WorldWideScience

Sample records for metal production technology

  1. PRODUCTION OF PROTOTYPE PARTS USING DIRECT METAL LASER SINTERING TECHNOLOGY

    Josef Sedlak

    2015-08-01

    Full Text Available Unconventional methods of modern materials preparation include additive technologies which involve the sintering of powders of different chemical composition, granularity, physical, chemical and other utility properties. The technology called Rapid Prototyping, which uses different technological principles of producing components, belongs to this type of material preparation. The Rapid Prototyping technology facilities use photopolymers, thermoplastics, specially treated paper or metal powders. The advantage is the direct production of metal parts from input data and the fact that there is no need for the production of special tools (moulds, press tools, etc.. Unused powder from sintering technologies is re-used for production 98% of the time, which means that the process is economical, as well as ecological.The present paper discusses the technology of Direct Metal Laser Sintering (DMLS, which falls into the group of additive technologies of Rapid Prototyping (RP. The major objective is a detailed description of DMLS, pointing out the benefits it offers and its application in practice. The practical part describes the production and provides an economic comparison of several prototype parts that were designed for testing in the automotive industry.

  2. Additive manufacturing of metals the technology, materials, design and production

    Yang, Li; Baughman, Brian; Godfrey, Donald; Medina, Francisco; Menon, Mamballykalathil; Wiener, Soeren

    2017-01-01

    This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leadin...

  3. State-of-art of modern technologies for metals production

    Holappa, L [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1996-12-31

    The future raw materials are becoming lower in metal content and more complex, multimetal concentrates will be utilized. This will give challenges for metallurgists to develop new, efficient and energy saving processes. The main impacts for current and future production technologies come from energy need and environmental issues of the production processes themselves as well as the inevitable energy production for the metal making. Metals production consumes huge amount of energy, roughly 10 pct of the global energy consumption is caused by metallurgists. That is the necessity but it also means energy saving is one of the metallurgical industry have been enormous when looking back to the history. Since the 1960`s the efforts of the industry together with the strict legislation in the industrialized countries have conducted to greatly decreased emissions and improved pollution control. Breakthrough of new processes like copper flash smelting has aided this positive progress

  4. State-of-art of modern technologies for metals production

    Holappa, L. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1995-12-31

    The future raw materials are becoming lower in metal content and more complex, multimetal concentrates will be utilized. This will give challenges for metallurgists to develop new, efficient and energy saving processes. The main impacts for current and future production technologies come from energy need and environmental issues of the production processes themselves as well as the inevitable energy production for the metal making. Metals production consumes huge amount of energy, roughly 10 pct of the global energy consumption is caused by metallurgists. That is the necessity but it also means energy saving is one of the metallurgical industry have been enormous when looking back to the history. Since the 1960`s the efforts of the industry together with the strict legislation in the industrialized countries have conducted to greatly decreased emissions and improved pollution control. Breakthrough of new processes like copper flash smelting has aided this positive progress

  5. TECHNOLOGY OF PRODUCTION OF METAL-CONTAINING SLAGS

    O. M. Djakonov

    2011-01-01

    Full Text Available Technological operations of mechanical squeezing of water-based final tailings from lubricoolants, washing of metal-abrasive final tailings on oil lubricoolants and their magnetic separation are offered and investigated. Advantages of technology washing and magnetic separation of final tailings are ecological cleanliness of the process, high degree of clearing of metal powder and qualitative division of mixture component.

  6. Improvements in process technology for uranium metal production

    Meghal, A.M.; Singh, H.; Koppiker, K.S.

    1991-01-01

    The research reactors in Trombay use uranium metal as a fuel. The plant to produce nuclear grade uranium metal ingots has been in operation at Trombay since 1959. Recently, the capacity of the plant has been expanded to meet the additional demand of the uranium metal. The operation of the expanded plant, has brought to the surface various shortcomings. This paper identifies various problems and describes the measures to be taken to upgrade the technology. Some comments are made on the necessity for development of technology for future requirement. (author). 6 refs., 1 fig

  7. Elaboration of the technology of forming a conical product of sheet metal

    W. Matysiak

    2010-01-01

    Full Text Available The work presents a general knowledge about spinning draw pieces of sheets, one of multi-operational processes of spinning a sheet metal conical product without machining. The objective of the work was to elaborate both the technology of forming conical products of sheet metal and execution of technological tests as well as to determine the technological parameters for the process of spinning a conical insert. As a result of the investigations, the products with improved mechanical properties, stricter execution tolerance and low roughness have been obtained. The series of 200 prototype conical inserts for the shipbuilding industry have been made.

  8. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  9. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  10. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  11. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  12. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  13. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L.

    1997-01-01

    The Department of Energy's (DOE) Office of Science and Technology Decontamination and Decommissioning (D ampersand D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D ampersand D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D ampersand D Focus Area's approach to verifying the benefits of the improved D ampersand D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD's awarded by the D ampersand D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP's selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP's Plant 1 D ampersand D Project which was an ongoing D ampersand D Project for which a firm fixed price contract had been issued to the D ampersand D Contractor. Thus, interferences with the baseline D ampersand D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D ampersand D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of open-quotes winners.close quotes All demonstrated, technologies will be evaluated for incorporation into the FEMP's baseline D ampersand D

  14. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  15. Technology programme SULA 2. Energy in steel and base metal production. Final report

    NONE

    1998-07-01

    SULA 2 is the energy research programme of the steel and metal producing industry. Central steel and metal producing companies are Outokumpu, Rautaruukki, Imatra Steel and Fundia Wire which is a subsidiary of Rautaruukki. The priorities of the SULA 2 programme are in process development. Worthwhile areas of concentration in energy research by Finland include the following: Iron and steel production; Zinc production; The production of ferrochromium and stainless steel; The pyrometallurgical production of copper and nickel and Rolling and heat treatment of steel In addition to the steel and metal producers the following companies participate in some projects: Kuusakoski, Kumera, Fiskars Tools and BETKER. Research work is performed in the following universities and research centers: Helsinki University of Technology, Oulu University, Aabo Akademi University, Tampere University of Technology, VTT Energy and VTT Building Technology. The total number of projects in SULA 2 programme is 51. Of these 20 are research institute projects, 21 are company R and D projects and 10 are energy conservation projects funded by Ministry of Trade and Industry. The total research costs are ca. 130 million FIM. The major part of costs is carried by the participating companies, 62 % and by public funding (Ministry of Trade and Industry, TEKES, The Academy of Finland) 36 %. In six projects the objective of research was studying and inventing new production processes or equipment. Results so far are a new production process for the Tornio stainless steel plant and a new design of ore concentrate rotary dryer, which has been commercialized. The electric energy consumption of the melting shop in Tornio has decreased by 25 %, and the production capacity has increased accordingly. Considerable savings in production process energy consumption, estimable from production reports have been achieved in several projects. The total amount of estimable saving in specific energy consumption is about 900

  16. Technology programme SULA 2. Energy in steel and base metal production. Final report

    NONE

    1998-07-01

    SULA 2 is the energy research programme of the steel and metal producing industry. Central steel and metal producing companies are Outokumpu, Rautaruukki, Imatra Steel and Fundia Wire which is a subsidiary of Rautaruukki. The priorities of the SULA 2 programme are in process development. Worthwhile areas of concentration in energy research by Finland include the following: Iron and steel production; Zinc production; The production of ferrochromium and stainless steel; The pyrometallurgical production of copper and nickel and Rolling and heat treatment of steel In addition to the steel and metal producers the following companies participate in some projects: Kuusakoski, Kumera, Fiskars Tools and BETKER. Research work is performed in the following universities and research centers: Helsinki University of Technology, Oulu University, Aabo Akademi University, Tampere University of Technology, VTT Energy and VTT Building Technology. The total number of projects in SULA 2 programme is 51. Of these 20 are research institute projects, 21 are company R and D projects and 10 are energy conservation projects funded by Ministry of Trade and Industry. The total research costs are ca. 130 million FIM. The major part of costs is carried by the participating companies, 62 % and by public funding (Ministry of Trade and Industry, TEKES, The Academy of Finland) 36 %. In six projects the objective of research was studying and inventing new production processes or equipment. Results so far are a new production process for the Tornio stainless steel plant and a new design of ore concentrate rotary dryer, which has been commercialized. The electric energy consumption of the melting shop in Tornio has decreased by 25 %, and the production capacity has increased accordingly. Considerable savings in production process energy consumption, estimable from production reports have been achieved in several projects. The total amount of estimable saving in specific energy consumption is about 900

  17. Leading research on next generation metal production technology; Jisedai kinzoku shigen seisan gijutsu no sendo kenkyu

    NONE

    1997-03-01

    The energy saving environment-friendly technology for low- grade difficult-to-process ores was researched focusing attention on the hydro-metallurgical process of non-ferrous metals. This research aims at development of both effective leaching system of metals, and separation/crystallization system recognizing the property difference between metal ions in solution. The leaching system allows the inexpensive molecular level control of electron transfer, mass transfer of metal ions and stabilization of leached metal ions in a solid/liquid interface. The system thus allows selective leaching of metals from various resources such as difficult- to-leach sulfide minerals to prepare concentrated solutions. The separation system can obtain high-purity solutions including each metal ion by advanced separation/concentration technology from the solutions. The crystallization technology (including electrolysis) is developed for preparing target metal materials by molecular level control of nucleation, particle growth, thin film formation and bulky metal formation processes. Overall energy consumption is reduced to 1/3 of that of the pyro-metallurgical method, aiming at zero emission. 15 refs., 14 figs., 11 tabs.

  18. Metals production

    Beck, Theodore S.

    1992-01-01

    Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.

  19. Effects of different production technologies on mechanical and metallurgical properties of precious metal denture alloys

    Ferro, Paolo; Battaglia, Eleonora; Capuzzi, Stefano; Berto, Filippo

    2017-12-01

    Precious metal alloys can be supplied in traditional plate form or innovative drop form with high degree of purity. The aim of the present work is to evaluate the influence of precious metal alloy form on metallurgical and mechanical properties of the final dental products with particular reference to metal-ceramic bond strength and casting defects. A widely used alloy for denture was selected; its nominal composition was close to 55 wt% Pd - 34 wt% Ag - 6 wt% In - 3 wt% Sn. Specimens were produced starting from the alloy in both plate and drop forms. A specific test method was developed to obtain results that could be representative of the real conditions of use. In order to achieve further information about the adhesion behaviour and resistance, the fracture surfaces of the samples were observed using `Scanning Electron Microscopy (SEM)'. Moreover, material defects caused by the moulding process were studied. The form of the alloy before casting does not significantly influence the shear bond strength between the metal and the ceramic material (p-value=0,976); however, according to SEM images, products from drop form alloy show less solidification defects compared to products obtained with plate form alloy. This was attributed to the absence of polluting additives used in the production of drop form alloy. This study shows that the use of precious metal denture alloys supplied in drop form does not affect the metal-ceramic bond strength compared to alloys supplied in the traditional plate form. However, compared to the plate form, the drop form is found free of solidification defects, less expensive to produce and characterized by minor environmental impacts.

  20. Metal Production by Molten Salt Electrolysis

    Grjotheim, K.; Kvande, H.; Qingfeng, Li

    Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed.......Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed....

  1. Microactuator production via high aspect ratio, high edge acuity metal fabrication technology

    Guckel, H.; Christenson, T. R.

    1993-01-01

    LIGA is a procession sequence which uses x-ray lithography on photoresist layers of several hundred micrometers to produce very high edge acuity photopolymer molds. These plastic molds can be converted to metal molds via electroplating of many different metals and alloys. The end results are high edge acuity metal parts with large structural heights. The LIGA process as originally described by W. Ehrfeld can be extended by adding a surface micromachining phase to produce precision metal parts which can be assembled to form three-dimensional micromechanisms. This process, SLIGA, has been used to fabricate a dynamometer on a chip. The instrument has been fully implemented and will be applied to tribology issues, speed-torque characterization of planar magnetic micromotors and a new family of sensors.

  2. Light metal production

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  3. Production of magnesium metal

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  4. INNOVATIVE TECHNOLOGIES OF THE METAL-PLATE SPRINGS PRODUCTION AND HARDENING

    V. V. Klubovich

    2010-01-01

    Full Text Available A methods and technology of the periodic rolling billets variable profile. Given schematic diagrams and technical specification of equipment for making plastic and surface treatment of small leaf springs and the guide bearings air suspension trucks. An assessment of the influence of ultrasonic vibrations on the structure and operating characteristics of the elastic elements of the suspension of vehicles.

  5. Production of pure metals

    Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)

    1974-01-01

    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.

  6. An Initial Assessment Of Potential Production Technologies For Epsilon-Metal Waste Forms

    Rohatgi, Aashish; Strachan, Denis M.

    2011-01-01

    This report examines and ranks a total of seven materials processing techniques that may be potentially utilized to consolidate the undissolved solids from nuclear fuel reprocessing into a low-surface area form. Commercial vendors of processing equipment were contacted and literature researched to gather information for this report. Typical equipment and their operation, corresponding to each of the seven techniques, are described in the report based upon the discussions and information provided by the vendors. Although the report does not purport to describe all the capabilities and issues of various consolidation techniques, it is anticipated that this report will serve as a guide by highlighting the key advantages and disadvantages of these techniques. The processing techniques described in this report were broadly classified into those that employed melting and solidification, and those in which the consolidation takes place in the solid-state. Four additional techniques were examined that were deemed impractical, but were included for completeness. The techniques were ranked based on criteria such as flexibility in accepting wide-variety of feed-stock (chemistry, form, and quantity), ease of long-term maintenance, hot cell space requirements, generation of additional waste streams, cost, and any special considerations. Based on the assumption of ∼2.5 L of waste to be consolidated per day, sintering based techniques, namely, microwave sintering, spark plasma sintering and hot isostatic pressing, were ranked as the top-3 choices, respectively. Melting and solidification based techniques were ranked lower on account of generation of volatile phases and difficulties associated with reactivity and containment of the molten metal.

  7. X-ray fluorescence analysis of low concentrations metals in geological samples and technological products

    Lagoida, I. A.; Trushin, A. V.

    2016-02-01

    For the past several years many nuclear physics methods of quantitative elemental analysis have been designed. Many of these methods have applied in different devices which have become useful and effective instrument in many industrial laboratories. Methods of a matter structure analysis are based on the intensity detection of the X-ray radiation from the nuclei of elements which are excited by external X-ray source. The production of characteristic X-rays involves transitions of the orbital electrons of atoms in the target material between allowed orbits, or energy states, associated with ionization of the inner atomic shells. One of these methods is X-ray fluorescence analysis, which is widespread in metallurgical and processing industries and is used to identify and measure the concentration of the elements in ores and minerals on a conveyor belt. Samples of copper ore with known concentrations of elements, were taken from the Ural deposit. To excite the characteristic X-rays radionuclide sources 109Cd, with half-life 461.4 days were used. After finding the calibration coefficients, control measurements of samples and averaging of overall samples were made. The measurement error did not exceed 3%.

  8. Radioactive scrap metal decontamination technology assessment report

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material's decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting

  9. Marketing technologically advanced products

    Bender, Horst

    1989-01-01

    This paper calls for a merger of technology and marketing under a customer value perspective; for an enhancement of the traditional technological innovation orientation of the technology-based firm with a market thrust. It establishes technology-based products as product-service offerings that are

  10. METAL PRODUCTION AND CASTING

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  11. Hydrogen energy technology development conference. From production of hydrogen to application of utilization technologies and metal hydrides, and examples; Suiso energy gijutsu kaihatsu kaigi. Suiso no seizo kara riyo gijutsu kinzoku suisokabutsu no oyo to jirei

    NONE

    1984-02-14

    The hydrogen energy technology development conference was held on February 14 to 17, 1984 in Tokyo. For hydrogen energy systems and production of hydrogen from water, 6 papers were presented for, e.g., the future of hydrogen energy, current state and future of hydrogen production processes, and current state of thermochemical hydrogen technology development. For hydrogen production, 6 papers were presented for, e.g., production of hydrogen from steel mill gas, coal and methanol. For metal hydrides and their applications, 6 papers were presented for, e.g., current state of development of hydrogen-occluding alloy materials, analysis of heat transfer in metal hydride layers modified with an organic compound and its simulation, and development of a large-size hydrogen storage system for industrial purposes. For hydrogen utilization technologies, 8 papers were presented for, e.g., combustion technologies, engines incorporating metal hydrides, safety of metal hydrides, hydrogen embrittlement of system materials, development trends of phosphate type fuel cells, and alkali and other low-temperature type fuel cells. (NEDO)

  12. Direct metal laser sintering: a digitised metal casting technology.

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  13. Direct Metal Laser Sintering: A Digitised Metal Casting Technology

    Venkatesh, K. Vijay; Nandini, V. Vidyashree

    2013-01-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  14. LCA of metal nanomaterial production

    Miseljic, Mirko; Diaz, Elsa Gabriela Alvarado; Olsen, Stig Irving

    The use of engineered nanomaterials (ENMs) in commercial product has reached a new stage, where consumers in their daily life are frequently encountered with products containing this new material class. Metal and metal-oxide nanomaterials are among the most commonly used ENMs in products. Potential......(OH)2 applied as additives in polypropylene (PP), and the production of PP with conventional additives that provide similar properties as the ENMs. Different scenarios of nanoproducts consisting of metal ENMs and PP were compared with current use of additives in PP products through a detailed cradle...

  15. Advances in production technology

    2015-01-01

    This edited volume contains the selected papers presented at the scientific board meeting of the German Cluster of Excellence on “Integrative Production Technology for High-Wage Countries”,  held in November 2014. The topical structure of the book is clustered in six sessions: Integrative Production Technology, Individualised Production, Virtual Production Systems, Integrated Technologies, Self-Optimising Production Systems and Human Factors in Production Technology. The Aachen perspective on a holistic theory of production is complemented by conference papers from external leading researchers in the fields of production, materials science and bordering disciplines. The target audience primarily comprises research experts and practitioners in the field but the book may also be beneficial for graduate students.

  16. PRODUCTION OF PLUTONIUM METAL

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  17. PRODUCTION OF HAFNIUM METAL

    Elger, G.W.; Boubel, R.W.

    1963-01-01

    This patent deals with a process of producing pure Hf metal from oxygen- contaminated gaseous Hf chloride. The oxygen compounds in the chioride gas are halogenated by contacting the gas at elevated temperature with Cl/sub 2/ in the presence of C. The Hf chloride, still in gaseous form, is contacted with molten Mg whereby Hf metal is formed and condensed on the Mg. (AEC)

  18. Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology

    Sun, Z.H.I.; Xiao, Y.; Sietsma, J.; Agterhuis, H.; Visser, G.; Yang, Y.

    2015-01-01

    Highlights: • New characterisation methodology has been established to understand an industrially processed ICT waste. • Particle size distribution, composition, thermal–chemical behaviour and occurrence of metals were considered. • The characterisation provides direct guidelines for values recovery from the waste. - Abstract: Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process

  19. Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology

    Sun, Z.H.I. [Department of Materials Science and Engineering, TU Delft, 2628 CD Delft (Netherlands); Xiao, Y. [Ironmaking Department, R and D, Tata Steel, 1970 CA IJmuiden (Netherlands); Sietsma, J. [Department of Materials Science and Engineering, TU Delft, 2628 CD Delft (Netherlands); Agterhuis, H.; Visser, G. [Business Development, Van Gansewinkel Groep BV, 5657 DH Eindhoven (Netherlands); Yang, Y. [Department of Materials Science and Engineering, TU Delft, 2628 CD Delft (Netherlands)

    2015-01-15

    Highlights: • New characterisation methodology has been established to understand an industrially processed ICT waste. • Particle size distribution, composition, thermal–chemical behaviour and occurrence of metals were considered. • The characterisation provides direct guidelines for values recovery from the waste. - Abstract: Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process.

  20. PRODUCTION OF ACTINIDE METAL

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  1. Laser Processing Technology using Metal Powders

    Jang, Jeong-Hwan; Moon, Young-Hoon [Pusan National University, Busan (Korea, Republic of)

    2012-03-15

    The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

  2. Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology.

    Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Visser, G; Yang, Y

    2015-01-01

    Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Production and use of metals and oxygen for lunar propulsion

    Hepp, Aloysius F.; Linne, Diane L.; Groth, Mary F.; Landis, Geoffrey A.; Colvin, James E.

    1991-01-01

    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.

  4. Application of siliceous metal product for preliminary deoxidizing of metal in open-hearth furnaces

    Luk'yanenko, A.A.; Evdokimov, A.V.; Kornilov, V.N.; Il'in, V.I.; Kuleshov, Yu.V.

    1995-01-01

    Metal wastes of abrasive processes-concomitant product of synthetic corundum production containing approximately 10 % Si - were tested for preliminary deoxidizing of metal in furnace to reduce manganese loss in burning and to increase the steel deoxidizing. The technology of preliminary deoxidizing of metal by siliceous metal product was mastered in the course of low carbon steel melting (st3sp, st4sp). The results of the study has shown that the use of siliceous metal product permits reducing the consumption of manganese-containing ferroalloys. 1 tab

  5. Remelt Ingot Production Technology

    Grandfield, J. F.

    The technology related to the production of remelt ingots (small ingots, sows and T-Bar) is reviewed. Open mold conveyors, sow casting, wheel and belt casting and VDC and HDC casting are described and compared. Process economics, capacity, product quality and process problems are listed. Trends in casting machine technology such as longer open mold conveyor lines are highlighted. Safety issues related to the operation of these processes are discussed. The advantages and disadvantages of the various machine configurations and options e.g. such as dry filling with the mold out of water and wet filling with the mold in water for open mould conveyors are discussed. The effect of mold design on machine productivity, mold cracking and mold life is also examined.

  6. Liquid Metal Engineering and Technology. Volume 1

    1988-01-01

    These proceedings of the fourth international conference on liquid metal engineering and technology volume 1, are devided into 3 sections bearing on: - Apparatus and components for liquid metal (29 papers) - Liquid metal leaks, fires and fumes (10 papers) - Cleaning, decontamination, waste disposal (14 papers) [fr

  7. Nano Manufacturing - Products and Technologies

    Hansen, Hans Nørgaard; Alting, Leo

    2004-01-01

    The use of micro and nano technologies in components and products not only sets new demands to the manufacturing technologies. Product concepts have to be rethought and redefined in order to implement the micro and nano technologies into functional systems. Both a technology driven and a product ...

  8. Globally sustainable manganese metal production and use.

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  9. Biodiesel production technologies: review

    Shemelis Nigatu Gebremariam

    2017-05-01

    Full Text Available Biodiesel is a fuel with various benefits over the conventional diesel fuel. It is derived from renewable resources, it has less emission to environment, it is biodegradable so has very limited toxicity and above all its production can be decentralized so that it could have a potential in helping rural economies. However, there are also some worth mentioning challenges associated with production of biodiesel. Among them repeatedly mentioned are the cost of feedstock and the choice of convenient technology for efficient production of the fuel from diverse feedstock types. There are four main routes by which raw vegetable oil and/or animal fat can be made suitable for use as substituent fuel in diesel engines without modification. These are direct use or blending of oils, micro-emulsion, thermal cracking or pyrolysis and transesterification reaction. Due to the quality of the fuel produced, the transesterification method is the most preferred way to produce biodiesel from diverse feedstock types. Through this method, oils and fats (triglycerides are converted to their alkyl esters with reduced viscosity to near diesel fuel levels. There are different techniques to carry out transesterification reaction for biodiesel production. Each technique has its own advantages and disadvantages as well as its own specifically convenient feedstock character. There are also some very important reaction conditions to be given due attention in each of this techniques for efficient production of biodiesel, such as molar ratio of alcohol to oil, type and amount of catalyst, reaction temperature, reaction time, reaction medium, type and relative amount of solvents, among others. This review is meant to investigate the main transesterification techniques for biodiesel production in terms of their choice of feedstock character as well as their determinately required reaction conditions for efficient biodiesel production, so that to give an overview on their advantages

  10. The Production of Uranium Metal by Metal Hydrides Incorporated

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  11. Additive manufacturing technologies of porous metal implants

    Yang Quanzhan

    2014-06-01

    Full Text Available Biomedical metal materials with good corrosion resistance and mechanical properties are widely used in orthopedic surgery and dental implant materials, but they can easily cause stress shielding due to the significant difference in elastic modulus between the implant and human bones. The elastic modulus of porous metals is lower than that of dense metals. Therefore, it is possible to adjust the pore parameters to make the elastic modulus of porous metals match or be comparable with that of the bone tissue. At the same time, the open porous metals with pores connected to each other could provide the structural condition for bone ingrowth, which is helpful in strengthening the biological combination of bone tissue with the implants. Therefore, the preparation technologies of porous metal implants and related research have been drawing more and more attention due to the excellent features of porous metals. Selective laser melting (SLM and electron beam melting technology (EBM are important research fields of additive manufacturing. They have the advantages of directly forming arbitrarily complex shaped metal parts which are suitable for the preparation of porous metal implants with complex shape and fine structure. As new manufacturing technologies, the applications of SLM and EBM for porous metal implants have just begun. This paper aims to understand the technology status of SLM and EBM, the research progress of porous metal implants preparation by using SLM and EBM, and the biological compatibility of the materials, individual design and manufacturing requirements. The existing problems and future research directions for porous metal implants prepared by SLM and EBM methods are discussed in the last paragraph.

  12. Metal detector technology data base

    Porter, L.K.; Gallo, L.R.; Murray, D.W.

    1990-08-01

    The tests described in this report were conducted to obtain information on the effects target characteristics have on portal type metal detector response. A second purpose of the tests was to determine the effect of detector type and settings on the detection of the targets. Although in some cases comparison performance of different types and makes of metal detectors is found herein, that is not the primary purpose of the report. Further, because of the many variables that affect metal detector performance, the information presented can be used only in a general way. The results of these tests can show general trends in metal detection, but do little for making accurate predictions as to metal detector response to a target with a complex shape such as a handgun. The shape of an object and its specific metal content (both type and treatment) can have a significant influence on detection. Thus it should not be surprising that levels of detection for a small 100g stainless steel handgun are considerably different than for detection of the 100g stainless steel right circular cylinder that was used in these tests. 7 figs., 1 tab.

  13. Metal decontamination for waste minimization using liquid metal refining technology

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-01-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species

  14. Production of metal particles and clusters

    Mcmanus, S. P.

    1982-01-01

    The feasibility of producing novel metals or metal clusters in a low gravity environment was studied. The production of coordinately unsaturated metal carbonyls by thermolysis or photolysis of stable metal carbonyls has the potential to generate novel catalysts by this technique. Laser irradiation of available metal carbonyls was investigated. It is found that laser induced decomposition of metal carbonyls is feasible for producing a variety of coordinately unsaturated species. Formation of clustered species does occur but is hampered by weak metal-metal bonds.

  15. Liquid metal reactor absorber technology

    Pitner, A.L.

    1990-10-01

    The selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts. 3 refs., 3 figs

  16. Nanoporous metals for advanced energy technologies

    Ding, Yi

    2016-01-01

    This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

  17. PDT (Product Data Technology), Production and Society

    Vesterager, Johan

    1997-01-01

    Information and communication technology (ICT) constitute a genuine technical revolution by enabling a dynamic and flexible support or automation of knowledge and information work. Bearing in mind that products are frozen knowledge, ICT as known will change the way we produce products dramatically....... The use of ICT in engineering of products constitutes product data technology (PDT).This paper presents a a basic platform for an understanding the ongoing revolution with focus on the PDT-area taking outset in the fundamental elements of knowledge and information work: creation, transformation...

  18. Assessing Rare Metal Availability Challenges for Solar Energy Technologies

    Leena Grandell

    2015-08-01

    Full Text Available Solar energy is commonly seen as a future energy source with significant potential. Ruthenium, gallium, indium and several other rare elements are common and vital components of many solar energy technologies, including dye-sensitized solar cells, CIGS cells and various artificial photosynthesis approaches. This study surveys solar energy technologies and their reliance on rare metals such as indium, gallium, and ruthenium. Several of these rare materials do not occur as primary ores, and are found as byproducts associated with primary base metal ores. This will have an impact on future production trends and the availability for various applications. In addition, the geological reserves of many vital metals are scarce and severely limit the potential of certain solar energy technologies. It is the conclusion of this study that certain solar energy concepts are unrealistic in terms of achieving TW scales.

  19. Liquid metal technology in fusion

    Torre Cabezas, M. de la; Martin Espigares, M.; Lapena, J.

    1985-01-01

    Lithium (or Li-Pb) is one of the several possible coolants being considered for the blanket of magnetic toroidal fusion reactor, not only because of its good thermal and neutron properties, but also because the tritium required to fuel the reactor can be produced by neutron reactions in the lithium. In this paper two main technology tasks to be proposed in our fusion programme have been identified: 1) the development of impurity monitoring devices for use in lithium and Li-Pb environments; 2) effects of Li and Li-Pb environments on the low cycle fatigue properties of different steels. (author)

  20. Problems of zirconium metal production in Czechoslovakia

    Vareka, J.; Vaclavik, E.

    1975-01-01

    The problems are summed up of the production and quality control of zirconium sponge. A survey is given of industrial applications of zirconium in form of pure metal or alloys in nuclear power production, ferrous and non-ferrous metallurgy, chemical engineering and electrical engineering. A survey is also presented of the manufacture of zirconium metal in advanced capitalist countries. (J.B.)

  1. Sorption techniques for production of high purity refractory metals

    Shatalov, V.V.; Peganov, V.A.; Logvinenko, I.A.; Molchanova, T.V.

    2004-01-01

    A consideration is given to potentialities of sorption processes tot provide a high quality of refractory metal and their alloys when using hydrometallurgical methods for raw material processing. The efficiency of application of ion exchange technology is shown for complex solutions reprocessing for various types of polymetallic raw materials, among them uranium ores, enriched concentrates of refractory metal ores, intermediate products, waste solutions. Based on investigation results on the behaviour of elements in process solutions and the mechanism of their sorption and elution, the process of pure chemical compounds production are developed which provide thereafter manufacturing compact metals. The flowsheets developed are mastered on a commercial scale [ru

  2. Technology development for producing nickel metallic filters

    Hubler, C.H.

    1990-01-01

    A technology to produce metallic filters by Instituto de Engenharia Nuclear (IEN-Brazilian CNEN) providing the Instituto de Pesquisas Energeticas e Nucleares (IPEN-Brazilian CNEN) in obtaining nickel alloy filters used for filtration process of uranium hexafluoride, was developed. The experiences carried out for producing nickel conical trunk filters from powder metallurgy are related. (M.C.K.)

  3. Critical Metals in Strategic Energy Technologies. Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies

    Moss, R.L.; Tzimas, E.; Kara, H.; Willis, P.; Kooroshy, J.

    2011-11-01

    Due to the rapid growth in demand for certain materials, compounded by political risks associated with the geographical concentration of the supply of them, a shortage of these materials could be a potential bottleneck to the deployment of low-carbon energy technologies. In order to assess whether such shortages could jeopardise the objectives of the EU's Strategic Energy Technology Plan (SET-Plan), an improved understanding of these risks is vital. In particular, this report examines the use of metals in the six low-carbon energy technologies of SET-Plan, namely: nuclear, solar, wind, bioenergy, carbon capture and storage (CCS) and electricity grids. The study looks at the average annual demand for each metal for the deployment of the technologies in Europe between 2020 and 2030. The demand of each metal is compared to the respective global production volume in 2010. This ratio (expressed as a percentage) allows comparing the relative stress that the deployment of the six technologies in Europe is expected to create on the global supplies for these different metals. The study identifies 14 metals for which the deployment of the six technologies will require 1% or more (and in some cases, much more) of current world supply per annum between 2020 and 2030. These 14 metals, in order of decreasing demand, are tellurium, indium, tin, hafnium, silver, dysprosium, gallium, neodymium, cadmium, nickel, molybdenum, vanadium, niobium and selenium. The metals are examined further in terms of the risks of meeting the anticipated demand by analysing in detail the likelihood of rapid future global demand growth, limitations to expanding supply in the short to medium term, and the concentration of supply and political risks associated with key suppliers. The report pinpoints 5 of the 14 metals to be at high risk, namely: the rare earth metals neodymium and dysprosium, and the by-products (from the processing of other metals) indium, tellurium and gallium. The report explores a

  4. Cumulative exergy losses associated with the production of lead metal

    Szargut, J [Technical Univ. of Silesia, Gliwice (PL). Inst. of Thermal-Engineering; Morris, D R [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering

    1990-08-01

    Cumulative exergy losses result from the irreversibility of the links of a technological network leading from raw materials and fuels extracted from nature to the product under consideration. The sum of these losses can be apportioned into partial exergy losses (associated with particular links of the technological network) or into constituent exergy losses (associated with constituent subprocesses of the network). The methods of calculation of the partial and constituent exergy losses are presented, taking into account the useful byproducts substituting the major products of other processes. Analyses of partial and constituent exergy losses are made for the technological network of lead metal production. (author).

  5. Design of Agricultural Cleaner Production Technology System

    Hu, Jun-mei; Wang, Xin-jie

    2009-01-01

    Based on the introduction of agricultural cleaner production, technology system design of planting cleaner production is discussed from five aspects of water-saving irrigation technology, fertilization technology, diseases and insects control technology, straw comprehensive utilization technology and plastic film pollution control technology. Cleaner production technology system of livestock and poultry raise is constructed from the aspects of source control technology, reduction technique in...

  6. Technology of Furniture Production

    Danilova, Kseniia

    2016-01-01

    Manufacturing of furniture is one of the main processes of timber utilization. Furniture of Timberica Oy brand is made by special technology which does not allow use aggressive chemicals that can be harmful to humans, in wood processing. The furniture is made of Karelian "white" pine. Company's headquarters are located in Finland, its specialists improve and carefully controlled manufacturing process at the furniture factory in Karelia. Timberica Oy has produced furniture since 1998. They...

  7. Forest Products Industry Technology Roadmap

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  8. Critical Metals in Strategic Low-carbon Energy Technologies

    Moss, R. L.

    2012-04-01

    Due to the rapid growth in demand for certain materials, compounded by political risks associated with the geographical concentration of the supply of them, shortages of materials could be a potential bottleneck to the deployment of low-carbon energy technologies. Consequently, an assessment has been carried out to ascertain whether such shortages could jeopardise the objectives of the EU's Strategic Energy Technology Plan (SET-Plan), especially in the six low-carbon energy technologies of SET-Plan, namely: nuclear, solar, wind, bioenergy, carbon capture and storage (CCS) and electricity grids. The assessment identified 14 metals for which the deployment of the six technologies will require 1% or more (and in some cases, much more) of current world supply per annum between 2020 and 2030. Following a more critical examination, based on the likelihood of rapid future global demand growth, limitations to expanding supply in the short to medium term, and the concentration of supply and political risks associated with key suppliers, 5 of the 14 metals were pinpointed to be at high risk, namely: the rare earth metals neodymium and dysprosium (for wind technology), and the by-products (from the processing of other metals) indium, tellurium and gallium (for photovoltaic technologies). In addition, the work has explored potential mitigation strategies, ranging from expanding European output, increasing recycling and reuse to reducing waste and finding substitutes for these metals in their main applications. Furthermore, recommendations are provided which include closely working with the EU's Raw Materials Initiative; supporting efforts to ensure reliable supply of ore concentrates at competitive prices; promoting R&D and demonstration projects on new lower cost separation processes; and promoting the further development of recycling technologies and increasing end-of-life collection

  9. Radiation technology of improved quality materials production

    Zajkin, Yu.A.; Nadirov, N.K.; Zajkina, R.F.

    1997-01-01

    The technology of materials production from metals and alloys with high operational properties is developed. The technology is based on use of radiation methods in powder metallurgy. Use of radiation processing allows to improve technological conditions of sintering. It is established, that in certain regimes the sintering temperature is decreasing from 1200 deg C up to 950 deg C in the result of radiation processing of stainless steel powders . According to the processing regimes it is possible load reduction by powder pressing on 15-20 % and sintering time in to 1,5 - 2 times . The radiation methods give possibility to produce high qualitative goods from cheap powder materials without use energy-intensive processes and prolonged processing of finished products

  10. Process technology - rare and refractory metals

    Gupta, C.K.; Bose, D.K.

    1989-01-01

    India has fairly rich resreves of rare and refractory metals. Abundant sources of ilmenite, rutile, zircon and rare earths are found in the placer deposits of the southern and eastern coasts of the country. Columbite-tantalite occur in mica and the mining belts of Bihar and cassiterite deposits are found in Bastar (Madhya Pradesh). Vanadium as a minor associate occurs in bauxites and in the vast deposits of titaniferrous magnetites. Over the years, research and development and pilot plant works in many research organisations in India have built up a sound technological base in the country for process metallurgy of many refractory and rare earth metals starting from their indigenous sources. The present paper provides a comprehensive view of the developments that have taken place till now on the processing of various refractory and rare earth metals with particular reference to the extensive work carried out at the Department of Atomic Energy. The coverage includes mineral benification separation of individual elements, preparation of pure intermediates, techniques of reduction to metal and final purification. The paper also reviews some of the recent developments that have been taken place in these fields and the potential application of these metals in the foreseeable future. (author). 22 refs., 18 fi g., 7 tabs

  11. Production of Plutonium Metal from Aqueous Solutions

    Orth, D.A.

    2003-01-16

    The primary separation of plutonium from irradiated uranium by the Purex solvent extraction process at the Savannah River Plant produces a dilute plutonium solution containing residual fission products and uranium. A cation exchange process is used for concentration and further decontamination of the plutonium, as the first step in the final preparation of metal. This paper discusses the production of plutonium metal from the aqueous solutions.

  12. FY 1999 report on the results of the technology development of super metal (R and D of the undersea oil production support system). Development of technology of aluminum-base high corrosion resistant fine structure controlling metal materials; 1999 nendo super metal no gijutsu kaihatsu seika hokokusho. Kaitei sekiyu seisan shien system kenkyu kaihatsu (aluminium kei kotaishokusei bisai kozo seigyo kinzoku zairyo gijutsu kaihtsu)

    NONE

    2000-03-01

    For the purpose of developing aluminum materials excellent in industrial characteristics, a study was conducted to create large-sized aluminum materials having mesoscopic crystal structure, and the FY 1999 results were summarized. In this fiscal year, to create the fine crystal grain structure, the following were conducted: fundamental study of high strain accumulation process, study of a mechanism of fine crystal grain formation, development of the processing method, and development of evaluation technology. In the study of high strain accumulation process, effects were examined of conditions of molten metal rolling on castability. Fundamental studies were also made of innovative technologies such as ECAP method, pre-forged structure controlling rolling, accumulative roll bonding and thermomechanical treatment. In the study of the mechanism of fine crystal grain structure formation, the following were conducted: Al-Mn base alloys produced by molten metal rolling, 6061 alloys by warm rolling with different peripheral speed rolling, and 7000 group alloys by warm rolling. As to the processing method, study was made on low-temperature rolling technology and rapid heat treatment technology. As to the evaluation technology, study was made on evaluation of crystal grain diameter by EBSP. (NEDO)

  13. Recovery of noble metals from fission products

    Jenson, G.A.; Platt, A.M.; Mellinger, G.B.; Bjorklund, W.J.

    1982-11-01

    Scoping studies were started in 1979 to develop a cost-effective, waste-management-compatible process to extract noble metals from fission products. The process, involving the reaction with glassmelting chemicals, a metal oxide (PbO), and a reducing agent (charcoal), was demonstrated for recovering noble metals from simulated high-level waste oxides. The process has now been demonstrated on a laboratory scale (100 g) using irradiated fuels. Recoveries in the recovered lead averaged 80% for Pd, 60% for Rh, and 14% Ru. The resulting glass product was homogeneous in appearance, and the chemical durability was comparable to other waste oxides

  14. Uranium metal production by molten salt electrolysis

    Takasawa, Yutaka

    1999-01-01

    Atomic vapor laser isotope separation (AVLIS) is a promising uranium enrichment technology in the next generation. Electrolytic reduction of uranium oxides into uranium metal is proposed for the preparation of uranium metal as a feed material for AVLIS plant. Considering economical performance, continuos process concept and minimizing the amount of radioactive waste, an electrolytic process for producing uranium metal directly from uranium oxides will offer potential advantages over the existing commercial process. Studies of uranium metal by electrolysis in fluoride salts (BaF 2 -LiF-UF 4 (74-11-15 w/o) at 1150-1200degC, using both a laboratory scale apparatus and an engineering scale one, and continuous casting of uranium metal were carried out in order to decide the optimum operating conditions and the design of the industrial electrolytic cells. (author)

  15. Radiation technology and feed production

    Ershov, B.G.

