of mastitis causing bacteria by phenolics and metal chelators

    Energy Technology Data Exchange (ETDEWEB)

    Chew, B.P.; Tjoelker, L.W.; Tanaka, T.S.

    1985-11-01

    Antimicrobial activities of three phenolic compounds and four metal chelators were tested at 0, 250, 500, and 1000 ppm in vitro against four major mastitis-causing bacteria, Streptococcus agalactiae, Staphylococcus aureus, Klebsiella pnuemoniae, and Escherichia coli. Overall, butylated hydroxyanisole and tert-butylhydroquinone showed the greatest antimicrobial activity. These phenolics were bactericidal at 250 to 500 ppm against all four bacteria tested. The butylated hydroxytoluene was bactericidal against the gram-positive bacteria but was ineffective against the coliforms. At 250 ppm, disodium ethylenediaminetetraacetic acid was bactericidal against the gram-positive bacteria but much less effective against the gram-negatives. However, diethylene-triaminepentaacetic acid was more growth inhibitory than ethylenediaminetetraacetic acid against the gram-negative bacteria and especially against Escherichia coli. All other compounds were generally much less effective or ineffective against all four microorganisms. Therefore, butylated hydroxyanisole, butylated hydroxytoluene, tert-butylhydroquinone, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid may have practical implications in the prevention or treatment of bovine mastitis.

  20. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions

    International Nuclear Information System (INIS)

    Dou Junfeng; Liu Xiang; Ding Aizhong

    2009-01-01

    Mixed bacteria were enriched from soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs). The anaerobic degradation characteristics by the enriched bacteria with different initial naphthalene concentrations were investigated under nitrate reducing conditions. The results showed that the mixed bacteria could degrade nearly all the naphthalene over the incubations of 25 days when the initial naphthalene concentration was below 30 mg/L. The degradation rates of naphthalene increased with increasing initial concentrations. A high naphthalene concentration of 30 mg/L did not inhibit neither on the bacterial growth nor on the naphthalene degradation ability. The accumulation of nitrite was occurred during the reduction of nitrate, and a nitrite concentration of 50 mg/L had no inhibition effect on the degradation of naphthalene. The calculation of electron balances revealed that most of the naphthalene was oxidized whereas a small proportion was used for cell synthesis.

  1. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  2. Metal adsorption capabilities of clinoptilolite and selected strains of bacteria from mine water

    Science.gov (United States)

    Mamba, B. B.; Dlamini, N. P.; Nyembe, D. W.; Mulaba-Bafubiandi, A. F.

    Small-scale mining has socio-economic advantages such as the reduction of unemployment and the general improvement of the economy. However, these operations if not properly managed or controlled have a potential to cause environmental damage, particularly with respect to the contamination of groundwater and water supplies that are not distant from where these mining activities take place. This paper focuses on metal removal from water contaminated by heavy metals emanating from small-scale mining operations using clinoptilolite and bacteria. Removal of As, Ni, Mn, Au, Co, Cu and Fe was carried out on mine water samples using original and HCl-activated (in 0.02 M and 0.04 M) natural clinoptilolite and bacterial strains (a mixed consortia of Bacillus strains ( Bacillus subtilis, Bacillus cereus, Bacillus firmus, Bacillus fusiformis, Bacillus macroides and Bacillus licheniformis), Pseudomonas spp., Shewanella spp. and a mixed consortia of Acidithiobcillus caldus, Leptospirillum spp., Ferroplasma spp. and Sulphobacillus spp.). The purpose of the study was to compare the removal efficiencies of the bacterial strains versus natural clinoptilolite adsorbents for metal cations. The Bacillus consortia removed most of the metals up to 98% metal removal efficiency with the exception of nickel where clinoptilolite showed good removal efficiency. The 0.02 M HCl-activated clinoptilolite also demonstrated excellent removal capabilities with Cu, Co and Fe removal efficiency of up to 98%. Both clinoptilolite and bacteria demonstrated capabilities of removing Cu 2+, Co 2+, Fe 2+, Mn 2+, As 3+ and Au from solution which augurs well for metal recovery from mining and mineral processing solutions, as well as in water decontamination.

  3. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB; Harder, J.

    1999-01-01

    The numbers of sulfate reducers in two Arctic sediments within situ temperatures of 2.6 and -1.7 degrees C were determined. Most-probable-number counts were higher at 10 degrees C than at 20 degrees C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates...... of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than...... their mesophilic counterparts at similarly low temperatures....

  4. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review.

    Science.gov (United States)

    Liu, Shao-Heng; Zeng, Guang-Ming; Niu, Qiu-Ya; Liu, Yang; Zhou, Lu; Jiang, Lu-Hua; Tan, Xiao-Fei; Xu, Piao; Zhang, Chen; Cheng, Min

    2017-01-01

    In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    International Nuclear Information System (INIS)

    Boopathy, R.; Kulpa, C.F.

    1994-01-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO 2 . Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions

  6. Reduced ability to detect surface-related biofilm bacteria after antibiotic exposure under in vitro conditions

    DEFF Research Database (Denmark)

    Ravn, Christen; Furustrand Tafin, Ulrika; Bétrisey, Bertrand

    2016-01-01

    Background and purpose - Antibiotic treatment of patients before specimen collection reduces the ability to detect organisms by culture. We investigated the suppressive effect of antibiotics on the growth of non-adherent, planktonic, and surface-related biofilm bacteria in vitro by using sonication......-dependent drugs (i.e. daptomycin and ciprofloxacin) had a strong suppressive effect on bacterial growth and reduced the ability to detect planktonic and biofilm bacteria. Exposure to rifampin rapidly caused emergence of resistance. Our findings indicate that preoperative administration of antibiotics may have......, daptomycin, rifampin, flucloxacillin, or ciprofloxacin. The beads were then sonicated to dislodge biofilm, followed by culture and measurement of growth-related heat flow by microcalorimetry of the resulting sonication fluid. Results - Vancomycin did not inhibit the heat flow of staphylococci and P. acnes...

  7. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  8. Uranium and other heavy metal resistance and accumulation in bacteria isolated from uranium mine wastes.

    Science.gov (United States)

    Choudhary, Sangeeta; Islam, Ekramul; Kazy, Sufia K; Sar, Pinaki

    2012-01-01

    Ten bacterial strains isolated from uranium mine wastes were characterized in terms of their uranium and other metal resistance and accumulation. 16S rRNA gene sequence analysis identified the strains as members of genera Bacillus, Serratia, and Arthrobacter. Strains were able to utilize various carbon sources, particularly aromatic hydrocarbons, grow at broad pH and temperature ranges and produce non specific acid phosphatase relevant for metal phosphate precipitation in contaminated environment. The isolates exhibited high uranium and other heavy metals (Ni, Co, Cu and Cd) resistance and accumulation capacities. Particularly, Arthrobacter sp. J001 and Bacillus sp. J003 were superior in terms of U resistance at low pH (pH 4.0) along with metals and actinides (U and Th) removal with maximum cell loading of 1088 μmol U, 1293 μmol Th, 425 μmol Cu, 305 μmol Cd, 377 μmol Zn, 250 μmol Ni g(-1) cell dry wt. Genes encoding P(1B)-type ATPases (Cu-CPx and Zn-CPx) and ABC transporters (nik) as catalytic tools for maintaining cellular metal homeostasis were detected within several Bacillus spp., with possible incidence of horizontal gene transfer for the later gene showing phylogenetic lineage to α Proteobacteria members. The study provides evidence on intrinsic abilities of indigenous bacteria from U-mine suitable for survival and cleaning up of contaminated mine sites.

  9. EFFICACY OF ENDOPHYTIC BACTERIA IN REDUCING PLANT PARASITIC NEMATODE Pratylenchus brachyurus

    Directory of Open Access Journals (Sweden)

    Rita Harni

    2014-04-01

    Full Text Available Pratylenchus brachyurus is a major parasitic nematode on patchouli that reduces plant production up to 85%. The use of endophytic bacteria is promising for controlling nematode and promoting plant growth through production of phytohormones and enhancing the availability of soil nutrients. The objective of the study was to evaluate the efficacy of endophytic bacteria to control P. brachyurus on patchouli plant and its influence on plant productions (plant fresh weight and patchouli oil. The study was conducted at Cimanggu Experimental Garden and Laboratory of the Indonesian Spice and Medicinal Crops Research Institute (ISMECRI, Bogor, West Java. The experi-ment was designed in a randomized block with seven treatments and eight replications; each replication consisted of 10 plants. The treatments evaluated were five isolates of endophytic bacteria (Achromobacter xylosoxidans TT2, Alcaligenes faecalis NJ16, Pseudomonas putida EH11, Bacillus cereus MSK and Bacillus subtilis NJ57, synthetic nematicide as a reference, and non-treated plant as a control.  Four-week old patchouli plants of cv. Sidikalang were treated by soaking the roots in suspension of endophytic bacteria (109 cfu  ml-1 for one hour before trans-planting to the field. At one month after planting, the plants were drenched with the bacterial suspension as much as 100 ml per plant. The results showed that applications of the endophytic bacteria could suppress the nematode populations (52.8-80% and increased plant weight (23.62-57.48% compared to the control. The isolate of endophytic bacterium Achromobacter xylosoxidans TT2 was the best and comparable with carbofuran.

  10. Reduced ability to detect surface-related biofilm bacteria after antibiotic exposure under in vitro conditions.

    Science.gov (United States)

    Ravn, Christen; Furustrand Tafin, Ulrika; Bétrisey, Bertrand; Overgaard, Søren; Trampuz, Andrej

    2016-12-01

    Background and purpose - Antibiotic treatment of patients before specimen collection reduces the ability to detect organisms by culture. We investigated the suppressive effect of antibiotics on the growth of non-adherent, planktonic, and surface-related biofilm bacteria in vitro by using sonication and microcalorimetry methods. Patients and methods - Biofilms of Staphylococcus aureus, S. epidermidis, Escherichia coli, and Propionibacterium acnes were formed on porous glass beads and exposed for 24 h to antibiotic concentrations from 1 to 1,024 times the minimal inhibitory concentration (MIC) of vancomycin, daptomycin, rifampin, flucloxacillin, or ciprofloxacin. The beads were then sonicated to dislodge biofilm, followed by culture and measurement of growth-related heat flow by microcalorimetry of the resulting sonication fluid. Results - Vancomycin did not inhibit the heat flow of staphylococci and P. acnes at concentrations ≤1,024 μg/mL, whereas flucloxacillin at >128 μg/mL inhibited S. aureus. Daptomycin inhibited heat flow of S. aureus, S. epidermidis, and P. acnes at lower concentrations (32-128 times MIC, p antibiotics (i.e. vancomycin and flucloxacillin) showed only weak growth suppression, concentration-dependent drugs (i.e. daptomycin and ciprofloxacin) had a strong suppressive effect on bacterial growth and reduced the ability to detect planktonic and biofilm bacteria. Exposure to rifampin rapidly caused emergence of resistance. Our findings indicate that preoperative administration of antibiotics may have heterogeneous effects on the ability to detect biofilm bacteria.

  11. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    Science.gov (United States)

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration.

  12. Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora

    Energy Technology Data Exchange (ETDEWEB)

    Hines, M.E. [Univ. of Alaska, Anchorage, AK (United States). Dept. of Biological Sciences; Evans, R.S.; Willis, S.G.; Rooney-Varga, J.N. [Univ. of New Hampshire, Durham, NH (United States). Inst. for the Study of Earth, Oceans and Space; Genthner, B.R.S. [Univ. of West Florida, Pensacola, FL (United States). Center for Environmental Diagnostics and Bioremediation; Friedman, S.; Devereux, R. [Environmental Protection Agency, Gulf Breeze, FL (United States). National Health and Environmental Effects Research Lab.

    1999-05-01

    The population composition and biogeochemistry of sulfate-reducing bacteria (SRB) in the rhizosphere of the marsh grass Spartina alterniflora was investigated over two growing seasons by molecular probing, enumerations of culturable SRB, and measurements of SO{sub 4}{sup 2{minus}} reduction rates and geochemical parameters. So{sub 4}{sup 2{minus}} reduction was rapid in marsh sediments with rates up to 3.5 {micro}mol ml{sup {minus}1} day{sup {minus}1}. Rates increased greatly when plant growth began in April and decreased again when plants flowered in late July. Results with nucleic acid probes revealed that SRB rRNA accounted for up to 43% of the rRNA from members of the domain Bacteria in marsh sediments, with the highest percentages occurring in bacteria physically associated with root surfaces. The relative abundance (RA) of SRB rRNA in whole-sediment samples compared to that of Bacteria rRNA did not vary greatly throughout the year, despite large temporal changes in SO{sub 4}{sup 2{minus}} reduction activity. However, the RA of root-associated SRB did increase from < 10 to > 30% when plants were actively growing. rRNA from members of the family Desulfobacteriaceae comprised the majority of the SRB rRNA at 3 to 34% of Bacteria rRNA, with Desulfobulbus spp. accounting for 1 to 16%. The RA of Desulfovibrio rRNA generally comprised from < 1 to 3% of the Bacteria rRNA. The highest Desulfobacteriaceae RA in whole sediments was 26% and was found in the deepest sediment samples (6 to 8 cm). Culturable SRB abundance, determined by most-probable-number analyses, was high at > 10{sup 7} ml{sup {minus}1}. Ethanol utilizers were most abundant, followed by acetate utilizers. The high numbers of culturable SRB and the high RA of SRB rRNA compared to that of Bacteria rRNA may be due to the release of SRB substrates in plant root exudates, creating a microbial food web that circumvents fermentation.

  13. Microbiologically influenced corrosion of carbon steel in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Tunaru, M.; Velciu, L.; Mihalache, M.; Laurentiu, P.

    2016-01-01

    Sulphate-reducing bacteria (SRB) are the most important organisms in microbiologically induced corrosion. In this context, the paper presents an assessment (by experimental tests) of the behaviour of carbon steel samples (SA106gr.B) in SRB media. Some of samples were immersed in microbial environment in order microbiological analysis of their surface and another part was used to perform accelerated electrochemical tests to determine electrochemical parameters for the system carbon steel / microbial medium (corrosion rate, the polarization resistance of the surface, susceptibility to pitting corrosion). The surfaces of the tested samples were analyzed using the optical and electronic microscope, and emphasized the role of bacteria in the development of biofilms under which appeared characteristics of corrosion attack. The correlation of all results confirmed that SRB accelerated the localized corrosion of the surfaces of SA 106gr.B carbon steel. (authors)

  14. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients

    DEFF Research Database (Denmark)

    Sass, Andrea M.; Wieland, Andrea Eschemann; Kühl, Michael

    2002-01-01

    Growth and chemotactic behavior in oxic–anoxic gradients were studied with two freshwater and four marine strains of sulfate-reducing bacteria related to the genera Desulfovibrio, Desulfomicrobium or Desulfobulbus. Cells were grown in oxygen–sulfide counter-gradients within tubes filled with agar...... to actively change the extension and slope of the gradients by oxygen reduction with lactate or even sulfide as electron donor. Generally, the chemotactic behavior was in agreement with a defense strategy that re-establishes anoxic conditions, thus promoting anaerobic growth and, in a natural community...... chemotactically to lactate, nitrate, sulfate and thiosulfate, and even sulfide functioned as an attractant. In oxic–anoxic gradients the bacteria moved away from high oxygen concentrations and formed bands at the outer edge of the oxic zone at low oxygen concentration (

  15. Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources

    DEFF Research Database (Denmark)

    Beller, Harry R.; Zhou, Peng; Jewell, Talia N.M.

    2016-01-01

    Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H2S, while fixing CO2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus...... denitrificans to produce up to 52-fold more fatty acids than the wild-type strain when grown with thiosulfate and CO2. A modified thioesterase gene from E. coli (‘tesA) was integrated into the T. denitrificans chromosome under the control of Pkan or one of two native T. denitrificans promoters. The relative...... strength of the two native promoters as assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria...

  16. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Directory of Open Access Journals (Sweden)

    Derya eOzuolmez

    2015-05-01

    Full Text Available Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744, a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  17. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Science.gov (United States)

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A; Kjeldsen, Kasper U; Jørgensen, Bo B; Plugge, Caroline M

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  18. Dental plaque bacteria with reduced susceptibility to chlorhexidine are multidrug resistant.

    Science.gov (United States)

    Saleem, Hafiz Ghulam Murtaza; Seers, Christine Ann; Sabri, Anjum Nasim; Reynolds, Eric Charles

    2016-09-15

    Chlorhexidine (CHX) is used in oral care products to help control dental plaque. In this study dental plaque bacteria were grown on media containing 2 μg/ml chlorhexidine gluconate to screen for bacteria with reduced CHX susceptibility. The isolates were characterized by 16S rRNA gene sequencing and antibiotic resistance profiles were determined using the disc diffusion method. The isolates were variably resistant to multiple drugs including ampicillin, kanamycin, gentamicin and tetracycline. Two species, Chryseobacterium culicis and Chryseobacterium indologenes were able to grow planktonically and form biofilms in the presence of 32 μg/ml CHX. In the CHX and multidrug resistant C. indologenes we demonstrated a 19-fold up-regulation of expression of the HlyD-like periplasmic adaptor protein of a tripartite efflux pump upon exposure to 16 μg/ml CHX suggesting that multidrug resistance may be mediated by this system. Exposure of biofilms of these resistant species to undiluted commercial CHX mouthwash for intervals from 5 to 60 s indicated that the mouthwash was unlikely to eliminate them from dental plaque in vivo. The study highlights the requirement for increased vigilance of the presence of multidrug resistant bacteria in dental plaque and raises a potential risk of long-term use of oral care products containing antimicrobial agents for the control of dental plaque.

  19. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  20. Using different amendments to reduce heavy metals movement in soils

    International Nuclear Information System (INIS)

    Salmasi, R.; Tavassoli, A.

    2005-01-01

    With long-term use of sewage waste, heavy metals can accumulate to phyto toxic levels and resulted in reduced plant growth and/or enhanced metal concentrations in plants, as a result food chain. If these metals penetrate too rapidly in a particular soil, especially with high water table, they can pollute ground water supplies. The aim of this research is prevention of movement of waste water-borne heavy metals in soils of southern parts of Tehran. These waste waters are used for irrigation of agricultural lands at regions since many years ago. For this purpose, 6 soil samples from southern parts of Tehran city and 2 ones Zanjan city without lime and organic matter were selected. In laboratory, sorption capacities of the soils for Ni, Cd and Pb were compared with those of calcite, Na-bentonite, Zeolite, illite and hematite amendments. The method was carried out by equilibration of known quantities of these adsorbents and soils with solutions containing these elements. The results showed that among the 5 amendments, Calcite and Na-bentonite had the greatest sorption percentages of the 3 elements and illite had the least one. The retention capacity of calcite and Na-bentonite for Cd was highest in all 8 soils. However, retention capacities of these 2 minerals for Pb and Ni were higher than those of loamy soils without lime and organic matter and also sandy soils. Because of abundance and low price of calcite, this amendment is preferred to Na-bentonite. Therefore, calcite is recommended for adding to soils with low sorption capacity of Ni, Cd and Pb

  1. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion

    International Nuclear Information System (INIS)

    Libert, M.F.; Sellier, R.; Marty, V.; Camaro, S.

    2000-01-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H 2 production in a bituminized nuclear waste environment were simulated in the present study: - H 2 production by iron corrosion under anaerobic conditions was simulated by adding 10% of H 2 in the atmosphere; - H 2 production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H 2 in water allows the growth of hydrogen oxidizing bacteria leading to: - CO 2 and N 2 production; - H 2 consumption; - lower NO 3 - concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO 3 - release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H 2 instead of hydrocarbons. (authors)

  2. Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt)

    DEFF Research Database (Denmark)

    Teske, A.; Ramsing, NB; Habicht, K.

    1998-01-01

    in variable densities of 10(4) to 106 cells ml(-1). A Desulfonema-related, diurnally migrating bacterium was detected with PCR and denaturing gradient gel electrophoresis within and below the oxic surface layer. Facultative aerobic respiration, filamentous morphology, motility, diurnal migration......, and aggregate formation were the most conspicuous adaptations of Solar Lake sulfate-reducing bacteria to the mat matrix and to diurnal oxygen stress. A comparison of sulfate reduction rates within the mat and previously published photosynthesis rates showed that CO2 from sulfate reduction in the upper 5 mm...

  3. Reducing Plasma Perturbations with Segmented Metal Shielding on Electrostatic Probes

    International Nuclear Information System (INIS)

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Electrostatic probes are widely used to measure spatial plasma parameters in the quasi-neutral plasma created in Hall thrusters and similar E x B electric discharge devices. Significant perturbations of the plasma, induced by such probes, can mask the actual physics involved in operation of these devices. In an attempt to reduce these perturbations in Hall thrusters, the perturbations were examined by varying the component material, penetration distance, and residence time of various probe designs. This study leads us to a conclusion that secondary electron emission from insulator ceramic tubes of the probe can affect local changes of the plasma parameters causing plasma perturbations. A probe design, which consists of a segmented metal shielding of the probe insulator, is suggested to reduce these perturbations. This new probe design can be useful for plasma applications in which the electron temperature is sufficient to produce secondary electron emission by interaction of plasma electrons with dielectric materials

  4. Effect of medicinal plants, Heavy metals and antibiotics against pathogenic bacteria isolated from raw, Boiled and pasteurized milk.

    Science.gov (United States)

    Ali, Nazish Mazhar; Sarwar, Khadija; Mazhar, Syed Abdullah; Liaqat, Iram; Andleeb, Saiqa; Mazhar, Bushra; Kalim, Bushra

    2017-11-01

    Present study has been undertaken to isolate and identify the bacterial flora in raw, boiled and pasteurized milk. Agar disc diffusion method was used to determine their sensitivity using medicinal plants, antibiotics and heavy metals. Methylene blue reduction test was used to test the quality of milk samples. Total 10 pathogenic strains were isolated, five strains were isolated from raw milk, three from boiled milk and 2 two from pasteurized milk. To determine optimum conditions for growth, these pathogenic microorganisms were incubated at various temperatures and pH. Gram's staining and biochemical tests revealed that these pathogenic bacteria include Lactobacillus sp., E. coli, Salmonella sp., Pseudomonas sp., Streptococcus sp. and Staphylococcus. Ribotyping revealed S2 as Pseudomonas fluorescens, S5 as Lactococcus lactis and S9 as Lactobacillus acidophilus. Prevalence of pathogenic organisms provided the evidence that contamination of milk arises during milking, transportation and storage of milk. Raw milk is more contaminated than other two types of milk because it contains highest percentage of pathogenic organisms and pasteurized milk was found to be of best quality among three types. So it is recommended to drink milk after proper boiling or pasteurization. Proper pasteurization and hygienic packing of milk is essential to minimize contamination in milk which can save human beings from many milk borne diseases. Our study suggests that antimicrobial use in animal husbandry should be minimized to reduce the hazard of antibiotic resistance. Plant extracts are better alternative against pathogenic bacteria in milk.

  5. Physiological role for nitrate-reducing oral bacteria in blood pressure control

    Science.gov (United States)

    Kapil, Vikas; Haydar, Syed M.A.; Pearl, Vanessa; Lundberg, Jon O.; Weitzberg, Eddie; Ahluwalia, Amrita

    2013-01-01

    Circulating nitrate (NO3−), derived from dietary sources or endogenous nitric oxide production, is extracted from blood by the salivary glands, accumulates in saliva, and is then reduced to nitrite (NO2−) by the oral microflora. This process has historically been viewed as harmful, because nitrite can promote formation of potentially carcinogenic N-nitrosamines. More recent research, however, suggests that nitrite can also serve as a precursor for systemic generation of vasodilatory nitric oxide, and exogenous administration of nitrate reduces blood pressure in humans. However, whether oral nitrate-reducing bacteria participate in “setting” blood pressure is unknown. We investigated whether suppression of the oral microflora affects systemic nitrite levels and hence blood pressure in healthy individuals. We measured blood pressure (clinic, home, and 24-h ambulatory) in 19 healthy volunteers during an initial 7-day control period followed by a 7-day treatment period with a chlorhexidine-based antiseptic mouthwash. Oral nitrate-reducing capacity and nitrite levels were measured after each study period. Antiseptic mouthwash treatment reduced oral nitrite production by 90% (p < 0.001) and plasma nitrite levels by 25% (p = 0.001) compared to the control period. Systolic and diastolic blood pressure increased by 2–3 .5 mm Hg, increases correlated to a decrease in circulating nitrite concentrations (r2 = 0.56, p = 0.002). The blood pressure effect appeared within 1 day of disruption of the oral microflora and was sustained during the 7-day mouthwash intervention. These results suggest that the recycling of endogenous nitrate by oral bacteria plays an important role in determination of plasma nitrite levels and thereby in the physiological control of blood pressure. PMID:23183324

  6. Molecular Characterization of Sulfate-Reducing Bacteria in the Guaymas Basin†

    Science.gov (United States)

    Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

    2003-01-01

    The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing. PMID:12732547

  7. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin

    Science.gov (United States)

    Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

    2003-01-01

    The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.

  8. Physiological role for nitrate-reducing oral bacteria in blood pressure control.

    Science.gov (United States)

    Kapil, Vikas; Haydar, Syed M A; Pearl, Vanessa; Lundberg, Jon O; Weitzberg, Eddie; Ahluwalia, Amrita

    2013-02-01

    Circulating nitrate (NO(3)(-)), derived from dietary sources or endogenous nitric oxide production, is extracted from blood by the salivary glands, accumulates in saliva, and is then reduced to nitrite (NO(2)(-)) by the oral microflora. This process has historically been viewed as harmful, because nitrite can promote formation of potentially carcinogenic N-nitrosamines. More recent research, however, suggests that nitrite can also serve as a precursor for systemic generation of vasodilatory nitric oxide, and exogenous administration of nitrate reduces blood pressure in humans. However, whether oral nitrate-reducing bacteria participate in "setting" blood pressure is unknown. We investigated whether suppression of the oral microflora affects systemic nitrite levels and hence blood pressure in healthy individuals. We measured blood pressure (clinic, home, and 24-h ambulatory) in 19 healthy volunteers during an initial 7-day control period followed by a 7-day treatment period with a chlorhexidine-based antiseptic mouthwash. Oral nitrate-reducing capacity and nitrite levels were measured after each study period. Antiseptic mouthwash treatment reduced oral nitrite production by 90% (p nitrite levels by 25% (p = 0.001) compared to the control period. Systolic and diastolic blood pressure increased by 2-3 .5mmHg, increases correlated to a decrease in circulating nitrite concentrations (r(2) = 0.56, p = 0.002). The blood pressure effect appeared within 1 day of disruption of the oral microflora and was sustained during the 7-day mouthwash intervention. These results suggest that the recycling of endogenous nitrate by oral bacteria plays an important role in determination of plasma nitrite levels and thereby in the physiological control of blood pressure. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream

    Science.gov (United States)

    Mori, J. F.; Neu, T. R.; Lu, S.; Händel, M.; Totsche, K. U.; Küsel, K.

    2015-09-01

    Filamentous macroscopic algae were observed in slightly acidic to circumneutral (pH 5.9-6.5), metal-rich stream water that leaked out from a former uranium mining district (Ronneburg, Germany). These algae differed in color and morphology and were encrusted with Fe-deposits. To elucidate their potential interaction with Fe(II)-oxidizing bacteria (FeOB), we collected algal samples at three time points during summer 2013 and studied the algae-bacteria-mineral compositions via confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra, and a 16S and 18S rRNA gene-based bacterial and algae community analysis. Surprisingly, sequencing analysis of 18S rRNA gene regions of green and brown algae revealed high homologies with the freshwater algae Tribonema (99.9-100 %). CLSM imaging indicated a loss of active chloroplasts in the algae cells, which may be responsible for the change in color in oxidation under the putative oxygen-saturated conditions that occur in association with photosynthetic algae. Quantitative PCR (polymerase chain reaction) revealed even higher Gallionella-related 16S rRNA gene copy numbers on the surface of green algae compared to the brown algae. The latter harbored a higher microbial diversity, including some putative predators of algae. A loss of chloroplasts in the brown algae could have led to lower photosynthetic activities and reduced EPS production, which is known to affect predator colonization. Collectively, our results suggest the coexistence of oxygen-generating algae Tribonema sp. and strictly microaerophilic neutrophilic FeOB in a heavy metal-rich environment.

  10. Isolation of plant-growth-promoting and metal-resistant cultivable bacteria from Arthrocnemum macrostachyum in the Odiel marshes with potential use in phytoremediation.

    Science.gov (United States)

    Navarro-Torre, S; Mateos-Naranjo, E; Caviedes, M A; Pajuelo, E; Rodríguez-Llorente, I D

    2016-09-15

    Arthrocnemum macrostachyum is a halophyte naturally growing in southwest coasts of Spain that can tolerate and accumulate heavy metals. A total of 48 bacteria (30 endophytes and 18 from the rhizosphere) were isolated from A. macrostachyum growing in the Odiel River marshes, an ecosystem with high levels of contamination. All the isolates exhibited plant-growth-promoting (PGP) properties and most of them were multiresistant to heavy metals. Although the presence of heavy metals reduced the capability of the isolates to exhibit PGP properties, several strains were able to maintain their properties or even enhance them in the presence of concrete metals. Two bacterial consortia with the best-performing endophytic or rhizospheric strains were selected for further experiments. Bacterial inoculation accelerated germination of A. macrostachyum seeds in both the absence and presence of heavy metals. These results suggest that inoculation of A. macrostachyum with the selected bacteria could ameliorate plant establishment and growth in contaminated marshes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The role of hydrogenotrophic iron-reducing bacteria on the corrosion process in the context of geological disposal

    International Nuclear Information System (INIS)

    Kerber-Schutz, Marta

    2013-01-01

    The nuclear industry must to demonstrate the feasibility and safety of high level nuclear waste (HLNW) disposal. The generally recognised strategy for HLNW disposal is based on a multi-barrier system made by metallic packages surrounded by geological formation. The nuclear waste repository will be water re-saturated with time, and then the metallic corrosion process will take place. The aqueous corrosion will produce dihydrogen (H 2 ) that represents a new energetic source (electron donor) for microbial development. Moreover, the formation of Fe(II,III) solid corrosion products, such as magnetite (Fe 3 O 4 ), will provide electron acceptors favoring the development of iron-reducing bacteria (IRB). The activity of hydrogenotrophic and IRB can potentially alter the protective properties of passivating oxide layers (i.e. magnetite) which could reactivate corrosion. The main objective of this study is to evaluate the role of hydrogenotrophic and IRB activities on anoxic corrosion process by using geochemical indicators. Shewanella oneidensis strain MR-1 was chosen as model organism, and both abiotic and biotic conditions were investigated. In a first setup of experiments, our results indicate that synthetic magnetite is destabilized in the presence of hydrogenotrophic IRB due to structural Fe(III) reduction coupled to H 2 oxidation. The extent of Fe(III) bioreduction is notably enhanced with the increase in the H 2 concentration in the system: 4% H 2 ≤ 10% H 2 ≤ 60% H 2 . In a second setup of experiments, our results indicate that corrosion extent changes according to the solution composition and the surface of metallic sample (iron powder and carbon steel coupon). Moreover, the solid corrosion products are different for each sample: vivianite, siderite and chukanovite are the main mineral phases identified in the experiments with iron powder, while vivianite and magnetite are identified with carbon steel coupons. Our results demonstrate that corrosion rate is

  12. Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Pagnanelli, F., E-mail: francesca.pagnanelli@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Cruz Viggi, C., E-mail: carolina.cruzviggi@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Cibati, A., E-mail: alessio.cibati@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Uccelletti, D., E-mail: daniela.uccelletti@uniroma1.it [Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy); Toro, L., E-mail: luigi.toro@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Palleschi, C., E-mail: claudio.palleschi@uniroma1.it [Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Use of ethanol as electron donor for sulphate-reducing bacteria for the treatment of Cr(VI). Black-Right-Pointing-Pointer Isolation of contribution in Cr removal (adsorption vs. bioprecipitation). Black-Right-Pointing-Pointer Bioassessment of the process effectiveness by ecotoxicological in vivo tests using C. elegans. - Abstract: Biological treatment of Cr(VI) contaminated waters was performed in fixed bed reactors inoculated with SRB (sulphate-reducing bacteria) growing on ethanol. Treatment efficiency was evaluated by checking chemical abatement of Cr(VI) and by ecotoxicological tests using the nematode Caenorhabditis elegans. A preliminary comparison between ethanol and lactate was performed, denoting that using ethanol, the same values of final sulphate abatement were obtained. In addition ethanol showed to be a substrate more competitive than lactate in kinetic terms. Fixed bed column reactors were continuously fed with a solution containing sulphates (3 g L{sup -1}), ethanol (1.5 g L{sup -1}) and Cr(VI) (50 mg L{sup -1}). At steady state the column inoculated with SRB removed 65 {+-} 5% of sulphate and 95 {+-} 5% of chromium. Bioactive removal mechanisms predominated over biosorption. Diminution of Cr(VI) toxicity was assessed by using the nematode C. elegans as a test organism showing that the survival of nematodes was 20% in the presence of the untreated influent and raised up to 53% when the nematodes were exposed to the treated effluent.

  13. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures.

    Science.gov (United States)

    Drake, Henrik; Ivarsson, Magnus; Bengtson, Stefan; Heim, Christine; Siljeström, Sandra; Whitehouse, Martin J; Broman, Curt; Belivanova, Veneta; Åström, Mats E

    2017-07-04

    The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.

  14. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Ivan Kushkevych

    2017-01-01

    Full Text Available Inflammatory bowel disease including ulcerative colitis are complex multifactorial diseases of unknown aetiology. Sulphate-reducing bacteria are often associated with the occurrence of the disease. The physiological properties of intestinal sulphate-reducing bacteria including kinetic characteristic of their growth have never been reported. The aim of this research was to evaluate the presence of sulphate-reducing bacteria isolated from the intestines of mice, study their growth, calculate and compare the kinetic growth properties on the model of dextran sulphate sodium induced ulcerative colitis in the mice. The number of viable intestinal sulphate-reducing bacteria from the bowel lumen of mice with ulcerative colitis was higher (P > 0.05 by 22% at 12 h of cultivation compared with cultures of sulphate-reducing bacteria from the bowel lumen of healthy mice. The sulphate-reducing bacteria from mice with colitis also had a slightly higher generation time (14.29 h and exponential growth phase (22.24 h compared with cultures from healthy mice. The time of lag-phase was 2 × shorter (P > 0.01 in the cultures of sulphate-reducing bacteria from mice with ulcerative colitis. The described research is new and important for the prediction of the sulphate-reducing bacteria number in the gut and their rate of dissimilatory sulphate reduction. The kinetic characteristic of their growth is important for further clarification of the mechanisms of sulphate reduction and accumulation of hydrogen sulphide, which is toxic for epithelial cells of the intestine and can cause bowel diseases both in humans and animals, in particular ulcerative colitis.

  15. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines.

    Science.gov (United States)

    Liang, Renxing; Grizzle, Robert S; Duncan, Kathleen E; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55°C. Most-probable number (MPN) analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG) scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy) was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy), while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm(2), while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.

  16. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines

    Directory of Open Access Journals (Sweden)

    Renxing eLiang

    2014-03-01

    Full Text Available Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55 oC. Most-probable number (MPN analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy, while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm2, while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.

  17. Antimicrobial resistance, heavy metal resistance and integron content in bacteria isolated from a South African tilapia aquaculture system.

    Science.gov (United States)

    Chenia, Hafizah Y; Jacobs, Anelet

    2017-11-21

    Antibacterial compounds and metals co-select for antimicrobial resistance when bacteria harbour resistance genes towards both types of compounds, facilitating the proliferation and evolution of antimicrobial and heavy metal resistance. Antimicrobial and heavy metal resistance indices of 42 Gram-negative bacteria from a tilapia aquaculture system were determined to identify possible correlations between these phenotypes. Agar dilution assays were carried out to determine susceptibility to cadmium, copper, lead, mercury, chromate and zinc, while susceptibility to 21 antimicrobial agents was investigated by disk diffusion assays. Presence of merA, the mercury resistance gene, was determined by dot-blot hybridizations and PCR. Association of mercury resistance with integrons and transposon Tn21 was also investigated by PCR. Isolates displayed a high frequency of antimicrobial (erythromycin: 100%; ampicillin: 85%; trimethoprim: 78%) and heavy metal (Zn2+: 95%; Cd2+: 91%) resistance. No correlation was established between heavy metal and multiple antibiotic resistance indices. Significant positive correlations were observed between heavy metal resistance profiles, indices, Cu2+ and Cr3+ resistance with erythromycin resistance. Significant positive correlations were observed between merA (24%)/Tn21 (24%) presence and heavy metal resistance profiles and indices; however, significant negative correlations were obtained between integron-associated qacE∆1 (43%) and sulI (26%) gene presence and heavy metal resistance indices. Heavy metal and antimicrobial agents co-select for resistance, with fish-associated, resistant bacteria demonstrating simultaneous heavy metal resistance. Thus, care should be taken when using anti-fouling heavy metals as feed additives in aquaculture facilities.

  18. Leveraging metal matrix composites to reduce costs in space mechanisms

    Science.gov (United States)

    Nye, Ted; Claridge, Rex; Walker, Jim

    1994-01-01

    Advanced metal matrix composites may be one of the most promising technologies for reducing cost in structural components without compromise to strength or stiffness. A microlight 12.50 N (2.81 lb), two-axis, solar array drive assembly (SADA) was made for the Advanced Materials Applications to Space Structures (AMASS) Program flight experiment. The SADA had both its inner and outer axis housings fabricated from silicon carbide particulate reinforced alumimun. Two versions of the housings were made. The first was machined from a solid billet of material. The second was plaster cast to a near net shape that required minimal finish machining. Both manufacturing methods were compared upon completion. Results showed a cost savings with the cast housing was possible for quantities greater than one and probable for quantities greater than two. For quantities approaching ten, casting resulted in a reduction factor of almost three in the cost per part.

  19. Contamination with heavy metals and bacteria in some local and imported fish and fish products

    International Nuclear Information System (INIS)

    Salem, S.B.; El-Dashlout, A.A.; El-Schiwee, M.A.; EL-Shourbagy, G.A.; Ibrahim, R.E.

    2004-01-01

    Some local and imported fish and fish products sold in retail markets of three cities at Sharkia Governorate, Egypt, were examined against heavy metals contamination (i.e. Pb, Cd and Hg) and the presence of some specific groups of bacteria. The results showed that concentrations of Pb in fresh and frozen fish, salted and smoked fish and canned fish samples were lower than the permissible limits recommended by the Egyptian Organization 1993 (1.0 mg/kg). On the other hand, all the tested fish and fish products of collected samples showed levels of Cd (0.29-0.41 mg/kg) higher than the permissible limit (0.10 mg/kg) recommended by the Egyptian Organization. Such limits should be re-considered because the limit determined by WHO (1992) was 0.5 mg/kg. Mercury level in fresh mullet was equal or lower (0.46-0.50 mg/kg) than the limit of Egyptian Organization (0.50 mg/kg) while other fresh and frozen fish, salted and smoked fish samples had higher Hg than the allowance. In most cases, imported canned products of sardine, mackerel and tuna had higher Pb, Cd and Hg concentrations than that found in the local ones. Among fresh fish samples, such as mackarona, contained the highest total bacterial count, while mullet was the lowest. Considering salted and smoked fish, heavy salted mullet had the highest total bacterial count, while the lowest number was recorded in salted sardine. Smoked herring showed lowest total bacterial count than salted samples. Generally, no correlation was observed between fish species or consumption place and the contamination with heavy metals and bacteria

  20. Effectiveness of a pre-procedural mouthwash in reducing bacteria in dental aerosols: randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Belén RETAMAL-VALDES

    2017-03-01

    Full Text Available Abstract The aim of this randomized, single blinded clinical trial was to evaluate the effect of a pre-procedural mouthwash containing cetylpyridinium chloride (CPC, zinc lactate (Zn and sodium fluoride (F in the reduction of viable bacteria in oral aerosol after a dental prophylaxis with ultrasonic scaler. Sixty systemically healthy volunteers receiving dental prophylaxis were randomly assigned to one of the following experimental groups (15 per group: (i rinsing with 0.075% CPC, 0.28% Zn and 0.05% F (CPC+Zn+F, (ii water or (iii 0.12% chlorhexidine digluconate (CHX, and (iv no rinsing. Viable bacteria were collected from different locations in the dental office on enriched TSA plates and anaerobically incubated for 72 hours. The colonies were counted and species were then identified by Checkerboard DNA–DNA Hybridization. The total number of colony-forming units (CFUs detected in the aerosols from volunteers who rinsed with CPC+Zn+F or CHX was statistically significantly (p<0.05 lower than of those subjects who did not rinse or who rinsed with water. When all locations were considered together, the aerosols from the CPC+Zn+F and CHX groups showed, respectively, 70% and 77% fewer CFUs than those from the No Rinsing group and 61% and 70% than those from the Water group. The mean proportions of bacterial species from the orange complex were statistically significantly (p<0.05 lower in aerosols from the CPC+Zn+F and CHX groups compared with the others two groups. In conclusion, the mouthwash containing CPC+Zn+F, is effective in reducing viable bacteria in oral aerosol after a dental prophylaxis with ultrasonic scaler.

  1. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.

    Science.gov (United States)

    Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. © 2016 Elsevier Ltd. All rights reserved.

  2. Modularity of nitrogen-oxide reducing soil bacteria: linking phenotype to genotype.

    Science.gov (United States)

    Roco, Constance A; Bergaust, Linda L; Bakken, Lars R; Yavitt, Joseph B; Shapleigh, James P

    2017-06-01

    Model denitrifiers convert NO3- to N 2 , but it appears that a significant fraction of natural populations are truncated, conducting only one or two steps of the pathway. To better understand the diversity of partial denitrifiers in soil and whether discrepancies arise between the presence of known N-oxide reductase genes and phenotypic features, bacteria able to reduce NO3- to NO2- were isolated from soil, N-oxide gas products were measured for eight isolates, and six were genome sequenced. Gas phase analyses revealed that two were complete denitrifiers, which genome sequencing corroborated. The remaining six accumulated NO and N 2 O to varying degrees and genome sequencing of four indicated that two isolates held genes encoding nitrate reductase as the only dissimilatory N-oxide reductase, one contained genes for both nitrate and nitric oxide reductase, and one had nitrate and nitrite reductase. The results demonstrated that N-oxide production was not always predicted by the genetic potential and suggested that partial denitrifiers could be readily isolated among soil bacteria. This supported the hypothesis that each N-oxide reductase could provide a selectable benefit on its own, and therefore, reduction of nitrate to dinitrogen may not be obligatorily linked to complete denitrifiers but instead a consequence of a functionally diverse community. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Rust dissolution and removal by iron-reducing bacteria: A potential rehabilitation of rusted equipment

    International Nuclear Information System (INIS)

    Starosvetsky, J.; Kamari, R.; Farber, Y.; Bilanović, D.; Armon, R.

    2016-01-01

    Highlights: • The present study demonstrated the high reductive capacity of both strains: the collection S. oneidensis and the wild strain Geobacter spp. (soil isolate). • The experimental strains were successful in Fe 3+ reduction for both states: soluble and crystalline (originally prepared from rust). • Rust dissolution can be improved by: addition of AFC at low concentration (0.2 g/l), increasing bacterial initial inoculum and rust reactive surface. • Both experimental IRB strains were able to completely remove previously formed rust on carbon steel coupons. • Additional results (not showed) revealed that culture S. oneidensis and the environmental isolate Geobacter spp., apparently have a different mechanism of iron reduction that requires further study. - Abstract: Iron reducing bacteria (IRB), to be used in rust dissolution and removal, have been isolated and enriched from different environmental sources. Comparative measurements revealed that a soil isolate (Geobacter sulfurreducens sp.) had the highest reductive activity equivalent to Shewanella oneidensis (strain CIP 106686, pure culture). Both reductive microorganisms can use Fe 3+ ions as electron acceptors from soluble as well as from crystalline sources. In nutrient medium containing soluble Fe 3+ , the highest reductive activity obtained for G. sulfurreducens sp. and S. oneidensis was 93 and 97% respectively. Successful removal of rust from carbon steel coupons has been achieved with both experimental bacteria.

