WorldWideScience

Sample records for metal permeable wall

  1. A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2017-06-01

    Full Text Available We report on a top-down method for the controlled fabrication of three-dimensional (3D, closed, thin-shelled, hollow nanostructures (nanocages on planar supports. The presented approach is based on conventional microelectronic fabrication processes and exploits the permeability of thin metal films to hollow-out polymer-filled metal nanocages through an oxygen-plasma process. The technique is used for fabricating arrays of cylindrical nanocages made of thin Al shells on silicon substrates. This hollow metal configuration features optical resonance as revealed by spectral reflectance measurements and numerical simulations. The fabricated nanocages were demonstrated as a refractometric sensor with a measured bulk sensitivity of 327 nm/refractive index unit (RIU. The pattern design flexibility and controllability offered by top-down nanofabrication techniques opens the door to the possibility of massive integration of these hollow 3D nano-objects on a chip for applications such as nanocontainers, nanoreactors, nanofluidics, nano-biosensors and photonic devices.

  2. Permeable treatment wall design and cost analysis

    International Nuclear Information System (INIS)

    Manz, C.; Quinn, K.

    1997-01-01

    A permeable treatment wall utilizing the funnel and gate technology has been chosen as the final remedial solution for one industrial site, and is being considered at other contaminated sites, such as a closed municipal landfill. Reactive iron gates will be utilized for treatment of chlorinated VOCs identified in the groundwater. Alternatives for the final remedial solution at each site were evaluated to achieve site closure in the most cost effective manner. This paper presents the remedial alternatives and cost analyses for each site. Several options are available at most sites for the design of a permeable treatment wall. Our analysis demonstrates that the major cost factor's for this technology are the design concept, length, thickness, location and construction methods for the reactive wall. Minimizing the amount of iron by placement in the most effective area and construction by the lowest cost method is critical to achieving a low cost alternative. These costs dictate the design of a permeable treatment wall, including selection of a variety of alternatives (e.g., a continuous wall versus a funnel and gate system, fully penetrating gates versus partially penetrating gates, etc.). Selection of the appropriate construction methods and materials for the site can reduce the overall cost of the wall

  3. I. THE PERMEABILITY OF THE WALL OF THE LYMPHATIC CAPILLARY.

    Science.gov (United States)

    Hudack, S; McMaster, P D

    1932-07-31

    A technique has been developed for the demonstration of lymphatic capillaries in the ear of the mouse by means of vital dyes and for tests of their permeability under normal and pathological conditions. The lymphatics become visible as closed channels from which the dyes escape secondarily into the tissue. Some of them, cross-connections, with extremely narrow lumen, would seem ordinarily not to be utilized. There is active flow along the lymphatics of the mouse ear under ordinary circumstances. The movement of dye was always toward the main collecting system. The valves of the lymphatics as well as fluid flow prevented distal spread. There was in addition slow migration, apparently interstitial in character, but in the same general direction, of dots of color produced by the local injection of dye. The normal permeability of the lymphatics was studied with dyes of graded diffusibility. Their walls proved readily permeable for those highly diffusible pigments that the blood capillaries let through easily, but retained those that the latter retained. Finely particulate matter (India ink, "Hydrokollag"), they did not let pass. No gradient of permeability was observed to exist along them such as exists along the blood capillaries of certain organs. The observed phenomena of lymphatic permeability, like those of the permeability of the blood capillaries, can be explained on the assumption that the lymphatic wall behaves like a semipermeable membrane.

  4. PERMEABLE TREATMENT WALL EFFECTIVENESS MONITORING PROJECT, NEVADA STEWART MINE

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 39, Permeable Treatment Wall Effectiveness Monitoring Project, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. De...

  5. Casimir effect for closed cavities with conducting and permeable walls

    International Nuclear Information System (INIS)

    Ferreira, L.A.; Zimerman, A.H.; Ruggiero, J.R.

    1980-01-01

    The quantum electromagnetic zero point energy is calculated for rectangular cavities where some of the walls are perfect conductors and the others are made of infinitely permeable materials. It is found that for cubic systems, for some configurations the zero point electromagnetic energy is positive, while in other configurations this zero point energy is negative. The consequences of these results on possible models for the electron are discussed. (Author) [pt

  6. Influence of wall permeability on turbulent boundary-layer properties

    Science.gov (United States)

    Wilkinson, S. P.

    1983-01-01

    Experimental boundary-layer studies of a series of low pressure drop, permeable surfaces have been conducted to characterize their surface interaction with a turbulent boundary layer. The models were flat and tested at nominally zero pressure gradient in low speed air. The surfaces were thin metal sheets with discrete perforations. Direct drag balance measurements of skin friction indicate that the general effect of surface permeability is to increase drag above that of a smooth plate reference level. Heuristic arguments are presented to show that this type of behavior is to be expected. Other boundary-layer data are also presented including mean velocity profiles and conditionally sampled streamwise velocity fluctuations (hot wire) for selected models.

  7. Air permeability for a concrete shear wall after a damaging seismic load simulation cycle

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-01-01

    A study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This paper describes an experiment performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient-pressure decay. Air permeability measurements made on the shear wall before loading fell within the range of values for concrete permeability published in the literature. As long as the structure exhibited linear load-displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked)

  8. Surface-subsurface turbulent interaction at the interface of a permeable bed: influence of the wall permeability

    Science.gov (United States)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2017-12-01

    Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.

  9. Effect of cigarette smoke, nicotine, and carbon monoxide on the permeability of the arterial wall

    International Nuclear Information System (INIS)

    Allen, D.R.; Browse, N.L.; Rutt, D.L.; Butler, L.; Fletcher, C.

    1988-01-01

    The association between cigarette smoking and the development of atherosclerosis is well established, but the mechanism that makes cigarettes such a potent risk factor is not understood. There is normally a constant insudation of plasma macromolecules into the arterial wall. Fibrinogen and lipids are two of the large molecules involved in atherosclerosis. Therefore, we studied the effect of cigarette smoke, nicotine, and carbon monoxide on the permeability of the canine arterial wall to 125 I-labeled fibrinogen. The results show that inhaled cigarette smoke significantly and rapidly increases the permeability of the arterial wall to fibrinogen and that this effect can be produced with carbon monoxide alone but not with intravenous nicotine

  10. Experimental assessment of air permeability in a concrete shear wall subjected to simulated seismic loading

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-07-01

    A safety concern for the proposed Special Nuclear Materials Laboratory (SNML) facility at the Los Alamos National Laboratory was air leakage from the facility if it were to experience a design basis earthquake event. To address this concern, a study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This report describes a prototype experiment developed and performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. A shear wall test structure was fabricated with standard 4000-psi concrete mix. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient pressure decay. As long as the structure exhibited linear load displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked). 17 figs., 8 tabs

  11. The structure of a fluid confined by permeable walls

    Science.gov (United States)

    Margaritis, Nikolaos; Rickayzen, Gerald

    Osmosis has been studied using the methods of molecular dynamics and for several different models of a semi-permeable barrier. One of these models has also been used in theoretical and Monte Carlo investigations of the effect of such a barrier on the structure of a hard sphere fluid (Marsh, P., Rickayzen, G., and Calleja, M., 1995, Molec. Phys., 84, 799 ; Kim, S.-C., Calleja, M., and Rickayzen, G., 1995, J. Phys.: condens. Matter, 7, 8053). Results presented in these papers showed that this problem also provides a sensitive test for the validity of various density functional theories. In order to bring the theory to bear on the problem of osmosis, this earlier study is extended to the hard core Lennard-Jones fluid. At the same time a new sum rule for the density of a fluid in a periodic potential, which provides a useful check on the computations, is derived. It is again found that the agreement between the computed and the simulated density profiles is good except at the centre of the barrier and when the bulk density and pressure are close to the critical.

  12. WATER VAPOUR PERMEABILITY PROPERTIES OF CELLULAR WOOD MATERIAL AND CONDENSATION RISK OF COMPOSITE PANEL WALLS

    Directory of Open Access Journals (Sweden)

    Janis IEJAVS

    2016-09-01

    Full Text Available Invention of light weight cellular wood material (CWM with a trade mark of Dendrolight is one of innovations in wood industry of the last decade. The aim of the research was to define the water vapour permeability properties of CWM and to analyse the condensation risk of various wall envelopes where solid wood cellular material is used. To determine the water vapour permeability of CWM, test samples were produced in the factory using routine production technology and tested according to the standard EN 12086:2014. Water vapour permeability factor (μ and other properties of six different configurations of CWM samples were determined. Using the experimental data the indicative influence of geometrical parameters such as lamella thickness, number of lamellas and material direction were investigated and evaluated. To study the condensation risk within the wall envelope containing CWM calculation method given in LVS EN ISO 13788:2012 was used. To ease the calculation process previously developed JavaScript calculation software that had only capability to calculate thermal transmittance was extended so that condensation risk in multi-layer composite walls can be analysed. Water vapour permeability factor in CWM is highly direction dependant. If parallel and perpendicular direction of CWM is compared the value of water vapour permeability factor can differentiate more than two times. Another significant factor for condensation risk analysis is overall thickness of CWM since it directly influences the equivalent air layer thickness. The influence of other factors such as lamella thickness, or groove depth is minor when water vapour permeability properties are compared. From the analysis of CWM performance in building envelope it can be concluded that uninsulated CWM panels used during winter months will pose the risk of condensation damage to structure, but the risk can be reduced or prevented if insulation layer is applied to the CWM panel wall

  13. Transmural intestinal wall permeability in severe ischemia after enteral protease inhibition.

    Directory of Open Access Journals (Sweden)

    Angelina E Altshuler

    Full Text Available In intestinal ischemia, inflammatory mediators in the small intestine's lumen such as food byproducts, bacteria, and digestive enzymes leak into the peritoneal space, lymph, and circulation, but the mechanisms by which the intestinal wall permeability initially increases are not well defined. We hypothesize that wall protease activity (independent of luminal proteases and apoptosis contribute to the increased transmural permeability of the intestine's wall in an acutely ischemic small intestine. To model intestinal ischemia, the proximal jejunum to the distal ileum in the rat was excised, the lumen was rapidly flushed with saline to remove luminal contents, sectioned into equal length segments, and filled with a tracer (fluorescein in saline, glucose, or protease inhibitors. The transmural fluorescein transport was determined over 2 hours. Villi structure and epithelial junctional proteins were analyzed. After ischemia, there was increased transmural permeability, loss of villi structure, and destruction of epithelial proteins. Supplementation with luminal glucose preserved the epithelium and significantly attenuated permeability and villi damage. Matrix metalloproteinase (MMP inhibitors (doxycycline, GM 6001, and serine protease inhibitor (tranexamic acid in the lumen, significantly reduced the fluorescein transport compared to saline for 90 min of ischemia. Based on these results, we tested in an in-vivo model of hemorrhagic shock (90 min 30 mmHg, 3 hours observation for intestinal lesion formation. Single enteral interventions (saline, glucose, tranexamic acid did not prevent intestinal lesions, while the combination of enteral glucose and tranexamic acid prevented lesion formation after hemorrhagic shock. The results suggest that apoptotic and protease mediated breakdown cause increased permeability and damage to the intestinal wall. Metabolic support in the lumen of an ischemic intestine with glucose reduces the transport from the lumen

  14. Simultaneous effects of single wall carbon nanotube and effective variable viscosity for peristaltic flow through annulus having permeable walls

    Directory of Open Access Journals (Sweden)

    Iqra Shahzadi

    Full Text Available The current article deals with the combine effects of single wall carbon nanotubes and effective viscosity for the peristaltic flow of nanofluid through annulus. The nature of the walls is assumed to be permeable. The present theoretical model can be considered as mathematical representation to the motion of conductive physiological fluids in the existence of the endoscope tube which has many biomedical applications such as drug delivery system. The outer tube has a wave of sinusoidal nature that is travelling along its walls while the inner tube is rigid and uniform. Lubrication approach is used for the considered analysis. An empirical relation for the effective variable viscosity of nanofluid is proposed here interestingly. The viscosity of nanofluid is the function of radial distance and the concentration of nanoparticles. Exact solution for the resulting system of equations is displayed for various quantities of interest. The outcomes show that the maximum velocity of SWCNT-blood nanofluid enhances for larger values of viscosity parameter. The pressure gradient in the more extensive part of the annulus is likewise found to increase as a function of variable viscosity parameter. The size of the trapped bolus is also influenced by variable viscosity parameter. The present examination also revealed that the carbon nanotubes have many applications related to biomedicine. Keywords: Variable nanofluid viscosity, SWCNT, Annulus, Permeable walls, Exact solution

  15. Long-term Metal Performance of Three Permeable Pavements

    Science.gov (United States)

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected...

  16. Fluid extraction across pumping and permeable walls in the viscous limit

    Science.gov (United States)

    Herschlag, G.; Liu, J.-G.; Layton, A. T.

    2016-04-01

    In biological transport mechanisms such as insect respiration and renal filtration, fluid travels along a leaky channel allowing material exchange with systems exterior to the channel. The channels in these systems may undergo peristaltic pumping which is thought to enhance the material exchange. To date, little analytic work has been done to study the effect of pumping on material extraction across the channel walls. In this paper, we examine a fluid extraction model in which fluid flowing through a leaky channel is exchanged with fluid in a reservoir. The channel walls are allowed to contract and expand uniformly, simulating a pumping mechanism. In order to efficiently determine solutions of the model, we derive a formal power series solution for the Stokes equations in a finite channel with uniformly contracting/expanding permeable walls. This flow has been well studied in the case in which the normal velocity at the channel walls is proportional to the wall velocity. In contrast we do not assume flow that is proportional to the wall velocity, but flow that is driven by hydrostatic pressure, and we use Darcy's law to close our system for normal wall velocity. We incorporate our flow solution into a model that tracks the material pressure exterior to the channel. We use this model to examine flux across the channel-reservoir barrier and demonstrate that pumping can either enhance or impede fluid extraction across channel walls. We find that associated with each set of physical flow and pumping parameters, there are optimal reservoir conditions that maximize the amount of material flowing from the channel into the reservoir.

  17. Application of differential transformation method in micropolar fluid flow and heat transfer through permeable walls

    Directory of Open Access Journals (Sweden)

    A. Mirzaaghaian

    2016-09-01

    Full Text Available In this paper, we applied Differential Transformation Method (DTM to study micropolar fluid flow and heat transfer through a channel with permeable walls. In order to verify the accuracy and validity of the application of this method to this problem, comparison with numerical method (NUM is taken into account. Results reveal that DTM is an appropriate method for approximating solutions of the problem while it is smooth and straightforward to implement. The effect of significant parameters such as the Reynolds number, micro rotation/angular velocity and the Peclet number on the stream function, temperature distribution and concentration characteristics of the fluid, is discussed.

  18. Convective heat transfer between a fluid-saturated porous medium and a permeable wall with fluid injection or withdrawal

    NARCIS (Netherlands)

    Brouwers, Jos

    1994-01-01

    The present paper addresses heat and mass transfer between a permeable wall and a fluid-saturated porous medium. To assess the effect of wall suction or injection on sensible heat transfer, a stagnant film model is developed. The model yields a thermal correction factor accounting for the effect of

  19. Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach

    NARCIS (Netherlands)

    Breugem, W.P.; Boersma, B.J.

    2005-01-01

    A direct numerical simulation (DNS) has been performed of turbulent channel flow over a three-dimensional Cartesian grid of 30×20×9 cubes in, respectively, the streamwise, spanwise, and wall-normal direction. The grid of cubes mimics a permeable wall with a porosity of 0.875. The flow field is

  20. Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies

    Science.gov (United States)

    Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (< 0.005 cm^3/m^2 . day), which equates to a permeability below SiOx when multiplied by its film thickness of 231 nm. With optical transparency greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  1. Performances of Metal Concentrations from Three Permeable Pavement Infiltrates

    Science.gov (United States)

    The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each p...

  2. Numerical Simulation of a Single-Phase Flow Through Fractures with Permeable, Porous and Non-Ductile Walls

    Directory of Open Access Journals (Sweden)

    N. Pour Mahmoud

    2017-10-01

    Full Text Available This paper attempts to study flows within fractures through a set of numerical simulations. In addition, a special care is given to hydraulic features and characteristics of fractures. The research is performed through the application of calculative fluid dynamics and a finite volume discrete schema. The investigated flows are laminar, single-phase and stable flows of water and air through fractures with penetrable walls. The selected fracture geometry is inspired from the tomographic scan of a stone fracture. Water and air are modeled in fractures with permeable walls and different permeability levels. It has been observed that in case of permeable matrixes, the friction coefficient is lower compared to impermeable matrixes. In fact permeability reduced friction. In addition, highest pressure drops were observed in areas with smaller fracture diaphragms. Nonetheless, the surrounding area of the fracture is analyzed with the consideration of Darcy's rule.

  3. Quantifying Intracranial Aneurysm Wall Permeability for Risk Assessment Using Dynamic Contrast-Enhanced MRI: A Pilot Study.

    Science.gov (United States)

    Vakil, P; Ansari, S A; Cantrell, C G; Eddleman, C S; Dehkordi, F H; Vranic, J; Hurley, M C; Batjer, H H; Bendok, B R; Carroll, T J

    2015-05-01

    Pathological changes in the intracranial aneurysm wall may lead to increases in its permeability; however the clinical significance of such changes has not been explored. The purpose of this pilot study was to quantify intracranial aneurysm wall permeability (K(trans), VL) to contrast agent as a measure of aneurysm rupture risk and compare these parameters against other established measures of rupture risk. We hypothesized K(trans) would be associated with intracranial aneurysm rupture risk as defined by various anatomic, imaging, and clinical risk factors. Twenty-seven unruptured intracranial aneurysms in 23 patients were imaged with dynamic contrast-enhanced MR imaging, and wall permeability parameters (K(trans), VL) were measured in regions adjacent to the aneurysm wall and along the paired control MCA by 2 blinded observers. K(trans) and VL were evaluated as markers of rupture risk by comparing them against established clinical (symptomatic lesions) and anatomic (size, location, morphology, multiplicity) risk metrics. Interobserver agreement was strong as shown in regression analysis (R(2) > 0.84) and intraclass correlation (intraclass correlation coefficient >0.92), indicating that the K(trans) can be reliably assessed clinically. All intracranial aneurysms had a pronounced increase in wall permeability compared with the paired healthy MCA (P risk in anatomic (P = .02) and combined anatomic/clinical (P = .03) groups independent of size. We report the first evidence of dynamic contrast-enhanced MR imaging-modeled contrast permeability in intracranial aneurysms. We found that contrast agent permeability across the aneurysm wall correlated significantly with both aneurysm size and size-independent anatomic risk factors. In addition, K(trans) was a significant and size-independent predictor of morphologically and clinically defined high-risk aneurysms. © 2015 by American Journal of Neuroradiology.

  4. Metal concentrations from permeable pavement parking lot in Edison, NJ

    Data.gov (United States)

    U.S. Environmental Protection Agency — The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements...

  5. Arrays of unpumped wells: An alternative to permeable walls for in situ treatment

    International Nuclear Information System (INIS)

    Wilson, R.D.; Mackay, D.M.

    1997-01-01

    At sites where the installation of permeable walls may be impractical for technical or financial reasons, treatment zones may be created with arrays of unpumped wells. Convergence and divergence of naturally flowing ground water through the wells provides hydraulic control and downgradient mixing. An array of wells, installed either within the gate of a funnel-and-gate or alone, can serve either as a set of in situ reactors or as a means to release amendments that promote biodegradation or other reactions downgradient. In this paper, the application of arrays of unpumped wells will be demonstrated using two-dimensional flow and transport modeling and pilot scale field data. Various configurations of reactive media or amendment-releasing devices are considered in the simulations, illustrating the impacts on hydraulic performance of the wells and thus the required spacing of wells to achieve various remedial goals

  6. Permeable sorptive walls for treatment of hydrophobic organic contaminant plumes in groundwater

    International Nuclear Information System (INIS)

    Grathwohl, P.; Peschik, G.

    1997-01-01

    Highly hydrophobic contaminants are easily adsorbed from aqueous solutions. Since for many of these compounds sorption increases with increasing organic carbon content natural materials such as bituminous shales and coals may be used in permeable sorptive walls. This, however, only applies if sorption is at equilibrium, which may not always be the case in groundwater treatment using a funnel-and-gate system. In contrast to the natural solids, granular activated carbons (GACs) have very high sorption capacities and reasonably fast sorption kinetics. The laboratory results show that application of GACs (e.g. F100) is economically feasible for in situ removal of polycyclic aromatic hydrocarbons (PAH) from groundwater at a former manufactured gas plant site (MGP). For less sorbing compounds (such as benzene, toluene, xylenes) a combination of adsorption and biodegradation is necessary (i.e. sorptive + reactive treatment)

  7. Phosphorous adsorption and precipitation in a permeable reactive wall: Applications for wastewater disposal systems

    International Nuclear Information System (INIS)

    Baker, M.J.; Blowes, D.W.; Placek, C.J.

    1997-01-01

    A permeable reactive mixture has been developed using low cost, readily available materials that is capable of providing effective, long-term phosphorous treatment in areas impacted by on-land wastewater disposal. The reactive mixture creates a geochemical environment suitable for P-attenuation by both adsorption and precipitation reactions. Potential benefits include significant reductions in phosphorous loading to receiving groundwater and surface water systems, and the accumulation of P-mass in a finite and accessible volume of material. The mixture may be applied as a component within surface treatment systems or in subsurface applications such as horizontal or vertical permeable reactive walls. The mixture averaged > 90% treatment efficiency over 3.6 years of continuous-flow laboratory column experiments. The mixture was further evaluated at the pilot-scale to treat municipal wastewater, and the field-scale to treat a well-characterized septic system plume using an in situ funnel and gate system. Average PO 4 -P concentrations in effluent exiting the reactive mixture range between 0 - 0.3 mg/L. Mineralogical analyses have isolated the phases responsible for phosphorous uptake, and discrete phosphate precipitates have been identified

  8. Dual-Mode Patch Filter with Metal Wall Structures

    Directory of Open Access Journals (Sweden)

    D. Kang

    2013-01-01

    Full Text Available A dual-mode patch filter with metal wall structures is presented. The proposed structure consists of substrate 1 with metal wall structures and substrate 2 with a patch resonator. Because the symmetry of the structure can be perturbed by both long and short strips of the metal wall structures, the dual mode is achieved. The inductive element is introduced to the patch resonator through vias of the metal wall structures. The capacitive element is introduced through a gap between the patch resonator and the metal strips. The measured 3 dB fractional bandwidth for the passband is 10.4%, and the measured minimum insertion loss is 1.3 dB.

  9. Pore Structure and Effective Permeability of Metallic Filters

    Czech Academy of Sciences Publication Activity Database

    Hejtmánek, Vladimír; Veselý, M.; Čapek, P.

    2013-01-01

    Roč. 410, č. 2013 (2013), 012110 ISSN 1742-6588. [International Conference on Mathematical Modelling in Physical Sciences (IC-MSQUARE) /1./. Budapest, 03.09.2012-07.09.2012] R&D Projects: GA ČR(CZ) GAP204/11/1206 Institutional support: RVO:67985858 Keywords : stochastic reconstruction * porous media * effective permeability Subject RIV: CF - Physical ; Theoretical Chemistry

  10. Flow of a non-Newtonian fluid through channels with permeable wall

    Energy Technology Data Exchange (ETDEWEB)

    Martins-Costa, Maria Laura [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Lab. de Matematica Teorica e Aplicada]. E-mail: laura@mec.uff.br; Gama, Rogerio M. Saldanha da [Laboratorio Nacional de Computacao Cientifica (LNCC), Petropolis, RJ (Brazil)]. E-mail: rsgama@domain.com.br; Frey, Sergio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Mecanica. Grupo de Estudos Termicos e Energeticos

    2000-07-01

    In the present work the momentum transport in two adjacent flow regions is described by means of a continuum theory of mixtures, specially developed to model multiphase phenomena. A generalized Newtonian fluid flows through the permeable wall channel, originating a pure fluid region and a mixture region - where the fluid saturates the porous matrix. The fluid and the porous matrix are treated as continuous constituents of a binary mixture coexisting superposed, each of them occupying simultaneously the whole volume of the mixture. An Ostwald-de Waele behavior is assumed for both the fluid constituent (in the mixture region) and the fluid (in the so-called pure fluid region), while the porous matrix, represented by the solid constituent, is assumed rigid, homogeneous, isotropic and at rest. Compatibility conditions at the interface (pure fluid-mixture) for momentum transfer are proposed and discussed. Assuming no flow across the interface, the velocity should be zero on the solid parts of the boundary and should match the fluid diffusing velocity on the fluid parts of the boundary. Also the shear stress at the pure fluid region is to be balanced by a multiple of the partial shear stress at the mixture region. A minimum principle for the above-described problem, assuming fully developed flow in both regions, is presented, providing an easy and reliable way for carrying out numerical simulations. (author)

  11. Hydrogen transfer in Pb–Li forced convection flow with permeable wall

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, Satoshi, E-mail: sfukada@nucl.kyushu-u.ac.jp; Muneoka, Taiki; Kinjyo, Mao; Yoshimura, Rhosuke; Katayama, Kazunari

    2015-10-15

    Highlights: • The paper presents experimental and analytical results of Pb–Li eutectic alloy forced convection flow. • Analytical results are in good agreement with ones of hydrogen permeation in Pb–Li forced convection flow. • The results are useful for the design of liquid blanket of fusion reactors. - Abstract: Transient- or steady-state hydrogen permeation from a primary fluid of Li{sub 17}Pb{sub 83} (Pb–Li) through a permeable tube of Inconel-625 alloy to a secondary Ar purge is investigated experimentally under a forced convection flow in a dual cylindrical tube system. Results of the overall hydrogen permeation flux are correlated in terms of diffusivity, solubility and an average axial velocity of Pb–Li and diffusivity and solubility of the solid wall. Analytical solutions under proper assumptions are derived to simulate the transient- and steady-state rates of the overall hydrogen permeation, and close agreement is obtained between experiment and analysis. Two things are clarified from the comparison: (i) how the steady-state permeation rate is affected by the mass-transfer properties and the average velocity of Pb–Li and the properties of Inconel-625, and (ii) how its transient behavior is done by the diffusivity of the two materials. The results obtained here will give important information to estimate or to analyze the tritium transfer rate in fluidized Pb–Li blankets of DEMO or the future commercial fusion reactors.

  12. Decoration of Multi-walled Carbon Nanotubes by Metal ...

    African Journals Online (AJOL)

    NICO

    Multi-walled carbon nanotubes, metal nanoparticles, metal oxides, scanning electron microscopy, transmission electron microscopy. 1. Introduction. Carbon .... 2.6.1. X-ray Diffraction (XRD) Spectroscopy Analysis. X'pert Pro X-ray spectroscopy instrument from PAN analytical was used to determine the structure of the ...

  13. Decoration of Multi-walled Carbon Nanotubes by Metal ...

    African Journals Online (AJOL)

    The powder patterns of the as-prepared and acid treated MWCNTs are shown by the XRD spectra. The TEM results show the microstructure of the multi-walled carbon nanotubes well decorated with metal nanoparticles (Cu, Fe, Ni) and metal oxides (CuO, Fe2O3, NiO), while the SEM show the surface morphology.

  14. Permeability measurements and modeling of topology-optimized metallic 3-D woven lattices

    International Nuclear Information System (INIS)

    Zhao, Longyu; Ha, Seunghyun; Sharp, Keith W.; Geltmacher, Andrew B.; Fonda, Richard W.; Kinsey, Alex H.; Zhang, Yong; Ryan, Stephen M.; Erdeniz, Dinc; Dunand, David C.; Hemker, Kevin J.; Guest, James K.; Weihs, Timothy P.

    2014-01-01

    Topology optimization was combined with a 3-D weaving technique to design and fabricate structures with optimized combinations of fluid permeability and mechanical stiffness. Two different microarchitected structures are considered: one is a “standard” weave in which all wires were included, while the other is termed an “optimized” weave as specific wires were removed to maximize the permeability of the resulting porous materials with only a limited reduction in stiffness. Permeability was measured and predicted for both structures that were 3-D woven with either Cu or Ni–20Cr wires. The as-woven wires in the Cu lattices were bonded at contact points using solder or braze while the Ni–20Cr wires were bonded at contact points using pack aluminization. Permeability was measured under laminar flow conditions in all three normal directions for unbonded and bonded samples and in the optimized structure it was found to increase between 200% and 600%, depending on direction, over the standard structures. Permeability was also predicted using finite-element modeling with as-fabricated wires positions that were identified with optical microscopy or X-ray tomography; the measurements and predictions show good agreement. Lastly, the normalized permeability values significantly exceed those found for stochastic, metallic foams and other periodic structures with a material volume fraction of over 30%

  15. Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery

    Science.gov (United States)

    Akbar, Noreen Sher; Tripathi, Dharmendra; Bég, O. Anwar

    2017-07-01

    This paper presents a mathematical model for simulating viscous, incompressible, steady-state blood flow containing copper nanoparticles and coupled heat transfer through a composite stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects are included. The artery is simulated as an isotropic elastic tube, following Joshi et al. (2009), and a variable viscosity formulation is employed for the flowing blood. The equations governing the transport phenomena are non-dimensionalized and the resulting boundary value problem is solved analytically in the steady state subject to physically appropriate boundary conditions. Numerical computations are conducted to quantify the effects of relevant hemodynamic, thermophysical and nanoscale parameters emerging in the model on velocity and temperature profiles, wall shear stress, impedance resistance and also streamline distributions. The model may be applicable to drug fate transport modeling with nanoparticle agents and also to the optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory systems.

  16. Heavy metal removal capacity of individual components of permeable reactive concrete

    Science.gov (United States)

    Holmes, Ryan R.; Hart, Megan L.; Kevern, John T.

    2017-01-01

    Permeable reactive barriers (PRBs) are a well-known technique for groundwater remediation using industrialized reactive media such as zero-valent iron and activated carbon. Permeable reactive concrete (PRC) is an alternative reactive medium composed of relatively inexpensive materials such as cement and aggregate. A variety of multimodal, simultaneous processes drive remediation of metals from contaminated groundwater within PRC systems due to the complex heterogeneous matrix formed during cement hydration. This research investigated the influence coarse aggregate, portland cement, fly ash, and various combinations had on the removal of lead, cadmium, and zinc in solution. Absorption, adsorption, precipitation, co-precipitation, and internal diffusion of the metals are common mechanisms of removal in the hydrated cement matrix and independent of the aggregate. Local aggregates can be used as the permeable structure also possessing high metal removal capabilities, however calcareous sources of aggregate are preferred due to improved removal with low leachability. Individual adsorption isotherms were linear or curvilinear up, indicating a preferred removal process. For PRC samples, metal saturation was not reached over the range of concentrations tested. Results were then used to compare removal against activated carbon and aggregate-based PRBs by estimating material costs for the remediation of an example heavy metal contaminated Superfund site located in the Midwestern United States, Joplin, Missouri.

  17. Design and Measurement of Metallic Post-Wall Waveguide Components

    NARCIS (Netherlands)

    Coenen, T.J.; Bekers, D.J.; Tauritz, J.L.; Vliet, F.E. van

    2009-01-01

    Abstract—In this paper we discuss the design and measurement of a set of metallic post-wall waveguide components for antenna feed structures. The components are manufactured on a single layer printed circuit board and excited by a grounded coplanar waveguide. For a straight transmission line, a 90°

  18. Fabrication of a multi-walled metal pipe

    International Nuclear Information System (INIS)

    Shimamune, Koji; Toda, Saburo; Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    In concentrically arranged metal pipes for simulated fuel elements in the form of a multi-walled pipe, their one end lengthens gradually in the axial direction from inner and outer pipes toward a central pipe for easy adjustment of deformation which occurs when the pipes are drawn. A plastic electrical insulator is disposed between adjacent pipes. Each end of the pipes is equipped with an annular flexible stopper which is allowed to travel in the axial direction so as to prevent the insulator from falling during drawing work. At the other end, all pipes are constricted and joined to each other to thereby form the desired multi-walled pipe. (Mikami, T.)

  19. Evaluation of corrosion of metallic reinforcements and connections in MSE retaining walls.

    Science.gov (United States)

    2008-05-01

    Mechanically Stabilized Earth (MSE) retaining walls have become the dominant retained wall system on ODOT projects. The permanent MSE walls constructed on ODOT projects, in recent years, use metallic reinforcements and facing connections buried direc...

  20. Mechanical properties of permeable materials with an organized structure on the base of continuous metal fibers

    International Nuclear Information System (INIS)

    Karpinos, D.M.; Rutkovskij, A.E.; Zorin, V.A.; Ivanchuk, A.A.

    1979-01-01

    The mechanical properties were studied for permeable fibrous materials with an organized structure on the base of continuous metal fibers (from Kh18N9T steel) subjected to preliminary reprocessing volumetric net half-finished products. The effect of geometrical parameters of the net half-finished products and of their orientation in packing are shown to affect the mechanical properties within a wide range of porosities

  1. Towards improving the efficiency of blowing through a permeable wall and prospects of its use for a flow control

    Science.gov (United States)

    Kornilov, V. I.; Boiko, A. V.

    2016-10-01

    Modern achievements, status, and prospects of studies on reducing the turbulent friction and aerodynamic drag with the help of the blowing through a permeable wall are discussed. The main focus is placed upon a physical modeling of the process of boundary layer blowing in the framework of the dimensional theory, a critical analysis of experimental and numerical results for different conditions of air blowing through a high-tech finely perforated wall including the case of external-pressure-flow air supply in wind tunnel, and elicitation of the physical mechanisms responsible for the reduction of turbulent friction at flow-exposed surfaces. It is shown that the use of air supply through the micro-perforated wall with low effective roughness, which is manufactured in compliance with the highest necessary requirements to quality and geometry of orifices, is quite a justified means for easy, affordable, and reliable control of near-wall turbulent flows in laboratory experiment and numerical simulation. This approach can provide a sustained reduction of local skin friction coefficient along flat plate, which in some cases reaches 90%. At the request of all authors of the paper and with the agreement of the Proceedings Editor, an updated version of this article was published on 26 October 2016. The original version supplied to AIP Publishing contained a misrepresentation in Figure 1. This has been corrected in the updated and republished article.

  2. Cake consolidation in a compression-permeability cell: effect of side-wall friction.

    Science.gov (United States)

    Zhao, Jin; Wang, Chi-Hwa; Lee, Duu-Jong; Tien, Chi

    2003-06-01

    A simulation study was made to investigate the transient state stresses, strains, and void ratio distributions in the formation of a filter cake in a compression-permeability cell (C-P cell). A finite-element software package, ABAQUS, was used for the simulation and emphasis was placed on the effect of the cake/cell-surface friction. The validity of the simulation was assessed by comparing simulation results with available experimental data.

  3. Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability.

    Science.gov (United States)

    Liu, Dong; Zhang, Lu; Xue, Wen; Wang, Yaping; Ju, Jiansong; Zhao, Baohua

    2015-07-01

    This study focused on the alanine racemase gene (alr-2), which is involved in the synthesis of d-alanine that forms the backbone of the cell wall. A stable alr-2 knockout mutant of Aeromonas hydrophila HBNUAh01 was constructed. When the mutant was supplemented with d-alanine, growth was unaffected; deprivation of d-alanine caused the growth arrest of the starved mutant cells, but not cell lysis. No alanine racemase activity was detected in the culture of the mutant. Additionally, a membrane permeability assay showed increasing damage to the cell wall during d-alanine starvation. No such damage was observed in the wild type during culture. Scanning and transmission electron microscopy analyses revealed deficiencies of the cell envelope and perforation of the cell wall. Leakage of UV-absorbing substances from the mutants was also observed. Thus, the partial viability of the mutants and their independence of d-alanine for growth indicated that inactivation of alr-2 does not impose an auxotrophic requirement for d-alanine. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  5. Determination of the Darcy permeability of porous media including sintered metal plugs

    Science.gov (United States)

    Frederking, T. H. K.; Hepler, W. A.; Yuan, S. W. K.; Feng, W. F.

    1986-01-01

    Sintered-metal porous plugs with a normal size of the order of 1-10 microns are used to evaluate the Darcy permeability of laminar flow at very small velocities in laminar fluids. Porous media experiment results and data adduced from the literature are noted to support the Darcy law analog for normal fluid convection in the laminar regime. Low temperature results suggest the importance of collecting room temperature data prior to runs at liquid He(4) temperatures. The characteristic length diagram gives a useful picture of the tolerance range encountered with a particular class of porous media.

  6. Reactor advantages of the belt pinch and liquid metal walls

    International Nuclear Information System (INIS)

    Kotschenreuther, M.; Manickam, J.; Menard, J.; Rappaport, H.; Zheng Linjin; Dorland, B.; Miller, R.; Turnbull, A.