    1986-01-01

    The use of radiation technology to prepare feeds and feed additions for cattle of non-feed vegetable blends is considered.Physicochemical foundations of radiation-chemical processes, possibilities of the use of various radiation devices are given. Data on practical realization of the technology are presented and prospects of its introduction to solve the tasks put forward by the USSR program on feed production are analyzed

  16. New technologies in biodiesel production

    Santacesaria, E.; Di Serio, M.; Tesser, R.

    2009-01-01

    The cost of biodiesel is nowadays affected by the cost of the raw materials, because the currently used method of preparation requires highly refined vegetable oils containing very low amounts of free fatty acids and moisture. Alternatively, less expensive technologies are possible using heterogeneous catalysts. In the present paper examples of these new technologies, based on the use of heterogeneous catalysts, in the production of biodiesel are described and discussed. [it

  17. Plasmarc technology for the treatment of metallic radwaste

    Hoffelner, W.; Weigel, H.

    1999-01-01

    The Plasmarc incineration and melting technology is suitable for processing radioactive wastes arising from the fields of medicine, industry and research, and from the operation and maintenance of nuclear power plants. Combustible wastes can be thermally decomposed and metals melted in the same facility together, and the incineration products and metals are thus turned into a form suitable for disposal in one step. In secondary metallurgy the Plasmarc technology can be used for melting scrap metal and recovering usable metals from metalliferous wastes, particularly composites of different metals and ceramics and metals and plastics. In the case of special wastes, it is possible to thermally decompose otherwise problematic residues in an oxygen free atmosphere at high temperatures. Material construction in the incineration mode could be in 200-litre standard drums with a total weight up to 300 kilograms if an average processing efficiency of 200 kilograms of mixed waste per hours is assumed. Melting: In the melting mode for metals, the drums coming from the storage rack are placed in the slowly rotating furnace using a grabbing device. Because of the low speed of rotation, the central outlet is initially blocked with a stopper. The drums, with contents, are then molten in the plasma arc. As soon as there is a melted mass, the speed of rotation of the furnace is increased until there is no material outflow when the stopper is removed. The stopped is then removed and the speed of rotation is reduced once again to allow the melt to flow out, exactly as in the incineration mode. Mixing: In the mixing mode, metallic/nonmetallic mixtures (e.g. reinforced concrete) can be processed. The meltable components are melted and the organic components are thermally decomposed. Because of differences in density, the inorganic residues float on the surface of the molten metal and can be vitrified using additives. These different operating modes of the Plasmarc furnace allow various

  18. Modernity Evaluation of the Machines Used During Production Process of Metal Products

    Ingaldi, Manuela; Dziuba, Szymon T.

    2015-01-01

    Most manufacturing companies realize its technologies, implemented through concrete machinery parts. They differ in terms of importance, the relevance of their selection and the level of their modernity. Modernity and efficiency of the machine are also very important during production process of the metal products. They have an influence on the quality of these products. The purpose of this article is to analyse the chosen production machine (CNC machine AFE-3D8-T) used during pro...

  19. Special metals - materials of modern technology

    Booss, H.J.

    1977-01-01

    This article is anether attempt to give a survey of special metals, their production, processing and application, as has been made in four previous articles. The article confines itself essentially to publications made in 12 German and 12 English journals, focussed on metallurgy, metallography, electrochemistry, and sections of electrical engineering. For the first time, some articles written in Russian have been included. (orig./IHOE) [de

  20. Aromatic plant production on metal contaminated soils

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  1. Aromatic plant production on metal contaminated soils

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  2. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  3. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  4. Improvement of radioisotope production technology

    Li Yongjian

    1987-01-01

    The widespreading and deepgoing applications of radioisotopes results the increasing demands on both quality and quantity. This in turn stimulating the production technology to be improved unceasingly to meet the different requirements on availability, variety, facility, purity, specific activity and specificity. The major approaches of achieving these improvements including: optimizing mode of production; enhancing irradiation conditions; amelioration target arrangement; adapting nuclear process and inventing chemical processing. (author)

  5. Comparison between microfabrication technologies for metal tooling

    Uriarte, L.; Herrero, A.; Ivanov, A.

    2006-01-01

    microtechnologies for processing tooling inserts made of metal. The following technologies have been analysed: micromilling, micro-electrodischarge machining (EDM, including wire-EDM, sinking-EDM, and EDM-milling), laser micromachining, electroforming, and electrochemical milling (ECF) (an electrochemical machining...... innovative process proposed by HSG-IMAT). Considered tool-insert materials are nickel for electroforming, stainless steel for ECF, and tool steel (AISI H13) for all other processes. Typical features (ribs, channels, pins, and holes) required by micro-optics, microfluidics, and sensor and actuator...

  6. Comparison between Microfabrication Technologies for Metal Tooling

    Tang, Peter Torben

    2005-01-01

    of metal. The following technologies have been analysed: micromilling, microEDM (microelectro discharge machining, including wire-EDM, sinking-EDM and EDM-milling), laser micromachining, electroforming and ECF (an innovative process proposed by HSG-IMAT). Considered materials are nickel for electroforming......, stainless steel for ECF, and tool steel (AISI H13) for the other processes. Typical features (ribs, channels, pins and holes) required by microoptics, microfluidics and sensors and actuators applications have been selected to carry out this analysis The task results provide a global comparison between...

  7. Fission 99Mo production technology

    Miao Zengxing; Luo Zhifu; Ma Huimin; Liang Yufu; Yu Ningwen

    2003-01-01

    This paper describes a production technology of fission 99 Mo in the Department Isotope, CIAE. The irradiation target is tubular U-Al alloy containing highly enriched uranium. The target is irradiated in the swimming pool reactor core. The neutron flux is about 4x10 13 /cm 2 .sec. The production scale is 3.7-7.4 TBq (100-200Ci) of fission 99 Mo per batch. Total recovery of 99 Mo is more than 70%. The production practice proves that the process and equipment are safe and reliable. (author)

  8. Integrating Product and Technology Development

    Meijer, Ellen Brilhuis; Pigosso, Daniela Cristina Antelmi; McAloone, Tim C.

    2016-01-01

    .g. managing dependencies) and opportunities (e.g. streamlining development). This paper presents five existing reference models for technology development (TD), which were identified via a systematic literature review, where their possible integration with product development (PD) reference models......Although dual innovation projects, defined in this article as the concurrent development of products and technologies, often occur in industry, these are only scarcely supported methodologically. Limited research has been done about dual innovation projects and their inherent challenges (e...... was investigated. Based on the specific characteristics desired for dual innovation projects, such as integrated product development and coverage of multiple development stages, a set of selection criteria was employed to select suitable PD and TD reference models. The integration and adaptation of the selected...

  9. Microbial Metabolite Production for Accelerated Metal and Radionuclide Bioremediation (Microbial Metabolite Production Report)

    TURICK, CHARLES

    2004-01-01

    Biogeochemical activity is an ongoing and dynamic process due to bacterial activity in the subsurface. Bacteria contribute significantly to biotransformation of metals and radionuclides. As basic science reveals more information about specific mechanisms of bacterial-metal reduction, an even greater contribution of bacteria to biogeochemical activities is realized. An understanding and application of the mechanisms of metal and radionuclide reduction offers tremendous potential for development into bioremedial processes and technologies. Most bacteria are capable of biogeochemical transformation as a result of meeting nutrient requirements. These assimilatory mechanisms for metals transformation include production of small molecules that serve as electron shuttles for metal reduction. This contribution to biogeochemistry is small however due to only trace requirements for minerals by bacteria. Dissimilatory metal reducing bacteria (DMRB) reduce oxidized metals and insoluble mineral oxides as a means for biological energy production during growth. These types of bacteria offer considerable potential for bioremediation of environments contaminated with toxic metals and radionuclides because of the relatively large amount of metal biotransformation they require for growth. One of the mechanisms employed by some DMRB for electron transfer to insoluble metal oxides is melanin production. The electrochemical properties of melanin provide this polymeric, humic-type compound with electron shuttling properties. Melanin, specifically, pyomelanin, increases the rate and degree of metal reduction in DMRB as a function of pyomelanin concentration. Due to its electron shuttling behavior, only low femtogram quantities per cell are required to significantly increase metal reduction capacity of DMRB. Melanin production is not limited to DMRB. In fact melanin is one of the most common pigments produced by biological systems. Numerous soil microorganisms produce melanin, contributing

  10. Advanced technologies for decontamination and conversion of scrap metal

    MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

    1996-01-01

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products

  11. Recovery and use of fission product noble metals

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value

  12. Advanced technologies for decomtamination and conversion of scrap metal

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-05-27

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ``Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a

  13. Advanced technologies for decontamination and conversion of scrap metal

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-01-01

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ''Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting

  14. The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies

    Moss, R.L.; Tzimas, E.; Kara, H.; Willis, P.; Kooroshy, J.

    2013-01-01

    This paper examines the use of materials, in particular metals, in six low-carbon energy technologies of the European Union's Strategic Energy Technology Plan (SET-Plan), namely nuclear, solar, wind, bioenergy, carbon capture and storage and electricity grids. The projected average annual demand for metals in the SET-Plan technologies for the decades up to 2020 and 2030 is compared to the known global production volume in 2010. From an initial inventory of over 50 metals, 14 metals were identified that will require 1% or more of the 2010 world supply per annum between 2020 and 2030. These 14 metals are cadmium, dysprosium, gallium, hafnium, indium, molybdenum, neodymium, nickel, niobium, selenium, silver, tellurium, tin and vanadium. These metals were examined further by analysing the effect of market and geo-political factors of supply and demand, which highlighted five metals to represent a high risk to large-scale technology deployment, namely: neodymium, dysprosium, indium, tellurium and gallium. The five metals were further analysed with respect to the wind and solar sectors, showing that the demand of these metals could increase significantly depending on future sub-technology choices. Mitigation strategies to alleviate potential shortages are also discussed, e.g. extending primary output; re-use, re-cycling and waste reduction; and substitution. - Highlights: ► Over 50 metals and their usage in six low-carbon energy technologies are analysed. ► 14 metals are identified that will require 1% or more of the 2010 world supply per annum. ► The 14 metals are further examined with respect to market and geo-political factors. ► 5 metals Nd, Dy, In, Te and Ga are a high risk to large-scale technology deployment. ► Demand for the 5 metals increases for sub-technology choices in PV and wind energy

  15. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recycling flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)

  16. Math on the Job. Metal Product Assembler.

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This booklet is intended to help mainstreamed mentally retarded, emotionally disturbed, or learning disabled high school students acquire a basic understanding of the responsibilities and working conditions of metal product assemblers and to practice basic math skills necessary in the occupation. The first section provides a brief introduction to…

  17. Metallic oxide switches using thick film technology

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  18. Description of Latvian Metal Production and Processing Enterprises' Air Emissions

    Pubule, J; Zahare, D; Blumberga, D

    2010-01-01

    The metal production and processing sector in Latvia has acquired a stable position in the national economy. Smelting of ferrous and nonferrous metals, production of metalware, galvanisation, etc. are developed in Latvia. The metal production and processing sector has an impact on air quality due to polluting substances which are released in the air from metal treatment processes. Therefore it is necessary to determine the total volume of emissions produced by the metal production and process...

  19. Metal shell technology based upon hollow jet instability

    Kendall, J.M.; Lee, M.C.; Wang, T.G.

    1982-01-01

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. We describe a technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal. We have produced shells in the 0.7--2.0 mm size range using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold--lead--antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise

  20. Biogas Production: Microbiology and Technology.

    Schnürer, Anna

    Biogas, containing energy-rich methane, is produced by microbial decomposition of organic material under anaerobic conditions. Under controlled conditions, this process can be used for the production of energy and a nutrient-rich residue suitable for use as a fertilising agent. The biogas can be used for production of heat, electricity or vehicle fuel. Different substrates can be used in the process and, depending on substrate character, various reactor technologies are available. The microbiological process leading to methane production is complex and involves many different types of microorganisms, often operating in close relationships because of the limited amount of energy available for growth. The microbial community structure is shaped by the incoming material, but also by operating parameters such as process temperature. Factors leading to an imbalance in the microbial community can result in process instability or even complete process failure. To ensure stable operation, different key parameters, such as levels of degradation intermediates and gas quality, are often monitored. Despite the fact that the anaerobic digestion process has long been used for industrial production of biogas, many questions need still to be resolved to achieve optimal management and gas yields and to exploit the great energy and nutrient potential available in waste material. This chapter discusses the different aspects that need to be taken into consideration to achieve optimal degradation and gas production, with particular focus on operation management and microbiology.

  1. Process for production of a metal hydride

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  2. Commercial production of metal hafnium and hafnium-based products

    Negodin, D.A.; Shtutsa, M.G.; Akhtonov, S.G.; Il'enko, E.V.; Kobyzev, A.M.

    2012-01-01

    Hafnium possesses a unique complex of physical and chemical properties which allow the application of products on its basis in various industries. Joint Stock Company 'Chepetsky Mechanical Plant' is the single enterprise which produces hafnium on the territory of Russia. The manufacture of metal hafnium with the total content of zirconium and hafnium, at least, 99,8 % of weights is developed at the present time at Joint Stock Company CHMZ. The weight of melted hafnium ingots is up to 1 ton. Manufacture of wide range of products from hafnium is implemented. The plates from a hafnium with thickness of 0.60 mm which are used for emergency control cartridges of VVER-440 reactors are the most critical product. It is shown that ingots and products obtained from metal hafnium correspond to the Russian and international standards for reactor materials in chemical composition, mechanical and corrosion properties.

  3. Effective Technology for Recycling Metal. Proceedings of Two Special Workshops.

    National Association of Secondary Material Industries, Inc., New York, NY.

    The National Association of Secondary Material Industries (NASMI) and the Bureau of Mines have cooperated to sponsor two technically-oriented workshops related to the role of metals recycling and air pollution control technology. The proceedings of these workshops, "Effective Technology and Research for Scrap Metal Recycling" and "Air Pollution…

  4. How to assess the availability of resources for new technologies? Case study: lithium a strategic metal for emerging technologies

    Weil, M.; Ziemann, S.; Schebek, L.

    2009-01-01

    The development of new technologies is often connected with the use of non-renewable resources. In recent years a qualitative shift in the demand of bulk metals (e.g. Fe, Al, Cu) to more scarce metals (e.g. Te, Ga, Re) is recognizable. Novel technologies and products rely more and more on very specific metals which are indispensable for their function. Although such metals are generally used in low concentrations in products, the demand has raised significantly due to mass production. Some of them are of high importance due to their strategic relevance to emerging innovative technologies. Lithium so far has gained relatively little attention, although it fulfills the main criteria of a strategically relevant metal. In recent years, however, recognition of lithium increased as a result of the growing market for lithium-based chargeable batteries in mobile information/communication consumer products and in electric vehicles. Both areas of demand led to a skyrocketed use of lithium in recent years. Other technologies in the future like fusion power generation will raise lithium consumption at an accelerated rate. It is therefore necessary to determine the availability of lithium in the medium and long term in order to prevent technology failures and to ensure a more sustainable development. The authors will provide a well founded knowledge base, outline the availability of worldwide reserves and resources, and describe the structure of present and future demands for lithium. (authors)

  5. Production of Liquid Metal Spheres by Molding

    Mohammed G. Mohammed

    2014-10-01

    Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.

  6. TECHNOLOGICAL LEVEL OF PRODUCTION OF RUSSIAN ORGANIZATIONS

    Galina S. Sagieva

    2015-01-01

    Full Text Available The article presents an analysis of the technological level of production of Russian organizations. Areas of study cover the characteristics of the use of technology in manufacturing (the extent of use and level of technology, the problems solved by using specific types of technologies and the use in the production process of intellectual property; factors driving growth of technological level of the surveyed medium and large organizations and provides them with a competitive advantage

  7. NASA Technologies for Product Identification

    Schramm, Fred, Jr.

    2006-01-01

    Since 1975 bar codes on products at the retail counter have been accepted as the standard for entering product identity for price determination. Since the beginning of the 21st century, the Data Matrix symbol has become accepted as the bar code format that is marked directly on a part, assembly or product that is durable enough to identify that item for its lifetime. NASA began the studies for direct part marking Data Matrix symbols on parts during the Return to Flight activities after the Challenger Accident. Over the 20 year period that has elapsed since Challenger, a mountain of studies, analyses and focused problem solutions developed by and for NASA have brought about world changing results. NASA Technical Standard 6002 and NASA Handbook 6003 for Direct Part Marking Data Matrix Symbols on Aerospace Parts have formed the basis for most other standards on part marking internationally. NASA and its commercial partners have developed numerous products and methods that addressed the difficulties of collecting part identification in aerospace operations. These products enabled the marking of Data Matrix symbols in virtually every situation and the reading of symbols at great distances, severe angles, under paint and in the dark without a light. Even unmarkable delicate parts now have a process to apply a chemical mixture called NanocodesTM that can be converted to a Data Matrix. The accompanying intellectual property is protected by 10 patents, several of which are licensed. Direct marking Data Matrix on NASA parts virtually eliminates data entry errors and the number of parts that go through their life cycle unmarked, two major threats to sound configuration management and flight safety. NASA is said to only have people and stuff with information connecting them. Data Matrix is one of the most significant improvements since Challenger to the safety and reliability of that connection. This presentation highlights the accomplishments of NASA in its efforts to develop

  8. Technological measures to improve automotive product quality

    Gladkov, V.; Kruglov, S.

    2010-01-01

    The paper examines the basic technological measures aimed at improving product quality in automotive industry. While paying due attention to solving organizational and technological problems, including the development of certification systems for production processes, it is also necessary to improve the technical standards of specific technologies, equipment and materials as they largely determine product quality. Special emphasis is given to the importance of improving the production of auto...

  9. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  10. Progress of liquid metal technology and application in energy industries

    Miyazaki, Keiji; Kamei, Mitsuru; Nei, Hiromichi.

    1990-01-01

    Liquid metals are excellent energy transport media, and recently remarkable development has been observed in the technology of handling sodium and the machinery and equipment. In nuclear fusion, the development of the use of lithium as the coolant is advanced. For space technology, attention has been paid from the early stage to various liquid metals. For general industries, liquid metals have been used for high temperature heat pipes and the utilization of solar heat, and mercury vapor turbines were manufactured for trial. Besides, attention is paid anew to liquid metal MHD electric power generation. The development of the NaS batteries for electric cars and electric power storage and the interchange of liquid metal technology with the fields of iron and steel, metallurgy and so on advance. It is expected that liquid metal technology bears future advanced energy engineering while deepening the interchange with other advanced fields also in order to reactivate atomic energy technology. Liquid metals have the features of high electric and thermal conductivities, chemical activity and opaque property as metals, and fluidity and relatively high boiling point and melting point as liquids. FBRs, fusion reactors and the power sources for space use are described. (K.I.)

  11. Titanium Metal Powder Production by the Plasma Quench Process

    R. A. Cordes; A. Donaldson

    2000-09-01

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

  12. IEA Energy Technology Essentials: Biofuel Production

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  13. Technology Management within Product Lines in High Technology Markets

    Sarangee, Kumar R.

    2009-01-01

    Understanding the nuances of product line management has been of great interest to business scholars and practitioners. This assumes greater significance for firms conducting business in technologically dynamic industries, where they face certain challenges regarding the management of multiple, overlapping technologies within their product lines.…

  14. A review of phytoremediation technology: heavy metals uptake by plants

    Sumiahadi, A.; Acar, R.

    2018-03-01

    Heavy metal is one of the serious environmental pollutions for now days as impact of industrial development in several countries. Heavy metals give toxic effects on human health and cause several serious diseases. Several techniques have been using for removing heavy metal contaminants from the environmental but these techniques have limitations such as high cost, long time, logistical problems and mechanical complexity. Phytoremediation can be used as an alternative solution for heavy metal remediation process because of its advantages as a cost-effective, efficient, environment- and eco-friendly technology based on the use of metal-accumulating plants. According to previous studies, several plants have a high potential as heavy metals bioaccumulator and can be used for phytoremediation process of heavy metals.

  15. Fundamental study on metal plating removal using pulsed power technology

    Imasaka, Kiminobu; Gnapowski, Sebastian; Akiyama, Hidenori

    2013-01-01

    A novel method for the metal removal from metal-plated substrate using pulsed power technology is proposed. A metal-plated substrate with three metal-layers structure (Cu, Ni and Au) is used as the sample substrate. Repetitive pulsed arc discharge plasma is generated between a rod electrode and the surface of substrate. Effect of the type of electrode system on metal plating removal was investigated. The removal region is produced by the moving phenomena of the pulsed arc discharge. A part of Au layer, which is the tompost metal surface of the substrate is vaporized and removed by the repetitive pulsed arc discharges. The proposed method can be used for recycle of metal-plated substrate. (author)

  16. A technology development for the purification and utilization of rare metals

    Rhee, Kang In; Yu, Hyo Shin; Youn, In Ju; Choi, Good Sun; Lee, Churl Kyoung; Seo, Chang Youl; Yang, Dong Hyo [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    The demand for rare metal and their alloys has dramatically increased due to the rapid growth of electronics industries. The clean metals such as molybdenum, nickel and cobalt are used in manufacturing of gate electrodes, interconnects, and barrier metal because of their superior properties. Despite the strong demand, the production of these metals in our nation has not made. And all products related with these have to be imported from other developed countries with high cost. Furthermore, some deposits and by-product exist, and the development of production of metal becomes to be important for the viewpoint of the supply national electronics industries with these materials as well as the increase in the added value of raw materials. Electron beam melting technique is the advantages for the ingot-making of molybdenum. In this melting process, the energy of highly accelerated electrons can be transferred to thermal energy and easily controlled to make various sizes and types of molybdenum ingot. In addition, membrane technology plays an important role to separation and purification of rare metals. Therefore, the objective for this research is to make the molybdenum ingot using this electron beam melting process and develop the technology of the manufacture of the sputtering target which can be used for semiconductor industries and a multi-stage cascade process of the supported liquid membrane(SLM) for separation and purification of rare metals such as cobalt and nickel. (author). 30 refs., 48 figs., 9 tabs.

  17. New technologies and electricity production

    Pantoja Lopez, A.

    1993-01-01

    This paper presents a general overview about the new electrical energy generation technologies, under development, in some cases with the spanish electrical utilities cooperation. The content has a brief introductory description about the highly changing scenario for the utilities, the most promising generation technologies from the point of view of efficiency, cost investment, and minimum environmental impact, and the main actions included in the Spanish Energetic Research Plan (PEN-91-2000). After a short presentation for the advanced clean coal technologies, as PFC,IGCC, fuel cells and MHD, as well as some ongoing research projects, it has been included a group of nuclear and renewable energy generation technologies and the main environmental control technologies, all of them with great interest for the near term electric utilities power generation. (Author)

  18. Catalytic production of metal carbonyls from metal oxides

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  19. Production of metal waste forms from spent fuel treatment

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-01-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities

  20. Integrative production technology theory and applications

    Özdemir, Denis

    2017-01-01

    This contributed volume contains the research results of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”, funded by the German Research Society (DFG). The approach to the topic is genuinely interdisciplinary, covering insights from fields such as engineering, material sciences, economics and social sciences. The book contains coherent deterministic models for integrative product creation chains as well as harmonized cybernetic models of production systems. The content is structured into five sections: Integrative Production Technology, Individualized Production, Virtual Production Systems, Integrated Technologies, Self-Optimizing Production Systems and Collaboration Productivity.The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students. .

  1. New Production Technologies and Traffic

    Livij Jakomin

    2012-10-01

    Full Text Available Today the modern production includes the following principles:liT (Just-in-Time, FMS (Flexible Manufacturing System,EOS (Economies of Scope, R&D (Research and Development,and increasingly present Lean Production.This article ana(vses how the mentioned principles, characteristicfor the production sphere, get integrated in the field oftraffic.

  2. The develop of technology production in Spain

    Fernandez Labastida, J. M.

    2007-01-01

    Spanish Science and Technology system has been very effective in scientific production but not in technology transfer to economic activities. A cultural change is needed to improve the knowledge transfer mechanisms. Some specific actions are proposed in order to develop useful instruments to achieve a better technology transfer system. (Author)

  3. New technology of extracting the amount of rare earth metals from the red mud

    Martoyan, G A; Karamyan, G G; Vardan, G A

    2016-01-01

    The paper outlined the environmental and economic problems associated with red mud - the waste generated in processing of bauxite ore for aluminum production. The chemical analysis of red mud has identified a number of useful elements including rare earth metals. The electromembrane technology of red mud processing with extraction of valuable elements is described. A possible scheme of separation of these metals through electrolysis is also given. (paper)

  4. Innovative technologies for recycling contaminated concrete and scrap metal

    Bossart, S.J.; Moore, J.

    1993-01-01

    Decontamination and decommissioning of US DOE's surplus facilities will generate enormous quantities of concrete and scrap metal. A solicitation was issued, seeking innovative technologies for recycling and reusing these materials. Eight proposals were selected for award. If successfully developed, these technologies will enable DOE to clean its facilities by 2019

  5. Assessment of material and technical resources of crop production technologies

    V. M. Beylis

    2017-01-01

    Full Text Available The author explains the general principles of influence of the material and technical resources (MTR on performance and efficiency of the main technological operations in crop production. Various technologies from the point of view of MTR expenses were estimated. The general tendencies in development of crop production technologies were revealed. The distribution of costs of materials and equipment to perform a variety of agricultural activities was determined. Cost indicators should be a guide in the search of innovative technological processes and working elements of agricultural machins. The greatest values of expenses of work, fuel, metal, and also, money where found. The concepts allowing to provide costs production reduction were formulated. To achieve the maximum productivity with the minimum expenses, the perspective calculations shoul be based on «progressive» agrotechnologies. When determining progressive agrotechnology it is necessary on reasonable grounds to approach indicators of crop productivity in various agrozones and regions of the country. For an assessment of efficiency of MTR by crop production and ensuring decrease in resource intensity of agricultural products by search and use of essentially new technologies for energy saving when performing agricultural operations, an integrated percentage indicator of comparison of progressive technologies with the applied ones was developed. MTR at application of new progressive crop production technologies by integrated percentage index were estimated. This indicator can be used for definition of efficiency of MTR. Application of the offered technique will promote an effective assessment of MTR, decrease in resource intensity by search and developments of essentially new technologies of performance of operations in crop production.

  6. Eddy current technologies for thick metal structures

    Takagi, Toshiyuki; Endo, Hisashi

    2004-01-01

    One of approach of an eddy current testing (ECT) for thick metal structures is introduced. The detection limit of ECT is capable of enlarging thick more than 10 mm, which is ordinarily about 5 mm, by the design of probe. On the basis of results of numerical analysis, the defect detection in thick and shape is evaluated by the distribution of experimental ECT signals. The problems of ECT for thick metal structures and measures, approach to probe design, the specifications of probe, evaluation of experimental results and defect detection are described. By ECT fast simulator, good slit sharp is simulated in the case of 10 and 20 mm of EDM slit length and 5, 10 and 15 mm of slit height. (S.Y.)

  7. Role of configuration management in improving quality of metal products

    Ali, U.; Kalsoom, T.

    2007-01-01

    The Configuration Management (CM) is an imperative discipline which helps in producing quality metal products for the customers. CM implements a graded approach to Configuration Items whose failure poses human as well as product losses. Effective CM provides information to Project Management, Quality Control, and Quality Assurance in identifying schedules and processes related to metal component production. The CM is a supportive function, mostly working side by side with Quality Assurance and Quality Control in the development / production of metal parts. The CM provides tools and guidelines for managing a product while Quality Assurance verifies and validates the same outside the scope of Configuration Audits. Configuration Management raises productivity of metal product, makes-available design reuse, reduces service and support costs, enhances visibility and eliminates rework on metal products. The elements of CM i.e. Identification, Control, Status Accounting and Audits playa vital role to enhance the quality of metal products. Only established CM System can make it possible to swing initial development criteria to final user friendly metal products. The challenges of today in our metal industry are to design and develop state-of-the-art products, for which, CM ideas given in this paper, will help to achieve all the set goals. (author)

  8. 50 years of uranium metal production in Uranium Metal Plant, BARC, Trombay

    2009-01-01

    The Atomic Energy Programme in India, from the very beginning, has laid emphasis on indigenous capabilities in all aspects of nuclear technology. This meant keeping pace with developments abroad and recognizing the potentials of indigenous technologies. With the development of nuclear programme in India, the importance of uranium was growing at a rapid pace. The production of reactor grade uranium in India started in January 1959 when the first ingot of nuclear pure uranium was discharged using CTR process at Trombay. The decision to set up a uranium refinery to purify the crude uranium fluoride, obtained as a by-product of the DAE's Thorium Plant at Trombay, and to produce nuclear grade pure uranium metal was taken at the end of 1956. The task was assigned to the 'Project Fire Wood Group'. The main objective of the plant was to produce pure uranium metal for use in the Canada India Reactor and Zerlina. Besides this, it was to function as a pilot plant to collect operational data and to train personnel for larger plants to be set up in future. The plant designing and erection work was entrusted to Messrs. Indian Rare Earths Ltd.

  9. Development of semiindustrial technology for electrolytic powder production

    Suchkov, A.B.; Kovalev, B.F.; Zhbanov, A.M.; Rabinovich, E.M.; Sozina, A.L.

    1978-01-01

    The technology of the production of Fe, Mn, Cr, W pure metal powders by electrolysis of industrial waste in molten chloride-fluoride media with the addition of lower chlorides of refining metal was tested in laboratory and then in industrial electrolysers (2kA). The cathode deposit was subjected to hydrometallurgical treatment. Approximate technological parameters of electrorefining are presented. A high-temperature (700-1000 deg C) hydrogen annealing was applied to increase the quality and to change physicochemical and technological characteristics of electrolytic powders. The data on the chemical composition of Mowders are presented, testifying to their high purity. It is shown that electrolytic powders are not uniform in granulometric composition (from 1 to 100 μm), their particles being characterized mainly by the dendrite structure

  10. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement

    Singh, A.; Prasad, S. M.

    2015-01-01

    The issue of heavy metal pollution is very much concerned because of their toxicity for plant, animal and human beings and their lack of biodegradability. Excess concentrations of heavy metals have adverse effect on plant metabolic activities hence affect the food production, quantitatively and qualitatively. Heavy metal when reaches human tissues through various absorption pathways such as direct ingestion, dermal contact, diet through the soil-food chain, inhalation, and oral intake may seriously affect their health. Therefore, several management practices are being applied to minimize metal toxicity by attenuating the availability of metal to the plants. Some of the traditional methods are either extremely costly or they are simply applied to isolate contaminated site. The biology based technology like use of hyper metal accumulator plants occurring naturally or created by transgenic technology, in recent years draws great attention to remediate heavy metal contamination. Recently, applications of nanoparticle for metal remediation are also attracting great research interest due to their exceptional adsorption and mechanical properties and unique electrical property, highly chemical stability, and large specific surface area. Thus the present review deals with different management approaches to reduce level of metal contamination in soil and finally to the food chain

  11. Process for improving metal production in steelmaking processes

    Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali

    1996-01-01

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  12. Production of aluminum metal by electrolysis of aluminum sulfide

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  13. Value analysis for advanced technology products

    Soulliere, Mark

    2011-03-01

    Technology by itself can be wondrous, but buyers of technology factor in the price they have to pay along with performance in their decisions. As a result, the ``best'' technology may not always win in the marketplace when ``good enough'' can be had at a lower price. Technology vendors often set pricing by ``cost plus margin,'' or by competitors' offerings. What if the product is new (or has yet to be invented)? Value pricing is a methodology to price products based on the value generated (e.g. money saved) by using one product vs. the next best technical alternative. Value analysis can often clarify what product attributes generate the most value. It can also assist in identifying market forces outside of the control of the technology vendor that also influence pricing. These principles are illustrated with examples.

  14. Solutions to commercializing metal hydride hydrogen storage products

    Tomlinson, J.J.; Belanger, R.

    2004-01-01

    'Full text:' Whilst the concept of a Hydrogen economy in the broad sense may for some analysts and Fuel Cell technology developers be an ever moving target the use of hydrogen exists and is growing in other markets today. The use of hydrogen is increasing. Who are the users? What are their unique needs? How can they better be served? As the use of hydrogen increases there are things we can do to improve the perception and handling of hydrogen as an industrial gas that will impact the future issues of hydrogen as a fuel thereby assisting the mainstream availability of hydrogen fuel a reality. Factors that will induce change in the way hydrogen is used, handled, transported and stored are the factors to concentrate development efforts on. Other factors include: cost; availability; safety; codes and standards; and regulatory authorities acceptance of new codes and standards. New methods of storage and new devices in which the hydrogen is stored will influence and bring about change and increased use. New innovative products based on Metal Hydride hydrogen storage will address some of the barriers to widely distributed hydrogen as a fuel or energy carrier to which successful fuel cell product commercialization is subject. Palcan has developed innovative products based on it's Rare Earth Metal Hydride alloy. Some of these innovations will aid the distribution of hydrogen as a fuel and offer alternatives to the existing hydrogen user and to the Fuel Cell product developer. An overview of the products and how these products will affect the distribution and use of hydrogen as an industrial gas and fuel is presented. (author)

  15. Technology and products of gas companies; Gas gaisha no Technology and Products

    NONE

    1998-06-10

    This paper presents the latest technology and products of gas companies. `Newly developed gas table for one-push automatic fish broiling` of Tokyo Gas Co. `Catalytic technology for decomposing dioxin generated by incinerator to make it harmless` of Osaka Gas Co. `Newly developed strong and kindly shower head` of Tokyo Gas Co. By laying fish on a sensor in a grill and appropriately setting upper and lower heating levers, user can skillfully broil fish only by pushing an ignition button. A temperature sensor attached to the center of a grill catches a change in surface temperature of fish, and automatically sets an appropriate broiling time according to the kind and volume of fish. A finish buzzer and automatic extinction mechanism are prepared. The technology decomposes dioxin in exhaust gas of incinerators to make it harmless. The catalyst is prepared by dispersing noble metal or oxide of several angstroms into activated carbon fibers. The shower head can switch hot water power by a control handle

  16. HTTR workshop (workshop on hydrogen production technology)

    Shiina, Yasuaki; Takizuka, Takakazu

    2004-12-01

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  17. Non-polluting metal production network

    Kojo, I.V.; Hanniala, P. [Outokumpu Engineering Conctractors OY, Espoo (Finland)

    2001-07-01

    The Flash Smelting process of copper is described. The process is characterised by low external energy utilization, therefore low greenhouse gas emissions. In addition to energy efficiency the sealed process gives an economic incentive to eliminate the emissions from the smelting process by capturing the dust in a gas cleaning system and in the sulfuric acid plant, following the gas cleaning. Besides the energy efficiency and environmental advantages the Flash Smelting Technology also boast high flexibility and high specific capacity, due to the better understanding of the combustion phenomena taking place in the oxidation of copper-iron-sulfur concentrates, which is most effective in an even suspension. This process has been intensively developed and as a result has been widely utilized for production of copper and nickel matte, elemental sulfur, and blister from both concentrates and matte or from mixture of matte and concentrate. The paper illustrates some options by describing examples of how Direct-to-Blister Flash Smelting or matte production in any smelting process combined with Flash Converting could be adapted to some existing smelters, and how these combinations would benefit smelters by not only lowering greenhouse gas emissions, but also increasing production and decreasing operating cost with a relatively small investment of capital. 5 refs., 2 tabs., 3 figs.

  18. A Kind of Energy Storage Technology: Metal Organic Frameworks

    Ozturk, Zeynel; Kose, D. A.; Asan, A.; Ozturk, B.

    2016-01-01

    For last fifteen years energy has been transferred by using electricity and as an energy carrier media electricity has some disadvantages like its wire need for transportation and its being non-storable for large amounts. To store more energy safely and for transportation it easily, new storing medias and devices are needed. For easy and safe energy transport there are many technologies and some of these contain hydrogen energy. Metal hydrides, carbon nanotubes, metal organic frameworks (MOFs...

  19. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids

    Harrison, Stephen [SIMBOL Materials

    2014-04-30

    Executive Summary Simbol Materials studied various methods of extracting valuable minerals from geothermal brines in the Imperial Valley of California, focusing on the extraction of lithium, manganese, zinc and potassium. New methods were explored for managing the potential impact of silica fouling on mineral extraction equipment, and for converting silica management by-products into commercial products.` Studies at the laboratory and bench scale focused on manganese, zinc and potassium extraction and the conversion of silica management by-products into valuable commercial products. The processes for extracting lithium and producing lithium carbonate and lithium hydroxide products were developed at the laboratory scale and scaled up to pilot-scale. Several sorbents designed to extract lithium as lithium chloride from geothermal brine were developed at the laboratory scale and subsequently scaled-up for testing in the lithium extraction pilot plant. Lithium The results of the lithium studies generated the confidence for Simbol to scale its process to commercial operation. The key steps of the process were demonstrated during its development at pilot scale: 1. Silica management. 2. Lithium extraction. 3. Purification. 4. Concentration. 5. Conversion into lithium hydroxide and lithium carbonate products. Results show that greater than 95% of the lithium can be extracted from geothermal brine as lithium chloride, and that the chemical yield in converting lithium chloride to lithium hydroxide and lithium carbonate products is greater than 90%. The product purity produced from the process is consistent with battery grade lithium carbonate and lithium hydroxide. Manganese and zinc Processes for the extraction of zinc and manganese from geothermal brine were developed. It was shown that they could be converted into zinc metal and electrolytic manganese dioxide after purification. These processes were evaluated for their economic potential, and at the present time Simbol

  20. TECHNOLOGY OF THERMOPLASTIC STARCH PRODUCTION

    N. D. Lukin

    2015-01-01

    Full Text Available In recent years, the manufacturing of bio-recyclable polymer products, which production and consumption has become an efficient way to protect environment from solid wastes in different countries of the world. The issue of environmental protection becomes global and the rapid growth of synthetic plastics application in many industries is a serious concern. There is a important task to improve the quality, safety and durability of products as well as their utilization after the expiration period. One of the most acceptable ways to solve these issues is to produce biodegradable materials based on natural materials, which are not harmful for environment and human health. A very common and effective method to give biological degradability to synthetic polymers is to insert starch into polymer composition in combination with other ingredients.

  1. Hydro mechanical deep-drawing and high pressure sheet metal forming as forming technologies for the production of complex parts made of magnesium sheet metal AZ31B-0; Hydromechanisches Tiefziehen und Hochdruckblechumformung als Verfahren zur Herstellung komplexer Bauteile aus Magnesiumfeinblechen des Typs AZ31B-0

    Viehweger, B.; Richter, G.; Duering, M.; Karabet, A. [Lehrstuhlleiter, BTU Cottbus, Lehrstuhl Konstruktion und Fertigung, Konrad-Wachsmann Allee 1, 03046 Cottbus (Germany); Sviridov, A.; Hartmann, H.; Richter, U. [Forschungs- und Qualitaetszentrum Oderbruecke gGmbH Eisenhuettenstadt (Germany)

    2004-07-01

    Semi - finished sheet - metal products made of magnesium alloys such as AZ31B are known as better deformable at temperatures in the range of 175 C - 240 C. By means of hydroforming technologies, as there are hydro mechanical deep-drawing and high pressure sheet metal forming, the influence of different forming parameters on the forming results has been investigated. A more complex experimental geometry was deformed applying forming temperatures of 175 C, 200 C, 225 C and 240 C and accordingly adjusted forces of the blank holder. Concerning the applied forming - methods and experimental parameters the forming results have been evaluated and compared regarding the decrease of sheet thickness and the development of small radii. For some experimental parts, which have been deformed by means of high pressure sheet metal forming at temperatures of 175 C and 225 C, supplementary investigations have been carried out in order to determine the evolution of characteristic surface values in dependence on the forming operation. On the basis of these results practical recommendations for the limits of application of aforementioned forming technologies for AZ31B-0 magnesium sheet metal are given. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Eine gute Umformbarkeit von Blechhalbzeugen aus Magnesiumknetlegierungen stellt sich bekanntlich bei Anwendung von Umformtemperaturen im Bereich von 175 C - 240 C ein. Anhand der wirkmedienbasierten Umformverfahren hydromechanisches Tiefziehen und Hochdruckblechumformung ist an handelsueblichen AZ31B-0 Feinblechen die Einstellung unterschiedlicher Umformparameter erprobt worden. Unter Verwendung von Umformtemperaturen von 175 C, 200 C, 225 C und 240 C und entsprechend angepassten Niederhalterdruecken ist eine praxisnahe Versuchsgeometrie ''Minihood'' ausgeformt worden. Im Hinblick auf angewendete Umformverfahren und Versuchsparameter wurde an den Versuchsbauteilen die Blechdickenabnahme und die

  2. A state of the art on metallic fuel technology development

    Hwang, Woan; Kang, Hee Young; Nam, Cheol; Kim, Jong Oh

    1997-01-01

    Since worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved in the late 1960's, the development of metallic fuels continued throughout the 1970's at ANL's experimental breeder reactor II (EBR-II) because EBR-II continued to be fueled with the metallic uranium-fissium alloy, U-5Fs. During this decade the performance limitations of metallic fuel were satisfactorily resolved resolved at EBR-II. The concept of the IFR developed at ANL since 1984. The technical feasibility had been demonstrated and the technology database had been established to support its practicality. One key features of the IFR is that the fuel is metallic, which brings pronounced benefits over oxide in improved inherent safety and lower processing costs. At the outset of the 1980's, it appeared that metallic fuels are recognized as a professed viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last score and summarizes the state-of the art on metallic fuel technology development. (author). 29 refs., 1 tab

  3. A state of the art on metallic fuel technology development

    Hwang, Woan; Kang, Hee Young; Nam, Cheol; Kim, Jong Oh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Since worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved in the late 1960`s, the development of metallic fuels continued throughout the 1970`s at ANL`s experimental breeder reactor II (EBR-II) because EBR-II continued to be fueled with the metallic uranium-fissium alloy, U-5Fs. During this decade the performance limitations of metallic fuel were satisfactorily resolved resolved at EBR-II. The concept of the IFR developed at ANL since 1984. The technical feasibility had been demonstrated and the technology database had been established to support its practicality. One key features of the IFR is that the fuel is metallic, which brings pronounced benefits over oxide in improved inherent safety and lower processing costs. At the outset of the 1980`s, it appeared that metallic fuels are recognized as a professed viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last score and summarizes the state-of the art on metallic fuel technology development. (author). 29 refs., 1 tab.