  4. Effect of pH and time on the accumulation of heavy metals in Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Yamina Benmalek

    2014-07-01

    Full Text Available The release of heavy metals into our environment is very important and causes an environmental pollution problem. Contamination of the aquatic environment by toxic heavy metals is a serious pollution problem because they can reach water-courses either naturally through a variety of geochemical processes or by direct discharge of municipal, agricultural and industrial wastewater. The bioremediation of heavy metals using microorganisms has received a great deal of attention in recent years because their potential application in industry. Microorganisms uptake metal either actively (bioaccumulation and passively (biosorption. Some bacteria have developed chromosomally or extra-chromosomally controlled detoxification mechanisms to overcome the detrimental effects of heavy metals. In the present work, we have studied resistance to heavy metals and the capacity of a Gram-negative bacteria to accumulate lead and zinc. Results obtained indicated that the bacterial strain exhibited high Minimal Inhibitory Concentration (MIC values for metal ions tested ranging from 75 mg/l to 500 mg/l and it was able to accumulate more than 90% of lead and zinc during the active growth cycle. Effect of pH and time on heavy metal removal was also studied properly.

  5. Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D.

    2003-06-01

    Surprising results were obtained following an attempt to induce or derepress the machinery for U(VI) reduction by growing Desulfovibrio desulfuricans G20 in the presence of 1 mM uranyl acetate. G20 cells grown on lactate-sulfate medium amended with U(VI) reduced uranium at a slower rate than cells grown in the absence of this metal. When periplasmic extracts of these cells were prepared, Western analysis of the proteins revealed that the cytochrome c3 was absent. This observation has been further investigated.

  6. The Reclamation of Industrial Wastes Inclusive Sulphates by Sulphate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Mária Kušnierová

    2004-12-01

    Full Text Available The objective of our study was to verify experimentally the possibility of using coal mine drainage and gypsum from the „stabilizate“ (the final product from the combustion desulphurisation as the source of sulphate for the cultivation of SRB with the prospect of: purging of mine waste waters inclusive sulphates, recycling of desulphurisation agent (limestone and production of elemental sulphur from hydrogen sulphide. The results confirmed the theoretical assumptions on the use of gypsum, which forms the substantial component of „stabilizate“, as the source of sulphate for sulphate-reducing bacteria, which produce hydrogen sulphide in the process of bacterial reduction of sulphates. They also showed the possibility of recycling the desulphurisation agent – limestone, as well as the realistic alternative of using „stabilizate“ in the production of elemental sulphur which still represents an important raw material needed in chemical, paper or other industries.

  7. Methanogens and sulfate-reducing bacteria in oil sands fine tailings waste

    Energy Technology Data Exchange (ETDEWEB)

    Holowenko, F. M.; Fedorak, P. M. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences; MacKinnon, M. D. [Syncrude Canada Ltd, Edmonton, AB (Canada)

    2000-10-01

    In addition to adding to greenhouse gas emissions, the production of methane in the fine tailings zone of Syncrude Canada's lease near Fort McMurray, Alberta, threatens to affect the performance of the settling basin and impact on reclamation plans. Methanogenic as well as sulfur reducing bacteria have been found within the fine tailings zone of various oil sands waste settling basins. This paper presents a description of the methanogenic population in the fine tailings and evaluates the effects of sulfate additions and prolonged sample storage on methanogenesis with serum bottle microcosms. Methane yield values were determined from total methane produced in batch microcosms monitored for over a year. Results showed that at present two to five per cent of the fine tailings volume is present as methane. Methanogenesis was found to be inhibited by sulfate addition which stimulated bacterial competition for available substrate. 47 refs., 3 tabs., 4 figs.

  8. Open Circuit Potential Study of Stainless Steel in Environment Containing Marine Sulphate-Reducing Bacteria

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Madzlan Abd. Aziz; Zaharah Ibrahim; Adibah Yahya

    2008-01-01

    The corrosion potential of AISI 304 stainless steel coupons influenced by sulphate-reducing bacteria (SRB) has been studied. Pure colony of SRB was isolated from the Malaysia Marine and Heavy Engineering, Pasir Gudang, Johor. Open circuit potential measurements were carried out in variable types of culturing solutions with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated. Results showed that the corrosion potential, E oc increased in the presence of SRBs (in pure and mixed culture) compared to that of control. EDS analysis showed the strong peak of sulphur in coupon containing SRB cultures compared to the control. ESEM data showed that the high density cell of SRBs were associated with corroding sections of surface steel comparing with non-corroding sections for coupons immersed in VMNI medium containing SRBs. (author)

  9. Sulfate reducing bacteria as secondary and necessary pathogens in black band disease of corals

    Directory of Open Access Journals (Sweden)

    Abigael C. Brownell

    2014-09-01

    Full Text Available Black band disease (BBD is a complex, polymicrobial disease that consists of cyanobacteria, sulfide-oxidizing and sulfate-reducing bacteria (SRB, and heterotrophic bacteria. The cyanobacterium Roseofilum reptotaenium has been implicated as the primary pathogen of BBD, but other consortium members may be secondary pathogens that are necessary to the development of the disease. It is known that populations of the sulfate-reducing bacterium Desulfovibrio are present in BBD and that these populations generate sulfide within the band as a byproduct of dissimilatory sulfate reduction. It is also known that exposure of healthy corals to sulfide leads to cell lysis and coral tissue death. Previous work showed that when freshly collected BBD, which easily infects healthy corals, is exposed to sodium molybdate, a specific inhibitor of sulfate reduction, infection does not occur. In this study we examined the effect of sodium molybdate on infection of corals by a unialgal culture of R. reptotaenium. Coral fragments of Montastraea cavernosa and Siderastrea siderea were transferred into two experimental aquaria, one a control with only artificial seawater (ASW and the second containing ASW and 2mM sodium molybdate. Small mats of cultured R. reptotaenium were inoculated onto the surface of experimental coral fragments. Both M. cavernosa (n = 6 and S. siderea (n=4 became infected and developed BBD-like infections in the control tank, while there were temporary attachments to, but no successful infection of M. cavernosa (n=3 or S. siderea (n=2 in the experimental tank containing sodium molybdate. The results of this study reveal that a secondary pathogen is essential to the infection process and development of BBD in scleractinian corals. Specifically, SRB such as Desulfovibrio are required for the development of BBD on the coral host. This is the first step in understanding the roles of secondary pathogens in a complex, polymicrobial coral disease.

  10. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria.

    Science.gov (United States)

    Si, Youbin; Zou, Yan; Liu, Xiaohong; Si, Xiongyuan; Mao, Jingdong

    2015-03-01

    Iron reduction and mercury methylation by dissimilatory iron-reducing bacteria (DIRB), Geobacter sulfurreducens and Shewanella oneidensis, were studied, and the relationship of mercury methylation coupled to iron reduction was determined. The ability of both bacteria for reducing iron was tested, and Fe(III) reduction occurred with the highest rate when ferric oxyhydroxide was used as a terminal electron acceptor. G. sulfurreducens had proven to mediate the production of methylmercury (MeHg), and a notable increase of MeHg following the addition of inorganic Hg was observed. When the initial concentration of HgCl2 was 500nM, about 177.03nM of MeHg was determined at 8d after G. sulfurreducens inoculation. S. oneidensis was tested negligible for Hg methylation and only 12.06nM of MeHg was determined. Iron reduction could potentially influence Hg methylation rates. The increase in MeHg was consistent with high rate of iron reduction, indicating that Fe(III) reduction stimulated the formation of MeHg. Furthermore, the net MeHg concentration increased at low Fe(III) additions from 1.78 to 3.57mM, and then decreased when the added Fe(III) was high from 7.14 to 17.85mM. The mercury methylation rate was suppressed with high Fe(III) additions, which might have been attributable to mercury complexation and low availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Rapid classification of heavy metal-exposed freshwater bacteria by infrared spectroscopy coupled with chemometrics using supervised method

    Science.gov (United States)

    Gurbanov, Rafig; Gozen, Ayse Gul; Severcan, Feride

    2018-01-01

    Rapid, cost-effective, sensitive and accurate methodologies to classify bacteria are still in the process of development. The major drawbacks of standard microbiological, molecular and immunological techniques call for the possible usage of infrared (IR) spectroscopy based supervised chemometric techniques. Previous applications of IR based chemometric methods have demonstrated outstanding findings in the classification of bacteria. Therefore, we have exploited an IR spectroscopy based chemometrics using supervised method namely Soft Independent Modeling of Class Analogy (SIMCA) technique for the first time to classify heavy metal-exposed bacteria to be used in the selection of suitable bacteria to evaluate their potential for environmental cleanup applications. Herein, we present the powerful differentiation and classification of laboratory strains (Escherichia coli and Staphylococcus aureus) and environmental isolates (Gordonia sp. and Microbacterium oxydans) of bacteria exposed to growth inhibitory concentrations of silver (Ag), cadmium (Cd) and lead (Pb). Our results demonstrated that SIMCA was able to differentiate all heavy metal-exposed and control groups from each other with 95% confidence level. Correct identification of randomly chosen test samples in their corresponding groups and high model distances between the classes were also achieved. We report, for the first time, the success of IR spectroscopy coupled with supervised chemometric technique SIMCA in classification of different bacteria under a given treatment.

  12. CHROMIUM(VI REDUCTION BY A MIXED CULTURE OF SULFATE REDUCING BACTERIA DEVELOPED IN COLUMN REACTOR

    Directory of Open Access Journals (Sweden)

    Cynthia Henny

    2008-03-01

    Full Text Available A lactate enriched mixed sulfate reducing bacteria (SRB culture was examined for the reduction of Cr(VI in a continuous flow system. The influent was mineral salts media added with lactate and sulfate with amounts of 8 and 6 mM respectively as electron donor and electron acceptor. The SRB culture was allowed to stabilize in the column before adding the Cr(VI to the influent. Chromium and sulfate reduction and lactate oxidation were examined by measuring the concentrations of Cr(Vl, sulfate and lactate in the influent and the effluent over time. The experiment was discontinued when Cr(VI concentration in the effiuent was breakthrough. In the absence of Cr(VI, sulfate was not completely reduced in the column, although lactate was completely oxidized and acetate as an intermediate product was not often detected. Almost all of Cr(VI loaded was reduced in the column seeded with the SRB culture at influent Cr(VI concentrations of 192,385 and769 mM. There was no significant Cr(VI loss in the control column, indicating that Cr(VI removal was due to the reduction of Cr(VI to Cr (lll by the SRB culture. The instantaneous Cr(VI removal decreased to a minimum of 32%, 24 days after the influent Cr(VI concentration was increased to 1540 mM, ancl sulfate removal efficiency decreased to a minimum of 17%. The SRB population in the column decreased 100 days after C(VI was added to the column. The total mass of Cr(VI reduced was approximately 878 mmol out of 881 mmol of Cr(Vl loaded in 116 days. The results clearly show that our developed SRB culture could reduced Cr(Vl considerably.

  13. Nanoparticles reduce nickel allergy by capturing metal ions

    Science.gov (United States)

    Vemula, Praveen Kumar; Anderson, R. Rox; Karp, Jeffrey M.

    2011-05-01

    Approximately 10% of the population in the USA suffer from nickel allergy, and many are unable to wear jewellery or handle coins and other objects that contain nickel. Many agents have been developed to reduce the penetration of nickel through skin, but few formulations are safe and effective. Here, we show that applying a thin layer of glycerine emollient containing nanoparticles of either calcium carbonate or calcium phosphate on an isolated piece of pig skin (in vitro) and on the skin of mice (in vivo) prevents the penetration of nickel ions into the skin. The nanoparticles capture nickel ions by cation exchange, and remain on the surface of the skin, allowing them to be removed by simple washing with water. Approximately 11-fold fewer nanoparticles by mass are required to achieve the same efficacy as the chelating agent ethylenediamine tetraacetic acid. Using nanoparticles with diameters smaller than 500 nm in topical creams may be an effective way to limit the exposure to metal ions that can cause skin irritation.

  14. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System.

    Science.gov (United States)

    Gomez-Smith, C Kimloi; LaPara, Timothy M; Hozalski, Raymond M

    2015-07-21

    The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 10(7) copies cm(-2)), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 10(6) copies cm(-2)). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the

  15. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats

    Directory of Open Access Journals (Sweden)

    Jackson Z Lee

    2014-02-01

    Full Text Available Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB. However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico -- permanently submerged Microcoleus microbial mats (GN-S, and intertidal Lyngbya microbial mats (GN-I -- were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU, molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of dsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and nanoSIMS (secondary ion mass-spectrometry indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.

  16. Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents

    Science.gov (United States)

    Bhardwaj, Garima; Yazici, Hilal; Webster, Thomas J.

    2015-04-01

    Reducing bacterial density on titanium implant surfaces has been a major concern because of the increasing number of nosocomial infections. Controlling the inflammatory response post implantation has also been an important issue for medical devices due to the detrimental effects of chronic inflammation on device performance. It has recently been demonstrated that manipulating medical device surface properties including chemistry, roughness and wettability can control both infection and inflammation. Here, we synthesized nanophase (that is, materials with one dimension in the nanoscale) hydroxyapatite coatings on titanium to reduce bacterial adhesion and inflammatory responses (as measured by macrophage functions) and compared such results to bare titanium and plasma sprayed hydroxyapatite titanium coated surfaces used clinically today. This approach is a pharmaceutical-free approach to inhibit infection and inflammation due to the detrimental side effects of any drug released in the body. Here, nanophase hydroxyapatite was synthesized in sizes ranging from 110-170 nm and was subsequently coated onto titanium samples using electrophoretic deposition. Results indicated that smaller nanoscale hydroxyapatite features on titanium surfaces alone decreased bacterial attachment in the presence of gram negative (P. aeruginosa), gram positive (S. aureus) and ampicillin resistant gram-negative (E. coli) bacteria as well as were able to control inflammatory responses; properties which should lead to their further investigation for improved medical applications.

  17. Removal of sulphates from waste waters by sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2002-03-01

    Full Text Available are present in almost all types of water, usually as a simple anion SO42-. The sulphates together with hydrogencarbonates and chlorides are principal anions in natural waters. In typical underground and surface waters, the concentration of sulphates is in the range from ten to hundreds milligrams per litre.Nowadays, the importance of the control of sulphate concentration in waste waters increases. According to the Slovak legislation the limit concentration of sulphates in surface and drinking waters is 250 mg.l-1 . In rivers the contents of sulphates increases mainly by the discharge of waste waters, which are coming mainly from chemical, textile, metallurgical, pharmaceutical, paper and mining industry. The concentration of sulphates in these waters is in the order of grams per litre.Many technologies for the sulphates removal from waste waters exist, including biologico-chemical processes. The principle of one of these methods is the reduction of sulphates by sulphate-reducing bacteria to hydrogen-sulphide.The objective of this work was to study the effect of initial sulphates concentration on the activity of anaerobic sulphate reducers as well as the kinetics of the anaerobic sulphate reduction. The batch reactor was used at temperature of 30°C and pH 7,5. Lactate was used as the carbon source.

  18. Evaluation of probiotic potential of lactic acid bacteria to reduce in vitro cholesterol

    Directory of Open Access Journals (Sweden)

    Clementina Cueto

    2012-03-01

    Full Text Available Daily consumption of probiotics reduce levels of serum cholesterol by up to 3%, which is significant to prevent hypercholesterolemia, a risk factor for cardiovascular disease and cause of mortality. The genus Lactobacillus is used in industry as a probiotic and some species reduce serum cholesterol by two mechanisms, the adsorption of cholesterol and the production of the enzyme bile salt hydrolase, which vary according to species. The aim of the study was to assess the ability of probiotic bacteria group isolated from coast serum. 53 strains were isolated from nine coastal serum sample; the sensitivity to cefoxitin and vancomycin, and the tolerance to pH 2.0 and 0.3% bile salts were evaluated to determine its probiotic potential. Five microorganisms were selected and molecularly identified as Lactobacillus fermentum. The ability to absorb cholesterol measured by the method of Kimoto, showed a reduction of 53.06 ± 2.69 µg.mL-1 for strain K73 and 7.23 ± 2.69 µg. mL-1 for K75. These same strains showed the highest total and specific activity of the enzyme. The results didn´t show a relationship between the production of enzyme and adsorption of cholesterol. The strain with the greatest probiotic potential was K73. This hypocholesterolemic property will give strains added value to start the search for food matrices that allow decreasing serum cholesterol levels.

  19. Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria.

    Science.gov (United States)

    Abu Laban, Nidal; Selesi, Drazenka; Jobelius, Carsten; Meckenstock, Rainer U

    2009-06-01

    Despite its high chemical stability, benzene is known to be biodegradable with various electron acceptors under anaerobic conditions. However, our understanding of the initial activation reaction and the responsible prokaryotes is limited. In the present study, we enriched a bacterial culture that oxidizes benzene to carbon dioxide under sulfate-reducing conditions. Community analysis using terminal restriction fragment length polymorphism, 16S rRNA gene sequencing and FISH revealed 95% dominance of one phylotype that is affiliated to the Gram-positive bacterial genus Pelotomaculum showing that sulfate-reducing Gram-positive bacteria are involved in anaerobic benzene degradation. In order to get indications of the initial activation mechanism, we tested the substrate utilization, performed cometabolism tests and screened for putative metabolites. Phenol, toluene, and benzoate could not be utilized as alternative carbon sources by the benzene-degrading culture. Cometabolic degradation experiments resulted in retarded rates of benzene degradation in the presence of phenol whereas toluene had no effect on benzene metabolism. Phenol, 2-hydroxybenzoate, 4-hydroxybenzoate, and benzoate were identified as putative metabolites in the enrichment culture. However, hydroxylated aromatics were shown to be formed abiotically. Thus, the finding of benzoate as an intermediate compound supports a direct carboxylation of benzene as the initial activation mechanism but additional reactions leading to its formation cannot be excluded definitely.

  20. Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra (Hibiscus esculentus L.) in chromium contaminated soils.

    Science.gov (United States)

    Maqbool, Zahid; Asghar, Hafiz Naeem; Shahzad, Tanvir; Hussain, Sabir; Riaz, Muhammad; Ali, Shafaqat; Arif, Muhammad Saleem; Maqsood, Marium

    2015-04-01

    Hexavalent chromium [Cr (VI)], extensively used in different industries, is one of the most toxic heavy metals. The Cr (VI) reducing bacteria could be helpful in decreasing its toxic effects. The present study was conducted to evaluate the potential of Cr (VI) reducing bacteria to improve growth and yield of okra (Hibiscus esculentus L.) in Cr-contaminated soils. Most of the selected bacterial isolates significantly increased the growth and yield of okra. Maximum response was observed in the plants inoculated with the isolate K12 where plant height, root length, fruit weight and number of fruits per plant increased up to 77.5 percent, 72.6 percent, 1.4 fold and 2.9 fold, respectively. Moreover, inoculation with bacteria caused significant decrease in Cr (VI) concentration in soil and plant parts across all treatments. The maximum decrease of 69.6, 56.1 and 40.0 percent in Cr (VI) concentrations in soil, plant vegetative parts and plant reproductive parts, respectively, was observed in the treatment inoculated with the strain K12. Based on amplification, sequencing and analysis of 16S rDNA sequence, the strain K12 was found belonging to genus Brucella and was designated as Brucella sp. K12. These findings suggest that the strain K12 may serve as a potential bioresource to improve crop production in Cr-contaminated soils. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Diversity, metal resistance and uranium sequestration abilities of bacteria from uranium ore deposit in deep earth stratum.

    Science.gov (United States)

    Islam, Ekramul; Sar, Pinaki

    2016-05-01

    Metal resistance and uranium (U) sequestration abilities of bacteria residing in subsurface U ore was investigated using 122 pure culture strains isolated through enrichment. The cumulative frequencies of isolates resistant to each metal tested were as follows: As(V), 74%; Zn, 58%; Ni, 53%; Cd, 47%; Cr(VI), 41%; Co, 40%; Cu, 20%; and Hg, 4%. 16S rRNA gene analysis revealed that isolated bacteria belonged to 14 genera with abundance of Arthrobacter, Microbacterium, Acinetobacter and Stenotrophomonas. Cobalt did not interfere with the growth of most of the bacterial isolates belonging to different groups while U allowed growth of four different genera of which Stenotrophomonas and Microbacterium showed high U tolerance. Interestingly, tolerance to Ni, Zn, Cu, and Hg was observed only in Microbacterium, Arthrobacter, Paenibacillus¸ and Acinetobacter, respectively. However, Microbacterium was found to be dominant when isolated from other five different metal enrichments including U. Uranium removal study showed that 84% of the test bacteria could remove more than 50mgUg(-1) dry weight from 80 or 160mgL(-1) U within 48h. In general, Microbacterium, Arthrobacter and Acinetobacter could remove a higher amount of U. High resolution transmission electron microscopy (HRTEM) study of U exposed cells revealed that accumulated U sequestered mostly around the cell periphery. The study highlights that indigenous U ore deposit bacteria have the potential to interact with U, and thus could be applied for bioremediation of U contaminated sites or wastes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria

    International Nuclear Information System (INIS)

    Wang, Peng; Lu, Zhou; Zhang, Dun

    2015-01-01

    Highlights: • Slippery liquid-infused porous surfaces (SLIPS) were fabricated over aluminum. • SLIPS depress the adherence of sulfate reducing bacteria in static seawater. • SLIPS inhibit the microbiological corrosion of aluminum in static seawater. • The possible microbiological corrosion protection mechanism of SLIPS is proposed. - Abstract: Microbiological corrosion induced by sulfate reducing bacteria (SRB) is one of the main threatens to the safety of marine structure. To reduce microbiological corrosion, slippery liquid infused porous surfaces (SLIPS) were designed and fabricated on aluminum substrate by constructing rough aluminum oxide layer, followed by fluorination of the rough layer and infiltration with lubricant. The as-fabricated SLIPS were characterized with wettability measurement, SEM and XPS. Their resistances to microbiological corrosion induced by SRB were evaluated with fluorescence microscopy and electrochemical measurement. It was demonstrated that they present high resistance to bacteria adherence and the resultant microbiological corrosion in static seawater

  3. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    Science.gov (United States)

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. Copyright © 2015, Watts et al.

  4. Isolation of sulfate-reducing bacteria from sediments above the deep-subseafloor aquifer.

    Science.gov (United States)

    Fichtel, Katja; Mathes, Falko; Könneke, Martin; Cypionka, Heribert; Engelen, Bert

    2012-01-01

    On a global scale, crustal fluids fuel a large part of the deep-subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from sediments of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301). The sediments comprise three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone, and a second (∼140 m thick) sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. In order to identify and characterize sulfate-reducing bacteria, enrichment cultures from different sediment layers were set up, analyzed by molecular screening, and used for isolating pure cultures. The initial enrichments harbored specific communities of heterotrophic microorganisms. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp., and Desulfovibrio aespoeensis were isolated only from the top layers (1.3-9.1 meters below seafloor, mbsf), while several strains of Desulfovibrio indonesiensis and a relative of Desulfotignum balticum were obtained from near-basement sediments (240-262 mbsf). Physiological tests on three selected strains affiliated to Dv. aespoeensis, Dv. indonesiensis, and Desulfotignum balticum indicated that all reduce sulfate with a limited number of short-chain n-alcohols or fatty acids and were able to ferment either ethanol, pyruvate, or betaine. All three isolates shared the capacity of growing chemolithotrophically with H(2) as sole electron donor. Strain P23, affiliating with Dv. indonesiensis, even grew autotrophically in the absence of any organic compounds. Thus, H(2) might be an essential electron donor in the deep-subseafloor where the availability of organic substrates is limited. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from the seafloor hundreds

  5. Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater.

    Science.gov (United States)

    San Keskin, Nalan Oya; Celebioglu, Asli; Sarioglu, Omer Faruk; Uyar, Tamer; Tekinay, Turgay

    2018-01-01

    Cyclodextrins (CD) are cyclic oligosaccharides produced from the enzymatic degradation of starch as a white powder form; on the other hand, they can be transformed into ultrathin electrospun fiber form by electrospinning technique. The electrospun cyclodextrin fibers (CD-F) can be quite attractive materials to encapsulate bacteria for bioremediation purposes. For instance, CD-F not only serve as a carrier matrix but also it serves as a feeding source for the encapsulated bacteria. In the present study, we demonstrate a facile approach by encapsulation of bacteria into CD-F matrix for wastewater treatment application. The natural and non-toxic properties of CD-F render a better bacterial viability for fibrous biocomposite. The encapsulated bacteria in CD-F exhibit cell viability for more than 7days at 4°C storage condition. Furthermore, we have tested the bioremediation capability of bacteria/CD-F biocomposite for the treatment of heavy metals (Nickel(II) and Chromium(VI)) and textile dye (Reactive Black 5, RB5). The bacteria/CD-F biocomposite has shown removal efficiency of Ni(II), Cr(VI) and RB5 as 70±0.2%, 58±1.4% and 82±0.8, respectively. As anticipated, the pollutants removal capabilities of the bacteria/CD-F was higher compare to free bacteria since bacteria can use CD as an extra carbon source which promotes their growth rate. This study demonstrates that CD-F are suitable platforms for the encapsulation of bacterial cells to develop novel biocomposites that have bioremediation capabilities for wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  7. Isolation of Sulfur Reducing and Oxidizing Bacteria Found in Contaminated Drywall

    Directory of Open Access Journals (Sweden)

    Frederick T. Guilford

    2010-02-01

    Full Text Available Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard and subjecting those samples to Real Time Polymerase Chain Reaction [RT-PCR] studies. Specific DNA probes and primers have been designed and patented that detect a specific iron and sulfur reducing bacterium (i.e., Thiobacillus ferrooxidans. One hundred percent of affected drywall samples obtained from homes located in the southeastern United States tested positive for the presence of T. ferrooxidans. All negative controls consisting of unaffected wallboard and internal controls, Geotrichum sp., tested negative within our limits of detection.

  8. Isolation of sulfur reducing and oxidizing bacteria found in contaminated drywall.

    Science.gov (United States)

    Hooper, Dennis G; Shane, John; Straus, David C; Kilburn, Kaye H; Bolton, Vincent; Sutton, John S; Guilford, Frederick T

    2010-02-05

    Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard and subjecting those samples to Real Time Polymerase Chain Reaction [RT-PCR] studies. Specific DNA probes and primers have been designed and patented that detect a specific iron and sulfur reducing bacterium (i.e., Thiobacillus ferrooxidans). One hundred percent of affected drywall samples obtained from homes located in the southeastern United States tested positive for the presence of T. ferrooxidans. All negative controls consisting of unaffected wallboard and internal controls, Geotrichum sp., tested negative within our limits of detection.

  9. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Fátima M.S. Moreira

    2008-12-01

    Full Text Available This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles and genotypically (16S rDNA sequencing, as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22, some (1R, S34 and S22 were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L-1 NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.Objetivou-se avaliar a densidade de populações de bactérias diazotróficas associativas em amostras de solos e de raízes de gramíneas oriundas de sítios contaminados com metais pesados, e caracterizar isolados destas populações através da análise fenotípica (tolerância aos metais pesados zinco e cádmio e à NaCl in vitro, perfis protéicos, e genotípica (seqüenciamento de 16S rDNA, comparados às estirpes tipo das mesmas espécies. As densidades foram avaliadas nos meios NFb, Fam e LGI, comumente utilizados para culturas de enriquecimento de populações de bactérias diazotróficas associativas. As densidades

  10. Nitrogen Fixation By Sulfate-Reducing Bacteria in Coastal and Deep-Sea Sediments

    Science.gov (United States)

    Bertics, V. J.; Löscher, C.; Salonen, I.; Schmitz-Streit, R.; Lavik, G.; Kuypers, M. M.; Treude, T.

    2011-12-01

    Sulfate-reducing bacteria (SRB) can greatly impact benthic nitrogen (N) cycling, by for instance inhibiting coupled denitrification-nitrification through the production of sulfide or by increasing the availability of fixed N in the sediment via dinitrogen (N2)-fixation. Here, we explored several coastal and deep-sea benthic habitats within the Atlantic Ocean and Baltic Sea, for the occurrence of N2-fixation mediated by SRB. A combination of different methods including microbial rate measurements of N2-fixation and sulfate reduction, geochemical analyses (porewater nutrient profiles, mass spectrometry), and molecular analyses (CARD-FISH, HISH-SIMS, "nested" PCR, and QPCR) were applied to quantify and identify the responsible processes and organisms, respectively. Furthermore, we looked deeper into the question of whether the observed nitrogenase activity was associated with the final incorporation of N into microbial biomass or whether the enzyme activity served another purpose. At the AGU Fall Meeting, we will present and compare data from numerous stations with different water depths, temperatures, and latitudes, as well as differences in key geochemical parameters, such as organic carbon content and oxygen availability. Current metabolic and molecular data indicate that N2-fixation is occurring in many of these benthic environments and that a large part of this activity may linked to SRB.

  11. Biostrategic Removal of Sulphur Contamination in Groundwater With Sulphur-Reducing Bacteria: A Review

    Directory of Open Access Journals (Sweden)

    Sandeep Satapathy

    2017-02-01

    Full Text Available The rapid growth in the use of fertilizers and pesticides in agriculture, excessive extraction of groundwater, and rise in the number of industries with inefficient waste disposal system have been some of the key factors in degradation of groundwater quality during the past years. Although groundwater is considered as a valuable natural resource, the quality control of this resource has systematically failed in India. Irrespective of rural or urban locations, the average sulphate contamination of groundwater in India has reached 90 to 150 mg/L. Such a borderline contamination concentration poses threat both to livelihood and to economy. In addition, the negative health effects of sulphate-contaminated drinking water can range from dermatitis to lung problems and skin cancer. The biostrategic manipulation of groundwater discussed in this article involves sulphate-reducing bacteria used in addition to a 3-step procedure involving constitutive aeration, filtration, and shock chlorination. With earlier use of a similar strategy in the United States and Europe proven to be beneficial, we propose a combinatorial and economical approach for processing of groundwater for removal of sulphur contamination, which still largely remains unnoticed and neglected.

  12. Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria

    Directory of Open Access Journals (Sweden)

    Furukawa Yoko

    2005-10-01

    Full Text Available Experimental batch and miscible-flow cultures were studied in order to determine the mechanistic pathways of microbial Fe(III respiration in ferruginous smectite clay, NAu-1. The primary purpose was to resolve if alteration of smectite and release of Fe precedes microbial respiration. Alteration of NAu-1, represented by the morphological and mineralogical changes, occurred regardless of the extent of microbial Fe(III reduction in all of our experimental systems, including those that contained heat-killed bacteria and those in which O2, rather than Fe(III, was the primary terminal electron acceptor. The solid alteration products observed under transmission electron microscopy included poorly crystalline smectite with diffuse electron diffraction signals, discrete grains of Fe-free amorphous aluminosilicate with increased Al/Si ratio, Fe-rich grains, and amorphous Si globules in the immediate vicinity of bacterial cells and extracellular polymeric substances. In reducing systems, Fe was also found as siderite. The small amount of Fe partitioned to the aqueous phase was primarily in the form of dissolved Fe(III species even in the systems in which Fe(III was the primary terminal electron acceptor for microbial respiration. From these observations, we conclude that microbial respiration of Fe(III in our laboratory systems proceeded through the following: (1 alteration of NAu-1 and concurrent release of Fe(III from the octahedral sheets of NAu-1; and (2 subsequent microbial respiration of Fe(III.

  13. Carbon steel corrosion induced by sulphate-reducing bacteria in artificial seawater: electrochemical and morphological characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Mariana Silva de; Goncalves, Marcia Monteiro Machado; Rola, Monick Alves da Cruz; Maciel, Diana Jose; Senna, Lilian Ferreira de; Lago, Dalva Cristina Baptista do, E-mail: sdp.mari@gmail.com, E-mail: marciamg@uerj.br, E-mail: monickcruz@yahoo.com.br, E-mail: dijmaciel@gmail.com, E-mail: lsenna@uerj.br, E-mail: dalva@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Instituto de Quimica

    2016-10-15

    In this work, the corrosion behavior of carbon steel AISI 1020 was evaluated in artificial seawater in the presence of mixed sulfate-reducing bacteria (SRB) culture isolated from the rust of a pipeline. The corrosion evaluation was performed by electrochemical techniques (open circuit potential (E{sub ocp}), polarization curves and electrochemical impedance spectroscopy (EIS)), while the formation of a biofilm and corrosion products were observed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). The presence of SRB in the medium shifted the open circuit potential to more positive values and increased the corrosion rate of the steel. Electrochemical and morphological techniques confirmed the presence of a biofilm on the steel surface. EDS spectra data showed the presence of sulfur in the corrosion products. After removing the biofilm, localized corrosion was observed on the surface, confirming that localized corrosion had occurred. The biogenic sulfide may lead to the formation of galvanic cells and contributes to cathodic depolarization. (author)

  14. Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth.

    Science.gov (United States)

    Traore, A S; Hatchikian, C E; Belaich, J P; Le Gall, J

    1981-01-01

    The metabolism of Desulfovibrio vulgaris Hildenborough grown on medium containing lactate or pyruvate plus a high concentration of sulfate (36 mM) was studied. Molecular growth yields were 6.7 +/- 1.3 and 10.1 +/- 1.7 g/mol for lactate and pyruvate, respectively. Under conditions in which the energy source was the sole growth-limiting factor, we observed the formation of 0.5 mol of hydrogen per mol of lactate and 0.1 mol of hydrogen per mol of pyruvate. The determination of metabolic end products revealed that D. vulgaris produced, in addition to normal end products (acetic acid, carbon dioxide, hydrogen sulfide) and molecular hydrogen, 2 and 5% of ethanol per mol of lactate and pyruvate, respectively. Power-time curves of growth of D. vulgaris on lactate and pyruvate were obtained, by the microcalorimetric Tian-Calvet apparatus. The enthalpies (delta Hmet) associated with the oxidation of these substrates and calculated from growth thermograms were -36.36 +/- 5 and -70.22 +/- 3 kJ/mol of lactate and pyruvate, respectively. These experimental values were in agreement with the homologous values assessed from the theoretical equations of D. vulgaris metabolism of both lactate and pyruvate. The hydrogen production by this sulfate reducer constitutes an efficient regulatory system of electrons, from energy source through the pathway of sulfate reduction. This hydrogen value may thus facilitate interactions between this strain and other environmental microflora, especially metagenic bacteria.

  15. Effect of uranium (VI) on two sulphate-reducing bacteria cultures from a uranium mine site

    International Nuclear Information System (INIS)

    Martins, Monica; Faleiro, Maria Leonor; Chaves, Sandra; Tenreiro, Rogerio; Costa, Maria Clara

    2010-01-01

    This work was conducted to assess the impact of uranium (VI) on sulphate-reducing bacteria (SRB) communities obtained from environmental samples collected on the Portuguese uranium mining area of Urgeirica. Culture U was obtained from a sediment, while culture W was obtained from sludge from the wetland of that mine. Temperature gradient gel electrophoresis (TGGE) was used to monitor community changes under uranium stress conditions. TGGE profiles of dsrB gene fragment demonstrated that the initial cultures were composed of SRB species affiliated with Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Desulfomicrobium spp. (sample U), and by species related to D. desulfuricans (sample W). A drastic change in SRB communities was observed as a result of uranium (VI) exposure. Surprisingly, SRB were not detected in the uranium removal communities. Such findings emphasize the need of monitoring the dominant populations during bio-removal studies. TGGE and phylogenetic analysis of the 16S rRNA gene fragment revealed that the uranium removal consortia are composed by strains affiliated to Clostridium genus, Caulobacteraceae and Rhodocyclaceae families. Therefore, these communities can be attractive candidates for environmental biotechnological applications associated to uranium removal.

  16. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures.

    Science.gov (United States)

    Païssé, Sandrine; Ghiglione, Jean-François; Marty, Florence; Abbas, Ben; Gueuné, Hervé; Amaya, José Maria Sanchez; Muyzer, Gerard; Quillet, Laurent

    2013-08-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically active SRB within five natural corrosion deposits located within tidal or low water zone and showing either normal or accelerated corrosion. By using molecular techniques, such as quantitative real-time polymerase chain reaction, denaturing gel gradient electrophoresis, and sequence cloning based on 16S rRNA, dsrB genes, and their transcripts, we demonstrated a clear distinction between SRB population structure inhabiting normal or accelerated low-water corrosion deposits. Although SRB were present in both normal and accelerated low-water corrosion deposits, they dominated and were exclusively active in the inner and intermediate layers of accelerated corrosion deposits. We also highlighted that some of these SRB populations are specific to the accelerated low-water corrosion deposit environment in which they probably play a dominant role in the sulfured corrosion product enrichment.

  17. Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy

    Science.gov (United States)

    Alawi, Mashal; Lerm, Stephanie; Vetter, Alexandra; Wolfgramm, Markus; Seibt, Andrea; Würdemann, Hilke

    2011-06-01

    Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61°C to 103°C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems.

  18. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    Directory of Open Access Journals (Sweden)

    Ulrike eJaekel

    2015-02-01

    Full Text Available The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5×0.8 m. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkanes propane and n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes.

  19. Long-term surveillance of sulfate-reducing bacteria in highly saline industrial wastewater evaporation ponds.

    Science.gov (United States)

    Ben-Dov, Eitan; Kushmaro, Ariel; Brenner, Asher

    2009-02-18

    Abundance and seasonal dynamics of sulfate-reducing bacteria (SRB), in general, and of extreme halophilic SRB (belonging to Desulfocella halophila) in particular, were examined in highly saline industrial wastewater evaporation ponds over a forty one month period. Industrial wastewater was sampled and the presence of SRB was determined by quantitative real-time PCR (qPCR) with a set of primers designed to amplify the dissimilatory sulfite reductase (dsrA) gene. SRB displayed higher abundance during the summer (10(6)-10(8) targets ml(-1)) and lower abundance from the autumn-spring (10(3)-10(5) targets ml(-1)). However, addition of concentrated dissolved organic matter into the evaporation ponds during winter immediately resulted in a proliferation of SRB, despite the lower wastewater temperature (12-14 degrees C). These results indicate that the qPCR approach can be used for rapid measurement of SRB to provide valuable information about the abundance of SRB in harsh environments, such as highly saline industrial wastewaters. Low level of H2S has been maintained over five years, which indicates a possible inhibition of SRB activity, following artificial salination (approximately 16% w/v of NaCl) of wastewater evaporation ponds, despite SRB reproduction being detected by qPCR.

  20. Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection.

    Science.gov (United States)

    Qi, Peng; Zhang, Dun; Zeng, Yan; Wan, Yi

    2016-01-15

    CdS nanoparticles were synthesized with an environmentally friendly method by taking advantage of the characteristic metabolic process of sulfate-reducing bacteria (SRB), and used as fluorescence labels for SRB detection. The presence of CdS nanoparticles was observed within and immediately surrounded bacterial cells, indicating CdS nanoparticles were synthesized both intracellularly and extracellularly. Moreover, fluorescent properties of microbial synthesized CdS nanoparticles were evaluated for SRB detection, and a linear relationship between fluorescence intensity and the logarithm of bacterial concentration was obtained in the range of from 1.0×10(2) to 1.0×10(7)cfu mL(-1). The proposed SRB detection method avoided the use of biological bio-recognition elements which are easy to lose their specific recognizing abilities, and the bacterial detection time was greatly shortened compared with the widely used MPN method which would take up to 15 days to accomplish the detection process. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem

    Science.gov (United States)

    Garrelfs, Julia

    2014-01-01

    About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

  2. Bacteria killing nanotechnology Bio-Kil effectively reduces bacterial burden in intensive care units.

    Science.gov (United States)

    Hsueh, P-R; Huang, H-C; Young, T-G; Su, C-Y; Liu, C-S; Yen, M-Y

    2014-04-01

    A contaminated hospital environment has been identified as an important reservoir of pathogens causing healthcare-associated infections. This study is to evaluate the efficacy of bacteria killing nanotechnology Bio-Kil on reducing bacterial counts in an intensive care unit (ICU). Two single-bed rooms (S-19 and S-20) in the ICU were selected from 7 April to 27 May 2011. Ten sets of new textiles (pillow cases, bed sheets, duvet cover, and patient clothing) used by patients in the two single-bed rooms were provided by the sponsors. In the room S-20, the 10 sets of new textiles were washed with Bio-Kil; the room walls, ceiling, and air-conditioning filters were treated with Bio-Kil; and the surfaces of instruments (respirator, telephone, and computer) were covered with Bio-Kil-embedded silicon pads. Room S-19 served as the control. We compared the bacterial count on textiles and environment surfaces as well as air samples between the two rooms. A total of 1,364 samples from 22 different sites in each room were collected. The mean bacterial count on textiles and environmental surfaces in room S-20 was significantly lower than that in room S-19 (10.4 vs 49.6 colony-forming units [CFU]/100 cm(2); P < 0.001). Room S-20 had lower bacterial counts in air samples than room S-19 (33.4-37.6 vs 21.6-25.7 CFU/hour/plate; P < 0.001). The density of microbial isolations was significantly greater among patients admitted to room S-19 than those to room S-20 (9.15 vs 5.88 isolates per 100 patient-days, P < 0.05). Bio-Kil can significantly reduce bacterial burden in the environment of the ICU.

  3. Can treatment and disposal costs be reduced through metal recovery?

    Science.gov (United States)

    Smith, Kathleen S.; Figueroa, Linda; Plumlee, Geoffrey S.

    2015-01-01

    This paper describes a framework to conduct a “metal-recovery feasibility assessment” for mining influenced water (MIW) and associated treatment sludge. There are multiple considerations in such a determination, including the geologic/geochemical feasibility, market feasibility, technical feasibility, economic feasibility, and administrative feasibility. Each of these considerations needs to be evaluated to determine the practicality of metal recovery from a particular MIW.

  4. An analysis of harmful factors to storage stability of the reduced metallic spent fuel

    International Nuclear Information System (INIS)

    Joo, Z. S.; Yoo, K. S.; Cho, I. J.; Kook, D. H.; Lee, J. C.; Lee, E. P.

    2002-01-01

    To analyze harmful factors for the reduced uranium metal, which was mainly composed of uranium, several basic properties such as microstructure, immiscibility, thermal, fission product effects were surveyed. And the oxidation properties of metal uranium and uranium alloys were also studied to select alloying elements for producing a stable uranium metal

  5. Mobility and survival of sulphate-reducing bacteria in compacted and fully water saturated bentonite - microstructural aspects

    International Nuclear Information System (INIS)

    Pusch, R.

    1999-12-01

    Sulphate-reducing bacteria will not be able to enter MX-80 buffer clay with the intended bulk density, i.e. 1900-2100 kg/m 3 . Nor will they be able to survive and migrate in such environment. The only circumstances under which sulphate-reducing bacteria can enter, survive and migrate in engineered soil barriers in a KBS-3-type repository are those prevailing in backfills with lower MX-80 contents than about 10 % or in more smectite-rich, poorly compacted backfills saturated with electrolyte-rich pore water with Ca as dominating cation. In the phase of hydration and expansion of canister-embedding buffer, bacteria can enter the initially very soft clay gel at the rock/buffer contact to a depth of about a centimeter

  6. Mobility and survival of sulphate-reducing bacteria in compacted and fully water saturated bentonite - microstructural aspects

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden)

    1999-12-01

    Sulphate-reducing bacteria will not be able to enter MX-80 buffer clay with the intended bulk density, i.e. 1900-2100 kg/m{sup 3}. Nor will they be able to survive and migrate in such environment. The only circumstances under which sulphate-reducing bacteria can enter, survive and migrate in engineered soil barriers in a KBS-3-type repository are those prevailing in backfills with lower MX-80 contents than about 10 % or in more smectite-rich, poorly compacted backfills saturated with electrolyte-rich pore water with Ca as dominating cation. In the phase of hydration and expansion of canister-embedding buffer, bacteria can enter the initially very soft clay gel at the rock/buffer contact to a depth of about a centimeter.

  7. The Effect of Biofertilizer on The Diversity of N2O Reducing Bacteria in Paddy Fields of Sukabumi, Indonesia

    Directory of Open Access Journals (Sweden)

    Alfan Cahyadi

    2017-12-01

    Full Text Available Some of the methanotrophic bacteria and N2O reducing bacteria have been proven to be able to support the plant growth and increase the productivity of paddy. However effect of the methanotrophic and N2O reducing bacteria application as a biofertilizer to indigenous N2O reducing bacteria is still not well known yet. The aim of this study was to analyze the diversity of N2O reducing bacteria in lowland paddy soil based on a nosZ gene. Soil samples were taken from lowland paddy soils in Pelabuhan Ratu Sukabumi, West Java, Indonesia. There were two treatments for the paddy field soil, ie. biofertilizer-treated field 20% fertilizer (50 kg/ha with the addition of biofertilizer and 100% fertilizer. PCR amplification of nosZ gene was successfully conducted using nosZF and nosZR primer pair. Denaturing Gradient Gel Electrophoresis (DGGE process was conducted at 150 V for 5.5h. There were three differences nosZ bands were sequenced. The phylogenetic analysis showed that they were close to uncultured bacteria. Microbial diversity in the biofertilizer-treated field was higher than that of in the 100% fertilizer-treated field. The biofertilizer treatment has higher in microbial diversity than that of applied non-biofertilizer paddy fields. This research might have impact in the application of biofertilizers due to the emission of N2O as a green house gas from paddy fields farming activity. The biofertilizer has great potential application in sustainable environmental friendly agriculture systems.