    2001-01-01

    MHD stability of highly elongated tokamaks (termed a belt pinch) are considered for high bootstrap fraction cases. By employing high triangularity or indentation, and invoking wall stabilization, and β can be increased by a factor of roughly 3 by increasing κ from 2 to 4. Axisymmetric stability up to κ=4 tolerable by employing a shell which conforms more closely to the boundary than in present experiments. Engineering difficulties with a close fitting shell in a reactor environment may be overcome by employing a liquid lithium alloy shell. Rapid metal flows can lead to potentially deleterious plasma shifts and damping of the flow. (author)

  7. COMPARISON OF SENSORS FOR RESISTIVE WALL MODE FEEDBACK CONTROL. MILESTONE No.145 ''CONTAINING PLASMA INSTABILITIES WITH METAL WALLS''

    International Nuclear Information System (INIS)

    STRAIT, E.J.; CHU, M.S.; GAROFALO, A.M.; LAHAYE, R.J.; OKABAYASHI, M.; REIMERDES, H.; SCOVILLE, J.T.; TURNBULL, A.D.

    2002-01-01

    OAK A271 COMPARISON OF SENSORS FOR RESISTIVE WALL MODE FEEDBACK CONTROL MILESTONE No.145 CONTAINING PLASMA INSTABILITIES WITH METAL WALLS. The most serious instabilities in the tokamak are those described by ideal magneto-hydrodynamic theory. These modes limit the stable operating space of the tokamak. The ideal MHD calculations predict the stable operating space of the tokamak may be approximately doubled when a perfectly conducting metal wall is placed near the plasma boundary, compared to the case with no wall (free boundary). The unstable mode distortions of the plasma column cannot bulge out through a perfectly conducting wall. However, real walls have finite conductivity and when plasmas are operated in the regime between the free boundary stability limit and the perfectly conducting wall limit, the unstable mode encountered in that case the resistive wall mode, can leak out through the metal wall, allowing the mode to keep slowly growing. The slow growth affords the possibility of feedback stabilizing this mode with external coils. DIII-D is making good progress in such feedback stabilization research and in 2002 will use an improved set of mode sensors inside the vacuum vessel and closer to the plasma surface which are expected theoretically to improve the ability to stabilize the resistive wall mode

  8. Determination of negative permeability and permittivity of metal strip coated ferrite disks using the transmission and reflection technique

    Science.gov (United States)

    Rahman, N.; Obol, M.; Sharma, A.; Afsar, M. N.

    2010-05-01

    In this paper, a full band microwave isolator constructed from an array of metal wire-coated ferrite samples is presented. Here, the magnetic permeability of the metamaterialized structure is controlled by a relatively weak external magnetic field. The tunable permeability of the ferrites in this experiment allows us to create unidirectional wave propagation through the structure over the entire X-band frequency spectrum. The analysis presented here takes into account potential surface plasmon modes generated between the gaps of metal wires when the external magnetic field is applied. Here, we present a modification of the traditional transmission-reflection measurement method by normalizing the transmission and reflection coefficients. This modification removes the occurrence of atypical phenomena for negative imaginary components of permeability and permittivity that arises in the measurement of metamaterials. Our modified method precisely determines the refractive index, impedance, permittivity, and permeability of both traditional reciprocal networks as well as nonreciprocal networks, such as the one presented here.

  9. RCRA corrective measures using a permeable reactive iron wall US Coast Guard Support Center, Elizabeth City, North Carolina

    International Nuclear Information System (INIS)

    Schmithors, W.L.; Vardy, J.A.

    1997-01-01

    A chromic acid release was discovered at a former electroplating shop at the U.S. Coast Guard Support Center in Elizabeth City, North Carolina. Initial investigative activities indicated that chromic acid had migrated into the subsurface soils and groundwater. In addition, trichloroethylene (TCE) was also discovered in groundwater during subsequent investigations of the hexavalent chromium (Cr VI) plume. Corrective measures were required under the Resource Conservation and Recovery Act (RCRA). The in-situ remediation method, proposed under RCRA Interim Measures to passively treat the groundwater contaminants, uses reactive zero-valent iron to reductively dechlorinate the chlorinated compounds and to mineralize the hexavalent chromium. A 47 meter by 0.6 meter subsurface permeable iron wall was installed downgradient of the source area to a depth of 7 meters using a direct trenching machine. The iron filings were placed in the ground as the soils were excavated from the subsurface. This is the first time that direct trenching was used to install reactive zero-valent iron filings. Over 250 metric tons of iron filings were used as the reactive material in the barrier wall. Installation of the iron filings took one full day. Extensive negotiations with regulatory agencies were required to use this technology under the current facility Hazardous Waste Management Permit. All waste soils generated during the excavation activities were contained and treated on site. Once contaminant concentrations were reduced the waste soils were used as fill material

  10. Lubrication theory analysis of the permeability of rough-walled fractures

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Kumar, S.; Bodvarsson, G.S.

    1991-01-01

    The flow of a fluid between the rough surfaces of a rock fracture is very complex, due to the tortuous paths followed by the fluid particles. Exact analytical modeling of these flows is made difficult by the irregular geometry of rock fracture surfaces, while full three-dimensional numerical simulations of these flows are as yet still impractical. To overcome the difficulties of working with the three-dimensional Navier-Stokes equations, the simpler Reynolds lubrication equation has sometimes been used to model flow in fractures. This paper focuses on two aspects of lubrication theory. First, lubrication theory is applied to two simplified aperture profiles, sinusoidal and sawtooth, and analytical expressions are found for the permeabilities. These results are then compared with numerical results obtained by solving the lubrication equation for fractures with random surfaces. Secondly, the validity of the lubrication equations for modeling flow in rough fractures is studied by examining higher-order perturbation solutions, as well as numerical solutions, to the Navier-Stokes equations for flow in fractures with sinusoidally-varying apertures. 22 refs., 6 figs

  11. Roles of dynamic metal speciation and membrane permeability in metal flux through lipophilic membranes: General theory and experimental validation with nonlabile complexes

    NARCIS (Netherlands)

    Zeshi, Zhang; Buffle, J.; Leeuwen, van H.P.

    2007-01-01

    The study of the role of dynamic metal speciation in lipophilic membrane permeability in aqueous solution requires accurate interpretation of experimental data. To meet this goal, a general theory is derived for describing 1:1 metal complex flux, under steady-state and ligand excess conditions,

  12. Toward Tungsten Plasma-Facing Components in KSTAR: Research on Plasma-Metal Wall Interaction

    NARCIS (Netherlands)

    Hong, S. H.; Kim, K. M.; Song, J. H.; Bang, E. N.; Kim, H. T.; Lee, K. S.; Litnovsky, A.; Hellwig, M.; Seo, D. C.; van den Berg, M. A.; Lee, H. H.; Kang, C. S.; Lee, H. Y.; Hong, J. H.; Bak, J. G.; Kim, H. S.; Juhn, J. W.; Son, S. H.; Kim, H. K.; Douai, D.; Grisolia, C.; Wu, J.; Luo, G. N.; Choe, W. H.; Komm, M.; De Temmerman, G.; Pitts, R.

    2015-01-01

    One of the main missions of KSTAR is to develop long-pulse operation capability relevant to the production of fusion energy. After a full metal wall configuration was decided for ITER, a major upgrade for KSTAR was planned, to a tungsten first wall similar to the JET ITER-like wall (coatings and

  13. Methodology to calculate wall thickness in metallic pipes

    International Nuclear Information System (INIS)

    Ramirez, G.F.; Feliciano, H.J.

    1992-01-01

    The principal objective in the developing of the activities of industrial type is to carry out a efficient and productive task: that implies necessarily to know the best working conditions of the equipment and installations to be concerned. The applications of the radioisotope techniques have a long time as useful tools in several fields of human work. For example, in the Petroleos Mexicanos petrochemical complexes, by safety reasons and for to avoid until maximum the losses, it must be know with a high possible precision the operation regimes of the lines of tubes that they conduce the hydrocarbons, with the purpose to know when they should be replaced the defective or wasted pieces. In the Mexican Petroleum Institute is carrying out a work that it has by objective to develop a methodology bases in the use of radioisotopes that permits to determine the average thickness of the metallic tubes wall, that they have thermic insulator, with a precision of ±0.127 mm (±5 thousandth inch). The method is based in the radiation use emitted by Cs-137 sources. In this work it is described the methodology development so as the principal results obtained. (Author)

  14. Selective breakdown of metallic pathways in double-walled carbon nanotube networks.

    Science.gov (United States)

    Ng, Allen L; Sun, Yong; Powell, Lyndsey; Sun, Chuan-Fu; Chen, Chien-Fu; Lee, Cheng S; Wang, YuHuang

    2015-01-07

    Covalently functionalized, semiconducting double-walled carbon nanotubes exhibit remarkable properties and can outperform their single-walled carbon nanotube counterparts. In order to harness their potential for electronic applications, metallic double-walled carbon nanotubes must be separated from the semiconductors. However, the inner wall is inaccessible to current separation techniques which rely on the surface properties. Here, the first approach to address this challenge through electrical breakdown of metallic double-walled carbon nanotubes, both inner and outer walls, within networks of mixed electronic types is described. The intact semiconductors demonstrate a ∼62% retention of the ON-state conductance in thin film transistors in response to covalent functionalization. The selective elimination of the metallic pathways improves the ON/OFF ratio, by more than 360 times, to as high as 40 700, while simultaneously retaining high ON-state conductance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ozone Resistance, Water Permeability, and Concrete Adhesion of Metallic Films Sprayed on a Concrete Structure for Advanced Water Purification

    Directory of Open Access Journals (Sweden)

    Jin-Ho Park

    2017-03-01

    Full Text Available We evaluated the applicability of metal spray coating as a waterproofing/corrosion protection method for a concrete structure used for water purification. We carried out an ozone resistance test on four metal sprays and evaluated the water permeability and bond strength of the metals with superior ozone resistance, depending on the surface treatment method. In the ozone resistance test, four metal sprays and an existing ozone-proof paint were considered. In the experiment on the water permeability and bond strength depending on the surface treatment method, the methods of no treatment, surface polishing, and two types of pore sealing agents were considered. The results showed that the sprayed titanium had the best ozone resistance. Applying a pore sealing agent provided the best adhesion performance, of about 3.2 MPa. Applying a pore sealing agent also provided the best waterproofing performance. Scanning electron microscope analysis showed that applying a pore sealing agent resulted in an excellent waterproofing performance because a coating film formed on top of the metal spray coating. Thus, when using a metal spray as waterproofing/corrosion protection for a water treatment concrete structure, applying a pore sealing agent on top of a film formed by spraying titanium was concluded to be the most appropriate method.

  16. Correlation of Traditional Water Quality Parameters with Metal Concentrations in Permeable Pavement Infiltrate

    Science.gov (United States)

    EPA constructed a 4,000-m2 parking lot for research and demonstration of three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)] at the Edison Environmental Center in Edison, NJ in 2009. Infiltrate samples from e...

  17. PHYSICAL BASES OF SYSTEMS CREATION FOR MAGNETIC-IMPULSIVE ATTRACTION OF THIN-WALLED SHEET METALS

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2009-01-01

    Full Text Available The work is dedicated to the physical base of systems creating for the thin-walled sheet metals magnetic pulse attraction. Some practical realization models of the author’s suggestions are represented.

  18. Conceptual design strategy for liquid-metal-wall inertial-fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Monsler, M.J.; Meier, W.R.

    1981-02-01

    The liquid-metal-wall chamber has emerged as an attractive reactor concept for inertial fusion energy conversion. The principal feature of this concept is a thick, free-flowing blanket of liquid metal used to protect the structure of the reactor. The development and design of liquid-metal-wall chambers over the past decade provides a basis for formulating a conceptual design strategy for such chambers. Both the attractive and unattractive features of a LMW chamber are enumerated, and a design strategy is formulated which accommodates the engineering constraints while minimizing the liquid-metal flow rate.

  19. Three Permeable Pavements Performances for Priority Metal Pollutants and Metals Associated with Deicing Chemicals from Edison Parking Lot, NJ

    Science.gov (United States)

    The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each p...

  20. Three Permeable Pavements Performances for Priority Metal Pollutants and Metals associated with Deicing Chemicals from Edison Parking Lot, NJ - abstract

    Science.gov (United States)

    The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each p...

  1. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Ding-Xin Yang

    2015-12-01

    Full Text Available The aim of this review was to assess the current viable technologies for wireless power delivery and data transmission through metal barriers. Using such technologies sensors enclosed in hermetical metal containers can be powered and communicate through exterior power sources without penetration of the metal wall for wire feed-throughs. In this review, we first discuss the significant and essential requirements for through-metal-wall power delivery and data transmission and then we: (1 describe three electromagnetic coupling based techniques reported in the literature, which include inductive coupling, capacitive coupling, and magnetic resonance coupling; (2 present a detailed review of wireless ultrasonic through-metal-wall power delivery and/or data transmission methods; (3 compare various ultrasonic through-metal-wall systems in modeling, transducer configuration and communication mode with sensors; (4 summarize the characteristics of electromagnetic-based and ultrasound-based systems, evaluate the challenges and development trends. We conclude that electromagnetic coupling methods are suitable for through thin non-ferromagnetic metal wall power delivery and data transmission at a relatively low data rate; piezoelectric transducer-based ultrasonic systems are particularly advantageous in achieving high power transfer efficiency and high data rates; the combination of more than one single technique may provide a more practical and reliable solution for long term operation.

  2. Modeling the thermodynamic response of metallic first walls

    International Nuclear Information System (INIS)

    Merrill, B.J.; Jones, J.L.

    1982-01-01

    The first wall material of a fusion device must have a high resistance to the erosion resulting from plasma disruptions. This erosion is a consequence of melting and surface vaporization produced by the energy deposition of the disrupting plasma. Predicting the extent of erosion has been the subject of various investigations, and as a result, the thermal modeling has evolved to include material melting, kinetics of surface evaporation, vaporized material transport, and plasma-vaporized material interactions. The significance of plasma-vapor interaction has yet to be fully resolved. The model presented by Hassanein suggests that the vapor attenuates the plasma ions, thereby shielding the wall surface and reducing the extent of vaporization. The erosion model developed by EG and G Idaho, Inc., has been extended to include a detailed model for plasma-vaporized material interaction. This paper presents the model, as well as predictions for plasma, vaporized material and first wall conditions during a disruption

  3. The effect of magnetic domain walls on the complex permeability of bulk Z-type cobalt hexaferrite along both W and Y-phases

    Energy Technology Data Exchange (ETDEWEB)

    Daró, Fábio R., E-mail: vonrho.colaborador@ieav.cta.br [Post Graduate Program, Aeronautics Institute of Technology (ITA), Praça Marechal Eduardo Gomes, 50, CEP 12228-900, São José Dos Campos, SP (Brazil); Migliano, Antonio Carlos C. [Applied Physics Division (EFA), Institute for Advanced Studies (IEAv), Trevo Coronel Aviador José Alberto Albano do Amarante, 1, CEP 12228-001, São José Dos Campos, SP (Brazil); Zanella, Glauco P.; Hirata, Anderson K. [Post Graduate Program, Aeronautics Institute of Technology (ITA), Praça Marechal Eduardo Gomes, 50, CEP 12228-900, São José Dos Campos, SP (Brazil); De Polli, Yasmara C. [Applied Physics Division (EFA), Institute for Advanced Studies (IEAv), Trevo Coronel Aviador José Alberto Albano do Amarante, 1, CEP 12228-001, São José Dos Campos, SP (Brazil); Salvadori, Maria Cecília B. [Thin Films Laboratory (LFF), Institute of Physics (IFUSP), University of São Paulo - USP, Rua do Matão, Travessa R, 187, CEP 05508-090, São Paulo, SP (Brazil)

    2016-02-15

    We analyzed a bulk cobalt hexaferrite sample set with the same powder composition obtained by the solid–state reaction method, and made of the W, Y and Z-phases. Transmission/reflection method (TR) measurements of the complex impedance both in radio frequency (RF) and microwave (MW) spectra, as well as reflectance (RL) exhibited high absorption and small losses, still appearing similar to the pattern that is exhibited by the Z-type, even though the largest amount of W-phase. Magnetic force microscopy (MFM), in turn, revealed the existence of narrow magnetic domains consisting of 300–500 nm wide parallel stripes on the crystal basal plane and down to 100 nm wide parallel stripes aligned in parallel to stacked crystal layers that would not be easily perceived by other methods. These domains may contribute to the exhibited complex permeability, since in ferrite both domain wall resonance (DWR) and domain – or spin rotation – resonance (DR) are inversely proportional to the square root of domain width. Nevertheless, we concluded that several flux-pinning defects and impeding factors of the polycrystalline setup, such as charge carriers shown by TR, are probably more important than anisotropy isolated to determine domain setup, and how this acts on the complex magnetic permeability. - Highlights: • MFM detected small magnetic domains not easily perceived by other methods. • High ferromagnetic resonances are favored by narrow magnetic domains. • Electron hopping improves permittivity but is undesirable for permeability.

  4. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shi-You [Harvard Univ., Cambridge, MA (United States)

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  5. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

    Science.gov (United States)

    Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir; Ohodnicki, Paul; McHenry, Michael E.

    2017-11-01

    Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe100- x Ni x )80Nb4Si2B14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in all alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe30Ni70)80Nb4Si2B14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr23C6-type structure and a likely composition of Fe21Nb2B6. Toroidal losses have been measured for (Fe70Ni30)80Nb4Si y B16- y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W1.0T, 400 Hz = 0.9 W/kg and W1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.

  6. Experimental and theoretical studies of the wall boundary region 'heavy liquid-metal coolant - constructional material'

    International Nuclear Information System (INIS)

    Makhov, Kirill; Iarmonov, Mikhail; Bokova, Tatiana; Beznosov, A.V.

    2011-01-01

    The wall boundary layer is an inalienable part of the contours with heavy liquid metal coolants (HLMC) that are used in the fourth generation nuclear reactors. The properties of the wall boundary layer determine a reactor's efficiency and influence hydraulic characterises and heat exchange. Characteristics of the wall boundary layer 'HLMC - constructional material' have been studied by various techniques and methods at the Nizhny Novgorod State Technical University (NNSTU). The study included: ultrasonic analysis; determination of the contact thermal resistance; study of the influence of the wall boundary region characteristics on the MHD resistance of the HLMC flow. Due to the results of this research the modern model of the wall boundary layer in the medium of heavy metal coolants was built. The following characteristics were experimentally found in the wide range of parameters: the magnitude of the contact thermal resistance of the wall boundary layer in the Peclet number range from Pe=260 to Pe=1430 with the oxygen concentration varied in the range from 10 -7 to 10 0 ; the dependences of the hydraulic loss coefficients on the Stuart criterion in the magnetic field. (author)

  7. Global and pedestal confinement in JET with a Be/W metallic wall

    Czech Academy of Sciences Publication Activity Database

    Beurskens, M.N.A.; Frassinetti, L.; Challis, C.; Giroud, C.; Saarelma, S.; Alper, B.; Angioni, C.; Bílková, Petra; Bourdelle, C.; Brezinsek, S.; Buratti, P.; Calabrò, G.; Eich, E.; Flanagan, J.; Giovannozzi, E.; Groth, M.; Hobirk, J.; Joffrin, E.; Leyland, M.J.; Lomas, P.; De La Luna, E.; Kempenaars, M.; Maddison, G.; Maggi, C.; Mantica, P.; Maslov, M.; Matthews, G.; Mayoral, M.-L.; Neu, R.; Nunes, I.; Osborne, T.; Rimini, F.; Scannell, R.; Solano, E.R.; Snyder, P.B.; Voitsekhovitch, I.; de Vries, P.

    2014-01-01

    Roč. 54, č. 4 (2014), 043001-043001 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : pedestal * confinement * nitrogen * radiation * tokamak * metal wall Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/4/043001/pdf/0029-5515_54_4_043001.pdf

  8. A Computationally-Efficient Numerical Model to Characterize the Noise Behavior of Metal-Framed Walls

    Directory of Open Access Journals (Sweden)

    Arun Arjunan

    2015-08-01

    Full Text Available Architects, designers, and engineers are making great efforts to design acoustically-efficient metal-framed walls, minimizing acoustic bridging. Therefore, efficient simulation models to predict the acoustic insulation complying with ISO 10140 are needed at a design stage. In order to achieve this, a numerical model consisting of two fluid-filled reverberation chambers, partitioned using a metal-framed wall, is to be simulated at one-third-octaves. This produces a large simulation model consisting of several millions of nodes and elements. Therefore, efficient meshing procedures are necessary to obtain better solution times and to effectively utilise computational resources. Such models should also demonstrate effective Fluid-Structure Interaction (FSI along with acoustic-fluid coupling to simulate a realistic scenario. In this contribution, the development of a finite element frequency-dependent mesh model that can characterize the sound insulation of metal-framed walls is presented. Preliminary results on the application of the proposed model to study the geometric contribution of stud frames on the overall acoustic performance of metal-framed walls are also presented. It is considered that the presented numerical model can be used to effectively visualize the noise behaviour of advanced materials and multi-material structures.

  9. Sugar deficiency causes changes in cuticle permeability and cell wall composition that influence fruit postharvest shelf-life

    OpenAIRE

    Vallarino, J; Yeats, T.H.; Rose, J.K.; Fernie, A.R.; Osorio, S.

    2014-01-01

    The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, and postharvest shelf-life. Tomato fruits with reduced expression of the tomato gene LIN5 encoding cell wall invertase exhibits decreases transpirational water loss. Transcriptomic, biochemical, histological, and...

  10. Adiabatic spin-transfer-torque-induced domain wall creep in a magnetic metal

    Science.gov (United States)

    Duttagupta, S.; Fukami, S.; Zhang, C.; Sato, H.; Yamanouchi, M.; Matsukura, F.; Ohno, H.

    2016-04-01

    The dynamics of elastic interfaces is a general field of interest in statistical physics, where magnetic domain wall has served as a prototypical example. Domain wall `creep’ under the action of sub-threshold driving forces with thermal activation is known to be described by a scaling law with a certain universality class, which represents the mechanism of the interaction of domain walls with the applied forces over the disorder of the system. Here we show different universality classes depending on the driving forces, magnetic field or spin-polarized current, in a metallic system, which have hitherto been seen only in a magnetic semiconductor. We reveal that an adiabatic spin-transfer torque plays a major role in determining the universality class of current-induced creep, which does not depend on the intricacies of material disorder. Our results shed light on the physics of the creep motion of domain walls and other elastic systems.

  11. A conceptual design strategy for liquid-metal-wall inertial fusion reactors

    International Nuclear Information System (INIS)

    Monsler, M.J.; Meier, W.R.

    1981-01-01

    The liquid-metal-wall chamber has emerged as an attractive reactor concept for inertial fusion energy conversion. The principal feature of this concept is a thick, free-flowing blanket of liquid metal used to protect the structure of the reactor. The development and design of liquid-metal-wall chambers over the past decade are reviewed from the perspective of formulating a conceptual design strategy for such chambers. The basis for the design strategy is set by enumerating both the attractive and unattractive features of a LMW chamber. Past concepts are then reviewed to identify conceptual design approaches and physical configurations that enhance the positive aspects and minimize the negative aspects. A detailed description of the engineering considerations is given, including such topics as the selection of a liquid metal, control of radiation damage, selection of structural material, control of tritium breeding and extraction, control of wall stress, and designing for a given rep-rate. Finally, a design strategy is formulated which accomodates the engineering constraints while minimizing the liquid-metal flow rate. (orig.)

  12. Metallic Interface Emerging at Magnetic Domain Wall of Antiferromagnetic Insulator: Fate of Extinct Weyl Electrons

    Directory of Open Access Journals (Sweden)

    Youhei Yamaji

    2014-05-01

    Full Text Available Topological insulators, in contrast to ordinary semiconductors, accompany protected metallic surfaces described by Dirac-type fermions. Here, we theoretically show that another emergent two-dimensional metal embedded in the bulk insulator is realized at a magnetic domain wall. The domain wall has long been studied as an ingredient of both old-fashioned and leading-edge spintronics. The domain wall here, as an interface of seemingly trivial antiferromagnetic insulators, emergently realizes a functional interface preserved by zero modes with robust two-dimensional Fermi surfaces, where pyrochlore iridium oxides proposed to host the condensed-matter realization of Weyl fermions offer such examples at low temperatures. The existence of in-gap states that are pinned at domain walls, theoretically resembling spin or charge solitons in polyacetylene, and protected as the edges of hidden one-dimensional weak Chern insulators characterized by a zero-dimensional class-A topological invariant, solves experimental puzzles observed in R_{2}Ir_{2}O_{7} with rare-earth elements R. The domain wall realizes a novel quantum confinement of electrons and embosses a net uniform magnetization that enables magnetic control of electronic interface transports beyond the semiconductor paradigm.

  13. Synthesis of Single-Walled Carbon Nanotubes: Effects of Active Metals, Catalyst Supports, and Metal Loading Percentage

    Directory of Open Access Journals (Sweden)

    Wei-Wen Liu

    2013-01-01

    Full Text Available The effects of active metals, catalyst supports, and metal loading percentage on the formation of single-walled carbon nanotubes (SWNTs were studied. In particular, iron, cobalt, and nickel were investigated for SWNTs synthesis. Iron was found to grow better-quality SWNTs compared to cobalt and nickel. To study the effect of catalyst supports, magnesium oxide, silicon oxide, and aluminium oxide were chosen for iron. Among the studied supports, MgO was identified to be a suitable support for iron as it produced SWNTs with better graphitisation determined by Raman analysis. Increasing the iron loading decreased the quality of SWNTs due to extensive agglomeration of the iron particles. Thus, lower metal loading percentage is preferred to grow better-quality SWNTs with uniform diameters.

  14. Simultaneous chirality and enantiomer separation of metallic single-wall carbon nanotubes by gel column chromatography.

    Science.gov (United States)

    Tanaka, Takeshi; Urabe, Yasuko; Hirakawa, Takuya; Kataura, Hiromichi

    2015-09-15

    We report the chirality and enantiomer separation of metallic single-wall carbon nanotubes (SWCNTs) using gel chromatography, which has been the last remaining issue in SWCNT separation that has yet to be achieved. The key to the separation is summarized as the following three points: (i) the use of a preseparated metallic SWCNT mixture to eliminate the semiconducting SWCNTs that are more interactive with the gel; (ii) the reduction of the concentration of dispersant to increase the interaction between the metallic SWCNTs and the gel; and (iii) the use of a long column to increase the number of interaction sites that enhance the slight differences between metallic SWCNT species. Using these three separation conditions, we obtained chirality-sorted metallic SWCNTs, especially (10,4) metallic SWCNTs were highly enriched. Circular dichroism spectra demonstrated the enantiomer separation of metallic SWCNTs. The discrimination of the enantiomers is derived from the dextran in the gel, which is the only enantiomeric moiety in this system. This is the first report on the enantiomer separation of metallic SWCNTs and will contribute to progress in the fundamental physics and applications of SWCNTs.

  15. Reduction of Injection Pressure for Thin Walled Molding using the Laser Metal Sintered Mold

    OpenAIRE

    米山, 猛; 内藤, 圭亮; 阿部, 諭; 宮丸, 充

    2010-01-01

    Using milling combined laser metal sintering, porous surface has been fabricated on the thin walled cavity closed by the surrounded thick cavity in the injection mold. Resin flows into the cavity of 2mm thick at first around the thin part and then flows into the thin cavity of 0.2mm thick with 11mm square by packing pressure. The packing pressure for filling the thin part was compared among laser metal sintered mold with or without porous surface, steel mold with or without porous block. The ...

  16. TOWARD TUNGSTEN PLASMA-FACING COMPONENTS IN KSTAR: RESEARCH ON PLASMA-METAL WALL INTERACTION

    Czech Academy of Sciences Publication Activity Database

    Hong, S.-H.; Kim, K.M.; Song, J.-H.; Bang, E.-N.; Kim, H.-T.; Lee, K.-S.; Litnovsky, A.; Hellwig, M.; Seo, D.C.; Lee, H.H.; Kang, C.S.; Lee, H.-Y.; Hong, J.-H.; Bak, J.-G.; Kim, H.-S.; Juhn, J.-W.; Son, S.-H.; Kim, H.-K.; Douai, D.; Grisolia, C.; Wu, J.; Luo, G.-N.; Choe, W.-H.; Komm, Michael; van den Berg, M.; De Temmerman, G.; Pitts, R.

    2015-01-01

    Roč. 68, č. 1 (2015), s. 36-43 ISSN 1536-1055. [International Conference on Open Magnetic Systems for Plasma Confinement (OS 2014)/10./. Daejeon, 26.08.2014-29.08.2014] Institutional support: RVO:61389021 Keywords : Plasma-metal wall interaction * Tungsten technology Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.799, year: 2015 http://dx.doi.org/10.13182/FST14-897

  17. Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres

    International Nuclear Information System (INIS)

    Song, Jinliang; Sun, Quansheng; Yang, Zhenning; Luo, Shengmin; Xiao, Xianghui; Arwade, Sanjay R.; Zhang, Guoping

    2017-01-01

    Knowledge of the mechanical properties of porous metallic hollow spheres (MHS) thin wall is of key importance for understanding the engineering performance of both individual ultralight MHS and the innovative MHS-based bulk foams. This paper presents the first integrated experimental and numerical study to determine the elasticity and yielding of the porous MHS wall and their dependence on its microporosity. Nanoindentation was used to probe the Young's modulus and hardness of the nonporous MHS wall material, and synchrotron X-ray computed tomography (XCT) conducted to obtain its porous microstructure and pore morphology. Three-dimensional finite element modeling was performed to obtain the mechanical response of microcubes with varying porosity trimmed from the XCT-derived real digital model of the porous MHS wall. Results show that both the Young's modulus and yield strength of the porous wall decrease nonlinearly with increasing porosity, and their relationships follow the same format of a power law function and agree well with prior experimental results. The empirical relations also reflect certain features of pore morphology, such as pore connectivity and shape. These findings can shed lights on the design, manufacturing, and modeling of individual MHS and MHS-based foams.

  18. A Cell-Permeable Fluorescent Prochelator Responds to Hydrogen Peroxide and Metal Ions by Decreasing Fluorescence

    OpenAIRE

    Hyman, Lynne M.; Franz, Katherine J.

    2012-01-01

    Described here is the development of two boronic ester-based fluorescent prochelators, FloB (2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-4(5)-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene-hydrazinocarbonyl]-benzoic acid) and FloB-SI (2-(6-hydroxy-3-oxo-3Hxanthen-9-yl)-4(5)-[2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyloxy)-benzylidene-hydrazinocarbonyl]-benzoic acid) that show a fluorescence response to a variety of transition metal ions only after reaction with H2O2. Both ...

  19. Influence of N deficiency and salinity on metal (Pb, Zn and Cu) accumulation and tolerance by Rhizophora stylosa in relation to root anatomy and permeability

    International Nuclear Information System (INIS)

    Cheng Hao; Wang Youshao; Ye Zhihong; Chen Danting; Wang Yutu; Peng Yalan; Wang Liying

    2012-01-01

    Effects of N deficiency and salinity on root anatomy, permeability and metal (Pb, Zn and Cu) translocation and tolerance were investigated using mangrove seedlings of Rhizophora stylosa. The results showed that salt could directly reduce radial oxygen loss (ROL) by stimulation of lignification within exodermis. N deficiency, oppositely, would reduce lignification. Such an alteration in root permeability may also influence metal tolerance by plants. The data indicated that a moderate salinity could stimulate a lignified exodermis that delayed the entry of metals into the roots and thereby contributed to a higher metal tolerance, while N deficiency would aggravate metal toxicity. The results from sand pot trail further confirmed this issue. This study provides a barrier property of the exodermis in dealing with environments. The plasticity of root anatomy is likely an adaptive strategy to regulate the fluxes of gases, nutrients and toxins at root–soil interface. - Highlights: ► Salt induced lignified exodermis which slowed down metal entry into the plants. ► N deficiency, oppositely, aggravated metal mobility and toxicity. ► Barrier properties of the exodermis. - N deficiency and salinity regulate the apoplastic transport barrier of metals and their toxicities

  20. Optimal Shakedown of the Thin-Wall Metal Structures Under Strength and Stiffness Constraints

    Directory of Open Access Journals (Sweden)

    Alawdin Piotr

    2017-06-01

    Full Text Available Classical optimization problems of metal structures confined mainly with 1st class cross-sections. But in practice it is common to use the cross-sections of higher classes. In this paper, a new mathematical model for described shakedown optimization problem for metal structures, which elements are designed from 1st to 4th class cross-sections, under variable quasi-static loads is presented. The features of limited plastic redistribution of forces in the structure with thin-walled elements there are taken into account. Authors assume the elastic-plastic flexural buckling in one plane without lateral torsional buckling behavior of members. Design formulae for Methods 1 and 2 for members are analyzed. Structures stiffness constrains are also incorporated in order to satisfy the limit serviceability state requirements. With the help of mathematical programming theory and extreme principles the structure optimization algorithm is developed and justified with the numerical experiment for the metal plane frames.

  1. Metal Injection Molding of Thin-Walled Titanium Glasses Arms: A Case Study

    Science.gov (United States)

    Ye, Shulong; Mo, Wei; Lv, Yonghu; Li, Xia; Kwok, Chi Tat; Yu, Peng

    2018-02-01

    Commercially pure titanium (CP Ti) and Ti-6Al-4V arms for a new brand of augmented reality smart glasses, which are over 170 mm in length, with thin wall structures and extremely complex surfaces, have been successfully fabricated via metal injection molding. After sintering, both the metal injection-molded (MIMed) CP Ti and Ti-6Al-4V can reach relative densities of over 95% with an oxygen content 2200 ppm, thus imparting mechanical properties comparable to cast alloys. The ductility of the MIMed CP Ti and Ti-6Al-4V are about 15% and 8%, respectively. This is a good example of applying metal injection molding to mass production of precise Ti alloy parts with complicated shapes.

  2. High-Power Piezoelectric Acoustic-Electric Power Feedthru for Metal Walls

    Science.gov (United States)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-01-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall by using acoustic waves. This approach allows for the removal of holes through structures. The technology is applicable to power supply for electric equipment inside sealed containers, vacuum or pressure vessels, etc where the holes on the wall are prohibitive or result in significant performance degrade or complex designs. In the author's previous work, 100-W electric power was transferred through a metal wall by a small, simple-structure piezoelectric device. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feedthru devices were analyzed by finite element model. An equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the analysis results, a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1-kW was successfully conducted. The methods to minimize the plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this presentation.

  3. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes.

    Science.gov (United States)

    Iannazzo, Daniela; Pistone, Alessandro; Ziccarelli, Ida; Espro, Claudia; Galvagno, Signorino; Giofré, Salvatore V; Romeo, Roberto; Cicero, Nicola; Bua, Giuseppe D; Lanza, Giuseppe; Legnani, Laura; Chiacchio, Maria A

    2017-06-01

    Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb 2+ , Hg 2+ , and Ni 2+ and the harmless Ca 2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg 2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.

  4. Micro laser metal wire deposition for additive manufacturing of thin-walled structures

    Science.gov (United States)

    Demir, Ali Gökhan

    2018-01-01

    In this work, the micro laser metal wire deposition (μLMWD) process is studied as an additive manufacturing process for manufacturing thin walled structures with high aspect ratio. The developed μLMWD system consisted of a flash-pumped Nd:YAG laser source operating with ms-long pulses and an in-house developed wire feeding system. Processing conditions were investigated for single and multi-layer deposition in terms of geometry, microhardness and material use efficiency. Thin-walled structures with aspect ratio up to 20 were manufactured successfully, where layer width was between 700 and 800 μm. In multi-layer deposition conditions, the material use efficiency was observed to be close to 100%. The microhardness over the build direction was homogenous. The results show that the μLMWD process yields geometrical resolution close to powder-bed additive manufacturing processes, while maintaining the benefits of using wire feedstock.

  5. Helium flaking in metals and alloys promising as first-wall materials in fusion reactors

    International Nuclear Information System (INIS)

    Guseva, M.I.; Ionova, E.S.; Mansurova, A.N.; Martynenko, Yu.V.; Nikol'skij, Yu.V.; Stepanchikov, V.A.; Chelnokov, O.I.

    1981-01-01

    Main peculiar features of flaking (the process of separating an irradiated layer from the metal surface under the pressure of intruded gas) in dependence on radiation doses, target temperature during irradiation, ions energy, orientation and chemical composition of targets are given. A review is represented on flaking in various materials promising for the first wall in fusion reactors under helium ion bombardment. Flaking is observed in the temperature range of 0.1 to 0.45, Tsub(melt) and leads to surface erosion to a greater extent than blistering [ru

  6. Fine metal dust particles on the wall probes from JET-ILW

    Science.gov (United States)

    Fortuna-Zaleśna, E.; Grzonka, J.; Moon, Sunwoo; Rubel, M.; Petersson, P.; Widdowson, A.; Contributors, JET

    2017-12-01

    Collection and ex situ studies of dust generated in controlled fusion devices during plasma operation are regularly carried out after experimental campaigns. Herewith results of the dust survey performed in JET after the second phase of operation with the metal ITER-like wall (2013-2014) are presented. For the first-time-ever particles deposited on silicon plates acting as dust collectors installed in the inner and outer divertor have been examined. The emphasis is on analysing metal particles (Be and W) with the aim to determine their composition, size and surface topography. The most important is the identification of beryllium dust in the form of droplets (both splashes and spherical particles), flakes of co-deposits and small fragments of Be tiles. Tungsten and nickel rich (from Inconel) particles are also identified. Nitrogen from plasma edge cooling has been detected in all types of particles. They are categorized and the origin of various constituents is discussed.