  4. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  5. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Krystian Miazek

    2015-10-01

    Full Text Available Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  6. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review.

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-10-09

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  7. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  8. Cleaner production technology for the NDT industry

    Relunia, Estrella D.; Mateo, Alejandro J.

    2001-01-01

    This paper discusses te wastes generated from the conduct of nondestructive testing (NDT) techniques and operations like NDT film processing and the systems to reduce water pollution and the film system quality control. Discussions on clean technology production concepts and philosophy is also discussed. A case study on cleaner production technology where a process and equipment modifications and a product substitution were implemented is presented. The equipment modification and product substitution eliminated the use of 1,1,1-trichloroethane in its cleaning operation. (Author)

  9. Wood fuel production technologies in EU countries

    Hakkila, P [Finnish Forest Research Institute, Vantaa (Finland)

    1998-12-31

    The presentation reviews the major technologies used for the production of fuel chips for heating plants in Europe. Three primary options are considered: production of whole-tree chips from young trees for fuel; integrated harvesting of fiber and energy from thinning based on tree-section system; and production of fuel chips from logging residue in clear-cut areas after fully mechanized logging. The characteristics of the available biomass reserve and proven technology for its recovery are discussed. The employment effects of fuel chip production and the costs of wood fuels are also briefly discussed. (author) 3 refs., 3 figs.

  10. Wood fuel production technologies in EU countries

    Hakkila, P. [Finnish Forest Research Institute, Vantaa (Finland)

    1997-12-31

    The presentation reviews the major technologies used for the production of fuel chips for heating plants in Europe. Three primary options are considered: production of whole-tree chips from young trees for fuel; integrated harvesting of fiber and energy from thinning based on tree-section system; and production of fuel chips from logging residue in clear-cut areas after fully mechanized logging. The characteristics of the available biomass reserve and proven technology for its recovery are discussed. The employment effects of fuel chip production and the costs of wood fuels are also briefly discussed. (author) 3 refs., 3 figs.

  11. Product Lifecycle Management Centre of Technology

    Barnard, Rentia

    2017-10-01

    Full Text Available - Rentia Barnard.pdf.txt Content-Type text/plain; charset=UTF-8 1 Interactive activities Contents Product Lifecycle Management Centre of Technology Rentia Barnard National Industrialisation Support Initiative (NISI) 3 Initiative (NISI...

  12. Composite risers for deep-water offshore technology: Problems and prospects. 1. Metal-composite riser

    Beyle, A. I.; Gustafson, C. G.; Kulakov, V. L.; Tarnopol'skii, Yu. M.

    1997-09-01

    Prospects for the application of advanced composites in the offshore technology of oil production are considered. The use of composites in vertical pipelines-risers seems to be the most efficient. The operating loads are studied and the attendant problems are formulated. A comparative analysis of the characteristics of metal, composite, and metal-composite deep-water risers is presented. A technique is developed for designing multilayered risers, taking into account the action of internal and external pressures, gravity, and the axial tensile force created by tensioners, as well as the residual technological stresses due to the difference in coefficients of thermal expansion, physical-chemical shrinkage, and force winding. Numerical estimations are given for a two-layered riser with an inner metal layer of steel, titanium, or aluminum alloys and a composite layer of glass- or carbon-fiber plastics formed by circumferential winding. It is shown that the technological stresses substantially affect the characteristics of the riser.

  13. Effectiveness of technological options for minimising production ...

    Farmer perceptions of technology effectiveness, to some extent, agreed with econometric evidence from this study. Study results have two implications: firstly, the need to develop and disseminate location specific adaptation technologies to reduce production risks, instead of blanket recommendations of similar adaptation ...

  14. Integrated Micro Product and Technology Development

    Hansen, Hans Nørgaard

    2003-01-01

    The paper addresses the issues of integrated micro product and technology development. The implications of the decisions in the design phase on the subsequent manufacturing processes are considered vital. A coherent process chain is a necessary prerequisite for the realisation of the industrial...... potential of micro technology....

  15. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.

    Derakhshan Nejad, Zahra; Jung, Myung Chae; Kim, Ki-Hyun

    2018-06-01

    The major frequent contaminants in soil are heavy metals which may be responsible for detrimental health effects. The remediation of heavy metals in contaminated soils is considered as one of the most complicated tasks. Among different technologies, in situ immobilization of metals has received a great deal of attention and turned out to be a promising solution for soil remediation. In this review, remediation methods for removal of heavy metals in soil are explored with an emphasis on the in situ immobilization technique of metal(loid)s. Besides, the immobilization technique in contaminated soils is evaluated through the manipulation of the bioavailability of heavy metals using a range of soil amendment conditions. This technique is expected to efficiently alleviate the risk of groundwater contamination, plant uptake, and exposure to other living organisms. The efficacy of several amendments (e.g., red mud, biochar, phosphate rock) has been examined to emphasize the need for the simultaneous measurement of leaching and the phytoavailability of heavy metals. In addition, some amendments that are used in this technique are inexpensive and readily available in large quantities because they have been derived from bio-products or industrial by-products (e.g., biochar, red mud, and steel slag). Among different amendments, iron-rich compounds and biochars show high efficiency to remediate multi-metal contaminated soils. Thereupon, immobilization technique can be considered a preferable option as it is inexpensive and easily applicable to large quantities of contaminants derived from various sources.

  16. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  17. Advanced technologies for decontamination and conversion of scrap metal

    Muth, T.R.; Shasteen, K.E.; Liby, A.L.

    1995-01-01

    The Department of Energy (DOE) accumulated large quantities of radioactive scrap metal (RSM) through historic maintenance activities. The Decontamination and Decommissioning (D ampersand D) of major sites formerly engaged in production of nuclear materials and manufacture of nuclear weapons will generate additional quantities of RSM, as much as 3 million tons of such metal according to a recent study. The recycling of RSM is quickly becoming appreciated as a key strategy in DOE's cleanup of contaminated sites and facilities

  18. Advanced technologies for decontamination and conversion of scrap metal

    Muth, T.R.; Shasteen, K.E.; Liby, A.L.

    1995-01-01

    The Department of Energy (DOE) accumulated large quantities of radioactive scrap metal (RSM) through historic maintenance activities. The Decontamination and Decommissioning (D ampersand D) of major sites formerly engaged in production of nuclear materials and manufacture of nuclear weapons will generate additional quantities of RSM, as much as 3 million tons of such metal according to a recent study. The recycling of RSM is quickly becoming appreciated as a key strategy in DOE's cleanup of contaminated sites and facilities. The work described here has focused on recycle of the concentrated and high-value contaminated scrap metal resource that will arise from cleanup of DOE's gaseous diffusion plants

  19. Advanced technologies for decontamination and conversion of scrap metal

    Muth, T.R.; Shasteen, K.E.; Liby, A.L. [Manufacturing Sciences Corp., Oak Ridge, TN (United States)] [and others

    1995-10-01

    The Department of Energy (DOE) accumulated large quantities of radioactive scrap metal (RSM) through historic maintenance activities. The Decontamination and Decommissioning (D&D) of major sites formerly engaged in production of nuclear materials and manufacture of nuclear weapons will generate additional quantities of RSM, as much as 3 million tons of such metal according to a recent study. The recycling of RSM is quickly becoming appreciated as a key strategy in DOE`s cleanup of contaminated sites and facilities. The work described here has focused on recycle of the concentrated and high-value contaminated scrap metal resource that will arise from cleanup of DOE`s gaseous diffusion plants.

  20. Selecting appropriate technology for hydrogen production

    Tamhankar, S.S.

    2004-01-01

    'Full text:' Technologies for the production of synthesis gas (H2 + CO), a precursor to hydrogen, from a variety of fossil fuels are well known in industrial applications at relatively large scale. These include Steam Reforming (SR), Auto-Thermal Reforming (ATR) and Partial Oxidation (POX). A particular technology is selected based on the feed type and the desired products. Steam reforming is a mature technology, and is most prevalent for hydrogen production because of its high efficiency. However, at the smaller scale, the capital cost becomes a more significant factor, and a substantial reduction in this cost is necessary to meet the overall H2 gas cost targets, such as that stated by DOE ($1.50/kg). In developing small-scale H2 technologies, often, incremental improvements are incorporated. While useful, these are not adequate for the desired cost reduction. Also, for effective cost reduction, the whole system, including production, purification and associated equipment needs to be evaluated; cost reduction in just one of the units is not sufficient. This paper provides a critical assessment of the existing as well as novel technology options, specifically targeted at small scale H2 production. The technology options are evaluated to clearly point out which may or may not work and why. (author)

  1. Technology's Impact on Production

    Rachel Amann; Ellis Deweese; Deborah Shipman

    2009-06-30

    As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

  2. Risk assessment of allergen metals in cosmetic products.

    Sipahi, Hande; Charehsaz, Mohammad; Güngör, Zerrin; Erdem, Onur; Soykut, Buğra; Akay, Cemal; Aydin, Ahmet

    2015-01-01

    Cosmetics are one of the most common reasons for hospital referrals with allergic contact dermatitis. Because of the increased use of cosmetics within the population and an increase in allergy cases, monitoring of heavy metals, especially allergen metals, is crucial. The aim of this study was to investigate the concentration of allergen metals, nickel (Ni), cobalt (Co), and chromium (Cr), in the most commonly used cosmetic products including mascara, eyeliner, eye shadow, lipstick, and nail polish. In addition, for safety assessment of cosmetic products, margin of safety of the metals was evaluated. Forty-eight makeup products were purchased randomly from local markets and large cosmetic stores in Istanbul, Turkey, and an atomic absorption spectrometer was used for metal content determination. Risk assessment of the investigated cosmetic products was performed by calculating the systemic exposure dosage (SED) using Scientific Committee on Consumer Safety guideline. According to the results of this investigation in all the samples tested, at least two of the allergen metals, Ni and/or Co and/or Cr were detected. Moreover, 97% of the Ni-detected products, 96% of Cr- and 54% of Co-detected products, contained over 1 μg/g of this metals, which is the suggested ultimate target value for sensitive population and thereby can be considered as the possible allergen. On the basis of the results of this study, SED of the metals was negligible; however, contact dermatitis caused by cosmetics is most probably due to the allergen metal content of the products. In conclusion, to assess the safety of the finished products, postmarketing vigilance and routine monitoring of allergen metals are very important to protect public health.

  3. ABOUT TECHNOLOGY FEATURES OF ASSEMBLING OF RUBBER-METAL CONNECTIONS

    VODOLAZSKAYA Nataliia

    2016-11-01

    Full Text Available Assembly process is important technological operation when manufacturing products and equipment, and also it uses during operation and repairs different type of implements The modern automated manufacture cannot be presented without the existence of machines continuously action, in particular of belt conveyors. One of its basic units is the belt and ways of its connection. Usually, the quantity of cracks of belt joints is equal to (reaches 62 within 1 km of a belt of conveyor during 10 years upon condition that equipment works in a difficult cycle of mines. One of the basic operation problems of these transports is the rupture of the joint of a belt as emergency idle times of conveyors makes approximately of 10 % of working hours, and planned stops on manufacturing or repair of joints - to of 20 %. Therefore, now research in the field of maintenance of qualitative manufacturing of a joint of conveyor belts are of interest at this time. The way of using of rubber-metal connections assembling with help self-cutting screws is offered. This allows increasing durability’s characteristics of joints of the conveyor belt

  4. MATERIALS FOR PRODUCTION OF METAL MOLDS

    A. Ju. Jakovlev

    2007-01-01

    Full Text Available The influence of alloying with manganese, chromium, nickel, copper and molybdenum on mechanical characteristics and thermocyclic endurance of grayed steel and possibility of its application for metal casting molds is investigated.

  5. Wood for energy production. Technology - environment - economy

    Serup, H.; Falster, H.; Gamborg, C.

    1999-01-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  6. Wood for energy production. Technology - environment - economy

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  7. Fundamentals of displacement production in irradiated metals

    Doran, D.G.

    1975-09-01

    Radioinduced displacement damage in metals is described. Discussions are included on the displacement event itself, calculation of displacement rates in general, the manner in which different types of radiation interact with metals to produce displacements, the similarities and differences in the types of damage produced, the current status of computer simulations of displacement cascades, experimental evidence regarding cascades, and aspects of correlating damage produced by different types of radiation

  8. Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances

    2018-01-01

    This study provides scenarios toward 2050 for the demand of five metals in electricity production, cars, and electronic appliances. The metals considered are copper, tantalum, neodymium, cobalt, and lithium. The study shows how highly technology-specific data on products and material flows can be used in integrated assessment models to assess global resource and metal demand. We use the Shared Socio-economic Pathways as implemented by the IMAGE integrated assessment model as a starting point. This allows us to translate information on the use of electronic appliances, cars, and renewable energy technologies into quantitative data on metal flows, through application of metal content estimates in combination with a dynamic stock model. Results show that total demand for copper, neodymium, and tantalum might increase by a factor of roughly 2 to 3.2, mostly as a result of population and GDP growth. The demand for lithium and cobalt is expected to increase much more, by a factor 10 to more than 20, as a result of future (hybrid) electric car purchases. This means that not just demographics, but also climate policies can strongly increase metal demand. This shows the importance of studying the issues of climate change and resource depletion together, in one modeling framework. PMID:29533657

  9. Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances.

    Deetman, Sebastiaan; Pauliuk, Stefan; van Vuuren, Detlef P; van der Voet, Ester; Tukker, Arnold

    2018-04-17

    This study provides scenarios toward 2050 for the demand of five metals in electricity production, cars, and electronic appliances. The metals considered are copper, tantalum, neodymium, cobalt, and lithium. The study shows how highly technology-specific data on products and material flows can be used in integrated assessment models to assess global resource and metal demand. We use the Shared Socio-economic Pathways as implemented by the IMAGE integrated assessment model as a starting point. This allows us to translate information on the use of electronic appliances, cars, and renewable energy technologies into quantitative data on metal flows, through application of metal content estimates in combination with a dynamic stock model. Results show that total demand for copper, neodymium, and tantalum might increase by a factor of roughly 2 to 3.2, mostly as a result of population and GDP growth. The demand for lithium and cobalt is expected to increase much more, by a factor 10 to more than 20, as a result of future (hybrid) electric car purchases. This means that not just demographics, but also climate policies can strongly increase metal demand. This shows the importance of studying the issues of climate change and resource depletion together, in one modeling framework.

  10. NOVEL IN-SITU METAL AND MINERAL EXTRACTION TECHNOLOGY

    Glenn O' Gorman; Hans von Michaelis; Gregory J. Olson

    2004-09-22

    This white paper summarizes the state of art of in-situ leaching of metals and minerals, and describes a new technology concept employing improved fragmentation of ores underground in order to prepare the ore for more efficient in-situ leaching, combined with technology to continuously improve solution flow patterns through the ore during the leaching process. The process parameters and economic benefits of combining the new concept with chemical and biological leaching are described. A summary is provided of the next steps required to demonstrate the technology with the goal of enabling more widespread use of in-situ leaching.

  11. Reforming technology for syngas production

    Epstein, M.

    1997-01-01

    Methane forming reactions using either steam or CO 2 have been known to industry for a long time. These endothermic reactions require the investment of a relatively large amount of energy. German researchers, in the 1970's, conceived and developed the idea to use this reaction and the reverse methanation reaction in a closed loop for the transportation and distribution of nuclear heat. The idea was also adopted for use with solar energy as a heat source. Utilizing solar energy as the heat source, the Weismann Institute of Science has fabricated, installed and operated a complete loop capable of the conversion and transportation of over 400 kW of heat. This system can be operated with a wide range of CO 2 /H 2 O/CH 4 feed mixtures. Steam reforming is the common reforming reaction in the ''open loop'' mode for the purpose of synthesis gas production. This is accomplished with a large excess of steam on a nickel catalyst. However, it has only recently been recognized that there is also a substantial market for CO 2 reforming. The CO 2 /CH 4 mixture in various proportions exists in many places and has, so far, not been used efficiently. The sources for this mixture are biogas produced in anaerobic digestion processes and gas resources such as the NATUNA gas field in Indonesia, and many others. Therefore, the system of CO 2 /CH 4 deserves more attention. Commercial catalysts used for steam reforming based on nickel are not suitable for this system. Therefore, other catalysts based on Rhodium and Ruthenium have been developed and some performance data is presented in this paper. Also presented is a conceptual schematic layout of a CO 2 reforming plant and matching methanator. A computer code for a detailed design of the entire loop in a commercial size system has been prepared where optimized operational conditions as well as equipment parameters can be determined. (author). 3 figs, 3 tabs

  12. Technical Integration of Nuclear Hydrogen Production Technology

    Lee, Ki Young; Chang, J. H.; Park, J. K.

    2007-06-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production system, and the assessment of the nuclear hydrogen production economy. To estimate the attainments of the key technologies in progress with the performance goals of GIF, itemized are the attainment indices based on SRP published in VHTR R and D steering committee of Gen-IV. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items conformed to the NHDD concepts established in a preconceptual design in 2005. The codes for analyzing the hydrogen production economy are developed for calculating the unit production cost of nuclear hydrogen. We developed basic R and D quality management methodology to meet design technology of VHTR's needs. By putting it in practice, we derived some problems and solutions. We distributed R and D QAP and Q and D QAM to each teams and these are in operation. Computer simulations are performed for estimating the thermal efficiency for the electrodialysis component likely to adapting as one of the hydrogen production system in Korea and EED-SI process known as the key components of the hydrogen production systems. Using the commercial codes, the process diagrams and the spread-sheets were produced for the Bunsen reaction process, Sulphuric Acid dissolution process and HI dissolution process, respectively, which are the key components composing of the SI process

  13. Current biodiesel production technologies: A comparative review

    Abbaszaadeh, Ahmad; Ghobadian, Barat; Omidkhah, Mohammad Reza; Najafi, Gholamhassan

    2012-01-01

    Highlights: ► In this paper we review the technologies related to biodiesel production. ► 4 Primary approaches reviewed are direct use and blending of oils, micro-emulsions, pyrolysis and transesterification method. ► Both advantages and disadvantages of the different biodiesel production methods are also discussed. ► The most common technology of biodiesel production is transesterification of oils. ► Selection of a transesterification method depends on the amount of FFA and water content of the feedstock. - Abstract: Despite the high energy demand in the industrialized world and the pollution problems caused by widespread use of fossil fuels, the need for developing renewable energy sources with less environmental impacts are increasing. Biodiesel production is undergoing rapid and extensive technological reforms in industries and academia. The major obstacle in production and biodiesel commercialization path is production cost. Thus, in previous years numerous studies on the use of technologies and different methods to evaluate optimal conditions of biodiesel production technically and economically have been carried out. In this paper, a comparative review of the current technological methods so far used to produce biodiesel has been investigated. Four primary approaches to make biodiesel are direct use and blending of vegetable oils, micro-emulsions, thermal cracking (pyrolysis) and transesterification. Transesterification reaction, the most common method in the production of biodiesel, is emphasized in this review. The two types of transestrification process; catalytic and non-catalytic are discussed at length in the paper. Both advantages and disadvantages of the different biodiesel production methods are also discussed.

  14. Technology diffusion, product differentiation and environmental subsidies

    McGinty, M. [Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Economics; Vries, F.P. de [Univ. of Groningen (Netherlands). Dept. of Law and Economics

    2007-07-01

    Technological change is often seen as the promising device that will mitigate or solve environmental problems. Policy intervention that spurs the development, adoption and diffusion of new, environmentally benign technologies therefore holds great appear for environmental authorities. Policymakers have various instruments at their disposal to affect technological diffusion, ranging from direct regulation (command-and-control strategies) to market-based instruments, such as taxes, subsidies and tradable pollution permits. This paper examines environmental subsidies as a technology diffusion policy. The authors apply evolutionary game theory to explore the relationship between subsidies for clean technology, the diffusion of that technology and the degree of product differentiation in an imperfectly competitive market. They show that the subsidy succeeds in reducing environmental damage only when the substitution effect (the reduction in pollution associated with the clean technology) exceeds the output effect (the extent that the subsidy increases output). When the substitution effect does dominate, environmental damage decreases monotonically during the diffusion process. The extent of diffusion (the degree to which clean technolgy replaces dirty) and the likelihood that the substitution effect will dominate both decrease with the extent of product differentiation. Finally, the subsidy for clean technology will spill over to the remaining dirty producers increasing their profit as well.

  15. Principles and practices of lean production applied in a metal structures production system

    Carvalho, Rogério; Alves, Anabela Carvalho; Lopes, Isabel da Silva

    2011-01-01

    This paper presents a work undertaken in a metal structures production system in a company producing several assorted products for the civil construction. The work aim was to improve the production process, solving several productive problems encountered in the production system, such as: deliveries delays, long lead times, too many material handling, high stocks, errors and defects in metal structures assembly and production, and unnecessary motions. The identified problems were analyzed and...

  16. Status of liquid metal cooled fast reactor technology

    NONE

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants Refs, figs, tabs

  17. Status of liquid metal cooled fast reactor technology

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants

  18. Refractory metal component technology for in-core sensor design

    Cannon, C.P.

    1986-02-01

    Within recent years, an increasing concern over reactor safety has prompted tests that characterize reactor core environments during transient conditions. Such tests include the Loss-of-Fluid-Tests (Idaho National Engineering Lab (INEL)), Severe Fuel Damage Tests (INEL), Core Debris Rubble Tests (Sandia National Laboratories (SNL)), and similar tests performed by foreign nations. The in-core sensors for these tests require refractory metal components to be compatible with electrical insulator materials as well as materials comprising highly corrosive service mediums. This paper presents the refractory metal technology utilized to provide basic sensor designs in the above mentioned reactor tests

  19. Marketing mix for consumer high technology products

    Dovleac, L.

    2012-01-01

    Full Text Available This paper includes an analysis upon the variables of marketing mix for high technology products used for individual consumption. There are exposed the essential aspects related to marketing policies and strategies used by high technology companies for providing consumers the best solutions tailored to their needs. A special attention is given to the necessity for inclusion in the marketing mix of the fifth element – the assistance and informational support for customers.

  20. Microbial and heavy metal contamination of pineapple products ...

    SAM

    Quantitative determination of heavy metals: zinc, iron, lead, copper, cadmium and aluminium ...... consumption of dairy products, fish/seafood and meat from Ismailia ... Contamination in Green Leafy Vegetables Grown in Bangalore Urban.

  1. Mixing and settling in continuous metal production

    Richter, H.J.; Laaspere, J.T.; Fitzpatrick, J.M.

    1993-01-01

    Modern metallurgical processes produce metal from ore in a single converter operated in horizontal mode to permit staging of bath and oxygen potential by utilizing bottom-blowing of oxygen and fuel. The submerged injectors must create sufficient turbulence to provide excellent gas-liquid contact in order to maximize heat and mass transfer in the bath, but this turbulence must be selectively localized so as to provide adequate phase separation zones of metal and slag between the active turbulent zones. It is important to know the behavior of gas and liquids in the bubble plume, the nature and paths of liquids and entrainment into the plume, and separation phenomena including travel and behavior in the settling zones. Such knowledge is of fundamental value in designing reactors for continuous direct metal making. In this work the mixing caused by submerged injection of gas into a bath simulating a converter and subsequent phase separation of two immiscible liquids representing slag and metal respectively, are being studied experimentally and analytically. First results of experiments and of the numerical analysis are presented

  2. Inorganic and Metallic Nanotubular Materials Recent Technologies and Applications

    Kijima, Tsuyoshi

    2010-01-01

    This book describes the synthesis, characterization and applications of inorganic and metallic nanotubular materials. It cover a wide variety of nanotubular materials excluding carbon nanotubes, ranging from metal oxides, sulfides and nitrides such as titanium oxide, tungsten sulfide, and boron nitride, as well as platinum and other noble-metals to unique nanotubes consisting of water, graphene or fullerene. Based on their structural and compositional characteristics, these nanotubular materials are of importance for their potential applications in electronic devices, photocatalysts, dye-sensitized solar cells, nanothermometers, electrodes for fuel cells and batteries, sensors, and reinforcing fillers for plastics, among others. Such materials are also having a great impact on future developments, including renewable-energy sources as well as highly efficient energy-conversion and energy-saving technologies. This book will be of particular interest to experts in the fields of nanotechnology, material science ...

  3. Product with service, technology with business model

    Sakao, Tomohiko; McAloone, Tim C.

    2011-01-01

    Looking back over the last decade, the importance of an expanded understanding of engineering design has been shared within the engineering design community. Presented concepts and methods to support such expansion include Functional Product Development, Service Engineering, and Product/Service-S...... promising concept beyond PSS design; via an integrated development of technology and business model. This can be of particular interest for further research, especially due to its high freedom for designers....

  4. Precious Metals in Automotive Technology: An Unsolvable Depletion Problem?

    Ugo Bardi

    2014-04-01

    Full Text Available Since the second half of the 20th century, various devices have been developed in order to reduce the emissions of harmful substances at the exhaust pipe of combustion engines. In the automotive field, the most diffuse and best known device of this kind is the “three way” catalytic converter for engines using the Otto cycle designed to abate the emissions of carbon monoxide, nitrogen oxides and unburnt hydrocarbons. These catalytic converters can function only by means of precious metals (mainly platinum, rhodium and palladium which exist in a limited supply in economically exploitable ores. The recent increase in prices of all mineral commodities is already making these converters significantly expensive and it is not impossible that the progressive depletion of precious metals will make them too expensive for the market of private cars. The present paper examines how this potential scarcity could affect the technology of road transportation worldwide. We argue that the supply of precious metals for automotive converters is not at risk in the short term, but that in the future it will not be possible to continue using this technology as a result of increasing prices generated by progressive depletion. Mitigation methods such as reducing the amounts of precious metals in catalysts, or recycling them can help but cannot be considered as a definitive solution. We argue that precious metal scarcity is a critical factor that may determine the future development of road transportation in the world. As the problem is basically unsolvable in the long run, we must explore new technologies for road transportation and we conclude that it is likely that the clean engine of the future will be electric and powered by batteries.

  5. Determination of Toxic Metals in Indian Smokeless Tobacco Products

    Dhanashri Dhaware

    2009-01-01

    Full Text Available This study targets the lesser-known ingredients of smokeless tobacco products, i.e., the toxic metals, in Indian brands. The metals selected in the study included lead (Pb, cadmium (Cd, arsenic (As, copper (Cu, mercury (Hg, and selenium (Se. The differential pulse anodic stripping voltammetry (DPASV technique was used for estimating the metals Pb, Cd, and Cu; square wave voltammetry for As; and the cold vapor atomic absorption technique for Hg. The resulting levels of the metals were compared to the daily consumption of the smokeless tobacco products. It was observed that almost 30% of gutkha brand samples exceeded the permissible levels of metals Pb and Cu, when compared to the provisional tolerable intake limits determined by the FAO/WHO. The reliability of data was assured by analyzing standard reference materials.

  6. Production of sintered porous metal fluoride pellets

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  7. Development of hydrogen production technology using FBR

    Ono, Kiyoshi; Otaki, Akira; Chikazawa, Yoshitaka; Nakagiri, Toshio; Sato, Hiroyuki; Sekine, Takashi; Ooka, Makoto

    2004-06-01

    This report describes the features of technology, the schedule and the organization for the research and development regarding the hydrogen production technology using FBR thermal energy. Now, the hydrogen production system is proposed as one of new business models for FBR deployment. This system is the production of hydrogen either thermal energy at approximately from 500degC to 550degC or electricity produced by a sodium cooled FBR. Hydrogen is expected to be one of the future clean secondary energies without carbon-dioxide emission. Meanwhile the global energy demand will increase, especially in Asian countries, and the energy supply by fossil fuels is not the best choice considering the green house effect and the stability of energy supply. The development of the hydrogen technology using FBR that satisfies 'sustainable energy development' and 'utilization of energies free from environmental pollution' will be one of the promising options. Based on the above mentioned recognition, we propose the direction of the development, the issues to be solved, the time schedule, the budget, and the organization for R and D of three hydrogen production technologies, the thermochemical hybrid process, the low temperature steam reforming process, and the high temperature steam electrolysis process in JNC. (author)

  8. Secondary Products (Markets, Competition, and Technological Improvements)

    Philip A. Araman

    1988-01-01

    Competitiveness, imports, exports, and technological improvements--these are issues facing secondary wood-product manufacturers. The major problems focus on increasing foreign imports and the inability of U.S. industries to repell the imports. How and where should we, as researchers, allocate our efforts to enhance the competitiveness of secondary forest industries in...

  9. Utilization of cocoyam production technologies among women ...

    The study analysed utilization of improved cocoyam production technologies among women in Abia State, Nigeria. A multistage random sampling technique was used to select sixty (60) women. Data for the study were collected using a structured questionnaire and analysed with descriptive statistics and inferential statistics ...

  10. Technologies for production of electrticity or heat

    Schleisner, L.

    1990-03-01

    In connection with the production of ''Energi 2000 - Handlingsplan for en baeredygtig udvikling'' (Energy 2000 - Plan of Management for a Sustaniable Development) a summary and evaluation of various electric power and heat production technolgies was produced. Technologies in relation to fusion, wind energy, solar energy, wave energy, heat storage, electric power storage and hydrogen are dealt with. In each case a description of the technological development in the relevant field, also in relation to long (2030), middle (2015) and short term (2000) commercial aspects, is given. The technology is also explained in relation to energy and socio-economical aspects. The consequences of the utilization of the mentioned technologies with regard to the total energy and electric power systems and aspects of Danish industrial policy are considered. Suggestions are presented as to future subjects for research and development in relation to each technology. A number of these technologies are not yet used commercially. The descriptions are thus given on the basis of development on a global basis. (author) 32 tabs., 31 ills., 19 refs

  11. Solar driven technologies for hydrogen production

    Medojević Milovan M.

    2016-01-01

    Full Text Available Bearing in mind that the production of hydrogen based on renewable energy sources, without doubt, is an important aspect to be taken into account when considering the potential of this gas, where as particularly interesting technologies stand out the ones which are based on the use of solar energy to produce hydrogen. The goal of this paper provides basic technological trajectories, with the possibility of combining, for solar driven hydrogen production, such as: electrochemical, photochemical and thermochemical process. Furthermore, the paper presents an analysis of those technologies from a technical as well as economic point of view. In addition, the paper aims to draw attention to the fact that the generation of hydrogen using renewable energy should be imposed as a logical and proper way to store solar energy in the form of chemical energy.

  12. A refractory metal gate approach for micronic CMOS technology

    Lubowiecki, V.; Ledys, J.L.; Plossu, C.; Balland, B.

    1987-01-01

    In the future, devices scaling down, integration density and performance improvements are going to bring a number of conventional circuit design and process techniques to their fundamental limits. To avoid any severe limitations in MOS ULSI (Ultra Large Scale Integration) technologies, interconnection materials and schemes are required to emerge, in order to face the Megabits memory field. Among those, the gate approach will obviously take a keyrole, when the operating speed of ULSI chips will reach the practical upper limits imposed by parasitic resistances and capacitances which stem from the circuit interconnect wiring. Even if fairly suitable for MOS process, doped polycrystalline silicon is being gradually replaced by refractory metal silicide or polycide structures, which match better with low resistivity requirements. However, as we approach the submicronic IC's, higher conductivity materials will be paid more and more attention. Recently, works have been devoted and published on refractory metal gate technologies. Molybdenum or tungsten, deposited either by CVD or PVD methods, are currently reported even if some drawbacks in their process integration still remain. This paper is willing to present such an approach based on tungsten (more reliable than Molybdenum deposited by LPCVD (giving more conductive and more stable films than PVD). Deposition process will be first described. Then CMOS process flow will allow us to focus on specific refractory metal gate issues. Finally, electrical and physical properties will be assessed, which will demonstrate the feasibility of such a technology as well as the compatibility of the tungsten with most of the usual techniques

  13. Development of RI Target Production Technology

    Jeong, Do Young; Ko, Kwang Hoon; Kim, Cheol Jung; Kim, Taek Soo; Rho, Si Pyo; Park, Hyun Min; Lim, Gwon; Cha, Yong Ho; Han, Jae Min

    2010-04-01

    This project was accomplished with an aim of productive technical development on the 'enriched target' which is used essentially in radioisotope production. The research was advanced systematically with target production pilot system configuration and core technical development. We composed Yb-176 productive pilot system which equip the chemical purification technique of medical treatment level and proved its capability. Possibilities to separate Zn-67 by the method of using the polarizing light in principle and to separate Zn-70 by the method of using the double optical pumping in theory were also proved. RI target production technologies are recognized excessively with monopolistic techniques of part atomic energy advanced nations such as Russia and US and they are come, but we prepared the opportunity will be able to complete a full cycle of like (RI material production -> RI target production -> RI application) with this project accomplishment. When considering only the direct demand of stable isotope which is used in various industrial, we forecast with the fact that RI target markets will become larger with the approximately 5 billion dollars in 2020 and this technology will contribute in the domestic rising industry creation with high value added

  14. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  15. Impact of heavy metals on the oil products biodegradation process.

    Zukauskaite, Audrone; Jakubauskaite, Viktorija; Belous, Olga; Ambrazaitiene, Dalia; Stasiskiene, Zaneta

    2008-12-01

    Oil products continue to be used as a principal source of energy. Wide-scale production, transport, global use and disposal of petroleum have made them major contaminants in prevalence and quantity in the environment. In accidental spills, actions are taken to remove or remediate or recover the contaminants immediately, especially if they occur in environmentally sensitive areas, for example, in coastal zones. Traditional methods to cope with oil spills are confined to physical containment. Biological methods can have an advantage over the physical-chemical treatment regimes in removing spills in situ as they offer biodegradation of oil fractions by the micro-organisms. Recently, biological methods have been known to play a significant role in bioremediation of oil-polluted coastal areas. Such systems are likely to be of significance in the effective management of sensitive coastal ecosystems chronically subjected to oil spillage. For this reason the aim of this paper is to present an impact of Mn, Cu, Co and Mo quantities on oil biodegradation effectiveness in coastal soil and to determine the relationship between metal concentrations and degradation of two oil products (black oil and diesel fuel). Soil was collected in the Baltic Sea coastal zone oil products degradation area (Klaipeda, Lithuania). The experiment consisted of two parts: study on the influence of micro-elements on the oil product biodegradation process; and analysis of the influence of metal concentration on the number of HDMs. The analysis performed and results obtained address the following areas: impact of metal on a population of hydrocarbon degrading micro-organisms, impact of metals on residual concentrations of oil products, influence of metals on the growth of micro-organisms, inter-relation of metal concentrations with degradation rates. Statistical analysis was made using ;Statgraphics plus' software. The influence of metals on the growth of micro-organisms, the biodegradation process

  16. Industrial Arts Test Development, Book III. Resource Items for Graphics Technology, Power Technology, Production Technology.

    New York State Education Dept., Albany.

    This booklet is designed to assist teachers in developing examinations for classroom use. It is a collection of 955 objective test questions, mostly multiple choice, for industrial arts students in the three areas of graphics technology, power technology, and production technology. Scoring keys are provided. There are no copyright restrictions,…

  17. RAPID FREEFORM SHEET METAL FORMING: TECHNOLOGY DEVELOPMENT AND SYSTEM VERIFICATION

    Kiridena, Vijitha [Ford Scientific Research Lab., Dearborn, MI (United States); Verma, Ravi [Boeing Research and Technology (BR& T), Seattle, WA (United States); Gutowski, Timothy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Roth, John [Pennsylvania State Univ., University Park, PA (United States)

    2018-03-31

    The objective of this project is to develop a transformational RApid Freeform sheet metal Forming Technology (RAFFT) in an industrial environment, which has the potential to increase manufacturing energy efficiency up to ten times, at a fraction of the cost of conventional technologies. The RAFFT technology is a flexible and energy-efficient process that eliminates the need for having geometry-specific forming dies. The innovation lies in the idea of using the energy resource at the local deformation area which provides greater formability, process control, and process flexibility relative to traditional methods. Double-Sided Incremental Forming (DSIF), the core technology in RAFFT, is a new concept for sheet metal forming. A blank sheet is clamped around its periphery and gradually deformed into a complex 3D freeform part by two strategically aligned stylus-type tools that follow a pre-described toolpath. The two tools, one on each side of the blank, can form a part with sharp features for both concave and convex shapes. Since deformation happens locally, the forming force at any instant is significantly decreased when compared to traditional methods. The key advantages of DSIF are its high process flexibility, high energy-efficiency, low capital investment, and the elimination of the need for massive amounts of die casting and machining. Additionally, the enhanced formability and process flexibility of DSIF can open up design spaces and result in greater weight savings.

  18. Nonconsumable electrode assembly and use thereof for the electrolytic production of metals and silicon

    Byrne, Stephen C.; Ray, Siba P.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor attached to a ceramic electrode body by a metal bond on a portion of the body having a level of free metal or metal alloy sufficient to effect a metal bond.

  19. Automobile sheet metal part production with incremental sheet forming

    İsmail DURGUN

    2016-02-01

    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  20. Nondestructive quality evaluation technology of agricultural products

    Noh, Sang Ha

    1997-01-01

    Quality evaluation of agricultural products has been interested to many researchers for many years and as the result, several nondestructive techniques and so many papers have been reported for quality evaluation of agricultural products. These nondestructive techniques are based on the detection of mechanical, optical, electrical, electro-magnetical, dielectric and vibrational properties of agricultural products that are well correlated with certain quality factors of the products such as color, shape, firmness, sugar content, external or internal defects, moisture content, etc. The sophistication of nondestructive methods has evolved rapidly with modem technologies. In this paper an emphasis was put on reviewing some of those papers and techniques which could be led to on-line measurement for practical use.

  1. Additive Manufacturing and Casting Technology Comparison: Mechanical Properties, Productivity and Cost Benchmark

    Vevers, A.; Kromanis, A.; Gerins, E.; Ozolins, J.

    2018-04-01

    The casting technology is one of the oldest production technologies in the world but in the recent years metal additive manufacturing also known as metal 3D printing has been evolving with huge steps. Both technologies have capabilities to produce parts with internal holes and at first glance surface roughness is similar for both technologies, which means that for precise dimensions parts have to be machined in places where precise fit is necessary. Benchmark tests have been made to find out if parts which are produced with metal additive manufacturing can be used to replace parts which are produced with casting technology. Most of the comparative tests have been made with GJS-400-15 grade which is one of the most popular cast iron grades. To compare mechanical properties samples have been produced using additive manufacturing and tested for tensile strength, hardness, surface roughness and microstructure and then the results have been compared with the samples produced with casting technology. In addition, both technologies have been compared in terms of the production time and production costs to see if additive manufacturing is competitive with the casting technology. The original paper has been written in the Latvian language as part of the Master Thesis within the framework of the production technology study programme at Riga Technical University.