  8. Influence of Sulfate-Reducing Bacteria on the Corrosion Residual Strength of an AZ91D Magnesium Alloy

    Science.gov (United States)

    Zhu, Xianyong; Liu, Yaohui; Wang, Qiang; Liu, Jiaan

    2014-01-01

    In this paper, the corrosion residual strength of the AZ91D magnesium alloy in the presence of sulfate-reducing bacteria is studied. In the experiments, the chemical composition of corrosion film was analyzed by a scanning electron microscope with energy dispersive X-ray spectroscopy. In addition, a series of instruments, such as scanning electronic microscope, pH-meter and an AG-10TA materials test machine, were applied to test and record the morphology of the corrosion product, fracture texture and mechanical properties of the AZ91D magnesium alloy. The experiments show that the sulfate-reducing bacteria (SRB) play an important role in the corrosion process of the AZ91D magnesium alloy. Pitting corrosion was enhanced by sulfate-reducing bacteria. Corrosion pits are important defects that could lead to a significant stress concentration in the tensile process. As a result, sulfate-reducing bacteria influence the corrosion residual strength of the AZ91D magnesium alloy by accelerating pitting corrosion. PMID:28788236

  9. Comparison of electrochemical techniques during the corrosion of X52 pipeline steel in the presence of sulfate reducing bacteria (SRB)

    Energy Technology Data Exchange (ETDEWEB)

    Galvan-Martinez, R.; Genesca, J. [Universidad Nacional Autonoma de Mexico (UNAM), Facultad de Quimica, Depto. de Ingenieria Metalurgica, Ciudad Universitaria. Mexico DF, CP 04510 (Mexico); Garcia-Caloca, G.; Duran-Romero, R.; Mendoza-Flores, J. [Instituto Mexicano del Petroleo, Direccion Ejecutiva de Exploracion y Produccion, Corrosion, Eje Central Lazaro Cardenas 152, Mexico D.F., 07730 (Mexico); Torres-Sanchez, R. [Universidad Michoacana de San Nicolas de Hidalgo, Instituto de Investigaciones, Metalurgicas. Edificio ' ' U' ' , C.U. Morelia, Michoacan (Mexico)

    2005-10-01

    This work compares three electrochemical techniques, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN), used in the study of corrosion of X52 steel samples in an environment containing a culture of sulfate reducing bacteria (SRB). The study emphasizes the different electrochemical information obtained when using these techniques in microbiologically influenced corrosion (MIC) studies. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  10. Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens

    Directory of Open Access Journals (Sweden)

    Elena eDalla Vecchia

    2014-08-01

    Full Text Available Desulfotomaculum reducens strain MI-1 is a Gram-positive, sulfate-reducing bacterium also capable of reducing Fe(III. Metal reduction in Gram-positive bacteria is poorly understood. Here, we investigated Fe(III reduction with lactate, a non-fermentable substrate, as the electron donor. Lactate consumption is concomitant to Fe(III reduction, but does not support significant growth, suggesting that little energy can be conserved from this process and that it may occur fortuitously. D. reducens can reduce both soluble (Fe(III-citrate and insoluble (hydrous ferric oxide, HFO Fe(III. Because physically inaccessible HFO was not reduced, we concluded that reduction requires direct contact under these experimental conditions. This implies the presence of a surface exposed reductase capable of transferring electrons from the cell to the extracellular electron acceptor. With the goal of characterizing the role of surface proteins in D. reducens and of identifying candidate Fe(III reductases, we carried out an investigation of the surface proteome (surfaceome of D. reducens. Cell surface exposed proteins were extracted by trypsin cell shaving or by lysozyme treatment, and analyzed by liquid chromatography-tandem mass spectrometry. This investigation revealed that the surfaceome fulfills many functions, including solute transport, protein export, maturation and hydrolysis, peptidoglycan synthesis and modification, and chemotaxis. Furthermore, a few redox-active proteins were identified. Among these, three are putatively involved in Fe(III reduction, i.e., a membrane-bound hydrogenase 4Fe-4S cluster subunit (Dred_0462, a heterodisulfide reductase subunit A (Dred_0143 and a protein annotated as alkyl hydroperoxide reductase but likely functioning as a thiol-disulfide oxidoreductase (Dred_1533.

  11. Metal scarcity and sustainability, analyzing the necessity to reduce the extraction of scarce metals

    NARCIS (Netherlands)

    Henckens, M. L C M; Driessen, P. P J; Worrell, E.

    2014-01-01

    There is debate whether or not further growth of metal extraction from the earth's crust will be sustainable in connection with geologic scarcity. Will future generations possibly face a depletion of specific metals? We study whether, for which metals and to what extent the extraction rate would

  12. Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: their potential use in wastewater treatment.

    Science.gov (United States)

    Naureen, Ayesha; Rehman, Abdul

    2016-08-01

    Arsenite oxidizing bacteria, isolated from industrial wastewater, showed high resistance against arsenite (40 mM) and other heavy metals (10 mM Pb; 8 mM Cd; 6 mM Cr; 10 mM Cu and 26.6 mM As(5+)). Bacterial isolates were characterized, on the basis of morphological, biochemical and 16S rRNA ribotyping, as Bacillus cereus (1.1S) and Acinetobacter junii (1.3S). The optimum temperature and pH for the growth of both strains were found to be 37 °C and 7. Both the strains showed maximum growth after 24 h of incubation. The predominant form of arsenite oxidase was extracellular in B. cereus while in A. junii both types of activities, intracellular and extracellular, were found. The extracellular aresenite oxidase activity was found to be 730 and 750 µM/m for B. cereus and A. junii, respectively. The arsenite oxidase from both bacterial strains showed maximum activity at 37 °C, pH 7 and enhanced in the presence of Zn(2+). The presence of two protein bands with molecular weight of approximately 70 and 14 kDa in the presence of arsenic points out a possible role in arsenite oxidation. Arsenite oxidation potential of B. cereus and A. junii was determined up to 92 and 88 % in industrial wastewater after 6 days of incubation. The bacterial treated wastewater improved the growth of Vigna radiata as compared to the untreated wastewater. It indicates that these bacterial strains may find some potential applications in wastewater treatment systems to transform toxic arsenite into less toxic form, arsenate.

  13. Mo enrichment in black shale and reduction of molybdate by sulfate-reducing bacteria (SRB) (Invited)

    Science.gov (United States)

    Xu, H.; Barton, L. L.

    2010-12-01

    The Lower Cambrian Black shale in Zunyi area of Guizhou Province, Southern China contains significant amount of Mo, As, and sulfide minerals. Additionally, Mo and sulfides are closely associated with organic matter of kerogen. Transmission electron microscopy (TEM) results show pyrite micro-crystals and Mo-As-S-bearing carbon (kerogen). High-resolution TEM image shows that Mo-rich areas are Mo-sulfide (molybdenite) layers that form poorly crystalline structures in organic carbon matrix. X-ray energy-dispersive spectra (EDS) indicate composition from the pyrite and the Mo-rich area. The black shale is very unique because of its high Mo concentration. One possible mechanism for enriching Mo from paleo-seawater is the involvement of SRB. Molybdate is an essential trace element required by biological systems including the anaerobic sulfate-reducing bacteria (SRB); however, detrimental consequences may occur if molybdate is present in high concentrations in the environment. We followed the growth of Desulfovibrio gigas ATCC 19364, D. vulgaris Hildenborough, D. desulfuricans DSM 642, and D. desulfuricans DSM 27774 in media containing sub-lethal levels of molybdate and observed a red-brown color in the culture fluid. Spectral analysis of the culture fluid revealed absorption peaks at 467 nm, 395 nm and 314 nm and this color is proposed to be a molybdate-sulfide complex. Reduction of molybdate with the formation of molybdate disulfide occurs in the periplasm D. gigas and D. desulfuricans DSM 642. From these results we suggest that the occurrence of poorly crystalline Mo-sulfides in black shale may be a result from SRB reduction and selective enrichment of Mo in paleo-seawater. We suggest that similar SRB mechanism could cause the Mo enrichment in a ~ 2.5 billion years old late Archean McRae Shale, which is related to the great oxidation event of early earth atmosphere.

  14. Sulfate-reducing bacteria slow intestinal transit in a bismuth-reversible fashion in mice.

    Science.gov (United States)

    Ritz, N L; Lin, D M; Wilson, M R; Barton, L L; Lin, H C

    2017-01-01

    Hydrogen sulfide (H 2 S) serves as a mammalian cell-derived gaseous neurotransmitter. The intestines are exposed to a second source of this gas by sulfate-reducing bacteria (SRB). Bismuth subsalicylate binds H 2 S rendering it insoluble. The aim of this study was to test the hypothesis that SRB may slow intestinal transit in a bismuth-reversible fashion. Eighty mice were randomized to five groups consisting of Live SRB, Killed SRB, SRB+Bismuth, Bismuth, and Saline. Desulfovibrio vulgaris, a common strain of SRB, was administered by gavage at the dose of 1.0 × 10 9 cells along with rhodamine, a fluorescent dye. Intestinal transit was measured 50 minutes after gavage by euthanizing the animals, removing the small intestine between the pyloric sphincter and the ileocecal valve and visualizing the distribution of rhodamine across the intestine using an imaging system (IVIS, Perkin-Elmer). Intestinal transit (n=50) was compared using geometric center (1=minimal movement, 100=maximal movement). H 2 S concentration (n=30) was also measured when small intestinal luminal content was allowed to generate this gas. The Live SRB group had slower intestinal transit as represented by a geometric center score of 40.2 ± 5.7 when compared to Saline: 73.6 ± 5.7, Killed SRB: 77.9 ± 6.9, SRB+Bismuth: 81.0 ± 2.0, and Bismuth: 73.3 ± 4.2 (Pfashion in mice. Our results demonstrate that intestinal transit is slowed by SRB and this effect could be abolished by H 2 S-binding bismuth. © 2016 John Wiley & Sons Ltd.

  15. Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Alawi, Mashal; Lerm, Stephanie; Wuerdemann, Hilke [Helmholtz-Zentrum Potsdam, GFZ Deutsches GeoForschungsZentrum, Internationales Geothermiezentrum, Potsdam (Germany); Vetter, Alexandra [Helmholtz-Zentrum Potsdam, GFZ Deutsches GeoForschungsZentrum, Organische Geochemie, Potsdam (Germany); Wolfgramm, Markus [Geothermie Neubrandenburg GmbH (GTN), Neubrandenburg (Germany); Seibt, Andrea [BWG Geochemische Beratung GbR, Neubrandenburg (Germany)

    2011-06-15

    Abstract Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61 C to 103 C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems. (orig.) [German] Die Verbesserung des Prozessverstaendnisses ist eine grundlegende Voraussetzung fuer eine Optimierung der Betriebssicherheit und der Oekonomie geothermischer Anlagen in Bezug auf die Partikelbildung und Korrosion. Daher wurden Prozessfluide einer Anlage im Molassebecken unter mikrobiologischen, geochemischen und mineralogischen Gesichtspunkten untersucht. Die Fluidtemperatur der vor und nach dem Waermetauscher entnommenen Fluide betrug zwischen 103 C und 61 C. Die Salinitaet variierte zwischen 600 und 900 mg/l und der geloeste organische Kohlenstoff (DOC) lag zwischen 6,4 und 19,3 mg C/l. Die mikrobielle Lebensgemeinschaft in der Anlage wurde mithilfe einer genetischen Fingerprinting-Methode charakterisiert. Hierzu wurde das 16S rRNA Gen sowie die fuer sulfatreduzierende Bakterien (SRB) spezifische dissimilatorische Sulfitreduktase untersucht. In allen

  16. Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea.

    Science.gov (United States)

    Silva, A J; Hirasawa, J S; Varesche, M B; Foresti, E; Zaiat, M

    2006-04-01

    This paper reports on the adhesion of sulfate-reducing bacteria (SRB) and methanogenic archaea on polyurethane foam (PU), vegetal carbon (VC), low-density polyethylene (PE) and alumina-based ceramics (CE). Anaerobic differential reactors fed with a sulfate-rich synthetic wastewater were used to evaluate the formation of a biofilm. The PU presented the highest specific biomass concentration throughout the experiment, achieving 872 mg TVS/g support, while 84 mg TVS/g support was the maximum value obtained for the other materials. FISH results showed that bacterial cells rather than archaeal cells were predominant on the biofilms. These cells, detected with EUB338 probe, accounted for 76.2% (+/-1.6%), 79.7% (+/-1.3%), 84.4% (+/-1.4%) and 60.2% (+/-1.0%) in PU, VC, PE and CE, respectively, of the 4'6-diamidino-2-phenylindole (DAPI)-stained cells. From these percentages, 44.8% (+/-2.1%), 55.4% (+/-1.2%), 32.7% (+/-1.4%) and 18.1% (+/-1.1%), respectively, represented the SRB group. Archaeal cells, detected with ARC915 probe, accounted for 33.1% (+/-1.6%), 25.4% (+/-1.3%), 22.6% (+/-1.1%) and 41.9% (+/-1.0%) in PU, VC, PE and CE, respectively, of the DAPI-stained cells. Sulfate reduction efficiencies of 39% and 45% and mean chemical oxygen demand (COD) removal efficiencies of 86% and 90% were achieved for PU and VC, respectively. The other two supports, PE and CE, provided mean COD removal efficiencies of 84% and 86%, respectively. However, no sulfate reduction was observed with these supports.

  17. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    Directory of Open Access Journals (Sweden)

    Joshua H Daskin

    Full Text Available Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd, is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata. All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to

  18. The Role of Dissolved Organic Matter in Environmental Mercury Methylation by Sulfate- Reducing Bacteria

    Science.gov (United States)

    Moreau, J. W.; Roden, E. E.; Gerbig, C.; Kim, C. S.; Aiken, G. R.; Dewild, J. F.; Krabbenhoft, D. P.

    2007-12-01

    Methylmercury (MeHg) production in the environment is controlled by many factors, including biogeochemical controls on mercury bioavailability. Strong focus has been placed on the role of sulfide concentration in determining mercury speciation and cellular uptake. However, in natural waters, dissolved organic matter (DOM) is both ubiquitous and important in influencing mercury speciation and bioavailability. We revisit this issue with experimental results from methylation assays of sulfate-reducing bacteria with a pure culture, and through synchrotron-based characterization of mercury in simulated natural waters. Pure cultures of Desulfobulbus propionicus, a sulfate-reducing bacterium (SRB) capable of fermentative growth, were allowed to methylate a mercury isotopic tracer present at growth conditions allowed control over ambient sulfide concentrations to favor the predicted dominance of dissolved HgS0. The DOM used was a hydrophobic fraction isolated from Florida Everglades surface water. Results showed that 5-10% of the mercury isotopic tracer was methylated in both DOM-amended and DOM-free cultures. In DOM-amended cultures, 10-20% greater cell growth was observed, suggesting an apparent slower rate of methylation in DOM-free cultures and a beneficial contribution of DOM to cell growth. We note that as much as ~10% of ambient mercury associated with DOM was also methylated, possibly explaining the observed difference in methylation rates in terms of dilution of the total bioavailable mercury pool for DOM-amended cultures. Our observations suggest that, in some cases, DOM- partitioned mercury is subject to microbial methylation at environmentally significant rates. The nature of mercury- sulfide-DOM interaction was investigated in separate experiments. No precipitation was observed in solutions containing DOM and equimolar Hg2+ and aqueous sulfide at concentrations supersaturated with respect to metacinnabar. The equilibrated Hg-S-DOM solution was loaded on

  19. Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela

    Directory of Open Access Journals (Sweden)

    Maura Lina Rojas Pirela

    2014-07-01

    Full Text Available Título en ingles: Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela Título corto: Antibiotic and metal resistance in bacteria from deep subsurface Título en español: Resistencia a antibioticos y metals pesados en bacterias aisladas de subsuelo en la región El Callao, Venezuela Resumen:  Se investigó el efecto de la contaminación con mercurio (Hg en las comunidades bacterianas del subsuelo profundo en la región de El Callao (Estado Bolívar, Venezuela. Se estudiaron comunidades bacterianas de dos niveles de profundidad (-288 m y -388 m en una mina de oro con el propósito de describir las características más relevantes de las bacterias indígenas cultivables que colonizaban esta mina. Se evaluaron los patrones de resistencia a antibióticos y metales pesados, presencia del gen merA y plásmidos en aislados resistentes. Se encontró una elevada frecuencia de bacterias indígenas resistentes al Hg y otros metales pesados. De 76 aislados Hg-resistentes probados 73.7 % fueron adicionalmente resistentes a ampicilina; 86.8 % a cloranfenicol; 67.1 % a tetraciclina; 56.6 % a estreptomicina y 51.3 % a kanamicina. Además, se encontró que 40.74 % (-328 m y 26.53 % (-388 m de las bacterias Hg-resistentes fueron simultáneamente resistentes tanto a cuatro como a cinco de estos antibióticos. Se detectó la presencia de plásmidos de alto y bajo peso molecular y, a pesar de que los aislados mostraban resistencia a compuestos mercuriales, la presencia del gen merA fue detectada solo en 71.05 % de los cepas. Estos resultados sugieren que la exposición a Hg podría ser una presión selectiva en la proliferación de bacterias resistentes a antibióticos y promover el mantenimiento y propagación de estos genes de resistencia. Sin embargo, la existencia de tales resistencias a estas profundidades podría también apoyar la idea de que la resistencia a antibióticos en estas bacterias es

  20. APPLICATION OF METAL RESISTANT BACTERIA BY MUTATIONAL ENHANCMENT TECHNIQUE FOR BIOREMEDIATION OF COPPER AND ZINC FROM INDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    M. R. Shakibaie ، A. Khosravan ، A. Frahmand ، S. Zare

    2008-10-01

    Full Text Available In this research, using mutation in the metal resistant bacteria, the bioremediation of the copper and zinc from copper factory effluents was investigated. Wastewater effluents from flocculation and rolling mill sections of a factory in the city of Kerman were collected and used for further experiments. 20 strains of Pseudomonas spp. were isolated from soil and effluents surrounding factory and identified by microbiological methods. Minimum inhibitory concentrations for copper (Cu and zinc (Zn were determined by agar dilution method. Those strains that exhibited highest minimum inhibitory concentrations values to the metals (5mM were subjected to 400-3200 mg/L concentrations of the three mutagenic agents, acriflavine, acridine orange and ethidium bromide. After determination of subinhibitory concentrations, the minimum inhibitory concentrations values for copper and zinc metal ions were again determined, which showed more than 10 fold increase in minimum inhibitory concentrations value (10 mM for Cu and 20 mM for Zn with P≤0.05. The atomic absorption spectroscopy of dried biomass obtained from resistant strains after exposure to mutagenic agents revealed that strains 13 accumulate the highest amount of intracellular copper (0.35% Cu/mg dried biomass and strain 10 showed highest accumulation of zinc (0.3% Zn/mg dried biomass respectively with P≤0.05. From above results it was concluded that the treatment of industrial waste containing heavy metals by artificially mutated bacteria may be appropriate solution for effluent disposal problems.

  1. Study of sulphate-reducing bacteria corrosion in the weld joint for API X-70 steel

    Directory of Open Access Journals (Sweden)

    Flores, J. E.

    2012-10-01

    Full Text Available The corrosion behavior originated by sulfate-reducing bacteria (SRB was studied in two regions of welded API X-70 steel pipeline. The studies were focused on base material (BM and heat affected zone (HAZ, from the internal region of the pipe. SRB were extracted from oil and grown in a Postgate medium. Corrosion was evaluated at 60 °C for times between 5 and 64 days. Potentiodynamic polarization curves, obtained by electrochemical techniques, indicated surface activation at short times. Structural and morphological characterizations were carried out by scanning electron microscopy (SEM and optical microscopy (OM. H2S concentration and pH were also measured. Results showed an important increase in the corrosion damage up to 20 days, influenced by the SRB activity, which lead to a maximum of H2S (pH minimum. It was found a localized corrosion attack in the HAZ in a higher quantity compared to BM; and the formation of a thin film on the steel surface, originated by corrosion products and bacterial activity.

    El comportamiento ante la corrosión, originada por bacterias sulfato-reductoras (SRB, fue estudiado en dos regiones de un tubo de acero soldado API X-70. Los estudios se enfocaron en el material base (BM y la zona afectada térmicamente (HAZ, en la parte interna del tubo. Las SRB fueron extraídas del petróleo y cultivadas en un medio Postgate. El comportamiento a la corrosión fue evaluado a una temperatura de 60 °C, por periodos comprendidos entre 5 y 64 días. El análisis de las curvas de polarización potenciodinámicas, obtenidas por técnicas electroquímicas, indicó la activación de la superficie para tiempos cortos. La superficie fue caracterizada estructural y morfológicamente mediante microscopia electrónica de barrido (SEM, así como mediante microscopía óptica (OM. La concentración de H2S y el pH también fueron medidos. Los resultados mostraron un aumento importante de la corrosi

  2. Synergetic treatment of uranium-bearing waste water with sulfate reducing bacteria and zero-valent iron

    International Nuclear Information System (INIS)

    Zhou Quanyu; Tan Kaixuan; Zeng Sheng; Liu Dong

    2009-01-01

    The treatment of uranium-bearing wastewater from uranium mine and using microorganism to treat wastewater were paid much attention to environmental researchers. Based on column experiments, we investigated the potential using sulfate reducing bacteria (SRB) and zero-valent iron (ZVI) to synergetic treat contamination in wastewater such as sulfate, uranium, etc. SRB+ZVI can effectively remove contamination U(VI) and SO 4 2- in wastewater. The removal rate is 99.4% and 86.2% for U(VI) and SO 4 2- , respectively. The pH of wastewater can be basified to neutral. U(VI) and SO 4 2- as electron acceptor of sulfate reducing bacteria are removed by biological reduction. The corrosion of ZVI is benefit to enhance the pH of wastewater, forms anaerobic reducing environment, strengthens survival and metabolism reaction of SRB, and plays a synergetic enhancement. (authors)

  3. Analysis of raw meat for heavy metals and bacterial contamination and comparison of antibiotic susceptibility of isolated bacteria

    International Nuclear Information System (INIS)

    Ahmad, F.

    2016-01-01

    The focus of the study was to analyze the commercially available meat for its heavy metal contents and bacterial contamination. The meat samples were collected from four commercial markets of Lahore, i.e., as Wafaqi Colony (Site I),Township (Site II), G-1 Market (Site III) and Zenith (Site IV), and analyzed for heavy metal [i.e., manganese (Mn), nickel (Ni), chromium (Cr), cadmium (Cd) and copper (Cu)] contents and bacterial contaminants (E. coli, Pseudomonas sp., Bacillus sp. and Salmonella sp.) Atomic absorption spectrophotometery was employed for the detection of the heavy metals and plate count method was used for the detection of bacterial contaminants. The Ni concentration in the Site II sample only and Cd concentration in all meat samples were found above the standard value and the concentration of other metals (Cu, Cr, and Mn) was less than the standard concentrations. Bacterial (E. coli, Pseudomonas sp., Bacillus sp., Salmonella sp. and Staphylococcus sp.) contamination was found in all meat samples; however, the number was a little lower in the Site IV samples. Statistical analysis was done, by one-way ANOVA using SPSS, to compare heavy metal contamination in the meat samples. The results showed distribution of heavy metals in all meat samples there was significant difference of Ni concentration in the meat samples. The measure of antibiotic susceptibility showed that isolated species of bacteria were resistant to lincomycin, streptomycin, tertracyclin, ampicillin, amoxicillin and doxycyclin, but did not survive in the medium containing ofloxacin. (author)

  4. Enzymatic catalysis of mercury methylation by planktonic and biofilm cultures of sulfate- reducing bacteria

    Science.gov (United States)

    Lin, C.; Kampalath, R.; Jay, J.

    2007-12-01

    While biofilms are now known to be the predominant form of microbial growth in nature, little is known about their role in environmental mercury (Hg) methylation. Due to its long-range atmospheric transport, Hg contamination of food chains is a worldwide problem, impacting even pristine areas. Among different forms of mercury species, methylmercury (MeHg) is an extremely neurotoxic and biomagnification-prone compound that can lead to severely adverse health effects on wildlife and humans. Considerable studies have shown that in the aquatic environment the external supply of MeHg is not sufficient to account for MeHg accumulation in biota and in situ biological MeHg formation plays a critical role in determining the amount of MeHg in food webs; moreover, sulfate-reducing bacteria (SRB) has been identified as the principal Hg-methylating organisms in nature. In a wide range of aquatic systems wetlands are considered important sites for Hg methylation mostly because of the environmental factors that promote microbial activity within, and biofilms are especially important in wetland ecosystems due to large amount of submerged surfaces. Although recent work has focused on the environmental factors that control MeHg production and the conditions that affect the availability of inorganic Hg to SRB, much remains to be understood about the biochemical mechanism of the Hg methylation process in SRB, especially in the biofilm-growth of these microbes. Data from our previous study with SRB strains isolated from a coastal wetland suggested that the specific Hg methylation rate found was approximately an order of magnitude higher in biofilm cells than in planktonic cells. In order to investigate possible reasons for this observed difference, and to test if this phenomenon is observed in other strains, we conducted chloroform, fluroacetate and molybdate inhibition assays in both complete and incomplete-oxidizing SRB species (Desulfovibrio desulfuricans M8, Desulfococcus sp

  5. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, M.J.B.D.; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    in 68% of the isolates. Depending on the antibiotics the isolates showed different percentage of resistance. Multiple drug and metal-resistance were observed. High incidence of resistance to both antibiotics and metals were common among the pigmented...

  6. Sodium Butyrate Reduces Colitogenic Immunoglobulin A-Coated Bacteria and Modifies the Composition of Microbiota in IL-10 Deficient Mice.

    Science.gov (United States)

    Zhang, Tenghui; Ding, Chao; Zhao, Mingli; Dai, Xujie; Yang, Jianbo; Li, Yi; Gu, Lili; Wei, Yao; Gong, Jianfeng; Zhu, Weiming; Li, Ning; Li, Jieshou

    2016-11-24

    High levels of immunoglobulin A (IgA)-coated bacteria may have a role in driving inflammatory bowel disease (IBD). We therefore investigated the effect of sodium butyrate on microbiota in IBD prone interleukin (IL)-10 -/- mice. At 8 weeks of age, mice were allocated into three groups ( n = 4/group): normal (C57BL/6), IL-10 -/- , and IL-10 -/- treated with sodium butyrate (100 mM). Severity of colitis, inflammatory cytokine and short-chain fatty acid (SCFA) concentration in proximal colon contents, the percentage of IgA-coated bacteria and microbiota composition by 16S ribosomal RNA assessment of stool were measured after 4 weeks of treatment. Sodium butyrate ameliorated histological colitis and decreased levels of tumor necrosis factor (TNF)-α and IL-6 in IL-10 -/- mice compared with those without treatment. At the phylum level, a reduction in Bacteroidetes and an increase in Firmicutes in IL-10 -/- mice treated with sodium butyrate were observed. Additionally, Prevotellaceae species were reduced in IL-10 -/- mice treated with sodium butyrate as compared with those without treatment. The level of biodiversity was slightly increased and the amount of IgA-coated bacteria decreased in IL-10 -/- mice treated with sodium butyrate compared with those without treatment. Our results indicate that sodium butyrate protects against colitis, possibly through modifying the gut microbiota, enriching biodiversity and reducing the amount of colitogenic IgA-coated bacteria in IL-10 -/- mice.

  7. Agrochemicals indirectly increase survival of E. coli O157:H7 and indicator bacteria by reducing ecosystem services.

    Science.gov (United States)

    Staley, Zachery R; Rohr, Jason R; Senkbeil, Jacob K; Harwood, Valerie J

    Storm water and agricultural runoff frequently contain agrochemicals, fecal indicator bacteria (FIB), and zoonotic pathogens. Entry of such contaminants into aquatic ecosystems may affect ecology and human health. This study tested the hypothesis that the herbicide atrazine and the fungicide chlorothalonil indirectly affect the survival of FIB (Escherichia coli and Enterococcus faecalis) and a pathogen (E. coli O157:H7) by altering densities of protozoan predators or by altering competition from autochthonous bacteria. Streptomycin-resistant E. coli, En. faecalis, and E. coli O157:H7 were added to microcosms composed of Florida river water containing natural protozoan and bacterial populations. FIB, pathogen, and protozoan densities were monitored over six days. Known metabolic inhibitors, cycloheximide and streptomycin, were used to inhibit autochthonous protozoa or bacteria, respectively. The inhibitors made it possible to isolate the effects of predation or competition on survival of allochthonous bacteria, and each treatment increased the survival of FIB and pathogens. Chlorothalonil's effect was similar to that of cycloheximide, significantly reducing protozoan densities and elevating densities of FIB and pathogens relative to the control. Atrazine treatment did not affect protozoan densities, but, through an effect on competition, resulted in significantly greater densities of En. faecalis and E. coli O157:H7. Hence, by reducing predaceous protozoa and bacterial competitors that facilitate purifying water bodies of FIBs and human pathogens, chlorothalonil and atrazine indirectly diminished an ecosystem service of fresh water.

  8. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals.

    Science.gov (United States)

    Giovanella, Patricia; Cabral, Lucélia; Costa, Alexandre Pereira; de Oliveira Camargo, Flávio Anastácio; Gianello, Clesio; Bento, Fátima Menezes

    2017-06-01

    Contamination of the environment by heavy metals has been increasing in recent years due to industrial activities. Thus research involving microorganisms capable of surviving in multi-contaminated environments is extremely important. The objectives of the present study were to evaluate the removal of mercury alone and in the presence of cadmium, nickel and lead by four mercury-resistant microorganisms; estimate the removal of Cd, Ni and Pb; understand the mechanisms involved (reduction, siderophores, biofilms, biosorption and bioaccumulation) in the metal resistance of the isolate Pseudomonas sp. B50D; and determine the capacity of Pseudomonas sp. B50D in removing Hg, Cd, Ni and Pb from an industrial effluent. It was shown that the four isolates evaluated were capable of removing from 62% to 95% of mercury from a culture medium with no addition of other metals. The isolate Pseudomonas sp. B50D showed the best performance in the removal of mercury when evaluated concomitantly with other metals. This isolate was capable of removing 75% of Hg in the presence of Cd and 91% in the presence of Ni and Pb. With respect to the other metals it removed 60%, 15% and 85% of Cd, Ni and Pb, respectively. In tests with effluent, the isolate Pseudomonas sp. B50D removed 85% of Hg but did not remove the other metals. This isolate presented reduction, biosorption, biofilm production and siderophore production as its metal resistance mechanisms. Pseudomonas sp. B50D was thus a candidate with potential for application in the bioremediation of effluents with complex metal contaminations. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China.

    Science.gov (United States)

    Xie, Pin; Hao, Xiuli; Herzberg, Martin; Luo, Yantao; Nies, Dietrich H; Wei, Gehong

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China. Copyright © 2014. Published by Elsevier B.V.

  10. Plasma immersion ion implantation for reducing metal ion release

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  11. Elucidation of bacteria found in car interiors and strategies to reduce the presence of potential pathogens

    Science.gov (United States)

    Stephenson, Rachel E.; Gutierrez, Daniel; Peters, Cindy; Nichols, Mark; Boles, Blaise R.

    2014-01-01

    The human microbiome is influenced by a number of factors, including environmental exposure to microbes. Because many humans spend a large amount of time in built environments, it can be expected that the microbial ecology of these environments will influence the human microbiome. In an attempt to further understand the microbial ecology of built environments, the microbiota of car interiors was analyzed using culture dependent and culture independent methods. While it was found that the number and type of bacteria varied widely among the cars and sites tested, Staphylococcus and Propionibacterium were nearly always the dominant genera found at the locations sampled. Because Staphylococcus is of particular concern to human health, the characteristics of this genus found in car interiors were investigated. Staphylococcus epidermidis, S. aureus, and S. warnerii were the most prevalent staphylococcal species found, and 22.6% of S. aureus strains isolated from shared community vehicles were resistant to methicillin. The reduction in the prevalence of pathogenic bacteria in cars by using silver-based antimicrobial surface coatings was also evaluated. Coatings containing 5% silver ion additives were applied to steering wheels, placed in cars for five months and were found to eliminate the presence of culturable pathogenic bacteria recovered from these sites relative to controls. Together, these results provide new insight into the microbiota found in an important built environment, the automobile, and potential strategies for controlling the presence of human pathogens. PMID:24564823

  12. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study

    Directory of Open Access Journals (Sweden)

    Azam A

    2012-12-01

    Full Text Available Ameer Azam,1,2 Arham S Ahmed,2 Mohammad Oves,3 Mohammad S Khan,3 Sami S Habib,1 Adnan Memic11Centre of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia; 2Centre of Excellence in Materials Science (Nanomaterials, 3Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, IndiaBackground: Nanomaterials have unique properties compared to their bulk counterparts. For this reason, nanotechnology has attracted a great deal of attention from the scientific community. Metal oxide nanomaterials like ZnO and CuO have been used industrially for several purposes, including cosmetics, paints, plastics, and textiles. A common feature that these nanoparticles exhibit is their antimicrobial behavior against pathogenic bacteria. In this report, we demonstrate the antimicrobial activity of ZnO, CuO, and Fe2O3 nanoparticles against Gram-positive and Gram-negative bacteria.Methods and results: Nanosized particles of three metal oxides (ZnO, CuO, and Fe2O3 were synthesized by a sol–gel combustion route and characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy techniques. X-ray diffraction results confirmed the single-phase formation of all three nanomaterials. The particle sizes were observed to be 18, 22, and 28 nm for ZnO, CuO, and Fe2O3, respectively. We used these nanomaterials to evaluate their antibacterial activity against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa and Gram-positive (Staphylococcus aureus and Bacillus subtilis bacteria.Conclusion: Among the three metal oxide nanomaterials, ZnO showed greatest antimicrobial activity against both Gram-positive and Gram-negative bacteria used in this study. It was observed that ZnO nanoparticles have excellent bactericidal potential, while Fe2O3 nanoparticles exhibited the least bactericidal activity. The order of antibacterial activity was demonstrated to be the following: ZnO > CuO > Fe2O3

  13. Comparative Study for Removal of Some Heavy Metals from Liquid Wastes Using Natural Resources and Bacteria

    International Nuclear Information System (INIS)

    Ali, H.E.A.

    2011-01-01

    Twenty three bacterial strains have been isolated from polluted water and soil samples of Ismailia Canal in Egypt. The polluted sites were at Abu Zabal Factory (fertilizer factory), Elshaba factory (Aluminum sulfate factory) and Oil-pipes Company (petrochemical materials). By screening the abilities of these isolates to tolerate heavy metals, it has been found that isolate M AM-4 w as the most potent isolate. This isolate was identified as Providencia rettgeri. As the concentration of Al 3+ increased the ability of P. rettgeri to uptake Al 3+ decreased. P. rettgeri could remove 97.2% of Al 3+ from 25 mg/L. Bacillus cereus ATCC 11778 (American Type Culture Collection, U.S.A) gave the same trend for Al 3+ uptake but P. rettgeri was more tolerant to Al 3+ than B. cereus ATCC 11778.With increasing Co 2+ concentration, abilities of P. rettgeri and B. cereus ATCC 11778 to uptake decreased. P. rettgeri could uptake 59 mg/L Co 2+ from 200 mg/L (29.5%), while B. cereus ATCC 11778 uptake 68.3 mg/L (34.1%). Also, as the concentration of Cu 2+ increased the abilities of P. rettgeri and B. cereus ATCC 11778 to uptake Cu 2+ decreased. P. rettgeri removed 11.5 mg/Cu 2+ from 25 mg/L (47.0%), while B. cereus ATCC 11778 removed 13.5 mg/L from the some concentration (54.%). Combined treatment of 1.0% untreated clay with P. rettgeri could remove 471.8 mg/L Al 3+ from 500 mg/L (94.4%), 82.4 mg/L Co 2+ from 200 mg/L (41.2%) and 150 mg/L Cu 2+ from 300 mg/L (50%). However, 1.0 % treated clay combined with P. rettgeri adsorbed 207.8 mg/L Al 3+ from 500 mg/L (41.5%), 52.0 mg/L Co 2+ from 200 mg/L (26.0%) and 185 mg/L Cu 2+ from 300 mg/L (61.6%). The combined treatment adsorbed more heavy metals than clay only or bacterial cells only. Three KGy gamma radiations reduced the viable count of P. rettgeri by 7.4 log cycles. P. rettegri mutant MI was able to tolerate more Al 3+ than the parent strain

  14. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    International Nuclear Information System (INIS)

    Li, F.B.; Li, X.M.; Zhou, S.G.; Zhuang, L.; Cao, F.; Huang, D.Y.; Xu, W.; Liu, T.X.; Feng, C.H.

    2010-01-01

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe 2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  15. Reducing time to identification of aerobic bacteria and fastidious micro-organisms in positive blood cultures.

    Science.gov (United States)

    Intra, J; Sala, M R; Falbo, R; Cappellini, F; Brambilla, P

    2016-12-01

    Rapid and early identification of micro-organisms in blood has a key role in the diagnosis of a febrile patient, in particular, in guiding the clinician to define the correct antibiotic therapy. This study presents a simple and very fast method with high performances for identifying bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) after only 4 h of incubation. We used early bacterial growth on PolyViteX chocolate agar plates inoculated with five drops of blood-broth medium deposited in the same point and spread with a sterile loop, followed by a direct transfer procedure on MALDI-TOF MS target slides without additional modification. Ninety-nine percentage of aerobic bacteria were correctly identified from 600 monomicrobial-positive blood cultures. This procedure allowed obtaining the correct identification of fastidious pathogens, such as Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae that need complex nutritional and environmental requirements in order to grow. Compared to the traditional pathogen identification from blood cultures that takes over 24 h, the reliability of results, rapid performance and suitability of this protocol allowed a more rapid administration of optimal antimicrobial treatment in the patients. Bloodstream infections are serious conditions with a high mortality and morbidity rate. Rapid identification of pathogens and appropriate antimicrobial therapy have a key role for successful patient outcome. In this work, we developed a rapid, simplified, accurate, and efficient method, reaching 99 % identification of aerobic bacteria from monomicrobial-positive blood cultures by using early growth on enriched medium, direct transfer to target plate without additional procedures, matrix-assisted laser desorption ionization-time of flight mass spectrometry and SARAMIS database. The application of this protocol allows to anticipate appropriate antibiotic therapy.

  16. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Jorgensen, R.L.

    2009-01-01

    also decreases adhesion of other food-relevant bacteria. The manipulation of adhesion was not attributable to growth inhibitory effects. Chemical analysis revealed that the stainless steels were covered by homogenous layers of adsorbed proteins. The presence of tropomyocin was indicated by appearance......Preconditioning of stainless steel with aqueous cod muscle extract significantly impedes subsequent bacterial adhesion most likely due to repelling effects of fish tropomyosin. The purpose of this study was to determine if other food conditioning films decrease or enhance bacterial adhesion...

  17. Chemical and electrochemical aspects of the corrosion of stainless steels in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Feron, D.

    1990-01-01

    The corrosion behaviour of austenitic and ferritic stainless steels (316 L and 430Ti) in the presence of sulfate reducing bacteria, was investigated by several electrochemical techniques which were coupled with corrosion measurements on coupons and chemical analyses. Experiments were performed with 'Desulfovibrio vulgaris' and 'Desulfovibrio gigas' in three growth media containing lactate and sulfate. The decreases in corrosion potentials were correlated to the increase in sulphide content. The polarization curves showed also the major influence of sulphides on the passivity of stainless steels. Electrochemical impedance measurements were used to provide information in understanding the interactions between growth media or bacteria and stainless steels surfaces. The behaviour of the tested stainless steels in these conditions was mainly dependent on sulphide concentrations. (Author). 7 refs., 8 figs., 4 tabs

  18. Effect of hydraulic retention time on metal precipitation in sulfate reducing inverse fluidized bed reactors

    KAUST Repository

    Villa-Gómez, Denys Kristalia

    2014-02-13

    BACKGROUND: Metal sulfide recovery in sulfate reducing bioreactors is a challenge due to the formation of small precipitates with poor settling properties. The size of the metal sulfide precipitates with the change in operational parameters such as pH, sulfide concentration and reactor configuration has been previously studied. The effect of the hydraulic retention time (HRT) on the metal precipitate characteristics such as particle size for settling has not yet been addressed. RESULTS: The change in size of the metal (Cu, Zn, Pb and Cd) sulfide precipitates as a function of the HRT was studied in two sulfate reducing inversed fluidized bed (IFB) reactors operating at different chemical oxygen demand concentrations to produce high and low sulfide concentrations. The decrease of the HRT from 24 to 9h in both IFB reactors affected the contact time of the precipitates formed, thus making differences in aggregation and particle growth regardless of the differences in sulfide concentration. Further HRT decrease to 4.5h affected the sulfate reducing activity for sulfide production and hence, the supersaturation level and solid phase speciation. Metal sulfide precipitates affected the sulfate reducing activity and community in the biofilm, probably because of the stronger local supersaturation causing metal sulfides accumulation in the biofilm. CONCLUSIONS: This study shows that the HRT is an important factor determining the size and thus the settling rate of the metal sulfides formed in bioreactors.

  19. Sodium Butyrate Reduces Colitogenic Immunoglobulin A-Coated Bacteria and Modifies the Composition of Microbiota in IL-10 Deficient Mice

    Directory of Open Access Journals (Sweden)

    Tenghui Zhang

    2016-11-01

    Full Text Available High levels of immunoglobulin A (IgA-coated bacteria may have a role in driving inflammatory bowel disease (IBD. We therefore investigated the effect of sodium butyrate on microbiota in IBD prone interleukin (IL-10−/− mice. At 8 weeks of age, mice were allocated into three groups (n = 4/group: normal (C57BL/6, IL-10−/−, and IL-10−/− treated with sodium butyrate (100 mM. Severity of colitis, inflammatory cytokine and short-chain fatty acid (SCFA concentration in proximal colon contents, the percentage of IgA-coated bacteria and microbiota composition by 16S ribosomal RNA assessment of stool were measured after 4 weeks of treatment. Sodium butyrate ameliorated histological colitis and decreased levels of tumor necrosis factor (TNF-α and IL-6 in IL-10−/− mice compared with those without treatment. At the phylum level, a reduction in Bacteroidetes and an increase in Firmicutes in IL-10−/− mice treated with sodium butyrate were observed. Additionally, Prevotellaceae species were reduced in IL-10−/− mice treated with sodium butyrate as compared with those without treatment. The level of biodiversity was slightly increased and the amount of IgA-coated bacteria decreased in IL-10−/− mice treated with sodium butyrate compared with those without treatment. Our results indicate that sodium butyrate protects against colitis, possibly through modifying the gut microbiota, enriching biodiversity and reducing the amount of colitogenic IgA-coated bacteria in IL-10−/− mice.

  20. Antibiotics and heavy metals resistance patterns of Enterococcus faecalis and faecium bacteria isolated from the human and the livestock sources

    Directory of Open Access Journals (Sweden)

    Yaser Sharifi

    2015-12-01

    Full Text Available Background: Enterococci have emerged as a major cause of nosocomial infections and within this group, Enterococcus faecalis and Enterococcus faecium cause the majority of human and livestock enterococcal infections. In this article, we tried to determine antibiotics and metals resistance patterns of E. faecalis and E. faecium strains. Methods: One hundred sixty different strains of E. faecalis and E. faecium were collected from livestock sewage and the human fecal waste during 15 months. Then bacterial antibiotics sensitivity tests were carried out using the Agar disc diffusion method. Results: Generally, 100% of E. faecalis strains separated from human and livestock sources (i.e. sheep showed penicillin (P/ kanamycin (K/ nitrofurantoin (N/ loracarbef (L/ Ciprofloxacin (Cc/ ampicillin (AN/ nalidixic acid (NA/ sulfamethoxazole (S antibiotics resistance patterns. In addition, 55% of isolated E. faecium showed P/S/AN/NA antibiotics resistance patterns. Each strain showed a resistance to at least two aminoglycoside antibiotics. However, E. faecalis strains from human and the livestock sources showed 94% and 100% of resistance to nitrofurantoin, respectively. The effects of different metal concentrations was evaluated in both strains. The agar dilution method was applied in this stage. Hg at 0.05 mmol/L of minimum inhibitory concentration (MIC showed toxicity to both the human and livestock Enterococcus strains. Cadmium at 1 mmol/L and 0.5 mmol/L concentrations had the most toxicity to E. faecalis and E. faecium strains, respectively. Obviously, toxicity to bacteria is less than other metals. As a result, Zn/Ni/Cu/Co resistance pattern is suggested for both strains. Finally, antibiotics and heavy metals resistance patterns were monitored simultaneously. Conclusion: Almost all E. faecalis strains isolated from humans and livestock showed antibiotics and heavy metals resistance patterns of P/K/L/Cc/S/AN/NA/Zn/Cu/Co simultaneously. Moreover, 55% of E

  1. Metal resistance systems in cultivated bacteria: are they found in complex communities?

    Science.gov (United States)

    Gillan, David C

    2016-04-01

    Metal resistance systems found in complex bacterial communities by shotgun metagenomic approaches were reviewed. For that, 6 recent studies investigating 9 metal-contaminated environments (water or sediments) were selected. Of the 22 possible metal-resistance systems, only 14 were found in complex communities. These widespread and easily detected metal-resistance systems were mainly biogenic sulfide production (dsr genes), resistance mediated in the periplasm (CopK and multicopper oxidases such as PcoA/CopA), efflux proteins (HME-RND systems, P-type ATPases, and the cation diffusion facilitator CzcD) as well as proteins used to treat oxidative damages (e.g., SodA) and down-regulation of transporters. A total of 8 metal-resistance systems were not found in the complex communities investigated. These rare systems include metal resistance by phosphatases, ureases, metallophores, outer membrane vesicles, methylation genes and cytoplasmic metal accumulation systems. In this case rarity may also be explained by a lack of knowledge on the specific genes involved and/or analytical biases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Fractionation of Mercury Stable Isotopes during Microbial Methylmercury Production by Iron- and Sulfate-Reducing Bacteria.