  7. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    International Nuclear Information System (INIS)

    Ghorbani, H.; Rashidi, A.M.; Rastegari, S.; Mirdamadi, S.; Alaei, M.

    2011-01-01

    Research highlights: → Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. → Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. → Optimum growth condition is CO/H 2 = 1/1, 100 cm 3 /min, at 620 o C under long term repetitive thermal cycling. → Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H 2 = 1/1, total gas flow rate 100 cm 3 /min, at 620 o C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  8. Influence of metal frame on heat protection properties of a polystyrene concrete wall

    Directory of Open Access Journals (Sweden)

    Tsvetkov Nikolay

    2018-01-01

    Full Text Available The use of novel thermal-efficient building materials and technologies that allow increasing the level of thermal protection of external envelope structures and reducing the time for construction are of practical interest and represent a relevant task in the conditions of rapidly changing and increasing requirements to energy efficiency of buildings. This research aims at simulating the process of spatial heat transfer in a multilayer non-uniform structure of an external cast-in-place framed wall produced from polystyrene concrete with a stay-in-place formwork. Based on the physico-mathematical model developed with the use of ANSYS and COMSOL software complexes, parametric analysis of the impact of various factors on thermal behavior of the external wall was performed with the account of heat-stressed frame elements. The nature of temperature fields distribution in a polystyrene concrete structure was defined, and its thermal protection properties were investigated. The impact of a metal frame on thermal protection properties of a wall was found to be insignificant.

  9. Induced superhydrophobic and antimicrobial character of zinc metal modified ceramic wall tile surfaces

    Science.gov (United States)

    Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan

    2018-04-01

    Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.

  10. Subcooled boiling-induced vibration of a heater rod located between two metallic walls

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Kenji, E-mail: kenji_takano@mhi.co.jp; Hashimoto, Yusuke; Kunugi, Tomoaki; Yokomine, Takehiko; Kawara, Zensaku

    2016-11-15

    Highlights: • A heating structure in water vibrates itself due to subcooled boiling (SBIV). • Experiments with a heater rod located between two metallic walls were conducted. • Large bubbles growing in 1 mm-gap distance with each wall influenced on the SBIV. • Frequency of large bubble generation corresponded to acceleration of the heater rod. • Acceleration of the heater rod in the direction towards each wall was encouraged. - Abstract: The phenomenon that a heating structure vibrates itself due to the behavior of vapor bubbles generated under subcooled boiling has been known as “Subcooled Boiling-induced Vibration (SBIV)”. As one of such a heating structure, fuel assemblies for Boiling Water Reactors (BWR) are utilized in subcooled boiling of water, and those for Pressurized Water Reactors (PWR) may face unexpected subcooled boiling conditions in case of sudden drop of the system pressure or loss of water flow, though they are utilized in single phase of water under normal operating conditions. As studies on SBIV, some researchers have conducted demonstrative experiments with a partial array of fuel rods simulating the actual BWR fuel assembly in a flow test loop, which showed no significant influences of the SBIV to degrade the integrity of the fuel rods. In addition, in order to investigate the fundamental phenomenon of the SBIV, pool boiling experiments of the SBIV on a single heater rod were performed in other studies with a simplified apparatus of a water tank in laboratory size under atmospheric pressure. In the experiments, behavior of bubbles generated under various degree of subcooling were observed, and the acceleration of the SBIV of the heater rod was measured. The present study, as a series of the above experiments for the fundamental phenomenon of the SBIV, the two thin walls made of stainless steel were installed in parallel to interleave the heater rod with the gap distance of 1 mm or 3 mm to each of the two walls, which was expected

  11. Impact of melt-layer ejection from metallic first wall on tokamak plasmas

    Science.gov (United States)

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2012-10-01

    At present, all-metallic tokamak first wall is preferred over carbon composite materials for next generation fusion devices, such as ITER, due to favorable thermo-physical and chemical properties of metals in fusion plasma environment. However, recent experiments demonstrate that surface of metallic components, including tungsten ones, under high transient heat load pertinent to next step tokamaks can melt and eject molten material into fusion plasma in form of droplets or fine spray [1]. The ejected material can be a source of impurity contamination of fusion plasmas and even in some cases cause discharge termination, as was observed recently on LHD. In this work, we investigate impact of ejection of beryllium droplets of various sizes on ITER-like plasmas using coupled dust-plasma edge transport code DUSTT/UEDGE [2]. Different ejection scenarios are modeled, including intermittent and prolonged ejection of molten material at the top, midplane and divertor poloidal locations in ITER. Using the modeling we assess modifications of the plasma profiles, radiation power losses, and impurity particle fluxes to the plasma core produced by various quantities of the ejectile. Critical amounts of the different materials ejected, which can lead to discharge termination, are evaluated.[4pt] [1] J.W. Coenen, et al., Nucl. Fusion 51 (2011) 113020;[0pt] [2] R.D. Smirnov, et al., J. Nucl. Mater. 415 (2011) S1067.

  12. Neutron activation analysis of heavy metal binding by fungal cell walls

    International Nuclear Information System (INIS)

    Crusberg, T.C.; Mayer, J.A.

    1994-01-01

    Aqueous effluents are produced during nuclear power and nuclear weapons development activities which frequently contain low levels of dissolved radioactive nuclides. A number of laboratories are now focusing attention to renewable biological materials to provide traps for low concentrations of dissolved radioactive metal ions in wastewater effluents. The term BIOTRAP can be used to describe such materials, and in this laboratory cell wall preparations of the fungus Penicillium ochro-chloron have been employed to demonstrate their capacity and affinity to reversibly bind and remove copper(2). Since neutron activation analysis (NAA) was readily available, that method was one of several applied to this problem as a suitable analytical methodology to study heavy metal-to-BIOTRAP interactions. Copper and mercury provide good examples of metals which are capable of undergoing activation by thermal neutrons. In NAA, 63 Cu (69.1% natural abundance) is converted to 64 Cu which has a half live of 12.7 hr, and 202 Hg (29.7 % natural abundance) is converted to 203 Hg which has a half life of 46.,6 d

  13. Metal coated functionalized single-walled carbon nanotubes for composite applications

    Science.gov (United States)

    Zeng, Qiang

    This study is considered as a method for producing multifunctional composite materials by using metals coated Single-walled Carbon Nanotubes (SWCNTs). In this research, various metals (Ni, Cu, Ag) were successfully deposited onto the surface of SWCNTs. It has been found that homogenous dispersion and dense nucleation sites are the necessary conditions to form uniform coatings on SWCNTs. Functionalization has been applied to achieve considerable improvement in the dispersion of purified SWCNTs and creates more nucleation sites for subsequent metal deposition. A three-step electroless plating approach was used and the coating mechanism is described in the paper. The samples were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Raman spectroscopy, fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDX). Bulk copper/aluminum-SWNT composites were processed by powder metallurgy with wet mixing techniques. Coated SWCNTs were well dispersed in the metal matrix. Cold pressing followed by sintering was applied to control porosity. The relationships between hardness and SWCNTs addition were discussed. Ni-SWCNTs composite coatings were prepared by electro-composite deposition. SWCNTs were suspended in a Ni deposition electrolyte and deposited together with nickel during electrodeposition. SWCNTs concentrations in the coatings were found to be related to the SWCNTs concentration in the solution, current density and agitation rate. The microstructure of the coatings has been examined by electron microscopy. Ni coated SWCNTs were also incorporated into the high temperature Bismaleimide (BMI)/graphite composite to improve Electromagnetic Interference (EMI) shielding and surface conductivity. The vacuum assisted resin transfer molding (VARTM) was used to process these composites. Surface and volume resistivity and EMI shielding effectiveness of the composites

  14. Bias-induced modulation of ultrafast carrier dynamics in metallic single-walled carbon nanotubes

    Science.gov (United States)

    Maekawa, Keisuke; Yanagi, Kazuhiro; Minami, Yasuo; Kitajima, Masahiro; Katayama, Ikufumi; Takeda, Jun

    2018-02-01

    The gate bias dependence of excited-state relaxation dynamics in metallic single-walled carbon nanotubes (MCNTs) was investigated using pump-probe transient absorption spectroscopy coupled with electrochemical doping through an ionic liquid. The transient transmittance decayed exponentially with the pump-probe delay time, whose value could be tuned via the Fermi-level modulation of Dirac electrons under a bias voltage. The obtained relaxation time was the shortest when the Fermi level was at the Dirac point of the MCNTs, and exhibited a U-shaped dependence on the bias voltage. Because optical dipole transitions between the Dirac bands are forbidden in MCNTs, the observed dynamics were attributed to carrier relaxation from the E11 band to the Dirac band. Using a model that considers the suppression of electron-electron scattering (impact ionization) due to Pauli blocking, we could qualitatively explain the obtained bias dependence of the relaxation time.

  15. Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys

    Science.gov (United States)

    Mansuripur, M.; Giles, R. C.; Patterson, G.

    1991-01-01

    Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.

  16. Mesoscopic Metal-Insulator Transition at Ferroelastic Domain Walls in VO2

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith M [ORNL; Kalinin, Sergei V [ORNL; Kolmakov, Andrei [ORNL; Luk' yanchuk, Prof. Igor A. [University of Picardie Jules Verne, Amiens, France; Meunier, Vincent [ORNL; Proksch, Roger [Asylum Research, Santa Barbara, CA; Shelton Jr, William Allison [ORNL; Strelcov, Evgheni [Southern Illinois University; Tselev, Alexander [ORNL

    2010-01-01

    The novel phenomena induced by symmetry breaking at homointerfaces between ferroic variants in ferroelectric and ferroelastic materials have attracted recently much attention. Using variable temperature scanning microwave microscopy, we demonstrate the mesoscopic strain-induced metal-insulator phase transitions in the vicinity of ferroelastic domain walls in the semiconductive VO2 that nucleated at temperatures as much as 10-12 C below bulk transition, resulting in the formation of conductive channels in the material. Density functional theory is used to rationalize the process low activation energy. This behavior, linked to the strain inhomogeneity inherent in ferroelastic materials, can strongly affect interpretation of phase-transition studies in VO2 and similar materials with symmetry-lowering transitions, and can also be used to enable new generations of electronic devices though strain engineering of conductive and semiconductive regions.

  17. Substitution of bismuth in hot wall epitaxy of Bi2Se3 on transition metals

    International Nuclear Information System (INIS)

    Takagaki, Y; Jahn, U; Ramsteiner, M; Friedland, K-J

    2011-01-01

    Hot wall epitaxy using a Bi 2 Se 3 source is carried out on the surface of transition metals. Bismuth is replaced dramatically with the substrate atoms for Cu, Ag and Ni. The substitution is complete for Cu and Ag, yielding, respectively, CuSe and Ag 2 Se instead of Bi 2 Se 3 . A fractal growth that can be induced on Cu evidences diffusion of copper in the CuSe crystals over tens of micrometers. In contrast, selenium is expelled from the Bi 2 Se 3 lattice on the Au surface. We demonstrate that a limit on the copper inclusion in Bi 2 Se 3 microcrystals can be imposed by utilizing a Cu-doped glass as the substrate

  18. Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    R. Majeski

    2010-01-15

    At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700oC. However, at a sufficiently high operating temperature (700 - 1000 oC), tungsten is selfannealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment. The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium. Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands1 and fusion experiments2,3 to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 - 400 oC), it has been now been used as a PFC in several confinement experiments (TFTR, T11- M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

  19. Crustal permeability

    Science.gov (United States)

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  20. Photocatalytic engineering of single-walled carbon nanotubes: from metal-to-semiconductor conversion to cutting and patterning.

    Science.gov (United States)

    Nie, Yufeng; Zhang, Liming; Wu, Di; Chen, Yubin; Zhang, Guoming; Xie, Qin; Liu, Zhongfan

    2013-04-22

    With a TiO2 -based photocatalytic approach, both an arbitrary geometry tailoring of single-walled carbon nanotubes (SWCNTs) on various substrates and the conversion of metallic to semiconducting SWCNTs are demonstrated. Taking advantage of the selectivity on the diameter and metallicity of SWCNTs, 100% depletable SWCNT-based field-effect transistors are achieved, with Ion /Ioff improvements up to five orders of magnitude. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Variability of permeability with diameter of conduit

    Indian Academy of Sciences (India)

    Using some theoretical assumptions, it is demonstrated that permeability varies from zero at wall-fluid boundary to maximum at mid-stream, creating a permeability profile similar to the velocity profile. An equation was obtained to establish this. We also found that peak values of permeability increase with increasing porosity, ...

  2. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices.

    Science.gov (United States)

    van Eden, G G; Kvon, V; van de Sanden, M C M; Morgan, T W

    2017-08-04

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically reduced over time due to progressing damage accumulation. Liquid metals, however, are now gaining interest in solving the challenge of extreme heat flux hitting the reactor walls. A key advantage of liquid metals is the use of vapour shielding to reduce the plasma exhaust. Here we demonstrate that this phenomenon is oscillatory by nature. The dynamics of a Sn vapour cloud are investigated by exposing liquid Sn targets to H and He plasmas at heat fluxes greater than 5 MW m -2 . The observations indicate the presence of a dynamic equilibrium between the plasma and liquid target ruled by recombinatory processes in the plasma, leading to an approximately stable surface temperature.Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.

  3. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Directory of Open Access Journals (Sweden)

    Zeyuan eCao

    2015-05-01

    Full Text Available Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni/single-walled carbon nanotube (SWNT macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  4. Oxygen permeability of transition metal-containing La(Sr,PrGa(MgO3-δ ceramic membranes

    Directory of Open Access Journals (Sweden)

    Frade, J. R.

    2004-08-01

    Full Text Available Acceptor-type doping of perovskite-type La1-xSrxGa0.80-yMgyM0.20O3-δ (x = 0-0.20, y = 0.15-0.20, M = Fe, Co, Ni leads to significant enhancement of ionic conductivity and oxygen permeability due to increasing oxygen vacancy concentration. The increase in strontium and magnesium content is accompanied, however, with increasing role of surface exchange kinetics as permeation-limiting factor. At temperatures below 1223 K, the oxygen permeation fluxes through La(SrGa(Mg,MO3-δ membranes with thickness less than 1.5 mm are predominantly limited by the exchange rates at membrane surface. The oxygen transport in transition metal-containing La(SrGa(MgO3-δ ceramics increase in the sequence Co El dopado aceptor de cerámicas tipo perovskita La1-xSrxGa0.80-yMgyM0.20O3-δ (x = 0-0.20, y = 0.15-0.20, M = Fe, Co, Ni da lugar a una mejora significativa de la conductividad iónica y de la permeabilidad al oxígeno debido al aumento de la concentración de vacantes de oxígeno. Sin embargo, el aumento de la cantidad de estroncio y magnesio viene acompañado de un aumento de la participación de las cinéticas de intercambio superficial como factor limitante de la permeabilidad. A temperaturas por debajo de 1223 K la permeabilidad al flujo de oxígeno a través de las membranas de La(SrGa(Mg,MO3-δ con espesor menor de 1.5 mm está limitado principalmente por las velocidades de intercambio en la superficie de la membrana. El transporte de oxígeno en las cerámicas La(SrGa(MgO3-δ que contienen M aumenta en la secuencia Co < Fe < Ni. La conductividad iónica en estas fases es, sin embargo, menor que en la de los compuestos La1-xSrxGa1-yMgyO3-δ. El mayor nivel de permeabilidad de oxígeno, comparable a la de las fases basadas en La(SrFe(CoO3 y La2NiO4, se observa para las membranas de La0.90Sr0.10Ga0.65Mg0.15Ni0.20O3-δ. Los coeficientes de dilatación térmica medios de las cerámicas La(SrGa(Mg,MO3-δ en aire son del orden de (11.6–18.4 × 10-6 K-1 a 373

  5. Notional Permeability

    NARCIS (Netherlands)

    Kik, R.; Van den Bos, J.P.; Maertens, J.; Verhagen, H.J.; Van der Meer, J.W.

    2012-01-01

    Different layer design of a rock slope and under layers has a large effect on the strengths on the rock slope itself. In the stability formula developed of VAN DER MEER [1988] this effect is represented by the term Notional Permeability with symbol P. A more open, or permeable, structure underneath

  6. Permeability of porour rhyolite

    Science.gov (United States)

    Cashman, K.; Rust, A.; Wright, H.; Roberge, J.

    2003-04-01

    The development of permeability in bubble-bearing magmas determines the efficiency of volatile escape during their ascent through volcanic conduits, which, in turn, controls their explosive potential. As permeability requires bubble connectivity, relationships between permeability and porosity in silicic magmas must be controlled by the formation, growth, deformation and coalescence of their constituent bubbles. Although permeability data on porous volcanic pyroclasts are limited, the database can be greatly extended by including data for ceramic and metallic foams1. Several studies indicate that a single number does not adequately describe the permeability of a foam because inertial effects, which predominate at high flow rates, cause deviations from Darcy's law. These studies suggest that permeability is best modeled using the Forschheimer equation to determine both the Darcy permeability (k1) and the non-Darcian (k2) permeability. Importantly, at the high porosities of ceramic foams (75-95%), both k1 and k2 are strongly dependent on pore size and geometry, suggesting that measurement of these parameters provides important information on foam structure. We determined both the connected porosity (by He-pycnometry) and the permeability (k1 and k2) of rhyolitic samples having a wide range in porosity (22-85%) and vesicle textures. In general, these data support previous observations of a power law relationship between connected porosity and Darcy permeability2. In detail, variations in k1 increase at higher porosities. Similarly, k2 generally increases in both mean and standard deviation with increasing porosity. Measurements made on three mutually perpendicular cores from individual pumice clasts suggest that some of the variability can be explained by anisotropy in the vesicle structure. By comparison with ceramic foams, we suggest that the remaining variability results from differences either in average vesicle size or, more likely, in the size of apertures

  7. Formation of transition metal cluster adducts on the surface of single-walled carbon nanotubes: HRTEM studies

    KAUST Repository

    Kalinina, Irina V.

    2014-01-01

    We report the formation of chromium clusters on the outer walls of single-walled carbon nanotubes (SWNTs). The clusters were obtained by reacting purified SWNTs with chromium hexacarbonyl in dibutyl ether at 100°C. The functionalized SWNTs were characterized by thermogravimetic analysis, XPS, and high-resolution TEM. The curvature of the SWNTs and the high mobility of the chromium moieties on graphitic surfaces allow the growth of the metal clusters and we propose a mechanism for their formation. © 2014 Taylor and Francis Group, LLC.

  8. Physiological and proteomic changes suggest an important role of cell walls in the high tolerance to metals of Elodea nuttallii.

    Science.gov (United States)

    Larras, Floriane; Regier, Nicole; Planchon, Sébastien; Poté, John; Renaut, Jenny; Cosio, Claudia

    2013-12-15

    Macrophytes bioaccumulate metals, the suggestion being made that they be considered for phytoremediation. However, a thorough understanding of the mechanisms of metal tolerance in these plants is necessary to allow full optimization of this approach. The present study was undertaken to gain insight into Hg and Cd accumulation and their effects in a representative macrophyte, Elodea nuttallii. Exposure to methyl-Hg (23 ng dm(-3)) had no significant effect while inorganic Hg (70 ng dm(-3)) and Cd (281 μg dm(-3)) affected root growth but did not affect shoots growth, photosynthesis, or antioxidant enzymes. Phytochelatins were confirmed as having a role in Cd tolerance in this plant while Hg tolerance seems to rely on different mechanisms. Histology and subcellular distribution revealed a localized increase in lignification, and an increased proportion of metal accumulation in cell wall over time. Proteomics further suggested that E. nuttallii was able to efficiently adapt its energy sources and the structure of its cells during Hg and Cd exposure. Storage in cell walls to protect cellular machinery is certainly predominant at environmental concentrations of metals in this plant resulting in a high tolerance highlighted by the absence of toxicity symptoms in shoots despite the significant accumulation of metals. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Liquid-metal flow through a thin-walled elbow in a plane perpendicular to a uniform magnetic field

    International Nuclear Information System (INIS)

    Walker, J.S.

    1986-04-01

    This paper presents analytical solutions for the liquid-metal flow through two straight pipes connected by a smooth elbow with the same inside radius. The pipes and the elbow lie in a plane which is perpendicular to a uniform, applied magnetic field. The strength of the magnetic field is assumed to be sufficiently strong that inertial and viscous effects are negligible. This assumption is appropriate for the liquid-lithium flow in the blanket of a magnetic confinement fusion reactor, such as a tokamak. The pipes and the elbow have thin metal walls

  10. Review of Hydrogen Isotope Permeability Through Materials

    Energy Technology Data Exchange (ETDEWEB)

    Steward, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1983-08-15

    This report is the first part of a comprehensive summary of the literature on hydrogen isotope permeability through materials that do not readily form hydrides. While we mainly focus on pure metals with low permeabilities because of their importance to tritium containment, we also give data on higher-permeability materials such as iron, nickel, steels, and glasses.

  11. Global and pedestal confinement in JET with a Be/W metallic wall

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Frassinetti, L.; Challis, C.; Giroud, C.; Saarelma, S.; Alper, B.; Angioni, C.; P. Bilkova,; Bourdelle, C.; Brezinsek, S.; Buratti, P.; Calabro, G.; Eich, T.; Flanagan, J.; Giovannozzi, E.; Groth, M.; Hobirk, J.; Joffrin, E.; Leyland, M. J.; Lomas, P.; de la Luna, E.; Kempenaars, M.; Maddison, G.; Maggi, C.; Mantica, P.; Maslov, M.; Matthews, G.; M-L Mayoral,; Neu, R.; Nunes, I.; Osborne, T.; Rimini, F.; Scannell, R.; Solano, E. R.; Snyder, P. B.; Voitsekhovitch, I.; de Vries, P. C.; JET-EFDA Contributors,

    2014-01-01

    Type I ELMy H-mode operation in JET with the ITER-like Be/W wall (JET-ILW) generally occurs at lower pedestal pressures compared to those with the full carbon wall (JET-C). The pedestal density is similar but the pedestal temperature where type I ELMs occur is reduced and below to the so-called

  12. Roles of metal ion complexation and membrane permeability in the metal flux through lipophilic membranes. Labile complexes at permeation liquid membranes

    NARCIS (Netherlands)

    Zhang, Z.; Buffle, J.; Leeuwen, van H.P.; Wojciechowski, K.

    2006-01-01

    The various physicochemical factors that influence the flux of carrier-transported metal ions through permeation liquid membranes (PLM) are studied systematically. Understanding PLM behavior is important (i) to optimize the application of PLM as metal speciation sensors in environmental media and

  13. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier

    Science.gov (United States)

    Huang, Tao; Li, Dongwei; Kexiang, Liu; Zhang, Yuewei

    2015-10-01

    This paper presents the investigations into the feasibility of the application of a remediation system that couples electrokinetic remediation (EKR) with the permeable reactive barrier (PRB) concept for municipal solid waste incineration (MSWI) fly ash with activated charcoal as the PRB material. The experimental results of this study showed that the proposed combined method can effectively improve the remediation efficiency and that the addition of the oxalic acid to the PRB media before the coupled system can further enhance the remediation process. In the optimization tests, the maximum removals of Zn, Pb, Cu and Cd were achieved under different experimental conditions. The voltage gradient and processing time were shown to have significant effects on the removal of Cu and Cd, whereas the addition of the oxalic acid had a more significant influence on the removal of Pb. Generally, the processing time is the most significant factor in changing the removal rates of HMs in the enhanced coupled system. In terms of the leaching toxicity, the specimen remediated by ENEKR + PRB showed the lowest leaching value for each HM in the S2 and S3 regions.

  14. Review of recent experiments on the T-10 tokamak with all metal wall

    Science.gov (United States)

    Vershkov, V. A.; Sarychev, D. V.; Notkin, G. E.; Shelukhin, D. A.; Buldakov, M. A.; Dnestrovskij, Yu. N.; Grashin, S. A.; Kirneva, N. A.; Krupin, V. A.; Klyuchnikov, L. A.; Melnikov, A. V.; Neudatchin, S. V.; Nurgaliev, M. R.; Pavlov, Yu. D.; Savrukhin, P. V.; T-10 Team

    2017-10-01

    Transition to an all-metal wall was realized on T-10 by replacement of graphite limiters with tungsten ones. Light impurity levels remained high and W accumulation in the plasma core was revealed. A movable lithium (Li) limiter was added to investigate the possibility of the limitation of tungsten and light impurity levels in plasma. For the first time, tokamak results on tungsten protection with Li were obtained in OH and ECRH regimes. After lithization the tungsten density in the core dropped more than an order of magnitude, while W influx into plasma decreased 2-4 times. Drastic drops of light impurities in plasma were observed together with improvement of energy confinement time and density limit values. Nevertheless, Li levels in plasma remained low in both OH and ECRH regimes. Li density in the core as low as 0.5% of n e was obtained. Tungsten transport in T-10 plasma was investigated and results on prevention of W accumulation with central ECRH were obtained. Effects of plasma exposure on ITER-grade tungsten plates from limiters were studied. Investigations of density fluctuation with correlation reflectometry confirmed a decrease of fluctuation amplitude on high field side. Modeling showed that this effect can be, to a great extent, explained by the non-locality of reflectometry. Toroidal correlations at a distance of 2.5 m along field lines were studied. Three-wave interaction between geodesic acoustic modes and broad-band turbulence was found by analysis of heavy ion beam probe diagnostics data. The possibility of plasma current control and the prevention of non-thermal electron beams formation at density limit disruption by means of ECR heating and the controlled operation of OH power supply system has been demonstrated. The study of plasma density decay after gas puff switch off during density ramp-up phase in OH regimes and the effect of ‘density pump out’ during ECRH showed that both effects can be explained by the assumption regarding electron

  15. Inner tube growth and electronic properties of metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes

    Science.gov (United States)

    Kharlamova, M. V.; Kramberger, C.; Sauer, M.; Yanagi, K.; Saito, T.; Pichler, T.

    2018-03-01

    In the present work, we have obtained metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes (SWCNTs) by density gradient separation of metallicity mixed filled nanotubes. Double-walled carbon nanotubes (DWCNTs) were obtained by annealing of filled SWCNTs in vacuum. The diameter distribution of inner tubes was analyzed by multifrequency Raman spectroscopy. The chemical transformation of nickelocene upon annealing was studied by X-ray photoelectron spectroscopy (XPS) at the Ni 2 p core level. The thermally-induced transformation of nickelocene to nickel carbides and metallic nickel was revealed. The electronic properties of the filled SWCNTs and DWCNTs were investigated by XPS at the C 1 s core level. By tracing the C 1 s binding energy, it was shown that the annealing of nickelocene-filled SWCNTs at low temperatures (360-600 °C) led to electron doping of SWCNTs, whereas annealing at high temperatures and formation of DWCNTs (680-1200 °C) resulted in hole doping of nanotubes.

  16. Role of OsWAK124, a rice wall-associated kinase, in response to environmental heavy metal stresses

    International Nuclear Information System (INIS)

    Yin, X.; Hou, X.

    2017-01-01

    Members of the Arabidopsis cell wall-associated kinase (WAK) family play important roles in both development and stress responses. There are about one hundred and twenty five OsWAKs annotated in the rice genome but their functions in rice growth and development are largely unknown. In this paper, we reported a functional role of the OsWAK124 (Os12g0266200) in rice heavy metal responses. Confocal GFP experiments located OsWAK124 in the cell wall and analyses of OsWAK124 promoter GUS transgenic lines suggested that OsWAK124 promoter is primarily active at the meristematic tissues under normal growth condition. Under stress conditions, however, OsWAK124 promoter activity is induced in non-meristematic tissues, such as leaf, stem and root, and the activity in the meristematic tissues is further enhanced. Various transgenic rice lines carrying either RNA interference (RNAi) or overexpression constructs were generated. Transgenic lines were tested for their responses to various stress conditions including salicylic acid, NaCl, AlCl/sub 3/, CuSO/sub 4/ and CdSO/sub 4/. Our analyses showed that rice seedlings overexpressing OsWAK124 are more resistant to the three tested heavy metals (Al, Cu, and Cd), which suggested that OsWAK124, like some Arabidopsis WAK members, plays a role in environmental heavy metal stress responses. (author)

  17. Investigation of Surfactant Type, Dosage and Ultrasonication Temperature Control on Dispersity of Metal-Coated Multi-Walled Carbon Nanotubes.

    Science.gov (United States)

    Liang, Xiaoning; Li, Wei

    2016-04-01

    We studied the dispersity of multi-walled carbon nanotubes (MWNTs) combined with different metal- lic particles (Ni and Fe). An ultrasonic-assisted water-bath dispersion process was used to dis- perse the metal-coated MWNTs in different solutions and the dispersity was measured using an ultraviolet-visible spectrophotometer. The dispersity and morphology of the MWNTs were characterized using field-emission scanning electron microscopy (FE-SEM) together with digital image processing technology. Effects of dispersant type (sodium dodecyl benzene sulfonate (SDBS), oleic acid, and polymer (TNEDIS)) and surfactant dosage on the dispersity of the metal-coated MWNTs were investigated under controlled and uncontrolled temperatures and results were compared with those from the untreated MWNTs. The results showed that the negative effects of temperature on the ultrasonic dispersion process could be eliminated through a temperature-controlled system. Moreover, the TNEDIS, SDBS, and oleic acid were arranged in the descending order of the dispersion effect degree. The untreated MWNTs, Ni-coated MWNTs, and Fe-coated MWNTs were arranged in the descending degree of dispersity order. Since the metal coating makes the MWNTs harder and more fragile, the metal-coated MWNTs are more likely to fracture during the ultrasonic dispersion process.

  18. SEMI–AUTOMATED ASSESSMENT OF MICROMECHANICAL PROPERTIES OF THE METAL FOAMS ON THE CELL-WALL LEVEL

    Directory of Open Access Journals (Sweden)

    Nela Krčmářová

    2016-12-01

    Full Text Available Metal foams are innovative porous material used for wide range of application such as deformation energy or sound absorption, filter material, or microbiological incubation carrier. To predict mechanical properties of the metal foam is necessary to precisely describe elasto–plastic properties of the foam on cell–wall level. Indentation with low load is suitable tool for this purpose. In this paper custom designed instrumented microindentation device was used for measurement of cell-wall characteristics of two different aluminium foams (ALPORAS and ALCORAS. To demonstrate the possibility of automated statistical estimation of measured characteristics the device had been enhanced by semi-automatic indent positioning and evaluation procedures based on user-defined grid. Vickers hardness was measured on two samples made from ALPORAS aluminium foam and one sample from ALCORAS aluminium foam. Average Vickers hardness of ALPORAS foam was 24.465HV1.019 and average Vickers hardness of ALCORAS was 36.585HV1.019.

  19. Polysulfone - CNT composite membrane with enhanced water permeability

    Science.gov (United States)

    Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.

    2018-04-01

    Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.

  20. Effect of dimensions of multi-walled carbon nanotubes on its enrichment efficiency of metal ions from environmental waters

    Energy Technology Data Exchange (ETDEWEB)

    El-Sheikh, Amjad H. [Department of Chemistry, Faculty of Science, Hashemite University, P.O. Box 150459, Al-Zarqa 13115 (Jordan)], E-mail: amjadelsheikh3@yahoo.com; Sweileh, Jamal A.; Al-Degs, Yahya S. [Department of Chemistry, Faculty of Science, Hashemite University, P.O. Box 150459, Al-Zarqa 13115 (Jordan)

    2007-12-05

    The effect of dimensions (length and external diameter) of multi-walled carbon nanotubes (MWCNTs) on its preconcentration efficiency towards some metal ions (Pb{sup 2+}, Cd{sup 2+}, Cu{sup 2+}, Zn{sup 2+} and MnO{sub 4}{sup -}) from environmental waters prior to their analysis by flame atomic absorption spectroscopy (FAAS) was investigated. MWCNTs (as-received from the manufacturer) of various external diameters and lengths were involved. Other variables optimized included effects of pH of water sample, composition and volume of eluent, mass of the MWCNTs, breakthrough volume and coexisting ions. Maximum recovery of metal ions was obtained at pH 9 where it was thought that precipitation of metals as their hydroxides played the major factor in metals uptake by MWCNT. It was suggested that the use of appropriate dimensions of MWCNTs may support the trapping process of the precipitated metal hydroxides by MWCNTs. It was found that long MWCNT of length 5-15 {mu}m and external diameter 10-30 nm gave the highest enrichment efficiency towards almost all the targeted metal ions. It could be used for preconcentration of MnO{sub 4}{sup -}, Cu{sup 2+}, Zn{sup 2+} and Pb{sup 2+} with almost full recovery; but not for Cd{sup 2+} due to its low recovery. The optimized solid phase extraction (SPE) procedure was capable of determining metal ions in the linear range 20-100 ng mL{sup -1} (except for Zn{sup 2+} from 20 to 150 ng mL{sup -1}). Detection limits were 0.709 ng mL{sup -1} for MnO{sub 4}{sup -}, 0.278 ng mL{sup -1} for Pb{sup 2+}, 0.465 ng mL{sup -1} for Cu{sup 2+}, 0.867 ng mL{sup -1} for Zn{sup 2+}. Application of the optimized SPE procedure to environmental waters (tap water, reservoir water and stream water) gave spike recoveries of the metals in the range of 81-100%.

  1. Metal Decorated Multi-Walled Carbon Nanotube/Polyimide Composites with High Dielectric Constants and Low Loss Factors

    Science.gov (United States)

    Ghose, Sayata; Watson, Kent A.; Dudley, Kenneth L.; Elliott, Holly A.; Smith, Joseph G.; Connell, John W.

    2009-01-01

    The measurement of observable electromagnetic phenomena in materials and their derived intrinsic electric material properties are of prime importance in the discovery and development of material systems for electronic and aerospace applications. Nanocomposite materials comprised of metal decorated multi-walled carbon nanotubes (MWCNTs) were prepared by a facile method and characterized. Metal particles such as silver, platinum and palladium with diameters ranging from less than 5 to over 50 nanometers were distributed randomly on the MWCNTs. The metal-containing MWCNTs were then melt mixed into a polymer matrix and the mixture extruded as ribbons. These extruded ribbons exhibited a moderate to high degree of MWCNT alignment as determined by HRSEM. These ribbons were then fabricated into test specimens while maintaining MWCNT alignment and subsequently characterized for electromagnetic properties at 8-12 GHz. The present study is focused on silver decorated MWCNTs dispersed in an Ultem polyimide matrix. The results of the electromagnetic characterization showed that certain sample configurations exhibited a decoupling of the permittivity and loss factor (?? and ??) indicating that these properties could be tailored within certain limits. The decoupling and independent control of these fundamental electrical material parameters offer a new class of materials with potential applications in electronics, microwave engineering and optics.

  2. The reaction of lithium metal vapor with single walled carbon nanotubes of large diameters

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kavan, Ladislav; Dunsch, L.

    2009-01-01

    Roč. 246, 11-12 (2009), s. 2428-2431 ISSN 0370-1972 R&D Projects: GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA AV ČR IAA400400804; GA ČR GC203/07/J067; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : lithium * single walled carbon nanotubes * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 1.150, year: 2009

  3. Plasma induced material defects and threshold values for thermal loads in high temperature resistant alloys and in refractory metals for first wall application in fusion reactors

    International Nuclear Information System (INIS)

    Bolt, H.; Hoven, H.; Kny, E.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.

    1986-10-01

    Materials for the application in the first wall of fusion reactors of the tokamak type are subjected to pulsed heat fluxes which range from some 0.5 MW m -2 to 10 MW m -2 during normal plasma operation, and which can exceed 1000 MW m -2 during total plasma disruptions. The structural defects and material fatigue caused by this types of plasma wall interaction are investigated and the results are plotted in threshold loading curves. Additionally, the results are, as far as possible, compared with quantitative, theoretical calculations. These procedures allow a semiquantitative evaluation of the applicability of the mentioned metals in the first wall of fusion reactors. (orig.) [de

  4. Impact of lithium pellets on plasma performance in the ASDEX Upgrade all-metal-wall tokamak

    Science.gov (United States)

    Lang, P. T.; Maingi, R.; Mansfield, D. K.; McDermott, R. M.; Neu, R.; Wolfrum, E.; Arredondo Parra, R.; Bernert, M.; Birkenmeier, G.; Diallo, A.; Dunne, M.; Fable, E.; Fischer, R.; Geiger, B.; Hakola, A.; Nikolaeva, V.; Kappatou, A.; Laggner, F.; Oberkofler, M.; Ploeckl, B.; Potzel, S.; Pütterich, T.; Sieglin, B.; Szepesi, T.; ASDEX Upgrade Team

    2017-01-01

    The impact of lithium (Li) on plasma performance was investigated at the ASDEX Upgrade tokamak, which features a full tungsten wall. Li pellets containing 1.6  ×  1020 Li atoms were launched with a speed of 600 m s-1 to achieve deep penetration into the plasma and minimize the impact on the first wall. Homogeneous transient Li concentrations in the plasma of up to 15% were established. The Li sustainment time in the plasma decreased with an increasing heating power from 150 to 40 ms. Due to the pellet rate being restricted to 2 Hz, no Li pile-up could take place. No significant positive impact on plasma properties, as reported from other tokamak devices, could be found; the Li pellets rather caused a small reduction in plasma energy, mainly due to enhanced radiation. Due to pellet injection, a short-lived Li layer was formed on the plasma-facing components, which lasted a few discharges and led to moderately beneficial effects during plasma start-up. Most pellets were found to trigger type-I ELMs, either by their direct local perturbation or indirectly by the altered edge conditions; however, reliability was less than 100%.