  2. Developing Technology Products - A Physicist's Perspective

    Burka, Michael

    2014-03-01

    There are many physicists working in the industrial sector. We rarely have the word physicist in our job title; we are far more commonly called engineers or scientists. But, we are physicists, and we succeed because our training in physics has given us the habits of mind and the technical skills that one needs to solve complex technical challenges. This talk will explore the transition from physics research to technology product development using examples from my own career, first as a postdoctoral fellow and research scientist on the LIGO project, and then developing products in the spectroscopy, telecommunications, and medical device industries. Approaches to identifying and pursuing opportunities in industry will be discussed.

  3. Process development study on production of uranium metal from monazite sourced crude uranium tetra-fluoride

    Chowdhury, S; Satpati, S.K.; Hareendran, K.N.; Roy, S.B.

    2014-01-01

    Development of an economic process for recovery, process flow sheet development, purification and further conversion to nuclear grade uranium metal from the crude UF 4 has been a technological challenge and the present paper, discusses the same.The developed flow-sheet is a combination of hydrometallurgical and pyrometallurgical processes. Crude UF 4 is converted to uranium di-oxide (UO 2 ) by chemical conversion route and UO 2 produced is made fluoride-free by repeated repulping, followed by solid liquid separation. Uranium di-oxide is then purified by two stages of dissolution and suitable solvent extraction methods to get uranium nitrate pure solution (UNPS). UNPS is then precipitated with air diluted ammonia in a leak tight stirred vessel under controlled operational conditions to obtain ammonium di-uranate (ADU). The ADU is then calcined and reduced to produce metal grade UO 2 followed by hydro-fluorination using anhydrous hydrofluoric acid to obtain metal grade UF 4 with ammonium oxalate insoluble (AOI) content of 4 is essential for critical upstream conversion process. Nuclear grade uranium metal ingot is finally produced by metallothermic reduction process at 650℃ in a closed vessel, called bomb reactor. In the process, metal-slag separation plays an important role for attaining metal purity as well as process yield. Technological as well economic feasibility of indigenously developed process for large scale production of uranium metal from the crude UF 4 has been established in Bhabha Atomic Research Centre (BARC), India

  4. Ethanol production in China: Potential and technologies

    Li, Shi-Zhong; Chan-Halbrendt, Catherine

    2009-01-01

    Rising oil demand in China has resulted in surging oil imports and mounting environmental pollution. It is projected that by 2030 the demand for fossil fuel oil will be 250 million tons. Ethanol seems to be an attractive renewable alternative to fossil fuel. This study assesses China's ethanol supply potential by examining potential non-food crops as feedstock; emerging conversion technologies; and cost competitiveness. Results of this study show that sweet sorghum among all the non-food feedstocks has the greatest potential. It grows well on the available marginal lands and the ASSF technology when commercialized will shorten the fermentation time which will lower the costs. Other emerging technologies such as improved saccharification and fermentation; and cellulosic technologies will make China more competitive in ethanol production in the future. Based on the estimated available marginal lands for energy crop production and conversion yields of the potential feedstocks, the most likely and optimistic production levels are 19 and 50 million tons of ethanol by 2020. In order to achieve those levels, the roadmap for China is to: select the non-food feedstock most suitable to grow on the available marginal land; provide funding to support the high priority conversion technologies identified by the scientists; provide monetary incentives to new and poor farmers to grow the feedstocks to revitalize rural economy; less market regulation and gradual reduction of subsidies to producers for industry efficiency; and educate consumers on the impact of fossil fuel on the environment to reduce consumption. Since the share of ethanol in the overall fuel demand is small, the impact of ethanol on lowering pollution and enhancing fuel security will be minimal. (author)

  5. Limitation of productivity by trace metals in the sea

    Morel, F.M.M.; Price, N.M.; Hudson, R.J.M.

    1991-01-01

    Some trace metals such as Fe, Ni, Cu, and Zn are essential for the growth of phytoplankton. The concentrations of these essential trace elements in seawater are so low as to limit their availability to aquatic microbiota. Trace element uptake is ultimately limited by kinetics of reaction with transport ligands or by diffusion to the cell. From what the authors know of the characteristics of the uptake systems of phytoplankton and their trace metal requirements they can estimate that Fe and Zn may at some times in some place limit phytoplankton productivity, which is in accord with available field data on trace metal enrichments

  6. Environmental technologies of woody crop production systems

    Ronald S. Zalesny Jr.; John A. Stanturf; Emile S. Gardiner; Gary S. Ba??uelos; Richard A. Hallett; Amir Hass; Craig M. Stange; James H. Perdue; Timothy M. Young; David R. Coyle; William L. Headlee

    2016-01-01

    Soil erosion, loss of productivity potential, biodiversity loss, water shortage, and soil and water pollution are ongoing processes that decrease or degrade provisioning (e.g., biomass, freshwater) and regulating (e.g., carbon sequestration, soil quality) ecosystem services. Therefore, developing environmental technologies that maximize these services is essential for...

  7. Isotope production technologies from a regulatory perspective

    Murthy, K. [Canadian Nuclear Safety Committee, Ottawa, Ontario (Canada)

    2012-07-01

    This paper discusses isotope production technologies from a regulatory perspective. The regulator is the CNSC which has the mandate to protect the health, safety and security of persons and the environment and to implement Canada's international commitments on the peaceful use of nuclear energy. Nuclear facilities regulated by CNSC include linear accelerator (medical), pool irradiator (industrial) and Pelletron (research) as well as cyclotrons.

  8. Study on technology for radioactive waste treatment and management from uranium production

    Vu Hung Trieu; Vu Thanh Quang; Nguyen Duc Thanh; Trinh Giang Huong; Tran Van Hoa; Hoang Minh Chau; Ngo Van Tuyen; Nguyen Hoang Lan; Vuong Huu Anh

    2007-01-01

    There is some solid and liquid radioactive waste created during producing Uranium that needs being treated and managed to keep our environment safe. This radioactive waste contains Uranium (U-238), Thorium (Th-232), Radium (Ra-226) and some heavy metals and mainly is low radioactive waste. Our project has researched and built up appropriate technology for treating and managing the radioactive waste. After researching and experimenting, we have built up four technology processes as follows: Technology for separating Radium from liquid waste; Technology for treating and managing solid waste containing Ra; Technology for separating Thorium from liquid waste after recovering radium; Technology for stabilizing solid waste from Uranium production. (author)

  9. Process for continuous production of metallic uranium and uranium alloys

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  10. Process for continuous production of metallic uranium and uranium alloys

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  11. Determination of uranium and plutonium in metal conversion products from electrolytic reduction process

    Lee, Chang Heon; Suh, Moo Yul; Joe, Kih Soo; Sohn, Se Chul; Jee, Kwang Young; Kim, Won Ho

    2005-01-01

    Chemical characterization of process materials is required for the optimization of an electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. A study on the determination of fissile materials in the uranium metal products containing corrosion products, fission products and residual process materials has been performed by controlled-potential coulometric titration which is well known in the field of nuclear science and technology. Interference of Fe, Ni, Cr and Mg (corrosion products), Nd (fission product) and LiCl molten salt (residual process material) on the determination of uranium and plutonium, and the necessity of plutonium separation prior to the titration are discussed in detail. Under the analytical condition established already, their recovery yields are evaluated along with analytical reliability

  12. The state of the art on the radioactive metal waste recycling technologies

    Oh, Won Jin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1997-09-01

    As the best strategy to manage the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following recycling technologies are investigated. 1. decontamination technologies for radioactive metal waste recycling 2. decontamination waste treatment technologies. 3. residual radioactivity evaluation technologies. (author). 260 refs., 26 tabs., 31 figs

  13. MODERN TECHNOLOGY OF FERMENTED MEAT PRODUCTS

    L. V. Antipova

    2015-01-01

    Full Text Available Summary. New trends of meat industry development, on the example of sausages are shown. The detailed description of indicators of quality of meat raw materials, auxiliary materials and their influence on the processes of tissue and microbial fermentation in the process of ripening raw sausages. Measures for improving the quality control of meat raw materials, auxiliary materials, as well as the processing conditions in all stages of production of smoked products are suggested. The modern technology of production of raw sausages with starter cultures and complex products, allowing better standardization process is considered. Questions of chemistry of color formation, the formation of taste and flavor, textures and the suppression of undesired microflora in foods in general, and in particular the raw sausage are thoroughly covered. Ideas about factors affecting the formation of color in sausages are given. It is pointed out that the susceptibility to oxidation of nitrosilmioglobin is directly related to the fat oxidation in the whole redox potential. Trends in the market of raw sausages are shown. Requirements used in the meat industry to starting cultures are shown. Recommendations on the rational use of starter cultures, and other functional additives in technology of uncooked fermented products, which are used to improve the quality and ensure a high level of product safety are given. The characteristic of the innovative series of starter cultures Protect, its species belonging and qualitative composition, providing a unique protection system in the process of ripening and storage of smoked products is given. The properties are proved on the example of smoked poultry sausage.

  14. Estimating product-to-product variations in metal forming using force measurements

    Havinga, Gosse Tjipke; Van Den Boogaard, Ton

    2017-01-01

    The limits of production accuracy of metal forming processes can be stretched by the development of control systems for compensation of product-to-product variations. Such systems require the use of measurements from each semi-finished product. These measurements must be used to estimate the final

  15. Food product tracing technology capabilities and interoperability.

    Bhatt, Tejas; Zhang, Jianrong Janet

    2013-12-01

    Despite the best efforts of food safety and food defense professionals, contaminated food continues to enter the food supply. It is imperative that contaminated food be removed from the supply chain as quickly as possible to protect public health and stabilize markets. To solve this problem, scores of technology companies purport to have the most effective, economical product tracing system. This study sought to compare and contrast the effectiveness of these systems at analyzing product tracing information to identify the contaminated ingredient and likely source, as well as distribution of the product. It also determined if these systems can work together to better secure the food supply (their interoperability). Institute of Food Technologists (IFT) hypothesized that when technology providers are given a full set of supply-chain data, even for a multi-ingredient product, their systems will generally be able to trace a contaminated product forward and backward through the supply chain. However, when provided with only a portion of supply-chain data, even for a product with a straightforward supply chain, it was expected that interoperability of the systems will be lacking and that there will be difficulty collaborating to identify sources and/or recipients of potentially contaminated product. IFT provided supply-chain data for one complex product to 9 product tracing technology providers, and then compared and contrasted their effectiveness at analyzing product tracing information to identify the contaminated ingredient and likely source, as well as distribution of the product. A vertically integrated foodservice restaurant agreed to work with IFT to secure data from its supply chain for both a multi-ingredient and a simpler product. Potential multi-ingredient products considered included canned tuna, supreme pizza, and beef tacos. IFT ensured that all supply-chain data collected did not include any proprietary information or information that would otherwise

  16. Oxidation kinetics of reaction products formed in uranium metal corrosion

    Totemeier, T. C.

    1998-01-01

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O 2 and Ar-20%O 2 were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates

  17. Oxidation kinetics of reaction products formed in uranium metal corrosion.

    Totemeier, T. C.

    1998-04-22

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O{sub 2} and Ar-20%O{sub 2} were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates.

  18. A Comparison between Microfabrication Technologies for Metal Tooling

    Uriarte, L.; Ivanov, A.; Oosterling, H

    2005-01-01

    , stainless steel for ECF, and tool steel (AISI H13) for the other processes. Typical features (ribs, channels, pins and holes) required by microoptics, microfluidics and sensors and actuators applications have been selected to carry out this analysis The task results provide a global comparison between......The current paper is based on the information gathered within 4M Network activities, specifically in the "Processing of Metals" Division (Task 7.2 "Tooling"). The aim of the task involves a systematic analysis of the partners' expertise in different technologies for processing tooling inserts made...

  19. Straw for energy production. Technology - Environment - Economy

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  20. Metal recycling technology and related issues in the United States, a BNFL perspective

    Bradbury, P.; Dam, S.; Starke, W.

    1995-01-01

    Radioactively contaminated metallic materials comprise a large part of the potential waste products which result from nuclear facility repair, refurbishment, and decommissioning. United States Government (Departments of Energy and Defense) facilities, U.S. nuclear power plants, and other commercial nuclear fuel cycle facilities have large inventories of radioactive scrap metal which could be decontaminated and recycled into useful radioactive and non-radioactive products. Residual radioactivity and recycling criteria is needed to avoid the high cost of disposal and the waste of natural resources. In the United Kingdom, BNFL has decommissioned the gaseous diffusion plant at Capenhurst and has recycled a large fraction of the metallic scrap into the metals market. Other structural materials have also been released as uncontaminated scrap. U.K. release criteria for residual radionuclide contamination have been applied to these operations. A variety of techniques were utilized to size reduce large components, to remove radioactivity, and to survey and release these materials. These methods and the application of release criteria has a direct relationship to methods which would be applicable in the U.S. and in other countries. This paper will describe the specific U.K. technology and experience in the decontamination, recycle, and release of scrap metal. It will also describe the U.S. environment for metal recycle, including the volumes and levels of contamination, and the current and proposed release criteria. Comparisons will be presented between the U.S. and U.K., both in technology and methodology for recycle and in regulatory criteria for residual radioactivity and material release and for ultimate decommissioning. The paper will then provide suggested approaches and criteria for U.S. recycling and decommissioning. (author)

  1. Proposed industrial recovered materials utilization targets for the metals and metal-products industry

    None

    1979-05-01

    The introductory chapter provides a discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. It discusses these industries in terms of resource characteristics, industry technology, pollution control requirements, market structure, the economics of recycling, and the issues involved in econometrically estimating scrap supply response behavior. It further presents the methodology established by DOE for the metals, textiles, rubber, and pulp and paper industries. The areas in which government policies might have a significant impact on the utilization of primary and secondary metals and on any recycling targets between now and 1987 are noted. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33. The profiles include such topics as industry structure, process technology, materials and recycling flow, and future trends. Chapter 4 specifically covers the evaluation of recycling targets for the ferrous, aluminum, copper, zinc, and lead industries. (MCW)

  2. Technology for recovery of by-products

    Van Tuy, H.H.

    1983-01-01

    Products of conventional nuclear fuel processing plants are uranium and plutonium, and any other recovered material is considered to be a by-product. Some by-products have been recovered from past nuclear fuel processing operations, either as a normal mode of operation or by special campaigns. Routing recovery over an extended period has been limited to neptunium, but extended campaigns were used at Hanford to recover strontium for radioisotope thermoelectric generators. Krypton is recovered at Idaho Chemical Processing Plant on a campaign basis, and isotope separation of krypton is done at Oak Ridge National Laboratory. Past campaigns at Hanford PUREX have recovered cesium, promethium, amercium, cerium, and technetium. Past by-product recovery efforts were usually severely constrained by the status of flowsheet development and availability of existing facilities at the time decisions wee made to recover the by-products. Additional processes were developed to accommodate other unit operations and in response to changes in waste management objectives or user requirements. Now an impressive variety of recovery technology is available for most potential by-products, with varying degrees of demonstration under conditions which satisfy today's environmental protection and waste management constraints

  3. Technical Integration of Nuclear Hydrogen Production Technology

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2009-04-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production cost. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items confirmed to the NHDD concepts. We developed and applied R and D quality management methodology to meet 'Development of Key Technologies for Nuclear Hydrogen' project. And we also distributed R and D QAM and R and D QAP to each teams and are in operation. The preconceptual flow diagrams of SI, HTSE, and HyS processes are introduced and their material and energy balances have been proposed. The hydrogen production thermal efficiencies of not only the SI process as a reference process but also the HTSE and HyS processes were also estimated. Technical feasibility assessments of SI, HTSE, and HyS processes have been carried out by using the pair-wise comparison and analytic hierarchy process, and it is revealed that the experts are considering the SI process as the most feasible process. The secondary helium pathway across the SI process is introduced. Dynamic simulation codes for the H2S04vaporizer, sulfuric acid and sulfur trioxide decomposers, and HI decomposer on the secondary helium pathway and for the primary and secondary sulfuric acid distillation columns, HIx solution distillation column, and preheater for HI vapor have been developed and integrated

  4. The mineral base and productive capacities of metals and non-metals of Kosovo

    Rizaj, M.; Beqiri, E.; McBow, I.; O'Brien, E. Z.; Kongoli, F.

    2008-08-01

    All historical periods of Kosovo—Ilirik, Roman, Medieval, Turkish, and former Yugoslavian—are linked with the intensive development of mining and metallurgy. This activity influenced and still is influencing the overall position of Kosovo as a country. For example, according to a 2006 World Bank report as well as other studies, Kosovo has potential lignite resources (geological reserves) of about 1.5 billion tonnes, which are ranked fifth in the world in importance. Other significant Kosovan mineral resources include lead, zinc, gold, silver, bauxite, and uranium, and rare metals accompanying those minerals, including indium, cadmium, thallium, gallium, and bismuth. These rare metals are of particular importance in developing advanced industrial technologies. Kosovo also has reserves of high-quality non-metals, including magnesite, quartz grit, bentonite, argil, talc, and asbestos. No database exists for these non-metal reserves, and further research and studies are needed.

  5. DECISION ANALYSIS AND TECHNOLOGY ASSESSMENTS FOR METAL AND MASONRY DECONTAMINATION TECHNOLOGIES

    Ebadian, M.A.

    1999-01-01

    The purpose of this investigation was to conduct a comparative analysis of innovative technologies for the non-aggressive removal of coatings from metal and masonry surfaces and the aggressive removal of one-quarter to one-inch thickness of surface from structural masonry. The technologies tested should be capable of being used in nuclear facilities. Innovative decontamination technologies are being evaluated under standard, non-nuclear conditions at the FIU-HCET technology assessment site in Miami, Florida. This study is being performed to support the OST, the Deactivation and Decommissioning (D and D) Focus Area, and the environmental restoration of DOE facilities throughout the DOE complex by providing objective evaluations of currently available decontamination technologies

  6. Trace metal contents in barbeque (BBQ) charcoal products

    Kabir, Ehsanul [Department of Environment and Energy, Sejong University, 98 Goon Ja Dong, Seoul 143-747 (Korea, Republic of); Kim, Ki-Hyun, E-mail: khkim@sejong.ac.kr [Department of Environment and Energy, Sejong University, 98 Goon Ja Dong, Seoul 143-747 (Korea, Republic of); Yoon, H.O. [Korea Basic Science Institute, Seoul Center, Seoul 136-701 (Korea, Republic of)

    2011-01-30

    In this study, the concentrations of trace elements contained in solid barbeque (BBQ) charcoal products have been investigated. Eleven brands of charcoal products were analyzed, consisting of both Korean (3 types) and imported products (eight types from three countries) commonly available in the Korean market places. The concentrations of trace metals in solid charcoal varied widely across metal types and between samples with the overall range of 5 {mu}g kg{sup -1} (As) to 118 mg kg{sup -1} (Zn). The patterns of metal distribution between different products appeared to be affected by the properties of raw materials and/or the processes involved in their production. Although concentrations of certain trace metals were significantly high in certain charcoal samples, their emission concentrations were below legislative guidelines (e.g., the permissible exposure limit (PEL) set by the Occupational Safety and Health Administration (OSHA)). In light of the potential harm of grilling activities, proper regulation should be considered to control the use of BBQ charcoal from a toxicological viewpoint to help reduce the potential health risks associated with its use.

  7. Trace metal contents in barbeque (BBQ) charcoal products

    Kabir, Ehsanul; Kim, Ki-Hyun; Yoon, H.O.

    2011-01-01

    In this study, the concentrations of trace elements contained in solid barbeque (BBQ) charcoal products have been investigated. Eleven brands of charcoal products were analyzed, consisting of both Korean (3 types) and imported products (eight types from three countries) commonly available in the Korean market places. The concentrations of trace metals in solid charcoal varied widely across metal types and between samples with the overall range of 5 μg kg -1 (As) to 118 mg kg -1 (Zn). The patterns of metal distribution between different products appeared to be affected by the properties of raw materials and/or the processes involved in their production. Although concentrations of certain trace metals were significantly high in certain charcoal samples, their emission concentrations were below legislative guidelines (e.g., the permissible exposure limit (PEL) set by the Occupational Safety and Health Administration (OSHA)). In light of the potential harm of grilling activities, proper regulation should be considered to control the use of BBQ charcoal from a toxicological viewpoint to help reduce the potential health risks associated with its use.

  8. Metal powder production by gas atomization

    Ting, E. Y.; Grant, N. J.

    1986-01-01

    The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.

  9. Assessment of heavy metal removal technologies for biowaste by physico-chemical fractionation

    Veeken, A.H.M.; Hamelers, H.V.M.

    2003-01-01

    In the Netherlands, the heavy metal content of biowaste-compost frequently exceeds the legal standards for heavy metals. In order to assess heavy metal removal technologies, a physico-chemical fractionation scheme was developed to gain insight into the distribution of heavy metals (Cd, Cu, Pb and

  10. Agricultural R&D, technology and productivity.

    Piesse, J; Thirtle, C

    2010-09-27

    The relationships between basic and applied agricultural R&D, developed and developing country R&D and between R&D, extension, technology and productivity growth are outlined. The declining growth rates of public R&D expenditures are related to output growth and crop yields, where growth rates have also fallen, especially in the developed countries. However, growth in output value per hectare has not declined in the developing countries and labour productivity growth has increased except in the EU. Total factor productivity has generally increased, however it is measured. The public sector share of R&D expenditures has fallen and there has been rapid concentration in the private sector, where six multinationals now dominate. These companies are accumulating intellectual property to an extent that the public and international institutions are disadvantaged. This represents a threat to the global commons in agricultural technology on which the green revolution has depended. Estimates of the increased R&D expenditures needed to feed 9 billion people by 2050 and how these should be targeted, especially by the Consultative Group on International Agricultural Research (CGIAR), show that the amounts are feasible and that targeting sub-Saharan Africa (SSA) and South Asia can best increase output growth and reduce poverty. Lack of income growth in SSA is seen as the most insoluble problem.

  11. Development of fission Mo-99 production technology

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  12. Development of fission Mo-99 production technology

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility

  13. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    Byrne, Stephen C.; Vasudevan, Asuri K.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

  14. (Fuel, fission product, and graphite technology)

    Stansfield, O.M.

    1990-07-25

    Travel to the Forschungszentrum (KFA) -- Juelich described in this report was for the purpose of participating in the annual meeting of subprogram managers for the US/DOE Umbrella Agreement for Fuel, Fission Product, and Graphite Technology. At this meeting the highlights of the cooperative exchange were reviewed for the time period June 1989 through June 1990. The program continues to contribute technology in an effective way for both countries. Revision 15 of the Subprogram Plan will be issued as a result of the meeting. There was interest expressed by KFA management in the level of support received from the NPR program and in potential participation in the COMEDIE loop experiment being conducted at the CEA.

  15. PRODUCTION WELL PERFORMANCE ENHANCEMENT USING SONICATION TECHNOLOGY

    Michael A. Adewumi; M. Thaddeus Ityokumbul; Robert W. Watson; Mario Farias; Glenn Heckman; Johnson Olanrewaju; Eltohami Eltohami; Bruce G. Miller; W. Jack Hughes; Thomas C. Montgomery

    2003-12-17

    The objective of this project is to develop a sonic well performance enhancement technology that focuses on near wellbore formations. In order to successfully achieve this objective, a three-year project has been defined with each year consisting of four tasks. The first task is the laboratory-scale study whose goal is to determine the underlying principles of the technology. The second task will develop a scale-up mathematical model to serve as the design guide for tool development. The third task is to develop effective transducers that can operate with variable frequency so that the most effective frequencies can be applied in any given situation. The system, assembled as part of the production string, ensures delivery of sufficient sonic energy to penetrate the near-wellbore formation. The last task is the actual field testing of the tool. The first year of the project has been completed.

  16. NEW GREENHOUSE TECHNOLOGIES FOR VEGETABLE PRODUCTION

    S. M. Sirota

    2016-01-01

    Full Text Available First decade of XXI century is characterized by significant augmentation in vegetable world’s production. Average annual vegetable production has been 346 million tons, and it has exceeded the average annual potato production (318 million tons. It has occurred due to the use of up-to-date technologies for vegetable production and, particularly, in greenhouses. In Russian Federation, the total production of vegetables was 5 275.6 thousand tons in 2015 that was 13.3% more than in 2014. But the total vegetable production in greenhouses was only 722.8 thousand tons, that was 0.7% less than in 2014 (728.1 thousand tons. It can be explained that the old technologies have been used for many greenhouses around Russia. Up-to-date technologies for greenhouses are described in the article. Small-volume hydroponics. Plants are grown in mineral wadding, packed up in the special chutes. Mineral nutrition and water are supplied through special pipe with many branch pipes toward each plant. Advantage: pH and nutrition are maintained, consumption of water and mineral nutrition are optimized, and that improves plants grow control. Expenditures of labor decreased, quality of fruit became better and the yield increased significantly by 45-50 kg/m2 comparing with growing on the soil (25-30 kg/m2. Hydroponics with flowing water (salad production lines. Conveyor for salad and vegetable growing on horizontal moving chutes with flowing water and nutrition was developed. Advantage: high level of automation and mechanization of all processes of growing increased the effectiveness of the use of greenhouse areas (we can place 30% plants more at the same area. Seedling production lines. Production lines for seedlings enable to grow vegetables and leafy vegetables on stationary benches, being furnished with periodical nutrition and water supply at times. Advantage: 700 seedlings additionally on each m2 a year. Future technologies are

  17. Analysis of toxic metals in branded Pakistani herbal products

    Saeed, M.; Muhammad, N.; Khan, H.

    2010-01-01

    The present study was designed to estimate the concentration of heavy toxic metals in Pakistani herbal products frequently used for the treatment of various ailments. For this purpose, twenty five herbal products of well reputed herbal manufacturers were selected. The results of our investigation revealed that the concentrations of lead, cadmium, nickel and chromium were far beyond the permissible limits proposed by the International Regulatory Authorities for herbal drugs. Therefore, this study conveys a strong message to the ministry of health to establish proper rules and regulations for the validation of herbal products on scientific grounds in order to protect the general public from the harmful effects of these heavy metals in herbal products. (author)

  18. Noble metal catalysts in the production of biofuels

    Gutierrez, A.

    2013-11-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the desired fuel. Hydrogen and hydrogen-rich mixtures (synthesis gas) are promising energy sources as they are more efficient and cleaner than existing fuels, especially when they are used in fuel cells. Hydrotreatment is a catalytic process that can be used in the conversion of biomass or biomass-derived liquids into fuels. In autothermal reforming (ATR), catalysts are used in the production of hydrogen-rich mixtures from conventional fuels or bio-fuels. The different nature of biomass and biomass-derived liquids and mineral oil makes the use of catalysts developed for the petroleum industry challenging. This requires the improvement of available catalysts and the development of new ones. To overcome the limitations of conventional hydrotreatment and ATR catalysts, zirconia-supported mono- and bimetallic rhodium, palladium, and platinum catalysts were developed and tested in the upgrading of model compounds for wood-based pyrolysis oil and in the production of hydrogen, using model compounds for gasoline and diesel. Catalysts were also tested in the ATR of ethanol. For comparative purposes commercial catalysts were tested and the results obtained with model compounds were compared with those obtained with real feedstocks (hydrotreatmet tests with wood-based pyrolysis oil and ATR tests with NExBTL renewable diesel). Noble metal catalysts were active and selective in the hydrotreatment of guaiacol used as the model compound for the lignin fraction of wood-based pyrolysis oil and wood

  19. A Complete Set of Technologies for Green Food Pork Production

    YANG Xing-wu; SHAN An-shan; JIANG Jiu-tian; ZHANG Tian-feng

    2003-01-01

    Key technologies for green food pork production were described in this article,as aspects of business standardization;production equipments and facilities,product quality control;and pork production site establishment.

  20. HEAVY METAL CONTENT OF AYURVEDIC HERBAL MEDICINE PRODUCTS

    Case reports of individuals taking Ayurvedic herbal medicine products (HMPs) suggest that they may contain lead, mercury, and/or arsenic. We analyzed the heavy metal content of Ayurvedic HMPs manufactured in India and Pakistan, available in South Asian grocery stores in the Bost...

  1. Iron Drinking Water Pipe Corrosion Products: Concentrators of Toxic Metals

    2013-01-01

    health risk. In addition Pb corrosion products may be sinks for other metals such as chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn). These...Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation: Application to the Speciation of Vanadium in Oxide Phases from Steel Slag ’, Journal

  2. Energy efficiency improvement target for SIC 34 - fabricated metal products

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-03-15

    A March 15, 1977 revision of a February 15, 1977 document on the energy improvement target for the Fabricated Metal Products industry (SIC 34) is presented. A net energy savings in 1980 of 24% as compared with 1972 energy consumption in SIC 34 is considered a realistic goal. (ERA citation 04:045008)

  3. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  4. Liquid metal reactor development. Development of LMR coolant technology

    Nam, H. Y.; Choi, S. K.; Hwang, J. s.; Lee, Y. B.; Choi, B. H.; Kim, J. M.; Kim, Y. G.; Kim, M. J.; Lee, S. D.; Kang, Y. H.; Maeng, Y. Y.; Kim, T. R.; Park, J. H.; Park, S. J.; Cha, J. H.; Kim, D. H.; Oh, S. K.; Park, C. G.; Hong, S. H.; Lee, K. H.; Chun, M. H.; Moon, H. T.; Chang, S. H.; Lee, D. N.

    1997-07-15

    Following studies have been performed during last three years as the 1.2 phase study of the mid and long term nuclear technology development plan. First, the small scale experiments using the sodium have been performed such as the basic turbulent mixing experiment which is related to the design of a compact reactor, the flow reversal characteristics experiment by natural circulation which is necessary for the analysis of local flow reversal when the electromagnetic pump is installed, the feasibility test of the decay heat removal by wall cooling and the operation of electromagnetic pump. Second, the technology of operation mechanism of sodium facility is developed and the technical analysis and fundamental experiments of sodium measuring technology has been performed such as differential pressure measuring experiment, local flow rate measuring experimenter, sodium void fraction measuring experiment, under sodium facility, the free surface movement experiment and the side orifice pressure drop experiment. A new bounded convection scheme was introduced to the ELBO3D thermo-hydraulic computer code designed for analysis of experimental result. A three dimensional computer code was developed for the analysis of free surface movement and the analysis model of transmission of sodium void fraction was developed. Fourth, the small scale key components are developed. The submersible-in-pool type electromagnetic pump which can be used as primary pump in the liquid metal reactor is developed. The SASS which uses the Curie-point electromagnet and the mock-up of Pantograph type IVTM were manufactured and their feasibility was evaluated. Fifth, the high temperature characteristics experiment of stainless steel which is used as a major material for liquid metal reactor and the material characteristics experiment of magnet coil were performed. (author). 126 refs., 98 tabs., 296 figs.

  5. THE RESEARCH OF THE AMOUNT OF HEAVY METALS AND NITROSO COMPOUNDS IN CONCENTRATED TOMATO PRODUCTS

    V.V. Shutyuk

    2016-12-01

    Full Text Available The constant selling race results in need for improving the quality of nutrition products among in-house food and pharmaceutical processing industries, which is an all-important key to success on the consumer market. This requires constant improvement of the product producing technologies. The topical problem of quality is the presence of heavy metals and nitroso compounds in the products. The research aimed at studying the changes in the heavy metal concentration levels (including Zn, Cu, Pb in tomato products at their thickening has been conducted at the national University of Food Technologies. On the basis of the received results the relationship between the lead, copper, zinc, nitrosocompounds and the solid substances’ amount has been established. The conducted research allowed us to ascertain the fact that the amount of heavy metals and nitroso compounds in raw materials for the concentrated tomato products to be ofhigh quality must not exceed the values of 18…35 % of the limiting concentration.

  6. Advanced technologies for decontamination and conversion of scrap metals

    Muth, T.R.; Moore, J.; Olson, D.; Mishra, B.

    1994-01-01

    Recycle of radioactive scrap metals (RSM) from decommissioning of DOE uranium enrichment and nuclear weapons manufacturing facilities is mandatory to recapture the value of these metals and avoid the high cost of disposal by burial. The scrap metals conversion project detailed below focuses on the contaminated nickel associated with the gaseous diffusion plants. Stainless steel can be produced in MSC's vacuum induction melting process (VIM) to the S30400 specification using nickel as an alloy constituent. Further the case alloy can be rolled in MSC's rolling mill to the mechanical property specification for S30400 demonstrating the capability to manufacture the contaminated nickel into valuable end products at a facility licensed to handle radioactive materials. Bulk removal of Technetium from scrap nickel is theoretically possible in a reasonable length of time with the high calcium fluoride flux, however the need for the high temperature creates a practical problem due to flux volatility. Bulk decontamination is possible and perhaps more desirable if nickel is alloyed with copper to lower the melting point of the alloy allowing the use of the high calcium fluoride flux. Slag decontamination processes have been suggested which have been proven technically viable at the Colorado School of Mines

  7. Cost-saving production technologies and partial ownership

    Juan Carlos Barcena-Ruiz; Norma Olaizola

    2007-01-01

    This work analyzes the incentives to acquire cost-saving production technologies when cross-participation exists at ownership level. We show that cross-participation reduces the incentives to adopt the cost-saving production technology.

  8. 40 CFR Appendix A to Part 438 - Typical Products in Metal Products and Machinery Sectors

    2010-07-01

    ... INDUSTRIAL EQUIPMENT Air & Gas Compressors Automatic Vending Machines Ball & Roller Bearings Blowers... Fields, & Services BUS & TRUCK Bus Terminal & Service Facilities Courier Services, Except by Air Freight... Work Bolts, Nuts, Screws, Rivets & Washers Crowns & Closures Cutlery Fabricated Metal Products...

  9. Metal stress in zooplankton diapause production: post-hatching response.

    Aránguiz-Acuña, Adriana; Pérez-Portilla, Pablo

    2017-04-01

    Aquatic organisms commonly respond to harsh conditions by forming diapausing stages, which enable populations to survive adverse periods forming egg banks. Production of diapausing eggs is frequently observed in monogonont rotifers, previously changing from asexual to partial sexual reproduction (mixis). In despite that zooplankton are frequently used in ecotoxicological assessment because of their sensitivity to various toxicants and their important role in the ecosystems, toxicity evaluations often consider the directly exposed population produced by parthenogenetic reproduction, exclusively. We assessed experimentally effects of exposure to metals on mixis delay and fitness of hatchlings of the rotifer Brachionus plicatilis obtained from a brackish water lagoon with high metal content, especially copper. We show that sub-lethal concentrations of copper affected traits related to sexual reproduction and diapausing egg production in the rotifer. Copper addition did not delay the start of mixis, suggesting that rapid initiation of mixis is promoted in risky environments, according to the hypothesis of mixis as an escape strategy. Higher investment in mixis was obtained when individuals were exposed to metal. Addition of copper negatively affected the hatching success of diapausing eggs and performance of hatchlings. Nevertheless, these effects were greater for individuals formed in non-metal conditions, suggesting an adaptive advantage of populations from natural sediments exposed to copper. These results highlight the ecological and evolutionary consequences of the presence of metals in freshwater environments by modulating diapause adaptive efficacy and the selective process in egg banks.

  10. Projection display technology and product trends

    Kahn, Frederic J.

    1999-05-01

    Major technology and market trends that could generate a 20 billion dollar electronic projector market by 2010 are reviewed in the perspective of recent product introductions. A log linear analysis shows that the light outputs of benchmark transportable data video projectors have increased at a rate of almost 90 percent per year since 1993. The list prices of these same projectors have decreased at a rate of over 40 percent per year. The tradeoffs of light output vs. resolution and weight are illustrated. Recent trends in projector efficacy vs. year are discussed. Lumen output per dollar of list price is shown to be a useful market metric. Continued technical advances and innovations including higher throughput light valve technologies with integrated drivers, brighter light source, field sequential color, integrated- and micro-optical components, and aerospace materials are likely to sustain these trends. The new technologies will enable projection displays for entertainment and computer applications with unprecedented levels of performance, compactness, and cost-effectiveness.

  11. The release of fission products from uranium metal: a review

    Minshall, P.C.

    1989-03-01

    The literature on the release of fission products as gaseous species from irradiated uranium metal in oxidising atmospheres has been reviewed. Release of actinides and of fission products as spalled particulate were not considered. Data is given on the release in air, carbon dioxide, steam and mixtures of steam and air. The majority of data discussed lie between 800 and 1200 0 C though some results for xenon, krypton and iodine releases below 800 0 C are given. Two measures of fission product release are discussed: the release fraction, F(tot), which is the ratio of the total release to the initial inventory, and the fractional release, F(ox), which is the fraction released from the oxidised metal. The effect of burn-up, atmosphere and temperature on F(tot) and F(ox) is examined and the conditions under which the release fraction, F(tot) is proportional to the extent of oxidation discussed. (author)

  12. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology

    Estrada-Ruiz, R.H., E-mail: rhestrada@itsaltillo.edu.mx; Flores-Campos, R., E-mail: rcampos@itsaltillo.edu.mx; Gámez-Altamirano, H.A., E-mail: hgamez@itsaltillo.edu.mx; Velarde-Sánchez, E.J., E-mail: ejvelarde@itsaltillo.edu.mx

    2016-07-05

    Highlights: • Small sizes of particles are required in order to separate the different fractions. • Inverse flotation process is an efficient green technology to separate fractions. • Superficial air velocity is the main variable in the inverse flotation process. • Inverse flotation is a green process because the pulṕs pH is 7.0 during the test. - Abstract: The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained.

  13. Development of fission Mo production technology

    Kim, B. K.; Park, K. B.; Jun, B. J.; Park, J. H.; Choung, W. M.; Lee, K. I.; Woo, M. S.; Whang, D. S.; Kim, Y. K.; Yoo, J. H.; Sohn, D. S.; Lee, Y. W.; Na, S. H.; Koo, Y. H.; Hwang, D. H.; Joo, P. K.

    1997-08-01

    The feasibility study is accomplished in this project for the development of fission moly production. The KAERI process proposed for development in KAERI is discussed together with those of the American Cintichem and Russian IPPE, each of which would be plausible for introduction whenever the indigenous development is not much feasible. For the conceptual design of the KAERI irradiation target, analysis method is set up and some preliminary analysis is performed accordingly for the candidate design. To establish chemical process concepts for the afore-mentioned three processes, characteristics, operation conditions, and the management of the generated wastes are investigated. Basic requirements of hotcell facilities for chemical processing and a possible way of utilizing the existing hotcells are discussed in parallel with the counter-measures for the construction of new hotcell facilities. Various conditions of target irradiation for fission moly production in Hanaro are analyzed. Plan for introduction of the relevant technology introduction and for procurement of highly enriched uranium are considered. On the basis of assuming some conditions, the economic feasibility study for fission moly production is also overviewed. (author). 22 refs., 28 tabs., 24 figs

  14. New elements in production technology and operations

    Melberg, O.

    1995-01-01

    The title of this presentation embraces quite a wide scope, however, focus will be on Mobile Production Systems (MPSs) and in particular on Floating Production, Storage and Offloading Units (FPSOs), for which there is presently a remarkable boost in interest particularly in the North Sea area. Over the last 20 years, pioneered by the Argyll TW 58 in 1975, 11 mobile systems have been/are active in the North Sea, i.e. a growth of one for each second year. In 1994 alone a number of eight mobile production systems were contracted of which seven were FPSOs. This boost is following nine years of successful operation of the Petrojarl 1 and is also clearly linked to the success of the Kerr-McGee's Gryphon A project. The title of this presentation reflects new elements in this business; the upturn in interest for FPSOs introduces new ways of thinking and acting. In this paper, the new elements are divided into the general trends; new commercial elements and new technological elements

  15. New Joining Technology for Optimized Metal/Composite Assemblies

    Holger Seidlitz

    2014-01-01

    Full Text Available The development of a new joining technology, which is used to manufacture high strength hybrid constructions with thermoplastic composites (FRP and metals, is introduced. Similar to natural regulation effects at trees, fibers around the FRP joint become aligned along the lines of force and will not be destroyed by the joining process. This is achieved by the local utilization of the specific plastic flow properties of the FRT and metal component. Compared with usual joining methods—such as flow drill screws, blind and self-piercing rivets—noticeably higher tensile properties can be realized through the novel process management. The load-bearing capability increasing effect could be proved on hybrid joints with hot-dip galvanized steel HX420LAD and orthotropic glass—as well as carbon—fiber reinforced plastics. The results, which were determined in tensile-shear and cross-shear tests according to DIN EN ISO 14273 and DIN EN ISO 14272, are compared with holding loads of established joining techniques with similar joining point diameter and material combinations.