    Science.gov (United States)

    Janssen, Sarah E; Schaefer, Jeffra K; Barkay, Tamar; Reinfelder, John R

    2016-08-02

    The biological production of monomethylmercury (MeHg) in soils and sediments is an important factor controlling mercury (Hg) accumulation in aquatic and terrestrial food webs. In this study we examined the fractionation of Hg stable isotopes during Hg methylation in nongrowing cultures of the anaerobic bacteria Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132. Both organisms showed mass-dependent, but no mass-independent fractionation of Hg stable isotopes during Hg methylation. Despite differences in methylation rates, the two bacteria had similar Hg fractionation factors (αr/p = 1.0009 and 1.0011, respectively). Unexpectedly, δ(202)Hg values of MeHg for both organisms were 0.4‰ higher than the value of initial inorganic Hg after about 35% of inorganic Hg had been methylated. These results indicate that a (202)Hg-enriched pool of inorganic Hg was preferentially utilized as a substrate for methylation by these organisms, but that multiple intra- and/or extracellular pools supplied inorganic Hg for biological methylation. Understanding the controls of the Hg stable isotopic composition of microbially produced MeHg is important to identifying bioavailable Hg in natural systems and the interpretation of Hg stable isotopes in aquatic food webs.

  3. Tolerance of phenol-utilizing bacteria to heavy metals in the Aba ...

    African Journals Online (AJOL)

    Bacteria strains were isolated from sediment of tropical fresh water River that receives industrial discharges and were screened for utilization of phenol as the sole carbon and energy. Pseudomonas, Arthrobacter and Staphylococcus species were able to utilize 10.0 mM of phenol while Escherichia and Bacillus species ...

  4. Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria.

    Science.gov (United States)

    Brondino, Carlos D; Rivas, María G; Romão, Maria J; Moura, José J G; Moura, Isabel

    2006-10-01

    Molybdenum and tungsten are found in biological systems in a mononuclear form in the active site of a diverse group of enzymes that generally catalyze oxygen-atom-transfer reactions. The metal atom (Mo or W) is coordinated to one or two pyranopterin molecules and to a variable number of ligands such as oxygen (oxo, hydroxo, water, serine, aspartic acid), sulfur (cysteines), and selenium (selenocysteines) atoms. In addition, these proteins contain redox cofactors such as iron-sulfur clusters and heme groups. All of these metal cofactors are along an electron-transfer pathway that mediates the electron exchange between substrate and an external electron acceptor (for oxidative reactions) or donor (for reductive reactions). We describe in this Account a combination of structural and electronic paramagnetic resonance studies that were used to reveal distinct aspects of these enzymes.

  5. Isolation of Sulfur Reducing and Oxidizing Bacteria Found in Contaminated Drywall

    OpenAIRE

    Hooper, Dennis G.; Shane, John; Straus, David C.; Kilburn, Kaye H.; Bolton, Vincent; Sutton, John S.; Guilford, Frederick T.

    2010-01-01

    Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard...

  6. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments

    DEFF Research Database (Denmark)

    Isaksen, MF; Jørgensen, BB

    1996-01-01

    degrees C. The rates of sulfate reduction were measured by the (SO42-)-S-35 tracer technique at different experimental temperatures in sediment slurries, In sediment slurries from Mariager Fjord, sulfate reduction showed a mesophilic temperature response which was comparable to that of other temperate...... environments, In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19 degrees C during short-term incubations, However, over a 1-week incubation, the highest respiration rate was observed at 12.5 degrees C. Growth......The potential for sulfate reduction at low temperatures was examined in two different cold marine sediments, Mariager Fjord (Denmark), which is permanently cold (3 to 6 degrees C) but surrounded by seasonally warmer environments, and the Weddell Sea (Antarctica), which is permanently below 0...

  7. Proteolytic Activity in Reduced-Fat Cheddar Cheese Made with Lactic Acid Bacteria and Camel Chymosin

    DEFF Research Database (Denmark)

    Børsting, Mette Winther

    be the need of an extended ripening period to reach a similar cheese structure as in cheeses produced with BC. The aim of this project was to compensate for the lower proteolytic activity in cheese produced with CC compared to BC. Selection of dairy lactic acid bacteria (LAB) for cheese production with high...... for their ability to influence proteolysis and structure during cheese ripening. In an attempt to improve the screening methods and contribute to the development of a new classification system of Latcococcus lactic strains, the peptide profile formed by selected strains after growth in milk was analyzed...... mediated an increase in the total amount of amino acids as well as a shorter structure. A model system, used to study the retention of chymosin in a curd, showed that the retention of CC was less dependent on pH compared to BC, and the retention of CC was higher than BC in the pH interval 6...

  8. Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium.

    Science.gov (United States)

    Gammoudi, I; Tarbague, H; Othmane, A; Moynet, D; Rebière, D; Kalfat, R; Dejous, C

    2010-12-15

    The present work deals with the development of a Love-wave bacteria-based sensor platform for the detection of heavy metals in liquid medium. The acoustic delay-line is inserted in an oscillation loop in order to record the resonance frequency in real-time. A Polydimethylsiloxane (PDMS) chip with a liquid chamber is maintained by pressure above the acoustic wave propagation path. Bacteria (Escherichia coli) were fixed as bioreceptors onto the sensitive surface of the sensor coated with a polyelectrolyte (PE) multilayer using a simple and efficient layer-by-layer (LbL) electrostatic self-assembly procedure. Poly(allylamine hydrochloride) (PAH cation) and poly(styrene sulfonate) (PSS anion) were alternatively deposited so that the strong attraction between oppositely charged polyelectrolytes resulted in the formation of a (PAH-PSS)(n)-PAH molecular multilayer. The real-time characterization of PE multilayer and bacteria deposition is based on the measurement of the resonance frequency perturbation due to mass loading during material deposition. Real-time response to various concentrations of cadmium (Cd(2+)) and mercury (Hg(2+)) has been investigated. A detection limit as low as 10(-12) mol/l has been achieved, above which the frequency increases gradually up to 10(-3) mol/l, after a delay of 60 s subsequent to their introduction onto bacterial cell-based biosensors. Beyond a 10(-3) mol/l a steep drop in frequency was observed. This response has been attributed to changes in viscoelastic properties, related to modifications in bacteria metabolism. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Reducing COD level on oily effluent by utilizing biosurfactant-producing bacteria

    Directory of Open Access Journals (Sweden)

    Daniela Franco Carvalho Jacobucci

    2009-08-01

    Full Text Available Two bacteria isolated from crude oil contaminated soil, Pantoea agglomerans and Planococcus citreus, produced biosurfactants utilizing 1.5% of kerosene and olive oil as the sole carbon sources, respectively. The bacteria and the biosurfactants produced were introduced to oily effluent, arising from margarine and soap industry. Emulsification activities were determined by increases in the absorbance of the oil-in-water emulsions at 610 nm, whereas the water-in-oil emulsions were expressed as the height (cm of the emulsion layers formed. The 72 h incubation experiment resulted in a COD (Chemical Oxygen Demand reduction of 76% with Planococcus citreus strain and 70% with Pantoea agglomerans.The COD reduction with bacterial biosurfactants was over 50% in 24 h of incubation. The COD reduction showed that these strains and the surfactants produced could be used in bioremediation processes.Duas bactérias isoladas de solo contaminado com derivados de petróleo, Pantoea agglomerans e Planococcus citreus, produzem biosurfactantes utilizando respectivamente 1.5% de querosene e óleo de oliva como únicas fontes de carbono. As bactérias e os biosurfactantes produzidos foram adicionados a um efluente oleoso obtido de uma indústria nacional de sabão e margarina. As atividades de emulsificação foram determinadas pelo aumento da absorbância das emulsões óleo em água a 610 nm, enquanto que as emulsões do tipo água em óleo foram expressas em centímetros, pela altura do halo de espumas formado. A redução da demanda química de oxigênio (COD mostra que as linhagens e os biosurfactantes produzidos podem ser utilizados em processos de biorremediação.

  10. Molecular assessment of inoculated and indigenous bacteria in biofilms from a pilot-scale perchlorate-reducing bioreactor.

    Science.gov (United States)

    Zhang, H; Logan, B E; Regan, J M; Achenbach, L A; Bruns, M A

    2005-04-01

    Bioremediation of perchlorate-contaminated groundwater can occur via bacterial reduction of perchlorate to chloride. Although perchlorate reduction has been demonstrated in bacterial pure cultures, little is known about the efficacy of using perchlorate-reducing bacteria as inoculants for bioremediation in the field. A pilot-scale, fixed-bed bioreactor containing plastic support medium was used to treat perchlorate-contaminated groundwater at a site in Southern California. The bioreactor was inoculated with a field-grown suspension of the perchlorate-respiring bacterium Dechlorosoma sp. strain KJ and fed groundwater containing indigenous bacteria and a carbon source amendment. Because the reactor was flushed weekly to remove accumulated biomass, only bacteria capable of growing in biofilms in the reactor were expected to survive. After 26 days of operation, perchlorate was not detected in bioreactor effluent. Perchlorate remained undetected by ion chromatography (detection limit 4 mug L(-1)) during 6 months of operation, after which the reactor was drained. Plastic medium was subsampled from top, middle, and bottom locations of the reactor for shipment on blue ice and storage at -80 degrees C prior to analysis. Microbial community DNA was extracted from successive washes of thawed biofilm material for PCR-based community profiling by 16S-23S ribosomal intergenic spacer analysis (RISA). No DNA sequences characteristic of strain KJ were recovered from any RISA bands. The most intense bands yielded DNA sequences with high similarities to Dechloromonas spp., a closely related but different genus of perchlorate-respiring bacteria. Additional sequences from RISA profiles indicated presence of representatives of the low G+C gram-positive bacteria and the Cytophaga-Flavobacterium-Bacteroides group. Confocal scanning laser microscopy and fluorescence in situ hybridization (FISH) were also used to examine biofilms using genus-specific 16S ribosomal RNA probes. FISH was more

  11. The effects of sulphate reducing bacteria on the corrosion of mild steel embedded in a bentonite-granitic groundwater paste

    International Nuclear Information System (INIS)

    Philp, J.C.; Taylor, K.J.

    1987-08-01

    Preliminary experiments were set up to investigate how the corrosion of forged 0.2% carbon steel is affected by the presence of sulphate reducing bacteria (SRB). The tests used cultures of a thermophilic bacterium Desulphotomaculum nigrificans mixed with bentonite and synthetic groundwater, to simulate a bacteria contaminated backfill, and placed in contact with carbon steel disc specimens held in perspex cells at 50 0 C under anaerobic conditions. The rate of corrosion with exposure was monitored by electrochemical techniques, together with changes in near field redox potential, during the course of the tests. After 340 days exposure the test cells were dismantled to measure the nature and extent of any corrosion that had occurred and to assess the residual SRB content of the bentonite. Recovery of relatively large numbers of bacteria after almost a year's incubation at 50 0 C in this moderately alkaline (pH 9.5) medium has confirmed the pH tolerance of the strain. There was evidence of the initiation of enhanced corrosion occurring in at least two of the five cells that contained SRB, at about three times the rate of the control. This was probably associated with the presence of SRB despite the nutritionally poor environment which existed in the bentonite gel. (author)

  12. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site

    International Nuclear Information System (INIS)

    Farwell, Andrea J.; Vesely, Susanne; Nero, Vincent; Rodriguez, Hilda; McCormack, Kimberley; Shah, Saleh; Dixon, D. George; Glick, Bernard R.

    2007-01-01

    The growth of transgenic canola (Brassica napus) expressing a gene for the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase was compared to non-transformed canola exposed to flooding and elevated soil Ni concentration, in situ. In addition, the ability of the plant growth-promoting bacterium Pseudomonas putida UW4, which also expresses ACC deaminase, to facilitate the growth of non-transformed and transgenic canola under the above mentioned conditions was examined. Transgenic canola and/or canola treated with P. putida UW4 had greater shoot biomass compared to non-transformed canola under low flood-stress conditions. Under high flood-stress conditions, shoot biomass was reduced and Ni accumulation was increased in all instances relative to low flood-stress conditions. This is the first field study to document the increase in plant tolerance utilizing transgenic plants and plant growth-promoting bacteria exposed to multiple stressors. - Using transgenic plants and plant growth-promoting bacteria as phytoremediation methods increased plant tolerance at a metal-contaminated field site under low flood conditions

  13. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments

    DEFF Research Database (Denmark)

    Ravenschlag, K.; Sahm, K.; Knoblauch, C.

    2000-01-01

    The community structure of sulfate-reducing bacteria (SRB) of a marine Arctic sediment (Smeerenburg-fjorden, Svalbard) a-as characterized by both fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization by using group- and genus-specific 16S rRNA-targeted oligonucleotide probes......-to-bottom approach we aimed to further resolve the composition of this large group of SRB by using probes for cultivated genera. While this approach failed, directed cloning of probe-targeted genes encoding 16S rRNA was successful and resulted in sequences which were all affiliated with the Desulfosarcina...

  14. Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach

    DEFF Research Database (Denmark)

    Llobet-Brossa, Enrique; Rabus, Ralf; Böttcher, Michael E.

    2002-01-01

    The community structure of sulfate-reducing bacteria (SRB) in an intertidal mud flat of the German Wadden Sea (Site Dangast, Jade Bay) was studied and related to sedimentary biogeochemical gradients and processes. Below the penetration depths of oxygen (~3 mm) and nitrate (~4 mm), the presence...... and counting viable cells with the most probable number technique. Phylogenetic groups of SRB identified with these techniques were almost evenly distributed throughout the top 20 cm of the sediment. Application of fluorescence in situ hybridization, however, demonstrated a maximum of active members...

  15. Effect of Sodium Nitrate and Nitrate Reducing Bacteria on Methane Production and Fermentation with Buffalo Rumen Liquor

    OpenAIRE

    Pillanatham Civalingam Sakthivel; Devki Nandan Kamra; Neeta Agarwal; Lal Chandra Chaudhary

    2012-01-01

    Nitrate can serve as a terminal electron acceptor in place of carbon dioxide and inhibit methane emission in the rumen and nitrate reducing bacteria might help enhance the reduction of nitrate/nitrite, which depends on the type of feed offered to animals. In this study the effects of three levels of sodium nitrate (0, 5, 10 mM) on fermentation of three diets varying in their wheat straw to concentrate ratio (700:300, low concentrate, LC; 500:500, medium concentrate, MC and 300:700, high conce...

  16. Diversity of Nitrate-Reducing and Denitrifying Bacteria in a Marine Aquaculture Biofilter and their Response to Sulfide

    DEFF Research Database (Denmark)

    Krieger, Bärbel; Schwermer, Carsten U.; Rezakhani, Nastaran

    2006-01-01

    was developed containing a 3-stage biofilter for nitrification, denitrification/anaerobic sludge digestion, and sulfide oxidation. Sulfate reduction in the anaerobic part of the system leads to sulfide concentrations exceeding 5 mM, which may affect nitrate reduction and denitrification. Sulfide can inhibit...... nitrous oxide reductase, trigger a shift from denitrification to dissimilatory nitrate reduction to ammonium (DNRA), or be used as electron donor for nitrate reduction. The goal of this study was to identify and isolate nitrate-reducing and denitrifying bacteria from the biofilter and to investigate...

  17. Metallic impurities availability in reduced graphene is greatly enhanced by its ultrasonication.

    Science.gov (United States)

    Toh, Rou Jun; Pumera, Martin

    2013-01-01

    Ultrasonication is an inherent part of the major routes for preparation of reduced graphene. It is used to exfoliate graphite oxide to graphene oxide with consequent reduction to reduced graphenes. Metallic impurities in graphenes, originating from the starting material, graphite, have a profound influence on many properties of graphene, such as the electrochemical, catalytic and electronic properties. We show here that ultrasonication greatly enhances the redox availability of metallic impurities within reduced graphenes. Such findings will have a dramatic influence on future graphene processing methodology and applications of graphene.

  18. Bacteria can form interconnected microcolonies when a self-excreted product reduces their surface motility: evidence from individual-based model simulations

    DEFF Research Database (Denmark)

    Mabrouk, Nabil; Deffuant, Guillaume; Tolker-Nielsen, Tim

    2010-01-01

    Recent experimental observations of Pseudomonas aeruginosa, a model bacterium in biofilm research, reveal that, under specific growth conditions, bacterial cells form patterns of interconnected microcolonies. In the present work, we use an individual-based model to assess the involvement...... of bacteria motility and self-produced extracellular substance in the formation of these patterns. In our simulations, the pattern of interconnected microcolonies appears only when bacteria motility is reduced by excreted extracellular macromolecules. Immotile bacteria form isolated microcolonies...... and constantly motile bacteria form flat biofilms. Based on experimental data and computer simulations, we suggest a mechanism that could be responsible for these interconnected microcolonies....

  19. Monomeric A beta and metals reduce their cytotoxicities to each other.

    Science.gov (United States)

    Matsuzaki, Shinsuke; Yasuda, Yuichi; Kobayashi, Shinya; Koyama, Yoshihisa; Kawamoto, Keisuke; Katayama, Taiichi; Tohyama, Masaya

    2007-06-29

    The present study has examined the effect of metals, such as iron and copper on the cytotoxicity of amyloid beta protein 1-40 (Abeta40). First, we showed that monomeric Abeta40 has stronger cytotoxicity than various type of aggregated Abeta40. Next we showed the addition of metals into the monomeric Abeta40 reduced the cytotoxicity of either monomeric Abeta40 or metals (iron and copper) although the addition of metals into monomeric Abeta40 resulted in a marked increase of aggregated form of Abeta40, which composed of beta-sheeted Abeta40 and Abeta40 aggregation not characterized by beta-sheet fibrils (coagrated Abeta40). Taken together, the metals and monomeric Abeta40 affect on each other and cause the reduction of their cell toxicity.

  20. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    Science.gov (United States)

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cd Mobility in Anoxic Fe-Mineral-Rich Environments - Potential Use of Fe(III)-Reducing Bacteria in Soil Remediation

    Science.gov (United States)

    Muehe, E. M.; Adaktylou, I. J.; Obst, M.; Schröder, C.; Behrens, S.; Hitchcock, A. P.; Tylsizczak, T.; Michel, F. M.; Krämer, U.; Kappler, A.

    2014-12-01

    Agricultural soils are increasingly burdened with heavy metals such as Cd from industrial sources and impure fertilizers. Metal contaminants enter the food chain via plant uptake from soil and negatively affect human and environmental health. New remediation approaches are needed to lower soil metal contents. To apply these remediation techniques successfully, it is necessary to understand how soil microbes and minerals interact with toxic metals. Here we show that microbial Fe(III) reduction initially mobilizes Cd before its immobilization under anoxic conditions. To study how microbial Fe(III) reduction influences Cd mobility, we isolated a new Cd-tolerant, Fe(III)-reducing Geobacter sp. from a heavily Cd-contaminated soil. In lab experiments, this Geobacter strain first mobilized Cd from Cd-loaded Fe(III) hydroxides followed by precipitation of Cd-bearing mineral phases. Using Mössbauer spectroscopy and scanning electron microscopy, the original and newly formed Cd-containing Fe(II) and Fe(III) mineral phases, including Cd-Fe-carbonates, Fe-phosphates and Fe-(oxyhydr)oxides, were identified and characterized. Using energy-dispersive X-ray spectroscopy and synchrotron-based scanning transmission X-ray microscopy, Cd was mapped in the Fe(II) mineral aggregates formed during microbial Fe(III) reduction. Microbial Fe(III) reduction mobilizes Cd prior to its precipitation in Cd-bearing mineral phases. The mobilized Cd could be taken up by phytoremediating plants, resulting in a net removal of Cd from contaminated sites. Alternatively, Cd precipitation could reduce Cd bioavailability in the environment, causing less toxic effects to crops and soil microbiota. However, the stability and thus bioavailability of these newly formed Fe-Cd mineral phases needs to be assessed thoroughly. Whether phytoremediation or immobilization of Cd in a mineral with reduced Cd bioavailability are feasible mechanisms to reduce toxic effects of Cd in the environment remains to be

  2. Oxalate-Degrading Enzyme Recombined Lactic Acid Bacteria Strains Reduce Hyperoxaluria.

    Science.gov (United States)

    Zhao, Chenming; Yang, Huan; Zhu, Xiaojing; Li, Yang; Wang, Ning; Han, Shanfu; Xu, Hua; Chen, Zhiqiang; Ye, Zhangqun

    2017-12-02

    To develop recombinant lactic acid bacteria (LAB) strains that express oxalate-degrading enzymes through biotechnology-based approach for the treatment of hyperoxaluria by oral administration. The coding gene of oxalate decarboxylase (ODC) and oxalate oxidase (OxO) was transformed into Lactococcus lactis MG1363. The oxalate degradation ability in vitro was evaluated in media with high concentration of oxalate. Hyperoxaluria rat models through high oxalate diet were given recombinant LAB through oral administration. Twenty-four-hour urinary oxalate was measured, and kidney stone formation was investigated. LAB recombined with the coding gene of ODC could effectively decrease the amount of oxalate in the media and in the urine of rats. Moreover, the formation of calcium oxalate crystals in kidneys was also inhibited. The acid-induced promoter p170 significantly enhanced the reduction of hyperoxaluria. However, recombinant LAB expressing heterologous OxO showed less efficiency in oxalate degradation even in the presence of p170. LAB expressing ODC is more efficient in degradation of oxalate in vitro and in vivo than that expressing OxO. This present study provided novel recombinant probiotic strains as a potential treatment tool against oxalosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates.

    Science.gov (United States)

    Xu, Gaoqiang; Shen, Xinkun; Dai, Liangliang; Ran, Qichun; Ma, Pingping; Cai, Kaiyong

    2017-01-01

    Bacterial infection is one of the most severe postoperative complications leading to implantation failure. The early bacterial stage (4-6h) was proved to be the "decisive period" for long-term bacteria-related infection. Thus, to endow potential early antibacterial capacity for a titanium (Ti) based implant, an effective antiseptic agent of octenidine dihydrochloride (OCT) was effectively loaded on the mesoporous silica nanoparticles (MSNs)-incorporated titania coating which was fabricated by an electrophoretic-enhanced micro-arc oxidation technique. The surface characteristic of the coatings were characterized by various methods (SEM, AFM, XPS, XRD, etc.), and its corrosion resistance was also examined by the potentiodynamic polarization curves. The composite coating without OCT loading not only displayed good cytocompatibility but also exhibited certain anti-bacterial property. After loading with OCT, its antibacterial efficiency of the titanium substrates with composite coating was greatly enhanced without compromising their cytocompatibility. The study provides an approach for the fabrication of anti-bacterial Ti implant for potential orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    International Nuclear Information System (INIS)

    Weathers, Lenly J.; Katz, Lynn E.

    2002-01-01

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated

  5. Reducing the leachability of nitrate, phosphorus and heavy metals from soil using waste material

    Directory of Open Access Journals (Sweden)

    Faridullah

    Full Text Available Abstract Contaminants like nitrate (NO3, phosphorus (P and heavy metals in water are often associated with agricultural activities. Various soil and water remediation techniques have been employed to reduce the risk associated with these contaminants. A study was conducted to examine the extent of leaching of heavy metals (Cd, Ni, Pb and Cr, NO3 and P. For this purpose sandy and silt loam soils were amended with different waste materials, namely wood ash, solid waste ash, vegetable waste, charcoal, and sawdust. The soils were saturated with wastewater. Irrespective of the waste applied, the pH and EC of the amended soils were found to be greater than the control. Charcoal, sawdust and wood ash significantly decreased heavy metals, nitrate and phosphorus concentrations in the leachate. Treatments were more efficient for reducing Ni than other heavy metals concentrations. Waste amendments differed for heavy metals during the process of leaching. Heavy metals in the soil were progressively depleted due to the successive leaching stages. This research suggests that waste material may act as an adsorbent for the above contaminants and can reduce their leachability in soils.

  6. Transcriptional and physiological responses of nitrifying bacteria to heavy metal inhibition

    Science.gov (United States)

    Heavy metals have been shown to inhibit nitrification, a key process in the removal of nitrogen in wastewater treatment plants. In the present study, the effects of nickel, zinc, lead and cadmium on nitrifying enrichment cultures were studied in batch reactors. The transcriptiona...

  7. Competitive Oxidation of Volatile Fatty Acids by Sulfate- and Nitrate-Reducing Bacteria from an Oil Field in Argentina▿ †

    Science.gov (United States)

    Grigoryan, Aleksandr A.; Cornish, Sabrina L.; Buziak, Brenton; Lin, Shiping; Cavallaro, Adriana; Arensdorf, Joseph J.; Voordouw, Gerrit

    2008-01-01

    Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were

  8. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples

    International Nuclear Information System (INIS)

    Voordouw, G.; Voordouw, J.K.; Karkhoff-Schweizer, R.R.; Fedorak, P.M.; Westlake, D.W.S.

    1991-01-01

    A novel method for identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a standard) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples

  9. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples

    Energy Technology Data Exchange (ETDEWEB)

    Voordouw, G.; Voordouw, J.K.; Karkhoff-Schweizer, R.R. (Univ. of Calgary, Alberta (Canada)); Fedorak, P.M.; Westlake, D.W.S. (Univ. of Alberta, Edmonton (Canada))

    1991-11-01

    A novel method for identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a standard) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples.

  10. Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria

    KAUST Repository

    Scarascia, Giantommaso

    2016-12-15

    Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.

  11. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization.

    Science.gov (United States)

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  12. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Matyar, Fatih [Cukurova University, Faculty of Education, Department of Science and Technology Education, 01330 Balcali, Adana (Turkey)], E-mail: fmatyar@cu.edu.tr; Kaya, Aysenur; Dincer, Sadik [Cukurova University, Faculty of Science and Letters, Department of Biology, 01330 Balcali, Adana (Turkey)

    2008-12-15

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from seawater, sediment and shrimps, and to determine if there is a relationship between antibiotic and heavy metal resistance. We undertook studies in 2007 in the industrially polluted Iskenderun Bay, on the south coast of Turkey. The resistance of 236 Gram-negative bacterial isolates (49 from seawater, 90 from sediment and 97 from shrimp) to 16 different antibiotics, and to 5 heavy metals, was investigated by agar diffusion and agar dilution methods, respectively. A total of 31 species of bacteria were isolated: the most common strains isolated from all samples were Escherichia coli (11.4%), Aeromonas hydrophila (9.7%) and Stenotrophomonas maltophilia (9.3%). There was a high incidence of resistance to ampicillin (93.2%), streptomycin (90.2%) and cefazolin (81.3%), and a low incidence of resistance to imipenem (16.5%), meropenem (13.9%) and cefepime (8.0%). Some 56.8% of all bacteria isolated from seawater, sediment and shrimp were resistant to 7 or more antibiotics. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from 12.5 {mu}g/ml to > 3200 {mu}g/ml. The bacteria from seawater, sediment and shrimp showed high resistance to cadmium of 69.4%, 88.9%, and 81.1% respectively, and low resistance to manganese of 2%, 6.7% and 11.3% respectively. The seawater and sediment isolates which were metal resistant also showed a high resistance to three antibiotics: streptomycin, ampicillin and trimethoprim-sulphamethoxazole. In contrast, the shrimp isolates which were metal resistant were resistant to four antibiotics: cefazolin, nitrofurantoin, cefuroxime and ampicillin. Our results show that Iskenderun Bay has a significant proportion of antibiotic and heavy metal resistant Gram-negative bacteria, and these bacteria constitute a potential risk for

  13. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey

    International Nuclear Information System (INIS)

    Matyar, Fatih; Kaya, Aysenur; Dincer, Sadik

    2008-01-01

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from seawater, sediment and shrimps, and to determine if there is a relationship between antibiotic and heavy metal resistance. We undertook studies in 2007 in the industrially polluted Iskenderun Bay, on the south coast of Turkey. The resistance of 236 Gram-negative bacterial isolates (49 from seawater, 90 from sediment and 97 from shrimp) to 16 different antibiotics, and to 5 heavy metals, was investigated by agar diffusion and agar dilution methods, respectively. A total of 31 species of bacteria were isolated: the most common strains isolated from all samples were Escherichia coli (11.4%), Aeromonas hydrophila (9.7%) and Stenotrophomonas maltophilia (9.3%). There was a high incidence of resistance to ampicillin (93.2%), streptomycin (90.2%) and cefazolin (81.3%), and a low incidence of resistance to imipenem (16.5%), meropenem (13.9%) and cefepime (8.0%). Some 56.8% of all bacteria isolated from seawater, sediment and shrimp were resistant to 7 or more antibiotics. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from 12.5 μg/ml to > 3200 μg/ml. The bacteria from seawater, sediment and shrimp showed high resistance to cadmium of 69.4%, 88.9%, and 81.1% respectively, and low resistance to manganese of 2%, 6.7% and 11.3% respectively. The seawater and sediment isolates which were metal resistant also showed a high resistance to three antibiotics: streptomycin, ampicillin and trimethoprim-sulphamethoxazole. In contrast, the shrimp isolates which were metal resistant were resistant to four antibiotics: cefazolin, nitrofurantoin, cefuroxime and ampicillin. Our results show that Iskenderun Bay has a significant proportion of antibiotic and heavy metal resistant Gram-negative bacteria, and these bacteria constitute a potential risk for public

  14. Nitrate and sulfate reducers-retrievable number of bacteria and their activities in Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    determined. NRB and SRB were observed throughout these depths and did not relate to HB numbers. HB and NRB were recorded at 3 orders per ml and SRB at 2. High numbers of reducers were encountered in shallow depths as frequently as in deeper waters and did...

  15. Beneficial of Coriander Leaves (Coriandrum sativum L.) to Reduce Heavy Metals Contamination in Rod Shellfish

    Science.gov (United States)

    Winarti, S.; Pertiwi, C. N.; Hanani, A. Z.; Mujamil, S. I.; Putra, K. A.; Herlambang, K. C.

    2018-01-01

    Contamination of heavy metals in certain levels of food can disrupt human health. Heavy metals have toxic properties, cannot be overhauled or destroyed by living organisms, can accumulate in the body of organisms including humans, either directly or indirectly. Heavy metal Hg, Cd, Cr is a very toxic metals (can result in death or health problems that are not recovered in a short time), while heavy metal Co, Pb, Cu toxicity is moderate (can lead to both recoverable and non-recoverable health problems in a relatively long time). Hence the heavy metal contaminating the food must be eliminated or reduced to a safe level. One effort was use coriander leaves to reduce the contamination of heavy metals in fish/shellfish. The objective of the research was to prove the extract of coriander leaves can reduce heavy metal contamination of Pb, Hg and Cu in rod shellfish (lorjuk). The treatment of this research was long soaking in coriander leaves extract that were 0, 30, 60 and 90 minutes. The results showed that the longer time of soaking can decrease Pb level from 4.4 ± 0.424 ppb to 1.7 ± 0.5 ppb, Hg level from 4.11± 0.07 to 1.12± 0.6 ppb, and Cu level from 433.7 ± 0.1 ppb to 117 ± 0.78 ppb. Protein content not significant decrease in rod shellfish (lorjuk) after 90 minutes soaking time, that was from 28.56 ± 0.403% to 26,625 ± 0.19%.

  16. Reducing beam hardening effects and metal artefacts using Medipix3RX: With applications from biomaterial science

    CERN Document Server

    Rajendran, K; de Ruiter, N J A; Chernoglazov, A I; Panta, R K; Butler, A P H; Butler, P H; Bell, S T; Anderson, N G; Woodfield, T B F; Tredinnick, S J; Healy, J L; Bateman, C J; Aamir, R; Doesburg, R M N; Renaud, P F; Gieseg, S P; Smithies, D J; Mohr, J L; Mandalika, V B H; Opie, A M T; Cook, N J; Ronaldson, J P; Nik, S J; Atharifard, A; Clyne, M; Bones, P J; Bartneck, C; Grasset, R; Schleich, N; Billinghurst, M

    2014-01-01

    This paper discusses methods for reducing beam hardening effects using spectral data for biomaterial applications. A small-animal spectral scanner operating in the diagnostic energy range was used. We investigate the use of photon-processing features of the Medipix3RX ASIC in reducing beam hardening and associated artefacts. A fully operational charge summing mode was used during the imaging routine. We present spectral data collected for metal alloy samples, its analysis using algebraic 3D reconstruction software and volume visualisation using a custom volume rendering software. Narrow high energy acquisition using the photon-processing detector revealed substantial reduction in beam hardening effects and metal artefacts.

  17. Occurrence of heavy metals and antibiotic resistance in bacteria from internal organs of american bullfrog (Rana catesbeiana raised in Malaysia

    Directory of Open Access Journals (Sweden)

    SW Lee

    2009-01-01

    Full Text Available A total of 40 bacteria have been successfully isolated from internal organs of the American bullfrog (Rana catesbeiana raised in Malaysia, namely, eight isolates of Aeromonas spp., 21 of Edwardsiella spp., six of Flavobacterium spp. and five of Vibrio spp. In terms of antibiotic susceptibility testing, each isolate was tested against 21 antibiotics, resulting in 482 (57.3% cases of sensitivity and 61 (7.3% cases of partial sensitivity. Meanwhile, 297 (35.4% bacterial isolates were registered as resistant. The multiple antibiotic resistance (MAR index of each bacterial species indicated that bacteria from raised bullfrogs have been exposed to tested antibiotics with results ranging from 0.27 to 0.39. Additionally, high percentages of heavy metal resistance among these isolates were observed, with values ranging from 85.0 to 100.0%. The current results provided us information on bacterial levels of locally farmed bullfrogs exposed to copper, cadmium, chromium as well as 21 types of antibiotics.

  18. Effect of heavy metal ions and zinc complex on the dynamics of growth of bacteria Pseudomonas

    Directory of Open Access Journals (Sweden)

    A. V. Krysenko

    2012-03-01

    Full Text Available The problem of wastewater treatment is one of the most pressing issues from the beginning of the century. A special roleof the heavy metals in the pollution of the environment is due to their bioaccumulation, transfer through trophic chains, and high toxicity. Currently, advanced technologies for the wastewater treatment had been developed. Natural and cheap biological treatment methods of intensification of the natural processes of organic compounds decomposition by microorganisms under aerobic or anaerobic conditions are promising. Amongimportant processes are nitrification and denitrification. That’s why a great attention is paid to the microorganisms that are capable to realize these processes. The processes of interaction of the heavy metals ions and microorganisms are of great interest not only from the standpoint of basic science, but also as a possible use in biotechnological processes.

  19. Occurrence of antibiotic and metal resistance in bacteria from organs of river fish

    International Nuclear Information System (INIS)

    Pathak, S.P.; Gopal, K.

    2005-01-01

    Bacterial populations in some organs, viz., liver, spleen, kidney, gill, and arborescent organ of the catfish Clarias batrachus were enumerated followed by determination of resistance for antibiotics and metals. The total viable counts in these organs, observed, were 2.24x10 4 , 2.08x10 4 , 1.44x10 4 , 1.23x10 4 , and 6.40x10 3 colony-forming units/mL, respectively. The random bacterial isolates from these fish organs showed resistance in decreasing order for colistin (98%), ampicillin (82%), gentamycin (34%), carbenicillin (28%), tetracyline (20%), streptomycin (12%), and ciprofloxacin (02%). Most of the isolates exhibited an increasing order of tolerance for the metals (μg/mL) copper (100), lead (200), manganese (400), cadmium (200), and chromium (50), with minimum inhibitory concentration (MIC) ranging from <50 to 1600 μg/mL. These observations indicate that the significant occurrence of bacterial population in organs of fish with high incidence of resistance for antibiotics and metals may pose risk to fish fauna and public health

  20. Effects of iron-reducing bacteria and nitrate-reducing bacteria on the transformations of iron corrosion products, magnetite and siderite, formed at the surface of non-alloy steel

    International Nuclear Information System (INIS)

    Etique, Marjorie

    2014-01-01

    Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500 m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (Fe II CO 3 ) and magnetite (Fe II Fe III 2 O 4 ). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (Fe II 4 Fe III 2 (OH) 12 CO 3 ). As a transient phase shared by several bacterial reactions involving Fe II and Fe III , this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in bio-corrosion processes. (author) [fr

  1. The efficacy of noble metal alloy urinary catheters in reducing catheter-associated urinary tract infection

    Directory of Open Access Journals (Sweden)

    Alanood Ahmed Aljohi

    2016-01-01

    Results: A 90% relative risk reduction in the rate of CAUTI was observed with the noble metal alloy catheter compared to the standard catheter (10 vs. 1 cases, P = 0.006. When considering both catheter-associated asymptomatic bacteriuria and CAUTI, the relative risk reduction was 83% (12 vs. 2 cases, P = 0.005. In addition to CAUTI, the risk of acquiring secondary bacteremia was lower (100% for the patients using noble metal alloy catheters (3 cases in the standard group vs. 0 case in the noble metal alloy catheter group, P = 0.24. No adverse events related to any of the used catheters were recorded. Conclusion: Results from this study revealed that noble metal alloy catheters are safe to use and significantly reduce CAUTI rate in ICU patients after 3 days of use.

  2. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils

    Directory of Open Access Journals (Sweden)

    Pamella Macedo de Souza

    2017-04-01

    Full Text Available Strategies for the control of sulfate-reducing bacteria (SRB in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC = 78 µg/mL the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  3. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils.

    Science.gov (United States)

    Souza, Pamella Macedo de; Goulart, Fátima Regina de Vasconcelos; Marques, Joana Montezano; Bizzo, Humberto Ribeiro; Blank, Arie Fitzgerald; Groposo, Claudia; Sousa, Maíra Paula de; Vólaro, Vanessa; Alviano, Celuta Sales; Moreno, Daniela Sales Alviano; Seldin, Lucy

    2017-04-19

    Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium , Geotoga petraea , and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans . EO obtained from Citrus aurantifolia , Lippia alba LA44 and Cymbopogon citratus , as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  4. Cultivar and Metal-Specific Effects of Endophytic Bacteria in Helianthus tuberosus Exposed to Cd and Zn

    Directory of Open Access Journals (Sweden)

    Blanca Montalbán

    2017-09-01

    Full Text Available Plant growth promoting endophytic bacteria (PGPB isolated from Brassica napus were inoculated in two cultivars of Helianthus tuberosus (VR and D19 growing on sand supplemented with 0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA reactive compounds were determined. Colonization of roots of H. tuberosus D19 by Pseudomonas sp. 262 was evaluated using confocal laser scanning microscopy. Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 significantly enhanced growth of H. tuberosus D19 exposed to Cd or Zn. Pseudomonas sp. 228 significantly increased Cd concentrations in roots. Serratia sp. 246, and Pseudomonas sp. 256 and 228 resulted in significantly decreased contents of TBA reactive compounds in roots of Zn exposed D19 plants. Growth improvement and decrease of metal-induced stress were more pronounced in D19 than in VR. Pseudomonas sp. 262-green fluorescent protein (GFP colonized the root epidermis/exodermis and also inside root hairs, indicating that an endophytic interaction was established. H. tuberosus D19 inoculated with Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 holds promise for sustainable biomass production in combination with phytoremediation on Cd and Zn contaminated soils.

  5. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury

    Digital Repository Service at National Institute of Oceanography (India)

    De; Ramaiah, N.; Vardanyan, L.

    -resistance (De Rore et al., 1994). Hg 2+ , Pb 2+ and Cd 2+ are of serious concern as they are non-biodegradable, highly toxic and are present in a variety of waste streams that contaminate the environment. These three metals are included on the US..., Sn, Cu, and Pb was found in a bacterium isolated on the basis of tributyltin resistance (Pain and Cooney, 1998). The present study focuses on 13 marine bacterial strains that are highly resistant to mercury (De et al., 2003) and investigates...

  6. Proteolytic Activity in Reduced-Fat Cheddar Cheese Made with Lactic Acid Bacteria and Camel Chymosin

    DEFF Research Database (Denmark)

    Børsting, Mette Winther

    are characterized by a more firm structure, higher risk of bitterness and lower flavor intensity. The bitterness can be reduced by replacing bovine chymosin (BC) in cheese production with camel chymosin (CC), which has a lower general proteolysis. A disadvantage of the lower proteolytic activity of CC could...... for their ability to influence proteolysis and structure during cheese ripening. In an attempt to improve the screening methods and contribute to the development of a new classification system of Latcococcus lactic strains, the peptide profile formed by selected strains after growth in milk was analyzed...... to the reference cheeses. Lc. lactis strains which were previously defined as group d based on their cleavage specificity towards αS1-CN (f1-23), could be subdivided into three groups. This grouping was seen both in the variation of CEP amino acid sequences, and in the identified peptides after hydrolysis in milk...

  7. The effectiveness of a pre-procedural mouthrinse in reducing bacteria on radiographic phosphor plates.

    Science.gov (United States)

    Hunter, Allison; Kalathingal, Sajitha; Shrout, Michael; Plummer, Kevin; Looney, Stephen

    2014-06-01

    This study assessed the effectiveness of three antimicrobial mouthrinses in reducing microbial growth on photostimulable phosphor (PSP) plates. Prior to performing a full-mouth radiographic survey (FMX), subjects were asked to rinse with one of the three test rinses (Listerine®, Decapinol®, or chlorhexidine oral rinse 0.12%) or to refrain from rinsing. Four PSP plates were sampled from each FMX through collection into sterile containers upon exiting the scanner. Flame-sterilized forceps were used to transfer the PSP plates onto blood agar plates (5% sheep blood agar). The blood agar plates were incubated at 37℃ for up to 72 h. An environmental control blood agar plate was incubated with each batch. Additionally, for control, 25 gas-sterilized PSP plates were plated onto blood agar and analyzed. The mean number of bacterial colonies per plate was the lowest in the chlorhexidine group, followed by the Decapinol, Listerine, and the no rinse negative control groups. Only the chlorhexidine and Listerine groups were significantly different (p=0.005). No growth was observed for the 25 gas-sterilized control plates or the environmental control blood agar plates. The mean number of bacterial colonies was the lowest in the chlorhexidine group, followed by the Decapinol, Listerine, and the no rinse groups. Nonetheless, a statistically significant difference was found only in the case of Listerine. Additional research is needed to test whether a higher concentration (0.2%) or longer exposure period (two consecutive 30 s rinse periods) would be helpful in reducing PSP plate contamination further with chlorhexidine.

  8. The effectiveness of a pre-procedural mouthrinse in reducing bacteria on radiographic phosphor plates

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Allison; Kalathingal, Sajitha; Shrout, Michael; Plummer, Kevin; Looney, Stephen [Georgia Regents University, College of Dental Medicine, Augusta (United States)

    2014-06-15

    This study assessed the effectiveness of three antimicrobial mouthrinses in reducing microbial growth on photostimulable phosphor (PSP) plates. Prior to performing a full-mouth radiographic survey (FMX), subjects were asked to rinse with one of the three test rinses (Listerine, Decapinol, or chlorhexidine oral rinse 0.12%) or to refrain from rinsing. Four PSP plates were sampled from each FMX through collection into sterile containers upon exiting the scanner. Flame-sterilized forceps were used to transfer the PSP plates onto blood agar plates (5% sheep blood agar). The blood agar plates were incubated at 37 degree C for up to 72 h. An environmental control blood agar plate was incubated with each batch. Additionally, for control, 25 gas-sterilized PSP plates were plated onto blood agar and analyzed. The mean number of bacterial colonies per plate was the lowest in the chlorhexidine group, followed by the Decapinol, Listerine, and the no rinse negative control groups. Only the chlorhexidine and Listerine groups were significantly different (p=0.005). No growth was observed for the 25 gas-sterilized control plates or the environmental control blood agar plates. The mean number of bacterial colonies was the lowest in the chlorhexidine group, followed by the Decapinol, Listerine, and the no rinse groups. Nonetheless, a statistically significant difference was found only in the case of Listerine. Additional research is needed to test whether a higher concentration (0.2%) or longer exposure period (two consecutive 30 s rinse periods) would be helpful in reducing PSP plate contamination further with chlorhexidine.