  5. Two simple methods for calculating the penetration time of a longitudinal magnetic field through the wall of a metallic tube

    International Nuclear Information System (INIS)

    Jimenez D, H.; Colunga S, S.; Lopez C, R.; Melendez L, L.; Ramos S, J.; Cabral P, A.; Gonzalez T, L.; Chavez A, E.; Valencia A, R.

    1991-06-01

    Two simple and fast methods to calculate the penetration time of a longitudinal magnetic field through the wall of a long metallic tube of circular cross section are presented. The first method is based upon the proposition of an 'effective penetration thickness' given by the polar angle average of all possible straight-line transverse penetration paths of field lines through the tube wall. This method provides a quick calculation that yields a remarkably good approximation to experimental and reported values of the penetration time. In the second method the tube is considered as a RL circuit. Thus the penetration time is given by the ratio L T /R T where L T is the inductance of the tube considered as a one turn coil, and R T is the tube resistance. This method is faster to apply than the previous one but the values obtained provide only a rough approximation to the penetration time. Applications of the two methods are given for the tokamak chambers of the Japanese 'HYBTOK', the Brazilian 'TBR' and the Mexican 'Novillo'. The resulting values of the penetration time approximate very well to the reported ones in the first two cases and to the experimental one in the last. The methods are also applied to calculate the penetration time in two long tubes, one of aluminum and other of copper. Calculated values approximate very well to measured values. (Author)

  6. Tungsten divertor erosion in all metal devices: Lessons from the ITER like wall of JET

    Energy Technology Data Exchange (ETDEWEB)

    Rooij, G.J. van, E-mail: g.j.vanrooij@differ.nl [Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Coenen, J.W. [Institute of Energy and Climate Research, Forschungszentrum Jülich, Association EURATOM-FZJ, Jülich (Germany); Aho-Mantila, L. [VTT, P.O. Box 1000, FI-02044 VTT (Finland); Brezinsek, S.; Clever, M. [Institute of Energy and Climate Research, Forschungszentrum Jülich, Association EURATOM-FZJ, Jülich (Germany); Dux, R. [Max-Planck-Institut für Plasmaphysik, Association EURATOM-IPP (Germany); Groth, M. [Aalto University, Association EURATOM-Tekes, Espoo (Finland); Krieger, K.; Marsen, S. [Max-Planck-Institut für Plasmaphysik, Association EURATOM-IPP (Germany); Matthews, G.F.; Meigs, A. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Neu, R.; Potzel, S.; Pütterich, T. [Max-Planck-Institut für Plasmaphysik, Association EURATOM-IPP (Germany); Rapp, J. [Oak Ridge National Laboratory, Oak Ridge (United States); Stamp, M.F. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom)

    2013-07-15

    Tungsten erosion in the outer divertor of the JET ITER like wall was quantified by spectroscopy. Effective sputtering yields of typically 10{sup −4} were measured in L-mode at ∼30 eV attached divertor conditions and beryllium was identified as the main cause of sputtering. The signature of prompt redeposition was observed in the analysis of WI 400.9 nm and WII 364 nm line ratios and indicative of >50% redeposition fractions. Inter- and intra-ELM sputtering were compared for an example of 10 Hz ELMs with 13 MW NBI heating, in which intra-ELM sputtering was found to dominate by a factor of 5. Nitrogen seeding initially increased the tungsten sputtering threefold due to higher extrinsic impurity levels and effectively reduced the tungsten sputtering when the divertor plasma temperature was decreased from the initial 25 eV down to 15 eV.

  7. Multi-walled carbon nanotube structural instability with/without metal nanoparticles under electron beam irradiation

    Science.gov (United States)

    Khan, Imran; Huang, Shengli; Wu, Chenxu

    2017-12-01

    The structural transformation of multi-walled carbon nanotubes (MWCNT) under electron beam (e-beam) irradiation at room temperature is studied, with respect to a novel passivation effect due to gold nanoparticles (Au NPs). MWCNT structural evolution induced by energetic e-beam irradiation leads to faster shrinkage, as revealed via in situ transmission electron microscopy, while MWCNT surface modification with Au NPs (Au-MWCNT) slows down the shrinkage by impeding the structural evolution process for a prolonged time under the same irradiation conditions. The new relationship between MWCNT and Au-MWCNT shrinking radii and irradiation time illustrates that the MWCNT shrinkage rate is faster than either theoretical predictions or the same process in Au-MWCNTs. As compared with the outer surface energy (positive curvature), the inner surface energy (negative curvature) of the MWCNT contributes more to the athermal evaporation of tube wall atoms, leading to structural instability and shrinkage under e-beam irradiation. Conversely, Au NPs possess only outer surface energy (positive curvature) compared with the MWCNT. Their presence on MWCNT surfaces retards the dynamics of MWCNT structural evolution by slowing down the evaporation process of carbon atoms, thus restricting Au-MWCNT shrinkage. Au NP interaction and growth evolves athermally on MWCNT surfaces, exhibits increase in their size, and indicates the association of this mechanism with the coalescence induced by e-beam activated electronic excitations. Despite their growth, Au NPs show extreme structural stability, and remain crystalline under prolonged irradiation. It is proposed that the surface energy of MWCNTs and Au NPs, together with e-beam activated soft modes or lattice instability effects, predominantly govern all the above varieties of structural evolution.

  8. Theoretical Investigation on Single-Wall Carbon Nanotubes Doped with Nitrogen, Pyridine-Like Nitrogen Defects, and Transition Metal Atoms

    Directory of Open Access Journals (Sweden)

    Michael Mananghaya

    2012-01-01

    Full Text Available This study addresses the inherent difficulty in synthesizing single-walled carbon nanotubes (SWCNTs with uniform chirality and well-defined electronic properties through the introduction of dopants, topological defects, and intercalation of metals. Depending on the desired application, one can modify the electronic and magnetic properties of SWCNTs through an appropriate introduction of imperfections. This scheme broadens the application areas of SWCNTs. Under this motivation, we present our ongoing investigations of the following models: (i (10, 0 and (5, 5 SWCNT doped with nitrogen (CNxNT, (ii (10, 0 and (5, 5 SWCNT with pyridine-like defects (3NV-CNxNT, (iii (10, 0 SWCNT with porphyrine-like defects (4ND-CNxNT. Models (ii and (iii were chemically functionalized with 14 transition metals (TMs: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Ag, Pt and Au. Using the spin-unrestricted density functional theory (DFT, stable configurations, deformations, formation and binding energies, the effects of the doping concentration of nitrogen, pyridine-like and porphyrine-like defects on the electronic properties were all examined. Results reveal that the electronic properties of SWCNTs show strong dependence on the concentration and configuration of nitrogen impurities, its defects, and the TMs adsorbed.

  9. Metal octacarboxyphthalocyanine / multi-walled carbon nanotube hybrid for the development of dye solar cells

    CSIR Research Space (South Africa)

    Mphahlele, N

    2013-09-01

    Full Text Available : INTRODUCTION 1.1 GENERAL OVERVIEW 1 1.2 PROBLEM STATEMENT 2 1.3 OBJECTIVES 3 1.4 DISSERTATION LAYOUT 4 2 CHAPTER TWO: LITERATURE SURVEY 2.1 PHOTOVOLTAICS 5 2.1.1 Introduction 5 2.1.2 Solid-State Solar Cell 5 2.1.3 Basic Operation Of A Traditional... for Sensitisers 12 2.3.4 Types of Photosensitisers 13 2.3.5 Ruthenium Complexes 13 2.3.5.1 Mechanism: Light Absorption Via Ligand-To-Metal Charge transfer (LMCT) Excitation 14 2.3.5.2 Organic Dyes 15 2.3.6 Platinum Electrode 16 2.3.7 Electrolytes 16 2...

  10. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)-Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS).

    Science.gov (United States)

    Jeazet, Harold B Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-10-25

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model.

  11. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)–Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS)

    Science.gov (United States)

    Jeazet, Harold B. Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-01-01

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model. PMID:24957061

  12. Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls

    Science.gov (United States)

    Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Keutsch, Frank N.; Hansel, Armin

    2017-03-01

    Sources and sinks of isoprene oxidation products from low-NOx isoprene chemistry have been studied at the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber with a custom-built selective reagent ion time-of-flight mass spectrometer (SRI-ToF-MS), which allows quantitative measurement of isoprene hydroxy hydroperoxides (ISOPOOHs). The measured concentrations of the main oxidation products were compared to chemical box model simulations based on the Leeds Master Chemical Mechanism (MCM) v3.3. The modeled ISOPOOH concentrations are a factor of 20 higher than the observed concentrations, and methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations are up to a factor of 2 lower compared to observations, despite the artifact-free detection method. Addition of catalytic conversion of 1,2-ISOPOOH and 4,3-ISOPOOH to methyl vinyl ketone (MVK) and methacrolein (MACR) on the stainless-steel surface of the chamber to the chemical mechanism resolves the discrepancy between model predictions and observation. This suggests that isoprene chemistry in a metal chamber under low-NOx conditions cannot be described by a pure gas phase model alone. Biases in the measurement of ISOPOOH, MVK, and MACR can be caused not only intra-instrumentally but also by the general experimental setup. The work described here extends the role of heterogeneous reactions affecting gas phase composition and properties from instrumental surfaces, described previously, to general experimental setups. The role of such conversion reactions on real environmental surfaces is yet to be explored.

  13. Arene guest selectivity and pore flexibility in a metal-organic framework with semi-fluorinated channel walls

    Science.gov (United States)

    Smith, Rebecca; Vitórica-Yrezábal, Iñigo J.; Hill, Adrian; Brammer, Lee

    2017-01-01

    A metal-organic framework (MOF) with one-dimensional channels of approximately hexagonal cross-section [Ag2(O2CCF2CF2CO2)(TMP)] 1 (TMP =2,3,5,6-tetramethylpyrazine) has been synthesized with MeOH filling the channels in its as-synthesized form as [Ag2(O2CCF2CF2CO2)(TMP)]·n(MeOH) 1-MeOH (n = 1.625 by X-ray crystallography). The two types of ligand connect columns of Ag(I) centres in an alternating manner, both around the channels and along their length, leading to an alternating arrangement of hydrocarbon (C-H) and fluorocarbon (C-F) groups lining the channel walls, with the former groups projecting further into the channel than the latter. MeOH solvent in the channels can be exchanged for a variety of arene guests, ranging from xylenes to tetrafluorobenzene, as confirmed by gas chromatography, 1H nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis and 13C cross-polarization magic angle spinning NMR spectroscopy. Alkane and perfluoroalkane guests, however, do not enter the channels. Although exhibiting some stability under a nitrogen atmosphere, sufficient to enable crystal structure determination, the evacuated MOF 1 is unstable for periods of more than minutes under ambient conditions or upon heating, whereupon it undergoes an irreversible solid-state transformation to a non-porous polymorph 2, which comprises Ag2(O2CCF2CF2CO2) coordination layers that are pillared by TMP ligands. This transformation has been followed in situ by powder X-ray diffraction and shown to proceed via a crystalline intermediate. This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

  14. Hydrogen Storage in metal-modified single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ahn

    2004-04-30

    It has been known for over thirty years that potassium-intercalated graphites can readily adsorb and desorb hydrogen at {approx}1 wt% at 77 K. These levels are much higher than can be attained in pure graphite, owing to a larger thermodynamic enthalpy of adsorption. This increased enthalpy may allow hydrogen sorption at higher temperatures. Potassium has other beneficial effects that enable the design of a new material: (a) Increased adsorption enthalpy in potassium-intercalated graphite compared to pure graphite reduces the pressure and increases the temperature required for a given fractional coverage of hydrogen adsorption. We expect the same effects in potassium-intercalated SWNTs. (b) As an intercalant, potassium separates c-axis planes in graphite. Potassium also separates the individual tubes of SWNTs ropes producing swelling and increased surface area. Increased surface area provides more adsorption sites, giving a proportionately higher capacity. The temperature of adsorption depends on the enthalpy of adsorption. The characteristic temperature is roughly the adsorption enthalpy divided by Boltzmann's constant, k{sub B}. For the high hydrogen storage capacity of SWNTs to be achieved at room temperature, it is necessary to increase the enthalpy of adsorption. Our goal for this project was to use metal modifications to the carbon surface of SWNTs in order to address both enhanced adsorption and surface area. For instance, the enthalpy of sorption of hydrogen on KC8 is 450 meV/H{sub 2}, whereas it is 38 meV/H{sub 2} for unmodified SWNTs. By adsorption thermodynamics we expect approximately that the same performance of SWNTs at 77 K will be achieved at a temperature of [450/38] 77 K = 900 K. This is a high temperature, so we expect that adsorption on nearly all the available sites for hydrogen will occur at room temperature under a much lower pressure. This pressure can be estimated conveniently, since the chemical potential of hydrogen is approximately

  15. Developments in permeable and low permeability barriers

    International Nuclear Information System (INIS)

    Jefferis, S.A.; Norris, G.H.; Thomas, A.O.

    1997-01-01

    The concept of the reactive treatment zone whereby pollutants are attenuated as they move along a pathway in the ground has enabled a re-thinking of many of the concepts of containment. In particular it offers the potential for the control of the flux from a contaminated area by controlling the contaminant concentration in the pathway(s) as well as or instead of using a low permeability barrier. The paper outlines the basic concepts of the reactive treatment zone and the use of permeable and low permeability reactive systems. The paper then gives a case history of the installation of a permeable barrier using an in-situ reaction chamber

  16. Surface-Anchored Poly(4-vinylpyridine)–Single-Walled Carbon Nanotube–Metal Composites for Gas Detection

    KAUST Repository

    Yoon, Bora

    2016-08-05

    A platform for chemiresistive gas detectors based upon single-walled carbon nanotube (SWCNT) dispersions stabilized by poly(4-vinylpyridine) (P4VP) covalently immobilized onto a glass substrate was developed. To fabricate these devices, a glass substrate with gold electrodes is treated with 3-bromopropyltrichlorosilane. The resulting alkyl bromide coating presents groups that can react with the P4VP to covalently bond (anchor) the polymer–SWCNT composite to the substrate. Residual pyridyl groups in P4VP not consumed in this quaternization reaction are available to coordinate metal nanoparticles or ions chosen to confer selectivity and sensitivity to target gas analytes. Generation of P4VP coordinated to silver nanoparticles produces an enhanced response to ammonia gas. The incorporation of soft Lewis acidic Pd2+ cations by binding PdCl2 to P4VP yields a selective and highly sensitive device that changes resistance upon exposure to vapors of thioethers. The latter materials have utility for odorized fuel leak detection, microbial activity, and breath diagnostics. A third demonstration makes use of permanganate incorporation to produce devices with large responses to vapors of volatile organic compounds that are susceptible to oxidation.

  17. Use of alkali metal salts to prepare high purity single-walled carbon nanotube solutions and thin films

    Science.gov (United States)

    Ashour, Rakan F.

    Single-walled carbon nanotubes (SWCNTs) display interesting electronic and optical properties desired for many advanced thin film applications, such as transparent conductive electrodes or thin-film transistors. Large-scale production of SWCNTs generally results in polydispersed mixtures of nanotube structures. Since SWCNT electronic character (conducting or semiconducting nature) depends on the nanotube structure, application performance is being held back by this inability to discretely control SWCNT synthesis. Although a number of post-production techniques are able to separate SWCNTs based on electronic character, diameter, or chirality, most still suffer from the disadvantage of high costs of materials, equipment, or labor intensity to be relevant for large-scale production. On the other hand, chromatographic separation has emerged as a method that is compatible with large scale separation of metallic and semiconducting SWCNTs. In this work, SWCNTs, in an aqueous surfactant suspension of sodium dodecyl sulfate (SDS), are separated by their electronic character using a gel chromatography process. Metallic SWCNTs (m-SWCNTs) are collected as initial fractions since they show minimum interaction with the gel medium, whereas, semiconducting SWCNTs (sc- SWCNTs) remain adsorbed to the gel. The process of sc-SWCNT retention in the gel is found to be driven by the packing density of SDS around the SWCNTs. Through a series of separation experiments, it is shown that sc-SWCNTs can be eluted from the gel simply by disturbing the configuration of the SDS/SWCNT micellar structure. This is achieved by either introducing a solution containing a co-surfactant, such as sodium cholate (SC), or solutions of alkali metal ionic salts. Analysis of SWCNT suspensions by optical absorption provides insights into the effect of changing the metal ion (M+ = Li+, Na+, and K+) in the eluting solution. Salts with smaller metal ions (e.g. Li+) require higher concentrations to achieve

  18. Development of scalable methods for the utilization of multi-walled carbon nanotubes in polymer and metal matrix composites

    Science.gov (United States)

    Vennerberg, Danny Curtis

    Multi-walled carbon nanotubes (MWCNTs) have received considerable attention as reinforcement for composites due to their high tensile strength, stiffness, electrical conductivity and thermal conductivity as well as their low coefficient of thermal expansion. However, despite the availability of huge quantities of low-cost, commercially synthesized nanotubes, the utilization of MWCNTs in engineering composites is extremely limited due to difficulties in achieving uniform dispersion and strong interfacial bonding with the matrix. A proven method of enhancing the nanotube-polymer interface and degree of MWCNT dispersion involves functionalizing the MWCNTs through oxidation with strong acids. While effective at laboratory scales, this technique is not well-suited for large-scale operations due to long processing times, poor yield, safety hazards, and environmental concerns. This work aims to find scalable solutions to several of the challenges associated with the fabrication of MWCNT-reinforced composites. For polymer matrix composite applications, a rapid, dry, and cost-effective method of oxidizing MWCNTs with O3 in a fluidized bed was developed as an alternative to acid oxidation. Oxidized MWCNTs were further functionalized with silane coupling agents using water and supercritical carbon dioxide as solvents in order to endow the MWCNTs with matrix-specific functionalities. The effect of silanization on the cure kinetics, rheological behavior, and thermo-mechanical properties of model epoxy nanocomposites were investigated. Small additions of functionalized MWCNTs were found to increase the glass transition temperature, strength, and toughness of the epoxy. In order to achieve composite properties approaching those of individual nanotubes, new approaches are needed to allow for high loadings of MWCNTs. One strategy involves making macroscopic mats of nanotubes called buckypaper (BP) and subsequently infiltrating the mats with resin in processes familiar to

  19. Endoscopic Ultrasound-guided Drainage of Walled-off Necrosis in Children With Fully Covered Self-expanding Metal Stents.

    Science.gov (United States)

    Nabi, Zaheer; Lakhtakia, Sundeep; Basha, Jahangeer; Chavan, Radhika; Ramchandani, Mohan; Gupta, Rajesh; Kalapala, Rakesh; Darisetty, Santosh; Talukdar, Rupjyoti; Reddy, Duvuur Nageshwar

    2017-04-01

    Endoscopic ultrasound (EUS)-guided drainage with fully covered self-expanding metallic stents (FCSEMS) has been successfully used in adult patients. The utility of FCSEMS in children with walled-off necrosis (WON) is, however, unknown. The aim of present study was to evaluate the feasibility, safety, and efficacy of EUS drainage of WON using FCSEMS in children. We retrospectively evaluated the data of children (18 years or younger) who underwent EUS drainage of WON using FCSEMS at our institution. All FCSEMS were removed between 1 and 3 months. Feasibility, safety, and efficacy were analysed. Twenty-one children (20 boys, mean age 14.9 ± 2.34 years, range 9-18 years) underwent EUS-guided drainage of WON with FCSEMS. The median size of WON was 88 mm (55-148 mm). The median interval between onset of acute pancreatitis and EUS guided drainage was 58 days (range 30-288 days). The technical and clinical success rates were 100% and 95%, respectively. Nasocystic tube was placed in 3 children for lavage. Endoscopic necrosectomy was not required in any of the children. There were no major complications. Minor complications included bleeding (2), stent migration (1), and difficulty in removal of stent (1). After a median follow-up of 360 days (range: 30-1020 days), there was 1 recurrence of WON. EUS drainage of WON using specially designed FCSEMS is safe and efficacious in children. The utility of FCSEMS in children should be further explored and compared with plastic stents.

  20. Film Permeability Determination Using Static Permeability Cells

    Science.gov (United States)

    The permeability of tarps to soil fumigant pesticides varies depending on the active ingredient chemical: dimethyl disulfide (DMDS), methyl bromide, chloropicrin, or other. The diffusion rate can be represented by the mass transfer coefficient (MTC).

  1. Estimation of soil permeability

    Directory of Open Access Journals (Sweden)

    Amr F. Elhakim

    2016-09-01

    Full Text Available Soils are permeable materials because of the existence of interconnected voids that allow the flow of fluids when a difference in energy head exists. A good knowledge of soil permeability is needed for estimating the quantity of seepage under dams and dewatering to facilitate underground construction. Soil permeability, also termed hydraulic conductivity, is measured using several methods that include constant and falling head laboratory tests on intact or reconstituted specimens. Alternatively, permeability may be measured in the field using insitu borehole permeability testing (e.g. [2], and field pumping tests. A less attractive method is to empirically deduce the coefficient of permeability from the results of simple laboratory tests such as the grain size distribution. Otherwise, soil permeability has been assessed from the cone/piezocone penetration tests (e.g. [13,14]. In this paper, the coefficient of permeability was measured using field falling head at different depths. Furthermore, the field coefficient of permeability was measured using pumping tests at the same site. The measured permeability values are compared to the values empirically deduced from the cone penetration test for the same location. Likewise, the coefficients of permeability are empirically obtained using correlations based on the index soil properties of the tested sand for comparison with the measured values.

  2. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weijiang [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); South China Institute of Environmental Science, MEP, Guangzhou 510655 (China); Fu, Fenglian, E-mail: fufenglian2006@163.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Cheng, Zihang; Tang, Bing; Wu, Shijiao [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-01-25

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+}) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  3. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-01

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  4. Hydrogen permeability over the joint weld of the steel parts of fusion reactor with magnet confinement of plasma

    International Nuclear Information System (INIS)

    Fedorov, V.V.; Dyomina, E.V.; Zasadny, T.M.; Ivanov, L.I.; Prusakova, M.D.; Vinogradova, N.A.; Zabelin, A.M.

    2002-01-01

    Hydrogen and its isotopes diffusion and permeability over the laser joint weld of low-activation 10Cr9WVA ferritic steels have been studied. Welding of steel sheets were produced with the help of Russian gas laser TL-5M type (l=10.6 mm, P=2.5 kW) in He atmosphere with the rate of 66 mm/s. Hydrogen diffusion over the joint welds was detected by the conventional method of electrical resistance measurement. By this way, the kinetics of resistance changes during hydrogenation of specimens engraved from weld metal, neighboring zone of thermal effect as well as basic metal have been determined. Coefficients of hydrogen diffusion were measured in the temperature range from 773 to 1073 K. So, for 10Cr9WVA steel at 873 K it was established that the hydrogen diffusion coefficient in the weld metal is approximately 10 times higher than in the basic metal, and three times higher than that in the zone of thermal effect. Hydrogen permeability over the joint weld specimens was measured by the Dines-Barrer method on the volummetric setup. It was established that the hydrogen flux over the laser joint weld is significantly (up to two orders) more than that over the basic metal. Using the data on the hydrogen permeability and diffusion coefficient, the hydrogen solubility in the weld metal was estimated, which is several ten times higher than that in the basic metal of the steel investigated. As a result, it was concluded that welding the steel parts of the first wall of thermonuclear reactors with magnet confinement of plasma is undesirable due to possible tritium leaking into the environment. A possible way of decreasing the joint welds hydrogen permeability, including application of protective impermeable for hydrogen coatings, is considered

  5. Endoscopic Therapy With Lumen-apposing Metal Stents Is Safe and Effective for Patients With Pancreatic Walled-off Necrosis.

    Science.gov (United States)

    Sharaiha, Reem Z; Tyberg, Amy; Khashab, Mouen A; Kumta, Nikhil A; Karia, Kunal; Nieto, Jose; Siddiqui, Uzma D; Waxman, Irving; Joshi, Virendra; Benias, Petros C; Darwin, Peter; DiMaio, Christopher J; Mulder, Christopher J; Friedland, Shai; Forcione, David G; Sejpal, Divyesh V; Gonda, Tamas A; Gress, Frank G; Gaidhane, Monica; Koons, Ann; DeFilippis, Ersilia M; Salgado, Sanjay; Weaver, Kristen R; Poneros, John M; Sethi, Amrita; Ho, Sammy; Kumbhari, Vivek; Singh, Vikesh K; Tieu, Alan H; Parra, Viviana; Likhitsup, Alisa; Womeldorph, Craig; Casey, Brenna; Jonnalagadda, Sreeni S; Desai, Amit P; Carr-Locke, David L; Kahaleh, Michel; Siddiqui, Ali A

    2016-12-01

    Endoscopic ultrasound-guided transmural drainage and necrosectomy have become the standard treatment for patients with pancreatic walled-off necrosis (WON). Lumen-apposing metal stents (LAMS) have shown success in the management of pancreatic fluid collections. However, there are few data on their specific roles in management of WON. We investigated the efficacy and safety of LAMS in treatment of WON. We performed a retrospective multicenter case series of 124 patients with WON who underwent endoscopic transmural drainage by using LAMS at 17 tertiary care centers from January 2014 through May 2015. Patients underwent endoscopic ultrasound-guided cystogastrostomy or cystoenterostomy with placement of an LAMS into the WON collection. At the discretion of the endoscopist, we performed direct endoscopic necrosectomy, irrigation with hydrogen peroxide, and/or nasocystic drain placement. We performed endoscopic retrograde cholangiopancreatography with pancreatic duct stent placement when indicated. Concomitant therapies included direct endoscopic debridement (n = 78), pancreatic duct stent placement for leak (n = 19), hydrogen peroxide-assisted necrosectomy (n = 38), and nasocystic irrigation (n = 22). We collected data for a median time of 4 months (range, 1-34 months) after the LAMS placement. The primary outcomes were rates of technical success (successful placement of the LAMS), clinical success (resolution of WON, on the basis of image analysis, without need for further intervention via surgery or interventional radiology), and adverse events. The median size of the WON was 9.5 cm (range, 4-30 cm). Eight patients had 2 LAMS placed for multiport access, all with technical success (100%). Clinical success was achieved in 107 patients (86.3%) after 3 months of follow-up. Thirteen patients required a percutaneous drain, and 3 required a surgical intervention to manage their WON. The stents remained patent in 94% of patients (117 of 124) and migrated in 5.6% of

  6. A NEW TREND IN MAGNETIC-PULSE METAL WORKING ASSOCIATED WITH THIN-WALLED SHEET METAL ATTRACTION. HISTORY AND DEVELOPMENT PROSPECTS

    Directory of Open Access Journals (Sweden)

    A.V. Gnatov

    2013-04-01

    Full Text Available Within the scope of this article, a summary is presented on the main world achievements of the new trend in magnetic-pulse metal working associated with attraction of specified sheet metal sections in vehicle production and repair. The importance of the new trend has been justified, its basic sources disclosed. Alternative straightening methods for damaged sheet metals are given.

  7. Evaluation of non destructive testing to characterize the resistance of the prefabricated system of columns and floor tiles for single family homes of a level: permeability meter, determination of wave velocity by ultrasound, Schmidt sclerometer and metal detector

    International Nuclear Information System (INIS)

    Quesada Chacon, Dannell

    2014-01-01

    Non destructive testing are determined to be correlated with resistance to compression and flexion of elements belonging to prefabricated system of columns and floor tiles for single family homes of a level. The characteristics of the non destructive testing are described, such as: measurer of permeability, Schmidt sclerometer, determination of wave velocity by ultrasound and metal detector. The columns and floor tiles are elaborated with 2 mixtures of different resistances at 28 days. The first more than 30 MPa and the second less than 25 MPa are sampled together with the control cylinders necessary to obtain the actual resistance according to ASTM C39. Last resistance testings to compression and Schmidt sclerometer are realized to control cylinders to 1, 2, and 4 weeks after being cast. Non destructive testings (permeability meter Torrent, Schmidt sclerometer and determination of wave velocity by ultrasound) are performed in columns and floor tiles to 1, 2, and 4 weeks after being cast. Last resistance testings to flexion is obtained by means of destructive tests of the columns and floor tiles sampled. The correlation of the data obtained is determined to derive values of compression resistance from non destructive testing [es

  8. Role of CrRLK1L Cell Wall Sensors HERCULES1 and 2, THESEUS1, and FERONIA in Growth Adaptation Triggered by Heavy Metals and Trace Elements

    Directory of Open Access Journals (Sweden)

    Julia Richter

    2017-09-01

    Full Text Available Cell walls are not only a protective barrier surrounding protoplasts but serve as signaling platform between the extracellular environment and the intracellular physiology. Ions of heavy metals and trace elements, summarized to metal ions, bind to cell wall components, trigger their modification and provoke growth responses. To examine if metal ions trigger cell wall sensing receptor like kinases (RLKs of the Catharanthus roseus RLK1-like (CrRLK1L family we employed a molecular genetic approach. Quantitative transcription analyses show that HERCULES1 (HERK1, THESEUS1 (THE1, and FERONIA (FER were differently regulated by cadmium (Cd, nickel (Ni, and lead (Pb. Growth responses were quantified for roots and etiolated hypocotyls of related mutants and overexpressors on Cd, copper (Cu, Ni, Pb, and zinc (Zn and revealed a complex pattern of gene specific, overlapping and antagonistic responses. Root growth was often inversely affected to hypocotyl elongation. For example, both HERK genes seem to negatively regulate hypocotyl elongation upon Cd, Ni, Zn, and Pb while they support root growth on Cd, Cu, and Ni. The different THE1 alleles exhibited a similar effect between roots and hypocotyls on Ni, where the loss-of-function mutant was more tolerant while the gain of function mutants were hypersensitive indicating that THE1 is mediating Ni specific inhibition of hypocotyl elongation in the dark. In contrast hypocotyl elongation of the knock-out mutant, fer-4, was hypersensitive to Ni but exhibited a higher tolerance to Cd, Cu, Pb, and Zn. These data indicate an antagonistic action between THE1 and FER in relation to hypocotyl elongation upon excess of Ni. FERs function as receptor for rapid alkalinization factors (RALFs was tested with the indicator bromocresol purple. While fer-4 roots strongly acidified control and metal ion containing media, the etiolated hypocotyls alkalized the media which is consistent with the already shorter hypocotyl of fer-4

  9. 3D stability analysis of Rayleigh–Bénard convection of a liquid metal layer in the presence of a magnetic field—effect of wall electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Dimitrios; Pelekasis, Nikos A, E-mail: pel@uth.gr [Department of Mechanical and Industrial Engineering, University of Thessaly, Pedion Areos, Volos 38334 (Greece)

    2014-10-01

    Rayleigh–Bénard stability of a liquid metal layer of rectangular cross section is examined in the presence of a strong magnetic field that is aligned with the horizontal direction of the cross section. The latter is much longer than the vertical direction and the cross section assumes a large aspect ratio. The side walls are treated as highly conducting. Linear stability analysis is performed allowing for three-dimensional instabilities that develop along the longitudinal direction. The finite element methodology is employed for the discretization of the stability analysis formulation while accounting for the electrical conductivity of the cavity walls. The Arnoldi method provides the dominant eigenvalues and eigenvectors of the problem. In order to facilitate parallel implementation of the numerical solution at large Hartmann numbers, Ha, domain decomposition is employed along the horizontal direction of the cross section. As the Hartmann number increases a real eigenvalue emerges as the dominant unstable eigenmode, signifying the onset of thermal convection, whose major vorticity component in the core of the layer is aligned with the direction of the magnetic field. Its wavelength along the longitudinal direction of the layer is on the order of twice its height and increases as Ha increases. The critical Grashof was obtained for large Ha and it was seen to scale like Ha {sup 2} signifying the balance between buoyancy and Lorentz forces. For well conducting side walls, the nature of the emerging flow pattern is determined by the combined conductivity of Hartmann walls and Hartmann layers, c{sub H}  + Ha {sup −1}. When poor conducting Hartmann walls are considered, c{sub H} ≪ 1, the critical eigensolution is characterized by well defined Hartmann and side layers. The side layers are characterized by fast fluid motion in the magnetic field direction as a result of the electromagnetic pumping in the vicinity of the Hartmann walls. Increasing the electrical

  10. Permeability and relative permeability in rocks

    Energy Technology Data Exchange (ETDEWEB)

    Blair, S.C.; Berryman, J.G.

    1990-10-01

    Important features of the topology of the pore space of rocks can be usefully quantified by analyzing digitized images of rock cross sections. One approach computes statistical correlation functions using modern image processing techniques. These correlation functions contain information about porosity, specific surface area, tortuosity, formation factor, and elastic constants, as well as the fluid permeability and relative permeability. The physical basis of this approach is discussed and examples of the results for various sandstones are presented. The analysis shows that Kozeny-Carman relations and Archie's empirical laws must be modified to account for finite percolation thresholds in order to avoid unphysical behavior in the calculated relative permeabilities. 33 refs., 4 figs., 1 tab.

  11. Neutron diffraction residual stress measurements on girth-welded 304 stainless steel pipes with weld metal deposited up to half and full pipe wall thickness

    International Nuclear Information System (INIS)

    Haigh, R.D.; Hutchings, M.T.; James, J.A.; Ganguly, S.; Mizuno, R.; Ogawa, K.; Okido, S.; Paradowska, A.M.; Fitzpatrick, M.E.

    2013-01-01

    The residual stress distribution has been measured in two girth-welded austenitic stainless steel pipe weldments using time-of-flight neutron diffraction. One had weld filler metal deposited up to half the pipe wall thickness, and one had weld metal deposited up to full pipe wall thickness. The aim of the work is to evaluate the evolution in residual stress profile on filling the weld, on which there is little experimental data, and where the selection of the correct hardening model used in finite element modelling can benefit greatly from an understanding of the intermediate residual stresses partway through the welding operation. The measured residual stresses are compared with those calculated by finite element modelling and measured using X-ray diffraction. The results show a change in the measured hoop stress at the weld toe from tension to compression between the half- and fully-filled weld. The finite element results show an overprediction of the residual stress, which may be a consequence of the simple isotropic hardening model applied. The results have implications for the likely occurrence of stress corrosion cracking in this important type of pipe-to-pipe weldment. Highlights: ► 304 steel girth welded with weld metal to half and full pipe wall thickness. ► Residual stresses measured by neutron and X-ray diffraction, and modelled by FE. ► Weld toe residual σ hoop changes from tensile to compressive from half to fully-filled. ► FE model for the fully-filled weld gives higher stress levels than those measured. ► Discrepancy is attributed to the isotropic hardening model used.

  12. Is there a Difference in Van Der Waals Interactions between Rare Gas Atoms Adsorbed on Metallic and Semiconducting Single-Walled Carbon Nanotubes?

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Li [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; Mandeltort, Lynn [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry; Saidi, Wissam A. [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; Yates, John T. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry; Cole, Milton W. [Pennsylvania State Univ., University Park, PA (United States). Dept of Physics; Johnson, J. Karl [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2013-03-01

    Differences in polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals-corrected density functional theory (DFT) that binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programmed desorption of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected DFT are in good agreement with experiments.

  13. Raman Spectroelectrochemistry — A Way of Switching the Peierls-like Transition in Metallic Single-walled Carbon Nanotubes

    Science.gov (United States)

    Rafailov, P. M.; Maultzsch, J.; Thomsen, C.

    2005-09-01

    The high-energy vibrational modes of metallic nanotubes are believed to be softened compared to the semiconducting ones by a Peierls-like transition. We examined the frequency shifts and the intensity of the peaks of the high-energy band in SWNT Raman spectra in dependence on the doping level, as excited with a red laser to enhance the metallic tubes. The metallic modes were indeed found to be exceptionally sensitive to electrochemical doping, exhibiting large frequency shifts and intensity fluctuations. Our data may be interpreted as controlling the Peierls-like instability in metallic tubes with the applied potential.

  14. Comparative evaluation of marginal fit and axial wall adaptability of copings fabricated by metal laser sintering and lost-wax technique: Anin vitrostudy.