  16. Bioethanol production from recovered napier grass with heavy metals.

    Ko, Chun-Han; Yu, Fan-Chun; Chang, Fang-Chih; Yang, Bing-Yuan; Chen, Wen-Hua; Hwang, Wen-Song; Tu, Ta-Chih

    2017-12-01

    Using plants to absorb and accumulate heavy metals from polluted soil, followed by the recycling of explants containing heavy metals, can help achieve the goal of reverting contaminated soil to low heavy-metal content soil. However, the re-use of recovered explants can also be problematic. Meanwhile, bioethanol has become a popular energy source. In this study, napier grass was used for the remediation of soil contaminated with heavy metals (artificially contaminated soil). The influence of bioethanol production from napier grass after phytoremediation was also investigated. The concentration of Zn, Cd, and Cr in the contaminated soil was 1000, 100, and 250 mg/kg, respectively. After napier grass phytoremediation, the concentration (dry biomass) of Zn, Cd, and Cr in the explants was 2701.97 ± 173.49, 6.1 ± 2.3, and 74.24 ± 1.42 mg/kg, respectively. Biomass production in the unpolluted soil was 861.13 ± 4.23 g. The biomass production ratio in high Zn-polluted soil was only 3.89%, while it was 4.68% for Cd and 21.4% for Cr. The biomass obtained after napier grass phytoremediation was pretreated using the steam explosion conditions of 180 °C, for 10 min, with 1.5% H 2 SO 2 , followed by enzymatic hydrolysis. The efficiency of enzymatic hydrolysis for Zn-polluted biomass was 90% of the unpolluted biomass, while it was 77% for Cd, and approximately the same for Cr. The fermentation efficiency of the heavy-metal-containing biomass was higher than the control biomass. The fermentation ethanol concentration obtained was 8.69-12.68, 13.03-15.50, and 18.48-19.31 g/L in Zn, Cd, and Cr environments, respectively. Results show that the heavy metals had a positive effect on bacteria fermentation. However, the fermentation efficiency was lower for biomass with severe heavy metal pollution. Thus, the utilization of napier grass phytoremediation for bioethanol production has a positive effect on the sustainability of environmental resources. Copyright © 2017

  17. Technology Model of Aquaculture Production System

    Hor, K. W.; Salleh, S. M.; Abdullah; Ezree, Mohd; Zaman, I.; Hatta, M. H.; Ahmad, S.; Ismail, A. E.; Mahmud, W. A. W.

    2017-10-01

    The high market demand has led to the rapid growth in fish farming. The young generation are inexperienced in determining the estimated results of fish farming and the preparation of fish pond during the period of fish farming. These need a complete guide as their reference which includes the knowledge of fish farming. The main objective of this project is to develop a practical design of real pond appropriate with aquaculture technology and fish farming production. There are three parts of study in this project which include fish farming cage, growth of fish and water quality of fish farming pond. Few of experiments were carried out involved the collection data in terms of growth of fish and parameters of water quality.

  18. Technology for treatment of decontamination products

    Kavkhuta, G.A.; Rozdzyalovskaya, L.F.

    1994-01-01

    The research concerning the methods of management and processing of products generated as the result of post Chernobyl decontamination activities is being carried out by the Institute of Radioecological Problems of Belarus Academy of Science (IRP) in the framework of the Belarus National Programme. The main goal of this work is choice and development of an appropriate system for treatment of the decontamination radwastes, based on currently available information and experimental studies. This paper presents the technological schemes being studied for treating the post-Chernobyl liquid and solid wastes and will also briefly discuss the approach being used to settle a problem on collecting/management of low-level radioactive ash wastes, generated from the use of contaminated fuel

  19. Organisational change and the productivity effects of green technology adoption

    Hottenrott, Hanna; Rexhäuser, Sascha; Veugelers, Reinhilde

    2016-01-01

    This study investigates induced productivity effects of firms introducing new environmental technologies. The literature on within-firm organisational change and productivity suggests that firms can achieve higher productivity gains from adopting new technologies if they adapt their organisational structures. Such complementarity effects may be of particular importance for the adoption of greenhouse gas (GHG) abatement technologies. The adoption of these technologies is often induced by publi...

  20. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  1. Aerial photography in peat production technology

    Tervo, M.

    1998-01-01

    In this project, possibilities of using aerial photography in peat technology were studied experimentally, the frequency of self-heating in peat stockpiles was surveyed and the effect of compacting on the inner temperature in a self-heated milled peat stockpile was studied. Air photographs can be used in several sub-fields of the peat production. On the basis of these photos it is possible to draw conclusions from the environmental impacts of peat production, from conditions in the peat field, and from qualitative and moisture differences of surface peat. In addition, aerial photography can be utilised in updating bog maps. On the basis of aerial thermal photography in autumns 1987 - 1993, 29 % of milled peat stockpiles, and 4 % of sod peat stockpiles were found to be self-heated. The susceptibility to self-heating varied at different peatlands. The effect of compacting with a bulldozer was studied at three self-heated test stock-piles, two of which were compacted. The inner temperatures in the test stockpiles decreased significantly over the three-month monitoring period. The falls in the inner temperature of all three stockpiles were identical. Compacting did not have any significant effect on the temperature fall or on the rate of fall. The number of test stockpiles (3) is insufficient to give any statistical reliability. (orig.)

  2. Temperature-dependence of Threshold Current Density-Length Product in Metallization Lines: A Revisit

    Duryat, Rahmat Saptono; Kim, Choong-Un

    2016-01-01

    One of the important phenomena in Electromigration (EM) is Blech Effect. The existence of Threshold Current Density-Length Product or EM Threshold has such fundamental and technological consequences in the design, manufacture, and testing of electronics. Temperature-dependence of Blech Product had been thermodynamically established and the real behavior of such interconnect materials have been extensively studied. The present paper reviewed the temperature-dependence of EM threshold in metallization lines of different materials and structure as found in relevant published articles. It is expected that the reader can see a big picture from the compiled data, which might be overlooked when it was examined in pieces. (paper)

  3. Hydrometallurgical Approach for Leaching of Metals from Copper Rich Side Stream Originating from Base Metal Production

    Udit Surya Mohanty

    2018-01-01

    Full Text Available Pyrometallurgical metal production results in side streams, such as dusts and slags, which are carriers of metals, though commonly containing lower metal concentrations compared to the main process stream. In order to improve the circular economy of metals, selective leaching of copper from an intermediate raw material originating from primary base metal production plant was investigated. The raw material investigated was rich in Cu (12.5%, Ni (2.6%, Zn (1.6%, and Fe (23.6% with the particle size D80 of 124 µm. The main compounds present were nickel ferrite (NiFe2O4, fayalite (Fe2SiO4, cuprite (Cu2O, and metallic copper. Leaching was studied in 16 different solutions. The results revealed that copper phases could be dissolved with high yield (>90% and selectivity towards nickel (Cu/Ni > 7 already at room temperature with the following solutions: 0.5 M HCl, 1.5 M HCl, 4 M NaOH, and 2 M HNO3. A concentration of 4 M NaOH provided a superior selectivity between Cu/Ni (340 and Cu/Zn (51. In addition, 1–2 M HNO3 and 0.5 M HCl solutions were shown to result in high Pb dissolution (>98%. Consequently, 0.5 M HCl leaching is suggested to provide a low temperature, low chemical consumption method for selective copper removal from the investigated side stream, resulting in PLS (pregnant leach solution which is a rich in Cu and lead free residue, also rich in Ni and Fe.

  4. Metals and cocoa products: a study on characterization of toxic and essential metals in chocolates

    Rahman, S.; Husnain, S.M.

    2012-01-01

    Metals (Pb, Cd, Ni, Fe, Cu, Zn and Mn) were assessed in 32 commonly consumed cocoa products (chocolates) prepared by different national and multinational companies. Significant differences were observed between the micro element contents of these varieties (P < 0.01). Frequent consumption of chocolates can enhance the intake of toxic metals in children. The concentration of Pb and Cd in cocoa powder is found to be highest 492 and 197 mu g/L followed by cocoa based chocolates 306 and 46.8 mu g/L, sugar based chocolates 209.8 and 40.3 mu g/L whereas it is least in milk based chocolates samples 88.3 and 33 mu g/L respectively. Weekly intake of toxic metals Pb, Cd and Ni was also calculated. Mean concentration of Pb and Cd was found below the provisional tolerable weekly intake defined by FAO/WHO. All essential elements were assessed for their weekly intake with the dietary reference intakes (DRI). Results were validated through the analysis of certified reference materials and determined metals concentrations were quite in good agreement with certified levels. Data was interpreted through cluster analysis and pattern recognition as depicted. The concentrations of Pb, Cd, Ni and Fe were found to be highest in the cocoa-based followed by milk-based and sugar-based chocolates. The daily intake of cocoa-based chocolates must be reduced as lead and cadmium intake can otherwise cross the limits set by Codex Alimentarius (FAO/WHO 2006). Raw materials should be checked before use for metal contents in order to decrease the concentrations of these metals in final chocolate products. (Orig./A.B.)

  5. The computer-aided design of rubber-metal products

    Pavlo S. Shvets

    2015-12-01

    Full Text Available The important problem in design of rubber-metal products is the optimization of their mass without sacrificing of proportionality factor is in the limits of standard. Aim: The aim of this work is to improve the computer-aided systems by development and implementation of improved optimization method in rubber-metal CAD systems for designers based on the reverse optimization. Materials and Methods: The paper studies the matters of computer-aided structural design of technical composite products composed of anisotropic materials that are essentially different in properties. Results: The structure of CAD systems for designers solving the problems of such design is offered and the work principles of its subsystems are described. It is shown that complicated systems optimization in CAD systems must consider as restrictions the entitative connection between separate elements of these systems within the area of the optimizing arguments. Conclusions: The problem of the “reverse” optimization when objective functions are the connectivity area parameters is considered. In many cases, this allows receiving solutions that are more effective during the computer-aided design process. The developed CAD system for designers was used during the production of rubber-metal shock absorbers at the Odessa Rubber Technical Articles Plant. The positive technical and economic effect was obtained.

  6. Size characterization of metal oxide nanoparticles in commercial sunscreen products

    Bairi, Venu Gopal; Lim, Jin-Hee; Fong, Andrew; Linder, Sean W.

    2017-07-01

    There is an increase in the usage of engineered metal oxide (TiO2 and ZnO) nanoparticles in commercial sunscreens due to their pleasing esthetics and greater sun protection efficiency. A number of studies have been done concerning the safety of nanoparticles in sunscreen products. In order to do the safety assessment, it is pertinent to develop novel analytical techniques to analyze these nanoparticles in commercial sunscreens. This study is focused on developing analytical techniques that can efficiently determine particle size of metal oxides present in the commercial sunscreens. To isolate the mineral UV filters from the organic matrices, specific procedures such as solvent extraction were identified. In addition, several solvents (hexane, chloroform, dichloromethane, and tetrahydrofuran) have been investigated. The solvent extraction using tetrahydrofuran worked well for all the samples investigated. The isolated nanoparticles were characterized by using several different techniques such as transmission electron microscopy, scanning electron microscopy, dynamic light scattering, differential centrifugal sedimentation, and x-ray diffraction. Elemental analysis mapping studies were performed to obtain individual chemical and morphological identities of the nanoparticles. Results from the electron microscopy techniques were compared against the bulk particle sizing techniques. All of the sunscreen products tested in this study were found to contain nanosized (≤100 nm) metal oxide particles with varied shapes and aspect ratios, and four among the 11 products were showed to have anatase TiO2.

  7. Design technology co-optimization for 14/10nm metal1 double patterning layer

    Duan, Yingli; Su, Xiaojing; Chen, Ying; Su, Yajuan; Shao, Feng; Zhang, Recco; Lei, Junjiang; Wei, Yayi

    2016-03-01

    Design and technology co-optimization (DTCO) can satisfy the needs of the design, generate robust design rule, and avoid unfriendly patterns at the early stage of design to ensure a high level of manufacturability of the product by the technical capability of the present process. The DTCO methodology in this paper includes design rule translation, layout analysis, model validation, hotspots classification and design rule optimization mainly. The correlation of the DTCO and double patterning (DPT) can optimize the related design rule and generate friendlier layout which meets the requirement of the 14/10nm technology node. The experiment demonstrates the methodology of DPT-compliant DTCO which is applied to a metal1 layer from the 14/10nm node. The DTCO workflow proposed in our job is an efficient solution for optimizing the design rules for 14/10 nm tech node Metal1 layer. And the paper also discussed and did the verification about how to tune the design rule of the U-shape and L-shape structures in a DPT-aware metal layer.

  8. Problems and Instruments of Product and Technological Diversification of Manufacturing

    Kuzmin Oleg Ye.

    2015-03-01

    Full Text Available The purpose of the article involves identification of objectives and development of instruments for product and technological diversification aimed at updating the range of products and introducing innovative technologies, which will ensure a high level of competitiveness and create preconditions for steady development of the enterprise. As a result of studying the literary sources the objectives and instruments for development of enterprises by means of product and technological diversification have been defined. The article suggests effective instruments of product and technological diversification of manufacturing, namely: the model of expansion of the product range, multi-criteria model of optimization of the product range, a modified model of Kantorovich-Koopmans for implementing new production technologies with set limits on the product output. Further research relate to formation of instruments for manufacturing diversification by means of introducing new types of production.

  9. Report on results concerning development of supermetal technology, R and D of offshore oil production supporting system, and development of technology for aluminum-based high-anticorrosive microstructured metallic material (FY2000); Super metal no gijutsu kaihatsu seika hokokusho (2000 nendo). Kaitei sekiyu seisan shien system kenkyu kaihatsu (Aluminium kei kotaishokusei bisai kozo seigyo kinzoku zairyo gijutsu kaihatsu)

    NONE

    2001-03-01

    With the purpose of developing high strength and high-anticorrosive aluminum-based material through microstructure control, R and D was conducted, with fiscal 2000 results compiled. In the research of grain refinement mechanism, molten metal rolled stock was experimentally produced in which Mg content was varied 0-2.5 mass % with Al-2.5 mass % Mn as its base. As a result, a microstructure with an average grain size of about 3 {mu}m was obtained by processing the alloy through homogenization at 550 degrees C, cold rolling by 91% and the final treatment at 350 degrees C without Mg addition. Addition of Mg increased square grain boundaries in the microstructure, raising proof stress to about 180 MPa in Al-2.5%Mn-2.5%Mg alloy. In the research of development of the machining process, a rapid heating process was performed on a typical aluminum alloy, with the effect examined, by an alloy system or a plate thickness, on the electric power used and on the temperature reached. A rapidly heated aluminum alloy plate turned to have a microstructure with equi-axed grains of a uniform size, compared with a salt bath processed material heated at the same temperature. (NEDO)

  10. Recent developments in high purity niobium metal production at CBMM

    Abdo, Gustavo Giovanni Ribeiro; Sousa, Clovis Antonio de Faria; Guimarães, Rogério Contato; Ribas, Rogério Marques; Vieira, Alaércio Salvador Martins; Menezes, Andréia Duarte; Fridman, Daniel Pallos; Cruz, Edmundo Burgos

    2015-01-01

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM’s position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM’s ingots is for the manufacture of particle accelerators (superconducting radio frequency – SRF – cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world’s largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient

  11. Nano-enabled environmental products and technologies - opportunities and drawbacks

    Møller Christensen, Frans; Brinch, Anna; Kjølholt, Jesper

    The project aims to investigate the benefits for health and environment that the use of nanomaterials in products and technologies may have. More specifically, the project provides an overview of the most relevant nano-enabled environmental technologies, different types of products and technologies...... on the (Danish) market, as well as products and technologies, which are still in R&D and it will provide a qualitative overview of health and environmental pros and cons of these technologies. The project has focused on technologies applied in: 1) purification of water and wastewater, 2) remediation of soil...

  12. SEMICONDUCTOR TECHNOLOGY: TaN wet etch for application in dual-metal-gate integration technology

    Yongliang, Li; Qiuxia, Xu

    2009-12-01

    Wet-etch etchants and the TaN film method for dual-metal-gate integration are investigated. Both HF/HN O3/H2O and NH4OH/H2O2 solutions can etch TaN effectively, but poor selectivity to the gate dielectric for the HF/HNO3/H2O solution due to HF being included in HF/HNO3/H2O, and the fact that TaN is difficult to etch in the NH4OH/H2O2 solution at the first stage due to the thin TaOxNy layer on the TaN surface, mean that they are difficult to individually apply to dual-metal-gate integration. A two-step wet etching strategy using the HF/HNO3/H2O solution first and the NH4OH/H2O2 solution later can fully remove thin TaN film with a photo-resist mask and has high selectivity to the HfSiON dielectric film underneath. High-k dielectric film surfaces are smooth after wet etching of the TaN metal gate and MOSCAPs show well-behaved C-V and Jg-Vg characteristics, which all prove that the wet etching of TaN has little impact on electrical performance and can be applied to dual-metal-gate integration technology for removing the first TaN metal gate in the PMOS region.

  13. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    2010-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to discharges...

  14. Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production

    Bartošová, Alica; Blinová, Lenka

    2017-06-01

    Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI) was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI), and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.

  15. Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production

    Bartošová Alica

    2017-06-01

    Full Text Available Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI, and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.

  16. Technology adoption and the impact on average productivity

    Hellegers, P.J.G.J.; Zeng, D.; Zilberman, D.

    2011-01-01

    In this paper, a framework is developed to analyze how the specifications of new technologies and the heterogeneity of micro-units of production affect the input use, the adoption pattern, and the productivity of inputs. It shows that asset-productivity-enhancing (APE) technologies tend to be

  17. Technology and equipment based on induction melters with ''cold'' crucible for reprocessing active metal waste

    Pastushkov, V.G.; Molchanov, A.V.; Serebryakov, V.P.; Smelova, T.V.; Shestoperov, I.N.

    2000-01-01

    The operation and, particularly, the decommissioning of NPPs and radiochemical plants result in substantial arisings of radioactive metal waste (RAMW) having different activity levels (from 5 x 10 -4 to ∼ 40 Ci/kg). The paper reviews the specific features of the technology and equipment used to melt RAMW in electric arc and induction furnaces with ceramic or 'cold' crucibles. The experimentally determined and calculated data are given on the level to which RAMW is decontaminated from the main radionuclides as well as on the distribution of the latter in the products of melting (ingot, slag, gaseous phase). Special attention is focused on the process and the facility for the induction-slag melting of RAMW in furnaces equipped with 'cold' crucibles. The work is described that is under way at SSC RF VNIINM to master the technology of melting simulated high activity level Zr-alloy and stainless steel waste. (authors)

  18. A comparison of technologies for remediation of heavy metal contaminated soils

    Khalid , Sana; Shahid , Muhammad; Niazi , Nabeel Khan; Murtaza , Behzad; Bibi , Irshad; Dumat , Camille

    2016-01-01

    International audience; Soil contamination with persistent and potentially (eco)toxic heavy metal(loid)s is ubiquitous around the globe. Concentration of these heavy metal(loid)s in soil has increased drastically over the last three decades, thus posing risk to the environment and human health. Some technologies have long been in use to remediate the hazardous heavy metal(loid)s. Conventional remediation methods for heavy metal(loid)s are generally based on physical, chemical and biological a...

  19. THE MINING ACTIVITIES AND THE METAL PRODUCTION IN ARYCANDA IN LYCIA

    B.S. Alptekin Oransay

    2012-01-01

    Arycanda lies in eastern Lycia, which is in 35.th km of the modern Elmalı – Finike highway. During the excavations since 1971, there were found so many metal artifacts and metal slags especially from the late Roman layers in the city. These finds revealed that there was a specific metal production in Arykanda. This production covers not only the tool production from pure metal, but also includes metal purification process around the city. This metal production industry of Arykanda adds so man...

  20. Agent Technology in Agile Multiparallel Manufacturing and Product Support

    van Moergestel, L.J.M.

    2014-01-01

    The thesis describes the application of agent technology in product manufacturing and product support. Important issues in the requirements of modern production are short time to market, requirement-driven production and low cost small quantity production. To meet these requirements special low cost

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DUST SUPPRESSANT PRODUCTS: SYNTECH PRODUCTS CORPORATION'S PETROTAC

    Dust suppressant products used to control particulate emissions from unpaved roads are among the technologies evaluated by the Air Pollution Control Technology (APCT) Verification Center, part of the U.S. Environmental Protection Agency's Environmental Technology Verification (ET...

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DUST SUPPRESSANT PRODUCTS: SYNTECH PRODUCTS CORPORATION'S TECHSUPPRESS

    Dust suppressant products used to control particulate emissions from unpaved roads are among the technologies evaluated by the Air Pollution Control Technology (APCT) Verification Center, part of the U.S. Environmental Protection Agency's Environmental Technology Verification (ET...

  3. Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    Byrne, Stephen C.; Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

  4. Research on Digital Product Modeling Key Technologies of Digital Manufacturing

    DING Guoping; ZHOU Zude; HU Yefa; ZHAO Liang

    2006-01-01

    With the globalization and diversification of the market and the rapid development of Information Technology (IT) and Artificial Intelligence (AI), the digital revolution of manufacturing is coming. One of the key technologies in digital manufacturing is product digital modeling. This paper firstly analyzes the information and features of the product digital model during each stage in the product whole lifecycle, then researches on the three critical technologies of digital modeling in digital manufacturing-product modeling, standard for the exchange of product model data and digital product data management. And the potential signification of the product digital model during the process of digital manufacturing is concluded-product digital model integrates primary features of each stage during the product whole lifecycle based on graphic features, applies STEP as data exchange mechanism, and establishes PDM system to manage the large amount, complicated and dynamic product data to implement the product digital model data exchange, sharing and integration.

  5. FREVAP-6, Metal Fission Products Release from HTGR Fuel Elements

    Pierce, V.H.

    2005-01-01

    1 - Description of problem or function: The FREVAP type of code for estimating the release of longer-lived metallic fission products from HTGR fuel elements has been developed to take into account the combined effects of the retention of metallic fission products by fuel particles and the rather strong absorption of these fission products by the graphite of the fuel elements. Release calculations are made on the basis that the loss of fission product nuclides such as strontium, cesium, and barium is determined by their evaporation from the graphite surfaces and their transpiration induced by the flowing helium coolant. The code is devised so that changes of fission rate (fuel element power), fuel temperature, and graphite temperature may be incorporated into the calculation. Temperature is quite important in determining release because, in general, both release from fuel particles and loss by evaporation (transpiration) vary exponentially with the reciprocal of the absolute temperature. NESC0301/02: This version differs from the previous one in the following points: The source and output files were converted from BCD to ASCII coding. 2 - Method of solution: A problem is defined as having a one-dimensional segment made up of three parts - (1) the fission product source (fuel particles) in series with, (2) a non-source and absorption part (element graphite) and (3) a surface for evaporation to the coolant (graphite-helium interface). More than one segment may be connected (possibly segments stacked axially) by way of the coolant. At any given segment, a continuity equation is solved assuming equilibrium between the source term, absorption term, evaporation at coolant interface and the partial pressure of the fission product isotope in the coolant. 3 - Restrictions on the complexity of the problem - Maxima of: 5 isotopes; 10 time intervals for time-dependent variable; 49 segments (times number of isotopes); 5 different output print time-steps

  6. Technological challenges in thermal plasma production

    Ramakrishnan, S.

    1995-01-01

    Thermal plasmas, generated by electric arc discharges, are used in a variety of industrial applications. The electric arc is a constricted electrical discharge with a high temperature in the range 6000-25,000 K. These characteristics are useful in plasma cutting, spraying, welding and specific areas of material processing. The thermal plasma technology is an enabling process technology and its status in the market depends upon its advantages over competing technologies. A few technological challenges to enhance the status of plasma technology are to improve the utilisation of the unique characteristics of the electric arc and to provide enhanced control of the process. In particular, new solutions are required for increasing the plasma-material interaction, controlling the electrode roots and controlling the thermal power generated by the arcing process. In this paper, the advantages of plasma technology, its constraints and future challenges for technology developments are highlighted. 36 refs., 14 figs

  7. Preliminary design and estimate of capital and operating costs for a production scale application of laser decontamination technology

    Pang, Ho-ming; Edelson, M.C.

    1994-01-01

    The application of laser ablation technology to the decontamination of radioactive metals, particularly the surfaces of equipment, is discussed. Included is information related to the design, capital and operating costs, and effectiveness of laser ablation technology, based on commercial excimer and Nd:YAG lasers, for the decontamination of production scale equipment

  8. Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs

    Trianni, Andrea; Cagno, Enrico; Worrell, Ernst

    2013-01-01

    Additional efforts will be needed by European countries to improve the energy efficiency, as with current trends the 20% objective will be missed. Small and medium-sized enterprises (SMEs) manufacturing sector is a promising field, as SMEs are less energy-efficient than larger enterprises. Several studies investigated the barriers to the diffusion of technologies and practices for industrial energy efficiency, but little attention has been paid to understand the factors affecting the perception of such barriers by SMEs. In this multiple case-study, we have investigated 20 Primary Metal manufacturing SMEs in Northern Italy. Economic and information barriers are perceived as the major issues. Interestingly, firm's size, innovativeness of the market in which enterprises operate, as well as product and process innovation are factors affecting barriers to energy efficiency. Differences have been observed within SMEs, especially for information and competence-related barriers. In particular, a more innovative external context in which enterprises operate and a greater production process complexity seem to reduce barriers. Moreover, more product innovative enterprises seem to have a lower perception of behavioral and technology-related barriers. The results of this exploratory investigation provide useful suggestions for policy design and further research on industrial energy efficiency. - highlights: • Economic and Information emerge as the most relevant barriers to energy efficiency. • Market, product and process innovation seem relevant factors affecting barriers. • Firm's size is a factor affecting barriers' perception

  9. Metal Triflates for the Production of Aromatics from Lignin.

    Deuss, Peter J; Lahive, Ciaran W; Lancefield, Christopher S; Westwood, Nicholas J; Kamer, Paul C J; Barta, Katalin; de Vries, Johannes G

    2016-10-20

    The depolymerization of lignin into valuable aromatic chemicals is one of the key goals towards establishing economically viable biorefineries. In this contribution we present a simple approach for converting lignin to aromatic monomers in high yields under mild reaction conditions. The methodology relies on the use of catalytic amounts of easy-to-handle metal triflates (M(OTf) x ). Initially, we evaluated the reactivity of a broad range of metal triflates using simple lignin model compounds. More advanced lignin model compounds were also used to study the reactivity of different lignin linkages. The product aromatic monomers were either phenolic C2-acetals obtained by stabilization of the aldehyde cleavage products by reaction with ethylene glycol or methyl aromatics obtained by catalytic decarbonylation. Notably, when the method was ultimately tested on lignin, especially Fe(OTf) 3 proved very effective and the phenolic C2-acetal products were obtained in an excellent, 19.3±3.2 wt % yield. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Production Well Performance Enhancement using Sonication Technology

    Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

    2005-12-31

    The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale

  11. Towards zero waste production in the minerals and metals sector

    Rankin, William J.

    The production of mineral and metal commodities results in large quantities of wastes (solid, liquid and gaseous) at each stage of value-adding — from mining to manufacturing. Waste production (both consumer and non-consumer) is a major contributor to environmental degradation. Approaches to waste management in the minerals industry are largely `after the event'. These have moved progressively from foul-and-flee to dilute-and-disperse to end end-of-pipe treatments. There is now a need to move to approaches which aim to reduce or eliminate waste production at source. Modern waste management strategies include the application of cleaner production principles, the use of wastes as raw materials, the reengineering of process flowsheets to minimise waste production, and use of industrial symbioses through industrial ecology to convert wastes into useful by-products. This paper examines how these can be adopted by the minerals industry, with some recent examples. The financial, technical, systemic and regulatory drivers and barriers are also examined.

  12. Alcohol, biomass energy: technological and economical aspects of production

    Ometto, Joao Guilherme Sabino

    1993-01-01

    This paper presents some technological and economical aspects of sugar cane and alcohol production in Brazil since 1975 until nowadays. The evolution of their production is analysed and the relationship between cost-benefit and ethanol consumption is discussed

  13. Determinants And Impacts Of Poultry Production Technologies On ...

    Determinants And Impacts Of Poultry Production Technologies On Productivity ... unbalanced feeding of poultry and low level of education of poultry farmers. ... were suggested by the study as a means of consolidating the gains of the impact.

  14. Production of metal and metal-ceramic coatings on D-Gun Ob

    Gavrilenko, T.P.; Nikolaev, Y.A.; Ulianitsky, V.Y.

    1995-01-01

    Optimization of the detonation spraying process has been made for the production of metal and metal-ceramics coatings with the D-Gun Ob. Owing to the ability of Ob to work with several fuels and an inert diluent simultaneously, variation of detonation regimes in a wide range is possible, and because of localized powder injection in the D-Gun barrel, high uniformity of parameters of powder particles is achieved. The best conditions for particle heating and acceleration were calculated with the help of mathematical simulation, and the corresponding regimes were realized on D-Gun Ob. High-quality aluminum, copper, nickel, and nickel-chromium-silicon-carbon-boron alloy coatings were produced by using only propane fuel. Chromium carbide with nickel and tungsten carbide with cobalt coatings were produced with addition of acetylene. Optimal efficiency and high bonding strength were achieved for all powders. Data on microhardness, bonding strength, and efficiency are presented

  15. Production Situation and Technology Prospect of Medical Isotopes

    GAO Feng;LIN Li;LIU Yu-hao;MA Xing-jun

    2016-10-01

    Full Text Available The isotope production technology was overviewed, including traditional and newest technology. The current situation of medical isotope production was introduced. The problems faced by isotope supply and demand were analyzed. The future development trend of medical isotopes and technology prospect were put forward. As the most populous country, nuclear medicine develops rapidly, however, domestic isotope mainly relies on imports. The highly productive and relatively safe MIPR is expected to be an effective way to breakthrough the bottleneck of the development of nuclear medicine. Traditional isotope production technologies with reactor can be improved. It's urgent to research and promote new isotope production technologies with reactor. Those technologies which do not depend on reactor will have a bright market prospects.

  16. Polymer filtration: A new technology for selective metals recovery

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.; Wilson, K.V.; Sauer, N.N.; Mullen, K.I.; Lu, M.T.; Jarvinen, J.J.

    1995-04-01

    Polymer Filtration (PF) was evaluated for the recovery of electroplating metal ions (zinc and nickel) from rinse waters. Polymer Filtration combines the use of water-soluble metal-binding polymers and ultrafiltration to concentrate metal ions from dilute rinse water solutions. The metal ions are retained by the polymers; the smaller, unbound species freely pass through the ultrafiltration membrane. By using this process the ultrafiltered permeate more than meets EPA discharge limits. The metal ions are recovered from the concentrated polymer solution by pH adjustment using diafiltration and can be recycled to the original electroplating baths with no deleterious effects on the test panels. Metal-ion recovery is accomplished without producing sludge.

  17. The prospect for recycle of radioactive scrap metals to products for restricted and unrestricted use

    Liby, A.L.

    1995-01-01

    Large quantities of radioactive scrap metals will arise from decontamination and decommissioning of nuclear power plants and DOE facilities. Much of this metal can be easily decontaminated and released to the existing secondary metals industry for recycling. For metal that can not be readily released, recycle into restricted-use end products is an economically attractive alternative to burial as low level radioactive waste. This paper will examine sources and types of scrap metal, technical approaches, potential products, and economics of metals recycle. Construction, licensing, environmental compliance, and possible reuse of existing nuclear facilities for metals recycling will be discussed. (author)

  18. ENVIROMETAL TECHNOLOGIES, INC., METAL-ENHANCED DECHLORINATION OF VOLATILE ORGANIC COMPOUNDS USING AN IN-SITU REACTIVE IRON WALL

    This report summarizes the results of a field demonstration conducted under the SITE program. The technology that was demonstrated was a metal-enhanced dechlorination process developed by EnviroMetal Technologies, Inc. to treat groundwater contaminated with chlorinated volatile ...

  19. Component and Technology Development for Advanced Liquid Metal Reactors

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States)

    2017-01-30

    The following report details the significant developments to Sodium Fast Reactor (SFR) technologies made throughout the course of this funding. This report will begin with an overview of the sodium loop and the improvements made over the course of this research to make it a more advanced and capable facility. These improvements have much to do with oxygen control and diagnostics. Thus a detailed report of advancements with respect to the cold trap, plugging meter, vanadium equilibration loop, and electrochemical oxygen sensor is included. Further analysis of the university’s moving magnet pump was performed and included in a section of this report. A continuous electrical resistance based level sensor was built and tested in the sodium with favorable results. Materials testing was done on diffusion bonded samples of metal and the results are presented here as well. A significant portion of this work went into the development of optical fiber temperature sensors which could be deployed in an SFR environment. Thus, a section of this report presents the work done to develop an encapsulation method for these fibers inside of a stainless steel capillary tube. High temperature testing was then done on the optical fiber ex situ in a furnace. Thermal response time was also explored with the optical fiber temperature sensors. Finally these optical fibers were deployed successfully in a sodium environment for data acquisition. As a test of the sodium deployable optical fiber temperature sensors they were installed in a sub-loop of the sodium facility which was constructed to promote the thermal striping effect in sodium. The optical fibers performed exceptionally well, yielding unprecedented 2 dimensional temperature profiles with good temporal resolution. Finally, this thermal striping loop was used to perform cross correlation velocimetry successfully over a wide range of flow rates.

  20. Heavy Metals in the Vegetables Collected from Production Sites

    Hassan Taghipour

    2013-12-01

    Full Text Available Background: Contamination of vegetable crops (as an important part of people's diet with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20 (Allium ampeloprasumssp. Persicum, onion (n=20 (Allium cepa and tomato (n=18 (Lycopersiconesculentum var. esculentum, were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS after extraction by aqua regia method (drying, grounding and acid digestion. Results: Mean ± SD (mg/kg DW concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respectively. Cr, Cu and Zn were present in all the samples and the highest concentrations were observed in kurrat (leek. Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05 and Zn (P<0.001 among the studied vegetables. Positive correlation was observed between Cd:Cu (R=0.659, P<0.001 Cr:Ni (R=0.326, P<0.05 and Cr:Zn (R=0.308, P<0.05. Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possible health outcomes due to the consumption of contaminated vegetables, it is required to take proper actions for avoiding people's chronic exposure.

  1. An evaluation of technologies for the heavy metal remediation of dredged sediments.

    Mulligan, C N; Yong, R N; Gibbs, B F

    2001-07-30

    Sediments dewatering is frequently necessary after dredging to remediate and treat contaminants. Methods include draining of the water in lagoons with or without coagulants and flocculants, or using presses or centrifuges. Treatment methods are similar to those used for soil and include pretreatment, physical separation, thermal processes, biological decontamination, stabilization/solidification and washing. However, compared to soil treatment, few remediation techniques have been commercially used for sediments. In this paper, a review of the methods that have been used and an evaluation of developed and developing technologies is made. Sequential extraction technique can be a useful tool for determining metal speciation before and after washing. Solidification/stabilization techniques are successful but significant monitoring is required, since the solidification process can be reversible. In addition, the presence of organics can reduce treatment efficiency. Vitrification is applicable for sediments but expensive. Only if a useful glass product can be sold will this process be economically viable. Thermal processes are only applicable for removal of volatile metals, such as mercury and costs are high. Biological processes are under development and have the potential to be low cost. Since few low cost metal treatment processes for sediments are available, there exists significant demand for further development. Pretreatment may be one of the methods that can reduce costs by reducing the volumes of sediments that need to be treated.

  2. Review in Strengthening Technology for Phytoremediation of Soil Contaminated by Heavy Metals

    Wu, Chishan; Zhang, Xingfeng; Deng, Yang

    2017-07-01

    In view of current problems of phytoremediation technology, this paper summarizes research progress for phytoremediation technology of heavy metal contaminated soil. When the efficiency of phytoremediation may not meet the demand in practice of contaminated soil or water. Effective measures should be taken to improve the plant uptake and translocation. This paper focuses on strengthening technology mechanism, which can not only increase the biomass of plant and hyperaccumulators, but also enhance the tolerance and resistance to heavy metals, and application effect of phytoremediation, including agronomic methods, earthworm bioremediation and chemical induction technology. In the end of paper, deficiencies of each methods also be discussed, methods of strengthening technology for phytoremediation need further research.

  3. Technology of pastry products for healthy nutrition purposes

    Zavadynska Olena

    2016-04-01

    Full Text Available The article considers the possibility of using the carrot puree and oil from pumpkin seeds in the preparation of pastry product. Production technology and regulatory documentation for pastry products were developed and nutritional value of products was investigated.

  4. Development of uranium metal targets for 99Mo production

    Wiencek, T.C.; Hofman, G.L.

    1993-10-01

    A substantial amount of high enriched uranium (HEU) is used for the production of medical-grade 99 Mo. Promising methods of producing irradiation targets are being developed and may lead to the reduction or elimination of this HEU use. To substitute low enriched uranium (LEU) for HEU in the production of 99 Mo, the target material may be changed to uranium metal foil. Methods of fabrication are being developed to simplify assembly and disassembly of the targets. Removal of the uranium foil after irradiation without dissolution of the cladding is a primary goal in order to reduce the amount of liquid radioactive waste material produced in the process. Proof-of-concept targets have been fabricated. Destructive testing indicates that acceptable contact between the uranium foil and the cladding can be achieved. Thermal annealing tests, which simulate the cladding/uranium diffusion conditions during irradiation, are underway. Plans are being made to irradiate test targets

  5. Technology geography: studying the relationships between technology, location and productivity

    Steenhuis, H.J.; de Bruijn, E.J.

    2006-01-01

    Operations management, international management, public policy and economic geography are scientific areas which come together in the study of international technology transfer. This study shows how each of these areas has its own central issues but also has specific parts that are relevant for

  6. Development of New Materials and Technologies for Welding and Surfacing at Research and Production Center 'Welding Processes and Technologies'

    Kozyrev, N A; Kryukov, R E; Galevsky, G V; Titov, D A; Shurupov, V M

    2015-01-01

    The paper provides description of research into the influence of new materials and technologies on quality parameters of welds and added metal carried out at research and production center «Welding processes and technologies».New welding technologies of tanks for northern conditions are considered, as well as technologies of submerged arc welding involving fluxing agents AN - 348, AN - 60, AN - 67, OK. 10.71 and carbon-fluorine containing additives, new flux cored wires and surfacing technologies, teaching programs and a trainer for welders are designed. (paper)

  7. 3D Metal Printing - Additive Manufacturing Technologies for Frameworks of Implant-Borne Fixed Dental Prosthesis.

    Revilla León, M; Klemm, I M; García-Arranz, J; Özcan, M

    2017-09-01

    An edentulous patient was rehabilitated with maxillary metal-ceramic and mandibular metal-resin implant-supported fixed dental prosthesis (FDP). Metal frameworks of the FDPs were fabricated using 3D additive manufacturing technologies utilizing selective laser melting (SLM) and electron beam melting (EBM) processes. Both SLM and EBM technologies were employed in combination with computer numerical control (CNC) post-machining at the implant interface. This report highlights the technical and clinical protocol for fabrication of FDPs using SLM and EBM additive technologies. Copyright© 2017 Dennis Barber Ltd.

  8. Electrical technologies for the removal of toxic metals from the environment

    Millington, J.P.

    1994-01-01

    Electrical technologies are now available, both for the manufacture of materials and for the control of pollution. Although electrically intensive, they are not of necessity energy intensive and offers in many cases advantages over conventional technologies. This paper presents two examples of clean technology and two of pollution abatement, which all address the problem of toxic metals. (TEC)

  9. Noble Metal Catalysts in the Production of Biofuels

    Gutiérrez, Andrea

    2013-01-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the d...

  10. Adoption of innovative production technologies in the road construction industry

    Habets, M.J.M.; van der Sijde, Peter; Voordijk, Johannes T.

    2007-01-01

    New procurement methods encourage the adoption of innovative production technologies. This triggers the need for entrepreneurship in the construction industry. The purpose of this study is to provide insights into the adoption processes of a particular set of new production technologies in the Dutch

  11. effectiveness of technological options for minimising production risks

    ACSS

    preferred technologies in reducing production risk related to climate variability in Eastern Uganda. Data for this study were ..... Set of technological options employed by farmers to reduce climate-induced production risk. Dummy = 1 if farmer. 0.71. 0.46 ..... cation exchange capacity for holding nutrients against leaching loss.

  12. Farm Technologies and Production Risk in the Face of Climate ...

    In countries where insurance and credit markets are thin or missing, production and consumption risks play a critical role in the choice and use of production inputs and adoption of new farm technologies. This paper investigated the effect of selected farm technologies and their risk implications in different rainfall patterns of ...