  9. Doping of graphite by an alkaline-earth metal to reduce the work function

    NARCIS (Netherlands)

    Baturin, AS; Nikolski, KN; Knyazev, AI; Tchesov, RG; Sheshin, EP

    2004-01-01

    A technique for reducing the work function of a field-emission graphite cathode by doping it by an alkaline-earth metal (barium) is suggested. A model of formation of a barium monolayer on the cathode surface is proposed. Field-emission tests show that the operating voltage of the doped cathode is

  10. Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp nov., Ralstonia metallidurans sp nov and Ralstonia basilensis Steinle et al. 1998 emend.

    NARCIS (Netherlands)

    Goris, J; de Vos, P; Coenye, T; Hoste, B; Janssens, D; Brim, H; Diels, L; Mergeay, M; Kersters, K; Vandamme, P

    Thirty-one heavy-metal-resistant bacteria isolated from industrial biotopes were subjected to polyphasic characterization, including 16S rDNA sequence analysis, DNA-DNA hybridizations, biochemical tests, whole-cell protein and fatty-acid analyses. All strains were shown to belong to the Ralstonia

  11. Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China.

    Directory of Open Access Journals (Sweden)

    Xiumei Yu

    Full Text Available To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates and Ochrobactrum intermedium (13 isolates. Altogether 93 isolates tolerated the highest concentration (1000 mg kg(-1 of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg(-1 cadmium whereas only one strain tolerated 1,000 mg kg(-1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA, a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml(-1. In total 21% of the bacteria produced siderophore (5.50-167.67 µg ml(-1 with two Bacillus sp. producing more than 100 µg ml(-1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil.

  12. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite

    Science.gov (United States)

    Picard, Aude; Gartman, Amy; Clarke, David R.; Girguis, Peter R.

    2018-01-01

    Sedimentary iron sulfide minerals play a key role in maintaining the oxygenation of Earth's atmosphere over geological timescales; they also record critical geochemical information that can be used to reconstruct paleo-environments. On modern Earth, sedimentary iron sulfide mineral formation takes places in low-temperature environments and requires the production of free sulfide by sulfate-reducing microorganisms (SRM) under anoxic conditions. Yet, most of our knowledge on the properties and formation pathways of iron sulfide minerals, including pyrite, derives from experimental studies performed in abiotic conditions, and as such the role of biotic processes in the formation of sedimentary iron sulfide minerals is poorly understood. Here we investigate the role of SRM in the nucleation and growth of iron sulfide minerals in laboratory experiments. We set out to test the hypothesis that SRM can influence Fe-S mineralization in ways other than providing sulfide through the comparison of the physical properties of iron sulfide minerals precipitated in the presence and in the absence of the sulfate-reducing bacterium Desulfovibrio hydrothermalis AM13 under well-controlled conditions. X-ray diffraction and microscopy analyses reveal that iron sulfide minerals produced in the presence of SRM exhibit unique morphology and aggregate differently than abiotic minerals formed in media without cells. Specifically, mackinawite growth is favored in the presence of both live and dead SRM, when compared to the abiotic treatments tested. The cell surface of live and dead SRM, and the extracellular polymers produced by live cells, provide templates for the nucleation of mackinawite and favor mineral growth. The morphology of minerals is however different when live and dead cells are provided. The transformation of greigite from mackinawite occurred after several months of incubation only in the presence of live SRM, suggesting that SRM might accelerate the kinetics of greigite

  13. Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2014-12-23

    The degradation of our environment and the depletion of fossil fuels make the exploration of alternative fuels evermore imperative. Among the alternatives is biohydrogen which has high energy content by weight and produces only water when combusted. Considerable effort is being expended to develop photosynthetic systems -- algae, cyanobacteria, and anaerobic phototrophs -- for sustainable H2 production. While promising, this approach also has hurdles such as the harvesting of light in densely pigmented cultures that requires costly constant mixing and large areas for exposure to sunlight. Little attention is given to fermentative H2 generation. Thus understanding the microbial pathways to H2 evolution and metabolic processes competing for electrons is an essential foundation that may expand the variety of fuels that can be generated or provide alternative substrates for fine chemical production. We studied a widely found soil anaerobe of the class Deltaproteobacteria, a sulfate-reducing bacterium to determine the electron pathways used during the oxidation of substrates and the potential for hydrogen production.

  14. Biofiltration of reduced sulphur compounds and community analysis of sulphur-oxidizing bacteria.

    Science.gov (United States)

    Ramírez, Martín; Fernández, Maikel; Granada, Claudia; Le Borgne, Sylvie; Gómez, José Manuel; Cantero, Domingo

    2011-03-01

    The present work aims to use a two-stage biotrickling filters for simultaneous treatment of hydrogen sulphide (H(2)S), methyl mercaptan (MM), dimethyl sulphide (DMS) and dimethyl disulphide (DMDS). The first biofilter was inoculated with Acidithiobacillus thiooxidans (BAT) and the second one with Thiobacillus thioparus (BTT). For separate feeds of reduced sulphur compounds (RSC), the elimination capacity (EC) order was DMDS>DMS>MM. The EC values were 9.8 g(MM-S)/m(3)/h (BTT; 78% removal efficiency (RE); empty bed residence time (EBRT) 58 s), 36 g(DMDS-S)/m(3)/h (BTT; 94.4% RE; EBRT 76 s) and 57.5 g(H2S-S)/m(3)/h (BAT; 92% RE; EBRT 59 s). For the simultaneous removal of RSC in BTT, an increase in the H(2)S concentration from 23 to 293 ppmv (EBRT of 59 s) inhibited the RE of DMS (97-84% RE), DMDS (86-76% RE) and MM (83-67% RE). In the two-stage biofiltration, the RE did not decrease on increasing the H(2)S concentration from 75 to 432 ppmv. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. The ecophysiology of sulfur isotope fractionation by sulfate reducing bacteria in response to variable environmental conditions

    Science.gov (United States)

    Leavitt, W.; Bradley, A. S.; Johnston, D. T.; Pereira, I. A. C.; Venceslau, S.; Wallace, C.

    2014-12-01

    Microbial sulfate reducers (MSR) drive the Earth's biogeochemical sulfur cycle. At the heart of this energy metabolism is a cascade of redox transformations coupling organic carbon and/or hydrogen oxidation to the dissimilatory reduction of sulfate to sulfide. The sulfide produced is depleted in the heavier isotopes of sulfur relative to sulfate. The magnitude of discrimination (fractionation) depends on: i) the cell-specific sulfate reduction rate (csSRR, Kaplan & Rittenberg (1964) Can. J. Microbio.; Chambers et al. (1975) Can. J. Microbio; Sim et al. (2011) GCA; Leavitt et al. (2013) PNAS), ii) the ambient sulfate concentration (Harrison & Thode (1958) Research; Habicht et al. (2002) Science; Bradley et al. in review), iii) both sulfate and electron donor availability, or iv) an intrinsic physiological limitation (e.g. cellular division rate). When neither sulfate nor electron donor limits csSRR a more complex function relates the magnitude of isotope fractionation to cell physiology and environmental conditions. In recent and on-going work we have examined the importance of enzyme-specific fractionation factors, as well as the influence of electron donor or electron acceptor availability under carefully controlled culture conditions (e.g. Leavitt et al. (2013) PNAS). In light of recent advances in MSR genetics and biochemistry we utilize well-characterized mutant strains, along with a continuous-culture methodology (Leavitt et al. (2013) PNAS) to further probe the fractionation capacity of this metabolism under controlled physiological conditions. We present our latest findings on the magnitude of S and D/H isotope fractionation in both wild type and mutant strains. We will discuss these in light of recent theoretical advances (Wing & Halevy (2014) PNAS), examining the mode and relevance of MSR isotope fractionation in the laboratory to modern and ancient environmental settings, particularly anoxic marine sediments.

  16. Effect of homogenization techniques on reducing the size of microcapsules and the survival of probiotic bacteria therein.

    Science.gov (United States)

    Ding, W K; Shah, N P

    2009-08-01

    This study investigated 2 different homogenization techniques for reducing the size of calcium alginate beads during the microencapsulation process of 8 probiotic bacteria strains, namely, Lactobacillus rhamnosus, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, Bifidobacterium longum, B. lactis type Bi-04, and B. lactis type Bi-07. Two different homogenization techniques were used, namely, ultra-turrax benchtop homogenizer and Microfluidics microfluidizer. Various settings on the homogenization equipment were studied such as the number of passes, speed (rpm), duration (min), and pressure (psi). The traditional mixing method using a magnetic stirrer was used as a control. The size of microcapsules resulting from the homogenization technique, and the various settings were measured using a light microscope and a stage micrometer. The smallest capsules measuring (31.2 microm) were created with the microfluidizer using 26 passes at 1200 psi for 40 min. The greatest loss in viability of 3.21 log CFU/mL was observed when using the ultra-turrax benchtop homogenizer with a speed of 1300 rpm for 5 min. Overall, both homogenization techniques reduced capsule sizes; however, homogenization settings at high rpm also greatly reduced the viability of probiotic organisms.

  17. Expansion of Phragmites australis alters methane dynamics and methanogen, methanotroph, and sulfate reducing bacteria communities in tidal marsh in Korea

    Science.gov (United States)

    Kim, J.; Lee, J.; Kim, H.; Gauhar, M.; Kang, H.

    2016-12-01

    Plant invasion is known to change substantially methane dynamics in tidal marshes. However, the exact mechanisms related to methane dynamics change due to plant invasion have not been fully understood. In Suncheon Bay, South Korea, Phragmites australis has invaded the habitat of native species, Suaeda japonica, and becomes dominant vegetation in this area. We measured methane fluxes, soil biogeochemistry, and microbial communities from both vegetation sites throughout a growing season and conducted a chronosequence analysis in order to illustrate the effect of plant invasion on methane dynamics and microbial communities. For analyzing microbial communities, we collected 1m intact soil cores and conducted functional gene-targeted real-time qPCR, T-RFLP, and PLFA. P. australis invasion significantly increased methane emission in a summer season, accompanied by greater dissolved organic carbon and soil water content. Methanogen, methanotroph, and sulfate reducing bacterial communities were gradually changed along with the invasion periods. In particular, abundances ratio of mcrA/pmoA and mcrA/dsrA had a positive correlation with methane emission, which indicates that P. australis invasion reduces methane oxidation by methanotroph, and competitive inhibition between methanogen and sulfate reducing bacteria. In conclusion, P. australis invasion on S. japonica significantly increased methane emission in tidal marsh by altering the microbial communities in a way that C decomposition would be dominated by methanogenesis.

  18. Preliminary investigation of microbiological effect for radioactive waste disposal system. 1. Experimental investigation of tolerance of some bacterias under alkaline and reducing condition

    International Nuclear Information System (INIS)

    Yoshikawa, Hideki; Yui, Mikazu; Mihara, Morihiro; Fukunaga, Sakae; Asano, Hidekazu.

    1995-01-01

    Activities and tolerance of some bacteria were investigated under alkaline and reducing conditions for geological disposal. A fermenter was used to control pH and Eh with a liquid culture inoculated with sulphate-reducing bacteria (SRB), methane-producing bacteria (MPB) and sulphur-oxidizing bacteria (SOB). Growth of SRB was obtained at maximum pH 8.6 (Eh -340 mV) or maximum Eh -100 mV (pH 7). Ranges of Eh for the growth of MPB and SOB were estimated to be less than -210 mV at pH8, and more than +240 mV at pH 7.5, respectively. Activity for SOB was not observed in the pH range more than 8. (author)

  19. Application of bacteriophages to reduce biofilms formed by hydrogen sulfide producing bacteria on surfaces in a rendering plant.

    Science.gov (United States)

    Gong, Chao; Jiang, Xiuping

    2015-08-01

    Hydrogen sulfide producing bacteria (SPB) in raw animal by-products are likely to grow and form biofilms in the rendering processing environments, resulting in the release of harmful hydrogen sulfide (H2S) gas. The objective of this study was to reduce SPB biofilms formed on different surfaces typically found in rendering plants by applying a bacteriophage cocktail. Using a 96-well microplate method, we determined that 3 SPB strains of Citrobacter freundii and Hafnia alvei are strong biofilm formers. Application of 9 bacteriophages (10(7) PFU/mL) from families of Siphoviridae and Myoviridae resulted in a 33%-70% reduction of biofilm formation by each SPB strain. On stainless steel and plastic templates, phage treatment (10(8) PFU/mL) reduced the attached cells of a mixed SPB culture (no biofilm) by 2.3 and 2.7 log CFU/cm(2) within 6 h at 30 °C, respectively, as compared with 2 and 1.5 log CFU/cm(2) reductions of SPB biofilms within 6 h at 30 °C. Phage treatment was also applied to indigenous SPB biofilms formed on the environmental surface, stainless steel, high-density polyethylene plastic, and rubber templates in a rendering plant. With phage treatment (10(9) PFU/mL), SPB biofilms were reduced by 0.7-1.4, 0.3-0.6, and 0.2-0.6 log CFU/cm(2) in spring, summer, and fall trials, respectively. Our study demonstrated that bacteriophages could effectively reduce the selected SPB strains either attached to or in formed biofilms on various surfaces and could to some extent reduce the indigenous SPB biofilms on the surfaces in the rendering environment.

  20. Consumption of a diet rich in Brassica vegetables is associated with a reduced abundance of sulphate‐reducing bacteria: A randomised crossover study

    Science.gov (United States)

    Kellingray, Lee; Tapp, Henri S.; Saha, Shikha; Doleman, Joanne F.; Narbad, Arjan

    2017-01-01

    Scope We examined whether a Brassica‐rich diet was associated with an increase in the relative abundance of intestinal lactobacilli and sulphate‐reducing bacteria (SRB), or alteration to the composition of the gut microbiota, in healthy adults. Methods and results A randomised crossover study was performed with ten healthy adults who were fed a high‐ and a low‐Brassica diet for 2‐wk periods, with a 2‐wk washout phase separating the diets. The high‐Brassica diet consisted of six 84 g portions of broccoli, six 84 g portions of cauliflower and six 300 g portions of a broccoli and sweet potato soup. The low‐Brassica diet consisted of one 84 g portion of broccoli and one 84 g portion of cauliflower. Faecal microbiota composition was measured in samples collected following 2‐wk Brassica‐free periods (consumption of all Brassica prohibited), and after each diet, whereby the only Brassica consumed was that supplied by the study team. No significant changes to the relative abundance of lactobacilli were observed (p = 0.8019). The increased consumption of Brassica was associated with a reduction in the relative abundance of SRB (p = 0.0215), and members of the Rikenellaceae, Ruminococcaceae, Mogibacteriaceae, Clostridium and unclassified Clostridiales (p Brassica vegetables was linked to a reduced relative abundance of SRB, and therefore may be potentially beneficial to gastrointestinal health. PMID:28296348

  1. Identification of Enterococcus faecalis bacteria resistant to heavy metals and antibiotics in surface waters of the Mololoa River in Tepic, Nayarit, Mexico.

    Science.gov (United States)

    Mondragón, Verónica Alejandra; Llamas-Pérez, Dámaris F; González-Guzmán, Gladis E; Márquez-González, Antonio R; Padilla-Noriega, Roberto; Durán-Avelar, Ma de Jesús; Franco, Bernardo

    2011-12-01

    Heavy metal and antibiotic resistance have been shown to have a strong correlation in nature, and their inter-relation is an important subject of study. We report an analysis of surface waters of the Mololoa River in the municipality of Tepic, state of Nayarit, Mexico. This river has two distinctive sources of contamination: sewage waters and trash confinements. Our findings demonstrate a correlation between the river flow pattern and resistance to heavy metals or to heavy metals and antibiotics in isolated bacteria of the genus Enterococcus, specifically Enterococcus faecalis. The Mololoa River provides a model to study the relationship between water flow and generation of biodiversity, and more importantly, it constitutes a model for studying genetic diversity of bacteria affecting human health.

  2. Burkholderia dabaoshanensis sp. nov., a heavy-metal-tolerant bacteria isolated from Dabaoshan mining area soil in China.

    Directory of Open Access Journals (Sweden)

    Honghui Zhu

    Full Text Available Heavy-metal-tolerant bacteria, GIMN1.004(T, was isolated from mine soils of Dabaoshan in South China, which were acidic (pH 2-4 and polluted with heavy metals. The isolation was Gram-negative, aerobic, non-spore-forming, and rod-shaped bacteria having a cellular width of 0.5-0.6 µm and a length of 1.3-1.8 µm. They showed a normal growth pattern at pH 4.0-9.0 in a temperature ranging from 5 °C to 40 °C.The organism contained ubiquinone Q-8 as the predominant isoprenoid quinine, and C(16:0, summed feature 8 (C(18:1ω7c and C(18:1ω6c, C(18:0, summed feature 3 (C(16:1ω7c or iso-C(15:0 2-OH, C(17:0 cyclo, C(18:1ω9c, C(19:0 cyclo ω8c, C(14:0 as major fatty acid. These profiles were similar to those reported for Burkholderia species. The DNA G+C % of this strain was 61.6%. Based on the similarity to 16S rRNA gene sequence, GIMN1.004(T was considered to be in the genus Burkholderia. The similarities of 16S rRNA gene sequence between strain GIMN1.004(T and members of the genus Burkholderia were 96-99.4%, indicating that this novel strain was phylogenetically related to members of that genus. The novel strain showed the highest sequence similarities to Burkholderia soli DSM 18235(T (99.4%; Levels of DNA-DNA hybridization with DSM 18235(T was 25%. Physiological and biochemical tests including cell wall composition analysis, differentiated phenotype of this strain from that closely related Burkholderia species. The isolation had great tolerance to cadmium with MIC of 22 mmol/L, and adsorbability of 144.94 mg/g cadmium,and it was found to exhibit antibiotic resistance characteristics. The adsorptive mechanism of GIMN1.004(T for cadmium depended on the action of the amide,carboxy and phosphate of cell surface and producing low-molecular-weight (LMW organic acids to complex or chelated Cd(2+.Therefore, the strain GIMN1.004(T represented a new cadmium resistance species, which was tentatively named as Burkholderia dabaoshanensis sp. nov. The strain type

  3. A New Type of Metal-Binding Site in Cobalt- And Zinc-Containing Adenylate Kinases Isolated From Sulfate-Reducers D. Gigas And D. Desulfuricans ATCC 27774

    Energy Technology Data Exchange (ETDEWEB)

    Gavel, O.Y.; Bursakov, S.A.; Rocco, G.Di; Trincao, J.; Pickering, I.J.; George, G.N.; Calvete, J.J.; Brondino, C.; Pereira, A.S.; Lampreia, J.; Tavares, P.; Moura, J.J.G.; Moura, I.

    2009-05-18

    Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterized in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the 'LID' domain. The sequence {sup 129}Cys-X{sub 5}-His-X{sub 15}-Cys-X{sub 2}-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.

  4. A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774.

    Science.gov (United States)

    Gavel, Olga Yu; Bursakov, Sergey A; Di Rocco, Giulia; Trincão, José; Pickering, Ingrid J; George, Graham N; Calvete, Juan J; Shnyrov, Valery L; Brondino, Carlos D; Pereira, Alice S; Lampreia, Jorge; Tavares, Pedro; Moura, José J G; Moura, Isabel

    2008-01-01

    Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the "LID" domain. The sequence 129Cys-X5-His-X15-Cys-X2-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.

  5. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce.

    Science.gov (United States)

    Duan, Manli; Li, Haichao; Gu, Jie; Tuo, Xiaxia; Sun, Wei; Qian, Xun; Wang, Xiaojuan

    2017-05-01

    Antibiotics and antibiotic resistance genes (ARGs) in soil can affect human health via the food chain. Biochar is a soil amendment but its impacts on ARGs and the microbial communities associated with soil and vegetables are unclear. Therefore, we established three lettuce pot culture experiments, i.e., O300: 300 mg/kg oxytetracycline (OTC), BO300: 300 mg/kg OTC + 2% biochar, and a control without OTC or biochar. We found that under BO300, the relative abundances of ARGs were reduced by 51.8%, 43.4%, and 44.1% in lettuce leaves, roots, and soil, respectively, compared with O300. intI1 was highly abundant in soil and lettuce, and it co-occurred with some ARGs (tetW, ermF, and sul1). Redundancy analysis and network analysis indicated that the bacterial community succession was the main mechanism that affected the variations in ARGs and intI1. The reduction of Firmicutes due to the biochar treatment of soil and lettuce was the main factor responsible for the removal of tetracycline resistance genes in leaves. Biochar application led to the disappearance of human pathogenic bacteria (HPB), which was significantly correlated with the abundances of ermF and ermX. In summary, biochar is an effective farmland amendment for reducing the abundances of antibiotics, ARGs, and HPB in order to ensure the safety of vegetables and protect human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil.

    Science.gov (United States)

    Kumar, Kalpna V; Patra, D D

    2013-01-01

    The present study was undertaken to examine the effect of the application of fly ash (FA) into Garden soil (GS), with and without inoculation of plant growth promoting bacteria (PGPB), on the growth and metal uptake by Zea mays plants. Three FA tolerant PGPB strains, Pseudomonas sp. PS5, PS14, and Bacillus sp. BC29 were isolated from FA contaminated soils and assessed for their plant growth promoting features on the Z. mays plants. All three strains were also examined for their ability to solubilize phosphate and to produce Indole Acetic Acid (IAA), siderophores, and hydrogencynide acid (HCN) production. Although inoculation of all strains significantly enhanced the growth of plants at both the concentration of FA but maximum growth was observed in plants inoculated with BC29 and PS14 at low level (25%) of FA concentration. The experimental results explored the plant growth promoting features of selected strains which not only enhanced growth and biomass of plants but also protected them from toxicity of FA.

  7. The Ability of Benzoic Acid to Reduce Cr(VI Heavy Metal Content in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Anugrah Windy Mustikarini

    2015-12-01

    Full Text Available Chromium (VI is an ionic heavy metal which has to be handled properly when dissolved in water due to its toxicity, corosive, carsinogenic activity.. According to the State Minister for Population and Environment’s regulation, the quality standards of waste water, which is allowed to be discharge on surface water contains Cr(VI is 0.05-1 mg/L. This research used benzoic acid which is a kind of organic acid to reduce Cr(VI content in water. Benzoic acid has an active carboxyl group which interact this metal. This paper, the elimination of Cr(VI using benzoic acid is undertaken through pH adjustment by regulating with phosphoric acid. The result showed the best condition to reducing Cr(VI content 41.99% when 400 ppm of benzoic acid and pH 7 was applied, respectively.

  8. The roles of the micro-organisms and chromium content in the corrosion of iron-chromium steels in the presence of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Ferrante, V.

    1991-09-01

    If it is widely accepted that the presence of sulfate-reducing bacteria can increase the aqueous corrosion of steels, the induced mechanisms are still not definitively established. The aim of this work is to specify the roles, for corrosion, of the presence of bacteria (D. Vulgaris) in one part and of chemical parameters as the composition of the material and the accumulation of sulfides in another part. The use of experimental techniques coming from microbiology, electrochemistry or chemical analysis has revealed the interdependence which exists between the bacteria and the material, and the importance of the steel composition towards the adhesion of microorganisms and the generalized corrosion. The bacteria and the dissolved sulfides do not seem to influence remarkably the generalized corrosion. Nevertheless, the alterations of the surface state they induce could be the cause of localized corrosion phenomena. (O.M.)

  9. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments.

    Science.gov (United States)

    Somenahally, Anil C; Hollister, Emily B; Yan, Wengui; Gentry, Terry J; Loeppert, Richard H

    2011-10-01

    Rice cultivated on arsenic (As) contaminated-soils will accumulate variable grain-As concentrations, as impacted by varietal differences, soil variables, and crop management. A field-scale experiment was conducted to study the impact of intermittent and continuous flooding on As speciation and microbial populations in rice rhizosphere compartments of soils that were either historically amended with As pesticide or unamended with As. Rhizosphere-soil, root-plaque, pore-water and grain As were quantified and speciated, and microbial populations in rhizosphere soil and root-plaque were characterized. Total-As concentrations in rhizosphere and grain were significantly lower in intermittently flooded compared to the continuously flooded plots (86% lower in pore-water, 55% lower in root-plaque and 41% lower in grain samples). iAs(V), iAs(III), and DMAs(V) were the predominant As species detected in rhizosphere-soil and root-plaque, pore-water and grain samples, respectively. Relative proportions of Archaea and iron-reducing bacteria (FeRB) were higher in rhizosphere soil compared to root-plaque. In rhizosphere soil, the relative abundance of FeRB was lower in intermittently flooded compared to continuously flooded plots, but there were no differences between root-plaque samples. This study has demonstrated that reductions in dissolved As concentrations in the rhizosphere and subsequent decreases in grain-As concentration can be attained through water management.

  10. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    H.S. El-Sheshtawy

    2015-06-01

    Full Text Available In this study, the bacterium Bacillus licheniformis has been isolated from oil reservoir; the ability of this bacterium to produce a biosurfactant was detected. Surface properties of the produced biosurfactant were confirmed by determining the emulsification power as well as surface and interfacial tension. The crude biosurfactant has been extracted from supernatant culture growth, and the yield of crude biosurfactant was about 1 g/l. Also, chemical structure of the produced biosurfactant was confirmed using FTIR analysis. Results revealed that, the emulsification power has been increased up to 96% and the surface tension decreased from 72 of distilled water to 36 mN/m after 72 h of incubation. The potential application of this bacterial species in microbial-enhanced oil recovery (MEOR was investigated. The percent of oil recovery was 16.6% upon application in a sand pack column designed to stimulate an oil recovery. It also showed antimicrobial activity against the growth of different strains of SRB (sulfate reducing bacteria. Results revealed that a complete inhibition of SRB growth using 1.0% crude biosurfactant is achieved after 3 h.

  11. Hybrid soliwave technique for mitigating sulfate-reducing bacteria in controlling biocorrosion: a case study on crude oil sample.

    Science.gov (United States)

    Mohd Ali, Muhammad Khairool Fahmy Bin; Abu Bakar, Akrima; Md Noor, Norhazilan; Yahaya, Nordin; Ismail, Mardhiah; Rashid, Ahmad Safuan

    2017-10-01

    Microbiologically influenced corrosion (MIC) is among the common corrosion types for buried and deep-water pipelines that result in costly repair and pipeline failure. Sulfate-reducing bacteria (SRB) are commonly known as the culprit of MIC. The aim of this work is to investigate the performance of combination of ultrasound (US) irradiation and ultraviolet (UV) radiation (known as Hybrid soliwave technique, HyST) at pilot scale to inactivate SRB. The influence of different reaction times with respect to US irradiation and UV radiation and synergistic effect toward SRB consortium was tested and discussed. In this research, the effect of HyST treatment toward SRB extermination and corrosion studies of carbon steel coupon upon SRB activity before and after the treatment were performed using weight loss method. The carbon steel coupons immersed in SRB sample were exposed to HyST treatment at different time of exposure. Additionally, Field Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy were used to investigate the corrosion morphology in verifying the end product of SRB activity and corrosion formation after treatment. Results have shown that the US irradiation treatment gives a synergistic effect when combined with UV radiation in mitigating the SRB consortium.

  12. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  13. Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions

    International Nuclear Information System (INIS)

    Wan Yi; Zhang Dun; Liu Huaiqun; Li Yongjuan; Hou Baorong

    2010-01-01

    The growth cycle of sulphate-reducing bacteria (SRB), Desulfovibrio caledoniensis, and the effect of SRB on the environmental parameters and corrosion behavior of Q235 steel during a growth cycle in aerobic (air- and O 2 -saturated culture solutions) and anaerobic (N 2 - saturated culture solutions) conditions were investigated. Oxygen dissolved in the culture solutions induced slow growth and fast decay of SRB. The growth process of SRB under anaerobic and aerobic conditions influenced sulphide anion concentration (C s 2- ), pH, and conductivity (κ). The values of C s 2- and κ under aerobic conditions were lower than those under anaerobic conditions, and the pH values increased from O 2 - to air- to N 2 -saturated culture solutions. Aerobic conditions induced the open circuit potential (E OC ) to shift in the positive direction after the stationary phase of SRB growth. The charge transfer resistance (R ct ) increased quickly during the exponential growth phase, almost maintained stability during the stationary phase, and decreased after the stationary phase in all three conditions, and the impedance magnitude decreased from O 2 - to air- to N 2 -saturated culture solutions. The biofilms induced by SRB were observed by scanning electron microscopy (SEM) under aerobic and anaerobic conditions, and energy dispersive spectroscopy (EDS) was performed in abiotic and SRB-containing systems to distinguish the corrosion products. The reasons for the effects of SRB on the environmental parameters and corrosion behavior of carbon steel are discussed.

  14. LiF Reduces MICs of Antibiotics against Clinical Isolates of Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    H. C. Syed

    2012-01-01

    Full Text Available Antibiotic resistance is an ever-growing problem yet the development of new antibiotics has slowed to a trickle, giving rise to the use of combination therapy to eradicate infections. The purpose of this study was to evaluate the combined inhibitory effect of lithium fluoride (LiF and commonly used antimicrobials on the growth of the following bacteria: Enterococcus faecalis, Staphyloccoccus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, and Streptococcus pneumoniae. The in vitro activities of ceftazidime, sulfamethoxazole-trimethoprim, streptomycin, erythromycin, amoxicillin, and ciprofloxacin, doxycycline, alone or combined with LiF were performed by microdilution method. MICs were determined visually following 18–20 h of incubation at 37°C. We observed reduced MICs of antibiotics associated with LiF ranging from two-fold to sixteen-fold. The strongest decreases of MICs observed were for streptomycin and erythromycin associated with LiF against Acinetobacter baumannii and Streptococcus pneumoniae. An eight-fold reduction was recorded for streptomycin against S. pneumoniae whereas an eight-fold and a sixteen-fold reduction were obtained for erythromycin against A. baumannii and S. pneumoniae. This suggests that LiF exhibits a synergistic effect with a wide range of antibiotics and is indicative of its potential as an adjuvant in antibiotic therapy.

  15. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite.

    Science.gov (United States)

    Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D; Pumera, Martin

    2012-08-07

    Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research.

  16. Influence of sulfate-reducing bacteria on the corrosion of steel in seawater: laboratory and in situ study

    International Nuclear Information System (INIS)

    Benbouzid-Rollet, N.

    1993-01-01

    A fouling reactor was designed to study, the influence of a mixed bio-film on AISI 316 L stainless steel. The bio-film was formed on the steel surface by the fermentative bacterium Vibrio natriegens. The sulfate-reducing bacterium Desulfovibrio vulgaris was then introduced in the reactor and colonized the surface, constituting approximately 5 % of the total population. The settlement of an anaerobic bacterium in the bio-film shows in it the existence of anaerobic micro-niches. Stainless steel electrochemical behavior was analyzed using open circuit potential and potentiodynamic polarization curves. Growth of the bio-film does not induce corrosion, but seems to change the cathodic oxygen reduction kinetics, diminishing the corrosion hazard. This effect increases when D. vulgaris grows in the bio-film. An ennobling of the open circuit potential was observed, similar to field cases already described. A case of drilling corrosion of carbon steel in a harbour area showed the characteristics of anaerobic corrosion related to sulfate-reducing bacteria. The total cultivatable SRB population was quantified and metabolic types were enumerated using specific electron donors. A maximum cell density of 1,1 x 10 8 cells/ cm 2 was estimated, revealing a very important growth of SRB on surfaces. Population structure was different in corroded and non-corroded areas. In corroded area, SRB utilizing benzoate and propionate were more abundant. A strain belonging to the sporulating genus Desulfotomaculum was isolated using these substrates, suggesting a partial aeration in the area of hole appearance. However, in vitro corrosion assays showed that the bacterial population sampled in this area induced a consequent weight loss of steel coupons, in the absence of oxygen. This was observed only with a diversified population, similar to that present in situ. It could not be reproduced with a mixed culture of two purified strains. (author)

  17. Thymol kills bacteria, reduces biofilm formation, and protects mice against a fatal infection of Actinobacillus pleuropneumoniae strain L20.

    Science.gov (United States)

    Wang, Lei; Zhao, Xueqin; Zhu, Chunling; Xia, Xiaojing; Qin, Wanhai; Li, Mei; Wang, Tongzhao; Chen, Shijun; Xu, Yanzhao; Hang, Bolin; Sun, Yawei; Jiang, Jinqing; Richard, Langford Paul; Lei, Liancheng; Zhang, Gaiping; Hu, Jianhe

    2017-05-01

    Actinobacillus pleuropneumoniae is the causative agent of the highly contagious and deadly respiratory infection porcine pleuropneumonia, resulting in serious losses to the pig industry worldwide. Alternative to antibiotics are urgently needed due to the serious increase in antimicrobial resistance. Thymol is a monoterpene phenol and efficiently kills a variety of bacteria. This study found that thymol has strong bactericidal effects on the A. pleuropneumoniae 5b serotype strain, an epidemic strain in China. Sterilization occurred rapidly, and the minimum inhibitory concentration (MIC) is 31.25μg/mL; the A. pleuropneumoniae density was reduced 1000 times within 10min following treatment with 1 MIC. Transmission electron microscopy (TEM) analysis revealed that thymol could rapidly disrupt the cell walls and cell membranes of A. pleuropneumoniae, causing leakage of cell contents and cell death. In addition, treatment with thymol at 0.5 MIC significantly reduced the biofilm formation of A. pleuropneumoniae. Quantitative RT-PCR results indicated that thymol treatment significantly increased the expression of the virulence genes purC, tbpB1 and clpP and down-regulated ApxI, ApxII and Apa1 expression in A. pleuropneumoniae. Therapeutic analysis of a murine model showed that thymol (20mg/kg) protected mice from a lethal dose of A. pleuropneumoniae, attenuated lung pathological lesions. This study is the first to report the use of thymol to treat A. pleuropneumoniae infection, establishing a foundation for the development of new antimicrobials. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Growth of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a high-pressure membrane capsule bioreactor.

    Science.gov (United States)

    Timmers, Peer H A; Gieteling, Jarno; Widjaja-Greefkes, H C Aura; Plugge, Caroline M; Stams, Alfons J M; Lens, Piet N L; Meulepas, Roel J W

    2015-02-01

    Communities of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB) grow slowly, which limits the ability to perform physiological studies. High methane partial pressure was previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated SRB are affected by it. Here, we report on the growth of ANME-SRB in a membrane capsule bioreactor inoculated with Eckernförde Bay sediment that combines high-pressure incubation (10.1 MPa methane) and thorough mixing (100 rpm) with complete cell retention by a 0.2-m-pore-size membrane. The results were compared to previously obtained data from an ambient-pressure (0.101 MPa methane) bioreactor inoculated with the same sediment. The rates of oxidation of labeled methane were not higher at 10.1 MPa, likely because measurements were done at ambient pressure. The subtype ANME-2a/b was abundant in both reactors, but subtype ANME-2c was enriched only at 10.1 MPa. SRB at 10.1 MPa mainly belonged to the SEEP-SRB2 and Eel-1 groups and the Desulfuromonadales and not to the typically found SEEP-SRB1 group. The increase of ANME-2a/b occurred in parallel with the increase of SEEP-SRB2, which was previously found to be associated only with ANME-2c. Our results imply that the syntrophic association is flexible and that methane pressure and sulfide concentration influence the growth of different ANME-SRB consortia. We also studied the effect of elevated methane pressure on methane production and oxidation by a mixture of methanogenic and sulfate-reducing sludge. Here, methane oxidation rates decreased and were not coupled to sulfide production, indicating trace methane oxidation during net methanogenesis and not anaerobic methane oxidation, even at a high methane partial pressure.

  19. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China

    International Nuclear Information System (INIS)

    Wei Gehong; Fan Lianmei; Zhu Wenfei; Fu Yunyun; Yu Jianfu; Tang Ming

    2009-01-01

    A total of 108 strains of bacteria were isolated from root nodules of wild legumes growing in gold mine tailings in northwest of China and were tested for heavy metal resistance. The results showed that the bacterial strain CCNWRS33-2 isolated from Lespedeza cuneata was highly resistant to copper, cadmium, lead and zinc. The strain had a relatively high mean specific growth rate under each heavy metal stress test and exhibited a high degree of bioaccumulation ability. The partial sequence of the copper resistance gene copA was amplified from the strain and a sequence comparison with our Cu-resistant PCR fragment showed a high homology with Cu-resistant genes from other bacteria. Phylogenetic analysis based on the 16S rRNA gene sequence showed that CCNWRS33-2 belongs to the Rhizobium-Agrobacterium branch and it had 98.9% similarity to Agrobactrium tumefaciens LMG196

  20. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China

    Energy Technology Data Exchange (ETDEWEB)

    Wei Gehong [College of Life Science, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A and F University, Yangling Shaanxi 712100 (China)], E-mail: weigehong@yahoo.com.cn; Fan Lianmei; Zhu Wenfei; Fu Yunyun; Yu Jianfu; Tang Ming [College of Life Science, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A and F University, Yangling Shaanxi 712100 (China)

    2009-02-15

    A total of 108 strains of bacteria were isolated from root nodules of wild legumes growing in gold mine tailings in northwest of China and were tested for heavy metal resistance. The results showed that the bacterial strain CCNWRS33-2 isolated from Lespedeza cuneata was highly resistant to copper, cadmium, lead and zinc. The strain had a relatively high mean specific growth rate under each heavy metal stress test and exhibited a high degree of bioaccumulation ability. The partial sequence of the copper resistance gene copA was amplified from the strain and a sequence comparison with our Cu-resistant PCR fragment showed a high homology with Cu-resistant genes from other bacteria. Phylogenetic analysis based on the 16S rRNA gene sequence showed that CCNWRS33-2 belongs to the Rhizobium-Agrobacterium branch and it had 98.9% similarity to Agrobactrium tumefaciens LMG196.

  1. Metal porphyrin intercalated reduced graphene oxide nanocomposite utilized for electrocatalytic oxygen reduction

    Directory of Open Access Journals (Sweden)

    Mingyan Wang

    2017-07-01

    Full Text Available In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin –MtTMPyP (Mt= Cobalt (II, Manganese (III, or Iron (III; TMPyP = 5, 10, 15, 20-tetrakis (N-methylpyridinium-4-yl porphyrin intercalated into the layer of graphene oxide (GO by the cooperative effects of electrostatic and π–π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2D MtTMPyP/rGOn were fabricated. The as-prepared 2D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction (ORR in an alkaline medium. The MtTMPyP/rGOn hybrids, especially CoTMPyP/rGO5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries. Keywords: Metal porphyrin, Reduced graphene oxide, Intercalation, Oxygen reduction reaction, Catalyst

  2. Biological treatment of acid mine water: selection of a biomass population enriched in sulphate-reducing bacteria; Tratamiento biologico de aguas acidas de mineria: seleccion de una poblacion bacteriana enriquecida en bacterias sulfatoreductoras

    Energy Technology Data Exchange (ETDEWEB)

    Duran Barrantes, M. M.; Jimenez Rodriguez, A. M.; Martel Villagran, F. J.

    2001-07-01

    The purpose of this work is to study the biological sulphate reduction. AYESA (Aguas y Estructuras, S. A.) is developing the technical attendance. This study is being demonstrated under the Acid Water Treatment Program, conducted by the Consejeria del Medio Ambiente (Junta de Andalucia). Acid mine drainage is one of the most serious environmental problems facing the metal mining industry. This wastewater is formed when sulphide ores undergo chemical and biological oxidation processes and is characterized by low pH-values and high levels of sulphate and metals. The effect of stimuling bacteria sulphate reduction in such systems in order to improve water quality was examined in a laboratory scale experiment, in 250 mL, magnetically stirred, batch, anaerobic reactors, to 25 degree centigree. (Author) 11 refs.

  3. Distribution of Sulfate-Reducing Bacteria, O2, and H2s in Photosynthetic Biofilms Determined by Oligonucleotide Probes and Microelectrodes Rid A-1977-2009

    DEFF Research Database (Denmark)

    RAMSING, NB; KUHL, M.; JØRGENSEN, BB

    1993-01-01

    . Fluorescent-dye-conjugated oligonucleotides were used as ''phylogenetic'' probes to identify single cells in the slices. Oligonucleotide sequences were selected which were complementary to short sequence elements (16 to 20 nucleotides) within the 16S rRNA of sulfate-reducing bacteria. The probes were labeled......The vertical distribution of sulfate-reducing bacteria (SRB) in photosynthetic biofilms from the trickling filter of a sewage treatment plant was investigated with oligonucleotide probes binding to 16S rRNA. To demonstrate the effect of daylight and photosynthesis and thereby of increased oxygen...... with fluorescein or rhodamine derivatives for subsequent visualization by epifluorescence microscopy. Five probes were synthesized for eukaryotes, eubacteria, SRB (including most species of the delta group of purple bacteria), Desulfobacter spp., and a nonhybridizing control. The SRB were unevenly distributed...

  4. Charge transfer and formation of reduced Ce3+ upon adsorption of metal atoms at the ceria (110) surface

    International Nuclear Information System (INIS)

    Nolan, Michael

    2012-01-01

    The modification of cerium dioxide with nanoscale metal clusters is intensely researched for catalysis applications, with gold, silver, and copper having been particularly well studied. The interaction of the metal cluster with ceria is driven principally by a localised interaction between a small number of metal atoms (as small as one) and the surface and understanding the fundamentals of the interaction of metal atoms with ceria surfaces is therefore of great interest. Much attention has been focused on the interaction of metals with the (111) surface of ceria, since this is the most stable surface and can be grown as films, which are probed experimentally. However, nanostructures exposing other surfaces such as (110) show high activity for reactions including CO oxidation and require further study; these nanostructures could be modified by deposition of metal atoms or small clusters, but there is no information to date on the atomic level details of metal-ceria interactions involving the (110) surface. This paper presents the results of density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) calculations of the adsorption of a number of different metal atoms at an extended ceria (110) surface; the metals are Au, Ag, Cu, Al, Ga, In, La, Ce, V, Cr, and Fe. Upon adsorption all metals are oxidised, transferring electron(s) to the surface, resulting in localised surface distortions. The precise details depend on the identity of the metal atom. Au, Ag, Cu each transfer one electron to the surface, reducing one Ce ion to Ce 3+ , while of the trivalent metals, Al and La are fully oxidised, but Ga and In are only partially oxidised. Ce and the transition metals are also partially oxidised, with the number of reduced Ce ions possible in this surface no more than three per adsorbed metal atom. The predicted oxidation states of the adsorbed metal atoms should be testable in experiments on ceria nanostructures modified with metal atoms.

  5. Charge transfer and formation of reduced Ce3+ upon adsorption of metal atoms at the ceria (110) surface

    Science.gov (United States)

    Nolan, Michael

    2012-04-01

    The modification of cerium dioxide with nanoscale metal clusters is intensely researched for catalysis applications, with gold, silver, and copper having been particularly well studied. The interaction of the metal cluster with ceria is driven principally by a localised interaction between a small number of metal atoms (as small as one) and the surface and understanding the fundamentals of the interaction of metal atoms with ceria surfaces is therefore of great interest. Much attention has been focused on the interaction of metals with the (111) surface of ceria, since this is the most stable surface and can be grown as films, which are probed experimentally. However, nanostructures exposing other surfaces such as (110) show high activity for reactions including CO oxidation and require further study; these nanostructures could be modified by deposition of metal atoms or small clusters, but there is no information to date on the atomic level details of metal-ceria interactions involving the (110) surface. This paper presents the results of density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) calculations of the adsorption of a number of different metal atoms at an extended ceria (110) surface; the metals are Au, Ag, Cu, Al, Ga, In, La, Ce, V, Cr, and Fe. Upon adsorption all metals are oxidised, transferring electron(s) to the surface, resulting in localised surface distortions. The precise details depend on the identity of the metal atom. Au, Ag, Cu each transfer one electron to the surface, reducing one Ce ion to Ce3+, while of the trivalent metals, Al and La are fully oxidised, but Ga and In are only partially oxidised. Ce and the transition metals are also partially oxidised, with the number of reduced Ce ions possible in this surface no more than three per adsorbed metal atom. The predicted oxidation states of the adsorbed metal atoms should be testable in experiments on ceria nanostructures modified with metal atoms.