    Science.gov (United States)

    Gaikwad, Bhushan Satish; Nazirkar, Girish; Dable, Rajani; Singh, Shailendra

    2018-01-01

    The present study aims to compare and evaluate the marginal fit and axial wall adaptability of Co-Cr copings fabricated by metal laser sintering (MLS) and lost-wax (LW) techniques using a stereomicroscope. A stainless steel master die assembly was fabricated simulating a prepared crown; 40 replicas of master die were fabricated in gypsum type IV and randomly divided in two equal groups. Group A coping was fabrication by LW technique and the Group B coping fabrication by MLS technique. The copings were seated on their respective gypsum dies and marginal fit was measured using stereomicroscope and image analysis software. For evaluation of axial wall adaptability, the coping and die assembly were embedded in autopolymerizing acrylic resin and sectioned vertically. The discrepancies between the dies and copings were measured along the axial wall on each halves. The data were subjected to statistical analysis using unpaired t -test. The mean values of marginal fit for copings in Group B (MLS) were lower (24.6 μm) than the copings in Group A (LW) (39.53 μm), and the difference was statistically significant ( P < 0.05). The mean axial wall discrepancy value was lower for Group B (31.03 μm) as compared with Group A (54.49 μm) and the difference was statistically significant ( P < 0.05). The copings fabricated by MLS technique had better marginal fit and axial wall adaptability in comparison with copings fabricated by the LW technique. However, the values of marginal fit of copings fabricated that the two techniques were within the clinically acceptable limit (<50 μm).

  15. Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction.

    Science.gov (United States)

    Zhou, Xuemei; Tian, Zhimin; Li, Jing; Ruan, Hong; Ma, Yuanyuan; Yang, Zhi; Qu, Yongquan

    2014-03-07

    Graphene quantum dots (GQDs), as metal-free carbon nanomaterials, have potential applications in electrochemical fields due to their strong chemical inertness, oxygen-rich functional groups and remarkable quantum confinement and edge effects. Herein, we demonstrate that a novel metal-free electrode composed of GQDs and multi-walled carbon nanotubes (MWCNTs) exhibits a significant synergistic effect on enhanced catalytic activity for oxygen reduction reaction (ORR). Compared to commercially available Pt/C catalysts, enhanced electrocatalytic activity, improved long-term stability and excellent resistance to crossover effect were observed for the novel composite electrode. Interestingly, the amount of GQDs introduced is found to have an apparent effect on the positions of the reduction peaks of the electrodes.

  16. Permeable Pavements at Purdue

    OpenAIRE

    Knapp, Jim

    2013-01-01

    Two case studies will be presented describing sustainable drainage alternatives. The processes used for the 2nd Street project in Seymour will provide a comparison of the design processes for conventional and green infrastructure solutions. Purdue University will discuss a number of permeable pavement installations on campus and provide a map for viewing. Asphalt, concrete, and permeable paver options will be discussed.

  17. Permeability prediction in chalks

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Prasad, Manika

    2011-01-01

    The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability...... prediction, so we have investigated the use of velocity data to predict permeability. The compressional velocity fromwireline logs and core plugs of the chalk reservoir in the South Arne field, North Sea, has been used for this study. We compared various methods of permeability prediction from velocities....... The relationships between permeability and porosity from core data were first examined using Kozeny’s equation. The data were analyzed for any correlations to the specific surface of the grain, Sg, and to the hydraulic property defined as the flow zone indicator (FZI). These two methods use two different approaches...

  18. First wall of thermonuclear device

    International Nuclear Information System (INIS)

    Kizawa, Makoto; Koizumi, Makoto; Nishihara, Yoshihiro.

    1990-01-01

    The first wall of a thermonuclear device is constituted with inner wall tiles, e.g. made of graphite and metal substrates for fixing them. However, since the heat expansion coefficient is different between the metal substrates and intermediate metal members, thermal stresses are caused to deteriorate the endurance of the inner wall tiles. In view of the above, low melting metals are disposed at the portion of contact between the inner wall tiles and the metal substrates and, further, a heat pipe structure is incorporated into the metal substrates. Under the thermal load, for example, during operation of the thermonuclear device, the low melting metals at the portion of contact are melted into liquid metals to enhance the state of contact between the inner wall tiles and the metal substrate to reduce the heat resistance and improve the heat conductivity. Even if there is a difference in the heat expansion coefficient between the inner wall tiles and the metal substrates, neither sharing stresses not thermal stresses are caused. Further, since the heat pipe structure is incorporated into the metal substrates, the lateral unevenness of the temperature in the metal substrates can be eliminated. Thus, the durability of the inner wall tiles can be improved. (N.H.)

  19. The effect of multi-walled carbon nanotubes on metal octacarboxyphthalocyanines for dye solar cells application: synthesis and characterisation

    CSIR Research Space (South Africa)

    Mphahlele, N

    2012-10-01

    Full Text Available . Metallophthalocyanine (MPc) complexes, especially those containing diamagnetic metal centres (M = Zn, Ga, Si), are well established as efficient photosensitisers [2]. A significant effort has been made to enhance the photosensitization properties in DSCs by modifying...

  20. Metal-functionalized single-walled graphitic carbon nitride nanotubes: a first-principles study on magnetic property

    OpenAIRE

    Pan, Hui; Zhang, Yong-Wei; Shenoy, Vivek B; Gao, Huajian

    2011-01-01

    Abstract The magnetic properties of metal-functionalized graphitic carbon nitride nanotubes were investigated based on first-principles calculations. The graphitic carbon nitride nanotube can be either ferromagnetic or antiferromagnetic by functionalizing with different metal atoms. The W- and Ti-functionalized nanotubes are ferromagnetic, which are attributed to carrier-mediated interactions because of the coupling between the spin-polarized d and p electrons and the formation of the impurit...

  1. Permeable pavement study (Edison)

    Data.gov (United States)

    U.S. Environmental Protection Agency — While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types...

  2. Metal-functionalized single-walled graphitic carbon nitride nanotubes: a first-principles study on magnetic property

    Science.gov (United States)

    2011-01-01

    The magnetic properties of metal-functionalized graphitic carbon nitride nanotubes were investigated based on first-principles calculations. The graphitic carbon nitride nanotube can be either ferromagnetic or antiferromagnetic by functionalizing with different metal atoms. The W- and Ti-functionalized nanotubes are ferromagnetic, which are attributed to carrier-mediated interactions because of the coupling between the spin-polarized d and p electrons and the formation of the impurity bands close to the band edges. However, Cr-, Mn-, Co-, and Ni-functionalized nanotubes are antiferromagnetic because of the anti-alignment of the magnetic moments between neighboring metal atoms. The functionalized nanotubes may be used in spintronics and hydrogen storage. PMID:21711614

  3. Metal-functionalized single-walled graphitic carbon nitride nanotubes: a first-principles study on magnetic property

    Directory of Open Access Journals (Sweden)

    Shenoy Vivek

    2011-01-01

    Full Text Available Abstract The magnetic properties of metal-functionalized graphitic carbon nitride nanotubes were investigated based on first-principles calculations. The graphitic carbon nitride nanotube can be either ferromagnetic or antiferromagnetic by functionalizing with different metal atoms. The W- and Ti-functionalized nanotubes are ferromagnetic, which are attributed to carrier-mediated interactions because of the coupling between the spin-polarized d and p electrons and the formation of the impurity bands close to the band edges. However, Cr-, Mn-, Co-, and Ni-functionalized nanotubes are antiferromagnetic because of the anti-alignment of the magnetic moments between neighboring metal atoms. The functionalized nanotubes may be used in spintronics and hydrogen storage.

  4. Modified multi-wall carbon nanotubes as metal free catalyst for application in H2 production from methanolysis of NaBH4

    Science.gov (United States)

    Sahiner, Nurettin

    2017-10-01

    Multi-walled carbon nanotubes (MWCNT) are modified by acid treatments to obtain MWCNT-COOHs and used as metal free catalyst directly in H2 generation from the methanolysis of sodium borohydride (NaBH4). The chemically modified MWCNT-COOHs are characterized with Fourier Transform Infrared Spectroscopy (FT-IR) and zeta potential measurements. The H2 generation reactions are proceeded at different reaction conditions to determine the optimum reaction parameters such as the concentration of NaBH4 and temperature, the reusability of catalyst, and the regeneration of catalyst. The MWCNT-COOHs are found to be very effective catalyst in comparison to the metal nanoparticle catalyzed H2 generation reactions from the methanolysis of NaBH4. Thus, hydrogen generation rate (HGR) is calculated as 8766 ± 477 mL H2 g-1 min-1 for 500 mM NaBH4 in 20 mL methanol in presence of 50 mg MWCNT-COOH. Furthermore, the activation energy (Ea) for the methanolysis of NaBH4 in presence of MWCNT-COOHs is computed as 20.1 ± 1.4 kJ mol-1, comparable with most of the reported metal nanoparticle based catalyst in the literature.

  5. Influence of Li and B coatings of metal walls on deuterium retention and plasma confinement in HT-7

    Science.gov (United States)

    Wang, H. Y.; Hu, J. S.; Gao, X.; Cao, B.; Li, J.; Pégourié, B.; Vacuum, HT-7; Wall Conditioning Group

    2012-10-01

    In winter 2010, the carbon plasma-facing components (PFCs) of HT-7 were changed for molybdenum PFCs. The surface area of the wall that was covered with Mo was about 1.28 m2. In the following experimental campaign, the plasma was first operated with Mo PFCs; then 28 successive lithium coatings were carried out (for a total of 350 g Li); finally, 3 g of carborane were filmed to the PFCs. In each phase, the characteristics of hydrogenic species retention were investigated as well as the energy confinement and recycling properties, offering a good opportunity for comparing similar discharges. With Mo PFCs, significant wall outgassing is generally observed and, in all cases, less than 10% of the puffed fuel is trapped, corresponding to a retention rate of around a few Pa l s-1 (1018 atom s-1) energy confinement is poor, mainly due to huge central radiation. When the PFCs are covered by lithium, about 40-80% of the puffed gas is trapped and the retention rate is 102-103 Pa l s-1 (1020-1021 atom s-1) good confinement properties are recorded, and the radiation remains located at the edge. After boronization, about 70-80% of the puffed deuterium is trapped and the retention rate is a few 102 Pa l s-1 (1020 atom s-1) the energy confinement is not as good as with Li coating, and significant radiation is measured in the plasma core.

  6. Structural and Electronic Properties of Transition-Metal Oxides Attached to a Single-Walled CNT as a Lithium-Ion Battery Electrode: A First-Principles Study.

    Science.gov (United States)

    Tack, Liew Weng; Azam, Mohd Asyadi; Seman, Raja Noor Amalina Raja

    2017-04-06

    Single-walled carbon nanotubes (SWCNTs) and metal oxides (MOs), such as manganese(IV) oxide (MnO 2 ), cobalt(II, III) oxide (Co 3 O 4 ), and nickel(II) oxide (NiO) hybrid structures, have received great attention because of their promising application in lithium-ion batteries (LIBs). As electrode materials for LIBs, the structure of SWCNT/MOs provides high power density, good electrical conductivity, and excellent cyclic stability. In this work, first-principles calculations were used to investigate the structural and electronic properties of MOs attached to (5, 5) SWCNT and Li-ion adsorption to SWCNT/metal oxide composites as electrode materials in LIBs. Emphasis was placed on the synergistic effects of the composite on the electrochemical performance of LIBs in terms of adsorption capabilities and charge transfer of Li-ions attached to (5, 5) SWCNT and metal oxides. Also, Li adsorption energy on SWCNTs and three different metal oxides (NiO, MnO 2 , and Co 3 O 4 ) and the accompanying changes in the electronic properties, such as band structure, density of states and charge distribution as a function of Li adsorption were calculated. On the basis of the calculation results, the top C atom was found to be the most stable position for the NiO and MnO 2 attachment to SWCNT, while the Co 3 O 4 molecule, the Co 2+ , was found to be the most stable attachment on SWCNT. The obtained results show that the addition of MOs to the SWCNT electrode enables an increase in specific surface area and improves the electronic conductivity and charge transfer of an LIB.

  7. Influence of van der Waals contact forces on the deformation mechanics of thin flexible membranes assembled from metallic or semiconducting single-wall carbon nanotubes

    Science.gov (United States)

    Hobbie, Erik K.; Harris, John; Iyer, Swathi; Huh, Ji Yeon; Fagan, Jeffrey A.; Hudson, Steven D.; Stafford, Christopher M.

    2011-03-01

    Thin membranes of single-wall carbon nanotubes (SWCNTs) assembled from either metallic or semiconducting SWCNTs are subjected to the compressive strains imposed by a stretched elastic substrate, and the mechanical characteristics of the membranes are inferred from the topography of the wrinkling instability that emerges. By depositing comparable films on quartz, we also use optical (UV-Vis-NIR) absorption spectroscopy to compute the effective London dispersion spectra of the purified materials, and from these we compute the attractive part of the van der Waals potential between nanotubes of identical electronic type as a function of separation and relative orientation. We find significant differences in the strength and shape of the contact potential depending on electronic type, which in turn are evident in the modulus and yield strain measured from the deformation of the films. Supported by the NSF through CMMI-0969155 and the DOE through DE-FG36-08GO88160.

  8. Solid-phase extraction of some heavy metal ions on a double-walled carbon nanotube disk and determination by flame atomic absorption spectrometry.

    Science.gov (United States)

    Karatepe, Aslihan; Soylak, Mustafa; Elçi, Latif

    2011-01-01

    A new preconcentration method was developed for the determination of trace amounts of Cu(II), Fe(III), Pb(II), Ni(II), and Cd(II) on a double-walled carbon nanotube disk. 4-(2-Thiazolylazo) resorcinol was used as a complexing reagent. The effects of parameters, including pH of the solutions, amounts of complexing reagent, eluent type, sample volume, flow rates of solutions, and matrix ions were examined for quantitative recoveries of the studied analyte ions. The retained metal ions were eluted by 2 M HNO3. The LOD values for the analytes were in the range of 0.7-4.4 microg/mL. Natural water samples and standard reference materials were analyzed by the presented method.

  9. Permeable pavement study (Edison)

    Science.gov (United States)

    While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable interlocking concrete pavement (PICP), pervious concrete (PC), and porous asphalt (PA). Each permeable pavement type has four, 54.9-m2, lined sections that direct all infiltrate into 5.7-m3 tanks enabling complete volume collection and sampling. This paper highlights the results from a 12-month period when samples were collected from 13 rainfall/runoff events and analyzed for nitrogen species, orthophosphate, and organic carbon. Differences in infiltrate concentrations among the three permeable pavement types were assessed and compared with concentrations in rainwater samples and impervious asphalt runoff samples, which were collected as controls. Contrary to expectations based on the literature, the PA infiltrate had significantly larger total nitrogen (TN) concentrations than runoff and infiltrate from the other two permeable pavement types, indicating that nitrogen leached from materials in the PA strata. There was no significant difference in TN concentration between runoff and infiltrate from either PICP or PC, but TN in runoff was significantly larger than in the rainwater, suggesting meaningful inter-event dry de

  10. Investigation of the formation of deposits of calcium sulfate on a metallic wall: detection and growth initiation

    International Nuclear Information System (INIS)

    Guillermin, Roger

    1970-01-01

    Whereas the formation of calcium sulfate deposits on walls of (water desalination) heat exchanger tubes increases the load loss and decreases the heat exchange coefficient, measuring the load loss or measuring heat transfer in an exchanger could be a method to determine whether scaling occurs. In this research thesis, the author aims at a computational assessing of the sensitivity of such methods in conditions easily obtained in laboratory and allowing, if possible, the identification of the different steps of deposit formation. Then, the author considers some discontinuous methods, possibly more sensitive but more difficult to adjust, but which are not interesting in an industrial point of view: methods based on weighing, on chemical dosing, on radioactive measurements (tracers, auto-radiography, beta backscattering), optical methods and electric methods (piezoelectric quartz, conductivity measurements)

  11. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  12. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  13. Permeability and flammability study of composite sandwich structures for cryogenic applications

    Science.gov (United States)

    Bubacz, Monika

    Fiber reinforced plastics offer advantageous specific strength and stiffness compared to metals and has been identified as candidates for the reusable space transportation systems primary structures including cryogenic tanks. A number of carbon and aramid fiber reinforced plastics have been considered for the liquid hydrogen tanks. Materials selection is based upon mechanical properties and containment performance (long and short term) and upon manufacturing considerations. The liquid hydrogen tank carries shear, torque, end load, and bending moment due to gusts, maneuver, take-off, landing, lift, drag, and fuel sloshing. The tank is pressurized to about 1.5 atmosphere (14.6psi or 0.1 MPa) differential pressure and on ascent maintains the liquid hydrogen at a temperature of 20K. The objective of the research effort into lay the foundation for developing the technology required for reliable prediction of the effects of various design, manufacturing, and service parameters on the susceptibility of composite tanks to develop excessive permeability to cryogenic fuels. Efforts will be expended on developing the materials and structural concepts for the cryogenic tanks that can meet the functional requirements. This will include consideration for double wall composite sandwich structures, with inner wall to meet the cryogenic requirements. The structure will incorporate nanoparticles for properties modifications and developing barriers. The main effort will be extended to tank wall's internal skin design. The main requirements for internal composite stack are: (1) introduction of barrier film (e.g. honeycomb material paper sheet) to reduce the wall permeability to hydrogen, (2) introduction of nanoparticles into laminate resin to prevent micro-cracking or crack propagation. There is a need to characterize and analyze composite sandwich structural damage due to burning and explosion. Better understanding of the flammability and blast resistance of the composite structures

  14. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K.

    2015-01-01

    Highlights: • The CuCl 2 doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl 2 ) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl 2 doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl 2 with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared nanocomposite can be used

  15. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K., E-mail: chapal12@yahoo.co.in

    2015-03-15

    Highlights: • The CuCl{sub 2} doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl{sub 2}) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl{sub 2} doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl{sub 2} with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared

  16. Redox-active media for permeable reactive barriers

    International Nuclear Information System (INIS)

    Sivavec, T.M.; Mackenzie, P.D.; Horney, D.P.; Baghel, S.S.

    1997-01-01

    In this paper, three classes of redox-active media are described and evaluated in terms of their long-term effectiveness in treating TCE-contaminated groundwater in permeable reactive zones. Zero-valent iron, in the form of recycled cast iron filings, the first class, has received considerable attention as a reactive media and has been used in about a dozen pilot- and full-scale subsurface wall installations. Criteria used in selecting commercial sources of granular iron, will be discussed. Two other classes of redox-active media that have not yet seen wide use in pilot- or full-scale installations will also be described: Fe(II) minerals and bimetallic systems. Fe(II) minerals, including magnetite (Fe 3 O 4 ), and ferrous sulfide (troilite, FeS), are redox-active and afford TCE reduction rates and product distributions that suggest that they react via a reductive mechanism similar to that which operates in the FeO system. Fe(II) species within the passive oxide layer coating the iron metal may act as electron transfer mediators, with FeO serving as the bulk reductant. Bimetallic systems, the third class of redox-active media, are commonly prepared by plating a second metal onto zero-valent iron (e.g., Ni/Fe and Pd/Fe) and have been shown to accelerate solvent degradation rates relative to untreated iron metal. The long-term effectiveness of this approach, however, has not yet been determined in groundwater treatability tests. The results of a Ni-plated iron column study using site groundwater indicate that a change in reduction mechanism (to catalytic dehydrohalogenation/hydrogenation) accounts for the observed rate enhancement. A significant loss in media reactivity was observed over time, attributable to Ni catalyst deactivation or poisoning. Zero-valent iron systems have not shown similar losses in reactivity in long-term laboratory, pilot or field investigations

  17. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ruijuan; Wang, Xinghao; Wang, Zunyao, E-mail: wangzun315cn@163.com; Wei, Zhongbo; Wang, Liansheng

    2014-06-30

    Highlights: • Cd and OH-MWCNTs have a synergistic effect on Carassius auratus. • OH-MWCNTs significantly increased Cd accumulation in liver after 12 d exposure. • Co-exposure to Cd and OH-MWCNTs evoked severe hepatic oxidative stress. - Abstract: The effects of cadmium, hydroxylated multi-walled carbon nanotubes, and their mixture on metal accumulation and antioxidant defenses were studied using the goldfish Carassius auratus as the test organism. The fish were exposed to 0.1 mg/L Cd, 0.5 mg/L OH-MWCNTs, or 0.1 mg/L Cd + 0.5 mg/L OH-MWCNTs for 3 and 12 days. Then, the Cd concentration was determined in the gill, liver and muscle. Moreover, hepatic antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase), glutathione level and malondialdehyde content were also measured. A continuous accumulation of Cd was observed throughout the experimental period. Cd accumulation in tissues occurred in the following order: gill > liver > muscle at 3 days and liver > gill > muscle at 12 days. The concentrations of Cd in the livers of fish exposed to the combination of Cd + OH-MWCNTs were significantly higher than those in fish exposed to either single chemical after 12 d of exposure. Meanwhile, the mixture evoked severe oxidative stress in the exposed fish, as indicated by significant inhibition of SOD, CAT and GPx activity, a remarkable decrease in GSH level, and simultaneous elevation of MDA content. These results suggested that the effect of the combined factors on metal accumulation and oxidative stress biomarkers was more obvious than that of single factors at longer exposure durations.

  18. Comparison of Mass Transfer Models for Determination of the Intestinal Permeability

    Directory of Open Access Journals (Sweden)

    P Zakeri-Milani

    2008-09-01

    Full Text Available Background and the purpose of the study: In determination of the permeability of the intestinal wall by external perfusion techniques, several models have been proposed. In the present study three models were used for experimental results that differ in their convection and diffusion assumptions. Material and Methods: Permeability coefficients for 13 compounds (metoprolol, propranolol, naproxen, ketoprofen, furosemide, hydrochlorothiazide, cimetidine, ranitidine, atenolol, piroxicam, antipyrine, ibuprofen and carbamazepine with known human intestinal permeability values were determined in anaesthetized rats by different mass transfer models and plotted versus the observed human intestinal permeabilities. Results: The calculated dimensionless wall permeability values were in the range of 0.37 - 4.85, 0.38-6.54 and 0.41-16.59 for complete radial mixing, mixing tank and laminar flow models respectively. The results indicated that all of the models work relatively well for our data despite fundamentally different assumptions. The wall permeabilities were in the order laminar flow > mixing tank > complete radial mixing. Conclusion: Although laminar flow model provides the most direct measure of the intrinsic wall permeability, it has limitations for highly permeable drugs such as ibuprofen. The normal physiological hydrodynamics is more complex and more investigation is required to find out the real hydrodynamics.

  19. Noncovalent functionalization of pristine CVD single-walled carbon nanotubes with 3d metal(II) phthalocyanines by adsorption from the gas phase

    Science.gov (United States)

    Basiuk, Vladimir A.; Flores-Sánchez, Laura J.; Meza-Laguna, Victor; Flores-Flores, José Ocotlán; Bucio-Galindo, Lauro; Puente-Lee, Iván; Basiuk, Elena V.

    2018-04-01

    Noncovalent hybrids of carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of growing research effort focused on the development of new efficient organic photovoltaic cells, heterogeneous catalysts, lithium batteries, gas sensors, field effect transistors, among other possible applications. The main advantage of using unsubstituted Pcs is their very moderate cost and easy commercial availability. Unfortunately, the deposition of unsubstituted Pcs onto CNT sidewalls via the traditional liquid-phase strategy proves to be very problematic due to an extremely poor solubility of Pcs. At the same time, unsubstituted free-base H2Pc ligand and many of its transition metal complexes exhibit high thermal stability and volatility under reduced pressure, which allows for their physical vapor deposition onto solid surfaces. In the present work, we demonstrated the possibility of simple, fast, efficient and environmentally friendly noncovalent functionalization of single-walled CNTs (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me = Co, Ni, Cu and Zn. The functionalization can be performed at 400-500 °C under moderate vacuum, and takes about 2-3 h only. The nanohybrids obtained were characterized by means of Fourier-transform infrared, Raman, UV-vis and energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), scanning and transmission electron microscopy. TGA suggested that Pc weight content is 30%, 17% and 35% for NiPc, CuPc and ZnPc, respectively (CoPc exhibited anomalous behavior), which is close to the estimates from EDS spectra of 24-39%, 27-36% and 27-44% for CoPc, CuPc and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Pc hybrids, as compared to that of pristine nanotubes, was interpreted as very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the patterns of HOMO and LUMO distribution

  20. Detection of gas-permeable fuel particles for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Thiele, B.A.; Stinton, D.P.; Costanzo, D.A.

    1979-04-01

    A technique recently developed to determine whether coatings for a batch of particles are gastight or permeable is described. Although most of this study was performed on Biso-particles, the technique applies equally well to Triso-particles. About 150 randomly selected Biso-particle batches were studied in this work. From this work a technique was developed to determine coating permeability. This technique consists of an 18-h chlorination of multiple samples without measurement of the heavy metal released. Each batch is then radiographed and the heavy metal migration within each particle is examined. From this examination one can determine if a particle batch is permeable, slightly permeable, or gastight

  1. Super hydrogen and helium barrier with polyelectolyte nanobrick wall thin film.

    Science.gov (United States)

    Tzeng, Ping; Lugo, Elva L; Mai, Garret D; Wilhite, Benjamin A; Grunlan, Jaime C

    2015-01-01

    In an effort to impart light gas (i.e., H2 and He) barrier to polymer substrates, thin films of polyethylenimine (PEI), poly(acrylic acid) (PAA), and montmorrilonite (MMT) clay are deposited via layer-by-layer (LbL) assembly. A five "quadlayer" (122 nm) coating deposited on 51 μm polystyrene is shown to lower both hydrogen and helium permeability three orders of magnitude against bare polystyrene, demonstrating better performance than thick-laminated ethylene vinyl-alcohol (EVOH) copolymer film and even metallized polyolefin/polyester film. These excellent barrier properties are attributed to a "nanobrick wall" structure. This highly flexible coating represents the first demonstration of an LbL deposited film with low hydrogen and helium permeability and is an ideal candidate for several packaging and protection applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Permeability measuremens of brazilian Eucalyptus

    Directory of Open Access Journals (Sweden)

    Marcio Rogério da Silva

    2010-09-01

    Full Text Available The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative.

  3. Role of pH controlled DNA secondary structures in the reversible dispersion/precipitation and separation of metallic and semiconducting single-walled carbon nanotubes.

    Science.gov (United States)

    Maji, Basudeb; Samanta, Suman K; Bhattacharya, Santanu

    2014-04-07

    Single-stranded DNA (ss-DNA) oligomers (dA20, d[(C3TA2)3C3] or dT20) are able to disperse single-walled carbon nanotubes (SWNTs) in water at pH 7 through non-covalent wrapping on the nanotube surface. At lower pH, an alteration of the DNA secondary structure leads to precipitation of the SWNTs from the dispersion. The structural change of dA20 takes place from the single-stranded to the A-motif form at pH 3.5 while in case of d[(C3TA2)3C3] the change occurs from the single-stranded to the i-motif form at pH 5. Due to this structural change, the DNA is no longer able to bind the nanotube and hence the SWNT precipitates from its well-dispersed state. However, this could be reversed on restoring the pH to 7, where the DNA again relaxes in the single-stranded form. In this way the dispersion and precipitation process could be repeated over and over again. Variable temperature UV-Vis-NIR and CD spectroscopy studies showed that the DNA-SWNT complexes were thermally stable even at ∼90 °C at pH 7. Broadband NIR laser (1064 nm) irradiation also demonstrated the stability of the DNA-SWNT complex against local heating introduced through excitation of the carbon nanotubes. Electrophoretic mobility shift assay confirmed the formation of a stable DNA-SWNT complex at pH 7 and also the generation of DNA secondary structures (A/i-motif) upon acidification. The interactions of ss-DNA with SWNTs cause debundling of the nanotubes from its assembly. Selective affinity of the semiconducting SWNTs towards DNA than the metallic ones enables separation of the two as evident from spectroscopic as well as electrical conductivity studies.

  4. Low Permeability Polyimide Insulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  5. A solvatochromatic approach to quantifying formulation effects on dermal permeability.

    Science.gov (United States)

    Baynes, R E; Xia, X-R; Vijay, V; Riviere, J E

    2008-01-01

    Dermal risk assessments are most often concerned with the occupational and environmental exposure to a single chemical and then determining solute permeability through in vitro or in vivo experimentation with various animal models and/or computational approaches. Oftentimes, the skin is exposed to more than one chemical that could potentially modulate dermal permeability of the chemical that could cause adverse health effects. The focus of this article is to demonstrate that these formulation effects on dermal permeability can occur with simple solvent formulations or complex industrial formulations and that these effects can be modeled within the context of a linear solvation energy relationship (LSER). This research demonstrated that formulation-specific strength coefficients (r p a b v) predicted (r(2) = 0.75-0.83) changes in the dermal permeability of phenolic compounds when formulated with commercial metal-working fluid (MWF) formulations or 50% ethanol. Further experimentation demonstrated that chemical-induced changes in skin permeability with 50% ethanol are strongly correlated (r(2) = 0.91) to similar changes in an inert membrane-coated fiber (MCF) array system consisting of three chemically diverse membranes. Changes in specific strength coefficients pertaining to changes in hydrogen donating ability (Deltab) and hydrophobicity (Deltav) across membrane systems were identified as important quantitative interactions associated with ethanol mixtures. This solvatochromatic approach along with the use of a MCF array system holds promise for predicting dermal permeability of complex chemical formulations in occupational exposures where performance additives can potentially modulate permeability of potential toxicants.

  6. Plasma-wall interactions

    International Nuclear Information System (INIS)

    Gross, R.A.; Jensen, B.; Tien, J.K.; Panayotou, N.

    1976-01-01

    Experimental and theoretical studies have been carried out to provide information on important phenomena occurring when a hot, dense plasma containing a transverse magnetic field is brought into sudden contact with a cold metal wall. Computational simulation has been used to study the physics of the fusion plasma boundary layer which forms at the plasma-wall interface. Thermal, magnetic, and neutral gas boundary layers rapidly develop. The rate of energy transfer to the metal wall is computed and compared with experimental data. The agreement is rather good. Candidate fusion-reactor first wall materials have been exposed repeatedly to a warm (T/sub i/ approximately 600 eV) deuterium plasma containing a transverse 1.0 W/m 2 magnetic field. Polished samples were subjected to 6 x 10 21 eV cm -2 , the energy flux expected at the first wall in about one year operation of a tokamak fusion power reactor. Stainless steels show significant erosion at grain boundaries, formation of deuterium blisters on the surface, evidence of surface melting to a depth of 25 μm, and rapid resolidification. Some cracking is observed, which extends for about a grain size length along grain boundaries into the bulk material. Decrease in tensile ductility is also measured, indicative of possible hydrogen embrittlement

  7. Permeability and stress-jump effects on magnetic drug targeting in a permeable microvessel using Darcy model

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, S., E-mail: sachinshaw@gmail.com [Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye (Botswana); Sutradhar, A.; Murthy, PVSN [Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India)

    2017-05-01

    In the present paper, we investigated the influence of permeability of the carrier particle and stress jump condition on the porous spherical surface in magnetic drug targeting through a permeable microvessel. The nature of blood is defined by non-Newtonian Casson fluid in the core region of the microvessel and Newtonian fluid in the peripheral region which is located near the surface of the wall of the microvessel. The magnetic particles are considered as spherical and in nanosize, embedded in the carrier particle along with drug particles. A magnet is placed near the tumor position to generate a magnetic field. The relative motion of the carrier particle is the resultant of the fluidic force, magnetic force and Saffman drag force which are calculated for the spherical carrier particle. Trajectories of the carrier particle along the radial and axial direction are calculated. Effect of different parameters such as stress-jump constant, permeability of the carrier particle, pressure gradient, yield stress, Saffman force, volume fraction of the embedded magnetic nanoparticles, permeability of the microvessel wall, and the radius of the carrier particle on the trajectory of the carrier particle are discussed and displayed graphically. - Highlights: • In the present manuscript, we considered the porous carrier particle which provide a larger surface area contact with the fluid than the solid spherical carrier particle. It shows that the porous carrier particle are captured easily than the solid carrier particle. • Introduce Suffman force on the carrier particle which commences an additional resistance which acts opposite to the surface wall and helps the particles to go away from the tumor position. • Considered stress jump condition at the surface of the porous carrier particle which enhanced the tendency of the carrier particle to be capture near the tumor. • Used Darcy model to define the permeability of the wall of the microvessel.

  8. Cadmium and zinc interactions with a Gram-positive soil bacterium : from variable charging behavior of the cell wall to bioavailability of heavy metals in soils

    NARCIS (Netherlands)

    Plette, A.C.C.

    1996-01-01


    A detailed study is presented on the cadmium and zinc sorption to both isolated cell walls and intact, living cells of the Gram-positive soil bacterium Rhodococcus erythropolis A177. Acid/base titrations were performed on isolated cell wall material to characterize

  9. Feasibility of Using Dredged Mud for Prepared the Permeable Brick

    Science.gov (United States)

    Zhou, Chaoqun; Cheng, Xiaosu; Zeng, Lingke; Wang, Hui; Chen, Jing

    2017-10-01

    Through experimental analysis found that the chemical composition of the dredged mud is similar to clay and the dredged mud does not leach heavy metals. Using the dredged mud in the preparation of permeable bricks reduced the quantity of incineration dredged mud buried in landfills, and the exploitation and consumption of natural sandstone. The dredged mud needs to be checked by the validation criteria when the second use, so we used the TCLP test to identify hazardous materials. Its leaching of heavy metals was in line with industry standard. And the basic formula of permeable brick were prepared, its performance was in line with national standards. The use of dredged mud preparing eco-friendly permeable bricks, not only solves the problem of environmental pollution, but also gets some economic and social profit.

  10. Transverse permeability of woven fabrics

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Akkerman, Remko; Loendersloot, Richard; van den Berg, S.

    2008-01-01

    The transverse permeability is an essential input in describing the consolidation process of CETEX® laminates. A two-dimensional, finite difference based, Stokes flow solver has been developed to determine the mesoscopic permeability of arbitrary fabric structures. The use of a multigrid solver

  11. Electrokinetic effects and fluid permeability

    International Nuclear Information System (INIS)

    Berryman, J.G.

    2003-01-01

    Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery

  12. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how walls...

  13. Metal-nanotube composites as radiation resistant materials

    Energy Technology Data Exchange (ETDEWEB)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, CEDENNA, Universidad de Chile, Casilla 653, Santiago 7800024 (Chile); Duin, Adri C. T. van [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); So, Kang Pyo; Li, Ju [Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bringa, Eduardo M. [CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina)

    2016-07-18

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  14. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how walls...... have encouraged architectural thinking of enclosure, materiality, construction and inhabitation in architectural history, the paper’s aim is to define new directions for the integration of LEDs in walls, challenging the thinking of inhabitation and program. This paper introduces the notion...... of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...

  15. Dynamic permeability of simulated fault induced by intermediate velocity friction test

    Science.gov (United States)

    Tanikawa, W.

    2017-12-01

    Co-seismic events induce sudden fluctuations of pore pressure, flow rate, and fluid chemistry at depth. These temporal changes are explained by change in fluid permeability of fault zones during earthquakes, and the permeability change plays an important role in dynamic processes as well. Therefore, I designed a laboratory system to measure the change of water permeability during and after low to high velocity friction tests using simulated fault rocks. Rotary shear apparatus was used to measure the permeability evolution by shear sliding. A pair of hollow cylindrical samples made by Belfast dolerite and Aji granite were used as test specimens. To calculate permeability, a radial flow from the inner wall to the outer wall of the specimen was induced by applying a differential pore pressure between inner and outer walls. I performed test at normal stress of 2 MPa, rotation speed from 0.001 to 0.1 m/s, and slip displacement of 1 to 10 m. The results show that permeability changed during sliding, and higher velocity friction caused more abrupt change in permeability. After sliding test, permeability gradually decreased with time and then became constant. Most test show permeability increased during sliding, and then decreased after slip. Reduction rate of permeability 5min after slip normalized by average permeability increased with slip rate. Fiction coefficient was increased with sliding velocity until 0.018 m/s, then dropped abruptly. It is interesting that around 0.02 m/s of slip rate seems a boundary between permeability enhancement and permeability reduction at. This boundary is consistent with the transition from velocity strengthening to velocity weakening. Velocity dependence of permeability evolution can be explained by the gouge productivity, development of preferred orientation in gouge layer, and change of temperature dependent parameters. Increase of fluid viscosity by cooling of fluid temperature can explain the permeability reduction after slip

  16. Effect of iron content on permeability and power loss characteristics ...

    Indian Academy of Sciences (India)

    Administrator

    ∙35O4 and Li0∙35Zn0∙3Fe2∙35O4, with different iron (metal) contents (2, 4, 6, 8 and 10) in wt% have been prepared by solid-state technique. Complex permeability and power loss of all samples have been measured by network analyser in the.

  17. Permeable reactive barriers for pollutant removal from groundwater

    International Nuclear Information System (INIS)

    Simon, F.G.; Meggyes, T.

    2001-01-01

    The removal of pollutants from the groundwater using permeable reactive barriers is a novel in-situ groundwater remediation technology. The most relevant decontamination processes used are chemical reduction, oxidation, precipitation and sorption, for which examples are given. Some common organic pollutants are halogenated hydrocarbons, aromatic and nitroaromatic compounds which can be treated in reactive barriers successfully. Lead, chromium and, in particular, uranium are dealt with in great detail among inorganic pollutants because of their occurrence in many European countries. Construction methods for cut-off walls and reactive barriers exhibit similar features. Apart from conventional methods, drilling, deep soil mixing, jet technology, arrays of wells, injected systems and biobarriers are applied to construct permeable reactive barriers. Permeable reactive barriers bear great potential for the future in remediation engineering. (orig.)