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - TETRATEC PTFE TECHNOLOGIES TETRATEX 8005

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  14. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  15. The problem of the involvement of the off-balance reserves of the metallic ores into the production process

    V. I. Golik

    2017-12-01

    Full Text Available The underground mining of the ore deposits by means of the intensive methods of the traditional technologies is characterized by the loss of the reserves, which are off-balance for the technologies applied. The experience, which was accumulated by the state-of-the-art enterprises before the economic reforms and the crisis indicates, that it is possible to decrease the loss of metals. This can be assumed by means of involving the off-balance reserves into the production process with the metal lixiviation during closed work. The purpose of the present-day research is the substantiation of the technical possibility and economic reasonability of the lixiviation of metals from the off-balance reserves and poorly balance ores. The correct estimation of the perspectives of those combined technology is still one of the purposes. It is a matter of fact that combining traditional technologies of the underground mining with new ones concerned with the creation of the effective lixiviation of metals from ores can be carried out with the two-stage processing. It happens when the excavation of some amount of the balance reserves creates the compensational space for crushing off-balance reserves. Involving off-balance ores into the production process solves a set of the mining production problems. For example, the fullness of mineral resources usage, the strengthening of the resource base, the reduction of load of the environment and the security of works. The involvement of the off-balance reserves into the development in the course of the revaluation of the resources and in the technological facilities of the development in the context of the growth of the scale of production reduces the production price to the competitive level. The field of application of these results is in the mining enterprises which extract solid metal-containing ores by means of the underground mining. These ores are mostly of the nonferrous, rare and precious metals, which are easily

  16. As Technologies for Nucleotide Therapeutics Mature, Products Emerge.

    Beierlein, Jennifer M; McNamee, Laura M; Ledley, Fred D

    2017-12-15

    The long path from initial research on oligonucleotide therapies to approval of antisense products is not unfamiliar. This lag resembles those encountered with monoclonal antibodies, gene therapies, and many biological targets and is consistent with studies of innovation showing that technology maturation is a critical determinant of product success. We previously described an analytical model for the maturation of biomedical research, demonstrating that the efficiency of targeted and biological development is connected to metrics of technology growth. The present work applies this model to characterize the advance of oligonucleotide therapeutics. We show that recent oligonucleotide product approvals incorporate technologies and targets that are past the established point of technology growth, as do most of the oligonucleotide products currently in phase 3. Less mature oligonucleotide technologies, such as miRNAs and some novel gene targets, have not passed the established point and have not yielded products. This analysis shows that oligonucleotide product development has followed largely predictable patterns of innovation. While technology maturation alone does not ensure success, these data show that many oligonucleotide technologies are sufficiently mature to be considered part of the arsenal for therapeutic development. These results demonstrate the importance of technology assessment in strategic management of biomedical technologies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Information, Technology, and Information Worker Productivity

    Aral, Sinan; Brynjolfsson, Erik; Van Alstyne, Marshall

    2009-01-01

    We econometrically evaluate information worker productivity at a midsize executive recruiting firm and assess whether the knowledge that workers accessed through their electronic communication networks enabled them to multitask more productively. We estimate dynamic panel data models of multitasking, knowledge networks, and productivity using several types of micro-level data: (a) direct observation of more than 125,000 email messages over a period of 10 months; (b) detailed accounting data o...

  18. Metals and cocoa products: a study on characterization of toxic and essential metals in chocolates (abstract)

    Rehman, S.; Husnain, S.M.

    2011-01-01

    In this study, a sophisticated analytical technique, atomic absorption spectrometer (both with FAAS and GFAAS modes of atomization), was used for analyzing essential and toxic metal (Fe, Mn, Cu, Zn, Ni, Pb and Cd) contents in 32 commonly consumed cocoa products (chocolates) prepared by different national and multinational companies. Significant differences were observed between the micro element contents of the 32 varieties (P < 0.01). The risk posed by the quantity of heavy metals lead, cadmium and nickel present in cocoa products (chocolates) is of serious apprehension and weekly intake was calculated. The Concentration of Pb and Cd in cocoa powder is found to be highest 492 and 197 mu g/L followed by cocoa based chocolates 306 and 46.8 mu g/L, sugar based chocolates 209.8 and 40.3 mu g/L whereas it is least in milk based chocolates samples 88.3 and 33 mu g/L respectively. The concentration of Pb and Cd was found below the provisional tolerable weekly intake defined by FAO/WHO. All essential elements were assessed for their weekly intake with the dietary reference intakes. In order to validate our results, certified reference material (Wheat flour 1589, Milk powder A-11 and Milk Powder A-8) were analyzed for Fe, Mn, Cu, Zn, Ni, Pb and Cd levels. Determined concentrations were quite in good agreement with certified levels. Data was interpreted through cluster analysis and pattern recognition. (author)

  19. Federalism and technological change in blood products.

    Taylor, Mark Zachary

    2009-12-01

    Recent research has shown how federalism affects health care finance, health care reform, and health policy innovation. The purpose of this article is to extend this research program to study the linkages between federalism and technological change. It does so using comparative case studies spanning five countries to examine innovation and diffusion of two blood technologies-enzyme-linked immunosorbent assays (ELISA blood tests) and heat treatment-in response to the threat to the blood supply posed by HIV during the 1980s. Prior research has produced three contradictory models of the federalism-innovation relationship. This article attempts to resolve these contradictions, posits new hypotheses, and highlights sources of omitted variable bias that have important implications for understanding technological change. The case studies show that overall decentralization, rather than federalism alone, aids technological progress by allowing its supporters to "venue shop" around political resistance. Decentralization also makes the state less vulnerable to capture by status-quo interest groups. Moreover, political decentralization may have a positive effect on technological diffusion, but a far weaker effect on innovation. Thus, prior research that conflates these two effects should be revisited.

  20. New technology for recovering residual metals from nonmetallic fractions of waste printed circuit boards.

    Zhang, Guangwen; He, Yaqun; Wang, Haifeng; Zhang, Tao; Wang, Shuai; Yang, Xing; Xia, Wencheng

    2017-06-01

    Recycling of waste printed circuit boards is important for environmental protection and sustainable resource utilization. Corona electrostatic separation has been widely used to recycle metals from waste printed circuit boards, but it has poor separation efficiency for finer sized fractions. In this study, a new process of vibrated gas-solid fluidized bed was used to recycle residual metals from nonmetallic fractions, which were treated using the corona electrostatic separation technology. The effects of three main parameters, i.e., vibration frequency, superficial air flow velocity, and fluidizing time on gravity segregation, were investigated using a vibrating gas-solid fluidized bed. Each size fraction had its own optimum parameters. Corresponding to their optimal segregation performance, the products from each experiment were analyzed using an X-ray fluorescence (XRF) and a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). From the results, it can be seen that the metal recoveries of -1+0.5mm, -0.5+0.25mm, and -0.25mm size fractions were 86.39%, 82.22% and 76.63%, respectively. After separation, each metal content in the -1+0.5 or -0.5+0.25mm size fraction reduced to 1% or less, while the Fe and Cu contents are up to 2.57% and 1.50%, respectively, in the -0.25mm size fraction. Images of the nonmetallic fractions with a size of -0.25mm indicated that a considerable amount of clavate glass fibers existed in these nonmetallic fractions, which may explain why fine particles had the poorest segregation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Continued SOFC cell and stack technology and improved production methods

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  2. Technology transfers, foreign investment and productivity spillovers

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu

    2015-01-01

    This paper explores the relationship between foreign direct investment (FDI) and the productivity of host country domestic firms. We rely on a specially designed survey of over 4000 manufacturing firms in Vietnam, and separate out productivity gains along the supply chain (obtained through direct...

  3. Agricultural productivity growth and technology progress in ...

    The goal of this investigation was to analyze the impact of some variables of production(input) on agricultural productivity growth (output) in China over the period 1989-2002. To this aim, Cobb-Douglas function has been used. The methodology used in this study is correct and the resulting conclusion is that labor, capital ...

  4. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter, Phase II

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  5. Strategies for fuel cell product development. Developing fuel cell products in the technology supply chain

    Hellman, H.L.

    2004-01-01

    Due to the high cost of research and development and the broad spectrum of knowledge and competences required to develop fuel cell products, many product-developing firms outsource fuel cell technology, either partly or completely. This article addresses the inter-firm process of fuel cell product development from an Industrial Design Engineering perspective. The fuel cell product development can currently be characterised by a high degree of economic and technical uncertainty. Regarding the technology uncertainty: product-developing firms are more often then not unfamiliar with fuel cell technology technology. Yet there is a high interface complexity between the technology supplied and the product in which it is to be incorporated. In this paper the information exchange in three current fuel cell product development projects is analysed to determine the information required by a product designer to develop a fuel cell product. Technology transfer literature suggests that transfer effectiveness is greatest when the type of technology (technology uncertainty) and the type of relationship between the technology supplier and the recipient are carefully matched. In this line of thinking this paper proposes that the information required by a designer, determined by the design strategy and product/system volume, should be met by an appropriate level of communication interactivity with a technology specialist. (author)

  6. Development of fission Mo-99 production technology

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  7. Development of fission Mo-99 production technology

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production

  8. Advancing liquid metal reactor technology with nitride fuels

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.; Matthews, R.B.

    1991-08-01

    A review of the use of nitride fuels in liquid metal fast reactors is presented. Past studies indicate that both uranium nitride and uranium/plutonium nitride possess characteristics that may offer enhanced performance, particularly in the area of passive safety. To further quantify these effects, the analysis of a mixed-nitride fuel system utilizing the geometry and power level of the US Advanced Liquid Metal Reactor as a reference is described. 18 refs., 2 figs., 2 tabs

  9. Electrolytic production of metals using a resistant anode

    Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

    1986-11-04

    An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

  10. Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production

    Liubov Magerramova; Eugene Kratt; Pavel Presniakov

    2017-01-01

    A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and...

  11. Process model for carbothermic production of silicon metal

    Andresen, B.

    1995-09-12

    This thesis discusses an advanced dynamical two-dimensional cylinder symmetric model for the high temperature part of the carbothermic silicon metal process, and its computer encoding. The situation close to that which is believed to exist around one of three electrodes in full-scale industrial furnaces is modelled. This area comprises a gas filled cavity surrounding the lower tip of the electrode, the metal pool underneath and the lower parts of the materials above. The most important phenomena included are: Heterogeneous chemical reactions taking place in the high-temperature zone (above 1860 {sup o}C), Evaporation and condensation of silicon, Transport of materials by dripping, Turbulent or laminar fluid flow, DC electric arcs, Heat transport by convection, conduction and radiation. The results from the calculations, such as production rates, gas- and temperature distributions, furnace- and particle geometries, fluid flow fields etc, are presented graphically. In its present state the model is a prototype. The process is very complex, and the calculations are time consuming. The governing equations are coded into a Fortran 77 computer code applying the commercial 3D code FLUENT as a basis. 64 refs., 110 figs., 11 tabs.

  12. Estimating product-to-product variations in metal forming using force measurements

    Havinga, Jos; van den Boogaard, Ton

    2017-10-01

    The limits of production accuracy of metal forming processes can be stretched by the development of control systems for compensation of product-to-product variations. Such systems require the use of measurements from each semi-finished product. These measurements must be used to estimate the final quality of each product. We propose to predict part of the product-to-product variations in multi-stage forming processes based on force measurements from previous process stages. The reasoning is that final product properties as well as process forces are expected to be correlated since they are both affected by material and process variation. In this study, an approach to construct a moving window process model based on historical data from the process is presented. These regression models can be built and updated in real-time during production. The approach is tested with data from a demonstrator process with cutting, deep drawing and bending stages. It is shown that part of the product-to-product variations in the process can be predicted with the developed process model.

  13. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  14. Technological innovations in sales of banking products

    Semenyuta Оlga

    2016-03-01

    Full Text Available The article discusses the features of the remote client service related to the behavior of consumers of retail banking products in terms of the use of remote service channels. Analyze the level of awareness of the remote service channels and barriers considered use of remote service channels on the acquisition of retail banking products based on the segmentation of consumer groups. Based on the findings developed proposals to promote remote service channels using banking products in the retail segment of consumers.

  15. Accelerating the transfer of improved production technologies ...

    Since 1988, epidemics of African cassava mosaic disease (ACMD) caused by a whitefly-transmitted geminivirus have caused severe devastation in Uganda resulting in food shortages and famine in some areas. In order to control the disease and restore food security in the country, appropriate technologies had to be ...

  16. Simulating the production of free defects in irradiated metals

    Heinisch, H.L.

    1995-01-01

    Under cascade-producing irradiation by high energy neutrons or charged particles, only a small fraction of the initially displaced atoms contribute to the population of free defects that are available to migrate throughout the metal and cause microstructural changes. Although, in principle, computer simulations of free defect production could best be done using molecular dynamics, in practice, the wide ranges of time and distance scales involved can be done only by a combination of atomistic models that employ various levels of approximation. An atomic-scale, multi-model approach has been developed that combines molecular dynamics, binary collision models and stochastic annealing simulation. The annealing simulation is utilized in calibrating binary collision simulations to the results of molecular dynamics calculations, as well as to model the subsequent migration of the defects on more macroscopic time and size scales. The annealing simulation and the method of calibrating the multi-model approach are discussed, and the results of simulations of cascades in copper are presented. The temperature dependence of free defect production following simulated annealing of isolated cascades in copper shows a differential in the fractions of free vacancies and interstitial defects escaping from the cascade above stage V. This differential, a consequence of the direct formation of interstitial clusters in cascades and the relative thermal stability of vacancy and interstitial clusters during subsequent annealing, is the basis for the production bias mechanism of void swelling. (orig.)

  17. Modelling architectures in multi-product oriented technology development

    Guðlaugsson, Tómas Vignir

    are not completely defined. Yet, decisions need to be made during technology development on the capabilities to be provided through the development to fulfil future application requirements,provide a foundation for future products, and development of a production system capable of producing future products...

  18. Immobilization Technologies in Probiotic Food Production

    Gregoria Mitropoulou

    2013-01-01

    Full Text Available Various supports and immobilization/encapsulation techniques have been proposed and tested for application in functional food production. In the present review, the use of probiotic microorganisms for the production of novel foods is discussed, while the benefits and criteria of using probiotic cultures are analyzed. Subsequently, immobilization/encapsulation applications in the food industry aiming at the prolongation of cell viability are described together with an evaluation of their potential future impact, which is also highlighted and assessed.

  19. Some recent developments in sheet metal forming for production of lightweight automotive parts

    Tisza, M.; Lukács, Zs; Kovács, P.; Budai, D.

    2017-09-01

    Low cost manufacturing in the automotive industry is one of the main targets due to the ever increasing global competition among car manufacturers all over the World. Sheet metal forming is one of the most important key technologies in the automotive industry; therefore the elaboration of new, innovative low cost manufacturing processes is one of the main objectives in sheet metal forming as well. In 2015 with the initiative of the Imperial College London a research consortium was established under the umbrella Low Cost Materials Processing Technologies for Mass Production of Lightweight Vehicles. The primary aim of this project is to provide affordable low cost weight reduction in mass production of vehicles considering the entire life-cycle. In this project, 19 European Institutions (Universities and Research Institutions) from 9 European countries are participating with the above targets. The University of Miskolc is one of the members of this research Consortium. In this paper, some preliminary results with the contributions of the University of Miskolc will be introduced.

  20. The power of design product innovation in sustainable energy technologies

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  1. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in

  2. Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site

    Freiboth, Cameron J.; Gibbs, Frank E.

    2000-01-01

    This report documents the position that the concentration of Uranium-233 ( 233 U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The 233 U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ( 233 U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns

  3. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  4. Modern radioisotope production technologies for medicine

    Bechtold, V.; Schweickert, H.

    1989-01-01

    The advantages of the accelerator production of radioisotopes for medical purposes, are, above all, the high specific activity attainable as well as the possibility of the generation of nuclei with only a few neutrons which disintegrate due to β + emission or electron capture. It is, for example, possible to diagnostically utilize the developing long-range γ quanta by means of computerized tomography. The production of I-123 at the cyclotron of Karlsruhe (nuclear reaction, target, irradiation arrangement) as well as of ultra-pure I-123 with the help of compact cyclotrons, and the plant developed for this are described in brief. As another radioisotope which can be produced with the help of the compact cyclotron, Rb-81 is mentioned, the disintegration product Kr-81m of which is used in pulmonary diagnostics. (RB) [de

  5. Innovative Canadian Process Technology For Biodiesel Production

    Johar, Sangat; Norton, Kevin

    2010-09-15

    The need for increasing renewable and alternative energy in the global energy mix has been well recognized by Governments and major scientific forums to reduce climate change impact for this living planet. Biodiesel has very high potential for GHG emission reduction. An innovative process developed in Canada provides solution to mitigate the feedstock, yield and quality issues impacting the industry. The Biox process uses a continuous process which reduces reaction times, provides > 99% yield of high quality biodiesel product. The process is feedstock flexible and can use cheaper higher FFA feedstock providing a sustainable approach for biodiesel production.

  6. Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production.

    Liu, Kai; Gao, Yanxin; Liu, Jing; Wen, Yifan; Zhao, Yingcan; Zhang, Kunyang; Yu, Gang

    2016-04-05

    Promising applications of metal-organic frameworks (MOFs) in various fields have raised concern over their environmental fate and safety upon inevitable discharge into aqueous environments. Currently, no information regarding the transformation processes of MOFs is available. Due to the presence of repetitive π-bond structure and semiconductive property, photochemical transformations are an important fate process that affects the performance of MOFs in practical applications. In the current study, the generation of reactive oxygen species (ROS) in isoreticular MIL-53s was studied. Scavengers were employed to probe the production of (1)O2, O2(•-), and •OH, respectively. In general, MIL-53(Cr) and MIL-53(Fe) are dominated by type I and II photosensitization reactions, respectively, and MIL-53(Al) appears to be less photoreactive. The generation of ROS in MIL-53(Fe) may be underestimated due to dismutation. Further investigation of MIL-53(Fe) encapsulated diclofenac transformation revealed that diclofenac can be easily transformed by MIL-53(Fe) generated ROS. However, the cytotoxicity results implied that the ROS generated from MIL-53s have little effect on the viability of the human hepatocyte (HepG2) cell line. These results suggest that the photogeneration of ROS by MOFs may be metal-node dependent, and the application of MIL-53s as drug carriers needs to be carefully considered due to their high photoreactivity.

  7. Heavy liquid metal technologies at KArlsruhe Lead LAboratory KALLA

    Knebel, J.U.; Mueller, G.; Konys, J.

    2002-01-01

    The objectives of the research cover: lead-bismuth technologies; corrosion mechanism and corrosion protection; thermal hydraulics; kinetics of oxygen control systems. Detailed experimental results are presented

  8. Y-12 product improvements expected to reduce metal production costs and decrease fabrication losses

    Parker, Elaine; Hassler, Morris

    2004-01-01

    Full text: The Y-12 National Security Complex supplies uranium metal and uranium oxide feed material that is then fabricated into fuel for research reactors around the world. Over the past two to three years, Y-12 has learned a great deal about its Low Enriched Uranium (LEU) product. The LEU is produced by taking U.S. surplus Highly Enriched Uranium (HEU) and blending it with depleted or natural uranium. The surplus HEU comes from dismantled U.S. weapons parts that have been declared as surplus. Those research reactors that use LEU from Y-12 are making important contributions to international nuclear non-proliferation by using LEU rather than HEU, and by helping to disposition former weapons material. We clearly understand that our customers want to keep fuel costs as low as possible. We at Y-12 are making every effort to improve efficiencies in producing the uranium through standardizing the chemical specifications as well as the product mass and dimensional qualities. This paper will discuss the new standard specification that we have proposed to existing LEU metal customers and fuel fabricators. It will also cover Y-12's progress on a new mold-design that will result in a more uniform, higher quality product that is less expensive to produce. This new product is expected to decrease overall fabrication losses by 5-10%, depending on the fabricator's process. The paper will include planned activities and the schedule associated with implementation of the new specification and product form. (author)

  9. Production of catechols : microbiology and technology

    Krab-Hüsken, L.

    2002-01-01

    Catechols play an important role in the fine-chemical and flavour industry, as well as in photography, dyeing fur, rubber and plastic production. Many of these compounds cannot easily be synthesised chemically, but some micro-organisms are capable of

  10. Environmental control technology in petroleum drilling and production

    Wojtanowicz, A.K.

    1997-01-01

    Environmental control technology (ECT) is process integrated and relates mainly to pollution prevention and risk assessment. Mechanisms of environmental impact in petroleum drilling, well completion and production, include the generation of waste, induction of toxicity or the creation of pathways for pollutant migration. The identification and evaluation of these mechanisms constitute two parts of the scope of ECT. A third part is the development of new techniques to comply with environmental requirements without prejudicing productivity. The basic concepts of the ECT approach are presented in this chapter. The approach is then used to analyse oilfield drilling and production processes. Environmental control components developed in these technologies are described. These include: the control of the volume and toxicity of drilling fluids; source separation technology in produced water cleaning; subsurface injection of oilfield waste slurries; containment technology in the integrity of petroleum wells; subsurface reduction of produced water; oilfield pit closure technology. (37 figures; 26 tables; 227 references) (UK)

  11. GROUP TECHNOLOGY IN CONTEXT OF THE PRODUCT CLASSIFICATION

    Lenka Debnárová

    2014-03-01

    Full Text Available In the intensive competitive environment of the global economy, the survival of even the most well-established the world manufacturers depends on the ability to improve continuously quality while reducing costs. The resulting higher productivity is the key to market leadership and gaining sustainable competitive advantage. This paper outlines a group technology and classification of products which improve productivity, quality, inventory management of a company and reduce production times.

  12. Fuel element production at BWX technologies

    Pace, Brett

    1997-01-01

    Effective July 1, 1997, the Government Group portion of the Babcock and Wilcox company was incorporated separately to become BWX Technologies, Inc. (BWXT) a wholly-owned subsidiary of the Babcock and Wilcox Company. The names of the divisions and other business units of the former Babcock and Wilcox Government Group (Advanced Systems Operations, Naval Nuclear Fuel Division, and Nuclear Equipment Division) will remain unchanged, but they are now known as divisions or business units of BWXT. The management of all units and their reporting relationships will likewise remain unchanged. (author)

  13. WASTE-FREE PRODUCTION TECHNOLOGY OF DRY MASHED POTATOES

    G. V. Kalashnikov

    2015-01-01

    Full Text Available Summary. According to data on norms of consumption of vegetable production of scientific research institute of Food of the Russian Academy of Medical Science, potatoes win first place with norm of 120 kg a year on the person. In this regard much attention is paid to processing of potatoes that allows to prolong the term of its validity, and also to reduce the capacity of storages and to reduce transport transportations as 1 kg of a dry potatoes produсt is equivalent 7-8 kg of fresh potatoes. Thus industrial processing of potatoes on dry mashed potatoes allows to reduce losses of potatoes at storage and transportation, there is a possibility of enrichment of products vitamins and other useful components, its nutrition value remains better, conditions for complex processing of raw materials with full recycling and creations of stocks of products from potatoes on a crop failure case are created. Dry mashed potatoes are a product of long storage. On the basis of studying of the production technology of mashed potatoes the analysis of technological processes as sources of creation of waste, and the directions of recovery of secondary raw materials for complex waste-free technology of processing of potatoes are defined is provided. The waste-free technological scheme of processing of potatoes and production of dry instant mashed potatoes on the basis of dehydration and moisture thermal treatment a component providing recovery of secondary carbohydrate content raw materials in the form of waste of the main production is developed. The main stages of production of dry instant mashed potatoes are described. It is offered the technological scheme of a production line of mashed potatoes on the basis of waste-free technology. Advantages of the offered waste-free production technology of dry instant mashed potatoes with processing of secondary starch-containing raw materials are given.

  14. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  15. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    Totemeier, T.C.; Pahl, R.G.; Frank, S.M.

    1998-01-01

    The oxidation behavior of hydride-bearing uranium metal corrosion products from zero power physics reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2 , Ar-9%O 2 , and Ar-20%O 2 . Ignition of corrosion product samples from two moderately corroded plates was observed between 125 C and 150 C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride. (orig.)

  16. Phytoremediation of heavy metals: A green technology | Ahmadpour ...

    The environment has been contaminated with organic and inorganic pollutants. Organic pollutants are largely anthropogenic and are introduced to the environment in many ways. Soil contamination with toxic metals, such as Cd, Pb, Cr, Zn, Ni and Cu, as a result of worldwide industrialization has increased noticeably within ...

  17. Ohmic metallization technology for wide band-gap semiconductors

    Iliadis, A.A.; Vispute, R.D.; Venkatesan, T.; Jones, K.A.

    2002-01-01

    Ohmic contact metallizations on p-type 6H-SiC and n-type ZnO using a novel approach of focused ion beam (FIB) surface-modification and direct-write metal deposition will be reviewed, and the properties of such focused ion beam assisted non-annealed contacts will be reported. The process uses a Ga focused ion beam to modify the surface of the semiconductor with different doses, and then introduces an organometallic compound in the Ga ion beam, to effect the direct-write deposition of a metal on the modified surface. Contact resistance measurements by the transmission line method produced values in the low 10 -4 Ω cm 2 range for surface-modified and direct-write Pt and W non-annealed contacts, and mid 10 -5 Ω cm 2 range for surface-modified and pulse laser deposited TiN contacts. An optimum Ga surface-modification dosage window is determined, within which the current transport mechanism of these contacts was found to proceed mainly by tunneling through the metal-modified-semiconductor interface layer

  18. Heavy metals removals from wet market wastewater by phycoremediation technology

    Jais, N. M.; Mohamed, R. M. S. R.; Apandi, N.; Al-Gheethi, A. A.

    2018-04-01

    The wet market provided fresh foodstuff. Unfortunately, the sullage commonly discharged directly to the drainage without any treatment. Hence, this research was focused on culturing the Scenedesmus sp. and implemented the phycoremediation process to wet market wastewater and to measure the heavy metal removals by Scenedesmus sp. There are two different time collected samples: (1) Sample at 7 a.m. and (2) Sample at 9 a.m.. The five samples were collected for each time sampling from of the Parit Raja Public Market, Batu Pahat wastewater (with additional of five different concentrations of Scenedesmus sp. which are 1.235x106, 1.224x106, 1.220x106, 1.213x106 and 1.203x106 cell/ml). This experiment was conducted within eight days for culturing Scenedesmus sp. and phycoremediation within another eight days. The analysis was done with changes of DO and pH and heavy metals removal during phycoremediation. Based on the result, the optimum efficiency removals for each heavy metal had achieved (36.62-100%) and the optimum concentration for Sample 7 a.m. and Sample 9 a.m. is Concentration 1 (1.235x106 cell/ml) obtained 81.18-100% of heavy metal removals. Concentration of microalgae is statistically correlated well with Fe (p0.05) in influencing high nutrient removal in the wastewater.

  19. Technology for production of shelf stable fruit cubes

    Mishra, B.B.; Jain, M.P.; Sharma, A.

    2009-01-01

    A technology has been developed for the production of intermediate moisture fruit cubes using a combination of osmotic dehydration and infrared drying. Fruits like pineapple, papaya, mango, banana and apple can be successfully converted into intermediate moisture products in the form of fruit cubes using this technology. The fruit cubes can blend very well as natural nutritious supplements with breakfast cereals and in certain food preparations like ice creams, milk shakes, jellies and custards. The product is microbiologically safe for consumption and can be stored at ambient storage condition for more than six months. This technology is an effective alternative for post harvest processing and preservation of ripened fruits. Fruit jam is an additional by-product generated by the process. This technology has been transferred to TT and CD, BARC

  20. The fundamentals of the radiation thermal technology for cement production

    Abramson, I.G.; Kapralova, R.M.; Nikiforov, Yu.V.; Egorov, G.B.; Vaisman, A.F.

    1995-01-01

    The fundamentals of principally new radiation thermal way of cement production are presented. The peculiarities of qualities and structure of clinker obtained by this way are given. The technical economic advantages of the new technology are shown

  1. Pretreatment Technologies of Lignocellulosic Materials in Bioethanol Production Process

    Mohamad Rusdi Hidayat

    2013-06-01

    Full Text Available Bioethanol is one type of biofuel that developed significantly. The utilization of bioethanol is not only limited for fuel, but also could be used as material for various industries such as pharmaceuticals, cosmetics, and food. With wide utilization and relatively simple production technology has made bioethanol as the most favored biofuel currently. The use of lignocellulosic biomass, microalgae, seaweeds, even GMO (Genetically modified organisms as substrates for bioethanol production has been widely tested. Differences in the materials eventually led to change in the production technology used. Pretreatment technology in the bioethanol production using lignocellulosic currently experiencing rapid development. It is a key process and crucial for the whole next steps. Based on the advantages and disadvantages from all methods, steam explotion and liquid hot water methods are the most promising  pretreatment technology available.

  2. TECHNOLOGICAL PROCESSES OF PRODUCTION OF THE MASS FUNCTION CAST BARS

    A. N. Krutilin

    2012-01-01

    Full Text Available A number of scientifically grounded technical decisions, the whole set of which has enabled to create technological processes of production of high-quality cast bars of mass appointment is offered.

  3. [Technology transfer to the facility for production of medicines].

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  4. Technological capabilities, institutions and firm productivity: a multilevel study

    Goedhuys, M.; Srholec, Martin

    2015-01-01

    Roč. 27, č. 1 (2015), s. 122-139 ISSN 0957-8811 Institutional support: PRVOUK-P23 Keywords : productivity * innovation * technological capability Subject RIV: AH - Economics Impact factor: 0.720, year: 2015

  5. Y-12 product improvements expected to reduce metal production costs and decrease fabrication losses

    Hassler, Morris E.

    2005-01-01

    The Y-12 National Security Complex (Y-12) supplies uranium metal and uranium oxide feed material for fabrication into fuel for research reactors around the world. Over the past few years, Y-12 has continued to improve its Low Enriched Uranium (LEU) product. The LEU is produced by taking U.S. surplus Highly Enriched Uranium (HEU) and blending it with depleted or natural uranium. The surplus HEU comes from dismantled U.S. weapons parts. Those research reactors that use LEU from Y-12 are making important contributions to international nuclear nonproliferation by using LEU rather than HEU, and helping to disposition former U.S. weapons material. It is clearly understood that the research reactor community must keep fuel costs as low as possible and Y-12 is making every effort to improve efficiencies in producing the uranium through standardizing the chemical specifications as well as the product mass and dimensional qualities. These production cost reductions allows for the U.S. to keep the LEU product price low even with the dramatic increase in the uranium enrichment and feed component market prices in the last few years. This paper will discuss a new standard specification that has been proposed to existing LEU metal customers and fuel fabricators. It will also cover Y-12's progress on a new mold-design that will result in a more uniform, higher quality product and eliminates two steps of the production process. This new product is expected to decrease fabrication losses by 5-10%, depending on the fabricator's process. The paper will include planned activities and the schedule associated with implementation of the new specification and product form. (author)

  6. OPTIMIZATION OF THE TECHNOLOGICAL PROCESS OF THE FERROCHROME PRODUCTION OUT OF WASTE OF TANNING PRODUCTION

    O. S. Komarov

    2004-01-01

    Full Text Available The article touches upon the solving of the actual problem — production in conditions of Belarus of ferrochrome of the leather production wastes, that allows to solve several technological problems and to reduse import of expensive ferroallows.

  7. Production of metals and compounds by radiation chemistry

    Marsik, S. J.; Philipp, W. H.

    1969-01-01

    Preparation of metals and compounds by radiation induced chemical reactions involves irradiation of metal salt solutions with high energy electrons. This technique offers a method for the preparation of high purity metals with minimum contamination from the container material or the cover gas.

  8. Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment.

    Chancerel, Perrine; Rotter, Vera Susanne; Ueberschaar, Maximilian; Marwede, Max; Nissen, Nils F; Lang, Klaus-Dieter

    2013-10-01

    The supply of critical metals like gallium, germanium, indium and rare earths elements (REE) is of technological, economic and strategic relevance in the manufacturing of electrical and electronic equipment (EEE). Recycling is one of the key strategies to secure the long-term supply of these metals. The dissipation of the metals related to the low concentrations in the products and to the configuration of the life cycle (short use time, insufficient collection, treatment focusing on the recovery of other materials) creates challenges to achieve efficient recycling. This article assesses the available data and sets priorities for further research aimed at developing solutions to improve the recycling of seven critical metals or metal families (antimony, cobalt, gallium, germanium, indium, REE and tantalum). Twenty-six metal applications were identified for those six metals and the REE family. The criteria used for the assessment are (i) the metal criticality related to strategic and economic issues; (ii) the share of the worldwide mine or refinery production going to EEE manufacturing; (iii) rough estimates of the concentration and the content of the metals in the products; (iv) the accuracy of the data already available; and (v) the occurrence of the application in specific WEEE groups. Eight applications were classified as relevant for further research, including the use of antimony as a flame retardant, gallium and germanium in integrated circuits, rare earths in phosphors and permanent magnets, cobalt in batteries, tantalum capacitors and indium as an indium-tin-oxide transparent conductive layer in flat displays.

  9. Procedure of Destructive Chemical Recovery of Precious Metals in Nitric Acid Production

    Ljubičić, M.

    2012-07-01

    shown in Fig. 1. The technical and technological characteristics of the preheater and boiler for preheating and production of steam in nitric acid production at Petrokemija d. d. is shown in Table 1. The overall results of the destructive chemical cleaning of the preheater and boiler by H 2 SO 4 (w = 20 % is shown in Table 3. By the method of destructive chemical recovery, 212.64 kg of dry sludge were extracted, which following the refining procedure of determined qualitative and quantitative composition of Pt, Pd and Rh amounted to: w(Pt = 18.118 %, w(Pd = 1.749 % and w(Rh = 0.419 %. With the applied technical procedure, the mass of the precious metals successfully recovered in the process of nitric acid production was as follows: 38528.2 g of Pt, 3719.5 g of Pd and 891.1 g of Rh with minimum purity of 99.90 %. The entire quantity of recovered precious metals is used for preparation of new catalytic gauzes, which will serve in the nitric acid production for ammonia oxidation.

  10. Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program

    Weakley, Steven A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-04-01

    The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTP’s Emerging Technologies subprogram from 2005-2011.

  11. Buildings R&D Breakthroughs. Technologies and Products Supported by the Building Technologies Program

    none,

    2012-04-01

    This report identifies and characterizes commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects sponsored by BTP’s Emerging Technologies subprogram from 2005-2009.

  12. Production of nanomaterials: physical and chemical technologies

    Giorgi, Leonardo; Salernitano, Elena

    2015-01-01

    Are define nanomaterials those materials which have at least one dimension in the range between 1 and 100 nm. By the term nanotechnology refers, instead, to the study of phenomena and manipulation of materials at the atomic and molecular level. The materials brought to the nanometric dimensions take particular chemical-physical properties different from the corresponding conventional macro materials. Speaking about the structure of nanoscale, you can check some basic properties materials (eg. Melting temperature, magnetic and electrical properties) without changing its chemical composition. In this perspective are crucial knowledge and control of production processes in order to design and get the nanomaterial more suitable for a specific application. For this purpose, it describes a series of processes of production of nanomaterials with application examples. [it

  13. International and intranational technological spillovers and productivity growth in China

    Fu, Xiaolan; Gong, Yundan

    2009-01-01

    Technological spillovers from foreign direct investment (FDI) have been regarded as a major source of technical progress and productivity growth. This paper explores the role of international and intranational technological spillovers from FDI in technical change, efficiency improvement, and total factor productivity growth in Chinese manufacturing firms using a recent Chinese manufacturing firm-level panel data set over the 2001–05 period. International industry-specific research and develop...

  14. Heavy metals content in plant-growing products as the results of agroecological monitoring

    Kuznetsov, A.V.; Lunev, M.I.; Pavlikhina, A.V.; Lobas, N.V.

    2008-01-01

    The generalised data on the heavy metals and arsenic contents in grain and vegetable cultures, green mass and hay of various grasses are presented. The dependence of heavy metal accumulation factors in plant-growing products on soil properties is shown. The estimation of levels of the heavy metals contents in accordance with the admissible content standards is given.

  15. Technology transfer in a horizontally differentiated product-market

    Mukherjee, A.; Balasubramanian, N.

    1999-01-01

    This paper considers technology transfer in a Cournot-duopoly market where the firms produce horizontally differentiated products. It turns out that without the threat of imitation from the licensee, the licenser always transfers its best technology. However, the patent licensing contract consists

  16. Machine Vision Technology for the Forest Products Industry

    Richard W. Conners; D.Earl Kline; Philip A. Araman; Thomas T. Drayer

    1997-01-01

    From forest to finished product, wood is moved from one processing stage to the next, subject to the decisions of individuals along the way. While this process has worked for hundreds of years, the technology exists today to provide more complete information to the decision makers. Virginia Tech has developed this technology, creating a machine vision prototype for...

  17. Increased wood-fiber production: technology, economics, and ecology

    William R. Bentley

    1973-01-01

    Forest tree improvement is a form of technological change, and it should be viewed as such. The economic objective of technological change is to increase productivity per dollar invested. This is accomplished through selection and breeding for increased growth rates or reduced losses to insects and disease. Programs which yield improved planting stock make forest...

  18. Influence of printing speed on production of embossing tools using FDM 3D printing technology

    Jelena Žarko

    2017-06-01

    Full Text Available Manufacturing of the embossing tools customary implies use of metals such as zinc, magnesium, copper, and brass. In the case of short run lengths, a conventional manufacturing process and the material itself represent a significant cost, not only in the terms of material costs and the need for using complex technological systems which are necessary for their production, but also in the terms of the production time. Alternatively, 3D printing can be used for manufacturing similar embossing tools with major savings in production time and costs. However, due to properties of materials used in the 3D printing technology, expected results of embossing by 3D printed tools cannot be identical to metal ones. This problem is emphasized in the case of long run lengths and high accuracy requirement for embossed elements. The objective of this paper is primarily focused on investigating the influence of the printing speed on reproduction quality of the embossing tools printed with FDM (Fused Deposition Modelling technology. The obtained results confirmed that printing speed as a process parameter affects the reproduction quality of the embossing tools printed with FDM technology: in the case of deposition rate of 90 mm/s was noted the poorest dimensional accuracy in relation to the 3D model, which is more emphasised in case of circular and square elements. Elements printed with the highest printing speed have a greater dimensional accuracy, but with evident cracks on the surface.

  19. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging.

    Lin, Zhuangsheng; Goddard, Julie

    2018-02-01

    Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal

  20. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications

    Xuelin Wang

    2016-11-01

    Full Text Available This article presents an overview on typical properties, technologies, and applications of liquid metal based flexible printed electronics. The core manufacturing material—room-temperature liquid metal, currently mainly represented by gallium and its alloys with the properties of excellent resistivity, enormous bendability, low adhesion, and large surface tension, was focused on in particular. In addition, a series of recently developed printing technologies spanning from personal electronic circuit printing (direct painting or writing, mechanical system printing, mask layer based printing, high-resolution nanoimprinting, etc. to 3D room temperature liquid metal printing is comprehensively reviewed. Applications of these planar or three-dimensional printing technologies and the related liquid metal alloy inks in making flexible electronics, such as electronical components, health care sensors, and other functional devices were discussed. The significantly different adhesions of liquid metal inks on various substrates under different oxidation degrees, weakness of circuits, difficulty of fabricating high-accuracy devices, and low rate of good product—all of which are challenges faced by current liquid metal flexible printed electronics—are discussed. Prospects for liquid metal flexible printed electronics to develop ending user electronics and more extensive applications in the future are given.

  1. Metal-doped single-walled carbon nanotubes and production thereof

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  2. LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

    FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

    2007-03-30

    Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims in updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.

  3. Implementation of NFC technology for industrial applications: case flexible production

    Sallinen, Mikko; Strömmer, Esko; Ylisaukko-oja, Arto

    2007-09-01

    Near Field communication (NFC) technology enables a flexible short range communication. It has large amount of envisaged applications in consumer, welfare and industrial sector. Compared with other short range communication technologies such as Bluetooth or Wibree it provides advantages that we will introduce in this paper. In this paper, we present an example of applying NFC technology to industrial application where simple tasks can be automatized and industrial assembly process can be improved radically by replacing manual paperwork and increasing trace of the products during the production.

  4. Technology for Solar Array Production on the Moon

    Landis, Geoffrey A.

    2002-01-01

    Silicon, aluminum, and glass are the primary raw materials that will be required for production of solar arrays on the moon. A process sequence is proposed for producing these materials from lunar regolith is proposed, consisting of separating the required materials from lunar rock with fluorine. Fluorosilane produced by this process is reduced to silicon; the fluorine salts are reduced to metals by reaction with metallic potassium. Fluorine is recovered from residual MgF and CaF2 by reaction with K2O. Aluminum, calcium oxide, and magnesium oxide are recovered to manufacture structural materials and glass.