  6. Electrochemical study of bio-corrosion mechanisms at the carbon steel interface in presence of iron-reducing and hydrogenotrophic bacteria in the nuclear waste disposal context

    International Nuclear Information System (INIS)

    Leite-de-Souza-Moreira, Rebeca

    2013-01-01

    The safety of deep geological repository for nuclear waste is a very important and topical matter especially for the nuclear industry. Such as nuclear fuel the high level waste have to be stored for time frames of millions of years in metallic containers. Typically these containers should be placed in deep geological clay formations 500 metres underground. Corrosion processes, will take place after the re-saturation of the geological medium and under the prevalent anoxic conditions may lead to the generation of hydrogen. This gas accumulates in clay environment through the years and eventually becomes hazardous for steel containers. In the particular environment of geological repositories does not provide much biodegradable substances. This is the reason that hydrogen represents a new suitable energy source for hydrogenotrophic bacteria. Thereby formed bacterial bio-films on the containers may contribute to a process of fast decay of the steel, the so called bio-corrosion. The aim of this study is to characterize the electrochemical interfaces in order to obtain the mechanisms of bio-corrosion of carbon steels in presence of iron reducing and hydrogenotrophic bacterium Shewanella oneideinsis. The products of corrosion processes, namely hydrogen and iron (III) oxides are used as electron donor and acceptor, respectively. The amount of hydrogen consumed by Shewanella could be estimated with 10 -4 mol s -1 using Scanning Electrochemical Microscopy (SECM) techniques. The influence of the local hydrogen generation was evaluated via chrono-amperometry. When hydrogen was locally generated above a carbon steel substrate an accelerated corrosion process can be observed. Eventually, using Local Electrochemical Impedance Spectroscopy (LEIS) techniques, the mechanism of the generalised corrosion process was demonstrated. (author)

  7. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape

    International Nuclear Information System (INIS)

    Sheng Xiafang; Xia Juanjuan; Jiang Chunyu; He Linyan; Qian Meng

    2008-01-01

    Two lead (Pb)-resistant endophytic bacteria were isolated from rape roots grown in heavy metal-contaminated soils and characterized. A pot experiment was conducted for investigating the capability of the two isolates to promote the growth and Pb uptake of rape from Pb-amended soil. The two isolates were identified as Pseudomonas fluorescens G10 and Microbacterium sp. G16 based on the 16S rDNA gene sequence analysis. Strains G10 and G16 exhibited different multiple heavy metal and antibiotic resistance characteristics and increased water-soluble Pb in solution and in Pb-added soil. Root elongation assays demonstrated increases in root elongation of inoculated rape seedlings compared to the control plants. Strain G16 produced indole acetic acid, siderophores and 1-aminocyclopropane-1-carboxylate deaminase. Increases in biomass production and total Pb uptake in the bacteria-inoculated plants were obtained compared to the control. The two strains could colonize the root interior and rhizosphere soil of rape after root inoculation. - Heavy metal-resistant endophytic bacteria from rape have the potential of promoting the growth and lead uptake of rape

  8. Weed-Suppressive Soil Bacteria to Reduce Cheatgrass and Improve Vegetation Diversity on ITD Rights-of-Way

    Science.gov (United States)

    2017-06-01

    Transportation departments are challenged by the invasion of downy brome (cheatgrass) and medusahead. The reduction of downy brome (cheat grass) by Weed Suppressive Bacteria (WSB) Pseudomonas fluorescens strain ACK55 was evaluated on roadsides of I-8...

  9. Effectiveness of stress release geometries on reducing residual stress in electroforming metal microstructure

    Science.gov (United States)

    Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai

    2018-04-01

    Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from  -292.4 MPa to  -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the

  10. Molecular Scale Dissolved Organic Matter Interactions Impact Mercury Bioavailability for Uptake and Methylation by Sulfate-Reducing Bacteria

    Science.gov (United States)

    Moreau, J. W.; Krabbenhoft, D. P.

    2008-12-01

    Biogeochemical factors such as dissolved natural organic matter (DOM) type and abundance may play a major role in governing the bioavailability of aqueous Hg(II) for uptake and methylation by sulfate-reducing bacteria (SRB). MeHg production correlates in some cases with predicted dominance of hydrophobic, neutrally-charged, aqueous HgS. This species is thought to interact strongly with DOM via hydrophobic attractions. Field and laboratory observations suggest that DOM promotes methylation. We therefore hypothesized that DOM isolates of differing (well-characterized) functional compositions (e.g., hydrophobic versus hydrophilic) could variably enhance bacterial methylation. Methylation assays using Desulfobulbus propionicus 1pr3 in fermentative growth were performed using a mercury isotope tracer applied at concentrations of roughly 100 ng/L. The tracer was pre-equilibrated with 5-10 uM aqueous sulfide and approximately 40 mg/L of either hydrophobic or hydrophilic DOM prior to inoculation. Results showed roughly 1-3% tracer methylation in both hydrophobic DOM+ and DOM- cultures. However, a similar amount of non- tracer (background) mercury associated with the hydrophobic DOM fraction was also methylated. Preliminary results suggested that pre-equilibration of the isotope tracer for up to one month with hydrophobic-fraction humic acids resulted in a roughly 2-3X increase in the quantity and rate of methylation, indicating an important role for aging on DOM in Hg bioavailability. Mercury-sulfide-DOM equilibration products were investigated with synchrotron-based x-ray fluorescence spectroscopy (EXAFS) at liquid nitrogen temperatures. Hg L(III)-edge spectra from resin-concentrated Hg-S-DOM equilibration products exhibited high similarity to a metacinnabar-like conformation. Culturing and EXAFS results, taken together, suggest that nanophase metacinnabar, "packaged" in DOM, could have been the bioavailable form of Hg(II) in culturing experiments. Further experiments

  11. Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments

    Directory of Open Access Journals (Sweden)

    Jemaneh eZeleke

    2013-08-01

    Full Text Available The effect of plant invasion on the microorganisms of soil sediments is very important for estuary ecology. The community structures of methanogens and sulfate-reducing bacteria (SRB as a function of Spartina alterniflora invasion in Phragmites australis-vegetated sediments of the Dongtan wetland in the Yangtze River estuary, China, were investigated using 454 pyrosequencing and quantitative real-time PCR (qPCR of the methyl coenzyme M reductase A (mcrA and dissimilatory sulfite-reductase (dsrB genes. Sediment samples were collected from two replicate locations, and each location included three sampling stands each covered by monocultures of P. australis, S. alterniflora and both plants (transition stands, respectively. qPCR analysis revealed higher copy numbers of mcrA genes in sediments from S. alterniflora stands than P. australis stands (5- and 7.5-fold more in the spring and summer, respectively, which is consistent with the higher methane flux rates measured in the S. alterniflora stands (up to 8.01 ± 5.61 mg m-2 h-1. Similar trends were observed for SRB, and they were up to two orders of magnitude higher than the methanogens. Diversity indices indicated a lower diversity of methanogens in the S. alterniflora stands than the P. australis stands. In contrast, insignificant variations were observed in the diversity of SRB with the invasion. Although Methanomicrobiales and Methanococcales, the hydrogenotrophic methanogens, dominated in the salt marsh, Methanomicrobiales displayed a slight increase with the invasion and growth of S. alterniflora, whereas the later responded differently. Methanosarcina, the metabolically diverse methanogens, did not vary with the invasion of, but Methanosaeta, the exclusive acetate utilizers, appeared to increase with S. alterniflora invasion. In SRB, sequences closely related to the families Desulfobacteraceae and Desulfobulbaceae dominated in the salt marsh, although they displayed minimal changes with the S

  12. Chlorinated phenol treatment and in situ hydrogen peroxide production in a sulfate-reducing bacteria enriched bioelectrochemical system.

    Science.gov (United States)

    Miran, Waheed; Nawaz, Mohsin; Jang, Jiseon; Lee, Dae Sung

    2017-06-15

    Wastewaters are increasingly being considered as renewable resources for the sustainable production of electricity, fuels, and chemicals. In recent years, bioelectrochemical treatment has come to light as a prospective technology for the production of energy from wastewaters. In this study, a bioelectrochemical system (BES) enriched with sulfate-reducing bacteria (SRB) in the anodic chamber was proposed and evaluated for the biodegradation of recalcitrant chlorinated phenol, electricity generation (in the microbial fuel cell (MFC)), and production of hydrogen peroxide (H 2 O 2 ) (in the microbial electrolysis cell (MEC)), which is a very strong oxidizing agent and often used for the degradation of complex organics. Maximum power generation of 253.5 mW/m 2 , corresponding to a current density of 712.0 mA/m 2 , was achieved in the presence of a chlorinated phenol pollutant (4-chlorophenol (4-CP) at 100 mg/L (0.78 mM)) and lactate (COD of 500 mg/L). In the anodic chamber, biodegradation of 4-CP was not limited to dechlorination, and further degradation of one of its metabolic products (phenol) was observed. In MEC operation mode, external voltage (0.2, 0.4, or 0.6 V) was added via a power supply, with 0.4 V producing the highest concentration of H 2 O 2 (13.3 g/L-m 2 or 974 μM) in the cathodic chamber after 6 h of operation. Consequently, SRB-based bioelectrochemical technology can be applied for chlorinated pollutant biodegradation in the anodic chamber and either net current or H 2 O 2 production in the cathodic chamber by applying an optimum external voltage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Gene expression correlates with process rates quantified for sulfate- and Fe(III-reducing bacteria in U(VI-contaminated sediments

    Directory of Open Access Journals (Sweden)

    Denise M Akob

    2012-08-01

    Full Text Available Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III and sulfate reduction pathways in order to monitor these processes during in situ U(VI remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA and the dissimilatory (bisulfite reductase gene (dsrA, were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC site at Oak Ridge, Tennessee. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically-active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation.

  14. Improvements in or relating to processes for reducing the oxygen content of metal oxides

    International Nuclear Information System (INIS)

    James, R.H.; Spooner, J.A.

    1980-01-01

    A process is described for reducing the oxygen content of a metal oxide material (such as an intimate mixture of uranium and plutonium oxides or a mixed oxide of uranium and plutonium) by contacting the material with a hydrogen-containing gas at an elevated temperature, wherein the material is contained in a plurality of carbon crucibles, each crucible having apertured ends and being otherwise a closed vessel, the crucibles being moved through a heated zone in end-to-end contact and thereby forming a duct through which the gas is passed counter-current to the direction of movement of the crucibles. (author)

  15. Strategies to Reduce Tin and Other Metals in Electronic Cigarette Aerosol.

    Directory of Open Access Journals (Sweden)

    Monique Williams

    Full Text Available Metals are present in electronic cigarette (EC fluid and aerosol and may present health risks to users.The objective of this study was to measure the amounts of tin, copper, zinc, silver, nickel and chromium in the aerosol from four brands of EC and to identify the sources of these metals by examining the elemental composition of the atomizer components.Four brands of popular EC were dissected and the cartomizers were examined microscopically. Elemental composition of cartomizer components was determined using integrated energy dispersive X-ray microanalysis, and the concentrations of the tin, copper, zinc silver, nickel, and chromium in the aerosol were determined for each brand using inductively coupled plasma optical emission spectroscopy.All filaments were made of nickel and chromium. Thick wires were copper coated with either tin or silver. Wires were joined to each other by tin solder, brazing, or by brass clamps. High concentrations of tin were detected in the aerosol when tin solder joints were friable. Tin coating on copper wires also contributed to tin in the aerosol.Tin concentrations in EC aerosols varied both within and between brands. Tin in aerosol was reduced by coating the thick wire with silver rather than tin, placing stable tin solder joints outside the atomizing chamber, joining wires with brass clamps or by brazing rather than soldering wires. These data demonstrate the feasibility of removing tin and other unwanted metals from EC aerosol by altering designs and using materials of suitable quality.

  16. The roles of the micro-organisms and chromium content in the corrosion of iron-chromium steels in the presence of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Ferrante, V.

    1991-12-01

    Although the ability of sulfate-reducing bacteria to enhance the corrosion of steel is now widely accepted, the actual processes involved in such phenomena are still discussed. This work is dedicated to the study of the exact roles played in corrosion processes firstly, by the presence of D. vulgaris cells and, secondly, by chemical factors such as the material composition and the accumulation of sulfide ions in the solution. The use of microbiological, electrochemical and analytical experimental techniques lead to results that show the interdependence of the bacteria and the material as well as the importance of the steel composition in the adhesion of the micro-organisms and the general corrosion rates. The bacteria cells and dissolved sulfide ions do not markedly influence the general corrosion rates. They however induce surface state modifications that can result in localized corrosion phenomena

  17. Cathelicidin Antimicrobial Peptides with Reduced Activation of Toll-Like Receptor Signaling Have Potent Bactericidal Activity against Colistin-Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Cheng Kao

    2016-09-01

    Full Text Available The world is at the precipice of a postantibiotic era in which medical procedures and minor injuries can result in bacterial infections that are no longer effectively treated by antibiotics. Cathelicidins are peptides produced by animals to combat bacterial infections and to regulate innate immune responses. However, cathelicidins are potent activators of the inflammatory response. Cathelicidins with reduced proinflammatory activity and potent bactericidal activity in the low micromolar range against Gram-negative bacteria have been identified. Motifs in cathelicidins that impact bactericidal activity and cytotoxicity to human cells have been elucidated and used to generate peptides that have reduced activation of proinflammatory cytokine production and reduced cytotoxicity to human cells. The resultant peptides have bactericidal activities comparable to that of colistin and can kill colistin-resistant bacteria.

  18. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiang [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Ma, Xiao-Bo [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Yuan, Hang [Key Laboratory of Ion Beam Bioengineering, Institute of Technical Biology & Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Peng-Cheng; Lei, Yu-Bin; Xu, Hui [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Du, Dao-Lin, E-mail: ddl@ujs.edu.cn [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Sun, Jian-Fan [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Feng, Yu-Jie, E-mail: yujief@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2015-05-15

    Highlights: • S. oneidensis MR-1 biofabricated ZnS nanocrystals using artificial wastewater. • ZnS nanocrystals were 5 nm in diameter and aggregated extracellularly. • ZnS had good catalytic activity in the degradation of RHB under UV irradiation. • Photogenerated holes mainly contributed to the degradation of RhB. - Abstract: Accumulation and utilization of heavy metals from wastewater by biological treatment system has aroused great interest. In the present study, a metal-reducing bacterium Shewanella oneidensis MR-1 was used to explore the biofabrication of ZnS nanocrystals from the artificial wastewater. The biogenic H{sub 2}S produced via the reduction of thiosulfate precipitated the Zn(II) as sulfide extracellularly. Characterization by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscope (FESEM) confirmed the precipitates as ZnS nanocrystals. The biogenic ZnS nanocrystals appeared spherical in shape with an average diameter of 5 nm and mainly aggregated in the medium and cell surface of S. oneidensis MR-1. UV–vis DRS spectra showed ZnS nanoparticles appeared a strong absorption below 360 nm. Thus, the photocatalytic activity of ZnS was evaluated by the photodegradation of rhodamine B (RhB) under UV irradiation. The biogenic ZnS nanocrystals showed a high level of photodegradation efficiency to RhB coupled with a significant blue-shift of maximum adsorption peak. A detailed analysis indicated the photogenerated holes, rather than hydroxyl radicals, contributed to the photocatalytic decolorization of RhB. This approach of coupling biosynthesis of nanoparticles with heavy metal removal may offer a potential avenue for efficient bioremediation of heavy metal wastewater.

  19. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1

    International Nuclear Information System (INIS)

    Xiao, Xiang; Ma, Xiao-Bo; Yuan, Hang; Liu, Peng-Cheng; Lei, Yu-Bin; Xu, Hui; Du, Dao-Lin; Sun, Jian-Fan; Feng, Yu-Jie

    2015-01-01

    Highlights: • S. oneidensis MR-1 biofabricated ZnS nanocrystals using artificial wastewater. • ZnS nanocrystals were 5 nm in diameter and aggregated extracellularly. • ZnS had good catalytic activity in the degradation of RHB under UV irradiation. • Photogenerated holes mainly contributed to the degradation of RhB. - Abstract: Accumulation and utilization of heavy metals from wastewater by biological treatment system has aroused great interest. In the present study, a metal-reducing bacterium Shewanella oneidensis MR-1 was used to explore the biofabrication of ZnS nanocrystals from the artificial wastewater. The biogenic H 2 S produced via the reduction of thiosulfate precipitated the Zn(II) as sulfide extracellularly. Characterization by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscope (FESEM) confirmed the precipitates as ZnS nanocrystals. The biogenic ZnS nanocrystals appeared spherical in shape with an average diameter of 5 nm and mainly aggregated in the medium and cell surface of S. oneidensis MR-1. UV–vis DRS spectra showed ZnS nanoparticles appeared a strong absorption below 360 nm. Thus, the photocatalytic activity of ZnS was evaluated by the photodegradation of rhodamine B (RhB) under UV irradiation. The biogenic ZnS nanocrystals showed a high level of photodegradation efficiency to RhB coupled with a significant blue-shift of maximum adsorption peak. A detailed analysis indicated the photogenerated holes, rather than hydroxyl radicals, contributed to the photocatalytic decolorization of RhB. This approach of coupling biosynthesis of nanoparticles with heavy metal removal may offer a potential avenue for efficient bioremediation of heavy metal wastewater

  20. Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Kim F. [Univ. of Michigan, Ann Arbor, MI (United States); Bi, Yuqiang [Univ. of Michigan, Ann Arbor, MI (United States); Carpenter, Julian [Univ. of Michigan, Ann Arbor, MI (United States); Hyng, Sung Pil [Univ. of Michigan, Ann Arbor, MI (United States); Rittmann, Bruce E. [Arizona State Univ., Tempe, AZ (United States); Zhou, Chen [Arizona State Univ., Tempe, AZ (United States); Vannela, Raveender [Arizona State Univ., Tempe, AZ (United States); Davis, James A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-12-31

    This overarching aim of this project was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. The work reported herein was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM). Research at ASU, focused on the biogenesis aspects, examined the biogeochemical bases for iron-sulfide production by Desulfovibrio vulgaris, a Gram-negative bacterium that is one of the most-studied strains of sulfate-reducing bacteria. A series of experimental studies were performed to investigate comprehensively important metabolic and environmental factors that affect the rates of sulfate reduction and iron-sulfide precipitation, the mineralogical characteristics of the iron sulfides, and how uranium is reduced or co-reduced by D. vulagaris. FeS production studies revealed that controlling the pH affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3 mM. On the other hand, using solid Fe(III) (hydr)oxides as the iron source led to less productivity of FeS due to their slow and incomplete dissolution and scavenging of sulfide. Furthermore, sufficient free Fe2+, particularly during Fe(III) (hydr)oxide reductions, led to the additional formation of vivianite [Fe3(PO4)2•8(H2O)]. The U(VI) reduction studies revealed that D. vulgaris reduced U(VI) fastest when accumulating sulfide from concomitant sulfate reduction, since direct enzymatic and sulfide

  1. Supplementation of soft drinks with metallic ions reduces dissolution of bovine enamel

    Directory of Open Access Journals (Sweden)

    Heloisa Aparecida Barbosa da Silva Pereira

    2013-07-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effect of the addition of metallic ions to carbonated drinks on their erosive potential. MATERIAL AND METHODS: Powdered enamel was added to carbonated beverages (Coca-ColaTM or Sprite ZeroTM and shaken for 30 s. The samples were then immediately centrifuged and the supernatant removed. This procedure was repeated 5 times with the beverages containing Cu2+, Mg2+, Mn2+ or Zn2+ (1.25-60 mmol/L. For Coca-ColaTM, the concentration of each ion that exhibited the highest protection was also evaluated in combination with Fe2+. The phosphate or calcium released were analyzed spectrophotometrically. Data were analyzed using ANOVA and Tukey's test (p<0.05. RESULTS: For Coca-ColaTM, the best protective effect was observed for Zn2+ alone (10 mmol/L or in combination (1 mmol/L with other ions (12% and 27%, respectively, when compared with the control. Regarding Sprite ZeroTM, the best protective effect was observed for Cu2+ at 15 and 30 mmol/L, which decreased the dissolution by 22-23%. Zn2+ at 2.5 mmol/L also reduced the dissolution of powdered enamel by 8%. CONCLUSIONS: The results suggest that the combination of metallic ions can be an alternative to reduce the erosive potential of Coca-ColaTM. Regarding Sprite ZeroTM, the addition of Cu2+ seems to be the best alternative.

  2. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size...

  3. Endophytic and rhizospheric bacteria associated with Silene paradoxa grown on metal-contaminated soils are selected and transferred to the next generation of plants as seed endophytes

    Science.gov (United States)

    Mocali, Stefano; Fabiani, Arturo; Chiellini, Carolina; Gori, Giulia; Gonnelli, Cristina

    2017-04-01

    It is well known that bacteria are commonly associated to the plants, either on the outer surfaces (epiphytes) that inside the plant tissues (endophytes). These bacteria mainly derived from soil and reach the various organs of the plant throughout the root system. Despite recent works have shown that endophytic bacteria can have an important role in the physiology of the plant, little is known of their possible involvement in the resistance and tolerance mechanisms of plants to heavy metals. Furthermore, until now only limited research has been conducted to unravel the exact role and possible applications of seed endophytes. The aim of this work was to characterize the plant-associated bacterial communities present at both the rhizosphere and inside the seeds, roots and aerial parts of plants of Silene paradoxa, a plant highly well-adapted to extreme environments, such as metal-contaminated soils. Thus, soil samples and plants of S. paradoxa were collected from i) the landfill of a Cu mine at Fenice Capanne (Grosseto, Italy); ii) a serpentine soil (with a high Ni content) at Pieve Santo Stefano (Arezzo, Italy); iii) a limestone uncontaminated soil in Colle Val d'Elsa (Siena, Italy). Bacterial communities associated with the three different plant organs have been then characterized by high-throughput sequencing of the 16S rRNA genes (microbiota). Bacteria were also isolated from seeds and soil and the colony forming units (CFU) was determined on plates containing different concentrations of Ni and Cu (5, 10 and 15 mM). The results showed a greater bacterial diversity among the three soils compared to plants. In particular, even though some phyla occurred in all the three soils (Actinobacteria, Proteobacteria, Chlorflexi and Acidobacteria), in general the bacterial community structure of the three soils was quite different from each other. Interestingly, the endophytic composition within each plant compartment was observed to be strongly affected by the soil of

  4. Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Korenblum Elisa

    2012-11-01

    Full Text Available Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1 that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS. It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml. Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential

  5. Electrocatalytic oxidation of K4[Fe(CN)6] by metal-reducing bacteriumShewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Zheng, Zhiyong; Xiao, Yong; Wu, Ranran

    2017-01-01

    The microbial metabolic activities between metals and bacteria play a vital role on biogeochemical cycling of metal compounds. One of these activities is extracellular electron transfer (EET), in which some microbes exchange electrons with external redox minerals, electrodes, or even other microo...

  6. A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors.

    Science.gov (United States)

    Abdelhamid, Hani Nasser; Wu, Hui-Fen

    2012-11-02

    A new method was proposed to probe the interactions between transition metals of Fe(II), Fe(III), Cu(II) with a non steroidal anti-inflammatory drug (NSAID), flufenamic acid (FF) using graphene as a matrix for Graphene assisted laser desorption ionization mass spectrometry (GALDI-MS). Metal-drug complexation was confirmed via UV absorption spectroscopy, fluorescence spectroscopy, pH meter, and change in solution conductivity. The optimal molar ratios for these complexation interactions are stoichiometry 1:2 in both Cu(II) and Fe(II) complexes, and 1:3 in Fe(III) complexes at physiological pH (7.4). Metal complexation of the drug could enhance fluorescence for 20 fold which is due to the charge transfer reaction or increase rigidity of the drug. The main interaction between graphene and flufenamic acid is the П-П interaction which allows us to probe the metal-drug complexation. The GALDI-MS could sensitively detect the drug at m/z 281.0 Da (protonated molecule) with detection limit 2.5 pmol (1.0 μM) and complexation at m/z 661.0, 654.0 and 933.0 Da corresponding to [Cu(II)(FF)(2)(H(2)O)(2)+H](+), [Fe(II)(FF)(2)(H(2)O)(2)+H](+) and [Fe(III) (FF)(3)(H(2)O)(2)+H](+), respectively (with limit of detection (LOD) 2.0 pmol (10.0 μM). Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) spectra show change in the protein profile of intact pathogenic bacteria (Pseudomonas aeroginosa, Staphylococcus aureus). The change in the ionization ability (mainly proton affinity) of pathogenic bacteria may be due to the interactions between the bacteria with the drug (or its complexes). Shielding carboxylic group by metals and increase the hydrophilicity could enhance the biocompatibility of complexes toward the pathogenic bacteria which can be used as biosensors with high sensitivity and lowest detectable concentrations are in the range of 3.3×10(3)-3.9×10(4) cfu mL(-1) with large linear dynamic range. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Characterization of nitrate-reducing and amino acid-using bacteria prominent in nitrotoxin-enriched equine cecal populations

    Science.gov (United States)

    In the present study, populations of equine cecal microbes enriched for enhanced rates of 3-nitro-1-propionic acid (NPA) or nitrate metabolism were diluted and cultured for NPA-metabolizing bacteria on a basal enrichment medium (BEM) or tryptose soy agar (TSA) medium supplemented with either 5 mM NP...

  8. Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments

    Science.gov (United States)

    Enright, K. A.; Moreau, J. W.

    2008-12-01

    Climate change drives drying and acidification of many rivers and lakes. Abundant sedimentary iron in these systems oxidizes chemically and biologically to form iron-ox(yhydrox)ide crusts and "hardpans". Given generally high sulfate concentrations, the mobilization and cycling of iron in these environments can be strongly influenced by bacterial sulfate reduction. Sulfate-reducing bacteria (SRB) induce reductive dissolution of oxidized iron phases by producing the reductant bisulfide as a metabolic product. These environmentally ubiquitous microbes also recycle much of the fixed carbon in sediment-hosted microbial mat communities. With prevalent drying, the buffering capacity for protons liberated from iron oxidation is exceeded, and the activity of sulfate-reducers is restricted to those species capable of tolerating low pH (and generally highly saline, i.e. sulfate-rich) conditions. These species will sustain the recycling of iron from more crystalline phases to more bioavailable species, as well as act as the only source of bisulfide for photosynthesizing microbial communities. The phylogeny and physiology of acid-tolerant SRB is therefore important to Fe, S and C cycling in iron-rich sedimentary environments, particularly those on a geochemical trajectory towards acidification. Previous studies have shown that these SRB species tend to be highly novel. We studied two distinct environments along a geochemical continuum towards acidification. In both settings, iron redox transformations exert a major, if not controlling, influence on reduction potential. An acidified, iron- rich tidal marsh receiving acid-mine drainage (San Francisco Bay, CA, USA) contained abundant textural evidence for reductive dissolution of Fe(III) in sediments with pH values varying from 2.4 - 3.8. From these sediments, full-length novel dsrAB gene sequences from acid-tolerant SRB were recovered, and sulfur isotope profiles reflected biological fractionation of sulfur under even the most

  9. Use of the high-energy x-ray microprobe at the Advanced Photon Source to investigate the interactions between metals and bacteria

    International Nuclear Information System (INIS)

    Kemner, K. M.; Lai, B.; Maser, J.; Schneegurt, M. A.; Cai, Z.; Ilinski, P. P.; Kulpa, C. F.; Legnini, D. G.; Nealson, K. H.; Pratt, S. T.; Rodrigues, W.; Tischler, M. L.; Yun, W.

    1999-01-01

    Understanding the fate of heavy-metal contaminants in the environment is of fundamental importance in the development and evaluation of effective remediation and sequestration strategies. Among the factors influencing the transport of these contaminants are their chemical separation and the chemical and physical attributes of the surrounding medium. Bacteria and the extracellular material associated with them are thought to play a key role in determining a contaminant's speciation and thus its mobility in the environment. In addition, the microenvironment at and adjacent to actively metabolizing cell surfaces can be significantly different from the bulk environment. Thus, the spatial distribution and chemical separation of contaminants and elements that are key to biological processes must be characterized at micron and submicron resolution in order to understand the microscopic physical, geological, chemical, and biological interfaces that determine a contaminant's macroscopic fate. Hard X-ray microimaging is a powerful technique for the element-specific investigation of complex environmental samples at th needed micron and submicron resolution. An important advantage of this technique results from the large penetration depth of hard X-rays in water. This advantage minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. This paper presents results of studies of the spatial distribution of naturally occurring metals and a heavy-metal contaminant (Cr) in and near hydrated bacteria (Pseudomonas fluorescens) in the early stages of biofilm development, performed at the Advanced Photon Source Sector 2 X-ray microscopy beamline

  10. The experimental quantitative study of spectral CT imaging in reducing the metal artifacts

    International Nuclear Information System (INIS)

    Li Xiaoli; Feng Weihua; Dong Cheng; Chen Haisong; Cao Huizhi; Xu Wenjian

    2011-01-01

    Objective: To assess the value of spectral CT in reducing artifacts caused by metallic implants. Methods: Porcine lumbar spines were chosen as anthropomorphic phantom. The model was examined before and after implanting the titanic nail into the second and fourth lumbar vertebral body using gemstone spectral CT protocol and standard 120 kVp spectra. Specific post-processing technique was applied to generate 11 kinds of images of monochromatic energy and Metal Artifacts Reducing system (MARs) with the interval of 10 keV ranging from 40-140 keV. The image quality was compared subjectively between 120 kVp group and GSI group after implantation. Three regions of interest based on distances along the most pronounced artifact were chosen and marked as ROI near , ROI mid , ROI far successively. Artifacts parameters including CT value and SD value were measured. The CT value of different ROIs were compared with LSD and Bonferroni test. Contrast-to-noise ratio and artifacts index were calculated. An optimal range of keV was determined according to artifacts index. Results: Image quality of' Gemstone spectra images was rated superior to the standard images. An optimized spectrum of keV based on artifacts index was from 80 keV to 100 keV. For ROI near , CT value was (80.25±16.00) HU and (30.10±10.45) HU respectively in group Mono before implantation and group Mono + MARs after implantation. The differences were significant (Z= 2.978, P mid and ROI far , CT value was (63.21±6.61) HU and (54.84±10.60) HU, (76.54±9.07) HU and (73.20±5.39) HU respectively. There was no significant differences (t=0.530, P>0.05; t=0.822, P>0.05). Conclusion: Metal artifacts could be reduced effectively at the site 3 cm away from implants using gemstone spectral CT. An accurate CT value of surrounding tissue can be obtained. (authors)

  11. Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide

    Directory of Open Access Journals (Sweden)

    Alexa Schmitz

    2017-11-01

    Full Text Available Metal-fluoride nanoparticles, (MFx-NPs with M = Fe, Co, Pr, Eu, supported on different types of thermally reduced graphite oxide (TRGO were obtained by microwave-assisted thermal decomposition of transition-metal amidinates, (M{MeC[N(iPr]2}n or [M(AMDn] with M = Fe(II, Co(II, Pr(III, and tris(2,2,6,6-tetramethyl-3,5-heptanedionatoeuropium, Eu(dpm3, in the presence of TRGO in the ionic liquid (IL 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]. The crystalline phases of the metal fluorides synthesized in [BMIm][BF4] were identified by powder X-ray diffraction (PXRD to be MF2 for M = Fe, Co and MF3 for M = Eu, Pr. The diameters and size distributions of MFx@TRGO were from (6 ± 2 to (102 ± 41 nm. Energy-dispersive X-ray spectroscopy (EDX and X-ray photoelectron spectroscopy (XPS were used for further characterization of the MFx-NPs. Electrochemical investigations of the FeF2-NPs@TRGO as cathode material for lithium-ion batteries were evaluated by galvanostatic charge/discharge profiles. The results indicate that the FeF2-NPs@TRGO as cathode material can present a specific capacity of 500 mAh/g at a current density of 50 mA/g, including a significant interfacial charge storage contribution. The obtained nanomaterials show a good rate capacity as well (220 mAh/g and 130 mAh/g at a current density of 200 and 500 mA/g, respectively.

  12. Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation.

    Science.gov (United States)

    Anastasopol, Anca; Pfeiffer, Tobias V; Middelkoop, Joost; Lafont, Ugo; Canales-Perez, Roger J; Schmidt-Ott, Andreas; Mulder, Fokko M; Eijt, Stephan W H

    2013-05-29

    Spark discharge generation was used to synthesize Mg-Ti nanocomposites consisting primarily of a metastable body-centered-cubic (bcc) alloy of Mg and Ti. The bcc Mg-Ti alloy transformed upon hydrogenation into the face-centered-cubic fluorite Mg1-yTiyHx phase with favorable hydrogen storage properties. Both metal and metal hydride nanocomposites showed a fractal-like porous morphology, with a primary particle size of 10-20 nm. The metal content of 70 atom % (at %) Mg and 30 at % Ti, consistently determined by XRD, TEM-EDS, and ICP-OES, was distributed uniformly across the as-prepared sample. Pressure-composition isotherms for the Mg-Ti-H nanocomposites revealed large differences in the thermodynamics relative to bulk MgH2, with a much less negative enthalpy of formation of the hydride as small as -45 ± 3 kJ/molH2 as deduced from van't Hoff plots. The plateau pressures of hydrogenation were substantially higher than those for bulk MgH2 in the low temperature range from 150 to 250 °C. The reaction entropy was simultaneously reduced to values down to 84 ± 5 J/K mol H2, following a linear relationship between the enthalpy and entropy. Plausible mechanisms for the modified thermodynamics are discussed, including the effect of lattice strains, the presence of interfaces and hydrogen vacancies, and the formation of excess free volume due to local deformations. These mechanisms all rely on the finely interdispersed nanocomposite character of the samples which is maintained by grain refinement.

  13. Role of reducing agent in extraction of arsenic and heavy metals from soils by use of EDTA.

    Science.gov (United States)

    Kim, Eun Jung; Jeon, Eun-Ki; Baek, Kitae

    2016-06-01

    Although many metal-contaminated sites contain both anionic arsenic and cationic heavy metals, the current remediation technologies are not effective for the simultaneous removal of both anionic and cationic elements from the contaminated sites due to their different characteristics. In this study, the role of reducing agent in simultaneous extraction of As, Cu, Pb, and Zn from contaminated soils was investigated using EDTA. The addition of reducing agents, which includes sodium oxalate (Na2C2O4), ascorbic acid (C6H8O6) and sodium dithionite (Na2S2O4), greatly enhanced the EDTA extraction of both As and heavy metals from the contaminated soils due to the increased mobility of the metals under the reduced conditions. The extent of the enhancement of the EDTA extraction was greatly affected by the reducing conditions. Strong reducing conditions (0.1 M of dithionite) were required for the extraction of metals strongly bound to the soil, while weak reducing conditions (0.01 M of dithionite or 0.1 M of oxalate/ascorbic acid) were sufficient for extraction of metals that were relatively weakly bound to the soil. An almost 90% extraction efficiency of total metals (As, Cu, Zn, and Pb) was obtained from the contaminated soils using the combination of dithionite and EDTA. Our results clearly showed that the combination of dithionite and EDTA can effectively extract As and heavy metals simultaneously from soils under a wide range of pH conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Using Metal Complex Reduced States to Monitor the Oxidation of DNA

    Science.gov (United States)

    Olmon, Eric D.; Hill, Michael G.; Barton, Jacqueline K.

    2011-01-01

    Metallointercalating photooxidants interact intimately with the base stack of double-stranded DNA and exhibit rich photophysical and electrochemical properties, making them ideal probes for the study of DNA-mediated charge transport (CT). The complexes [Rh(phi)2(bpy′)]3+ (phi = 9,10-phenanthrenequinone diimine; bpy′ = 4-methyl-4′-(butyric acid)-2,2′-bipyridine), [Ir(ppy)2(dppz′)]+ (ppy = 2-phenylpyridine; dppz′ = 6-(dipyrido[3,2-a:2′,3′-c]phenazin-11-yl)hex-5-ynoic acid), and [Re(CO)3(dppz)(py′)]+ (dppz = dipyrido[2,3-a:2′,3′-c]phenazine; py′ = 3-(pyridin-4-yl)-propanoic acid) were each covalently tethered to DNA in order to compare their photooxidation efficiencies. Biochemical studies show that upon irradiation, the three complexes oxidize guanine by long-range DNA-mediated CT with the efficiency: Rh > Re > Ir. Comparison of spectra obtained by spectroelectrochemistry after bulk reduction of the free metal complexes with those obtained by transient absorption (TA) spectroscopy of the conjugates suggests that the reduced metal states form following excitation of the conjugates at 355 nm. Electrochemical experiments and kinetic analysis of the TA decays indicate that the thermodynamic driving force for CT, variations in the efficiency of back electron transfer, and coupling to DNA are the primary factors responsible for the trend observed in the guanine oxidation yield of the three complexes. PMID:22043853

  15. Enrichment of dissimilatory Fe(III)-reducing bacteria from groundwater of the Siklós BTEX-contaminated site (Hungary).

    Science.gov (United States)

    Farkas, Milán; Szoboszlay, Sándor; Benedek, Tibor; Révész, Fruzsina; Veres, Péter Gábor; Kriszt, Balázs; Táncsics, András

    2017-01-01

    Dissimilatory iron-reducing bacteria are commonly found in microbial communities of aromatic hydrocarbon-contaminated subsurface environments where they often play key role in the degradation of the contaminants. The Siklós benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated area is one of the best characterized petroleum hydrocarbon-contaminated sites of Hungary. Continuous monitoring of the microbial community in the center of the contaminant plume indicated the presence of an emerging Geobacter population and a Rhodoferax phylotype highly associated with aromatic hydrocarbon-contaminated subsurface environments. The aim of the present study was to make an initial effort to enrich Rhodoferax-related and other dissimilatory iron-reducing bacteria from this environment. Accordingly, four slightly different freshwater media were used to enrich Fe(III) reducers, differing only in the form of nitrogen source (organic, inorganic nitrogen or gaseous headspace nitrogen). Although enrichment of the desired Rhodoferax phylotype was not succeeded, Geobacter-related bacteria were readily enriched. Moreover, the different nitrogen sources caused the enrichment of different Geobacter species. Investigation of the diversity of benzylsuccinate synthase gene both in the enrichments and in the initial groundwater sample indicated that the Geobacter population in the center of the contaminant plume may not play a significant role in the anaerobic degradation of toluene.

  16. Effect of pH and time on the accumulation of heavy metals in Gram-negative bacteria

    OpenAIRE

    Yamina Benmalek

    2014-01-01

    The release of heavy metals into our environment is very important and causes an environmental pollution problem. Contamination of the aquatic environment by toxic heavy metals is a serious pollution problem because they can reach water-courses either naturally through a variety of geochemical processes or by direct discharge of municipal, agricultural and industrial wastewater. The bioremediation of heavy metals using microorganisms has received a great deal of attention in recent years beca...

  17. Flexible polymer solar cells based on Ag metallic grids and functional reduced graphene oxide composite electrode

    Science.gov (United States)

    Zheng, Qiao; Cheng, Shuying; Jia, Hongjie; Zhang, Hong; Liu, Si; Lai, Yunfeng; Yu, Jinling; Zhou, Haifang

    2017-10-01

    By combining the appropriate Ag metallic grids with a thin functional reduced graphene oxide (MGs/F-rGO) film, a suitable photoelectric flexible electrode of the polymer solar cells (PSCs) is obtained. The conductivity and transmission of the MGs/F-rGO composited films can be improved by HNO3 modified. The optimized sheet resistance and transmission of the flexible electrode achieve to 25 Ω □-1 and 83% at 550 nm wavelength. Flexible PSCs with the MGs/F-rGO electrode show 5.63% power conversion efficiency. The photoelectric properties of the MGs/F-rGO film comparable with that of ITO substrates guarantee a high short current and an enhanced PCE of the solar cells. This method provides a feasible way for fabricating low-cost and flexible PSCs.

  18. Recent developments in atom transfer radical polymerization (ATRP): methods to reduce metal catalyst concentrations.

    Science.gov (United States)

    Lou, Qin; Shipp, Devon A

    2012-10-08

    Atom transfer radical polymerization (ATRP) was initially developed in the mid-1990s, and with continued refinement and use has led to significant discoveries in new materials. However, metal contamination of the polymer product is an issue that has proven detrimental to widespread industrial application of ATRP. The laboratories of K. Matyjaszewski have made significant progress towards removing this impediment, leading the development of "activators regenerated by electron transfer" ATRP (ARGET ATRP) and electrochemically mediated ATRP (eATRP) technologies. These variants of ATRP allow polymers to be produced with great molecular weight and functionality control but at significantly reduced catalyst concentrations, typically at parts per million levels. This Concept examines these polymerizations in terms of their mechanism and outcomes, and is aimed at giving the reader an overview of recent developments in the field of ATRP. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The effects of essential oil, povidone-iodine, and chlorhexidine mouthwash on salivary nitrate/nitrite and nitrate-reducing bacteria.

    Science.gov (United States)

    Mitsui, Takahiro; Harasawa, Ryô

    2017-12-27

    Dietary nitrate is reduced to nitrite and nitric oxide by microbial flora, and this activity is beneficial to vascular health. It has been reported that this bacterial process is inhibited by chlorhexidine mouthwash, although the effects of other products are largely unknown. This study examined the effects of several treatments on salivary nitrate/nitrite and nitrate-reducing bacteria. Twelve university staff and students performed mouth-washing with water (control), essential oil, 0.35% povidone-iodine, or 0.0025% chlorhexidine and then ate 100 g lettuce (110 mg nitrate content), followed by collection of saliva and tongue bacteria at the baseline, and 1, 5, and 10 h thereafter. The individual treatments were separated by an interval of one week. Salivary nitrate/nitrite was measured by the calorimetric method, and a representative nitrate-reducing bacterial species, Veillonella dispar, was detected and semi-quantified using a polymerase chain reaction (PCR) assay. Significant increases in salivary nitrate/nitrite were observed for all treatments (all P mouthwash had little effect, whereas V. dispar DNA bands were markedly inhibited after washing with chlorhexidine. These results suggest that essential oil and povidone-iodine mouthwash have little effect on oral nitrate-reducing activity. Salivary nitrite production was not reduced by chlorhexidine, but the fainter band of V. dispar DNA suggests that longer daily use might blunt this nitrate-reducing activity.

  20. Low-intensity laser coupled with photosensitizer to reduce bacteria in root canals compared to chemical control

    International Nuclear Information System (INIS)

    Garcez Segundo, Aguinaldo Silva

    2002-01-01

    The photodynamic therapy is a process in which a dye is associate with an appropriate wavelength of light and this dye goes to an excited state. The excited reacts with oxygen to form the highly reactive compound singlet oxygen, and this compound can kill bacteria and tumor cells. The purpose of this study was to evaluate the bactericidal reduction in root canal contaminated with E. Faecalis. Thirty teeth with their root canals prepared were contaminated with E. faecalis. The teeth have received the chemical substance sodium hypochlorite for 30 minutes; ten teeth have received the azulene dye paste for 5 minutes and have been irradiated with a diode laser, output power 10 mW and λ= 685 nm for 3 minutes. Ten teeth have not received treatment (control group). The bacterial reduction was significantly higher for laser group when compared to chemical and control groups. These results indicate photodynamic therapy as an effective method to kill bacteria. (author)

  1. Aging influence in the pitting corrosion of a stainless steel in marine media: role of the sulfato-reducing bacteria

    International Nuclear Information System (INIS)

    Leonard, J.

    1993-10-01

    In order to detect and measure the activity of the desufavibrio vulgaris bacteria in seawater towards the pitting corrosion of a stainless steel, electrochemical techniques (polarization curves, impedance diagrams, multi-pits) and surface analysis techniques (luminescent discharge spectroscopy,...) have been carried out. In order to separate biological and chemical parameters, several media have been used: synthetical or natural seawater. The obtained results reveal the specific role of the studied bacteria on the alterations of behavior of the stainless steels corrosion resistance; indeed, there is a competition between two opposed processes: -the reinforcement of the passive film by the OH - of water and -the de-passivation by the formed sulfur species. (O.M.)

  2. Chrome nitride coating reduces wear of small, spherical CrCoMo metal-on-metal articulations in a joint simulator.

    Science.gov (United States)

    Thorkildsen, R; Reigstad, O; Røkkum, M

    2017-03-01

    Metal-on-metal articulations have fallen out of favour in larger joint replacements, but are still used in smaller joints. Coating the articulation has been suggested as one way of reducing wear. We compared a standard 6 mm CrCoMo articulation designed for the carpometacarpal joint of the thumb with a chromium nitride-coated version after 512,000 cycles in a joint simulator. A total of 6 articulations in each group were tested with a unidirectional load of 5 kg in Ringer's solution. We found a statistically significant reduction in weight loss, amount of metallic wear produced and volumetric wear for the chromium nitride-coated articulation. Our findings support the use of chromium nitride coating in order to minimize the amount of metallic wear produced.