  18. Bioinspired Layer-by-Layer Microcapsules Based on Cellulose Nanofibers with Switchable Permeability

    DEFF Research Database (Denmark)

    Paulraj, Thomas; Riazanova, Anastasia V; Yao, Kun

    2017-01-01

    primary cell walls inspired the capsule wall assembly, because the primary cell walls in plants exhibit high mechanical properties despite being in a highly hydrated state, primarily owing to cellulose microfibrils. The microcapsules (16 ± 4 μm in diameter) were fabricated using the layer......-by-layer technique on sacrificial CaCO3 templates, using plant polysaccharides (pectin, cellulose nanofibers, and xyloglucan) only. In water, the capsule wall was permeable to labeled dextrans with a hydrodynamic diameter of ∼6.6 nm. Upon exposure to NaCl, the porosity of the capsule wall quickly changed allowing...

  19. Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode

    CSIR Research Space (South Africa)

    Mamuru, SA

    2010-09-01

    Full Text Available Heterogeneous electron transfer dynamics and oxygen reduction reaction (ORR) activities using octabutylsulphonylphthalocyanine complexes of iron (FeOBSPc) and cobalt (CoOBSPc) supported on multi-walled carbon nanotube (MWCNT) platforms have been...

  20. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  1. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  2. Surface impedance formalism for a metallic beam pipe with small corrugations

    Directory of Open Access Journals (Sweden)

    G. Stupakov

    2012-12-01

    Full Text Available A metallic pipe with wall corrugations is of special interest in light of recent proposals to use such a pipe for the generation of terahertz radiation and for energy dechirping of electron bunches in free electron lasers. In this paper we calculate the surface impedance of a corrugated metal wall and show that it can be reduced to that of a thin layer with dielectric constant ϵ and magnetic permeability μ. We develop a technique for the calculation of these constants, given the geometrical parameters of the corrugations. We then calculate, for the specific case of a round metallic pipe with small corrugations, the frequency and strength of the resonant mode excited by a relativistic beam. Our analytical results are compared with numerical simulations, and are shown to agree well. They are also shown to be more accurate when compared to the earlier used analytical model.

  3. Salt-saturated concrete strength and permeability

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hansen, F.D.; Knowles, M.K.

    1996-01-01

    Laboratory-scale experiments applicable to the use of salt-saturated concrete as a seal material for a transuranic waste repository have been completed. Nitrogen gas permeability measurements were made using a flexible-wall permeameter, a confining pressure of 1 MPa, and gas pressure gradients ranging from 0.3 MPa to 0.75 MPa. Results show that salt-saturated concrete has very low intrinsic permeability with values ranging from 9.4 x 10 -22 m 2 to 9.7 x 10 -17 m 2 . Strength and deformation characteristics were investigated under conditions of triaxial compression with confining pressures ranging from 0 to 15 MPa using either axial strain-rate or axial stress-rate control and show that the failure strength of concrete increases with confining pressure which can be adequately described through pressure-sensitive failure criteria. Axial, radial, and volumetric strains were also measured during each test and these data were used to determine elastic properties. Experimental results are applicable in the design and analysis of scale-related functions and apply to other concrete structures subjected to compressive loadings such as dams and prestressed structural members

  4. Permeable reactive barrier - innovative technology for ground-water remediation

    International Nuclear Information System (INIS)

    Vidic, D.R.

    2002-01-01

    Significant advances in the application of permeable reactive barriers (PRBs) for ground-water remediation have been witnessed in the last 5 years. From only a few full-scale systems and pilot-scale demonstrations, there are currently at least 38 full-scale PRBs using zero-valent iron (ZVI) as a reactive material. Of those, 26 are continuous reactive walls, 9 are funnel-and- gate systems and 3 are in situ reactive vessels. Most of the PRB systems have used granular iron media and have been applied to address the control of contamination caused by chlorinated volatile organic compounds or heavy metals. Many regulatory agencies have expressed interest in PRB systems and are becoming more comfortable in issuing permits. The main advantage of PRB systems is that the installation costs are comparable with those of other ground-water remediation technologies, while the O and M costs are significantly lower and are mostly due to monitoring requirements, which are required for all remediation approaches. In addition, the land use can resume after the installation of the PRB systems, since there are few visible signs of the installation above grounds except for the monitoring wells. It is difficult to make any definite conclusions about the long-term performance of PRB systems because there is no more than 5 years of the record of performance that can be used for such analysis. The two main challenges still facing this technology are: (1) evaluating the longevity (geochemistry) of a PRB; and (2) ensuring/verifying hydraulic performance. A number of public/private partnerships have been established in recent years that are working together to resolve some of these problems. This organized approach by combining the efforts of several government agencies and private companies will likely result in better understanding and, hopefully, better acceptance of this technology in the future. (author)

  5. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  6. Determination of hydrogen permeability in commercial and modified superalloys

    Science.gov (United States)

    Bhattacharyya, S.; Peterman, W.

    1983-01-01

    The results of hydrogen permeability measurements on several iron- and cobalt-base alloys as well as on two long-ranged ordered alloys over the range of 705 to 870 C (1300 to 1600 F) are summarized. The test alloys included wrought alloys N-155, IN 800, A-286, 19-9DL, and 19-9DL modifications with aluminum, niobium, and misch metal. In addition, XF-818, CRM-6D, SA-F11, and HS-31 were evaluated. Two wrought long-range ordered alloys, Ni3Al and (Fe,Ni)3(V,Al) were also evaluated. All tests were conducted at 20.7 MPa pressure in either pure and/or 1% CO2-doped H2 for test periods as long as 133 h. Detailed analyses were conducted to determine the relative permeability rankings of these alloys and the effect of doping, exit surface oxidation, specimen design variations, and test duration on permeability coefficient, and permeation activation energies were determined. The two long-range ordered alloys had the lowest permeability coefficients in pure H2 when compared with the eight commercial alloys and their modifications. With CO2 doping, significant decrease in permeability was observed in commercial alloys--no doped tests were conducted with the long-range ordered alloys.

  7. Investigating inlay permeability by means of labelled atoms

    International Nuclear Information System (INIS)

    Rajchev, L.; Chakmakov, D.

    1979-01-01

    An isotope method was used in the study of marginal space permeability (space between cavity walls and obturation) and its relation to the qualities of cementing material. To this end, V class cavities were elaborated and microdentures preprared under unified conditions for recently extracted intact human teeth. The inlays were adjusted by being riveted at first and then cemented. Microdentures were fixed with ''Adhesor'' phosphate cement, zinc-eugenol paste or adhesive wax, applied upon the phase and part of the cavity wall. Twenty four hours later the teeth were covered with wax. The inlay and a strip around it remained uncovered and immersed in iodine 125 solution of sulphur 35-methionine. The teeth were then washed and incorporated in epoxide resin. Longitudinal incisions were made through the inlay and, after appropriate processing, autoradiography of the sections was made. The marginal space was shown to be permeable in a different degree, depending on the fixing material: whereas wax gluing makes it impermeable for either isotope, gluing with zinc-eugenol paste allows minor permeability for sulphur 35 and a rather high one for iodine 125. With phosphate cement gluing, iodine 125 reaches the cavity bottom, while penetration of sulphur 35 is rather limited. (A.B.)

  8. Development of an interstitial cystitis risk score for bladder permeability

    Science.gov (United States)

    Lamb, Laura E.; Janicki, Joseph J.; Bartolone, Sarah N.; Peters, Kenneth M.

    2017-01-01

    Background Interstitial cystitis/bladder pain syndrome (IC) is a multifactorial syndrome of severe pelvic and genitalia pain and compromised urinary function; a subset of IC patients present with Hunner’s lesions or ulcers on their bladder walls (UIC). UIC is diagnosed by cystoscopy, which may be quite painful. The objective of this study was to determine if a calculated Bladder Permeability Defect Risk Score (BP-RS) based on non-invasive urinary cytokines could discriminate UIC patients from controls and IC patients without Hunner’s ulcers. Methods A national crowdsourcing effort targeted IC patients and age-matched controls to provide urine samples. Urinary cytokine levels for GRO, IL-6, and IL-8 were determined using a Luminex assay. Results We collected 448 urine samples from 46 states consisting of 153 IC patients (147 female, 6 male), of which 54 UIC patients (50 females, 4 male), 159 female controls, and 136 male controls. A defined BP-RS was calculated to classify UIC, or a bladder permeability defect etiology, with 89% validity. Conclusions The BP-RS Score quantifies UIC risk, indicative of a bladder permeability defect etiology in a subset of IC patients. The Bladder Permeability Defect Risk Score is the first validated urine biomarker assay for interstitial cystitis/bladder pain syndrome. PMID:29088231

  9. Development of an interstitial cystitis risk score for bladder permeability.

    Science.gov (United States)

    Lamb, Laura E; Janicki, Joseph J; Bartolone, Sarah N; Peters, Kenneth M; Chancellor, Michael B

    2017-01-01

    Interstitial cystitis/bladder pain syndrome (IC) is a multifactorial syndrome of severe pelvic and genitalia pain and compromised urinary function; a subset of IC patients present with Hunner's lesions or ulcers on their bladder walls (UIC). UIC is diagnosed by cystoscopy, which may be quite painful. The objective of this study was to determine if a calculated Bladder Permeability Defect Risk Score (BP-RS) based on non-invasive urinary cytokines could discriminate UIC patients from controls and IC patients without Hunner's ulcers. A national crowdsourcing effort targeted IC patients and age-matched controls to provide urine samples. Urinary cytokine levels for GRO, IL-6, and IL-8 were determined using a Luminex assay. We collected 448 urine samples from 46 states consisting of 153 IC patients (147 female, 6 male), of which 54 UIC patients (50 females, 4 male), 159 female controls, and 136 male controls. A defined BP-RS was calculated to classify UIC, or a bladder permeability defect etiology, with 89% validity. The BP-RS Score quantifies UIC risk, indicative of a bladder permeability defect etiology in a subset of IC patients. The Bladder Permeability Defect Risk Score is the first validated urine biomarker assay for interstitial cystitis/bladder pain syndrome.

  10. Development of an interstitial cystitis risk score for bladder permeability.

    Directory of Open Access Journals (Sweden)

    Laura E Lamb

    Full Text Available Interstitial cystitis/bladder pain syndrome (IC is a multifactorial syndrome of severe pelvic and genitalia pain and compromised urinary function; a subset of IC patients present with Hunner's lesions or ulcers on their bladder walls (UIC. UIC is diagnosed by cystoscopy, which may be quite painful. The objective of this study was to determine if a calculated Bladder Permeability Defect Risk Score (BP-RS based on non-invasive urinary cytokines could discriminate UIC patients from controls and IC patients without Hunner's ulcers.A national crowdsourcing effort targeted IC patients and age-matched controls to provide urine samples. Urinary cytokine levels for GRO, IL-6, and IL-8 were determined using a Luminex assay.We collected 448 urine samples from 46 states consisting of 153 IC patients (147 female, 6 male, of which 54 UIC patients (50 females, 4 male, 159 female controls, and 136 male controls. A defined BP-RS was calculated to classify UIC, or a bladder permeability defect etiology, with 89% validity.The BP-RS Score quantifies UIC risk, indicative of a bladder permeability defect etiology in a subset of IC patients. The Bladder Permeability Defect Risk Score is the first validated urine biomarker assay for interstitial cystitis/bladder pain syndrome.

  11. CLIMBING WALL

    CERN Multimedia

    1999-01-01

    The FIRE AND RESCUE Group of TIS Commission informs that the climbing wall in the yard of the Fire-fighters Station, is intended for the sole use of the members of that service, and recalls that access to this installation is forbidden for safety reasons to all persons not belonging to the Service.CERN accepts no liability for damage or injury suffered as a result of failure to comply with this interdiction.TIS/DI

  12. Analytical Estimation of Water-Oil Relative Permeabilities through Fractures

    Directory of Open Access Journals (Sweden)

    Saboorian-Jooybari Hadi

    2016-05-01

    Full Text Available Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves. Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29] models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for

  13. Permeable Pavement Research - Edison, New Jersey

    Science.gov (United States)

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  14. Quantifying Evaporation in a Permeable Pavement System

    Science.gov (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  15. Clogging in permeable concrete: a review

    OpenAIRE

    Kia, A; Wong, HS; Cheeseman, CR

    2017-01-01

    Permeable concrete (or ??? pervious concrete ??? in North America) is used to reduce local flooding in urban areas and is an important sustainable urba n drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing part...

  16. Permeability of Non-Crimp Fabric Preforms

    NARCIS (Netherlands)

    Loendersloot, Richard; Lomov, Stepan V.

    2011-01-01

    Experimental permeability data of non-crimp fabrics (NCFs) is discussed in this chapter. The chapter starts with a general introduction on permeability, followed by a discussion on experimental permeability data. The infl uence of geometrical features of the textile architecture, in particular the

  17. Simultaneous enrichment-separation of metal ions from environmental samples by solid-phase extraction using double-walled carbon nanotubes.

    Science.gov (United States)

    Soylak, Mustafa; Unsal, Yunus Emre

    2009-01-01

    A solid-phase extraction (SPE) method has been developed using a column filled with double-walled carbon nanotubes for the preconcentration-separation of Co(II), Cu(II), Ni(II), Pb(II), Fe(III), and Mn(ll) ions. Experimental parameters, including pH of the solution, sample volume, flow rate of the sample solution and eluents, etc., were investigated. Quantitative recoveries for the anayte ions were obtained at pH 9.0 with 2 M HNO3 eluent at a flow rate of 2 mL/min. The influences of matrix ions were also investigated. The preconcentration factor was 100. Addition and recovery experiments for analyte ions in real water samples gave good results. The validity of the presented SPE method was tested by analysis of HR-1 Humber River Sediment certified reference material for each element.

  18. Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mamuru, Solomon A. [Department of Chemistry, University of Pretoria, Pretoria 0002 (South Africa); Ozoemena, Kenneth I., E-mail: kozoemena@csir.co.z [Department of Chemistry, University of Pretoria, Pretoria 0002 (South Africa)] [Energy and Processes Unit, Materials Science and Manufacturing, Council for Scientific and Industrial Research (CSIR), Pretoria 0001 (South Africa); Fukuda, Takamitsu; Kobayashi, Nagao [Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Nyokong, Tebello [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)

    2010-09-01

    Heterogeneous electron transfer dynamics and oxygen reduction reaction (ORR) activities using octabutylsulphonylphthalocyanine complexes of iron (FeOBSPc) and cobalt (CoOBSPc) supported on multi-walled carbon nanotube (MWCNT) platforms have been described. The MWCNT-based electrodes (MWCNT-CoOBSPc and MWCNT-FeOBSPc) showed larger Faradaic current responses than the electrodes without the MWCNTs, interpreted as a consequence of the trapped electrolyte species within the porous layers of MWCNTs undergoing a redox process. The EPPGE-MWCNT-FeOBSPc showed onset potential (-0.01 V vs Ag|AgCl) which is comparable and even much lower than recent reports. The MWCNT-FeOBSPc showed the best ORR activity involving a direct 4-electron mechanism, with a Tafel slope of about 124 mV, indicating a 1-electron process in the rate-determining step.

  19. Experimental Volcanology: Fragmentation and Permeability

    Science.gov (United States)

    Spieler, O.

    2005-12-01

    An increasing number of scientists design new experiments to analyse processes that control the dynamics of explosive eruptions. There research is mostly coupled to numerical models and aims toward its controlling parameters. The fragmentation process, its threshold and the speed of the fragmentation wave as well as the energy consumed by the fragmentation are some hot spots of the experimental volcanology. Analysing the fragmentation behaviour of volcaniclastics as close to the natural system as possible, we found a number of physical constrains. Identifying the porosity as determining factor of the threshold, we realised that neither threshold nor the speed of the fragmentation process are solely controlled by the rock density. The later results of the shock tube type apparatus lead to the analysis of the specific surface area and permeability as direct links to textural features. Permeability analysis performed in a modified shock tube type apparatus, show two clear, distinct trends for dome rock and pyroclastic samples. The specific surface determined by Argon sorbtion (BET) as well as textural features of pumices from Campi Flegrei, Montserrat and Krakatoa (1883) give in contrary evidence of a more complex story. Large spherical, or ellipsoidal bubbles around fractured crystals prove that the high permeability of the pumice has partially developed after the fixing of the bubble size distribution. This puts up the question, if permeability measurements on pyroclastic samples reveal relevant numbers! The surface tension controlled 'self sealing' behaviour of surfaces from foaming obsidian hinders in situ measurements. Close textural investigations will have to clarify how the 'post process' samples deviate from the syneruptive conduit filling.

  20. Domain wall diffusion and domain wall softening

    International Nuclear Information System (INIS)

    Lee, W T; Salje, E K H; Bismayer, U

    2003-01-01

    A number of experimental and computational studies of materials have shown that transport rates in domain walls may significantly differ from those in the bulk. One possible explanation for enhanced transport in a domain wall is that the domain wall is elastically soft with respect to the bulk. We investigate the softening of a ferroelastic domain wall in a simple, generic model. We calculate saddle point energies of solute atoms in the bulk and domain wall, using a geometry such that variation in the saddle point energy cannot be attributed to the structural differences of the bulk and the wall, but must instead be attributed to softening of the wall. Our results show a reduction of the saddle point energy in the wall, thus indicating that, in this model at least, domain walls are elastically soft compared with the bulk. A simple analysis based on an Einstein model allows us to explain the observed softening of the wall

  1. Viscous flow in and around a cavity surrounded by a concentric permeable patch

    Science.gov (United States)

    Palaniappan, D.

    2017-11-01

    Steady viscous incompressible fluid flow in and around a spherical fluid cavity of radius a surrounded by a permeable patch with thickness b - a is investigated in the limit of low-Reynolds number. Our model uses the Stokes equations in the pure fluid regions and the Darcy law in the concentric permeable patch. Analytic solutions for the velocity and pressure fields are derived in singularity form involving the key parameters such as the Darcy permeability coefficient k and the thickness of the permeable layer. The Faxen law for the hydrodynamical drag acting on the concentric spherical geometry due to an arbitrary incident flow is extracted from our singularity solutions. It is found that the thickness of the permeable layer and the permeability play a crucial role in controlling the drag. An expression for the mass of the fluid that enters the outer sphere is calculated by integrating the exterior radial velocity field. The hydrodynamic force on the concentric spherical shell due to the flow induced by a Stokeslet is also derived from our general expressions. Several special cases of interest are deduced from our exact analysis. The results are of some interest in the prediction of forces exerted on the walls in certain biological models with permeable layers. I request you to place my presentation on the 19th (Sunday) as I have to give final exams on Monday. Thank you.

  2. Effect of aggregate grain size distribution on properties of permeable ...

    African Journals Online (AJOL)

    ) ratio on the mechanical properties of permeable concrete is investigated. The aim of this study is to prepare permeable concrete mixture with optimum properties in terms of strength and permeability. For this purpose, five different permeable ...

  3. Core formation in planetesimals triggered by permeable flow.

    Science.gov (United States)

    Yoshino, Takashi; Walter, Michael J; Katsura, Tomoo

    2003-03-13

    The tungsten isotope composition of meteorites indicates that core formation in planetesimals occurred within a few million years of Solar System formation. But core formation requires a mechanism for segregating metal, and the 'wetting' properties of molten iron alloy in an olivine-rich matrix is thought to preclude segregation by permeable flow unless the silicate itself is partially molten. Excess liquid metal over a percolation threshold, however, can potentially create permeability in a solid matrix, thereby permitting segregation. Here we report the percolation threshold for molten iron-sulphur compounds of approximately 5 vol.% in solid olivine, based on electrical conductivity measurements made in situ at high pressure and temperature. We conclude that heating within planetesimals by decay of short-lived radionuclides can increase temperature sufficiently above the iron-sulphur melting point (approximately 1,000 degrees C) to trigger segregation of iron alloy by permeable flow within the short timeframe indicated by tungsten isotopes. We infer that planetesimals with radii greater than about 30 km and larger planetary embryos are expected to have formed cores very early, and these objects would have contained much of the mass in the terrestrial region of the protoplanetary nebula. The Earth and other terrestrial planets are likely therefore to have formed by accretion of previously differentiated planetesimals, and Earth's core may accordingly be viewed as a blended composite of pre-formed cores.

  4. Decontamination of groundwater by permeable reactive barriers; Descontaminacion de aguas subterraneas mediante barreras reactivas permeables

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Flores, A.; Chimenos, J. M.

    2002-07-01

    Passive in-situ remediation techniques have seen increased application at contaminated aquifers in recent years as a means of contaminant control and as means of passively treating contaminants in groundwater, because of their low economic cost and minor ground occupation. Permeable reactive barriers (PRBs) are based on the creation of a subsurface barrier, where groundwater contaminants are intercepted in the saturated zone, establishing a passive system of control and contamination treatment, in particular in the heavy metals removal. This paper discusses, related to PRBs experimentation, the results obtained from laboratory experiences by means of Mg oxides and sandy soils as barrier materials, showing a high removal of Cd, Cu, Ni, Fe, Pb and Zn. (Author) 21 refs.

  5. Element analysis of a cell wall using PIXE

    Science.gov (United States)

    Jahnke, Andreas; Shimmen, Teruo; Koyama-Ito, Hiroko; Yamazaki, Toshimitsu

    1981-03-01

    The elemental analysis of cell walls of internodal cells of Chara corallina, a fresh water alga, was carried out using PIXE and 28 MeV α-particles from a cyclotron. The cell wall was a suitable monitoring system for heavy metal ions in water. Special attention was paid to the ion specific differences during adsorption to the cell wall.

  6. Nondestructive testing of welds on thin-walled tubing

    Science.gov (United States)

    Hagemaier, D. J.; Posakony, G. J.

    1969-01-01

    Special ultrasonic search unit, or transducer assembly, reliably inspects the quality of melt-through welds of fusion welded tubing couplers for hydraulic lines. This instrumentation can also be used to detect faulty braze bonds in thin-walled, small diameter joints and wall thickness of thin-walled metal tubing.

  7. Permeability of highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1980-12-01

    The object of the study was the water flow through the bentonite which is caused by hydraulic gradients. The study comprised laboratory tests and theoretical considerations. It was found that high bulk densities reduced the permeability to very low values. It was concluded that practically impervious conditions prevail when the gradients are low. Thus with a regional gradient of 10 -2 and a premeability of 10 -13 m/s the flow rate will not be higher than approximately 1 mm in 30 000 years. (G.B.)

  8. Polyelectrolyte multilayer capsules as vehicles with tunable permeability.

    Science.gov (United States)

    Antipov, Alexei A; Sukhorukov, Gleb B

    2004-11-29

    This review is devoted to a novel type of polymer micro- and nanocapsules. The shell of the capsule is fabricated by alternate adsorption of oppositely charged polyelectrolytes (PEs) onto the surface of colloidal particles. Cores of different nature (organic or inorganic) with size varied from 0.1 to 10 mum can be used for templating such PE capsules. The shell thickness can be tuned in nanometer range by assembling of defined number of PE layers. The permeability of capsules depends on the pH, ionic strength, solvent, polymer composition, and shell thickness; it can be controlled and varied over wide range of substances regarding their molecular weight and charge. Including functional polymers into capsule wall, such as weak PEs or thermosensitive polymers, makes the capsule permeability sensitive to correspondent external stimuli. Permeability of the capsules is of essential interest in diverse areas related to exploitation of systems with controlled and sustained release properties. The envisaged applications of such capsules/vesicles cover biotechnology, medicine, catalysis, food industry, etc.

  9. Falling walls

    CERN Multimedia

    It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...

  10. First wall

    International Nuclear Information System (INIS)

    Omori, Junji.

    1991-01-01

    Graphite and C/C composite are used recently for the first wall of a thermonuclear device since materials with small atom number have great impurity allowable capacity for plasmas. Among them, those materials having high thermal conduction are generally anisotropic and have an upper limit for the thickness upon production. Then, anisotropic materials are used for a heat receiving plate, such that the surfaces of the heat receiving plate on the side of lower heat conductivity are brought into contact with each other, and the side of higher thermal conductivity is arranged in parallel with small radius direction and the toroidal direction of the thermonuclear device. As a result, the incident heat on an edge portion can be transferred rapidly to the heat receiving plate, which can suppress the temperature elevation at the surface to thereby reduce the amount of abrasion. Since the heat expansion coefficient of the anisotropic materials is great in the direction of the lower heat conductivity and small in the direction of the higher heat conductivity, the gradient of a thermal load distribution in the direction of the higher heat expansion coefficient is small, and occurrence of thermal stresses due to temperature difference is reduced, to improve the reliability. (N.H.)

  11. Hydrogen retention in lithium on metallic walls from “in vacuo” analysis in LTX and implications for high-Z plasma-facing components in NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R., E-mail: kaita@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Lucia, M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Allain, J.P.; Bedoya, F. [Department of Nuclear, Plasma, & Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Bell, R.; Boyle, D. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Capece, A. [Department of Physics, The College of New Jersey, Ewing, NJ (United States); Jaworski, M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Koel, B.E. [Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ (United States); Majeski, R. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Roszell, J. [Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ (United States); Schmitt, J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Scotti, F. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ (United States); Soukhanovskii, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2017-04-15

    The application of lithium to plasma-facing components (PFCs) has long been used as a technique for wall conditioning in magnetic confinement devices to improve plasma performance. Determining the characteristics of PFCs at the time of exposure to the plasma, however, is difficult because they can only be analyzed after venting the vacuum vessel and removing them at the end of an operational period. The Materials Analysis and Particle Probe (MAPP) addresses this problem by enabling PFC samples to be exposed to plasmas, and then withdrawn into an analysis chamber without breaking vacuum. The MAPP system was used to introduce samples that matched the metallic PFCs of the Lithium Tokamak Experiment (LTX). Lithium that was subsequently evaporated onto the walls also covered the MAPP samples, which were then subject to LTX discharges. In vacuo extraction and analysis of the samples indicated that lithium oxide formed on the PFCs, but improved plasma performance persisted in LTX. The reduced recycling this suggests is consistent with separate surface science experiments that demonstrated deuterium retention in the presence of lithium oxide films. Since oxygen decreases the thermal stability of the deuterium in the film, the release of deuterium was observed below the lithium deuteride dissociation temperature. This may explain what occurred when lithium was applied to the surface of the NSTX Liquid Lithium Divertor (LLD). The LLD had segments with individual heaters, and the deuterium-alpha emission was clearly lower in the cooler regions. The plan for NSTX-U is to replace the graphite tiles with high-Z PFCs, and apply lithium to their surfaces with lithium evaporation. Experiments with lithium coatings on such PFCs suggest that deuterium could still be retained if lithium compounds form, but limiting their surface temperatures may be necessary.

  12. Voluntary Consensus Organization Standards for Nondestructive Evaluation of Thin-Walled Metallic Liners and Composite Overwraps in Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor

    2012-01-01

    NASA fracture control requirements outlined in NASA-STD-5009 and NASA-STD-5014 are predicated on the availability and use of sensitive nondestructive evaluation (NDE) methods that can detect and monitor defects, thereby providing data that can be used to predict failure or reduce the risk of failure in fracture critical components. However, in the case of composite materials and components, including composite overwrapped pressure vessels (COPVs), the effect of defects is poorly understood, the NDE methods used to evaluate locate and size defects are typically at lower technical readiness level than analogous NDE methods used for metals, and demonstration studies to verify the probability of detection (POD) are generally lacking or unavailable. These factors together make failure prediction of fracture critical composite materials and components based on size, quantity, or orientation of defects nearly impossible. Also, when inspecting metal liners in as-manufactured COPVs, sensitivity is lost and only the inner surface of the liner is accessible. Also, NDE of COPVs as applied during manufacturing varies significantly from manufacturer to manufacturer and has not yet been standardized. Although requirements exist to perform NDE immediately after manufacturing to establish initial integrity of the parts, procedural detail for NDE of composites is still nonexistent or under development. For example, in practice, only a visual inspection of COPVs is performed during manufacturing and service, leaving in question whether defects of concern, for example, bridging, overwrap winding anomalies, impact damage below visible threshold, out-of-family strain growth, and liner buckling have been adequately detected and monitored. To address these shortcomings, in 2005 the NASA Nondestructive Evaluation Working Group (NNWG) began funding work to develop and adopt standards for nondestructive evaluation of aerospace composites in collaboration with the American Society for Testing

  13. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  14. Solid phase extraction of heavy metal ions based on a novel functionalized magnetic multi-walled carbon nanotube composite with the aid of experimental design methodology

    International Nuclear Information System (INIS)

    Taghizadeh, Mohsen; Asgharinezhad, Ali Akbar; Samkhaniany, Noorallah; Tadjarodi, Azadeh; Abbaszadeh, Abolfazl; Pooladi, Mohsen

    2014-01-01

    We report that magnetic multiwalled carbon nanotubes functionalized with 8-aminoquinoline can be applied to the preconcentration of Cd(II), Pb(II) and Ni(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, magnetic sorbent amount, and pH value) were selected as the main factors affecting sorption, and four variables (type, volume and concentration of the eluent; elution time) were selected for optimizing elution. Following sorption and elution, the ions were quantified by FAAS. The LODs are 0.09, 0.72, and 1.0 ng mL −1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <5.1 % for five separate batch determinations at 30 ng mL −1 level of Cd(II), Ni(II), and Pb(II) ions. The sorption capacities (in mg g −1 ) of this new sorbent are 201 for Cd(II), 150 for Pb(II), and 172 Ni(II). The composite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples. (author)

  15. Cement technology for borehole plugging: an interim report on permeability measurements of cementitious solids

    International Nuclear Information System (INIS)

    McDaniel, E.W.

    1980-01-01

    The permeability of borehole plug solids and plug-wall rock junctions is a property of major interest in the Borehole Plugging Program. This report describes the equipment and techniques used to determine the permeabilities of possible borehole plugging materials and presents results from tests on various cementitious solids and plug-rock combinations. The cementitious solids were made from mixtures of cement, sand, salt, fly ash, and water. Three different types of cement and four different fly ashes were used. Permeabilities ranged from a high value of 3 x 10 -4 darcy for a neat cement paste to a low of 5 x 10 -8 darcy for a saltcrete containing 30 wt % sodium chloride. Miniature boreholes were made in the following four different types of rock: Westerly granite, Dresser basalt, Sioux quartzite, and St. Cloud granodiorite. These small holes were plugged with a mix consisting of 23 wt % Type I Portland cement, 20 wt % bituminous fy ash, 43.2 wt % sand, and 13.8 wt % water. After curing for 91 days at ambient temperature, the permeability of the plug-wall rock junctions ranged from 3 x 10 -5 to -8 darcy. Three of the four miniature plugged boreholes exhibited permeabilities of < 10 microdarcys

  16. Experimental Study on Permeability of Concrete

    Science.gov (United States)

    Yang, Honglu; Liu, Rentai; Zheng, Zhuo; Liu, Haojie; Gao, Yan; Liu, Yankai

    2018-01-01

    To study the influencing factors on permeability of pervious concrete, by adding inorganic organic composite materials obtained experimental results show that different aggregate size, aggregate cement ratio of different, different water cement ratio on the permeability performance. The permeability of the concrete was tested by using the self - made permeable device. The experimental results showed that the permeation coefficient of the experiment was obtained and the factors influencing the permeability of the concrete were compared and analyzed. At the same time, the porosity of pervious concrete was measured, the influence of various variables on porosity was studied, and the influence of various factors on the permeability of voids was found. Finally, through comprehensive analysis of a variety of factors, the optimal water cement ratio is 0.28. At this time, the pervious performance of concrete is optimal.

  17. Air permeability of polyester nonwoven fabrics

    Directory of Open Access Journals (Sweden)

    Zhu Guocheng

    2015-03-01

    Full Text Available Air permeability is one of the most important properties of non-woven fabrics in many applications. This paper aims to investigate the effects of thickness, porosity and density on the air permeability of needle-punched non-woven fabrics and compare the experimental values with two models which are based on hydraulic radius theory and drag theory, respectively. The air permeability of the samples was measured by an air permeability tester FX3300. The results showed that the air permeability of non-woven fabrics decreased with the increase in thickness and density of samples, increased with the increase of porosity, and the air permeability was not directly proportional to the pressure gradient. Meanwhile, the prediction model based on hydraulic radius theory had a better agreement with experimental values than the model based on drag theory, but the values were much higher than the experimental results, especially for higher porosity and higher pressure gradient.

  18. Clogging in permeable concrete: A review.

    Science.gov (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2017-05-15

    Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Partition wall structure in spent fuel storage pool and construction method for the partition wall

    International Nuclear Information System (INIS)

    Izawa, Masaaki

    1998-01-01

    A partitioning wall for forming cask pits as radiation shielding regions by partitioning inside of a spent fuel storage pool is prepared by covering both surface of a concrete body by shielding metal plates. The metal plate comprises opposed plate units integrated by welding while sandwiching a metal frame as a reinforcing material for the concrete body, the lower end of the units is connected to a floor of a pool by fastening members, and concrete is set while using the metal plate of the units as a frame to form the concrete body. The shielding metal plate has a double walled structure formed by welding a lining plate disposed on the outer surface of the partition wall and a shield plate disposed to the inner side. Then the term for construction can be shortened, and the capacity for storing spent fuels can be increased. (N.H.)

  20. Experimental assessment of the spatial variability of porosity, permeability and sorption isotherms in an ordinary building concrete

    Science.gov (United States)

    Issaadi, N.; Hamami, A. A.; Belarbi, R.; Aït-Mokhtar, A.

    2017-10-01

    In this paper, spatial variabilities of some transfer and storage properties of a concrete wall were assessed. The studied parameters deal with water porosity, water vapor permeability, intrinsic permeability and water vapor sorption isotherms. For this purpose, a concrete wall was built in the laboratory and specimens were periodically taken and tested. The obtained results allow highlighting a statistical estimation of the mean value, the standard deviation and the spatial correlation length of the studied fields for each parameter. These results were discussed and a statistical analysis was performed in order to assess for each of these parameters the appropriate probability density function.

  1. Vessel wall characterization using quantitative MRI: what's in a number?

    Science.gov (United States)

    Coolen, Bram F; Calcagno, Claudia; van Ooij, Pim; Fayad, Zahi A; Strijkers, Gustav J; Nederveen, Aart J

    2018-02-01

    The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.

  2. The Permeability of Boolean Sets of Cylinders

    Directory of Open Access Journals (Sweden)

    Willot F.

    2016-07-01

    Full Text Available Numerical and analytical results on the permeability of Boolean models of randomly-oriented cylinders with circular cross-section are reported. The present work investigates cylinders of prolate (highly-elongated and oblate (nearly flat types. The fluid flows either inside or outside of the cylinders. The Stokes flow is solved using full-fields Fourier-based computations on 3D binarized microstructures. The permeability is given for varying volume fractions of pores. A new upper-bound is derived for the permeability of the Boolean model of oblate cylinders. The behavior of the permeability in the dilute limit is discussed.

  3. Low Permeability Polyimide Insulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  4. Grafted-double walled carbon nanotubes as electrochemical platforms for immobilization of antibodies using a metallic-complex chelating polymer: Application to the determination of adiponectin cytokine in serum.

    Science.gov (United States)

    Ojeda, Irene; Barrejón, Myriam; Arellano, Luis M; González-Cortés, Araceli; Yáñez-Sedeño, Paloma; Langa, Fernando; Pingarrón, José M

    2015-12-15

    An electrochemical immunosensor for adiponectin (APN) using screen printed carbon electrodes (SPCEs) modified with functionalized double-walled carbon nanotubes (DWCNTs) as platforms for immobilization of the specific antibodies is reported. DWCNTs were functionalized by treatment with 4-aminobenzoic acid (HOOC-Phe) in the presence of isoamylnitrite resulting in the formation of 4-carboxyphenyl-DWCNTs. The oriented binding of specific antibodies toward adiponectin was accomplished by using the metallic-complex chelating polymer Mix&Go™. The HOOC-Phe-DWCNTs-modified SPCEs were characterized by cyclic voltammetry and compared with HOOC-Phe-SWCNTs/SPCE. The different variables affecting the performance of the developed immunosensor were optimized. Under the selected conditions, a calibration plot for APN was constructed showing a range of linearity extending between 0.05 and 10.0 μg/mL which is adequate for the determination of the cytokine in real samples. A detection limit of 14.5 ng/mL was achieved. The so prepared immunosensor exhibited a good reproducibility for the APN measurements, excellent storage stability and selectivity, and a much shorter assay time than the available ELISA kits. The usefulness of the immunosensor for the analysis of real samples was demonstrated by analyzing human serum from female or male healthy patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Evaluation of synthetic zeolite as engineering passive permeable reactive barrier

    International Nuclear Information System (INIS)

    Ibrahim, O.A.A.