  5. PRODUCTION OF METAL CHEMICAL WELDING ADDITIVE WITH NANODISPERSED PARTICLES OF TITANIUM DIOXIDE

    BOLDYREV Alexander Mikhaylovich

    2013-12-01

    Full Text Available When welding bridge structures automatic welding under a gumboil layer with metal chemical additive (MCA is widely applied in the modern bridge building. MCA consists of a chopped welding wire (granulated material, which is powdered by modifying chemical additive of titanium dioxide (TiO₂ in the cylindrical mixer «drunk cask». Chemical composition of all welding materials including welding wire, gumboil, electrodes, are strictly normalized and controlled. However, the existing technology of producing MCA doesn’t allow precise controlling of its structure under working conditions and that causes an impact on the stability of welded connections properties. Therefore the aim of this work is to develop a technology to produce stable MCA structure. The paper compares the existing and proposed manufacturing techniques of the metal chemical additive (MCA which is applied in automatic welding of butt connections for bridge structures. It is shown that production of MCA in a high-energy planetary mill provides more stable structure of the additive introduced into a welded joint. The granulometric analysis of the powder TiO₂ showed that when processing MCA in a planetary mill TiO₂ particles are crashed to nanodimensional order. This process is accompanied by crushing of granulated material too. The proposed method for production of MCA in a planetary mill provides stronger cohesion of dioxide with the granulate surface and, as a consequence, more stable MCA chemical structure. Application of MCA which has been mechanical intensified in a planetary mill, increases stability of mechanical properties, if compare with applied technology, in single-order by breaking point and almost twice by impact viscosity.

  6. Technology for Salt Production in the Mixteca Alta

    Ricardo Antonio León Hernández

    2015-01-01

    Full Text Available Salt production in the Mixteca Alta is a traditional means of production from prehispanic period, which, despite the economic transformation processes in the colonial period, remained significant features of the traditional process, based on the documented similar models from other productive regions in Mexico. The salt in the novohispanic period was considered a major consumption economic asset due to its use in production processes for the production of new economic products that supported the economy of preindustrial societies (Terán, 2011, p. 71; Williams, 2008. Technology refers to the knowledges for solving human needs arising lifestyle of the cultural groups that develop them. The resources of the natural environment underpin the means of labor that man requires to perform its activities, including economic. The means of production and production processes are technological developments, which involve elements of tangible and intangible order. The study of work processes for salt extraction, are significantly related to the processes of technological evolution that man has developed for the use of natural resources. The economic activities of the primary sector are examples of how humans culturally and economically were inserted in the natural environment (Malpica, 2008, p. 59. This analysis presents a historiographical approach to the study of the processes and the technology required for the extraction of salt in the Mixteca Alta.

  7. Does new product growth accelerate across technology generations?

    S. Stremersch (Stefan); E. Muller (Erwin); R. Peres (Renana)

    2010-01-01

    textabstractThe academic literature on the growth acceleration of new products presents a paradox. On the one hand, the diffusion literature concludes that more recently introduced products show faster diffusion than older ones. On the other hand, technology generation literature argues that growth

  8. Identifying and Researching Market Opportunities for New High Technology Products.

    Dunstan, Peter

    Using a product called the synchro-pulse welder as a case study example, this paper discusses the activities of CSIRO (Commonwealth Scientific and Industrial Research Organisation) in identifying and marketing new high-technology products. A general discussion of CSIRO's market research plans includes two goals to be attained within the next 5…

  9. Effective ways of decrease in the maintenance of heavy metals in soils and vegetative production

    Komarova, N.A.; Komarov, V.I.; Grishina, A.V.; Akanova, N.I.

    2008-01-01

    Receptions detoxication of heavy metals and reception vegetative production adequating to sanitary-and-hygienic norms are developed and scientifically proved. Correlation dependence between pH, concentration of heavy metals in vegetative production and level of productivity of agricultural crops is established. The most essential factor reducing till 8-10 of time receipt in plants Cu, Cd, Zn and Pb, level of reaction of environment in soil is. Dynamics of migration of heavy metals from the soil polluted water-soluble form of heavy metals is investigated

  10. Productivity effects of technology diffusion induced by an energy tax

    Walz, R.

    1999-01-01

    In the political discussion, the economy-wide effects of an energy tax have gained considerable attention. So far, macroeconomic analyses have focused on either (positive or negative) costs triggered by an energy tax, or on the efficiency gains resulting from new energy taxes combined with lower distortionary taxes. By contrast, the innovative effects of climate protection measures have not yet been thoroughly analysed. This paper explores the productivity effects of a 50 per cent energy tax in the German industry sector employing a technology-based, three-step bottom-up approach. In the first step, the extensive IKARUS database is used to identify the technological adjustments arising from an energy tax. In the second step, the technologies are classified into different clusters. In the third step, the productivity effects generated by the technological adjustments are examined. The results imply that an energy tax induces mainly sector-specific and process-integrated technologies rather than add-on and cross-cutting technologies. Further, it is shown that the energy-saving technologies tend to increase productivity. This is particularly the case for process-integrated, sector specific technologies. (author)

  11. SITE demonstration of the Dynaphore/Forager Sponge technology to remove dissolved metals from contaminated groundwater

    Esposito, C.R. [Environmental Protection Agency, Edison, NJ (United States); Vaccaro, G. [Science Applications International Corp., Hackensack, NJ (United States)

    1995-10-01

    A Superfund Innovative Technology Evaluation (SITE) demonstration was conducted of the Dynaphore/Forager Sponge technology during the week of April 3, 1994 at the N.L. Industries Superfund Site in Pedricktown, New Jersey. The Forager Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals in both cationic and anionic states. This technology is a volume reduction technology in which heavy metal contaminants from an aqueous medium are concentrated into a smaller volume for facilitated disposal. The developer states that the technology can be used to remove heavy metals from a wide variety of aqueous media, such as groundwater, surface waters and process waters. The sponge matrix can be directly disposed, or regenerated with chemical solutions. For this demonstration the sponge was set up as a mobile pump-and-treat system which treated groundwater contaminated with heavy metals. The demonstration focused on the system`s ability to remove lead, cadmium, chromium and copper from the contaminated groundwater over a continuous 72-hour test. The removal of heavy metals proceeded in the presence of significantly higher concentrations of innocuous cations such as calcium, magnesium, sodium, potassium and aluminum.

  12. A Technological Overview of Biogas Production from Biowaste

    Spyridon Achinas

    2017-06-01

    Full Text Available The current irrational use of fossil fuels and the impact of greenhouse gases on the environment are driving research into renewable energy production from organic resources and waste. The global energy demand is high, and most of this energy is produced from fossil resources. Recent studies report that anaerobic digestion (AD is an efficient alternative technology that combines biofuel production with sustainable waste management, and various technological trends exist in the biogas industry that enhance the production and quality of biogas. Further investments in AD are expected to meet with increasing success due to the low cost of available feedstocks and the wide range of uses for biogas (i.e., for heating, electricity, and fuel. Biogas production is growing in the European energy market and offers an economical alternative for bioenergy production. The objective of this work is to provide an overview of biogas production from lignocellulosic waste, thus providing information toward crucial issues in the biogas economy.

  13. Traditional technologies of fuels production for air-jet engines

    Бойченко С. В.

    2013-07-01

    Full Text Available Available energy resources for various fuels, mainly for gas-turbine engines are presented in the given article. Traditional technologies for jet fuels production from nonrenewable raw materials, such as crude oil, coal, natural gas, oil-shales and others are analyzed in details. Cause and effect relationship between production and use of such fuels and their impact on natural environment is defined. The timeliness and necessity for development of alternative technologies of aviation biofuels production are determined in the given article.

  14. Technology for the product and process data base

    Barnes, R. D.

    1984-01-01

    The computerized product and process data base is increasingly recognized to be the cornerstone component of an overall system aimed at the integrated automation of the industrial processes of a given company or enterprise. The technology needed to support these more effective computer integrated design and manufacturing methods, especially the concept of 3-D computer-sensible product definitions rather than engineering drawings, is not fully available and rationalized. Progress is being made, however, in bridging this technology gap with concentration on the modeling of sophisticated information and data structures, high-performance interactive user interfaces and comprehensive tools for managing the resulting computerized product definition and process data base.

  15. Method and apparatus for the production of metal oxide powder

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  16. Method and apparatus for the production of metal oxide powder

    Harris, M.T.; Scott, T.C.; Byers, C.H.

    1992-06-16

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

  17. Production of metal fullerene surface layer from various media in the process of steel carbonization

    KUZEEV Iskander Rustemovich

    2018-04-01

    Full Text Available Studies devoted to production of metal fullerene layer in steels when introducing carbon from organic and inorganic media were performed. Barium carbonate was used as an inorganic medium and petroleum pitch was used as an organic medium. In order to generate the required amount of fullerenes in the process of steel samples carbonization, optimal temperature mode was found. The higher temperature, absorption and cohesive effects become less important and polymeric carbon structures destruction processes become more important. On the bottom the temperature is limited by petroleum pitch softening temperature and its transition to low-viscous state in order to enhance molecular mobility and improve the possibility of their diffusion to metal surface. Identification of fullerenes in the surface modified layer was carried out following the methods of IR-Fourier spectrometry and high-performance liquid chromatography. It was found out that nanocarbon structures, formed during carbonization in barium carbonate and petroleum pitch mediums, possess different morphology. In the process of metal carbonization from carbonates medium, the main role in fullerenes synthesis is belonged to catalytic effect of surface with generation of endohedral derivatives in the surface layer; but in the process of carbonization from pitch medium fullerenes are formed during crystallization of the latter and crystallization centers are of fullerene type. Based on theoretical data and dataof spectral and chromatographic analysis, optimal conditions of metal fullerene layer formation in barium carbonate and petroleum pitch mediums were determined. Low cohesion of layer, modified in barium carbonate medium, with metal basis was discovered. That was caused by limited carbon diffusion in the volume of α-Fe. According to the detected mechanism of fullerenes formation on steel surface in gaseous medium, fullerenes are formed on catalytic centers – ferrum atoms, forming thin metal

  18. Casting technology for manufacturing metal rods from simulated metallic spent fuels

    Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    2000-09-01

    A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.

  19. 75 FR 49527 - Metaldyne Corporation, Metaldyne Tubular Products, Currently Known as Flexible Metal, Inc...

    2010-08-13

    ..., Metaldyne Tubular Products, Currently Known as Flexible Metal, Inc., Powertrain Division, Hamburg, MI... certification for workers of the subject firm. The workers are engaged in the production of exhaust manifolds and turbo tubes for the automotive industry. Information shows that on June 10, 2010, Flexible Metals...

  20. Effect of metal ions on the growth and metabolites production of ...

    Effect of metal ions on the growth and metabolites production of Ganoderma lucidum in submerged culture. YH Cui, KC Zhang. Abstract. The effects of several metal ions on the cell growth, production of polysaccharides by Ganoderma lucidum in submerged fermentation were studied. The results showed that 50 ppm Se2+ ...

  1. Evaluation of the efficiency of alternative enzyme production technologies

    Albæk, Mads Orla

    Enzymes are used in an increasing number of industries. The application of enzymes is extending into the production of lignocellulosic ethanol in processes that economically can compete with fossil fuels. Since lignocellulosic ethanol is based on renewable resources it will have a positive impact...... production of cellulases and hemi-cellulases. The aim of the thesiswas to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process...... of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative fermentation technologies for enzyme production were identified in the open literature. Their mass transfer capabilities and their energy efficiencies were...

  2. Wood for energy production. Technology - environment - economy[Denmark

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-07-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  3. Sustainable recycling of automotive products in China: Technology and regulation

    Chen, Ming

    2006-08-01

    The Chinese economy is growing rapidly, but accompanyingsuch growth are issues of environmental protection and social inequity which must be addressed. With the Automobile Industry Development Policy and the Motor Vehicle Product Recovery Technology Policy, an automobile products recoverability target has been established and will be incorporated into an automobile products authentication management system in China. By 2010, for all end-of-life automobile products, reuse and recovery shall be increased to a minimum of 85% by average weight per vehicle, and the use of lead, mercury, cadmium, and hexavalent chromium is prohibited. This paper will address the sustainable recycling of Chinese automobile products within the period of 2006 2010.

  4. Metal Matrix Microencapsulated Fuel Technology for LWR Applications

    Terrani, Kurt A.; Bell, Gary L.; Kiggans, Jim; Snead, Lance Lewis

    2012-01-01

    An overview of the metal matrix microencapsulated (M3) fuel concept for the specific LWR application has been provided. Basic fuel properties and characteristics that aim to improve operational reliability, enlarge performance envelope, and enhance safety margins under design-basis accident scenarios are summarized. Fabrication of M3 rodlets with various coated fuel particles over a temperature range of 800-1300 C is discussed. Results from preliminary irradiation testing of LWR M3 rodlets with surrogate coated fuel particles are also reported.

  5. Local power production at the end consumer - appropriate technologies

    Grinden, Bjoern; Morch, Andrei Z.; Braanaas, Marit; Stang, Jacob; Berner, Monica

    2002-11-01

    The report describes and evaluates a selection of technologies which may be adequate for a local power production at the end consumer. Contrary to may other technology surveys it is focused on small-scale production units that also may be of interest to small consumers. For the various technologies the particular technology is described and an evaluation of the suitability to Norwegian conditions is carried out. For each technology the following is described: 1) The technology in general. 2) Construction and technology trends. 3) Environmental conditions, operation and maintenance. 4) Experiences. 5) Key facts/data. It has to be emphasised that all the technologies are in development and this report describes them as they are in 2002 except for general conditions which always will exist. It has not been possible to obtain exact facts regarding the investment costs and the costs for each produced kWh e lectricity or kWh h eat for many of the technologies because they are new and mass production has not yet started. In an appendix a form is presented for use in obtaining information from equipment suppliers. Later in the project there will be developed a model for calculating the profitability of such investments as well. Technologies such as small-scale wind and hydropower units are the technologies most suited for Norway in a short perspective. In the years to come it is probable that technologies which use biologic fuel/waste of some kind would be used to some extent. In a longer perspective technologies as the Stirling engine and fuel cells may be of interest. The micro gas turbines and combustion engines may be current technologies if the distribution network for natural gas is developed. For these technologies the utilisation of waste heat would approximately double the efficiency and halve the operation costs. Various external conditions will play a major part in the spreading of the local power production. The political, legal and economical external

  6. Radiation technology for enhancing agriculture productivity

    D'Souza, S.F.

    2016-01-01

    Radiations and radioisotopes are used in agricultural research to develop improved crop varieties, to manage insect pests, monitor fate of pesticides, to study fertilizer and plant micronutrient uptake and to preserve agricultural produce. This is one of the important fields of peaceful applications of atomic energy for societal benefit. Department of Atomic Energy (DAE) has contributed significantly in this area especially in the development of new mutant crop varieties which are benefitting the farmers in enhancing their productivity. With an effective blend of induced mutagenesis and recombination breeding, 42 new crop varieties developed at Bhabha Atomic Research Centre (BARC) have been released and Gazette notified by the Ministry of Agriculture, Government of India for commercial cultivation. These include 21 in oilseeds (15-groundnut, 3 mustard , 2 soybean, 1 sunflower), 19 in pulses (8-mungbean, 5-urdbean, 5-pigeonpea, 1-cowpea) and one each in rice and jute. Some of the desirable traits which have been bred through induced mutations in these crops include higher yields, improved quality traits, early maturity and resistance to biotic and abiotic stress. Several of these varieties have high patronage from the farming community and are grown extensively across the country. Groundnut varieties have given record yields in farmer's fields. Pulses such as mung, urid and tur are popular among farmers in view of their disease resistance and suitability to rice fallow situations. Many of the breeding programmes in national/state systems have been utilizing BARC varieties as parental materials/donors and have developed several other improved varieties using them. (author)

  7. Thal and technologies for fodder production

    Ali, Z.; Ahmad, M.; Haqqanni, A.M.

    2005-01-01

    The climate of the study area is arid and semi-arid subtropical, characterized by high summer- temperature (1200 F) with hot dry winds, frequent dust-storms and torrential and erratic rains. Winter is mild, with cold nights having temperature 320 F. The fodder tree species in arid and semi-arid regions are a valuable resource of feeding livestock in these regions during the lean periods of both winter and summer seasons. Fodder trees are properly looked after, not only for their usefulness for fuel and furniture, etc., but good environment would improve the quality of life, along with manifold higher fodder- production for animals. Fodder trees should be lopped only when they are about two to three meters in height and branches more than 7.5 cm thick should not be lopped. Lopping of the whole tree, as usually practiced, is injurious to trees and affects their vigor. Lopping cycle should be such that we get new leaves at the desired time of the year. It is recommended that; (i) proven grass-species, like Cenchrus ciliaris, Lasiurus sindicus, Pennisetum orientale and Panicum antidotale, be introduced in Thai, (ii) the improved varieties of some fodder-crops like oats, berseem, lucerne, sorghum sudan grass hybrid and mott grass being multicut (would cover the scarcity periods) can be introduced in the irrigated areas and (iii) the trees and shrub-species, such as Acacia tortilis, Zizyphus nummularia, Acacia anura, Prosopis cineraria, Acacia nilotica, Tacomella undulate, Zizyphus mauritiana, Calligonum polygonoides, Tamarax aphylla and Albizia lebbeck, can be propagated and promoted in Thai desert. (author)

  8. Tracking environmental impacts in global product chains - Rare Earth Metals and other critical metals used in the cleantech industry

    Pathan, A.; Schilli, A.; Johansson, J.; Vehvilaeinen, I.; Larsson, A.; Hutter, J.

    2013-03-15

    Metals form a central part of the global economy, but their extraction and supply are linked to several environmental and social concerns. This study aims to create a picture of the supply chain of Rare Earth Metals (REMs) and other critical metals used in the clean technology (cleantech) sectors of electric vehicles and solar panels. The study examines how Nordic cleantech companies are aware and acting on the challenges related to the lifecycle of these metals and what are the potentials to minimise environmental and social impacts. Recommendations of the study can be summarised as three initiatives: establishment of an awareness platform and roundtable initiative (short-term), research and information gathering (mid-term), and development of closed-loop solutions (long-term). (Author)

  9. A study on compound contents for plastic injection molding products of metallic resin pigment

    Park, Young Whan; Kwak, Jae Seob; Lee, Gyu Sang

    2016-01-01

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated

  10. A study on compound contents for plastic injection molding products of metallic resin pigment

    Park, Young Whan; Kwak, Jae Seob [Dept. of Mechanical Engineering, Pukyong National University, Busan (Korea, Republic of); Lee, Gyu Sang [Alliance Molding Engineering TeamLG Electronics Inc., Osan (Korea, Republic of)

    2016-12-15

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated.

  11. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    Bayrakal, Suna [Iowa State Univ., Ames, IA (United States)

    1993-09-30

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

  12. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    Bayrakal, S.

    1993-01-01

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within

  13. Technology diffusion of energy-related products in residential markets

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  14. Innovative technologies of waste recycling with production of high performance products

    Gilmanshin, R; Azimov, Yu I; Gilmanshina, S I; Ferenets, A V; Galeeva, A I

    2015-01-01

    The innovative ways of recycling wastes as a tool for sustainable development are presented in the article. The technology of the production of a composite material based on the rubber fiber composite waste tire industry is presented. The results of experimental use of the products in the real conditions. The comparative characteristics of the composite material rubber fiber composite are given. The production technology of construction and repairing materials on the basis of foamed glass is presented. (paper)

  15. Innovative technologies of waste recycling with production of high performance products

    Gilmanshin, R.; Ferenets, A. V.; Azimov, Yu I.; Galeeva, A. I.; Gilmanshina, S. I.

    2015-06-01

    The innovative ways of recycling wastes as a tool for sustainable development are presented in the article. The technology of the production of a composite material based on the rubber fiber composite waste tire industry is presented. The results of experimental use of the products in the real conditions. The comparative characteristics of the composite material rubber fiber composite are given. The production technology of construction and repairing materials on the basis of foamed glass is presented.

  16. Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology

    Wang, J.-Y.; Huang, X.-J.; Kao, Jimmy C.M.; Stabnikova, Olena

    2006-01-01

    An upward electrokinetic soil remedial (UESR) technology was proposed to remove heavy metals from contaminated kaolin. Unlike conventional electrokinetic treatment that uses boreholes or trenches for horizontal migration of heavy metals, the UESR technology, applying vertical non-uniform electric fields, caused upward transportation of heavy metals to the top surface of the treated soil. The effects of current density, treatment duration, cell diameter, and different cathode chamber influent (distilled water or 0.01 M nitric acid) were studied. The removal efficiencies of heavy metals positively correlated to current density and treatment duration. Higher heavy metals removal efficiency was observed for the reactor cell with smaller diameter. A substantial amount of heavy metals was accumulated in the nearest to cathode 2 cm layer of kaolin when distilled water was continuously supplied to the cathode chamber. Heavy metals accumulated in this layer of kaolin can be easily excavated and disposed off. The main part of the removed heavy metals was dissolved in cathode chamber influent and moved away with cathode chamber effluent when 0.01 M nitric acid was used, instead of distilled water. Energy saving treatment by UESR technology with highest metal removal efficiencies was provided by two regimes: (1) by application of 0.01 M nitric acid as cathode chamber influent, cell diameter of 100 mm, duration of 18 days, and constant voltage of 3.5 V (19.7 kWh/m 3 of kaolin) and (2) by application of 0.01 M nitric acid as cathode chamber influent, cell diameter of 100 cm, duration of 6 days, and constant current density of 0.191 mA/cm 2 (19.1 kWh/m 3 of kaolin)

  17. Development of liquid metal type TBM technology for ITER

    Hong, Bong Guen; Kwak, J. G.; Kim, Y. (and others)

    2008-03-15

    The objectives of the ITER project for the construction and operation are to perform the test related to the neutronics, blanket module, tritium treatment technology, advanced plasma technology, and to test the heat extraction and tritium breeding in the test blanket for the fusion reactor. Other parties have been developing the Test Blanket Module (TBM) for testing in the ITER for these purposes. Through this project, we can secure the TBM design and related technology, which will be used as the core technology for the DEMO construction, our own fusion reactor development. In 1st year, the optimized design procedure was established with the existing tools, which have been used in nuclear reactor design, and the optimized HCML TBM design was obtained through iteration method according to the developed design procedure. He cooling system as a TBM auxiliary system was designed considering the final design of the KO HCML TBM such as coolant capacity and operation pressure. Layout for this system was prepared to be installed in the ITER TCWS vault. MHD effect of liquid Li breeder by magnetic flux in ITER such as much higher pressure drop was evaluated with CFD-ACE and it was concluded that the Li breeder should have a slow velocity to reduce this effect. Most results were arranged in the form of DDD including preliminary safety analysis report. In 2nd year, the optimized design procedure was complemented and updated. In performance analysis on thermal-hydraulic and thermo-mechanical one, full 3D meshes were generated and used in this analysis in order to obtain the more exact temperature, deformation, and stress solution. For liquid Li breeder system, design parameters were induced before the detailed design of the system and were used in the design of the liquid Li test loop. LOCA analysis, activation analysis in LOCA, EM analysis were performed as a preliminary safety analysis. In order to develop the manufacturing technology, Be+FMS and FMS to FMS joining conditions

  18. Development of liquid metal type TBM technology for ITER

    Hong, Bong Guen; Kwak, J. G.; Kim, Y.

    2008-03-01

    The objectives of the ITER project for the construction and operation are to perform the test related to the neutronics, blanket module, tritium treatment technology, advanced plasma technology, and to test the heat extraction and tritium breeding in the test blanket for the fusion reactor. Other parties have been developing the Test Blanket Module (TBM) for testing in the ITER for these purposes. Through this project, we can secure the TBM design and related technology, which will be used as the core technology for the DEMO construction, our own fusion reactor development. In 1st year, the optimized design procedure was established with the existing tools, which have been used in nuclear reactor design, and the optimized HCML TBM design was obtained through iteration method according to the developed design procedure. He cooling system as a TBM auxiliary system was designed considering the final design of the KO HCML TBM such as coolant capacity and operation pressure. Layout for this system was prepared to be installed in the ITER TCWS vault. MHD effect of liquid Li breeder by magnetic flux in ITER such as much higher pressure drop was evaluated with CFD-ACE and it was concluded that the Li breeder should have a slow velocity to reduce this effect. Most results were arranged in the form of DDD including preliminary safety analysis report. In 2nd year, the optimized design procedure was complemented and updated. In performance analysis on thermal-hydraulic and thermo-mechanical one, full 3D meshes were generated and used in this analysis in order to obtain the more exact temperature, deformation, and stress solution. For liquid Li breeder system, design parameters were induced before the detailed design of the system and were used in the design of the liquid Li test loop. LOCA analysis, activation analysis in LOCA, EM analysis were performed as a preliminary safety analysis. In order to develop the manufacturing technology, Be+FMS and FMS to FMS joining conditions

  19. Interactive influences of bioactive trace metals on biological production in oceanic waters

    Bruland, K.W.; Donat, J.R.; Hutchins, D.A.

    1991-01-01

    The authors present an overview of the oceanic chemistries of the bioactive trace metals, Mn, Fe, Co, Ni, Cu, and Zn; the authors combine field data with results from laboratory phytoplankton culture-trace metal studies and speculate on the potential influences of these trace metals on oceanic plankton production and species composition. Most field studies have focused on the effects of single metals. However, they propose that synergistic and antagonistic interactions between multiple trace metals could be very important in the oceans. Trace metal antagonisms that may prove particularly important are those between Cu and the potential biolimiting metals Fe, Mn, and Zn. These antagonistic interactions could have the greatest influence on biological productivity in areas of the open ocean isolated from terrestrial inputs, such as the remote high nutrient regions of the Pacific and Antarctic Oceans. The emerging picture of trace metal-biota interactions in these oceanic areas is one in which biology strongly influences distribution and chemical speciation of all these bioactive trace metals. It also seems likely that many of these bioactive trace metals and their speciation may influence levels of primary productivity, species composition, and trophic structure. Future investigations should give more complete consideration to the interactive effects of biologically important trace metals

  20. Tracing heavy metals in 'swine manure - maggot - chicken' production chain.

    Wang, Wanqiang; Zhang, Wenjuan; Wang, Xiaoping; Lei, Chaoliang; Tang, Rui; Zhang, Feng; Yang, Qizhi; Zhu, Fen

    2017-08-21

    With the development of large-scale livestock farming, manure pollution has drawn much attention. Conversion by insects is a rapid and cost-effective new method for manure management. Swine manure conversion with maggots (Musca domestica larvae) has developed, and the harvested maggots are often used as animal feed. However, the flow of heavy metals from manure to downstream processes cannot be ignored, and therefore, heavy metal content was measured in untreated raw manure, maggot-treated manure, harvested maggots and maggot-eating chickens (chest muscle and liver) to evaluate potential heavy metal risks. The levels of zinc, copper, chromium, selenium, cadmium and lead had significant differences between untreated raw manure and maggot-treated manure. The concentrations of all detected heavy metals, except for cadmium and selenium, in maggots met the limits established by the feed or feed additive standards of many countries. The bioaccumulation factor (BAF) of heavy metals decreased with the increase of the maggot instar, indicating that heavy metals were discharged from the bodies of maggots with the growth of maggots. Also, the contents of overall heavy metals in chickens fed harvested maggots met the standards for food. In conclusion, regarding heavy metals, it is eco-safe to use maggots in manure management.

  1. Production of Manual Metal Arc Welding Electrodes with Local Raw ...

    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between the base metal and a flux covered metal electrode with electric current that depends on the type of electrode, material, welding position and the desired strength. The composition of flux coated electrodes is complex and a ...

  2. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products.

    Xia, Younan; Xia, Xiaohu; Peng, Hsin-Chieh

    2015-07-01

    This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions. It has been extremely challenging to investigate this subject in the setting of one-pot synthesis because both the type and number of seeds involved would be changed whenever the experimental conditions are altered, making it essentially impossible to draw conclusions when comparing the outcomes of two syntheses conducted under different conditions. Because of the uncertainty about seeds, most of the mechanistic insights reported in literature for one-pot syntheses of metal nanocrystals with different shapes are either incomplete or ambiguous, and some of them might be misleading or even wrong. Recently, with the use of well-defined seeds for such syntheses, it became possible to separate growth from nucleation and therefore investigate the explicit role(s) played by a specific thermodynamic or kinetic parameter in directing the evolution of colloidal metal nanocrystals into a specific shape. Starting from single-crystal seeds enclosed by a mix of {100}, {111}, and {110} facets, for example, one can obtain colloidal nanocrystals with diversified shapes by adjusting various thermodynamic or kinetic parameters. The mechanistic insights learnt from these studies can also be extended to account for the products of conventional one-pot syntheses that involve self-nucleation only. The knowledge can be further applied to many other types of seeds with twin defects or stacking faults, making it an exciting time to design and synthesize colloidal metal nanocrystals with the shapes sought for a variety of fundamental studies and technologically important applications.

  3. Technology which led to the westinghouse inherently safe liquid metal reactor

    Schmidt, J.E.; Coffield, R.D.; Doncals, R.A.; Kalinowski, J.E.; Markley, R.A.

    1985-01-01

    The Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor programs resulted in an understanding of liquid metal reactor behavior that is being used to design inherent safety capability into liquid metal reactors. Technological advances give the same beneficial operating characteristics of conventional liquid metal reactors, however, the addition of inherently safe design features precludes the initiation of hypothetical core disruptive accidents. These innovative features permit inherent safety capability to be demonstrated with more than adequate margins. Also, the variety of inherent safety features provides the designers with options in selecting inherent design features for a specific reactor application

  4. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub

  5. Mobile Technology and CAD Technology Integration in Teaching Architectural Design Process for Producing Creative Product

    Bin Hassan, Isham Shah; Ismail, Mohd Arif; Mustafa, Ramlee

    2011-01-01

    The purpose of this research is to examine the effect of integrating the mobile and CAD technology on teaching architectural design process for Malaysian polytechnic architectural students in producing a creative product. The website is set up based on Caroll's minimal theory, while mobile and CAD technology integration is based on Brown and…

  6. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  7. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    none,

    2014-04-30

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  8. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    None, None

    2015-02-01

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  9. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2015

    None, None

    2016-01-08

    This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  10. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  11. Role of modern analytical techniques in the production of uranium metal

    Hareendran, K.N.; Roy, S.B.

    2009-01-01

    Production of nuclear grade uranium metal conforming to its stringent specification with respect to metallic and non metallic impurities necessitates implementation of a comprehensive quality control regime. Founding members of Uranium Metal Plant realised the importance of this aspect of metal production and a quality control laboratory was set up as part of the production plant. In the initial stages of its existence, the laboratory mainly catered to the process control analysis of the plant process samples and Spectroscopy Division and Analytical Division of BARC provided analysis of trace metallic impurities in the intermediates as well as in the product uranium metal. This laboratory also provided invaluable R and D support for the optimization of the process involving both calciothermy and magnesiothermy. Prior to 1985, analytical procedures used were limited to classical methods of analysis with minimal instrumental procedures. The first major analytical instrument, a Flame AAS was installed in 1985 and a beginning to the trace analysis was made. However during the last 15 years the Quality Control Section has modernized the analytical set up by acquiring appropriate instruments. Presently the facility has implemented a complete quality control and quality assurance program required to cover all aspects of uranium metal production viz analysis of raw materials, process samples, waste disposal samples and also determination of all the specification elements in uranium metal. The current analytical practices followed in QCS are presented here

  12. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  13. Arsenic in industrial waste water from copper production technological process

    Biljana Jovanović; Milana Popović

    2013-01-01

    Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor...

  14. Development of 99Mo isotope production targets employing uranium metal foils

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.

    1997-01-01

    The Reduced Enrichment Research and Test Reactor Program has continued its effort in the past 3 yr to develop use of low-enriched uranium (LEU) to produce the fission product 99 Mo. This work comprises both target and chemical processing development and demonstration. Two major target systems are now being used to produce 99 Mo with highly enriched uranium-one employing research reactor fuel technology (either uranium-aluminum alloy or uranium aluminide-aluminum dispersion) and the other using a thin deposit of UO 2 on the inside of a stainless steel (SST) tube. This paper summarizes progress in irradiation testing of targets based on LEU uranium metal foils. Several targets of this type have been irradiated in the Indonesian RSG-GAS reactor operating at 22.5 MW

  15. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland.

    Boesch, Michael E; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie

    2014-02-01

    A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO2-eq. generated in the incineration process, and 54 kg CO2-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO2-eq. Savings from energy recovery are in the range of 67 to 752 kg CO2-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO2-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Application of electron beam curing technology for paper products

    Takaharu Miura

    1999-01-01

    The electron beam (EB) curing technology has rapidly advanced in recent years. However there were few examples applying this technology to paper products. One reason comes from the high price of EB equipment and the other comes from the difficulty of controlling the irradiation which gives damages to paper. In spite of these problems, the EB cured coating layer shows remarkable features, such as solvent-resistance, water-resistance, heat-resistance and high smoothness using the drum casting technique. Concentrating on application of this technology to paper, we have already developed some products. For example, paper for printings (Super Mirror PN) and for white boards (Super Mirror WB) have been manufactured. In this presentation, we are going to introduce this EB curing technique and the products

  17. Scientific and technological aspects of the radiopasteurization of egg products

    Etienne, J C; Biltiau, J; Rombaux, J P

    1973-11-01

    A bibliographic review is presented of the scientific and technological problems in the thermal pasteurization of egg products and the possible advantages of the substitution of radiopasteurization. Current procedures of pasteurization are described. Conditioning of the egg products by congealing or dehydration prior to storage is discussed. A comparative examination is made of the physico-chemical properties of treated egg products and of the organoleptic qualities of the finished product. The present status of radiopasteurization, the problems to be solved, and the economic aspects are discussed. (JSR)

  18. Microbial electrolysis cells as innovative technology for hydrogen production

    Chorbadzhiyska, Elitsa; Hristov, Georgi; Mitov, Mario; Hubenova, Yolina

    2011-01-01

    Hydrogen production is becoming increasingly important in view of using hydrogen in fuel cells. However, most of the production of hydrogen so far comes from the combustion of fossil fuels and water electrolysis. Microbial Electrolysis Cell (MEC), also known as Bioelectrochemically Assisted Microbial Reactor, is an ecologically clean, renewable and innovative technology for hydrogen production. Microbial electrolysis cells produce hydrogen mainly from waste biomass assisted by various bacteria strains. The principle of MECs and their constructional elements are reviewed and discussed. Keywords: microbial Electrolysis Cells, hydrogen production, waste biomass purification

  19. Biogas production as affected by heavy metals in the anaerobic digestion of sludge

    Hussein I. Abdel-Shafy

    2014-12-01

    The sewage sludge samples were separated from the sewage water of the pilot plant at the National Research Centre, TDC site. The effect of heavy metals on the biogas production of the anaerobic digester was studied. The inhibitory effect on the biogas production and toxic level of metals was determined in this study. The general ranking of heavy metal toxicity appears to be Hg > Cd > Cr (III. The present investigation reveals that heavy metals in addition to the anaerobic digester decreased the biogas production as an indication of efficiency of the process. A significant decrease in gas production and volatile organic matter removal was obtained. It was also noted that an accumulation of organic acid intermediates was obtained as a result of methanogenic bacterial inhibition. This accumulation was limited during the pulse feed of metals. This is due to the rapid poisoning of the active bacterial forms in the digester.

  20. Production of nanocrystalline metal powders via combustion reaction synthesis

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  1. High-efficiency heat pump technology using metal hydrides (eco-energy city project)

    Morita, Y.; Harada, T.; Niikura, J.; Yamamoto, Y.; Suzuki, J. [Human Environmental Systems Development Center, Matsushita Electric Industrial Co., Ltd., Moriguchi, Osaka (Japan); Gamo, T. [Corporate Environmental Affairs Div., Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan)

    1999-07-01

    Metal hybrides are effective materials for utilizing hydrogen as a clean energy medium. That is, when the metal hydrides absorb or desorb the hydrogen, a large heat output of reaction occurs. So, the metal hydrides can be applied to a heat pump. We have researched on a high efficiency heat pump technology using their metal hydrides. In this report, a double effect type metal hydride heat pump configuration is described in which the waste heat of 160 C is recovered in a factory cite and transported to areas far distant from the industrial district. In the heat recovery unit, a low pressure hydrogen is converted into highly effective high pressure hydrogen by applying the metal hydrides. Other metal hydrides perform the parts of heating by absorbing the hydrogen and cooling by desorbing the hydrogen in the heat supply unit. One unit scale of the system is 3 kW class as the sum of heating and cooling. This system using the hydrogen absorbing alloy also has good energy storage characteristics and ambient hydrogen pressure self-safety control ability. Furthermore, this heating and cooling heat supply system is not harmful to the natural environment because it is a chlorofluorocarbon-free, and low noise type system. We have developed in the following element technologies to attain the above purposes, that is development of hydrogen absorbing alloys with high heat outputs and technologies to construct the heat pump system. This study is proceeded at present as one of the programs in New Sunshine Project, which aims for development of ingenious energy utilization technology to achieve reduction of primary energy consumption with keeping cultural and wealthy life and preventing deterioration of global environment. (orig.)

  2. Technology and economic assessment of lactic acid production and uses

    Datta, R.; Tsai, S.P.

    1996-03-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}50,000 tons/yr) used in a wide range of food-processing and industrial applications. Potentially, it can become a very large-volume, commodity-chemical intermediate produced from carbohydrates for feedstocks of biodegradable polymers, oxygenated chemicals, environmentally friendly ``green`` solvents, and other intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from fermentation broths and its conversion to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. Development and deployment of novel separations technologies, such as electrodialysis with bipolar membranes, extractive and catalytic distillations, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The emerging technologies can use environmentally sound lactic acid processes to produce environmentally useful products, with attractive process economics. These technology advances and recent product and process commercialization strategies are reviewed and assessed.

  3. Development of electrolytic process in molten salt media for light rare-earth metals production. The metallic cerium electrodeposition

    Restivo, T.A.G.

    1994-01-01

    The development of molten salt process and the respective equipment aiming rare-earth metals recovery was described. In the present case, the liquid cerium metal electrodeposition in a molten electrolytes of cerium chloride and an equimolar mixture of sodium and potassium chlorides in temperatures near 800 C was studied. Due the high chemical reactivity of the rare-earth metals in the liquid state and their molten halides, an electrolytic cell was constructed with controlled atmosphere, graphite crucibles and anodes and a tungsten cathode. The electrolytic process variables and characteristics were evaluated upon the current efficiency and metallic product purity. Based on this evaluations, were suggested some alterations on the electrolytic reactor design and upon the process parameters. (author). 90 refs, 37 figs, 20 tabs

  4. Innovative applications of technology for nuclear power plant productivity improvements

    Naser, J. A.

    2012-01-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  5. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  6. Fungal nanoscale metal carbonates and production of electrochemical materials.

    Li, Qianwei; Gadd, Geoffrey Michael

    2017-09-01

    Fungal biomineralization of carbonates results in metal removal from solution or immobilization within a solid matrix. Such a system provides a promising method for removal of toxic or valuable metals from solution, such as Co, Ni, and La, with some carbonates being of nanoscale dimensions. A fungal Mn carbonate biomineralization process can be applied for the synthesis of novel electrochemical materials. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    Fasoyinu, Yemi [CanmetMATERIALS

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  8. Integrative Production Technology for High-Wage Countries

    2012-01-01

    Industrial production in high-wage countries like Germany is still at risk. Yet, there are many counter-examples in which producing companies dominate their competitors by not only compensating for their specific disadvantages in terms of factor costs (e.g. wages, energy, duties and taxes) but rather by minimising waste using synchronising integrativity as well as by obtaining superior adaptivity on alternating conditions. In order to respond to the issue of economic sustainability of industrial production in high-wage countries, the leading production engineering and material research scientists of RWTH Aachen University together with renowned companies have established the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”. This compendium comprises the cluster’s scientific results as well as a selection of business and technology cases, in which these results have been successfully implemented into industrial practice in close cooperation with more than 30 companies of ...

  9. Technology Licensing Strategy for Network Product in a Service Industry

    Xianpei Hong

    2015-01-01

    Full Text Available Technology licensing has gained significant attention in literature and practice as a rapid and effective way to improve firm’s capability of technology innovation. In this paper, we investigate a duopolistic service provider competition market, where service providers develop and sell a kind of network product. In this setting, we analyze the innovating service provider’s four licensing strategies: no licensing, fixed fee licensing, royalty licensing, and two-part tariff licensing. The literature suggests that when the network products can be completely substituted, two-part tariff licensing is the optimal strategy of the innovating service provider. We find that when the network products cannot be completely substituted, two-part tariff licensing is not always optimal. The degree of the product differentiation, the intensity of the network effects, and the R&D cost of the potential licensee play a key role in determining the innovating service provider’s optimal licensing strategies.