  3. Disinfection of Escherichia coli Gram negative bacteria using surface modified TiO2: optimization of Ag metallization and depiction of charge transfer mechanism.

    Science.gov (United States)

    Gomathi Devi, LakshmipathiNaik; Nagaraj, Basavalingaiah

    2014-01-01

    The antibacterial activity of silver deposited TiO2 (Ag-TiO2 ) against Gram negative Escherichia coli bacteria was investigated by varying the Ag metal content from 0.10 to 0.50% on the surface of TiO2 . Ag depositions by the photoreduction method were found to be stable. Surface silver metallization was confirmed by EDAX and XPS studies. Photoluminescence studies show that the charge carrier recombination is less for 0.1% Ag-TiO2 and this catalyst shows superior bactericidal activity under solar light irradiation compared to Sol gel TiO2 (SG-TiO2 ) due to the surface plasmon effect. The energy levels of deposited Ag are dependent on the Ag content and it varies from -4.64 eV to -1.30 eV with respect to the vacuum energy level based on atomic silver to bulk silver deposits. The ability of electron transfer from Ag deposit to O2 depends on the position of the energy levels. The 0.25% and 0.50% Ag depositions showed detrimental effect on bactericidal activity due to the mismatch of energy levels. The effect of the EROS (External generation of the Reactive Oxygen Species by 0.1% Ag-TiO2 ) and IROS (Interior generation of Reactive Oxygen Species within the bacteria) on the bactericidal inactivation is discussed in detail. © 2014 The American Society of Photobiology.

  4. Resistance to Antibiotics, Biocides, Preservatives and Metals in Bacteria Isolated from Seafoods: Co-Selection of Strains Resistant or Tolerant to Different Classes of Compounds

    Directory of Open Access Journals (Sweden)

    José L. Romero

    2017-08-01

    Full Text Available Multi-drug resistant bacteria (particularly those producing extended-spectrum β-lactamases have become a major health concern. The continued exposure to antibiotics, biocides, chemical preservatives, and metals in different settings such as the food chain or in the environment may result in development of multiple resistance or co-resistance. The aim of the present study was to determine multiple resistances (biocides, antibiotics, chemical preservatives, phenolic compounds, and metals in bacterial isolates from seafoods. A 75.86% of the 87 isolates studied were resistant to at least one antibiotic or one biocide, and 6.90% were multiply resistant to at least three biocides and at least three antibiotics. Significant (P < 0.05 moderate or strong positive correlations were detected between tolerances to biocides, between antibiotics, and between antibiotics with biocides and other antimicrobials. A sub-set of 30 isolates selected according to antimicrobial resistance profile and food type were identified by 16S rDNA sequencing and tested for copper and zinc tolerance. Then, the genetic determinants for biocide and metal tolerance and antibiotic resistance were investigated. The selected isolates were identified as Pseudomonas (63.33%, Acinetobacter (13.33%, Aeromonas (13.33%, Shewanella, Proteus and Listeria (one isolate each. Antibiotic resistance determinants detected included sul1 (43.33% of tested isolates, sul2 (6.66%, blaTEM (16.66%, blaCTX−M (16.66%, blaPSE (10.00%, blaIMP (3.33%, blaNDM−1 (3.33%, floR (16.66%, aadA1 (20.0%, and aac(6′-Ib (16.66%. The only biocide resistance determinant detected among the selected isolates was qacEΔ1 (10.00%. A 23.30 of the selected isolates were able to grow on media containing 32 mM copper sulfate, and 46.60% on 8 mM zinc chloride. The metal resistance genes pcoA/copA, pcoR, and chrB were detected in 36.66, 6.66, and 13.33% of selected isolates, respectively. Twelve isolates tested positive for

  5. Complete Genome Sequence of Alkaliphilus metalliredigens Strain QYMF, an Alkaliphilic and Metal-Reducing Bacterium Isolated from Borax-Contaminated Leachate Ponds.

    Science.gov (United States)

    Hwang, C; Copeland, A; Lucas, S; Lapidus, A; Barry, K; Detter, J C; Glavina Del Rio, T; Hammon, N; Israni, S; Dalin, E; Tice, H; Pitluck, S; Chertkov, O; Brettin, T; Bruce, D; Han, C; Schmutz, J; Larimer, F; Land, M L; Hauser, L; Kyrpides, N; Mikhailova, N; Ye, Q; Zhou, J; Richardson, P; Fields, M W

    2016-11-03

    Alkaliphilus metalliredigens strain QYMF is an anaerobic, alkaliphilic, and metal-reducing bacterium associated with phylum Firmicutes QYMF was isolated from alkaline borax leachate ponds. The genome sequence will help elucidate the role of metal-reducing microorganisms under alkaline environments, a capability that is not commonly observed in metal respiring-microorganisms. Copyright © 2016 Hwang et al.

  6. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-12-15

    The aim of this study was to investigate the effects of drought resistant serpentine rhizobacteria on plant growth and metal uptake by Brassica oxyrrhina under drought stress (DS) condition. Two drought resistant serpentine rhizobacterial strains namely Pseudomonas libanensis TR1 and Pseudomonas reactans Ph3R3 were selected based on their ability to stimulate seedling growth in roll towel assay. Further assessment on plant growth promoting (PGP) parameters revealed their ability to produce indole-3-acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Moreover, both strains exhibited high resistance to various heavy metals, antibiotics, salinity and extreme temperature. Inoculation of TR1 and Ph3R3 significantly increased plant growth, leaf relative water and pigment content of B. oxyrrhina, whereas decreased concentrations of proline and malondialdehyde in leaves under metal stress in the absence and presence of DS. Regardless of soil water conditions, TR1 and Ph3R3 greatly improved organ metal concentrations, translocation and bioconcentration factors of Cu and Zn. The successful colonization and metabolic activities of P. libanensis TR1 and P. reactans Ph3R3 represented positive effects on plant development and metal phytoremediation under DS. These results indicate that these strains could be used as bio-inoculants for the improvement of phytoremediation of metal polluted soils under semiarid conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Synthesis, spectroscopic studies and inhibitory activity against bacteria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand.

    Science.gov (United States)

    Abou-Hussein, A A; Linert, Wolfgang

    2015-04-15

    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, (1)H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, (1)H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Elaboration of highly hydrophobic polymeric surface — a potential strategy to reduce the adhesion of pathogenic bacteria?

    Energy Technology Data Exchange (ETDEWEB)

    Poncin-Epaillard, F., E-mail: fabienne.poncin-epaillard@univ-lemans.fr [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Herry, J.M. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France); Marmey, P.; Legeay, G. [CTTM, 20 rue Thalès de Milet 72000 Le Mans (France); Debarnot, D. [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Bellon-Fontaine, M.N. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France)

    2013-04-01

    Different polymeric surfaces have been modified in order to reach a high hydrophobic character, indeed the superhydrophobicity property. For this purpose, polypropylene and polystyrene have been treated by RF or μwaves CF{sub 4} plasma with different volumes, the results were compared according to the density of injected power. The effect of pretreatment such as mechanical abrasion or plasma activation was also studied. The modified surfaces were shown as hydrophobic, or even superhydrophobic depending of defects density. They were characterized by measurement of wettability and roughness at different scales, i.e. macroscopic, mesoscopic and atomic. It has been shown that a homogeneous surface at the macroscopic scale could be heterogeneous at lower mesoscopic scale. This was associated with the crystallinity of the material. The bioadhesion tests were performed with Gram positive and negative pathogenic strains: Listeria monocytogenes, Pseudomonas aeruginosa and Hafnia alvei. They have demonstrated an antibacterial efficiency of very hydrophobic and amorphous PS treated for all strains tested and a strain-dependent efficiency with modified PP surface being very heterogeneous at the mesoscopic scale. Thus, these biological results pointed out not only the respective role of the surface chemistry and topography in bacterial adhesion, but also the dependence on the peaks and valley distribution at bacteria dimension scale. Highlights: ► Simple, eco-friendly modification of polymers leading to highly hydrophobic property ► Plasma treatment inducing surface fluorination and roughness ► Study of non-adhesion of different types of bacteria onto such polymeric surfaces ► Dependence of their non-adhesion on surface topography whatever their characteristics.

  9. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.

    Science.gov (United States)

    Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

    2004-04-01

    Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel.

  10. Catalytic properties of graphene–metal nanoparticle hybrid prepared using an aromatic amino acid as the reducing agent

    International Nuclear Information System (INIS)

    Adhikari, Bimalendu; Banerjee, Arindam

    2013-01-01

    An easy and single step process of making reduced graphene oxide nanosheet from graphene oxide (GO) in water medium has been demonstrated by using a naturally occurring non-proteinaceous amino acid (2,4-dihydroxy phenyl alanine, Dopa) as a new reducing agent and stabilizing agent. This amino acid has also been used to reduce the noble metal salt (AuCl 3 /AgNO 3 ) to produce the corresponding noble metal nanoparticles (MNP) without using any external reducing and stabilizing agents. So, this amino acid has been used to reduce simultaneously GO to RGO and noble metal salts to produce corresponding MNP to form RGO–MNP nanohybrid system in a single step in water medium and also in absence of any external toxic reducing and stabilizing agents. Different techniques UV–Visible absorption spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscopy and others have been used to characterize the reduction of GO to RGO, metal salts to produce corresponding MNPs and the formation of RGO–MNP nanohybrid systems. Moreover, this metal nanoparticle containing RGO–MNP nanohybrid system acts as a potential catalyst for the reduction of aromatic nitro to aromatic amino group. - Graphical abstract: This study demonstrates an easy, single step and eco-friendly method to make RGO and Au/AgNP simultaneously from respective precursors to form a RGO–Au/AgNP nanohybrid system using an aromatic amino acid (2,4-dihydroxy phenyl alanine, Dopa) as a new reducing agent as well as stabilizing agent in water medium. Highlights: ► Synthesis of reduced graphene oxide (RGO) nanosheet using an amino acid. ► The amino acid (Dopa) can reduce noble metal salt (Au 3+ /Ag + ) to metal nanoparticle (MNP). ► Single step and eco-friendly synthesis of RGO-MNP nanohybrid using Dopa. ► Characterization of RGO, MNP and RGO–MNP nanohybrid. ► RGO-MNP nanohybrid acts as a catalyst for the reduction of aromatic nitro

  11. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea.

    Science.gov (United States)

    Guan, Yue; Hikmawan, Tyas; Antunes, André; Ngugi, David; Stingl, Ulrich

    2015-11-01

    Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to possess methanogenic and sulfate-reducing activities, yet no systematic studies have been conducted to address the potential functional diversity of methanogenic and sulfate-reducing communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over Archaea in most locations, the majority of which were affiliated with Deltaproteobacteria, while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, were dominated by members of the class Thermoplasmata (Marine Benthic Group E and Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the presence of niche-specific groups, and collectively, a higher diversity of sulfate-reducing communities compared to methanogenic communities in all five studied locations. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea

    KAUST Repository

    Guan, Yue

    2015-11-01

    Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to possess methanogenic and sulfate-reducing activities, yet no systematic studies have been conducted to address the potential functional diversity of methanogenic and sulfate-reducing communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over Archaea in most locations, the majority of which were affiliated with Deltaproteobacteria, while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, were dominated by members of the class Thermoplasmata (Marine Benthic Group E and Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the presence of niche-specific groups, and collectively, a higher diversity of sulfate-reducing communities compared to methanogenic communities in all five studied locations. © 2015 Institut Pasteur.

  13. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  14. PHYTOREMEDIATION: A METHOD TO REDUCE METAL IONS PRESENT IN WASTE WATER

    OpenAIRE

    Shirin Imam*

    2017-01-01

    Heavy metal pollution is a worldwide concern; its severity and degree of pollution vary from place to place Metal contamination can be carried with soil particles get carried away from the original areas of pollution by wind and rain. The heavy metals which are mostly found in mining waste include arsenic, cadmium, chromium, copper, lead, nickel, and zinc, all of which cause risks for human health and the environment. Industrial waste water also adds to this problem. When waste water comes in...

  15. Microbial Diversity and Community Structure of Sulfate-Reducing and Sulfur-Oxidizing Bacteria in Sediment Cores from the East China Sea.

    Science.gov (United States)

    Zhang, Yu; Wang, Xungong; Zhen, Yu; Mi, Tiezhu; He, Hui; Yu, Zhigang

    2017-01-01

    Sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) have been studied extensively in marine sediments because of their vital roles in both sulfur and carbon cycles, but the available information regarding the highly diverse SRB and SOB communities is not comprehensive. High-throughput sequencing of functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we explored the community structure, diversity, and abundance of SRB and SOB simultaneously through 16S rRNA, dsrB and soxB gene high-throughput sequencing and quantitative PCR analyses of core samples from the East China Sea. Overall, high-throughput sequencing of the dsrB and soxB genes achieved almost complete coverage (>99%) and revealed the high diversity, richness, and operational taxonomic unit (OTU) numbers of the SRB and SOB communities, which suggest the existence of an active sulfur cycle in the study area. Further analysis demonstrated that rare species make vital contributions to the high richness, diversity, and OTU numbers obtained. Depth-based distributions of the dsrB, soxB , and 16S rRNA gene abundances indicated that the SRB abundance might be more sensitive to the sedimentary dynamic environment than those of total bacteria and SOB. In addition, the results of unweighted pair group method with arithmetic mean (UPGMA) clustering analysis and redundancy analysis revealed that environmental parameters, such as depth and dissolved inorganic nitrogen concentrations, and the sedimentary dynamic environment, which differed between the two sampling stations, can significantly influence the community structures of total bacteria, SRB, and SOB. This study provided further comprehensive information regarding the characteristics of SRB and SOB communities.

  16. Microbial Diversity and Community Structure of Sulfate-Reducing and Sulfur-Oxidizing Bacteria in Sediment Cores from the East China Sea

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-11-01

    Full Text Available Sulfate-reducing bacteria (SRB and sulfur-oxidizing bacteria (SOB have been studied extensively in marine sediments because of their vital roles in both sulfur and carbon cycles, but the available information regarding the highly diverse SRB and SOB communities is not comprehensive. High-throughput sequencing of functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we explored the community structure, diversity, and abundance of SRB and SOB simultaneously through 16S rRNA, dsrB and soxB gene high-throughput sequencing and quantitative PCR analyses of core samples from the East China Sea. Overall, high-throughput sequencing of the dsrB and soxB genes achieved almost complete coverage (>99% and revealed the high diversity, richness, and operational taxonomic unit (OTU numbers of the SRB and SOB communities, which suggest the existence of an active sulfur cycle in the study area. Further analysis demonstrated that rare species make vital contributions to the high richness, diversity, and OTU numbers obtained. Depth-based distributions of the dsrB, soxB, and 16S rRNA gene abundances indicated that the SRB abundance might be more sensitive to the sedimentary dynamic environment than those of total bacteria and SOB. In addition, the results of unweighted pair group method with arithmetic mean (UPGMA clustering analysis and redundancy analysis revealed that environmental parameters, such as depth and dissolved inorganic nitrogen concentrations, and the sedimentary dynamic environment, which differed between the two sampling stations, can significantly influence the community structures of total bacteria, SRB, and SOB. This study provided further comprehensive information regarding the characteristics of SRB and SOB communities.

  17. Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study.

    Science.gov (United States)

    Miot, J; Maclellan, K; Benzerara, K; Boisset, N

    2011-11-01

    Iron-oxidizing bacteria are important actors of the geochemical cycle of iron in modern environments and may have played a key role all over Earth's history. However, in order to better assess that role on the modern and the past Earth, there is a need for better understanding the mechanisms of bacterial iron oxidation and for defining potential biosignatures to be looked for in the geologic record. In this study, we investigated experimentally and at the nanometre scale the mineralization of iron-oxidizing bacteria with a combination of synchrotron-based scanning transmission X-ray microscopy (STXM), scanning transmission electron microscopy (STEM) and cryo-transmission electron microscopy (cryo-TEM). We show that the use of cryo-TEM instead of conventional microscopy provides detailed information of the successive iron biomineralization stages in anaerobic nitrate-reducing iron-oxidizing bacteria. These results suggest the existence of preferential Fe-binding and Fe-oxidizing sites on the outer face of the plasma membrane leading to the nucleation and growth of Fe minerals within the periplasm of these cells that eventually become completely encrusted. In contrast, the septa of dividing cells remain nonmineralized. In addition, the use of cryo-TEM offers a detailed view of the exceptional preservation of protein globules and the peptidoglycan within the Fe-mineralized cell walls of these bacteria. These organic molecules and ultrastructural details might be protected from further degradation by entrapment in the mineral matrix down to the nanometre scale. This is discussed in the light of previous studies on the properties of Fe-organic interactions and more generally on the fossilization of mineral-organic assemblies. © 2011 Blackwell Publishing Ltd.

  18. Usefulness of IDEAL T2-weighted FSE and SPGR imaging in reducing metallic artifacts in the postoperative ankles with metallic hardware

    International Nuclear Information System (INIS)

    Lee, Jung Bin; Cha, Jang Gyu; Lee, Min Hee; Lee, Eun Hye; Lee, Young Koo; Jeon, Chan Hong

    2013-01-01

    The aim of this work is to prospectively compare the effectiveness of iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL), T2-weighted fast spin-echo (FSE), and spoiled gradient-echo (SPGR) MR imaging to frequency selective fat suppression (FSFS) protocols for minimizing metallic artifacts in postoperative ankles with metallic hardware. The T2-weighted and SPGR imaging with IDEAL and FSFS were performed on 21 ankles of 21 patients with metallic hardware. Two musculoskeletal radiologists independently analyzed techniques for visualization of ankle ligaments and articular cartilage, uniformity of fat saturation, and relative size of the metallic artifacts. A paired t test was used for statistical comparisons of MR images between IDEAL and FSFS groups. IDEAL T2-weighted FSE and SPGR images enabled significantly improved visualization of articular cartilage (p < 0.05), the size of metallic artifact (p < 0.05), and the uniformity of fat saturation (p < 0.05). However, no significant improvement was found in the visibility of ligaments. IDEAL T2-weighted FSE and SPGR imaging effectively reduces the degree of tissue-obscuring artifacts produced by fixation hardware in ankle joints and improves image quality compared to FSFS T2-weighted FSE and SPGR imaging. However, visibility of ligaments was not improved using IDEAL imaging. (orig.)

  19. Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.; Zacher, Alan H.

    2016-08-30

    Biomass fast pyrolysis integrated with bio-oil upgrading represents a very attractive approach for converting biomass to hydrocarbon transportation fuels. However, the thermal and chemical instability of bio-oils presents significant problems when they are being upgraded, and development of effective approaches for stabilizing bio-oils is critical to the success of the technology. Catalytic hydrogenation to remove reactive species in bio-oil has been considered as one of the most efficient ways to stabilize bio-oil. This paper provides a fundamental understanding of hydrogenation of actual bio-oils over a Ru/TiO2 catalyst under conditions relevant to practical bio-oil hydrotreating processes. Bio-oil feed stocks, bio-oils hydrogenated to different extents, and catalysts have been characterized to provide insights into the chemical and physical properties of these samples and to understand the correlation of the properties with the composition of the bio-oil and catalysts. The results indicated hydrogenation of various components of the bio-oil, including sugars, aldehydes, ketones, alkenes, aromatics, and carboxylic acids, over the Ru/TiO2 catalyst and 120 to 160oC. Hydrogenation of these species significantly changed the chemical and physical properties of the bio-oil and overall improved its thermal stability, especially by reducing the carbonyl content, which represented the content of the most reactive species (i.e., sugar, aldehydes, and ketones). The change of content of each component in response to increasing hydrogen additions suggests the following bio-oil hydrogenation reaction sequence: sugar conversion to sugar alcohols, followed by ketone and aldehyde conversion to alcohols, followed by alkene and aromatic hydrogenation, and then followed by carboxylic acid hydrogenation to alcohols. Hydrogenation of bio-oil samples with different sulfur contents or inorganic material contents suggested that sulfur poisoning of the reduced Ru metal catalysts was

  20. Assessing the Role of Iron Sulfides in the Long Term Sequestration of U by Sulfate Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Bruce; Zhou, Chen; Vannela, Raveender

    2013-12-31

    This four-year project’s overarching aim was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. As stated in this final report, significant progress was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM).

  1. Pathogenic bacteria and heavy metals toxicity assessments in evaluating unpasteurized raw milk quality through biochemical tests collected from dairy cows

    Directory of Open Access Journals (Sweden)

    Hamid Iqbal

    2016-11-01

    Full Text Available Objective: To evaluate the hygienic quality by determining the presence of predominant pathogenic microbial contaminants (contagious or environmental and indiscriminate heavy metals contained in unpasteurized milk samples collected from cattle specie of cow. Methods: Raw milk samples were collected in October, 2014 from different regions of District Kohat, Khyber Pakhtunkhwa, Pakistan and cultured on the selective media plates according to the manufacturer instructions to observe pathogenic microbial flora and confirm it with relevant biochemical tests to specify bacterial specie. Results: Milk samples analyzed on MacConkey and nutrient agar media were found contaminated mostly with coliform, Staphylococcus aureus, Enterobacter aerogenes and Proteus vulgaris. Similarly, result of the heavy metals analysis performed using atomic absorption spectrophotometer flame photometry showed that raw milk contains heavy metals residues of lead and cadmium contents at higher levels while copper, zinc and chromium were observed lower than permissible limits whereas manganese within specified recommended values. Conclusions: Microbial contamination of milk and toxic metals is mainly accredited to the scrupulous unhygienic measures during processing of milk exhibiting a wide array of hazardous impacts on human health.

  2. Metal-framed partitions with reduced thicknesses. Part 1: Narrower studs and cavities

    Science.gov (United States)

    Plumb, G. D.

    The sound insulations were measured, in the Research Department Transmission Suite, of ten different metal-framed partitions. These partitions had narrower cavities and metal studs than those of the conventional thickness metal-framed Camden. Mineral wool had been installed in the cavities of some of the partitions and some partitions had double plasterboard skins rather than plasterboard-fiberboard skins. The sound insulations of these narrow partitions were generally comparable with, or marginally higher than, those of similar partitions, having stud and cavity widths equal to those in the conventional thickness metal-framed Camden. However, the loadbearing capabilities must be investigated before these narrow partitions can be recommended as alternatives to the conventional thickness metal-framed Camden. The use of these narrow partitions should result in average increases, of approximately 8%, in the available floor areas of typical studios.

  3. The soil sulphate effect and maize plant (Zea mays L.) growth of sulphate reducing bacteria (SRB) inoculation in acid sulfate soils with the different soil water condition

    Science.gov (United States)

    Asmarlaili, S.; Rauf, A.; Hanafiah, D. S.; Sudarno, Y.; Abdi, P.

    2018-02-01

    The objective of the study was to determine the potential application of sulphate reducing bacteria on acid sulfate soil with different water content in the green house. The research was carried out in the Laboratory and Green House, Faculty of Agriculture, Universitas Sumatera Utara. This research used Randomized Block Design with two treatments factors, ie sulphate reducing bacteria (SRB) isolate (control, LK4, LK6, TSM4, TSM3, AP4, AP3, LK4 + TSM3, LK4 + AP4, LK4 + AP3, LK6 + TSM3, LK6 + AP4, LK6 + AP3, TSM4 + TSM3, TSM4 + AP4, TSM4 + AP3) and water condition (100% field capacity and 110% field capacity). The results showed that application of isolate LK4 + AP4 with water condition 110% field capacity decreased the soil sulphate content (27.38 ppm) significantly after 6 weeks. Application of isolate LK4 + AP3 with water condition 110% field capacity increased soil pH (5.58) after-week efficacy 6. Application of isolate LK4 with water condition 110% field capacity increased plant growth (140 cm; 25.74 g) significantly after week 6. The best treatment was application isolate LK4 with water condition 110% field Capacity (SRB population 2.5x108; soil sulphate content 29.10ppm; soil acidity 4.78; plant height 140cm; plant weight 25.74g).

  4. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB

    1999-01-01

    and T(opt). For strains LSv21 and LSv514, however, growth yields were highest at the lowest temperatures, around 0 degrees C. The results indicate that psychrophilic sulphate-reducing bacteria are specially adapted to permanently low temperatures by high relative growth rates and high growth yields......Five psychrophilic sulphate-reducing bacteria (strains ASv26, LSv21, PSv29, LSv54 and LSv514) isolated from Arctic sediments were examined for their adaptation to permanently low temperatures, All strains grew at -1.8 degrees C, the freezing point of sea water, but their optimum temperature...... for growth (T(opt)) were 7 degrees C (PSv29), 10 degrees C (ASv26, LSv54) and 18 degrees C (LSv21, LSv514), Although T(opt) was considerably above the in situ temperatures of their habitats (-1.7 degrees C and 2.6 degrees C), relative growth rates were still high at 0 degrees C, accounting for 25...

  5. Effects of two main metabolites of sulphate-reducing bacteria on the corrosion of Q235 steels in 3.5 wt.% NaCl media

    International Nuclear Information System (INIS)

    Bao, Qi; Zhang, Dun; Lv, Dandan; Wang, Peng

    2012-01-01

    Highlights: ► Extracellular polymeric substances have been isolated from a batch culture of sulphate-reducing bacteria successfully. ► Sulphide and extracellular polymeric substances have triggered distinct electrochemical characteristics. ► ATR-IR analysis has confirmed the Fe 2+ -complexing capability of extracellular polymeric substances. ► In situ AFM results show extracellular polymeric substances can form a densely packed film on Q235 steels. ► The adsorbed extracellular polymeric substances film has protected the Q235 steels to a certain degree. - Abstract: The electrochemical corrosion behaviour of Q235 steels in 3.5 wt.% NaCl solutions with sulphide and extracellular polymeric substances (EPS), the two main metabolites of sulphate-reducing bacteria, was separately investigated through potentiodynamic polarisation and electrochemical impedance spectroscopy. Either sulphide or EPS increased the anodic current density by nearly one order of magnitude and negatively shifted the corrosion potential. The effects of EPS at the initial stage of corrosion may be ascribed to the Fe 2+ -complexing capability and the quickly adsorbed film. Moreover, the feeble protective effect of EPS after 16 d of immersion was observed through scanning electron microscopy.

  6. Distribution and accumulation of heavy metals in carbonate and reducible fractions of marine sediment from offshore mid-western Taiwan.

    Science.gov (United States)

    Liu, Hou-Chun; You, Chen-Feng; Huang, Bor-Jiun; Huh, Chih-An

    2013-08-15

    Two marine sediment cores from offshore mid-western Taiwan were subsampled and pre-treated using a sequential extraction procedure to separate carbonate and reducible fractions. Aliquots of these extracts were analyzed to determine their chemical composition to evaluate the geochemical processes responsible for heavy metal distribution and accumulation in the coastal environment. Our data demonstrate that sedimentation rates derived from excess (210)Pb associated with metal fluxes show large increases circa A.D. 1990. A well-synchronized increase in metal flux in both geochemical fractions was found and validated by Pearson's correlation. Principal component analysis revealed the heavy metal fluxes to be highly correlated with the sediment deposition rate, with metal contamination potentially driven by a sole contributor. This study emphasizes the changes in sedimentation rate is potentially caused by activities associated with the inland economic development during this time, rather than by raising heavy metal pollution dominated the accumulation offshore mid-western Taiwan. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals

    Directory of Open Access Journals (Sweden)

    Lukasz eDziewit

    2015-03-01

    Full Text Available The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland. It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m Lubin mine were taken and twenty bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e. they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface.

  8. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals.

    Science.gov (United States)

    Dziewit, Lukasz; Pyzik, Adam; Szuplewska, Magdalena; Matlakowska, Renata; Mielnicki, Sebastian; Wibberg, Daniel; Schlüter, Andreas; Pühler, Alfred; Bartosik, Dariusz

    2015-01-01

    The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface.

  9. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil.

    Science.gov (United States)

    Seshadri, B; Bolan, N S; Choppala, G; Kunhikrishnan, A; Sanderson, P; Wang, H; Currie, L D; Tsang, Daniel C W; Ok, Y S; Kim, G

    2017-10-01

    Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Immobilization with Metal Hydroxides as a Means To Concentrate Food-Borne Bacteria for Detection by Cultural and Molecular Methods†

    OpenAIRE

    Lucore, Lisa A.; Cullison, Mark A.; Jaykus, Lee-Ann

    2000-01-01

    The application of nucleic acid amplification methods to the detection of food-borne pathogens could be facilitated by concentrating the organisms from the food matrix before detection. This study evaluated the utility of metal hydroxide immobilization for the concentration of bacterial cells from dairy foods prior to detection by cultural and molecular methods. Using reconstituted nonfat dry milk (NFDM) as a model, two food-borne pathogens (Listeria monocytogenes and Salmonella enterica sero...

  11. Evaluation of plant growth promoting activity and heavy metal tolerance of psychrotrophic bacteria associated with maca (Lepidium meyenii Walp. rhizosphere

    Directory of Open Access Journals (Sweden)

    Paola Ortiz-Ojeda

    2017-05-01

    Full Text Available The high Andean plateau of Peru is known to suffer harsh environmental conditions. Acidic soils containing high amount of heavy metals due to mining activities and withstanding very low temperatures affect agricultural activities by diminishing crop quality and yield. In this context, plant growth promoting rhizobacteria (PGPR adapted to low temperatures and tolerant to heavy metals can be considered as an environment-friendly biological alternative for andean crop management. The aim of this work was to select and characterize psychrotrophic PGPR isolated from the rhizosphere of maca (Lepidium meyenii Walp. a traditional andean food crop. A total of 44 psychrotrophic strains isolated from 3 areas located in the Bombon plateu of Junin-Peru were tested for their PGPR characteristics like indole acetic acid (IAA production, phosphate solubilization and for their ability to improve seed germination. In addition, their capacity to grow in the presence of heavy metals like cadmium (Cd, lead (Pb, cobalt (Co and mercury (Hg was tested. Of the total number of strains tested, 12 were positive for IAA production at 22 °C, 8 at 12 °C and 16 at 6 °C. Phosphate solubilization activities were higher at 12 °C and 6 °C than at 22 °C. Red clover plant assays showed that 16 strains were capable to improve seed germination at 22 °C and 4 at 12 °C. Moreover, 11 strains showed tolerance to Cd and Pb at varying concentrations. This study highlight the importance of obtaining PGPRs to be used in high andean plateu crops that are exposed to low temperatures and presence of heavy metals on soil.

  12. Reduced material model for closed cell metal foam infiltrated with phase change material based on high resolution numerical studies

    International Nuclear Information System (INIS)

    Ohsenbrügge, Christoph; Marth, Wieland; Navarro y de Sosa, Iñaki; Drossel, Welf-Guntram; Voigt, Axel

    2016-01-01

    Highlights: • Closed cell metal foam sandwich structures were investigated. • High resolution numerical studies were conducted using CT scan data. • A reduced model for use in commercial FE software reduces needed degrees of freedom. • Thermal inertia is increased about 4 to 5 times in PCM filled structures. • The reduced material model was verified using experimental data. - Abstract: The thermal behaviour of closed cell metal foam infiltrated with paraffin wax as latent heat storage for application in high precision tool machines was examined. Aluminium foam sandwiches with metallically bound cover layers were prepared in a powder metallurgical process and cross-sectional images of the structures were generated with X-ray computed tomography. Based on the image data a three dimensional highly detailed model was derived and prepared for simulation with the adaptive FE-library AMDiS. The pores were assumed to be filled with paraffin wax. The thermal conductivity and the transient thermal behaviour in the phase-change region were investigated. Based on the results from the highly detailed simulations a reduced model for use in commercial FE-software (ANSYS) was derived. It incorporates the properties of the matrix and the phase change material into a homogenized material. A sandwich-structure with and without paraffin was investigated experimentally under constant thermal load. The results were used to verify the reduced material model in ANSYS.

  13. Novel bis(5-methyltetrazolium)amine ligand-bonded stationary phase with reduced leakage of metal ions in immobilized metal affinity chromatography of proteins.

    Science.gov (United States)

    Bo, Chunmiao; Wang, Chaozhan; Wei, Yinmao

    2016-11-01

    Immobilized metal affinity chromatography (IMAC) has been widely used for the specific separation of biopolymers. However, leakage of metal ions from IMAC adsorbents is of concern in IMAC. In this study, we designed a novel tridenate bis(5-methyltetrazolium)amine (BMTA) to reduce the leakage of metal ions by improving the affinity to immobilized metal ions. The ligand was bonded onto silica via three-step reaction to prepare a high-performance IMAC stationary phase. The chromatographic behaviors of ribonuclease A, cytochrome c, and lysozyme on the Cu(II)-, Ni(II)-, and Zn(II)-chelated stationary phase were investigated with respect to pH effect and elution with an imidazole gradient. The retention times of these three proteins increased by increasing the pH of the mobile phase but decreased by increasing the concentration of the competitive displacer. The retaining strength of the three proteins on the chelated stationary phase were in the order Cu(II) > Ni(II) > Zn(II). The behavior of these three proteins was consistent with the properties of a typical IMAC. The BMTA ligand exhibited a much stronger affinity for Cu(II) and Ni(II) than iminodiacetic acid (IDA), which is often regarded as a standard tridentate IMAC ligand. Quantum mechanical calculations at the B3LYP/6-31G level were used to image the coordination mode of the protein-metal ions-BMTA complex. In addition, a fused histidine-tagged cecropin b-human epidermal growth factor (CB-EGF) from Escherichia coli crude extract was purified by the Ni(II)-chelated stationary phase, and the purity of the CB-EGF was determined to be at least 90 %. These results suggest that the BMTA ligand may have potential applications in the preparation of therapeutics. Graphical Abstract A novel ligand of tridenate bis(5-methyltetrazolium)amine (BMTA) was designed to reduce the leakage of metal ions from the column in immobolized metal affinity chromatography (IMAC).

  14. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria

    DEFF Research Database (Denmark)

    Elguindi, J; Moffitt, S; Hasman, Henrik

    2010-01-01

    of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper ion-resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing...... of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper...... surface corrosion rates were determined from electrochemical polarization tests using the Stern-Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper ion-resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates...

  15. Isolation and identification of ferric reducing bacteria and evaluation of their roles in iron availability in two calcareous soils

    Science.gov (United States)

    Ghorbanzadeh, N.; Lakzian, A.; Haghnia, G. H.; Karimi, A. R.

    2014-12-01

    Iron is an essential element for all organisms which plays a crucial role in important biochemical processes such as respiration and photosynthesis. Iron deficiency seems to be an important problem in many calcareous soils. Biological dissimilatory Fe(III) reduction increases iron availability through reduction of Fe(III) to Fe(II). The aim of this study was to isolate, identify and evaluate some bacterial isolates for their abilities to reduce Fe(III) in two calcareous soils. Three bacterial isolates were selected and identified from paddy soils by using 16S rRNA amplification and then inoculated to sterilized and non-sterilized calcareous soils in the presence and absence of glucose. The results showed that all isolates belonged to Bacillus genus and were capable of reducing Fe(III) to Fe(II) in vitro condition. The amount of Fe(III) reduction in sterilized calcareous soils was significantly higher when inoculated with PS23 isolate and Shewanella putrefaciens ( S. putrefaciens) (as positive control) compared to PS16 and PS11 isolates. No significant difference was observed between PS11 and PS16 isolates in the presence of indigenous microbial community. The results also revealed that glucose had a significant effect on Fe(III) reduction in the examined calcareous soil samples. The amount of Fe(III) reduction increased two-fold when soil samples were treated with glucose and inoculated by S. putrefaciens and PS23 in non-sterilized soils.

  16. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  17. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    Science.gov (United States)

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (proots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evaluation of metal artifacts in clinical MR images of patients with total hip arthroplasty using different metal artifact-reducing sequences.

    Science.gov (United States)

    Müller, Gunilla M; Lundin, Björn; von Schewelov, Thord; Müller, Markus F; Ekberg, Olle; Månsson, Sven

    2015-03-01

    To evaluate the distortion and artifact area of metal in MR images and to compare artifact reduction using different metal artifact-reducing sequences in patients with metal-on-metal (MoM) and non-MoM total hip prostheses. Thirty-six MoM and 15 non-MoM prostheses were examined in a 1.5-T MR scanner using T1-weighted (T1-w) sequences: turbo spin echo (TSE) high-readout bandwidth (hiBW), T1-w; TSE view angle tilting (VAT), T1-w; TSE VAT + slice encoding for metal artifact correction (SEMAC); short tau inversion recovery (STIR) hiBW or matched RF pulses (mRFp). Distortion was quantified using a new method measuring the acetabular roof angle (ARA). The artifact area was defined in the mid-coronal plane of the artifact. The T1 VAT + SEMAC sequence showed the least distortion compared to T1 VAT and T1-hiBW (150°, 127° and 102°, p < 0.001, in MoM; 152°, 143° and 128°, p ≤ 0.014, in non-MoM). The artifact area was smaller in MoM prostheses using the T1 VAT sequence compared to T1 hiBW and T1 VAT + SEMAC (2506 mm(2), 3160 mm(2) and 3214 mm(2), p < 0.001) and smaller in non-MoM prostheses using T1 VAT compared to T1-hiBW (4296 mm(2) and 4831 mm(2), p = 0.041). STIR-mRFp substantially reduced the artifact size compared with STIR-hiBW (MoM 4559 mm(2) and 6323 mm(2); non-MoM 5625 mm(2) and 8764 mm(2), p < 0.001). Metal artifacts in MR imaging examinations of hip prostheses can be evaluated for distortion using a distortion angle (ARA) and the degree of signal artifact as determined by measuring the largest cross-sectional artifact area. T1 VAT + SEMAC showed the least distortion; T1 VAT and STIR-mRFp were most efficient for reduction of the artifact area.

  19. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments

    DEFF Research Database (Denmark)

    Robador, Alberto; Brüchert, Volker; Jørgensen, Bo Barker

    2009-01-01

    Arctic regions may be particularly sensitive to climate warming and, consequently, rates of carbon mineralization in warming marine sediment may also be affected. Using long-term (24 months) incubation experiments at 0°C, 10°C and 20°C, the temperature response of metabolic activity and community...... (between -3.5°C and +40°C) were used to assess variations in sulfate reduction rates during the course of the experiment. Warming of arctic sediment resulted in a gradual increase of the temperature optima (Topt) for sulfate reduction suggesting a positive selection of psychrotolerant/mesophilic sulfate......-reducing bacteria (SRB). However, high rates at in situ temperatures compared with maximum rates showed the predominance of psychrophilic SRB even at high incubation temperatures. Changing apparent activation energies (Ea) showed that increasing temperatures had an initial negative impact on sulfate reduction...

  20. Studies on the effects of sulphate-reducing bacteria on mild carbon-steel relevant to radioactive waste disposal in the UK

    International Nuclear Information System (INIS)

    Philp, J.C.; Christofi, N.; Taylor, K.J.; West, J.M.

    1987-01-01

    Sulphate-reducing bacteria (SRB) have been used to determine their maximum effect on mild carbon-steel (BS4360 grade 43A) of relevance to waste disposal. Batch (static) and continuous culture studies were carried out and corrosion effects monitored by measuring weight loss and pitting. Results show that corrosion increases linearly with increased ferrous iron concentrations. Maximum corrosion was obtained in continuous culture where the organisms were maintained in the exponential phase of growth. Corrosion by SRB has been monitored in model systems mimicking low groundwater flow, deep rock formations in which steel coupons were subjected to a synthetic granitic water/bentonite environment with or without microorganisms. At termination of the experiment corrosion in the presence of SRB was almost three times higher than in their absence. (author)

  1. Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment

    DEFF Research Database (Denmark)

    Sahm, K.; MacGregor, BJ; Jørgensen, BB

    1999-01-01

    In the past, enumeration of sulphate-reducing bacteria (SRB) by cultivation-based methods generally contradicted measurements of sulphate reduction, suggesting unrealistically high respiration rates per cell. Here, we report evidence that quantification of SRB rRNA by slot-blot hybridization...... between 18% and 25% to the prokaryotic rRNA pool. The dominant SRB were related to complete oxidizing genera (Desulphococcus, Desulphosarcina and Desulphobacterium), while Desulpho-bacter could not be detected. The vertical profile and quantity of rRNA from SRB was compared with sulphate reduction rates......, directly above the sulphate reduction maximum. Cell numbers calculated by converting the relative contribution of SRB rRNA to the percentage of DAPI-stained cells indicated a population size for SRB of 2.4-6.1 x 10(8) cells cm(-3) wet sediment. Cellular sulphate reduction rates calculated on the basis...

  2. Localized corrosion of carbon steels due to sulfate-reducing bacteria. Development of a specific sensor; Corrosion localisee des aciers au carbone induite par des bacteries sulfato-reductrices. Developpement d'un capteur specifique

    Energy Technology Data Exchange (ETDEWEB)

    Monfort Moros, N.

    2001-11-01

    This work concerns the microbiologically influenced corrosion of carbon steels in saline anaerobic media (3% of NaCl) containing sulfato-reducing bacteria (Desulfovibrio gabonensis, DSM 10636). In these media, extreme localised corrosion occurs by pitting under the bio-film covering the metallic substrate. A sensor with concentric electrodes was designed to initiate the phenomenon of bio-corrosion, recreating the favourable conditions for growth of a corrosion pit, and then measuring the corrosion current maintained by bacterial activity. The pit initiation was achieved through either of two methods. The electrochemical conditioning involved driving the potential difference between inner and outer electrodes to values corresponding to a galvanic corrosion that can be maintained by the bacterial metabolism. The mechanical process involved removal of a portion of the bio-film by scratching, yielding galvanic potential differences equivalent to that found by the conditioning technique. This protocol was found to be applicable to a bio-corrosion study on industrial site for the monitoring of the metallic structures deterioration (patent EN 00/06114, May 2000). Thereafter, a fundamental application uses the bio-corrosion sensor for Electrochemical Impedance Spectroscopy (EIS), Electrochemical Noise Analysis (ENA) and current density cartography by the means of micro-electrodes. Thus, the EIS technique reveals the importance of the FeS corrosion products for initiation of bio-corrosion start on carbon steel. In addition, depending on the method used to create a pit, the ENA gives rise to supplementary processes (gaseous release) disturbing the bio-corrosion detection. The beginning of a bio-corrosion process on a clean surface surrounded with bio-film was confirmed by the current density cartography. These different results establish the sensor with concentric electrodes as an indispensable tool for bio-corrosion studies, both in the laboratory and on industrial sites

  3. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps.

    Science.gov (United States)

    Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

    2013-05-01

    The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with (13)C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in (13)C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture.

  4. Novel Base Metal-Palladium Catalytic Diesel Filter Coating with NO2 Reducing Properties

    DEFF Research Database (Denmark)

    Johansen, K.; Dahl, S.; Mogensen, G.

    2007-01-01

    A novel alternative base metal/palladium coat has been developed that has limited NO2 formation and which even removes NO2 in a wide temperature range.Soot combustion, HC conversion and CO conversion properties are comparable to current platinum based solutions but the coating has a more attracti...

  5. RESPIROMETRY AS A TOOL TO DETERMINE METAL TOXICITY IN A SULFATE REDUCING BACTERIAL CULTURE

    Science.gov (United States)

    A novel method under development for treatment of acid mine drainage waste uses biologically- generated hydrogen sulfide (H2S) to precipitate the metals in acid mine drainage (principally zinc, copper, aluminum, nickel, cadmium, arsenic, manganese, iron, and cobalt). The insolub...