    2011-01-01

    The presence of toxic pollutants in groundwater brings about significant changes in the properties of water resources and has to be avoided in order to preserve the environmental quality. Heavy metals are among the most dangerous inorganic water pollutants, that related to many anthropogenic sources and their compounds are extremely toxic. The treatment of contaminated groundwater is among the most difficult and expensive environmental problems. Over the past years, permeable reactive barriers have provided an increasingly important role in the passive insitu treatment of contaminated groundwater. There are a large number of materials that are able to immobilize contaminants by sorption, including granulated active carbon, zeolite, montmorillonite, peat, compost, sawdust, etc. Zeolite X is a synthetic counterpart of the naturally occurring mineral Faujasite. It has one of the largest cavities and cavity entrances of any known zeolites. The main aim of this work is to examine the possibility of using synthetic zeolite X as an engineering permeable reactive barrier to remove heavy metals from a contaminated groundwater. Within this context, the following investigations were carried out: 1. Review on the materials most commonly used as engineered permeable reactive barriers to identify the important features to be considered in the examination of the proposed permeable reactive barrier material (zeolite X). 2. Synthesis of zeolite X and characterization of the synthesized material using different techniques. 3. Batch tests were carried out to characterize the equilibrium and kinetic sorption properties of the synthesized zeolite X towards the concerned heavy metals; zinc and cadmium ions. 4. Column tests were also performed to determine the design factors for permeable reactive barrier against zinc and cadmium ions solutions.Breakthrough curves measured in such experiments used to determine the hydrodynamic dispersion coefficients for both metal ions. 5. Analytical

  6. Aerosol penetration through a seismically loaded shear wall

    International Nuclear Information System (INIS)

    Farrar, C.R.; Girrens, S.P.

    1992-01-01

    An experimental study was performed to measure the aerosol penetration through a reinforced concrete shear wall after simulated seismic damage. Static load-cycle testing, to stress levels sufficient to induce visible shear cracking, was used to simulate the earthquake loading. Air permeability tests were performed both before and after the simulated seismic loading damaged the structure. Aerosol penetration measurements were conducted on the cracked shear wall structure using 0.10 μm monodisperse particles. The measured aerosol number penetration through the cracked shear wall was 0.5%. 7 refs

  7. Cut-off wall system for subsurface liquid containment

    International Nuclear Information System (INIS)

    Carlson, R.; Khan, F.

    1997-01-01

    The subject of this paper is the use of a Cut-off Wall System (CWS) in conjunction with conventional soil bentonite slurry walls. The system is a vertical subsurface containment solution for isolating contaminated soils and groundwater in situ, thereby enhancing protection of the environment. The CWS is composed of geomembrane panels and specially designed connectors that form an interlocking subsurface vertical barrier wall. This system provides a cost effective, easily installed, positive cut-off for isolation of mixed and hazardous wastes, and wastes from uncontrolled releases. This application will address manufacturing, fabrication, installation, strength, QA/QC, chemical compatibility, and permeability

  8. Crustal permeability: Introduction to the special issue

    Science.gov (United States)

    Ingebritsen, Steven E.; Gleeson, Tom

    2015-01-01

    The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

  9. A Negative Permeability Material at Red Light

    DEFF Research Database (Denmark)

    Yuan, Hsiao-Kuan; Chettiar, Uday K.; Cai, Wenshan

    2007-01-01

    A negative permeability in a periodic array of pairs of thin silver strips is demonstrated experimentally for two distinct samples. The effect of the strip surface roughness on negative permeability is evaluated. The first sample, Sample A, is fabricated of thinner strips with a root mean square ...

  10. Intercomparison on measurement of water vapour permeability

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard

    Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001).......Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001)....

  11. Microorganism Removal in Permeable Pavement Parking Lots ...

    Science.gov (United States)

    Three types of permeable pavements (pervious concrete, permeable interlocking concrete pavers, and porous asphalt) were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed that porous asphalt had much lower concentration in monitored infiltrate compared to pervious concrete and permeable interlocking concrete pavers. Concentrations of monitored organisms in infiltrate from porous asphalt were consistently below the bathing water quality standard. Fecal coliform and enterococci exceeded bathing water quality standards more than 72% and 34% of the time for permeable interlocking concrete pavers and pervious concrete, respectively. Purpose is to evaluate the performance of permeable pavement in removing indicator organisms from infiltrating stormwater runoff.

  12. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...... were obtained from Fjerritslev shale Formation in Juassic interval of Stenlille and Vedsted on-shore wells of Danish basin. The calculated permeability from specific surface and porosity vary from 0.09 to 48.53 μD while that calculated from consolidation tests data vary from 1000 μD at a low vertical...... effective stress to 9 μD at high vertical effective stress of 100 MPa. The indirect permeability calculated from consolidation tests falls in the same magnitude at higher vertical effective stress, above 40 MPa, as that of the Kozeny model for shale samples with high non-clay content ≥ 70% but are higher...

  13. Nutrient infiltrate concentrations from three permeable pavement types.

    Science.gov (United States)

    Brown, Robert A; Borst, Michael

    2015-12-01

    While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable interlocking concrete pavement (PICP), pervious concrete (PC), and porous asphalt (PA). Each permeable pavement type has four, 54.9-m(2), lined sections that direct all infiltrate into 5.7-m(3) tanks enabling complete volume collection and sampling. This paper highlights the results from a 12-month period when samples were collected from 13 rainfall/runoff events and analyzed for nitrogen species, orthophosphate, and organic carbon. Differences in infiltrate concentrations among the three permeable pavement types were assessed and compared with concentrations in rainwater samples and impervious asphalt runoff samples, which were collected as controls. Contrary to expectations based on the literature, the PA infiltrate had significantly larger total nitrogen (TN) concentrations than runoff and infiltrate from the other two permeable pavement types, indicating that nitrogen leached from materials in the PA strata. There was no significant difference in TN concentration between runoff and infiltrate from either PICP or PC, but TN in runoff was significantly larger than in the rainwater, suggesting meaningful inter-event dry deposition. Similar to other permeable pavement studies, nitrate was the dominant nitrogen species in the infiltrate. The PA infiltrate had significantly larger nitrite and ammonia concentrations than PICP and PC, and this was presumably linked to unexpectedly high pH in the PA infiltrate that greatly exceeded the optimal pH range for nitrifying bacteria. Contrary to the nitrogen results, the PA infiltrate had significantly smaller orthophosphate concentrations than in rainwater, runoff, and infiltrate from PICP

  14. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.

    2012-11-01

    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  15. Polymer-Based Materials of Controlled Permeability and Application of Photoinduced Magnetism

    Science.gov (United States)

    2010-07-31

    large area terahertz imaging technology due to its relatively high permeability. We have built on the progress we reported last year in the...Magnetoresistance: Towards Organic-based Spintronics, 7th International Symposium on Crystalline Organic Metals Superconductors and Ferromagnets, Peñíscola

  16. Permeability - Fluid Pressure - Stress Relationship in Fault Zones in Shales

    Science.gov (United States)

    Henry, P.; Guglielmi, Y.; Morereau, A.; Seguy, S.; Castilla, R.; Nussbaum, C.; Dick, P.; Durand, J.; Jaeggi, D.; Donze, F. V.; Tsopela, A.

    2016-12-01

    Fault permeability is known to depend strongly on stress and fluid pressures. Exponential relationships between permeability and effective pressure have been proposed to approximate fault response to fluid pressure variations. However, the applicability of these largely empirical laws remains questionable, as they do not take into account shear stress and shear strain. A series of experiments using mHPP probes have been performed within fault zones in very low permeability (less than 10-19 m2) Lower Jurassic shale formations at Tournemire (France) and Mont Terri (Switzerland) underground laboratories. These probes allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. In addition, in the Mont-Terri experiment, passive pressure sensors were installed in observation boreholes. Fracture transmissivity was estimated from single borehole pulse test, constant pressure injection tests, and cross-hole tests. It is found that the transmissivity-pressure dependency can be approximated with an exponential law, but only above a pressure threshold that we call the Fracture Opening Threshold (F.O.P). The displacement data show a change of the mechanical response across the F.O.P. The displacement below the F.O.P. is dominated by borehole response, which is mostly elastic. Above F.O.P., the poro-elasto-plastic response of the fractures dominates. Stress determinations based on previous work and on the analysis of slip data from mHPPP probe indicate that the F.O.P. is lower than the least principal stress. Below the F.O.P., uncemented fractures retain some permeability, as pulse tests performed at low pressures yield diffusivities in the range 10-2 to 10-5 m2/s. Overall, this dual behavior appears consistent with the results of CORK experiments performed in accretionary wedge decollements. Results suggest (1) that fault zones become highly permeable when approaching the critical Coulomb threshold (2

  17. Gas and water permeability of concrete for reactor buildings--prototype scale specimens

    International Nuclear Information System (INIS)

    Mills, R.H.

    1987-02-01

    The permeability testing was performed on four concrete cylinders, 0.25 m in diameter and 2 m long, modelling the wall-thickness of reactor containment structures on the prototype scale. Tests were performed on the cylinders before and after artificial induction of longitudinal cracks, intented to model defects developing after some period of adverse service conditions. Permeability increased greatly with the introduction of longitudinal cracks in the concrete, and was also affected by moisture content and casting direction. The influence of reinforcing steel could not be resolved within the bounds of experimental variability. Ultrasound measurements were taken on each cylinder before and after cracking, and a correlation between increased permeability and lowered Ultrasonic Pulse Velocity was observed. Ultrasonic Pulse Velocity measurements thus show promise as a means of continuous monitoring of the integrity of the concrete barrier in service

  18. Effect of high density lipoproteins on permeability of rabbit aorta to low density lipoproteins

    International Nuclear Information System (INIS)

    Klimov, A.N.; Popov, V.A.; Nagornev, V.A.; Pleskov, V.M.

    1985-01-01

    A study was made on the effect of high density lipoproteins (HDL) on the permeability of rabbit aorta to low density lipoproteins (LDL) after intravenous administration of human HDL and human ( 125 I)LDL to normal and hypercholesterolemic rabbits. Evaluation of radioactivity in plasma and aorta has shown that the administration of a large dose of HDL decreased the aorta permeability rate for ( 125 I)LDL on an average by 19% in normal rabbits, and by 45% in rabbits with moderate hypercholesterolemia. A historadiographic study showed that HDL also decreased the vessel wall permeability to ( 125 I)LDL in normal and particularly in hypercholesterolemic animals. The suggestion was made that HDL at very high molar concentration can hamper LDL transportation through the intact endothelial layer into the intima due to the ability of HDL to compete with LDL in sites of low affinity on the surface of endothelial cells. (author)

  19. Exerimental study on the water permeability of a reinforced concrete silo for radioactive waste repository

    International Nuclear Information System (INIS)

    Iriya, K.; Itoh, Y.; Hosoda, M.; Fujiwara, A.; Tsuji, Y.

    1992-01-01

    A low permeable conrete structure is required in a shallow land disposal system in order to isolate radioactive waste from the biosphere. Two model silos (7.25 m dia., 5.25 m height, 1.50 m wall thickness) will be constructed to demonstrate the performance of the concrete structure constructed by the two concepts. One concept is called the improved grouting method. We intend to inject cementitious material to the defective zone such as a crack after its construction by an ordinary construction method. The other concept is called the improved constructing method. We intend to minimize the defective zone, which influences the permeability, during the construction by an improved constructing method. The permeability of the concrete structure as a whole structure will be assessed by two large-scale-model-silos until 1992. The design, objectives, and preliminary results of this experiment are mainly described in this paper. (orig.)

  20. Using magnetic permeability bits to store information

    Science.gov (United States)

    Timmerwilke, John; Petrie, J. R.; Wieland, K. A.; Mencia, Raymond; Liou, Sy-Hwang; Cress, C. D.; Newburgh, G. A.; Edelstein, A. S.

    2015-10-01

    Steps are described in the development of a new magnetic memory technology, based on states with different magnetic permeability, with the capability to reliably store large amounts of information in a high-density form for decades. The advantages of using the permeability to store information include an insensitivity to accidental exposure to magnetic fields or temperature changes, both of which are known to corrupt memory approaches that rely on remanent magnetization. The high permeability media investigated consists of either films of Metglas 2826 MB (Fe40Ni38Mo4B18) or bilayers of permalloy (Ni78Fe22)/Cu. Regions of films of the high permeability media were converted thermally to low permeability regions by laser or ohmic heating. The permeability of the bits was read by detecting changes of an external 32 Oe probe field using a magnetic tunnel junction 10 μm away from the media. Metglas bits were written with 100 μs laser pulses and arrays of 300 nm diameter bits were read. The high and low permeability bits written using bilayers of permalloy/Cu are not affected by 10 Mrad(Si) of gamma radiation from a 60Co source. An economical route for writing and reading bits as small at 20 nm using a variation of heat assisted magnetic recording is discussed.

  1. Anisotropy of permeability in faulted porous sandstones

    Science.gov (United States)

    Farrell, N. J. C.; Healy, D.; Taylor, C. W.

    2014-06-01

    Studies of fault rock permeabilities advance the understanding of fluid migration patterns around faults and contribute to predictions of fault stability. In this study a new model is proposed combining brittle deformation structures formed during faulting, with fluid flow through pores. It assesses the impact of faulting on the permeability anisotropy of porous sandstone, hypothesising that the formation of fault related micro-scale deformation structures will alter the host rock porosity organisation and create new permeability pathways. Core plugs and thin sections were sampled around a normal fault and oriented with respect to the fault plane. Anisotropy of permeability was determined in three orientations to the fault plane at ambient and confining pressures. Results show that permeabilities measured parallel to fault dip were up to 10 times higher than along fault strike permeability. Analysis of corresponding thin sections shows elongate pores oriented at a low angle to the maximum principal palaeo-stress (σ1) and parallel to fault dip, indicating that permeability anisotropy is produced by grain scale deformation mechanisms associated with faulting. Using a soil mechanics 'void cell model' this study shows how elongate pores could be produced in faulted porous sandstone by compaction and reorganisation of grains through shearing and cataclasis.

  2. Permeable Reactive Barrier: Technology Update

    Science.gov (United States)

    2011-06-01

    munitions compounds, zeolites for treating radionuclides and heavy metals, and “transformed redmud” (a waste material formed from bauxite ore during...acid mine drainage). The materials included straw, newspaper, raw cotton, alfalfa, wheat straw, jute pellets, vegetable oil, compost, leaf mulch, wood...and Ptacek (1997) and Benner et al. (1999, 2002) installed an organic-carbon PRB in an aquifer affected by acid- mine drainage derived from a sulfidic

  3. Permeability Barrier Generation in the Martian Lithosphere

    Science.gov (United States)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  4. LONG-TERM GEOCHEMICAL BEHAVIOR OF A ZEROVALENT IRON PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM IN GROUNDWATER

    Science.gov (United States)

    Passive, in-situ reactive barriers have proven to be viable, cost-effective systems for the remediation of Cr-contaminated groundwater at some sites. Permeable reactive barriers (PRBs) are installed in the flow-path of groundwater, most typically as vertical treatment walls. Re...

  5. Permeability Tests on Silkeborg Sand No. 0000

    DEFF Research Database (Denmark)

    Lund, Willy; Jakobsen, Kim Parsberg

    on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Silkeborg Sand No. 0000. The permeability is determined by use of a falling head apparatus. The apparatus, test procedures and the analysis method are described......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...

  6. Permeability Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Eastern Scheldt Sand. The permeability is determined by use of a falling head apparatus. Finally the test results are briefly summarised and a relationship between......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...

  7. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    (XRD) of shale samples show about 50% silt and high content of kaolinite in the clay fraction when compared with offshore samples from the Central Graben. Porosity measurements from helium porosimetry-mercury immersion (HPMI), mercury injection capillary pressure (MICP) and nuclear magnetic resonance...... strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...

  8. Effect of temperature on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Kjøller, Claus

    of the salinity of the pore fluid can increase the electrical double layer repulsion between quartz grains and kaolinite particles in Berea sandstone, which could lead to kaolinite mobilisation and permeability reduction. Heating increases the magnitude of the mineral surface charge, whereas salinity reduction...... permeability to brine than to gas is often observed, which might be due to interaction between the mineral surface and the pore fluid. By modelling a layer of immobile fluid on the fluid-mineral interface permeability to brine was estimated, based on both the pore size distribution from NMR combined...

  9. Membrane permeability in the gastrointestinal tract: the interplay between microclimate pH and transporters.

    Science.gov (United States)

    Kristl, Albin

    2009-11-01

    Some examples of pH- and transporter-dependent permeability, determined in side-by-side diffusion cells, are summarized. We investigated the polarized transport in the mucosal-to-serosal direction of monocarboxylic acid-type drugs through the excised rat jejunal tissue and an artificial membrane. We established that, in vitro, these substances are most probably not transported by monocarboxylate transporter 1, but by passive pH-dependent transport. We also studied various influences on the permeability of fluorescein, a low permeability marker, through isolated rat intestinal segments, Caco-2 cell monolayers, and an artificial membrane. Polarized transport of fluorescein in the serosal-to-mucosal direction through the rat jejunum by multidrug resistance-associated protein was triggered by the addition of D-glucose to the mucosal side, while the pH-dependent increase of fluorescein influx is presumably the consequence of a monocarboxylate transporter and a member of the organic-anion transporting polypeptide family. With permeability experiments through the excised segments of rat small intestine, we ascertained that ciprofloxacin is a low-permeability drug and has higher and pH-dependent transport in the mucosal-to-serosal direction than in the opposite direction. We also established that neither the permeability of fluoroquinolones nor their solubility in different buffers was influenced by the interactions with metal cations.

  10. Percolation and permeability of fracture networks in Excavated Damaged Zones

    Science.gov (United States)

    Mourzenko, V.; Thovert, J.; Adler, P. M.

    2012-12-01

    Generally, the excavation process of a gallery generates fractures in its immediate vicinity. The corresponding zone which is called the Excavated Damaged Zone (EDZ), has a larger permeability than the intact surrounding medium. The properties of the EDZ are attracting more and more attention because of their potential importance in repositories of nuclear wastes. The EDZ which is induced by the excavation process may create along the galleries of the repositories a high permeability zone which could directly connect the storage area with the ground surface. Therefore, the studies of its properties are of crucial importance for applications such as the storage of nuclear wastes. Field observations (such as the ones which have been systematically performed at Mont Terri by [1, 2]) suggest that the fracture density is an exponentially decreasing function of the distance to the wall with a characteristic length of about 0.5 m and that the fracture orientation is anisotropic (most fractures are subparallel to the tunnel walls) and well approximated by a Fisher law whose pole is orthogonal to the wall. Numerical samples are generated according to these prescriptions. Their percolation status and hydraulic transmissivity can be calculated by the numerical codes which are detailed in [3]. Percolation is determined by a pseudo diffusion algorithm. Flow determination necessitates the meshing of the fracture networks and the discretisation of the Darcy equation by a finite volume technique; the resulting linear system is solved by a conjugate gradient algorithm. Only the flow properties of the EDZ along the directions which are parallel to the wall are of interest when a pressure gradient parallel to the wall is applied. The transmissivity T which relates the total flow rate per unit width Q along the wall through the whole EDZ to the pressure gradient grad p, is defined by Q = - T grad p/mu where mu is the fluid viscosity. The percolation status and hydraulic transmissivity

  11. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However,uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and theprocedures utilized to analyse the problems.

  12. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  13. Improving methane gas sensing properties of multi-walled carbonnanotubes by vanadium oxide filling

    CSIR Research Space (South Africa)

    Chimowa, George

    2017-08-01

    Full Text Available Manipulation of electrical properties and hence gas sensing properties of multi-walled carbon nanotubes (MWNTs) by filling the inner wall with vanadium oxide is presented. Using a simple capillary technique, MWNTs are filled with vanadium metal...

  14. Hydraulic performance of permeable barriers for in situ treatment of contaminated groundwater

    International Nuclear Information System (INIS)

    Smyth, D.J.A.; Shikaze, S.G.; Cherry, J.A.

    1997-01-01

    The passive interception and in situ treatment of dissolved contaminants in groundwater by permeable reactive barriers has recently gained favor at an increasing number of sites as an alternative to conventional approaches to groundwater remediation such as the pump-and-treat method. Permeable reactive barriers have two essential functions. The first is that the barriers must be installed in a position such that all of the plume passes through the reactive system. The second function is to achieve acceptable treatment of the contamination by physical, chemical or biological means within or downgradient of the barrier. In this paper, issues associated with the hydraulic performance of permeable reaction barriers are evaluated using a three-dimensional groundwater flow model. The efficiency of plume capture by permeable wall and funnel-and-gate systems is examined for some generic and for site-specific hydrogeologic systems. The results have important implications to decisions pertaining to the selection, design and installation of permeable reactive barrier systems

  15. Permeability of gypsum samples dehydrated in air

    Science.gov (United States)

    Milsch, Harald; Priegnitz, Mike; Blöcher, Guido

    2011-09-01

    We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.

  16. Surface sedimentation at permeable pavement systems

    DEFF Research Database (Denmark)

    Støvring, Jan; Dam, Torben; Jensen, Marina Bergen

    2018-01-01

    of restorative cleaning (RC), nine recently built PP systems were tested for their infiltration capacity with and without restorative cleaning (RC) over an interval of 12–14.5 months. The results were related to each site’s unique history of sedimentation. RC significantly improved permeability, but when...... revisited after approximately one year, the permeability of cleaned surfaces was not significantly better for the RC spots than from their uncleaned neighbouring areas. Relating permeability to the contextual issues revealed that PP perimeter, adjacent bare soil and mismanagement strongly affected...... the sedimentation process. At two of the sites, sedimentation processes were so advanced that surface permeability was below the level of service (five-year design storm)....

  17. Effect of temperature on the permeability of lava dome rocks from the 2004-2008 eruption of Mount St. Helens

    Science.gov (United States)

    Gaunt, H. Elizabeth; Sammonds, Peter R.; Meredith, Philip G.; Chadderton, Amy

    2016-04-01

    As magma ascends to shallow levels in the volcanic conduit, volatile exsolution can produce a dramatic increase in the crystal content of the magma. During extrusion, low porosity, highly crystalline magmas are subjected to thermal stresses which generate permeable microfracture networks. How these networks evolve and respond to changing temperature has significant implications for gas escape and hence volcano explosivity. Here, we report the first laboratory experimental study on the effect of temperature on the permeability of lava dome rocks under environmental conditions designed to simulate the shallow volcanic conduit and lava dome. Samples were collected for this study from the 2004-2008 lava dome eruption of Mount St. Helens (Washington State, USA). We show that the evolution of microfracture networks, and their permeability, depends strongly on temperature changes. Our results show that permeability decreases by nearly four orders of magnitude as temperature increases from room temperature to 800 °C. Above 800 °C, the rock samples become effectively impermeable. Repeated cycles of heating leads to sample compaction and a reduction in fracture density and therefore a decrease in permeability. We argue that changes in eruption regimes from effusive to explosive activity can be explained by strongly decreasing permeability caused by repeated heating of magma, conduit walls and volcanic plugs or domes. Conversely, magma becomes more permeable as it cools, which will reduce explosivity.

  18. Negative permeability from random particle composites

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahid, E-mail: shussain2@qinetiq.com

    2017-04-15

    Artificial media, such as those composed of periodically-spaced wires for negative permittivity and split ring resonators for negative permeability have been extensively investigated for negative refractive index (NRI) applications (Smith et al., 2004; Pendry et al., 1999) [1,2]. This paper presents an alternative method for producing negative permeability: granular (or particulate) composites incorporating magnetic fillers. Artificial media, such as split-ring resonators, are designed to produce a magnetic resonance feature, which results in negative permeability over a narrow frequency range about the resonance frequency. The position of the feature is dependent upon the size of the inclusion. The material in this case is anisotropic, such that the feature is only observable when the materials are orientated in a specific direction relative to the applied field. A similar resonance can be generated in magnetic granular (particulate) materials: ferromagnetic resonance from the natural spin resonance of particles. Although the theoretical resonance profiles in granular composites shows the permeability dipping to negative values, this is rarely observed experimentally due to resonance damping effects. Results are presented for iron in spherical form and in flake form, dispersed in insulating host matrices. The two particle shapes show different permeability performance, with the magnetic flakes producing a negative contribution. This is attributed to the stronger coupling with the magnetic field resulting from the high aspect ratio of the flakes. The accompanying ferromagnetic resonance is strong enough to overcome the effects of damping and produce negative permeability. The size of random particle composites is not dictated by the wavelength of the applied field, so the materials are potentially much thinner than other, more traditional artificial composites at microwave frequencies. - Highlights: • Negative permeability from random particle composites is

  19. Charge Inversion in semi-permeable membranes

    Science.gov (United States)

    Das, Siddhartha; Sinha, Shayandev; Jing, Haoyuan

    Role of semi-permeable membranes like lipid bilayer is ubiquitous in a myriad of physiological and pathological phenomena. Typically, lipid membranes are impermeable to ions and solutes; however, protein channels embedded in the membrane allow the passage of selective, small ions across the membrane enabling the membrane to adopt a semi-permeable nature. This semi-permeability, in turn, leads to electrostatic potential jump across the membrane, leading to effects such as regulation of intracellular calcium, extracellular-vesicle-membrane interactions, etc. In this study, we theoretically demonstrate that this semi-permeable nature may trigger the most remarkable charge inversion (CI) phenomenon in the cytosol-side of the negatively-charged lipid bilayer membrane that are selectively permeable to only positive ions of a given salt. This CI is manifested as the changing of the sign of the electrostatic potential from negative to positive from the membrane-cytosol interface to deep within the cytosol. We study the impact of the parameters such as the concentration of this salt with selectively permeable ions as well as the concentration of an external salt in the development of this CI phenomenon. We anticipate such CI will profoundly influence the interaction of membrane and intra-cellular moieties (e.g., exosome or multi-cellular vesicles) having implications for a host of biophysical processes.

  20. Transformable ferroelectric control of dynamic magnetic permeability

    Science.gov (United States)

    Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng

    2018-02-01

    Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.

  1. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    Science.gov (United States)

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Frictional stability-permeability relationships for fractures in shales: Friction-Permeability Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yi [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Elsworth, Derek [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Department of Geosciences, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Wang, Chaoyi [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Ishibashi, Takuya [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, Koriyama Japan; Fitts, Jeffrey P. [Department of Civil and Environmental Engineering, Princeton University, Princeton New Jersey USA

    2017-01-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  3. Hot wire production of single-wall and multi-wall carbon nanotubes

    Science.gov (United States)

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  4. Evolution of the Stability Work from Classic Retaining Walls to Mechanically Stabilized Earth Walls

    Directory of Open Access Journals (Sweden)

    Anghel Stanciu

    2008-01-01

    Full Text Available For the consolidation of soil mass and the construction of the stability works for roads infrastructure it was studied the evolution of these kinds of works from classical retaining walls - common concrete retaining walls, to the utilization in our days of the modern and competitive methods - mechanically stabilized earth walls. Like type of execution the variety of the reinforced soil is given by the utilization of different types of reinforcing inclusions (steel strips, geosynthetics, geogrids or facing (precast concrete panels, dry cast modular blocks, metal sheets and plates, gabions, and wrapped sheets of geosynthetics.

  5. Implant-assisted magnetic drug targeting in permeable microvessels: Comparison of two-fluid statistical transport model with experiment

    Energy Technology Data Exchange (ETDEWEB)

    ChiBin, Zhang; XiaoHui, Lin, E-mail: lxh60@seu.edu.cn; ZhaoMin, Wang; ChangBao, Wang

    2017-03-15

    In experiments and theoretical analyses, this study examines the capture efficiency (CE) of magnetic drug carrier particles (MDCPs) for implant-assisted magnetic drug targeting (IA-MDT) in microvessels. It also proposes a three-dimensional statistical transport model of MDCPs for IA-MDT in permeable microvessels, which describes blood flow by the two-fluid (Casson and Newtonian) model. The model accounts for the permeable effect of the microvessel wall and the coupling effect between the blood flow and tissue fluid flow. The MDCPs move randomly through the microvessel, and their transport state is described by the Boltzmann equation. The regulated changes and factors affecting the CE of the MDCPs in the assisted magnetic targeting were obtained by solving the theoretical model and by experimental testing. The CE was negatively correlated with the blood flow velocity, and positively correlated with the external magnetic field intensity and microvessel permeability. The predicted CEs of the MDCPs were consistent with the experimental results. Additionally, under the same external magnetic field, the predicted CE was 5–8% higher in the IA-MDT model than in the model ignoring the permeability effect of the microvessel wall. - Highlights: • A model of MDCPs for IA-MDT in permeable microvessels was established. • An experimental device was established, the CE of MDCPs was measured. • The predicted CE of MDCPs was 5–8% higher in the IA-MDT model.

  6. Quantifying Evaporation in a Permeable Pavement System ...

    Science.gov (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. The U.S. Environmental Protection Agency (USEPA) constructed a 0.4-ha parking lot in Edison, NJ, that incorporated three different permeable pavement types in the parking lanes – permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). An impermeable liner installed 0.4 m below the driving surface in four 11.6-m by 4.74-m sections per each pavement type captures all infiltrating water and routes it to collection tanks that can contain events up to 38 mm. Each section has a design impervious area to permeable pavement area ratio of 0.66:1. Pressure transducers installed in the underdrain collection tanks measured water level for 24 months. Level was converted to volume using depth-to-volume ratios for individual collection tanks. Using a water balance approach, the measured infiltrate volume was compared to rainfall volume on an event-basis to determine the rainfall retained in the pavement strata and underlying aggregate. Evaporation since the previous event created additional storage in the pavement and aggregate layers. Events were divided into three groups based on antecedent dry period (ADP) and three, four-month categories of potential e

  7. In vivo human buccal permeability of nicotine

    DEFF Research Database (Denmark)

    Adrian, Charlotte L; Olin, Helle B D; Dalhoff, Kim

    2006-01-01

    The aim was to examine the in vivo buccal pH-dependent permeability of nicotine in humans and furthermore compare the in vivo permeability of nicotine to previous in vitro permeability data. The buccal permeability of nicotine was examined in a three-way cross-over study in eight healthy non......-smokers using a buccal perfusion cell. The disappearance of nicotine from perfusion solutions with pH 6.0, 7.4, and 8.1 was studied for 3h. The apparent permeability of nicotine (P(app)) was determined at each pH value. Parotid saliva was collected in an attempt to assess systemic levels of nicotine....... The disappearance rate of nicotine increased significantly as the pH increased, which resulted in P(app) values of 0.57+/-0.55 x 10(-4), 2.10+/-0.23 x 10(-4), and 3.96+/-0.54 x 10(-4)cms(-1) (mean+/-S.D.) at pH 6.0, 7.4, and 8.1, respectively. A linear relationship (R(2)=0.993) was obtained between the P...

  8. Vascular permeability alterations induced by arsenic.

    Science.gov (United States)

    Chen, Shih-Chieh; Tsai, Ming-Hsien; Wang, Hsiu-Jen; Yu, Hsin-Su; Chang, Louis W

    2004-01-01

    The impact of arsenic on the integrity of blood vessels in vivo via in situ exposure (local injection) of arsenic was investigated. Vascular permeability changes were evaluated by means of the Evans blue assay and the India ink tracer techniques. Rats were intravenously injected with Evans blue followed by intradermal injections of various doses of sodium arsenite on the back skins of the animals. Evans blue at different time points was extracted and assayed as indices of vascular leakage. Skin at various time point injection sites was sampled for arsenic measurement via graphite furnace atomic absorption spectroscopy. Our time course study with Evans blue technique demonstrated a biphasic pattern of vascular permeability change: an early phase of permeability reduction and a later phase of permeability promotion at all dose levels tested. The India ink tracer technique also demonstrated a time-correlated increase in vascular labelling in the tissues examined, signifying an increase in vascular leakage with time. Moreover, we found that despite an early increase in tissue arsenic content at time of injection, tissue arsenic declined rapidly and returned to near control levels after 30-60 min. Thus, an inverse correlation between tissue arsenic content and the extent of vascular permeability was apparent. This study provides the first demonstration that in situ exposure to arsenic will produce vascular dysfunction (vascular leakage) in vivo.

  9. New chemical approach to permeability reduction

    Energy Technology Data Exchange (ETDEWEB)

    Presley, C.T.; Argabright, P.A.; Smith, R.E.; Phillips B.L.

    1974-01-01

    A new class of polyelectrolytes, polyisocyanurate salts, has been discovered at this laboratory. The most versatile member of this class, T/sub M/PI, possesses a number of unique properties, not the least of which is its hydrolysis in basic solution. The hydrolysis product is in the form of a colloidal suspension resulting from the opening of some hydrophilic isocyanurate salt rings to the more hydrophobic biuret moiety. The influence of base and T/sub M/PI concentrations on the rate of hydrolysis and, more importantly, the time to onset of particle formation, were investigated. The reaction of T/sub M/PI with base was shown to be an efficient method for generating particles, irreversibly, in porous media for the purpose of reducing permeability. The T/sub M/PI-based partial plugging process has a number of important advantages, namely: (1) the plugging agent is injected as a single solution; (2) the time available after mixing for placement of the solution in the reservoir (i.e., handling time) can be varied over rather wide limits; (3) the process can be designed so that the final permeability is essentially any desired fraction of the initial permeability; (4) the fractional permeability reduction appears to be independent of the initial permeability; and (5) the particles are not removed by subsequent water injection. (16 refs.)

  10. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    Science.gov (United States)

    Thajudeen, Christopher

    of ground reflections, and situations where they may be applied to the estimation of the parameters associated with an interior wall. It is demonstrated through extensive computer simulations and laboratory experiments that, by proper exploitation of the electromagnetic characteristics of walls, one can efficiently extract the constitutive parameters associated with unknown wall(s) as well as to characterize and image the intra-wall region. Additionally, it is possible, to a large extent, to remove the negative wall effects, such as shadowing and incorrect target localization, as well as to enhance the imaging and classification of targets behind walls. In addition to the discussion of post processing the radar data to account for wall effects, the design of antenna elements used for transmit (Tx) and receive (Rx) operations in TWR radars is also discussed but limited to antennas for mobile, handheld, or UAV TWR systems which impose design requirements such as low profiles, wide operational bands, and in most cases lend themselves to fabrication using surface printing techniques. A new class of wideband antennas, formed though the use of printed metallic paths in the form of Peano and Hilbert space-filling curves (SFC) to provide top-loading properties that miniaturize monopole antenna elements, has been developed for applications in conformal and/or low profile antennas systems, such as mobile platforms for TWRI and communication systems. Additionally, boresight gain enhancements of a stair-like antenna geometry, through the addition of parasitic self-similar patches and gate like ground plane structures, are presented.

  11. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    Science.gov (United States)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  12. Flood Mitigation by Permeable Pavements in Chinese Sponge City Construction

    OpenAIRE

    Maochuan Hu; Xingqi Zhang; Yim Ling Siu; Yu Li; Kenji Tanaka; Hong Yang; Youpeng Xu

    2018-01-01

    It is important to evaluate the effectiveness of permeable pavements on flood mitigation at different spatial scales for their effective application, for example, sponge city construction in China. This study evaluated the effectiveness of three types of permeable pavements (i.e., permeable asphalts (PA), permeable concretes (PC), and permeable interlocking concrete pavers (PICP)) on flood mitigation at a community scale in China using a hydrological model. In addition, the effects of cloggin...

  13. Modeling of heat and high viscous fluid distributions with variable viscosity in a permeable channel

    Directory of Open Access Journals (Sweden)

    J Hona

    2016-10-01

    Full Text Available The flow field under study is characterized by velocity components, temperature and pressure in non-dimensional formulation. The flow is driven by suction through the horizontal channel with permeable walls fixed at different temperatures. In order to ascertain a better understanding of the dynamic behavior of the flow, the Navier-Stokes equations and the energy equation are solved concurrently applying a similarity transformation technique. The hydrodynamic structures obtained from the numerical integration include flow reversal or backward flow, collision zones due to the coexistence of wall suction and flow reversal inside the channel, the inflection through temperature distribution, the growth of thermal gradients near the walls, and the sensitivity of normal pressure gradients to the difference of temperatures at boundaries. These hydrodynamic structures are investigated considering the influences of the Péclet number P and the sensitivity of viscosity to thermal variations α which are the main control parameters of the problem.

  14. Ammonia and urea permeability of mammalian aquaporins

    DEFF Research Database (Denmark)

    Litman, Thomas; Søgaard, Rikke; Zeuthen, Thomas

    2009-01-01

    and 9 are found together with Rh proteins in cells exposed to portal blood coming from the intestine. In the kidney, AQP3 might participate in the excretion of NH(4) (+) in the collecting duct. The interplay between the ammonia-permeable aquaporins and the other types of ammonia- and urea......The human aquaporins,AQP3,AQP7, AQP8,AQP9, and possibly AQP10, are permeable to ammonia, and AQP7, AQP9, and possibly AQP3, are permeable to urea. In humans, these aquaporins supplement the ammonia transport of the Rhesus (Rh) proteins and the urea transporters (UTs). The mechanism by which...... ammonium is transported by aquaporins is not fully resolved. A comparison of transport equations, models, and experimental data shows that ammonia is transported in its neutral form, NH(3). In the presence of NH(3), the aquaporin stimulates H(+) transport. Consequently, this transport of H(+) is only...