  10. Assessment of Waste Production and Heavy Metal Emission from Energy Production Sector of Zahedan City

    Nayyere Poormollae

    2013-12-01

    Full Text Available Background and purpose: Due to the lack of accurate statistics on the amount of waste generated in the energy production sector in Zahedan, before any planning, one should identify all waste producing centers associated with the energy sector and also the quantity and quality of their waste in Zahedan. Materials and methods: This research is a cross-sectional descriptive study. It examined the produced wastes in the electrical energy generation sector. A questionnaire was prepared and completed for each unit that possibility produces these wastes. Moreover, in the studied units, the weigh percent per unit was determined by separating production waste, and collecting and weighing them. Results: In gas power plant of Zahedan, production of burned oil was approximately 480 liters and the annual consumption of turbine oil and compressor oil was 40 liters. In the diesel power plant, 2,200 liters of burned oil is produced for each generator after 1,500 hours of work. Concentration of heavy metals of Cr, Cd, Zn, Pb, Cu, and Ni in the burned oil sample of the gas power plant was 43.2, 0.01, 0.20, 1.3, 2.7, 0.2 mg/l, respectively and in the diesel power plant were 36.3, 0.08, 0.09, 0.9, 4.7, 1.1 mg/l. Conclusion: In the studied samples, several cases of heavy metal pollution were identified. Therefore, proper planning for appropriate management of these units is necessary for any possible leakage and environmental pollution transport. Furthermore, in order to minimize the adverse impacts of hazardous wastes on the environment and people in Zahedan, integrated hazardous wastes management should be practices in electrical energy generation plants. Moreover, one must consider the measures required to exposure, transport, and safe maintenance before managing or eliminating this type of waste.

  11. Micromachining technology for thermal ink-jet products

    Verdonckt-Vandebroek, Sophie

    1997-09-01

    This paper reviews recent trends and evolutions in the low- end color printing market which is currently dominated by thermal inkjet (TIJ) based products. Micro electromechanical systems technology has been an enabler for the unprecedented cost/performance ratio of these printing products. The generic TIJ operating principles are based on an intimate blend of thermodynamics, fluid dynamics and LSI electronics. The key principles and design issues are outlined and the fabrication of TIJ printheads illustrated with an implementation by the Xerox Corporation.

  12. Development of casting technology for manufacturing metal rods with simulated metallic spent fuels

    Lee, D. B.; Lee, Y. S.; Woo, Y. M.; Jang, S. J.; Kim, J. D; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    1999-01-01

    The advanced casting equipment based on the directional solidification method was developed for manufacturing the uranium metal rod having 13.5 mm diameter and 1,200 mm length. In order to prevent surface-shrunk holes revealed easily in course of casting the small diameter and long rods, the vacuum casting furnace has the four pre-heaters equipped with temperature controller. On the other hand, the computer simulation to estimate the defective location and to analyze the solidus behavior of molten uranium in the mold were also performed by using MAGMA Code. As a result of the experimental and theoretical study, the sound rod has successfully been manufactured

  13. Health information technology vendor selection strategies and total factor productivity.

    Ford, Eric W; Huerta, Timothy R; Menachemi, Nir; Thompson, Mark A; Yu, Feliciano

    2013-01-01

    The aim of this study was to compare health information technology (HIT) adoption strategies' relative performance on hospital-level productivity measures. The American Hospital Association's Annual Survey and Healthcare Information and Management Systems Society Analytics for fiscal years 2002 through 2007 were used for this study. A two-stage approach is employed. First, a Malmquist model is specified to calculate hospital-level productivity measures. A logistic regression model is then estimated to compare the three HIT adoption strategies' relative performance on the newly constructed productivity measures. The HIT vendor selection strategy impacts the amount of technological change required of an organization but does not appear to have either a positive or adverse impact on technical efficiency or total factor productivity. The higher levels in technological change experienced by hospitals using the best of breed and best of suite HIT vendor selection strategies may have a more direct impact on the organization early on in the process. However, these gains did not appear to translate into either increased technical efficiency or total factor productivity during the period studied. Over a longer period, one HIT vendor selection strategy may yet prove to be more effective at improving efficiency and productivity.

  14. DEVELOPMENT OF TECHNOLOGY AND REGULATORY DOCUMENTATION ON PROCESSED BROCCOLI PRODUCT

    T. I. Kryachko

    2017-01-01

    Full Text Available The aim of the present investigation was development of an efficient technology for obtaining powders from fresh broccoli; determination of the possibility of using domestic production of broccoli as an import-substituting product; development of regulatory documentation for broccoli powders for the food industry. The research was carried out jointly with the representatives of the Federal Scientific cen-ter of vegetable production on an experimental basis in 2016. The domestic Tonus variety of broccoli (Federal Scientific center of vegetable production and the Maraton F1 hybrid (France, differing in appearance, vegetative period, biochemical and physical characteristics were chosen. Technology of broccoli powder production from domestic and imported products was developed using two methods of drying convection and lyophilization. The gentle drying conditions of broccoli freeze drying compared to convective drying technology provided higher content of both vitamin C and polyphenols in the final powder. Comparative studies of organoleptic and physico-chemical properties of powders obtained from domestic and imported broccoli demonstrated close quality parameters, indicating the possibility of effective domestic broccoli utilization and import substitution. For the first time in the Russian Federation, the "Organization Standard" was developed for regulation of the quality parameters of broccoli powders intended for use in the food industry.

  15. Rise and course of an elusive technology: metal gilding

    Perea, Alicia

    2008-12-01

    Full Text Available Research on mercury or fire gilding technology during Prehistory and Antiquity is at its beginnings due to the fact that its identification and characterization is completely dependent on analytical techniques, mainly non destructive Archaeometry techniques allowing an easy characterization of the archaeological objects. Actually we rely on a small number of analytical data, much more limited if we place ourselves within the Iberian peninsula or if we are concerned with the early stages of the use of this technology because... nobody finds what it is not looked for.
    We submit a summary of data anlyisis by XRF and PIXE in order to characterize two groups of items: on the one hand a special type of iberian brooch with animals and hunting scenes, made up of gilded silver, and on the other the visigothic treasure of Torredonjimeno, Jaén. From the debate on these results the hypothesis of a local origin for fire gilding technology during the iberian period, about 4th century B.C., has come out regardless other centers of possible inception in Europe or the Mediterranean. A final stage would be represented by visigothic jewellery that closes the late Antiquity technological domain system up.

    La investigación sobre la técnica del dorado al fuego con amalgama de mercurio durante la Prehistoria y Antigüedad no ha hecho más que comenzar debido a que su identificación y caracterización es totalmente dependiente de las técnicas analíticas, fundamentalmente las no destructivas, puestas a punto desde la Arqueometría para facilitar el estudio del material arqueológico. Actualmente contamos con escasos datos analíticos, que se reducen drásticamente si nos situamos en la Península ibérica y concentramos nuestro interés en las primeras etapas de su utilización, porque... nadie encuentra lo que no se busca.
    Presentamos una recopilación de este tipo de datos mediante las técnicas analíticas XRF y PIXE para caracterizar dos grupos

  16. Liquid metal reactor development. Development of LMR design technology

    Kim, Young Cheol; Kim, Y I; Kim, Y G; Kim, E K; Song, H; Chung, H T; Sim, Y S; Min, B T; Kim, Y S; Wi, M H; Yoo, B; Lee, J H; Lee, H Y; Kim, J B; Koo, G H; Hahn, D H; Na, B C; Hwang, W; Nam, C; Ryu, W S; Lim, G S; Kim, D H; Kim, J D; Gil, C S

    1997-07-01

    This project was performed in five parts, the scope and contents of which are as follows: The nuclear data processing system was established and the KFS group constant library was improved and verified. Basic computation system was constructed by either developing or adding its function. Input/output (I/O) interface processing was developed to establish an integrated calculation system for LMR core nuclear rand thermal-hydraulic design and analysis. An experimental data analysis was performed to validate the constructed core neutronic calculation system. Using the established core calculation system and design technology, preliminary core design and performance analysis on the domestic LMR core design concept were carried out. To develop the basic technology of the LMR system analysis, LMR system behavior characteristics evaluation, thermal -fluid system analysis in the reactor pool, preliminary overall plant analysis and computer codes development have been performed. A porous model and simple one-dimensional model have been evaluated for the reactor pool analysis. The evaluation of the residual heat removal system on different design concepts has been also conducted. For the development of high temperature structural analysis, the heat transfer and thermal stress analyses were performed using finite element program with user subroutine that has been developed with an implementation of the Chaboche constitutive model for inelastic analysis capability, and the evaluation of creep-fatigue and ratcheting behavior of high temperature structure was carried out using this program. for development of the seismic isolation system and to predict the shear behavior for the laminated rubber bearing were established. And the behavior tests of isolation bearing and rubber specimens were carried out, and the seismic response tests for the isolation model structure were performed using the 30 ton shaking table. (author). 369 refs., 119 tabs., 320 figs.

  17. Liquid metal reactor development. Development of LMR design technology

    Kim, Young Cheol; Kim, Y. I.; Kim, Y. G.; Kim, E. K.; Song, H.; Chung, H. T.; Sim, Y. S.; Min, B. T.; Kim, Y. S.; Wi, M. H.; Yoo, B.; Lee, J. H.; Lee, H. Y.; Kim, J. B.; Koo, G. H.; Hahn, D. H.; Na, B. C.; Hwang, W.; Nam, C.; Ryu, W. S.; Lim, G. S.; Kim, D. H.; Kim, J. D.; Gil, C. S.

    1997-07-01

    This project was performed in five parts, the scope and contents of which are as follows: The nuclear data processing system was established and the KFS group constant library was improved and verified. Basic computation system was constructed by either developing or adding its function. Input/output (I/O) interface processing was developed to establish an integrated calculation system for LMR core nuclear rand thermal-hydraulic design and analysis. An experimental data analysis was performed to validate the constructed core neutronic calculation system. Using the established core calculation system and design technology, preliminary core design and performance analysis on the domestic LMR core design concept were carried out. To develop the basic technology of the LMR system analysis, LMR system behavior characteristics evaluation, thermal -fluid system analysis in the reactor pool, preliminary overall plant analysis and computer codes development have been performed. A porous model and simple one-dimensional model have been evaluated for the reactor pool analysis. The evaluation of the residual heat removal system on different design concepts has been also conducted. For the development of high temperature structural analysis, the heat transfer and thermal stress analyses were performed using finite element program with user subroutine that has been developed with an implementation of the Chaboche constitutive model for inelastic analysis capability, and the evaluation of creep-fatigue and ratcheting behavior of high temperature structure was carried out using this program. for development of the seismic isolation system and to predict the shear behavior for the laminated rubber bearing were established. And the behavior tests of isolation bearing and rubber specimens were carried out, and the seismic response tests for the isolation model structure were performed using the 30 ton shaking table. (author). 369 refs., 119 tabs., 320 figs

  18. Development of the production of lead and precious metals in Central Asia

    Nikolić Branislav

    2014-01-01

    Full Text Available There were several rich deposits of polymetal ores of non-ferrous and precious metals in the region of Imperial Russia and the Soviet Union. Metallurgical production of these metals was developed even a thousand years ago and was in the top of the world at the beginning of the fourth quarter of the twentieth century. The disintegration of the Soviet Union and the change of government structures caused a reduction of metallurgical production, but there are all conditions to intensify and increase the production of non-ferrous and precious metals in Russia and other former Soviet republics, which are now middle-asian countries.

  19. Determination of the levels of heavy metals in cocoa products

    Dankyi Enock

    2009-06-01

    Fermented and dried cocoa beans from all the major cocoa-producing regions in Ghana were analyzed for levels of the following heavy metals: arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel and zinc. The shells of the beans which usually do not form a part of the edible portion of the beans were removed and analyzed separately from the cocoa nibs (de-shelled beans) for all the elements above. To determine the distribution of metals during processing of the beans soxhlet extractions of fat from pulverised cocoa nibs was performed and cocoa powders obtained analyzed for their levels of heavy metals. Three commercial brands of 'natural' cocoa powders on the local market were also analyzed to determine the levels of these metals. The analyses were performed using an inductively coupled plasma - optical emission spectrophotometer (ICP-OES) following a microwave-assisted digestion process. The levels of toxic metals lead, cadmium and arsenic were found to be low (≤ 0.020 μg/g, ≤ 0.087 μg/g, < 0.001 μg/g, respectively) and well within the acceptable limits set by the WHO (0.100 μg/g, 0.100 μg/g, and 0.010 μg/g respectively). However, the levels of zinc copper, iron and manganese were however quite high. With a high fat content of the cocoa beans (approximately 50%) and greater portioning of metals into the non-fat portions of the beans, metals levels were considerably higher (almost double) in processed cocoa than in the cocoa itself. (au)

  20. Process of technology management in SMEs of the metal processing industry – the case study investigation

    Krawczyk-Dembicka Elżbieta

    2017-03-01

    Full Text Available The main purpose of this work is to identify the factors that influence the process of technology management in the sector of small- and medium-sized enterprises of the metal processing industry, considering the shape and course required to achieve modern operation conditions by enterprises in the market.

  1. Technology development for metallic hot structures in aerodynamic control surfaces of reusable launchers

    Sudmeijer, K.J.; Wentzel, C.; Lefeber, B.M.; Kloosterman, A.

    2002-01-01

    In this paper a summary is presented of the technology development in the Netherlands focussed on the design and development of a metallic aerodynamic control surface for the future European reusable launcher. The applied materials are mainly Oxide Dispersion Strengthened (ODS) alloys produced by

  2. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME.

  3. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME

  4. Seamount mineral deposits: A source of rare metals for high technology industries

    Hein, James R.; Conrad, Tracey A.; Staudigel, Hubert

    2010-01-01

    The near exponential growth in Earth’s population and the global economy puts increasing constraints on our planet’s finite supply of natural metal resources, and, consequently, there is an increasing need for new sources to supply high-tech industries. To date, effectively all of our raw-metal resources are produced at land-based sites. Except for nearshore placer deposits, the marine environment has been largely excluded from metal mining due to technological difficulties, even though it covers more than 70% of the planet. The case can be made that deep-water seabed mining is inevitable in the future, owing to the critical and strategic metal needs for human society. In this paper, we evaluate the case that seamounts offer significant potential for mining.

  5. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland

    Boesch, Michael E.; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie

    2014-01-01

    Highlights: • An enhanced process-based LCA model for MSWI is featured and applied in case study. • LCA modeling of recent technological developments for metal recovery from fly ash. • Net release from Swiss MSWI 133 kg CO 2 -eq/tonne waste from attributional LCA perspective. • Net savings from a consequential LCA perspective reach up to 303 kg CO 2 -eq/tonne waste. • Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO 2 -eq. generated in the incineration process, and 54 kg CO 2 -eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO 2 -eq. Savings from energy recovery are in the range of 67 to 752 kg CO 2 -eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO 2 -eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates

  6. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland

    Boesch, Michael E. [Aveny GmbH, Schwandenholzstr. 212, CH-8046 Zürich (Switzerland); Vadenbo, Carl, E-mail: vadenbo@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland); Saner, Dominik [Swiss Post, Communications, Politics and Social Responsibility, Viktoriastrasse 21, P.O. Box, CH-3030 Berne (Switzerland); Huter, Christoph [City of Zürich, ERZ Entsorgung - Recycling Zürich, Hagenholzstrasse 110, P.O. Box, CH-8050 Zürich (Switzerland); Hellweg, Stefanie [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland)

    2014-02-15

    Highlights: • An enhanced process-based LCA model for MSWI is featured and applied in case study. • LCA modeling of recent technological developments for metal recovery from fly ash. • Net release from Swiss MSWI 133 kg CO{sub 2}-eq/tonne waste from attributional LCA perspective. • Net savings from a consequential LCA perspective reach up to 303 kg CO{sub 2}-eq/tonne waste. • Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO{sub 2}-eq. generated in the incineration process, and 54 kg CO{sub 2}-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO{sub 2}-eq. Savings from energy recovery are in the range of 67 to 752 kg CO{sub 2}-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO{sub 2}-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total

  7. Parallel distributed computing in modeling of the nanomaterials production technologies

    Krzhizhanovskaya, V.V.; Korkhov, V.V.; Zatevakhin, M.A.; Gorbachev, Y.E.

    2008-01-01

    Simulation of physical and chemical processes occurring in the nanomaterial production technologies is a computationally challenging problem, due to the great number of coupled processes, time and length scales to be taken into account. To solve such complex problems with a good level of detail in a

  8. Low Carbon Technology Options for the Natural Gas Electricity Production

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the...

  9. Peer production & peer support at the Free Technology Academy

    Potters, Hanneke; Berlanga, Adriana; Bijlsma, Lex

    2012-01-01

    Potters, H., Berlanga, A. J., & Lex, B. (2011). Peer Production & Peer Support at the Free Technology Academy. In G. van de Veer, P. B. Sloep, & M. van Eekelen (Eds.), Proceedings Computer Science Education Research Conference (CSERC '11) (pp. 49-58). April, 7-8, 2011, Heerlen, The Netherlands: ACM.

  10. Technological capabilities, institutions and firm productivity: a multilevel study

    Goedhuys, M.; Srholec, Martin

    2015-01-01

    Roč. 27, č. 1 (2015), s. 122-139 ISSN 0957-8811 R&D Projects: GA ČR(CZ) GAP402/10/2310 Institutional support: RVO:67985998 Keywords : productivity * innovation * technological capability Subject RIV: AH - Economics Impact factor: 0.720, year: 2015

  11. Development of Technology and Installation for Biohydrogen Production

    Pridvizhkin, S. V.; Vyguzova, M. A.; Bazhenov, O. V.

    2017-11-01

    The article discusses the method for hydrogen production and the device this method application. The relevance of the use of renewable fuels and the positive impact of renewable energy on the environment and the economy is also considered. The presented technology relates to a method for hydrogen production from organic materials subject to anaerobic fermentation, such as the components of solid municipal waste, sewage sludge and agricultural enterprises wastes, sewage waste. The aim of the research is to develop an effective eco-friendly technology for hydrogen producing within an industrial project To achieve the goal, the following issues have been addressed in the course of the study: - development of the process schemes for hydrogen producing from organic materials; - development of the technology for hydrogen producing; - optimization of a biogas plant with the aim of hydrogen producing at one of the fermentation stages; - approbation of the research results. The article is recommended for engineers and innovators working on the renewable energy development issues.

  12. Information Technology in Small Medium Enterprise: Logistic and Production Processes

    Maurizio Pighin

    2017-01-01

    Full Text Available This paper presents and discuss a survey which describes how small-medium enterprises (SMEs implement and use their information system with respect to their logistic and production processes. The study first describes the rationale of the research, then it identifies the characteristics of the companies and detects their general attitude towards information technology (IT. In the following section the paper presents a set of detailed processes to verify the structure and workflow of companies and how IT supports their processes. In the last part we study the influence of some company characteristics to effective use of processes and to different technological approaches, to support defined logistic and production processes. The novelty of the study and its interest, both in academic and institutional context as in the real world, resides in the opportunity to verify and understand the different attitudes of SMEs towards information technology in defining, organizing, planning and control their processes.

  13. Technique for production of calibrated metal hydride films

    Langley, R.A.; Browning, J.F.; Balsley, S.D.; Banks, J.C.; Doyle, B.L.; Wampler, W.R.; Beavis, L.C.

    1999-01-01

    A technique has been developed for producing calibrated metal hydride films for use in the measurement of high-energy (5--15 MeV) particle reaction cross sections for hydrogen and helium isotopes on hydrogen isotopes. Absolute concentrations of various hydrogen isotopes in the film is expected to be determined to better than ±2% leading to the capacity of accurately measuring various reaction cross sections. Hydrogen isotope concentrations from near 100% to 5% can be made accurately and reproducibly. This is accomplished with the use of high accuracy pressure measurements coupled with high accuracy mass spectrometric measurements of each constituent partial pressure of the gas mixture during loading of the metal occluder films. Various techniques are used to verify the amount of metal present as well as the amount of hydrogen isotopes; high energy ion scattering analysis, PV measurements before, during and after loading, and thermal desorption/mass spectrometry measurements. The most appropriate metal to use for the occluder film appears to be titanium but other occluder metals are also being considered. Calibrated gas ratio samples, previously prepared, are used for the loading gas. Deviations from this calibrated gas ratio are measured using mass spectrometry during and after the loading process thereby determining the loading of the various hydrogen isotopes. These techniques are discussed and pertinent issues presented

  14. Integrating medical, assistive, and universally designed products and technologies: assistive technology device classification (ATDC).

    Bauer, Stephen; Elsaesser, Linda-Jeanne

    2012-09-01

    ISO26000:2010 International Guidance Standard on Organizational Social Responsibility requires that effective organizational performance recognize social responsibility, including the rights of persons with disabilities (PWD), engage stakeholders and contribute to sustainable development. Millennium Development Goals 2010 notes that the most vulnerable people require special attention, while the World Report on Disability 2011 identifies improved data collection and removal of barriers to rehabilitation as the means to empower PWD. The Assistive Technology Device Classification (ATDC), Assistive Technology Service Method (ATSM) and Matching Person and Technology models provide an evidence-based, standardized, internationally comparable framework to improve data collection and rehabilitation interventions. The ATDC and ATSM encompass and support universal design (UD) principles, and use the language and concepts of the International Classification of Functioning, Disability and Health (ICF). Use ATDC and ICF concepts to differentiate medical, assistive and UD products and technology; relate technology "types" to markets and costs; and support provision of UD products and technologies as sustainable and socially responsible behavior. Supply-side and demand-side incentives are suggested to foster private sector development and commercialization of UD products and technologies. Health and health-related professionals should be knowledgeable of UD principles and interventions.

  15. New Products and Technologies, Based on Calculations Developed Areas

    Gheorghe Vertan

    2013-09-01

    Full Text Available Following statistics, currently prosperous and have high GDP / capita, only countries that have and fructify intensively large natural resources and/or produce and export products massive based on patented inventions accordingly. Without great natural wealth and the lowest GDP / capita in the EU, Romania will prosper only with such products. Starting from the top experience in the country, some patented, can develop new and competitive technologies and patentable and exportable products, based on exact calculations of developed areas, such as that double shells welded assemblies and plating of ships' propellers and blade pump and hydraulic turbines.

  16. Production System of Peranakan Etawah Goat under Application of Feed Technology: Productivity and Economic Efficiency

    Akhmad Sodiq

    2009-09-01

    Full Text Available Feed resources are the major constraint in increasing goat production in the village. The main constraints to goat raising are related to feeds (i the high cost of transport of crop residues and grass to the homesteads, (ii the low nutritive value of feeds used, particularly in the dry period. This research was design to evaluate goat productivity and economic efficiency of goat farming under application of feed technology production system in Peranakan Etawah goat farmer group of Gumelar Banyumas Central Java. All farmers were taken as respondents using census methods. On farm research with participative focused group discussion, indepth interview, and farm observation. Descriptive analysis and independent t test methods were used to analyze the data. Results of this study showed that there was a significant improvement goat productivity on production system with the application of feed technology. Body weight at weaning, survival rate till weaning, and doe productivity were increased 7%, 2% and 5%, respectively. There was no evidence of significant different of farmers income and economic efficiency before and after the applied feed technology (P>0.05. The calculation was based on cash flow. Before application, farmers income per year and economic efficiency were Rp14.404.520,00 and 1.21, then insignificantly improve into Rp16.487.100,00 and 1.27, respectively. (Animal Production 11(3: 202-208 (2009 Key Words: Livestock production system, Peranakan Etawah goat, feed technology aplication, productivity and economic efficiency

  17. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  18. Augmented Reality as a Technology Bringing Interactivity to Print Products

    Seisto, Anu; Aikala, Maiju; Vatrapu, Ravi

    2012-01-01

    Augmented Reality (AR) is the technique of superimposing virtual objects in the user's view of the real world, providing a novel visualization technology for a wide range of applications. Hence, it is a user interface technology that combines the perception of real environments with digital...... owner, Sinebrychoff) and technology experts (Undo and VTT). The whole process was carried out in close contact with the readers and their viewpoints were taken into account in several parts of the design process. Based on the results, more than the easiness of the application, the readers...... of the magazine studied valued the inspiration and connectedness that the use of the application offered. The overall rating of the application was positive and encouraging for the future use of the technology. It may also be concluded that the use of AR applications in conjunction with print products makes...

  19. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  20. Development of interface technology for nuclear hydrogen production system

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2012-06-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production economy. The codes for analyzing the hydrogen production economy are developed for calculating the unit production cost of nuclear hydrogen. We developed basic R and D quality management methodology to meet design technology of VHTR's needs. By putting it in practice, we derived some problems and solutions. We distributed R and D QAP and Q and D QAM to each teams and these are in operation. Computer simulations are performed for estimating the thermal efficiency for the electrodialysis component likely to adapting as one of the hydrogen production system in Korea and EED-SI process known as the key components of the hydrogen production systems. Using the commercial codes, the process diagrams and the spread-sheets were produced for the Bunsen reaction process, Sulphuric Acid dissolution process and HI dissolution process, respectively, which are the key components composing of the SI process

  1. Wood chip production technology and costs for fuel in Namibia

    Leinonen, A.

    2007-12-15

    This work has been done in the project where the main target is to evaluate the technology and economy to use bush biomass for power production in Namibia. The project has been financed by the Ministry for Foreign Affairs of Finland and the Ministry of Agriculture, Water and Forestry of the Republic of Namibia. The target of this study is to calculate the production costs of bush chips at the power plant using the current production technology and to look possibilities to develop production technology in order to mechanize production technology and to decrease the production costs. The wood production costs are used in feasibility studies, in which the technology and economy of utilization of wood chips for power generation in 5, 10 and 20 MW electric power plants and for power generation in Van Eck coal fired power plant in Windhoek are evaluated. Field tests were made at Cheetah Conservation Farm (CCF) in Otjiwarongo region. CCF is producing wood chips for briquette factory in Otjiwarongo. In the field tests it has been gathered information about this CCF semi-mechanized wood chip production technology. Also new machines for bush biomass chip production have been tested. A new mechanized production chain has been designed on the basis of this information. The production costs for the CCF semi-mechanized and the new production chain have been calculated. The target in the moisture content to produce wood chips for energy is 20 w-%. In the semi-mechanized wood chip production chain the work is done partly manually, and the supply chain is organized into crews of 4.8 men. The production chain consists of manual felling and compiling, drying, chipping with mobile chipper and manual feeding and road transport by a tractor with two trailers. The CCF production chain works well. The chipping and road transport productivity in the semimechanized production chain is low. New production machines, such as chainsaw, brush cutter, lawn mover type cutter, rotator saw in skid

  2. Learning about materials science and technology by deconstructing modern products

    Horsewell, Andy

    Get the attention of young engineering students, interest and inspire them. Encourage them to think about materials science and technology by looking at the consumer products and gadgets that interest them. Analyse what modern products are constructed of, and how and why the materials...... teaching encourages and demands constant modernisation of the course and the materials being presented. A consideration of material and process selection for components in a modern product can be a dynamic starting point for a course on materials science and engineering; providing inspiration and showing...... and the processes have been chosen in their manufacture i.e. deconstruct modern products. Suitable items can easily be found in personal communication and entertainment, including all manner of sports goods. Further, the current pace of materials product development ensures that using these objects to focus...

  3. Preliminary Conceptual Design and Development of Core Technology of Very High Temperature Gas-Cooled Reactor Hydrogen Production

    Chang, Jong Hwa; Kang, H. S.; Gil, C. S. and others

    2006-05-15

    For the nuclear hydrogen production system, the VHTR technology and the IS cycle technology are being developed. A comparative evaluation on the block type reactor and the pebble type reactor is performed to decide a proper nuclear hydrogen production reactor. 100MWt prismatic type reactor is tentatively decided and its safety characteristics are roughly investigated. Computation codes of nuclear design, thermo-fluid design, safety-performance analysis are developed and verified. Also, the development of a risk informed design technology is started. Experiments for metallic materials and graphites are carried out for the selection of materials of VHTR components. Diverse materials for process heat exchanger are studied in various corrosive environments. Pyrolytic carbon and SiC coating technology is developed and fuel manufacturing technology is basically established. Computer program is developed to evaluate the performance of coated particle fuels.

  4. Preliminary Conceptual Design and Development of Core Technology of Very High Temperature Gas-Cooled Reactor Hydrogen Production

    Chang, Jong Hwa; Kang, H. S.; Gil, C. S. and others

    2006-05-01

    For the nuclear hydrogen production system, the VHTR technology and the IS cycle technology are being developed. A comparative evaluation on the block type reactor and the pebble type reactor is performed to decide a proper nuclear hydrogen production reactor. 100MWt prismatic type reactor is tentatively decided and its safety characteristics are roughly investigated. Computation codes of nuclear design, thermo-fluid design, safety-performance analysis are developed and verified. Also, the development of a risk informed design technology is started. Experiments for metallic materials and graphites are carried out for the selection of materials of VHTR components. Diverse materials for process heat exchanger are studied in various corrosive environments. Pyrolytic carbon and SiC coating technology is developed and fuel manufacturing technology is basically established. Computer program is developed to evaluate the performance of coated particle fuels

  5. Reprocessing technology of liquid metal cooled fast breeder reactor fuel

    Baetsle, L.H.; Broothaerts, J.; Heylen, P.R.; Eschrich, H.; Geel, J. van

    1974-11-01

    All the important aspects of LMFBR fuel reprocessing are critically reviewed in this report. Storage and transportation techniques using sodium, inert gas, lead, molten salts and organic coolants are comparatively discussed in connection with cooling time and de-activation techniques. Decladding and fuel disaggregation of UO 2 -PuO 2 fuel are reviewed according to the present state of R and D in the main nuclear powers. Strong emphasis is put on on voloxidation, mechanical pulverization and molten salt disaggregation in connection with volatilization of gaseous fission products. Release of fission gases and the resulting off-gas treatment are discussed in connection with cooling time, burn up and dissagregation techniques. The review is limited to tritium, iodine xenon-krypton and radioactive airborne particulates. Dissolution, solvent extraction and plutonium purification problems specifically connected to LMFBR fuel are reviewed with emphasis on the differences between LWR and fast fuel reprocessing. Finally the categories of wastes produced by reprocessing are analysed according to their origin in the plant and their alpha emitters content. The suitable waste treatment techniques are discussed in connection with the nature of the wastes and the ultimate disposal technique. (author)

  6. Leaching characteristics of the metal waste form from the electrometallurgical treatment process: Product consistency testing

    Johnson, S. G.; Keiser, D. D.; Frank, S. M.; DiSanto, T.; Noy, M.

    1999-01-01

    Argonne National Laboratory is developing an electrometallurgical treatment for spent fuel from the experimental breeder reactor II. A product of this treatment process is a metal waste form that incorporates the stainless steel cladding hulls, zirconium from the fuel and the fission products that are noble to the process, i.e., Tc, Ru, Nb, Pd, Rh, Ag. The nominal composition of this waste form is stainless steel/15 wt% zirconium/1--4 wt% noble metal fission products/1--2 wt % U. Leaching results are presented from several tests and sample types: (1) 2 week monolithic immersion tests on actual metal waste forms produced from irradiated cladding hulls, (2) long term (>2 years) pulsed flow tests on samples containing technetium and uranium and (3) crushed sample immersion tests on cold simulated metal waste form samples. The test results will be compared and their relevance for waste form product consistency testing discussed

  7. Produced water: Market and global trends - oil production - water production - choice of technology

    Robertson, Steve

    2006-01-01

    The presentation discusses various aspects of the world oil production, the energy demand, the future oil supply, the oil prices and the production growth. Some problems with produced water are also discussed as well as aspects of the market for produced water technology (tk)

  8. Designing PV powered LED products - Integration of PV technology in innovative products

    Reinders, Angelina H.M.E.; de Boer, Andries; de Winter, Arjan; Haverlag, Marco; Ossenbrink Sinke, W.; Helm, P.

    2009-01-01

    This study covers the design of innovative product concepts based on a combination of PV and LED technology. The products were developed in a project that took place in 2008 and 2009 during a cooperation of the University of Twente with Philips Lighting. It is shown that surprisingly unpredictable -

  9. Production and properties of light-metal base amorphous alloys

    Inoue, Akihisa; Masumoto, Tsuyoshi

    1993-01-01

    Light-metal base alloys with high specific strength and good corrosion resistance were produced through amorphization of Al and Mg-based alloys. The amorphous phase is formed in rapidly solidified Al-TM-Ln and Mg-TM-Ln (TM=transition metal, Ln=lanthanide metal) alloys. The highest tensile strength (σ f ) reaches 1,330 MPa for the Al base and 830 MPa for the Mg base. Furthermore, the Mg-based alloys have a large glass-forming capacity which enables to produce an amorphous phase by a metallic mold casting method. The extrusion of the Al-based amorphous powders at temperatures above crystallization temperature caused the formation of high strength materials with finely mixed structure consisting of dispersed intermetallic compounds in an Al matrix. The highest values of σ f and fatigue limit are as high as 940 and 313 MPa, respectively, at room temperature and 520 and 165 MPa at 473 K. The extruded Al-Ni-Mm alloy has already been used as machine parts and subsequent further development as practical materials is expected by taking these advantages

  10. Impact of Metals on Secondary Metabolites Production and Plant ...

    NICO

    accumulation of toxic metals in plant tissues induces major changes in plants at ... vulgaris1 with increasing concentrations of Pb in the growth medium was also ... low pH and high salinity.17 It has been widely used for pollution control .... the growth of rice,20 and Indian Mustard (Brassica juncea).18 Furthermore, elevated.

  11. Production and characterization of heavy-metal removing bacterial ...

    DINESH

    2012-05-17

    May 17, 2012 ... heavy metal removal (Quintelas et al., 2008; Salehizadeh ..... extract and peptone (Liu et al., 2010; Nakata and Kurane,. 1999; Xia et al., 2008; Zheng et .... Banci L, Bertini I, Ciofi-Baffoni S, Su XC, Miras R, Bal N, Mintz E, Catty.

  12. Chapter 23: Corrosion of Metals in Wood Products

    Samuel L. Zelinka

    2014-01-01

    The corrosion of metals in contact with wood has been studied for over 80 years, and in most situations wood is not corrosive [1]. Recently, however, the durability of fasteners in preservative--treated wood has become a concern. Changes in legislation and certification in the United States, the European Union, and Australasia have restricted the use of chromated...

  13. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  14. Technological challenges at ITER plasma facing components production in Russia

    Mazul, I.V., E-mail: mazuliv@niiefa.spb.su [Efremov Institute, 196641 St. Petersburg (Russian Federation); Belyakov, V.A.; Gervash, A.A.; Giniyatulin, R.N.; Guryeva, T.M.; Kuznetsov, V.E.; Makhankov, A.N.; Okunev, A.A. [Efremov Institute, 196641 St. Petersburg (Russian Federation); Sevryukov, O.N. [MEPhI, 115409 Moscow (Russian Federation)

    2016-11-01

    Highlights: • Technological aspects of ITER PFC manufacturing in Russia are presented. • Range of technologies to be used during manufacturing of ITER PFC at Efremov Institute has been, in general, defined and their complexity, originality and difficulty are described. • Some features and challenges of welding, brazing and various tests are discussed. - Abstract: Major part of ITER plasma facing components will be manufactured in the Russian Federation (RF). Operational conditions and other requirements to these components, as well as the scale of production, are quite unique. These unique features and related technological solutions found in the frame of the project are discussed. Procedure breakdown and results of qualification for the proposed technologies and potential producers are presented, based on mockups production and testing. Design of qualification mockups and prototypes, testing programs and results are described. Basic quantitative and qualitative parameters of manufactured components and methods of quality control are presented. Critical manufacturing issues and prospects for unique production for future fusion needs are discussed.

  15. Arsenic in industrial waste water from copper production technological process

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  16. New Trend on Halva Production: Dietetic Halva and Nougat. Production Technology and Compositions

    Emil Racolta

    2013-11-01

    Full Text Available In the last years sugar free confectionery market had grown steadily. This types of products are primarily addressed to diabetics and dieters, but the main driving factor of their growth is the increase of the obese population who raised concern about their health. Halva is known as a high caloric product with its nutritional energy higher than 500 kcal/100g, the demand of a sugar free version for this confectionery products group being those a current need. This work aimed to develop new products – dietetic halva and nougat, their production technology and compositions being in detail described. A new trend on halva production was established by developing a dietetic halva and nougat. The problem which is solved by the current work is to assure a proper technology in order to obtain a dietetic halva similar in taste and texture with the conventional one.

  17. MULTI-CRITERIA PROGRAMMING METHODS AND PRODUCTION PLAN OPTIMIZATION PROBLEM SOLVING IN METAL INDUSTRY

    Tunjo Perić; Željko Mandić

    2017-01-01

    This paper presents the production plan optimization in the metal industry considered as a multi-criteria programming problem. We first provided the definition of the multi-criteria programming problem and classification of the multicriteria programming methods. Then we applied two multi-criteria programming methods (the STEM method and the PROMETHEE method) in solving a problem of multi-criteria optimization production plan in a company from the metal industry. The obtained resul...

  18. FEATURES OF THE LOGISTICS MANAGEMENT OF PRODUCTION OF HIGH TECHNOLOGY PRODUCTS IN TURBULENCE CHANGING GLOBAL ECONOMY

    Oleg M. Tolmachev

    2015-01-01

    Full Text Available The subject / topic: The level of development of any country is currently determined by the proportion of high technologies in the GDP. Logistics – the basis for efficient management of modern knowledge-intensive production. Given the adverse conditions in the global economy, greatly enhanced the relevance of the study of logistical aspects in the management of high-tech products.Subject of research: The logistics management of production of high technology products in turbulence changing global economy. In this paper we apply scientific methods: the dialectic, comparisons and analogies, analysis and synthesis, deduction and induction, abstract , logical, historical and retrospective. The purpose of this article is to identify the characteristics and problems of logistics management of production of high technology products in the countries of the Customs Union and the Eastern Partnership. Also consider the role of clusters in the formation of innovation infrastructure in the countries of the Customs Union.Results: As part of the presentation was the author of the present article the urgency of application of CALS-technologies as a tool for organization and information support for the creation, production and operation of the product at the enterprises of the national economy.Conclusions / significance: Management of enterprises in the real sector of the economy in modern conditions should be based on synergies methodological principles of market and state regulation, with increased use of methods focused on the long term. By such methods, in particular, should include the methods of logistic management of production of high technology products. The importance of these technologies has increased steadily, and in modern conditions gets a new quality content that refl ects the phased development plan targeted action to ensure that the desired state of the enterprise as a socio-economic system. This in turn points to the need to ensure that new

  19. Current status and challenges for automotive battery production technologies

    Kwade, Arno; Haselrieder, Wolfgang; Leithoff, Ruben; Modlinger, Armin; Dietrich, Franz; Droeder, Klaus

    2018-04-01

    Production technology for automotive lithium-ion battery (LIB) cells and packs has improved considerably in the past five years. However, the transfer of developments in materials, cell design and processes from lab scale to production scale remains a challenge due to the large number of consecutive process steps and the significant impact of material properties, electrode compositions and cell designs on processes. This requires an in-depth understanding of the individual production processes and their interactions, and pilot-scale investigations into process parameter selection and prototype cell production. Furthermore, emerging process concepts must be developed at lab and pilot scale that reduce production costs and improve cell performance. Here, we present an introductory summary of the state-of-the-art production technologies for automotive LIBs. We then discuss the key relationships between process, quality and performance, as well as explore the impact of materials and processes on scale and cost. Finally, future developments and innovations that aim to overcome the main challenges are presented.

  20. Advanced Decontamination Technologies: High Hydrostatic Pressure on Meat Products

    Garriga, Margarita; Aymerich, Teresa

    The increasing demand for “natural” foodstuffs, free from chemical additives, and preservatives has triggered novel approaches in food technology developments. In the last decade, practical use of high-pressure processing (HPP) made this emerging non-thermal technology very attractive from a commercial point of view. Despite the fact that the investment is still high, the resulting value-added products, with an extended and safe shelf-life, will fulfil the wishes of consumers who prefer preservative-free minimally processed foods, retaining sensorial characteristics of freshness. Moreover, unlike thermal treatment, pressure treatment is not time/mass dependant, thus reducing the time of processing.