  6. Reduced Cu–Co–Al Mixed Metal Oxides for the Ring-Opening of Furfuryl Alcohol to Produce Renewable Diols

    Energy Technology Data Exchange (ETDEWEB)

    Sulmonetti, Taylor P. [School; amp, Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States; Hu, Bo [School; amp, Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States; Lee, Sungsik [Advanced; Agrawal, Pradeep K. [School; amp, Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States; Jones, Christopher W. [School; amp, Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States

    2017-08-29

    The ring-opening of furfuryl alcohol to diol products, including 1,2-pentanediol and 1,5- pentanediol, is investigated over reduced Cu-Co-Al mixed metal oxides in a liquid phase batch reactor under H2 pressure. These catalysts are synthesized through the calcination of layered double hydroxides (LDH) to yield well-dispersed, porous mixed metal oxides, which upon reduction displayed activity towards diols, mainly the valuable monomer 1,5-pentanediol. The addition of Cu facilitated the reduction of Co oxide species at lower temperatures, and under optimized conditions a yield towards 1,5-pentanediol of 44% (total diol yield of 62%) was achieved. Various characterization techniques including TPR, XPS, and XAS are employed to elucidate the structure of the catalysts, suggesting the formation of both metallic (Co and Cu) and oxide (CoO) species after reduction and passivation. Ultimately, this study demonstrates the promising characteristics that non-precious multi-metal catalysts have for the conversion of biomass derived platform molecules to plastic precursors

  7. Performance of waste-based amendments to reduce metal release from mine tailings: One-year leaching behaviour.

    Science.gov (United States)

    Rodríguez, Luis; Gómez, Rocío; Sánchez, Virtudes; Villaseñor, José; Alonso-Azcárate, Jacinto

    2018-03-01

    A one-year leaching experiment has been conducted in order to assess the effectiveness of several amendments on metal immobilization in mine tailings from an old Pb/Zn mining area of Central Spain (San Quintín mine). Demineralized water was used as leaching solution, selecting doses equivalent to the annual rainfall conditions of the studied area. Columns with mine tailings without any amendment and others treated with 10% of sugar foam (SF), 15% of drinking water treatment sludge (DWS), 30% of paper mill sludge (PMS) and 15% of olive mill waste (OMW) were used. SF, DWS and PMS amendments increased the pH of leachates from values of approximately 4 to around neutrality. Additionally, the release of sulfate ions from the oxidation of pyritic residues was decreased in some extent by SF and DWS amendments. Metal leaching was effectively reduced by the amendments reaching overall decreases with respect to the unamended columns of 79-96% for Pb, 36-100% for Zn, 50-99% for Cu and 44-100% for Cd. The effect of the amendments in leachate pH, sulfate concentration and metal release from mine tailings was kept throughout the whole experimental period. Our results showed that the application of different organic and inorganic amendments based on by-products and waste materials may be a feasible alternative for the restoration of soils around abandoned metal mines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Deep learning methods to guide CT image reconstruction and reduce metal artifacts

    Science.gov (United States)

    Gjesteby, Lars; Yang, Qingsong; Xi, Yan; Zhou, Ye; Zhang, Junping; Wang, Ge

    2017-03-01

    The rapidly-rising field of machine learning, including deep learning, has inspired applications across many disciplines. In medical imaging, deep learning has been primarily used for image processing and analysis. In this paper, we integrate a convolutional neural network (CNN) into the computed tomography (CT) image reconstruction process. Our first task is to monitor the quality of CT images during iterative reconstruction and decide when to stop the process according to an intelligent numerical observer instead of using a traditional stopping rule, such as a fixed error threshold or a maximum number of iterations. After training on ground truth images, the CNN was successful in guiding an iterative reconstruction process to yield high-quality images. Our second task is to improve a sinogram to correct for artifacts caused by metal objects. A large number of interpolation and normalization-based schemes were introduced for metal artifact reduction (MAR) over the past four decades. The NMAR algorithm is considered a state-of-the-art method, although residual errors often remain in the reconstructed images, especially in cases of multiple metal objects. Here we merge NMAR with deep learning in the projection domain to achieve additional correction in critical image regions. Our results indicate that deep learning can be a viable tool to address CT reconstruction challenges.

  9. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS environment: implications for passive bioremediation by tidal inundation

    Directory of Open Access Journals (Sweden)

    Yu-Chen eLing

    2015-07-01

    Full Text Available Coastal acid sulfate soils (CASS constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of passive CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from ten depths ranging from 0-20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia. Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical and lithological factors. The results illustrate spatial overlap, or close association, of iron- and sulfate-reducing bacteria in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling.

  10. Fe3O4/Reduced Graphene Oxide Nanocomposite: Synthesis and Its Application for Toxic Metal Ion Removal

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Vuong Hoan

    2016-01-01

    Full Text Available The synthesis of reduced graphene oxide modified by magnetic iron oxide (Fe3O4/rGO and its application for heavy metals removal were demonstrated. The obtained samples were characterized by X-ray diffraction (XRD, nitrogen adsorption/desorption isotherms, X-ray photoelectron spectroscopy (XPS, Fourier transform infrared spectroscopy (FT-IR, and magnetic measurement. The results showed that the obtained graphene oxide (GO contains a small part of initial graphite as well as reduced oxide graphene. GO exhibits very high surface area in comparison with initial graphite. The morphology of Fe3O4/rGO consists of very fine spherical iron nanooxide particles in nanoscale. The formal kinetics and adsorption isotherms of As(V, Ni(II, and Pb(II over obtained Fe3O4/rGO have been investigated. Fe3O4/rGO exhibits excellent heavy metal ions adsorption indicating that it is a potential adsorbent for water sources contaminated by heavy metals.

  11. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland.

    Science.gov (United States)

    Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar

    2010-12-01

    Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    Science.gov (United States)

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas.

  13. Efficiencies of metal separation and recovery in ash-melting of municipal solid waste under non-oxidative atmospheres with different reducing abilities.

    Science.gov (United States)

    Okada, Takashi; Tomikawa, Hiroki

    2016-01-15

    Ash-melting of municipal solid waste produces molten metal that contains Fe and Cu, and melting furnace fly ash (MFA) that contains Pb and Zn. To recover the metal from the fly ash, Pb and Zn are extracted from the ash by water or enriched in the ash by washing out salts; this separation depends on their leachability. In this study, we investigated the effects of the reducing ability of the atmosphere on the efficiencies of metal separation during melting and metal recovery in water treatment. Different feedstocks (incineration residues) were melted under N2 or CO + N2 atmospheres. In some of the feedstock materials, volatilization of metallic Cu into MFA was promoted under the atmosphere with greater reducing ability (CO + N2). This increased volatilization inhibited the metal separation in the ash-melting process. Moreover, the higher reducing ability inhibited the formation of water-soluble lead chlorides and decreased the efficiency of metal recovery from the MFA because of the water leaching of the lead compounds. The reducing ability of the atmosphere is difficult to control uniformly in actual ash-melting plants, and we investigated appropriate melting conditions under which the effect of the reducing ability was minimized to promote metal separation and recovery. This minimization was achieved by melting incineration fly ash without additives with Cl gas treatment at 1400 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Natural reducing agents for electroless nanoparticle deposition: Mild synthesis of metal/carbon nanostructured microspheres

    International Nuclear Information System (INIS)

    Duffy, Paul; Reynolds, Lyndsey A.; Sanders, Stephanie E.; Metz, Kevin M.; Colavita, Paula E.

    2013-01-01

    Composite materials are of interest because they can potentially combine the properties of their respective components in a manner that is useful for specific applications. Here, we report on the use of coffee as a low-cost, green reductant for the room temperature formation of catalytically active, supported metal nanoparticles. Specifically, we have leveraged the reduction potential of coffee in order to grow Pd and Ag nanoparticles at the surface of porous carbon microspheres synthesized via ultraspray pyrolysis. The metal nanoparticle-on-carbon microsphere composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). To demonstrate the catalytic activity of Pd/C and Ag/C materials, Suzuki coupling reactions and nitroaromatic reduction reactions were employed, respectively. - Highlights: • Natural reductants were used as green electroless deposition reagents. • Room temperature synthesis of supported Ag and Pd nanoparticles was achieved. • Carbon porous microspheres were used as supports. • Synthesis via natural reductants yielded catalytically active nanoparticles.

  15. Natural reducing agents for electroless nanoparticle deposition: Mild synthesis of metal/carbon nanostructured microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Paul [School of Chemistry, University of Dublin Trinity College, College Green, Dublin 2 (Ireland); Reynolds, Lyndsey A.; Sanders, Stephanie E. [Department of Chemistry, Albion College, 611 E. Porter St., Albion, MI 49224 (United States); Metz, Kevin M., E-mail: kmetz@albion.edu [Department of Chemistry, Albion College, 611 E. Porter St., Albion, MI 49224 (United States); Colavita, Paula E., E-mail: colavitp@tcd.ie [School of Chemistry, University of Dublin Trinity College, College Green, Dublin 2 (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland)

    2013-06-15

    Composite materials are of interest because they can potentially combine the properties of their respective components in a manner that is useful for specific applications. Here, we report on the use of coffee as a low-cost, green reductant for the room temperature formation of catalytically active, supported metal nanoparticles. Specifically, we have leveraged the reduction potential of coffee in order to grow Pd and Ag nanoparticles at the surface of porous carbon microspheres synthesized via ultraspray pyrolysis. The metal nanoparticle-on-carbon microsphere composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). To demonstrate the catalytic activity of Pd/C and Ag/C materials, Suzuki coupling reactions and nitroaromatic reduction reactions were employed, respectively. - Highlights: • Natural reductants were used as green electroless deposition reagents. • Room temperature synthesis of supported Ag and Pd nanoparticles was achieved. • Carbon porous microspheres were used as supports. • Synthesis via natural reductants yielded catalytically active nanoparticles.

  16. Reduced quenching effects of organic gain media with metallic electrodes via introducing a conjugated macroelectrolyte interlayer

    Science.gov (United States)

    Yi, Jianpeng; Huang, Jinjin; Liu, Chengfang; Lai, Wen-Yong; Huang, Wei

    2017-01-01

    We have demonstrated amplified spontaneous emission (ASE) restoration and threshold reduction by introducing a novel water/alcohol soluble conjugated macroelectrolyte, tris(4-(7-(9,9-di(hexyl-1-N,N-diethanolamino)-9H-fluoren-2-yl)-9,9-di(hexyl-1-N,N-diethanolamino)-9H-fluoren-2-yl)phenyl)amine (TPAOH), serving as an interfacial layer between the gain media layer, dioctyl substituted polyfluorene (PFO), and the Ag electrode layer. By optimizing the film thickness of TPAOH, enhanced ASE performance has been achieved with the lowest threshold of 21 μJ/cm2, demonstrating 3.5-fold reduction from 74 μJ/cm2. Atomic force microscopy results showed good compatibility between the TPAOH film and the PFO layer. The results suggest a facile and low-cost solution-processing interfacial technique to construct efficient organic semiconductor lasers in the presence of metallic electrodes.

  17. Y-12 product improvements expected to reduce metal production costs and decrease fabrication losses

    International Nuclear Information System (INIS)

    Hassler, Morris E.

    2005-01-01

    The Y-12 National Security Complex (Y-12) supplies uranium metal and uranium oxide feed material for fabrication into fuel for research reactors around the world. Over the past few years, Y-12 has continued to improve its Low Enriched Uranium (LEU) product. The LEU is produced by taking U.S. surplus Highly Enriched Uranium (HEU) and blending it with depleted or natural uranium. The surplus HEU comes from dismantled U.S. weapons parts. Those research reactors that use LEU from Y-12 are making important contributions to international nuclear nonproliferation by using LEU rather than HEU, and helping to disposition former U.S. weapons material. It is clearly understood that the research reactor community must keep fuel costs as low as possible and Y-12 is making every effort to improve efficiencies in producing the uranium through standardizing the chemical specifications as well as the product mass and dimensional qualities. These production cost reductions allows for the U.S. to keep the LEU product price low even with the dramatic increase in the uranium enrichment and feed component market prices in the last few years. This paper will discuss a new standard specification that has been proposed to existing LEU metal customers and fuel fabricators. It will also cover Y-12's progress on a new mold-design that will result in a more uniform, higher quality product and eliminates two steps of the production process. This new product is expected to decrease fabrication losses by 5-10%, depending on the fabricator's process. The paper will include planned activities and the schedule associated with implementation of the new specification and product form. (author)

  18. Impact of a high ammonia-ammonium-pH system on methane-producing archaea and sulfate-reducing bacteria in mesophilic anaerobic digestion.

    Science.gov (United States)

    Dai, Xiaohu; Hu, Chongliang; Zhang, Dong; Dai, Lingling; Duan, Nina

    2017-12-01

    A novel strategy for acclimation to ammonia stress was implemented by stimulating a high ammonia-ammonium-pH environment in a high-solid anaerobic digestion (AD) system in this study. Three semi-continuously stirred anaerobic reactors performed well over the whole study period under mesophilic conditions, especially in experimental group (R-2) when accommodated from acclimation period which the maximum total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN) increased to 4921 and 2996mg/L, respectively. Moreover, when it accommodated the high ammonia-ammonium-pH system, the daily biogas production and methane content were similar to those in R-1 (the blank control to R-2), but the hydrogen sulfide (H 2 S) content lower than the blank control. Moreover, mechanistic studies showed that high ammonia stress enhanced the activity of coenzyme F 420 . The results of real-time fluorescent quantitative polymerase chain reaction (PCR) showed that ammonia stress decreased the abundance of sulfate-reducing bacteria and increased the abundance of methane-producing archaea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Simultaneous degradation of waste phosphogypsum and liquid manure from industrial pig farm by a mixed community of sulfate-reducing bacteria.

    Science.gov (United States)

    Rzeczycka, Marzenna; Miernik, Antoni; Markiewicz, Zdzislaw

    2010-01-01

    The utilization of pig manure as a source of nutrients for the dissimilatory reduction of sulfates present in phosphogypsum was investigated. In both types of media used (synthetic medium and raw pig manure) increased utilization of sulfates with growing COD/SO4(2-)ratio in the medium was observed. The percent of sulfate reduction obtained in synthetic medium was from 18 to 99%, whereas the value for cultures set up in raw liquid manure was from 12% (at COD/SO4(2-) of 0.3) up to as high as 98% (at COD/SO4(2-) equal 3.80). Even with almost complete reduction of sulfates the percent of COD reduction did not exceed 55%. Based on the results obtained it was concluded that the effectiveness of removal of sulfates and organic matter by sulfate-reducing bacteria (SRB) depends to a considerable degree on the proportion between organic matter and sulfates in the purified wastewaters. The optimal COD/SO4(2-)ratio for the removal oforganic matter was between 0.6 and 1.2 whereas the optimal ratio for the removal of sulfates was between 2.4 and 4.8.

  20. Effects of H2S/HS- on Stress Corrosion Cracking Behavior of X100 Pipeline Steel Under Simulated Sulfate-Reducing Bacteria Metabolite Conditions

    Science.gov (United States)

    Liu, Q.; Li, Z.; Liu, Z. Y.; Li, X. G.; Wang, S. Q.

    2017-04-01

    The effect of H2S/HS-, which simulates the main metabolites of sulfate-reducing bacteria (SRB), on the electrochemical and stress corrosion cracking (SCC) behaviors of X100 steel was investigated in a near-neutral solution. The results showed that different H2S/HS- contents mainly affected the cathodic process of X100 electrochemical corrosion. As the concentration of H2S/HS- increased, the corrosion potential was shifted negatively, the corrosion current density was considerably increased, and the corrosion rate was linearly increased. Different rust layers with shifting structures were formed under different conditions and had different effects on electrochemical behaviors. However, sulfide mainly promoted local corrosion processes. With the synergistic effects of stress and H2S/HS-, SCC susceptibility was considerably enhanced. The accelerated process of hydrogen evolution by sulfide was crucial in enhancing SCC processes. In brief, the trace H2S/HS- generated by SRB metabolites played a positive role in promoting SCC.

  1. Desulfosarcina widdelii sp. nov. and Desulfosarcina alkanivorans sp. nov., hydrocarbon-degrading sulfate-reducing bacteria isolated from marine sediment and emended description of the genus Desulfosarcina.

    Science.gov (United States)

    Watanabe, Miho; Higashioka, Yuriko; Kojima, Hisaya; Fukui, Manabu

    2017-08-01

    In previous studies, two hydrocarbon-degrading sulfate-reducing bacteria, strains PP31T and PL12T, were obtained from oil-polluted marine sediments of Shuaiba, Kuwait. They had been reported as organisms capable of anaerobic degradation of p-xylene and n-alkanes, respectively. The 16S rRNA gene sequence of strain PP31T showed 98.8 % sequence similarities to that of Desulfosarcina variabilis'Montpellier'T. Strains PL12T had 97.8 % of sequence similarity to Desulfosarcina ovata oXys1T. They both have been partially characterized, but not been validly published as new species of the genus Desulfosarcina. In this study, additional characterizations of these strains were made to describe them as two new species of the genus Desulfosarcina. Major cellular fatty acids of strain PP31T were C15 : 0 (25.9 %) and anteiso-C15 : 0 (22.3 %), whereas those of strain PL12T were C15 : 0 (21.3 %), C16 : 0 (17.8 %) and anteiso-15 : 0 (11.6 %). The phylogenetic tree based on 16S rRNA gene revealed that these isolates should not be classified as any of the known species in the genus Desulfosarcina. On the basis of phenotypic and phylogenetic analyses, these two sulfate reducers are proposed to form two novel species of the genus Desulfosarcina : Desulfosarcina widdelii sp. nov. (PP31T=JCM 31729T=DSM 103921T) and Desulfosarcina alkanivorans sp. nov. (PL12T=JCM 31728T=DSM 103901T). In addition, emended description of the genus Desulfosarcina is presented in this study.

  2. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H2S production during anaerobic digestion of animal slurry.

    Science.gov (United States)

    St-Pierre, Benoit; Wright, André-Denis G

    2017-07-01

    Biogas produced from the anaerobic digestion of animal slurry consists mainly of methane (CH 4 ) and carbon dioxide (CO 2 ), but also includes other minor gases, such as hydrogen sulfide (H 2 S). Since it can act as a potent corrosive agent and presents a health hazard even at low concentrations, H 2 S is considered an undesirable by-product of anaerobic digestion. Sulfate-reducing bacteria (SRBs) have been identified as the main biological source of H 2 S in a number of natural, biological, and human-made habitats, and thus represent likely candidate microorganisms responsible for the production of H 2 S in anaerobic manure digesters. Phylogenetically, SRBs form a divergent group of bacteria that share a common anaerobic respiration pathway that allows them to use sulfate as a terminal electron acceptor. While the composition and activity of SRBs have been well documented in other environments, their metabolic potential remains largely uncharacterized and their populations poorly defined in anaerobic manure digesters. In this context, a combination of in vitro culture-based studies and DNA-based approaches, respectively, were used to gain further insight. Unexpectedly, only low to nondetectable levels of H 2 S were produced by digestate collected from a manure biogas plant documented to have persistently high concentrations of H 2 S in its biogas (2000-3000 ppm). In contrast, combining digestate with untreated manure (a substrate with comparatively lower sulfate and SRB cell densities than digestate) was found to produce elevated H 2 S levels in culture. While a 16S rRNA gene-based community composition approach did not reveal likely candidate SRBs in digestate or untreated manure, the use of the dsrAB gene as a phylogenetic marker provided more insight. In digestate, the predominant SRBs were found to be uncharacterized species likely belonging to the genus Desulfosporosinus (Peptococcaceae, Clostridiales, Firmicutes), while Desulfovibrio-related SRBs

  3. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide.

    Science.gov (United States)

    Lightcap, Ian V; Kosel, Thomas H; Kamat, Prashant V

    2010-02-10

    Using reduced graphene oxide (RGO) as a two-dimensional support, we have succeeded in selective anchoring of semiconductor and metal nanoparticles at separate sites. Photogenerated electrons from UV-irradiated TiO(2) are transported across RGO to reduce silver ions into silver nanoparticles at a location distinct from the TiO(2) anchored site. The ability of RGO to store and shuttle electrons, as visualized via a stepwise electron transfer process, demonstrates its capability to serve as a catalyst nanomat and transfer electrons on demand to adsorbed species. These findings pave the way for the development of next generation catalyst systems and can spur advancements in graphene-based composites for chemical and biological sensors.

  4. Membrane bioreactors for metal recovery from wastewater: a review ...

    African Journals Online (AJOL)

    Conversely, metal removal using biological and membrane processes is becoming more widely accepted as new evidence is gathered highlighting their lower cost, ease of operation, selectivity and efficacy. Precipitation of metal ions using biogenic hydrogen sulphide, produced by sulphate-reducing bacteria, is not a new ...

  5. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas; Finkenstaedt, Tim; Andreisek, Gustav; Guggenberger, Roman [University Hospital of Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); Marcon, Magda [University Hospital of Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); University of Udine, Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, Udine (Italy); Scholz, Bernhard [Imaging and Therapy Division, Siemens AG, Healthcare Sector, Forchheim (Germany); Calcagni, Maurizio [University Hospital of Zurich, Division of Plastic Surgery and Hand Surgery, Zurich (Switzerland)

    2014-12-15

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was ''almost perfect'' (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. (orig.)

  6. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws

    International Nuclear Information System (INIS)

    Filli, Lukas; Finkenstaedt, Tim; Andreisek, Gustav; Guggenberger, Roman; Marcon, Magda; Scholz, Bernhard; Calcagni, Maurizio

    2014-01-01

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was ''almost perfect'' (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. (orig.)

  7. Molecular Basis for Electron Flow Within Metal-and Electrode-Reducing Biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Daniel R. [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-11-01

    Electrochemical, spectral, genetic, and biochemical techniques were developed to reveal that a diverse suite of redox proteins and structural macromolecules outside the cell work together to move electrons long distances between Geobacter cells to metals and electrodes. In this project, we greatly expanded the known participants in the electron transfer pathway of Geobacter. For example, in addition to well-studied pili, polysaccharides contribute to anchoring, different cytochromes are required under different conditions, strategies change with redox potential, and the localization of these components can change depending on where cells are located in a biofilm. By inventing new electrodes compatible with real-time spectral measurements, we were able to visualize the redox status of biofilms in action, leading to a hypothesis that long-distance electron transfer is ultimately limiting in these systems and redox potentials change within biofilms. The goals of this project were met, as we were able to 1) identify new elements crucial to the expression, assembly and function of the extracellular electron transfer phenotype 2) expand spectral and electrochemical techniques to define the mechanism and route of electron transfer through the matrix, and 3) combine this knowledge to build the next generation of genetic tools for study of this complex process.

  8. Reducing Heavy Metal Element from Coal Bottom Ash by Using Citric Acid Leaching Treatment

    Directory of Open Access Journals (Sweden)

    Yahya Ahmad Asyari

    2017-01-01

    Full Text Available Coal ash is the residue that is produced during coal combustion for instance fly ash, bottom ash or boiler slag which was primarily produced from the combustion of coal. With growth in coal burning power station, huge amount of coal bottom ash (CBA considered as hazardous material which are normally disposed in an on-site disposal system without any commercialization purpose. Previous researchers have studied the extraction of silica from agricultural wastes such as palm ash and rice husk ash (RHA and CBA by using leaching treatment method. In this study, the weaker acid, citric acid solution was used to replace the strong acid in leaching treatment process. Result showed that the heavy metal content such as Copper (Cu, Zinc (Zn and Lead (Pb can be decrease. Meanwhile the silica can be extracted up to 44% from coal bottom ash using citric acid leaching treatment under the optimum reaction time of 60 minutes with solution temperature of 60°C and concentration of citric acid more than 2%.

  9. Using glucosamine as a reductant to prepare reduced graphene oxide and its nanocomposites with metal nanoparticles

    International Nuclear Information System (INIS)

    Li Chuanbao; Wang Xingrui; Liu Yu; Wang Wei; Wynn, Jeanne; Gao Jianping

    2012-01-01

    A green and facile approach of producing reduced graphene oxide (RGO) by the reduction of graphene oxide (GO) with a monosaccharide medicine glucosamine (GL) was developed. The effect of several factors on the GO reduction, including pH, the weight ratio of GL/GO, and the reaction temperature was studied. The deoxygenation process was monitored with UV–Vis absorption spectroscopy, and the reducing degree of GO was determined with X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. Au nanoparticles (about 3.3–4.2 nm) (AuNPs)/RGO and Ag nanoparticles (about 6 nm) (AgNPs)/RGO materials were prepared in two different ways using the above reduction method. They were then used to catalyze the Suzuki–Miyaura coupling reaction of phenyl halide and phenylboronic acid to produce biphenyl, and the highest yield of biphenyl for AuNPs/RGO was 99 %. In addition, the AgNPs/RGO materials exhibited a surface-enhanced Raman scattering effect, and some RGO peaks were enhanced. This approach opens up a new, practical, and green reducing method to prepare RGO for large-scale practical application.

  10. Analysis of bacteria, parasites, and heavy metals in lettuce (Lactuca sativa) and rocket salad (Eruca sativa L.) irrigated with treated effluent from a biological wastewater treatment plant.

    Science.gov (United States)

    Nikaido, Meire; Tonani, Karina A A; Julião, Fabiana C; Trevilato, Tânia M B; Takayanagui, Angela M M; Sanches, Sérgio M; Domingo, José L; Segura-Muñoz, Susana I

    2010-06-01

    This study aimed to evaluate the viability of using treated residuary water from the Biological Wastewater Treatment Plant of Ribeirão Preto to grow vegetables, through the characterization and quantification of parasites, coliforms, and heavy metals. Three equal cultivation areas were prepared. The first was irrigated with treated/chlorinated (0.2 mg L(-1)) wastewater, the second one with treated wastewater without chlorination, and the third site with potable water, which was the control group. The presence of Hymenolepis nana, Enterobius vermicularis, nematode larvae, and Entamoeba coli was verified in lettuce (Lactuca sativa) samples. Although nematode larvae were observed in rocket salad (Eruca sativa L.), no significant differences were found between the number of parasites and type of irrigation water used. No significant differences were found between the number of fecal coliforms in vegetables and the different types of irrigation. However, the vegetables irrigated with treated effluent without chlorination showed higher levels of fecal coliforms. The risk of pathogens is reduced with bleach addition to the treated effluent at 0.2 mg/L. Concentration of heavy metals in vegetables does not mean significant risks to human health, according with the parameters recommended by the World Health Organization.

  11. A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors

    Directory of Open Access Journals (Sweden)

    Vardan Galstyan

    2016-10-01

    Full Text Available A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The sensing properties of the hybrid structure have been studied for different concentrations of ethanol and acetone. The response of the hybrid material is significantly higher compared to pristine ZnO nanostructures. The obtained results have shown that the nanohybrid is a promising structure for the monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds.

  12. Performances of low-dose dual-energy CT in reducing artifacts from implanted metallic orthopedic devices

    Energy Technology Data Exchange (ETDEWEB)

    Filograna, Laura [Catholic University of Rome, School of Medicine, University Hospital ' ' A. Gemelli' ' , Department of Radiological Sciences, Institute of Radiology, Rome (Italy); University of Zurich, Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, Zurich (Switzerland); Magarelli, Nicola; Leone, Antonio; Bonomo, Lorenzo [Catholic University of Rome, School of Medicine, University Hospital ' ' A. Gemelli' ' , Department of Radiological Sciences, Institute of Radiology, Rome (Italy); De Waure, Chiara; Calabro, Giovanna Elisa [Catholic University of Rome, School of Medicine, University Hospital ' ' A. Gemelli' ' , Research Centre for Health Technology Assessment, Department of Public Health, Section of Hygiene, Rome (Italy); Finkenstaedt, Tim [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Thali, Michael John [University of Zurich, Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, Zurich (Switzerland)

    2016-07-15

    The objective was to evaluate the performances of dose-reduced dual-energy computed tomography (DECT) in decreasing metallic artifacts from orthopedic devices compared with dose-neutral DECT, dose-neutral single-energy computed tomography (SECT), and dose-reduced SECT. Thirty implants in 20 consecutive cadavers underwent both SECT and DECT at three fixed CT dose indexes (CTDI): 20.0, 10.0, and 5.0 mGy. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130 keV, and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. In each group, the image quality of the seven monoenergetic images and of the SECT image was assessed qualitatively and quantitatively by visually rating and by measuring the maximum streak artifact respectively. The comparison between SECT and OPTkeV evaluated overall within all groups showed a significant difference (p <0.001), with OPTkeV images providing better images. Comparing OPTkeV with the other DECT images, a significant difference was shown (p <0.001), with OPTkeV and 130-keV images providing the qualitatively best results. The OPTkeV images of 5.0-mGy acquisitions provided percentages of images with scores 1 and 2 of 36 % and 30 % respectively, compared with 0 % and 33.3 % of the corresponding SECT images of 10- and 20-mGy acquisitions. Moreover, DECT reconstructions at the OPTkeV of the low-dose group showed higher CT numbers than the SECT images of dose groups 1 and 2. This study demonstrates that low-dose DECT permits a reduction of artifacts due to metallic implants to be obtained in a similar manner to neutral-dose DECT and better than reduced or neutral-dose SECT. (orig.)

  13. Alternative strategies to reduce cost and waste volume in HEPA filtration using metallic filter media - 59348

    International Nuclear Information System (INIS)

    Chadwick, Chris

    2012-01-01

    Document available in abstract form only. Full text of publication follows: The disposal costs of contaminated HEPA and THE filter elements have been proved to be disproportionately high compared with the cost of the elements themselves. Work published elsewhere (Moore, et el 1992; Bergman et al 1997) suggests that the cost of use of traditional, panel type, glass fibre HEPA filtration trains to the DOE was, during that period, $29.5 million, based on a five year life cycle, and including installation, testing, removal and disposal life cycle costs being based on estimates dating from 1987-1990. Within that cost estimate, $300 was the value given to the filter and $4, 450 was given to the peripheral activity. Clearly, if the $4, 450 component could be reduced, tremendous saving could ensue, in addition to the reduction of the legacy burden of waste volume. This issue exists for operators in both the US and in Europe. If HEPA filters could be cleaned to a condition where they could either be re-used or decontaminated to the extent that they could be stored as a lower cost wasteform or if HEPA/THE filter elements were available without any organic content likely to give rise to flammable or explosive decomposition gases during long term storage this would also reduce the costs and monitoring necessary in storage. (author)

  14. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William; Peyton, Brent; Gerlach, Robin; Lee, Brady

    2006-06-01

    Predicting the potential migration of metals and radionuclides from waste pits and trenches will require understanding the effects of carbon and electron flow through these environments. Important aspects of this flow include the physiological activity of cellulolytic and non-cellulolytic fermentative microbial populations, as well as the subsequent activity of metal and radionuclide reducing bacteria. The activity of subsurface fermentative microbial populations is significantly understudied even though these organisms can affect contaminant migration by at least two mechanisms. In the first mechanism, products of the fermentation process can act as chelators for metals and radionuclides increasing their transport through underlying geological media. The second mechanism is the reduction and immobilization of metals and radionuclides since some fermentative bacteria have been shown to directly reduce metals and radionuclides, while their fermentation products can provide carbon and energy for respiratory metal reducing bacteria that can also reduce oxidized metals and radionuclides.

  15. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections.

    Science.gov (United States)

    Hisert, Katherine B; Heltshe, Sonya L; Pope, Christopher; Jorth, Peter; Wu, Xia; Edwards, Rachael M; Radey, Matthew; Accurso, Frank J; Wolter, Daniel J; Cooke, Gordon; Adam, Ryan J; Carter, Suzanne; Grogan, Brenda; Launspach, Janice L; Donnelly, Seamas C; Gallagher, Charles G; Bruce, James E; Stoltz, David A; Welsh, Michael J; Hoffman, Lucas R; McKone, Edward F; Singh, Pradeep K

    2017-06-15

    Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.

  16. Analysis of copper corrosion in compacted bentonite clay as a function of clay density and growth conditions for sulfate-reducing bacteria.

    Science.gov (United States)

    Pedersen, K

    2010-03-01

    To investigate the relationships between sulfate-reducing bacteria (SRB), growth conditions, bentonite densities and copper sulfide generation under circumstances relevant to underground, high-level radioactive waste repositories. Experiments took place 450 m underground, connected under in situ pressure to groundwater containing SRB. The microbial reduction of sulfate to sulfide and subsequent corrosion of copper test plates buried in compacted bentonite were analysed using radioactive sulfur (35SO4(2-)) as tracer. Mass distribution of copper sulfide on the plates indicated a diffusive process. The relationship between average diffusion coefficients (Ds) and tested density (rho) was linear. Ds (m2 s(-1))=-0.004xrho (kg m(-3))+8.2, decreasing by 0.2 Ds units per 50 kg m(-3) increase in density, from 1.2x10(-11) m2 s(-1) at 1750 kg m(-3) to 0.2x10(-11) m2 s(-1) at 2000 kg m(-3). It is possible that sulfide corrosion of waste canisters in future radioactive waste repositories depends mainly on sulfide concentration at the boundary between groundwater and the buffer, which in turn depends on SRB growth conditions (e.g., sulfate accessibility, carbon availability and electron donors) and geochemical parameters (e.g., presence of ferrous iron, which immobilizes sulfide). Maintaining high bentonite density is also important in mitigating canister corrosion. The sulfide diffusion coefficients can be used in safety calculations regarding waste canister corrosion. The work supports findings that microbial activity in compacted bentonite will be restricted. The study emphasizes the importance of growth conditions for sulfate reduction at the groundwater boundary of the bentonite buffer and linked sulfide production.

  17. Reduced atomic shadowing in HiPIMS: Role of the thermalized metal ions

    Science.gov (United States)

    Oliveira, João Carlos; Ferreira, Fábio; Anders, André; Cavaleiro, Albano

    2018-03-01

    In magnetron sputtering, the ability to tailor film properties depends primarily on the control of the flux of particles impinging on the growing film. Among deposition mechanisms, the shadowing effect leads to the formation of a rough surface and a porous, columnar microstructure. Re-sputtered species may be re-deposited in the valleys of the films surface and thereby contribute to a reduction of roughness and to fill the underdense regions. Both effects are non-local and they directly compete to shape the final properties of the deposited films. Additional control of the bombarding flux can be obtained by ionizing the sputtered flux, because ions can be controlled with respect to their energy and impinging direction, such as in High-Power Impulse Magnetron Sputtering (HiPIMS). In this work, the relation between ionization of the sputtered species and thin film properties is investigated in order to identify the mechanisms which effectively influence the shadowing effect in Deep Oscillation Magnetron Sputtering (DOMS), a variant of HiPIMS. The properties of two Cr films deposited using the same averaged target power by d.c. magnetron sputtering and DOMS have been compared. Additionally, the angle distribution of the Cr species impinging on the substrate was simulated using Monte Carlo-based programs while the energy distribution of the energetic particles bombarding the substrate was evaluated by energy-resolved mass analysis. It was found that the acceleration of the thermalized chromium ions at the substrate sheath in DOMS significantly reduces the high angle component of their impinging angle distribution and, thus, efficiently reduces atomic shadowing. Therefore, a high degree of ionization in HiPIMS results in almost shadowing effect-free film deposition and allows us to deposit dense and compact films without the need of high energy particle bombardment during growth.

  18. Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing bacteria in marine sediments of the Peru continental margin and the Black Sea

    OpenAIRE

    Axel eSchippers; Anna eBlazejak

    2011-01-01

    A quantitative, real-time PCR (Q-PCR) assay for the functional gene adenosine 5´-phosphosulfate reductase (aprA) of sulfate-reducing bacteria (SRB) was designed. This assay was applied together with described Q-PCR assays for dissimilatory sulfite reductase (dsrA) and the 16S rRNA gene of total Bacteria to marine sediments from the Peru margin (0 – 121 meters below seafloor (mbsf)) and the Black Sea (0 – 6 mbsf). Clone libraries of aprA show that all isolated sequences originate from SRB...

  19. Recent Developments for Remediating Acidic Mine Waters Using Sulfidogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Ivan Nancucheo

    2017-01-01

    Full Text Available Acidic mine drainage (AMD is regarded as a pollutant and considered as potential source of valuable metals. With diminishing metal resources and ever-increasing demand on industry, recovering AMD metals is a sustainable initiative, despite facing major challenges. AMD refers to effluents draining from abandoned mines and mine wastes usually highly acidic that contain a variety of dissolved metals (Fe, Mn, Cu, Ni, and Zn in much greater concentration than what is found in natural water bodies. There are numerous remediation treatments including chemical (lime treatment or biological methods (aerobic wetlands and compost bioreactors used for metal precipitation and removal from AMD. However, controlled biomineralization and selective recovering of metals using sulfidogenic bacteria are advantageous, reducing costs and environmental risks of sludge disposal. The increased understanding of the microbiology of acid-tolerant sulfidogenic bacteria will lead to the development of novel approaches to AMD treatment. We present and discuss several important recent approaches using low sulfidogenic bioreactors to both remediate and selectively recover metal sulfides from AMD. This work also highlights the efficiency and drawbacks of these types of treatments for metal recovery and points to future research for enhancing the use of novel acidophilic and acid-tolerant sulfidogenic microorganisms in AMD treatment.

  20. Quantitative assessment of an MR technique for reducing metal artifact: application to spin-echo imaging in a phantom

    International Nuclear Information System (INIS)

    Lee, M.J.; Janzen, D.L.; Munk, P.L.; McGowen, A.; MacKay, A.; Xiang, Q.S.

    2001-01-01

    Objective. To quantify image artifact reduction using a new technique (MARS - metal artifact reduction sequence) in vitro.Design. Coronal T1-weighted MR images were obtained through two metal phantoms (titanium/chromium-cobalt and stainless steel femoral prostheses) immersed in water. Comparison of artifact volume was made with images obtained using conventional and modified (MARS) T1-weighted sequences. Signal intensity values outside a range of ±40% the average signal intensity for water were considered artifact and segmented into low or high signal artifact categories. Considering the arbitrary selection of this threshold value, volumetric calculations of artifact were also evaluated at ±50%, 60%, 70%, and 80% the mean signal for water.Results. Conventional T1-weighted images produced 87% more low signal artifact and 212% more high signal artifact compared with the MARS modified T1-weighted images of the stainless steel prosthesis. Conventional T1-weighted images of the titanium prosthesis produced 84% more low signal artifact and 211% more high signal artifact than the MARS modified sequence. The level of artifact reduction was essentially uniform for the various threshold levels tested and was greatest at ±20% the global signal intensity average for water.Conclusion. The MARS technique reduces the volume of image signal artifact produced by stainless steel and titanium/chromium-cobalt femoral prostheses on T1-weighted spin-echo images in a tissue phantom model. (orig.)

  1. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae

    International Nuclear Information System (INIS)

    Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S.

    2007-01-01

    Microbial reduction and deposition of gold nanoparticles was achieved at 25 deg. C over the pH range 2.0-7.0 using the mesophilic bacterium Shewanella algae in the presence of H 2 as the electron donor. The reductive deposition of gold by the resting cells of S. algae was a fast process: 1 mM AuCl 4 - ions were completely reduced to elemental gold within 30 min. At a solution pH of 7, gold nanoparticles 10-20 nm in size were deposited in the periplasmic space of S. algae cells. At pH 2.8, gold nanoparticles 15-200 nm in size were deposited on the bacterial cells, and the biogenic nanoparticles exhibited a variety of shapes that included nanotriangles: in particular, single crystalline gold nanotriangles 100-200 nm in size were microbially deposited. At a solution pH of 2.0, gold nanoparticles about 20 nm in size were deposited intracellularly, and larger gold particles approximately 350 nm in size were deposited extracellularly. The solution pH was an important factor in controlling the morphology of the biogenic gold particles and the location of gold deposition. Microbial deposition of gold nanoparticles is potentially attractive as an environmentally friendly alternative to conventional methods

  2. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    Science.gov (United States)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  3. Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation.

    Science.gov (United States)

    Sakpirom, Jakkapan; Kantachote, Duangporn; Nunkaew, Tomorn; Khan, Eakalak

    2017-04-01

    This study was aimed at selecting purple non-sulfur bacteria (PNSB) isolated from various paddy fields, including Cd- and Zn-contaminated paddy fields, based on their biofertilizer properties. Among 235 PNSB isolates, strain TN110 was most effective in plant growth-promoting substance (PGPS) production, releasing 3.2 mg/L of [Formula: see text] , 4.11 mg/L of 5-aminolevulinic acid (ALA) and 3.62 mg/L of indole-3-acetic acid (IAA), and reducing methane emission up to 80%. This strain had nifH, vnfG and anfG, which are the Mo, V and Fe nitrogenase genes encoded for key enzymes in nitrogen fixation under different conditions. This strain provided 84% and 55% removal of Cd and Zn, respectively. Another isolate, TN414, not only produced PGPS (1.30 mg/L of [Formula: see text] , 0.94 mg/L of ALA and 0.65 mg/L of IAA), but was also efficient in removing both Cd and Zn at 72% and 74%, respectively. Based on 16S rDNA sequencing, strain TN110 was identified as Rhodopseudomonas palustris, while strain TN414 was Rubrivivax gelatinosus. A combination of TN110 and TN414 could potentially provide a biofertilizer, which is a greener alternative to commercial/chemical fertilizers and an agent for bioremediation of heavy metals and greenhouse gas mitigation in paddy fields. Copyright © 2016 Institut Pasteur. All rights reserved.

  4. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics.

    Science.gov (United States)

    Szczepanowski, Rafael; Linke, Burkhard; Krahn, Irene; Gartemann, Karl-Heinz; Gützkow, Tim; Eichler, Wolfgang; Pühler, Alfred; Schlüter, Andreas

    2009-07-01

    To detect plasmid-borne antibiotic-resistance genes in wastewater treatment plant (WWTP) bacteria, 192 resistance-gene-specific PCR primer pairs were designed and synthesized. Subsequent PCR analyses on total plasmid DNA preparations obtained from bacteria of activated sludge or the WWTP's final effluents led to the identification of, respectively, 140 and 123 different resistance-gene-specific amplicons. The genes detected included aminoglycoside, beta-lactam, chloramphenicol, fluoroquinolone, macrolide, rifampicin, tetracycline, trimethoprim and sulfonamide resistance genes as well as multidrug efflux and small multidrug resistance genes. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and WWTP bacteria. Sequencing of selected resistance-gene-specific amplicons confirmed their identity or revealed that the amplicon nucleotide sequence is very similar to a gene closely related to the reference gene used for primer design. These results demonstrate that WWTP bacteria are a reservoir for various resistance genes. Moreover, detection of about 64 % of the 192 reference resistance genes in bacteria obtained from the WWTP's final effluents indicates that these resistance determinants might be further disseminated in habitats downstream of the sewage plant.

  5. MR imaging with metal artifact-reducing sequences and gadolinium contrast agent in a case-control study of periprosthetic abnormalities in patients with metal-on-metal hip prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Gunilla M.; Mueller, Markus F.; Ekberg, Olle [Lund University, Skaane University Hospital, Department of Radiology, Malmoe (Sweden); Maansson, Sven [Lund University, Skaane University Hospital, Department of Medical Radiation Physics, Malmoe (Sweden); Schewelov, Thord von [Lund University, Skaane University Hospital, Department of Orthopedic Surgery, Malmoe (Sweden); Nittka, Mathias [Siemens AG, Healthcare Sector, Erlangen (Germany); Lundin, Bjoern [Lund University, Skaane University Hospital, Department of Radiology, Lund (Sweden)

    2014-08-15

    To apply and compare magnetic resonance imaging (MRI) metal artifact reducing sequences (MARS) including subtraction imaging after contrast application in patients with metal-on-metal (MoM) hip prostheses, investigate the prevalence and characteristics of periprosthetic abnormalities, as well as their relation with pain and risk factors. Fifty-two MoM prostheses (35 cases with pain and or risk factors, and 17 controls) in 47 patients were examined in a 1.5-T MR scanner using MARS: turbo spin echo (TSE) with high readout bandwidth with and without view angle tilting (VAT), TSE with VAT and slice encoding for metal artifact correction (SEMAC), short tau inversion recovery (STIR) with matched RF pulses, and post-contrast imaging. The relations of MRI findings to pain and risk factors were analyzed and in five revised hips findings from operation, histology, and MRI were compared. TSE VAT detected the highest number of osteolyses. Soft tissue mass, effusion, and capsular thickening were common, whereas osteolysis in acetabulum and femur were less frequent. Contrast enhancement occurred in bone, synovia, joint capsule, and the periphery of soft tissue mass. There was no significant relation between MRI findings and pain or risk factors. MARS and gadolinium subtraction imaging are useful for evaluation of complications to MoM prosthesis. TSE VAT had the highest sensitivity for osteolysis. Contrast enhancement might indicate activation of aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL). Pain, small head, or steep prosthesis inclination angle are not useful predictors of periprosthetic abnormalities, and wide indications for MR follow-up are warranted. (orig.)

  6. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Jose, J.; Giridhar, R.; Anas, A.; LokaBharathi, P.A.; Nair, S.

    ., 2008; Bong, et al., 2010). Hydrolytic enzymes secreted by bacteria are of much importance in marine environment for the processing of polymeric and particulate organic matter to dissolved organic matter and facilitating further passive transportation...

  7. Endoscopic suture fixation is associated with reduced migration of esophageal fully covered self-expandable metal stents (FCSEMS).

    Science.gov (United States)

    Wright, Andrew; Chang, Andrew; Bedi, Aarti Oza; Wamsteker, Erik-Jan; Elta, Grace; Kwon, Richard S; Carrott, Phillip; Elmunzer, B Joseph; Law, Ryan

    2017-09-01

    Esophageal fully covered self-expandable metal stents (FCSEMS) are indicated for the management of benign and malignant conditions of the esophagus including perforations, leaks, and strictures. FCSEMS are resistant to tissue ingrowth and are removable; however, stent migration occurs in 30-55% of cases. Endoscopic suture fixation of FCSEMS has been utilized to decrease the risk of