  15. Altered erythrocyte cation permeability in familial pseudohyperkalaemia.

    Science.gov (United States)

    Dagher, G; Vantyghem, M C; Doise, B; Lallau, G; Racadot, A; Lefebvre, J

    1989-08-01

    1. Erythrocyte cation transport pathways have been investigated in a family with pseudohyperkalaemia. 2. Ouabain- and bumetanide-resistant Na+ and K+ effluxes in three pseudohyperkalaemic patients were not different from those of control subjects when assessed at 37 degrees C. 3. When the temperature was decreased to 20 degrees C and 9 degrees C, K+ passive permeability markedly increased and Na+ permeability remained unchanged in these patients. In contrast, in control subjects a reduction in temperature caused a marked reduction in Na+ and K+ passive permeability. 4. These findings could account for the marked increase in plasma K+ concentration observed at subphysiological temperatures. 5. The Na+-K+ co-transport pathway was reduced in all members of the family, but the Na+-K+ pump was reduced in only two of them. These alterations were independent from the pseudohyperkalaemic state.

  16. Mathematical models of skin permeability: an overview.

    Science.gov (United States)

    Mitragotri, Samir; Anissimov, Yuri G; Bunge, Annette L; Frasch, H Frederick; Guy, Richard H; Hadgraft, Jonathan; Kasting, Gerald B; Lane, Majella E; Roberts, Michael S

    2011-10-10

    Mathematical models of skin permeability play an important role in various fields including prediction of transdermal drug delivery and assessment of dermal exposure to industrial chemicals. Extensive research has been performed over the last several decades to yield predictions of skin permeability to various molecules. These efforts include the development of empirical approaches such as quantitative structure-permeability relationships and porous pathway theories as well as the establishment of rigorous structure-based models. In addition to establishing the necessary mathematical framework to describe these models, efforts have also been dedicated to determining the key parameters that are required to use these models. This article provides an overview of various modeling approaches with respect to their advantages, limitations and future prospects. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Negative permeability from random particle composites

    Science.gov (United States)

    Hussain, Shahid

    2017-04-01

    Artificial media, such as those composed of periodically-spaced wires for negative permittivity and split ring resonators for negative permeability have been extensively investigated for negative refractive index (NRI) applications (Smith et al., 2004; Pendry et al., 1999) [1,2]. This paper presents an alternative method for producing negative permeability: granular (or particulate) composites incorporating magnetic fillers. Artificial media, such as split-ring resonators, are designed to produce a magnetic resonance feature, which results in negative permeability over a narrow frequency range about the resonance frequency. The position of the feature is dependent upon the size of the inclusion. The material in this case is anisotropic, such that the feature is only observable when the materials are orientated in a specific direction relative to the applied field. A similar resonance can be generated in magnetic granular (particulate) materials: ferromagnetic resonance from the natural spin resonance of particles. Although the theoretical resonance profiles in granular composites shows the permeability dipping to negative values, this is rarely observed experimentally due to resonance damping effects. Results are presented for iron in spherical form and in flake form, dispersed in insulating host matrices. The two particle shapes show different permeability performance, with the magnetic flakes producing a negative contribution. This is attributed to the stronger coupling with the magnetic field resulting from the high aspect ratio of the flakes. The accompanying ferromagnetic resonance is strong enough to overcome the effects of damping and produce negative permeability. The size of random particle composites is not dictated by the wavelength of the applied field, so the materials are potentially much thinner than other, more traditional artificial composites at microwave frequencies.

  18. In situ permeability testing of rock salt

    International Nuclear Information System (INIS)

    Peterson, E.W.; Lagus, P.L.; Broce, R.D.; Lie, K.

    1981-04-01

    Storage of transuranic (TRU) wastes in bedded salt formations requires a knowledge of the in situ permeability of SENM rock salt. Since assumptions for safety assessments have been made in which these wastes could generate gas pressures on the order of the lithostatic pressure over geologic time scales, the permeability of the surrounding formation becomes an important parameter for determining the manner in which the gases will be contained or dispersed. This report describes the series of tests conducted in the AEC-7 borehole, located near the WIPP site, to determine the in situ gas flow characteristics of the bedded salt. In these tests, compressed air was injected into the borehole and flow into the surrounding formation measured. These measured flow rates were interpreted in terms of formation permeabilities and porosities which were, in turn, used as modeling parameters for the repository response analysis. Two series of field tests were performed. The first series consisted of a number of whole-hole flow tests conducted to provide preliminary design information required for future operation of a guarded straddle packer system capable of measuring permeabilities > or = 0.1 μdarcy. The second series of tests were conducted using the Systems, Science and Software (S-Cubed) designed guarded straddle packer system. In these interval permeability tests, 100-foot lengths of borehole were isolated and the flow characteristics of the surrounding formation examined. In this report, a complete description of the test procedures, instrumentation, and measurement techniques is first given. The analytical/numerical methods used for data interpretation are then presented, followed by results of the interval and permeability tests. (The whole-hole tests are summarized in Appendix A.) Conclusions are presented in the final section

  19. Abnormal intestinal permeability in primary biliary cirrhosis.

    Science.gov (United States)

    Feld, Jordan J; Meddings, Jonathan; Heathcote, E Jenny

    2006-09-01

    Antimitochondrial antibodies (AMAs) found in patients with primary biliary cirrhosis (PBC) cross-react with bacterial proteins and hence molecular mimicry has been proposed as a mechanism for AMA development. Alterations in gastrointestinal permeability would provide a potential route for increased exposure of gut flora to the immune system. In this study we aimed to compare the measured gastrointestinal permeability in patients with PBC to that in patients with liver disease (hepatitis C) and healthy control populations. Subjects drank a mixture of sucrose, lactulose, and mannitol dissolved in water. Eight-hour urinary excretion of the sugars was measured to assess intestinal permeability. Antiendomysial antibody testing was performed to exclude subclinical celiac disease. Eighty-six patients with PBC were evaluated and compared to 69 hepatitis C patients and 155 healthy controls. The mean urinary excretion of sucrose in the PBC patients (133.89 +/- 72.56 mg) was significantly higher than that in hepatitis C patients (101.07+/-63.35) or healthy controls (89.46+/-41.76) (P=0.0001), suggesting abnormal gastric or proximal small intestinal permeability. Sucrose excretion was not increased among patients with hepatitis C compared to healthy controls. The ratio of lactulose:mannitol excretion, reflecting small bowel permeability, was also elevated in the PBC group (0.017+/-0.012) compared to healthy controls (0.012+/-0.007) (P=0.0001) but was equal to that found among patients with hepatitis C (0.016+/-0.011) (P=NS). We conclude that the permeability of both the stomach and the small bowel is increased in patients with PBC, however, it is unclear if it is a cause, consequence, or manifestation of the disease.

  20. Development of an Improved Permeability Modification Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Gao, H.W.; Elphnick, J.

    1999-03-09

    This report describes the development of an improved permeability modification simulator performed jointly by BDM Petroleum Technologies and Schlumberger Dowell under a cooperative research and development agreement (CRADA) with the US Department of Energy. The improved simulator was developed by modifying NIPER's PC-GEL permeability modification simulator to include a radial model, a thermal energy equation, a wellbore simulator, and a fully implicit time-stepping option. The temperature-dependent gelation kinetics of a delayed gel system (DGS) is also included in the simulator.

  1. The Permeability of Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Williams, A.F.; Burcharth, H. F.; Adel, H. den

    1992-01-01

    The results of an extensive series of permeability experiments originally analysed by Shih (1990) are reinterpreted in the light of new experiments. It is proposed that the Forchheimer equation might not fully describe flow at the high Reynolds numbers found in the interior of rubble material....... A new series of tests designed to test for deviations from the Forchheimer equation and investigate the effects of material shape are described. While no evidence can be found to indicate a deviation from the Forchheimer equation a dependency of permeability and the surface roughness the material...

  2. Fabrication and Microstructure of Metal-Metal Syntactic Foams

    National Research Council Canada - National Science Library

    Nadler, J

    1998-01-01

    .... The composite microstructure consists of thin-wall, hollow Fe-Cr stainless steel spheres cast in various metal matrices including aluminum alloys 6061, 7075, 413, magnesium alloy AZ31B, and unalloyed...

  3. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  4. High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M; Hilfinger, John M; Yamashita, Shinji; Yu, Lawrence X; Lennernäs, Hans; Amidon, Gordon L

    2010-10-04

    The FDA classifies a drug substance as high-permeability when the fraction of dose absorbed (F(abs)) in humans is 90% or higher. This direct correlation between human permeability and F(abs) has been recently controversial, since the β-blocker sotalol showed high F(abs) (90%) and low Caco-2 permeability. The purpose of this study was to investigate the scientific basis for this disparity between permeability and F(abs). The effective permeabilities (P(eff)) of sotalol and metoprolol, a FDA standard for the low/high P(eff) class boundary, were investigated in the rat perfusion model, in three different intestinal segments with pHs corresponding to the physiological pH in each region: (1) proximal jejunum, pH 6.5; (2) mid small intestine, pH 7.0; and (3) distal ileum, pH 7.5. Both metoprolol and sotalol showed pH-dependent permeability, with higher P(eff) at higher pH. At any given pH, sotalol showed lower permeability than metoprolol; however, the permeability of sotalol determined at pH 7.5 exceeded/matched metoprolol's at pH 6.5 and 7.0, respectively. Physicochemical analysis based on ionization, pK(a) and partitioning of these drugs predicted the same trend and clarified the mechanism behind these observed results. Experimental octanol-buffer partitioning experiments confirmed the theoretical curves. An oral dose of metoprolol has been reported to be completely absorbed in the upper small intestine; it follows, hence, that metoprolol's P(eff) value at pH 7.5 is not likely physiologically relevant for an immediate release dosage form, and the permeability at pH 6.5 represents the actual relevant value for the low/high permeability class boundary. Although sotalol's permeability is low at pH 6.5 and 7.0, at pH 7.5 it exceeds/matches the threshold of metoprolol at pH 6.5 and 7.0, most likely responsible for its high F(abs). In conclusion, we have shown that, in fact, there is no discrepancy between P(eff) and F(abs) in sotalol's absorption; the data emphasize that

  5. Permeable pavement research – Edison, New Jersey

    Science.gov (United States)

    These are the slides for the New York City Concrete Promotional Council Pervious Concrete Seminar presentation. The basis for the project, the monitoring design and some preliminary monitoring data from the permeable pavement parking lot at the Edison Environmental Center are pre...

  6. Radionuclide assessment of pulmonary microvascular permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, A.B.J. [Medical Intensive Care Unit, Department of Internal Medicine, Free University Hospital, De Boelelaan 1117, 1081 HV Amsterdam (Netherlands)

    1997-04-01

    The literature has been reviewed to evaluate the technique and clinical value of radionuclide measurements of microvascular permeability and oedema formation in the lungs. Methodology, modelling and interpretation vary widely among studies. Nevertheless, most studies agree on the fact that the measurement of permeability via pulmonary radioactivity measurements of intravenously injected radiolabelled proteins versus that in the blood pool, the so-called pulmonary protein transport rate (PTR), can assist the clinician in discriminating between permeability oedema of the lungs associated with the adult respiratory distress syndrome (ARDS) and oedema caused by an increased filtration pressure, for instance in the course of cardiac disease, i.e. pressure-induced pulmonary oedema. Some of the techniques used to measure PTR are also able to detect subclinical forms of lung microvascular injury not yet complicated by permeability oedema. This may occur after cardiopulmonary bypass and major vascular surgery, for instance. By paralleling the clinical severity and course of the ARDS, the PTR method may also serve as a tool to evaluate new therapies for the syndrome. Taken together, the currently available radionuclide methods, which are applicable at the bedside in the intensive care unit, may provide a gold standard for detecting minor and major forms of acute microvascular lung injury, and for evaluating the severity, course and response to treatment. (orig.). With 2 tabs.

  7. Vascular permeability in cerebral cavernous malformations

    DEFF Research Database (Denmark)

    Mikati, Abdul G; Khanna, Omaditya; Zhang, Lingjiao

    2015-01-01

    Patients with the familial form of cerebral cavernous malformations (CCMs) are haploinsufficient for the CCM1, CCM2, or CCM3 gene. Loss of corresponding CCM proteins increases RhoA kinase-mediated endothelial permeability in vitro, and in mouse brains in vivo. A prospective case-controlled observ...

  8. Water permeability of pigmented waterborne coatings

    NARCIS (Netherlands)

    Donkers, P.A.J.; Huinink, H.P.; Erich, S.J.F.; Reuvers, N.J.W.; Adan, O.C.G.

    2013-01-01

    Coatings are used in a variety of applications. Last decades more and more coating systems are transforming from solvent to waterborne coating systems. In this study the influence of pigments on the water permeability of a waterborne coating system is studied, with special interest in the possible

  9. Foam film permeability: theory and experiment.

    Science.gov (United States)

    Farajzadeh, R; Krastev, R; Zitha, Pacelli L J

    2008-02-28

    The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

  10. Cadmium substituted high permeability lithium ferrite

    Indian Academy of Sciences (India)

    Unknown

    3, 0⋅4, 0⋅5 and 0⋅6 were pre- pared by a double sintering ... Lithium ferrites; initial permeability; grain size; microstructure; magnetic properties. 1. Introduction ... The single-phase spinel nature of the samples was con- firmed from X-ray ...

  11. Variability of permeability with diameter of conduit

    Indian Academy of Sciences (India)

    section. If a porous system is conceived to be a bundle of capillary tubes of equal radii and length [4], the permeability k is expected to increase from zero from the wall–fluid boundary towards the centre of the flow. 2. Theoretical background. Limiting Navier–Stokes equations to incompressible fluids, we get. −. 1 ρ. ∂. ∂x.

  12. Programs for the calculi of blocks permeabilities

    International Nuclear Information System (INIS)

    Gomez Hernandez, J.J.; Sovero Sovero, H.F.

    1993-01-01

    This report studies the stochastic analysis of radionuclide transport. The permeability values of blocks are necessary to do a numeric model for the flux and transport problems in ground soils. The determination of block value by function on grill value is the objective of this program

  13. Modelling of water permeability in cementitious materials

    DEFF Research Database (Denmark)

    Guang, Ye; Lura, Pietro; van Breugel, K.

    2006-01-01

    This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille la...

  14. Stabilization of the Resistive Wall Mode and Error Field Reduction by a Rotating Conducting Wall

    Science.gov (United States)

    Paz-Soldan, Carlos

    2011-10-01

    The hypothesis that the Resistive Wall Mode (RWM) can be stabilized by high-speed differentially-rotating conducting walls is tested in a linear device. This geometry allows the use of cylindrical solid metal walls, whereas a torus would require a flowing liquid metal. Experiments over the past year have for the first time explored RWM stability with a rotating copper wall capable of achieving speeds (rΩw) of up to 280 km/h, equivalent to a magnetic Reynolds number (Rm) of 5. The main results are: 1) Wall rotation increases the stability window of the RWM, allowing ~ 25% more plasma current (Ip) at Rm = 5 while maintaining MHD stability. 2) Error field reduction below a critical value allows the observation of initial mode rotation, followed by braking, wall-locking, and subsequent faster growth. 3) Locking is found to depend on the direction of wall rotation (Ω̂w) with respect to the intrinsic plasma rotation, with locking to both the static wall (vacuum vessel) and rotating wall observed. Additionally, indirect effects on RWM stability are observed via the effect of wall rotation on device error fields. Wall rotation shields locking error fields, which reduces the braking torque and inhibits mode-locking. The linear superposition of error fields from guide field (Bz) solenoid misalignments and current-carrying leads is also shown to break symmetry in Ω̂w , with one direction causing stronger error fields and earlier locking irrespective of plasma flow. Vacuum field measurements further show that rotation decreases the error field penetration time and advects the field to a different orientation, as predicted by theory. Experiments are conducted on the Rotating Wall Machine, a 1.2 m long and 16 cm diameter screw-pinch with Bz ~ 500 G, where hollow-cathode injectors are biased to source up to 7 kA of Ip, exciting current-driven RWMs. MHD activity is measured through 120 edge Br, Bθ, Bz probes as well as internal Bdot, Langmuir and Mach probes. RWM

  15. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2010-01-01

    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding...

  16. Supersymmetric domain walls

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio

    2012-01-01

    We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of

  17. Wall Finishes; Carpentry: 901895.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course outline is designed to provide instruction in selecting, preparing, and installing wall finishing materials. Prerequisites for the course include mastery of building construction plans, foundations and walls, and basic mathematics. Intended for use in grades 11 and 12, the course contains five blocks of study totaling 135 hours of…

  18. Wall Construction; Carpentry: 901892.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The curriculum guide outlines a course designed to provide instruction in floor and wall layout, and in the diverse methods and construction of walls. Upon completion of this course the students should have acquired a knowledge of construction plans and structural foundations in addition to a basic knowledge of mathematics. The course consists of…

  19. International Divider Walls

    NARCIS (Netherlands)

    Kruis, A.; Sneller, Lineke

    2013-01-01

    The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful,

  20. Neutronic absorption device for walls or equipments containing radioactive products

    International Nuclear Information System (INIS)

    1981-01-01

    This invention refers to a device for absorbing neutron radiations emitted through a metal wall. It concerns the use of this device on containers for storing and transporting radioactive products. The walls of such containers must (a) protect the environment against the neutron radiations emitted by the radioactive elements and (b) ensure that the heat generated inside the containments is passed to the outside, in general through metal parts having good thermal conductivity. This invention suggests thermal exchangers formed of finned projections providing a great heat exchange area and leak-proof metal boxes that can contain neutron absorbing incombustible products such as water with or without added boron [fr

  1. Light-Induced Conversion of Chemical Permeability to Enhance Electron and Molecular Transfer in Nanoscale Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Balgley, Renata; de Ruiter, Graham; Evmenenko, Guennadi; Bendikov, Tatyana; Lahav, Michal; van der Boom, Milko E.

    2016-12-21

    In this paper, we demonstrate how photochemically enhancing the permeability of metal–organic assemblies results in a significant enhancement of the electrochemical activity of metal complexes located within the assembly. The molecular assemblies consist of different layers of redox-active metal complexes ([M(mbpy-py)3][PF6]2; M = Ru or Os) that are separated by redox-inactive spacers consisting of 1,4-bis[2-(4-pyridyl)ethenyl]benzene (BPEB) and PdCl2 of variable thicknesses (0–13.4 nm). UV-irradiation (λ = 254 nm) of our assemblies induces a photochemical reaction in the redox-inactive spacer increasing the permeability of the assembly. The observed increase was evident by trapping organic (nBu4NBF4) and inorganic (NiCl2) salts inside the assemblies, and by evaluating the electrochemical response of quinones absorbed inside the molecular assemblies before and after UV irradiation. The increase in permeability is reflected by higher currents and a change in the directionality of electron transfer, i.e., from mono- to bidirectional, between the redox-active metal complexes and the electrode surface. The supramolecular structure of the assemblies dominates the overall electron transfer properties and overrules possible electron transfer mediated by the extensive π-conjugation of its individual organic components.

  2. Effects of an elastic membrane on tube waves in permeable formations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.; Johnson, D.

    1996-10-01

    In this paper, the modified properties were calculated for tube wave propagation in a fluid-filled borehole penetrating a permeable rock due to the presence of a mudcake which forms on the borehole wall. The mudcake was characterized by an impermeable elastic layer. The mudcake partial sealing mechanism was simulated using a finite membrane stiffness. Consequently, it was shown that the mudcake can reduce, but not eliminate, the permeability effects on the tube wave slowness and attenuation. Moreover, this paper discusses a variety of values for the relevant parameters especially the mudcake thickness and membrane stiffness. The important combinations of mudcake parameters were clarified by using an analytic expression for the low-frequency limit.

  3. Surface tension driven processes densify and retain permeability in magma and lava

    Science.gov (United States)

    Kennedy, Ben M.; Wadsworth, Fabian B.; Vasseur, Jérémie; Ian Schipper, C.; Mark Jellinek, A.; von Aulock, Felix W.; Hess, Kai-Uwe; Kelly Russell, J.; Lavallée, Yan; Nichols, Alexander R. L.; Dingwell, Donald B.

    2016-01-01

    We offer new insights into how an explosive eruption can transition into an effusive eruption. Magma containing >0.2 wt% dissolved water has the potential to vesiculate to a porosity in excess of 80 vol.% at atmospheric pressure. Thus all magmas contain volatiles at depth sufficient to form foams and explosively fragment. Yet gas is often lost passively and effusive eruptions ensue. Magmatic foams are permeable and understanding permeability in magma is crucial for models that predict eruptive style. Permeability also governs magma compaction models. Those models generally imply that a reduction in magma porosity and permeability generates an increased propensity for explosivity. Here, our experimental results show that surface tension stresses drive densification without creating an impermeable 'plug', offering an additional explanation of why dense magmas can avoid explosive eruption. In both an open furnace and a closed autoclave, we subject pumice samples with initial porosity of ∼70 vol.% to a range of isostatic pressures (0.1-11 MPa) and temperatures (350-950 °C) relevant to shallow volcanic environments. Our experimental data and models constrain the viscosity, permeability, timescales, and length scales over which densification by pore-scale surface tension stresses competes with density-driven compaction. Where surface tension dominates the dynamics, densification halts at a plateau connected porosity of ∼25 vol.% for our samples. SEM, pycnometry and micro-tomography show that in this process (1) microporous networks are destroyed, (2) the relative pore network surface area decreases, and (3) a remaining crystal framework enhances the longevity of macro-pore connectivity and permeability critical for sustained outgassing. We propose that these observations are a consequence of a surface tension-driven retraction of viscous pore walls at areas of high bubble curvature (micro-vesicular network terminations), and that this process drives bulk

  4. Sub-core permeability and relative permeability characterization with Positron Emission Tomography

    Science.gov (United States)

    Zahasky, C.; Benson, S. M.

    2017-12-01

    This study utilizes preclinical micro-Positron Emission Tomography (PET) to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in a Berea sandstone core with axial parallel bedding heterogeneity. The core is discretized into streamtubes, and using the micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core scale tracer flux and pore water velocity. Using the flux and velocity data, it is then possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Full 3D simulations are then constructed based on this core characterization. Simulation results are compared with experimental results in order to test the assumptions of the simple streamtube model. Errors and limitations of this analysis will be discussed. These new methods of imaging and sub-core permeability and relative permeability measurements enable experimental quantification of transport behavior across scales.

  5. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  6. Preliminary study of soil permeability properties using principal component analysis

    Science.gov (United States)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.

    2018-02-01

    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  7. Influence of salinity on permeability characteristics of marine sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Jose, U.V.; Bhat, S.T.; Nayak, B.U.

    that permeability increases with an increase in salt concentration for a given void ratio. This is explained by diffused double layer theory. Also, the rate of increase in permeability decreases with increase in salt concentration. The effect of salt concentration...

  8. Investigation clogging dynamic of permeable pavement systems using embedded sensors

    Science.gov (United States)

    Permeable pavement is a stormwater control measure commonly selected in both new and retrofit applications. However, there is limited information about the clogging mechanism of these systems that effects the infiltration. A permeable pavement site located at the Seitz Elementary...

  9. Intestinal permeability study of minoxidil: assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification.

    Science.gov (United States)

    Ozawa, Makoto; Tsume, Yasuhiro; Zur, Moran; Dahan, Arik; Amidon, Gordon L

    2015-01-05

    The purpose of this study was to evaluate minoxidil as a high permeability reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil was determined in in situ intestinal perfusion studies in rodents and permeability studies across Caco-2 cell monolayers. The permeability of minoxidil was compared with that of metoprolol, an FDA reference drug for BCS classification. In rat perfusion studies, the permeability of minoxidil was somewhat higher than that of metoprolol in the jejunum, while minoxidil showed lower permeability than metoprolol in the ileum. The permeability of minoxidil was independent of intestinal segment, while the permeability of metoprolol was region-dependent. Similarly, in mouse perfusion study, the jejunal permeability of minoxidil was 2.5-fold higher than that of metoprolol. Minoxidil and metoprolol showed similar permeability in Caco-2 study at apical pH of 6.5 and basolateral pH of 7.4. The permeability of minoxidil was independent of pH, while metoprolol showed pH-dependent transport in Caco-2 study. Minoxidil exhibited similar permeability in the absorptive direction (AP-BL) in comparison with secretory direction (BL-AP), while metoprolol had higher efflux ratio (ER > 2) at apical pH of 6.5 and basolateral pH of 7.4. No concentration-dependent transport was observed for either minoxidil or metoprolol transport in Caco-2 study. Verapamil did not alter the transport of either compounds across Caco-2 cell monolayers. The permeability of minoxidil was independent of both pH and intestinal segment in intestinal perfusion studies and Caco-2 studies. Caco-2 studies also showed no involvement of carrier mediated transport in the absorption process of minoxidil. These results suggest that minoxidil may be an acceptable reference drug for BCS high permeability classification. However, minoxidil exhibited higher jejunal permeability than metoprolol and thus to use minoxidil as a reference drug would raise the

  10. Thermal shielding walls

    International Nuclear Information System (INIS)

    Fujii, Takenori.

    1980-01-01

    Purpose: To suppress the amount of heat released from a pressure vessel and reliably shield neutron fluxes and gamma rays from a reactor core by the addition of cooling ducts in a thermal shielding wall provided with a blower and an air cooling cooler. Constitution: A thermal shielding wall is located on a pedestal so as to surround a pressure vessel and the pressure vessel is located by way of a skirt in the same manner. Heat insulators are disposed between the pressure vessel and the shielding wall while closer to the skirt in the skirt portion and closer to the shielding wall in the vessel body portion. A plurality of cooling ducts are arranged side by side at the inner side in the shielding wall. A through-duct radially passing through the wall is provided in the lower portion thereof and a blower fan for cooling air and a cooler for cooling returned air are connected by way of a communication duct to the other end of the through-duct. This enables to provide a shielding wall capable of suppressing the amount of heat released from the pressure vessel as much as possible and giving more effective cooling. (Kawakami, Y.)

  11. Linear permeability evolution of expanding conduits due to feedback between flow and fast phase change

    Science.gov (United States)

    Wang, Lichun; Cardenas, M. Bayani

    2017-05-01

    Conduits are ubiquitous and critical pathways for many fluids relevant for geophysical processes such as magma, water, and gases. Predicting flow through conduits is challenging when the conduit geometry coevolves with the flow. We theoretically show that the permeability (k) of a conduit whose walls are eroding due to fast phase change increases linearly with time because of a self-reinforcing mechanism. This simple result is surprising given complex feedbacks between flow, transport, and phase change. The theory is congruent with previous experimental observations of fracture dissolution in calcite. Supporting computational fracture dissolution experiments showed that k only slightly increases until the dissolution front reaches the narrowest conduit constriction, after which the linear evolution of k manifests. The theory holds across multiple scales and a broad range of Peclet and Damkohler numbers and thus advances the prediction of dynamic mass fluxes through expanding conduits in various geologic and environmental settings.Plain Language SummaryGeological conduits are ubiquitous present in the subsurface. In many situations, these conduits may enlarge through time due to erosion of its walls by dissolution and melting. This leads to strongly coupled flow and reactive transport processes where the flow dictates the wall's erosion and vice versa. As the conduit expands, so does its permeability and thus flow. Thus, predicting fluid flow and relevant transport processes through expanding conduits is challenging. In this study, we presented a theory for the linear time dependence of permeability for expanding conduits. The theory is congruent with previous observations from fracture dissolution in calcite. An additional series of our own computational experiments also aligns with the theory. The theory will be of interest to geoscientists and engineers in many fields such as hydrology, glaciology, and petroleum engineering, to name a few.

  12. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2010-01-01

    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding...... is reduced. To investigate the possibilities, full-size wall elements with wooden cladding and different cavity design, type of cladding and type of wind barrier were exposed to natural climate on the outside and to a humid indoor climate on the inside. During the exposure period parts of the vapour barrier...

  13. Plasma-wall interactions

    International Nuclear Information System (INIS)

    Behrisch, Rainer

    1978-01-01

    The plasma wall interactions for two extreme cases, the 'vacuum model' and the 'cold gas blanket' are outlined. As a first step for understanding the plasma wall interactions the elementary interaction processes at the first wall are identified. These are energetic ion and neutral particle trapping and release, ion and neutral backscattering, ion sputtering, desorption by ions, photons and electrons and evaporation. These processes have only recently been started to be investigated in the parameter range of interest for fusion research. The few measured data and their extrapolation into regions not yet investigated are reviewed

  14. Layers in Crater Wall

    Science.gov (United States)

    2004-01-01

    22 January 2004 This January 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows three distinct bands of layered material exposed in the wall of a south, middle-latitude meteor impact crater wall. Talus--debris shed from erosion of the wall--has piled up on the slopes below the layered outcrop. This picture is located near 45.5oS, 85.9oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the right/lower right.

  15. Towards cavitation-enhanced permeability in blood vessel on a chip

    Science.gov (United States)

    De Luca, R.; Silvani, G.; Scognamiglio, C.; Sinibaldi, G.; Peruzzi, G.; Chinappi, M.; Kiani, M. F.; Casciola, C. M.

    2017-08-01

    The development of targeted delivery systems releasing pharmaceutical agents directly at the desired site of action may improve their therapeutic efficiency while minimizing damage to healthy tissues, toxicity to the patient and drug waste. In this context, we have developed a bio-inspired microdevice mimicking the tumour microvasculature which represents a valuable tool for assessing the enhancement of blood vessel permeability due to cavitation. This novel system allows us to investigate the effects of ultrasound-driven microbubbles that temporarily open the endothelial intercellular junctions allowing drug to extravasate blood vessels into tumour tissues. The blood vessel on a chip consists of a tissue chamber and two independent vascular channels (width 200 µm, height 100 µm, length 2762 µm) cultured with endothelial cells placed side-by-side and separated by a series of 3 µm pores. Its geometry and dimensions mimic the three-dimensional morphology, size and flow characteristics of microvessels in vivo. The early stage of this project had a twofold objective: 1. To define the protocol for culturing of Human Umbilical Vein Endothelial Cells (HUVECs) within the vascular channel; 2. To develop a fluorescence based microscopy technique for measuring permeability. We have developed a reliable and reproducible protocol to culture endothelial cells within the artificial vessels in a realistic manner: HUVECs show the typical elongated shape in the direction of flow, exhibit tight junction formation and form a continuous layer with a central lumen that completely covers the channels wall. As expected, the permeability of cell-free device is higher than the one cultured with HUVECs in the vascular channels. The proposed blood vessel on a chip and the permeability measurement protocol have a significant potential to allow for the study of cavitation-enhanced permeability of the endothelium and improve efficiency in screening drug delivery systems.

  16. Evolution of permeability and microstructure of tight carbonates due to numerical simulation of calcite dissolution

    Science.gov (United States)

    Miller, Kevin; Vanorio, Tiziana; Keehm, Youngseuk

    2017-06-01

    The current study concerns fundamental controls on fluid flow in tight carbonate rocks undergoing CO2 injection. Tight carbonates exposed to weak carbonic acid exhibit order of magnitude changes in permeability while maintaining a nearly constant porosity with respect to the porosity of the unreacted sample. This study aims to determine—if not porosity—what are the microstructural changes that control permeability evolution in these rocks? Given the pore-scale nature of chemical reactions, we took a digital rock physics approach. Tight carbonate mudstone was imaged using X-ray microcomputed tomography. We simulated calcite dissolution using a phenomenological numerical model that stands from experimental and microstructural observations under transport-limited reaction conditions. Fluid flow was simulated using the lattice-Boltzmann method, and the pore wall was adaptively eroded at a rate determined by the local surface area and velocity magnitude, which we use in place of solvent flux. We identified preexisting, high-conductivity fluid pathways imprinted in the initial microstructure. Though these pathways comprise a subset of the total connected porosity, they accommodated 80 to 99% of the volumetric flux through the digital sample and localized dissolution. Porosity-permeability evolution exhibited two stages: selective widening of narrow pore throats that comprised preferential pathways and development and widening of channels. We quantitatively monitored attributes of the pore geometry, namely, porosity, specific surface area, tortuosity, and average hydraulic diameter, which we qualitatively linked to permeability. This study gives a pore-scale perspective on the microstructural origins of laboratory permeability-porosity trends of tight carbonates undergoing transport-limited reaction with CO2-rich fluid.

  17. Chemo-Mechano Coupling Processes Inducing Evolution of Rock Permeability under Hydrothermal and Stressed Conditions (Invited)

    Science.gov (United States)

    Yasuhara, H.; Takahashi, M.; Kishida, K.; Nakashima, S.

    2013-12-01

    Coupled thermo-hydro-mechano-chemo (THMC) processes prevailing within fractured rocks are of significant importance in case of a long-term geo-sequestration of anthropogenic wastes of high level radioactive materials and carbon dioxide, and an effective recovery of energy from petroleum and geothermal reservoirs typically located in deep underground. The THMC processes should change the mechanical, hydraulic, and transport properties of the host rocks. Under even moderate pressure and temperature conditions, geochemical processes such as mineral dissolution should be active and may induce the change of those properties. Therefore, the effects should be examined in detail. In this work, a suite of long-term permeability experiments using granite, sandstone, and mudstone with or without a single fracture has been conducted under moderate confining pressures ranging 3 - 15 MPa and temperatures of 20 and 90 °C, and monitors the evolution in rock permeability and effluent chemistry throughout the experimental periods. Under net reduction or augmentation of pore/fracture volumes, the net permeability should alternatively increase or decrease with time, depending on the prevailing mechanical and geochemical processes. In granite samples, At 20 °C the observed fracture permeabilities monotonically reduce and reach quasi-steady state in two weeks, but after the temperature is increased to 90 °C those resume decreasing throughout the rest of experiments - the ultimate reductions are roughly two orders of magnitude within 40 days. In mudstone samples, similar results to those in granite samples are obtained (i.e., monotonic reduction and subsequent quasi-steady state). In contrast, in sandstone samples, a monotonic augmentation in permeability has been observed throughout the experiments. A chemo-mechanical model that accounts for temperature-dependent mineral dissolutions at contacting areas and free walls of pore spaces is applied to replicating the experimental

  18. Permittivity and permeability tensors for cloaking applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book is focused on derivations of analytical expressions for stealth and cloaking applications. An optimal version of electromagnetic (EM) stealth is the design of invisibility cloak of arbitrary shapes in which the EM waves can be controlled within the cloaking shell by introducing a prescribed spatial variation in the constitutive parameters. The promising challenge in design of invisibility cloaks lies in the determination of permittivity and permeability tensors for all the layers. This book provides the detailed derivation of analytical expressions of the permittivity and permeability tensors for various quadric surfaces within the eleven Eisenhart co-ordinate systems. These include the cylinders and the surfaces of revolutions. The analytical modeling and spatial metric for each of these surfaces are provided along with their tensors. This mathematical formulation will help the EM designers to analyze and design of various quadratics and their hybrids, which can eventually lead to design of cloakin...

  19. Alterations in Intestinal Permeability After Thermal Injury,

    Science.gov (United States)

    1992-01-01

    circulation, remain un- intestinal mucosal blood flow is markedly decreased after metabolized , and are excreted by the kidney. Mannitol is thermal...is a positive correlation between burn 6. Menzles IS, Pounder R, Laker MP, et al. Abnormal Intes- size and endotoxemia , not every burned patient...develops tinal permeability to sugars In villous atrophy. Lancet. 1979; endotoxemia during the postburn course. It is possible 2:1107-1109. that a

  20. Tunable terahertz metamaterials with negative permeability

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kužel, Petr; Kadlec, Filip; Kadlec, Christelle; Yahiaoui, R.; Mounaix, P.

    2009-01-01

    Roč. 79, č. 24 (2009), 241108/1-241108/4 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA100100907; GA MŠk LC512; GA MŠk MEB020742 Institutional research plan: CEZ:AV0Z10100520 Keywords : tunable metamaterial * effective magnetic permeability * incipient ferroelectrics * strontium titanate * terahertz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  1. Bistable Bacterial Growth Rate in Response to Antibiotics with Low Membrane Permeability

    Science.gov (United States)

    Elf, Johan; Nilsson, Karin; Tenson, Tanel; Ehrenberg, Måns

    2006-12-01

    We demonstrate that growth rate bistability for bacterial cells growing exponentially at a fixed external antibiotic concentration can emerge when the cell wall permeability for the drug is low and the growth rate sensitivity to the intracellular drug concentration is high. Under such conditions, an initially high growth rate can remain high, due to dilution of the intracellular drug concentration by rapid cell volume increase, while an initially low growth rate can remain low, due to slow cell volume increase and insignificant drug dilution. Our findings have implications for the testing of novel antibiotics on growing bacterial strains.

  2. Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters

    Science.gov (United States)

    Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook

    2018-01-01

    Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.

  3. Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms

    Directory of Open Access Journals (Sweden)

    Polzer Stanislav

    2012-08-01

    Full Text Available Abstract Background The predictions of stress fields in Abdominal Aortic Aneurysm (AAA depend on constitutive descriptions of the aneurysm wall and the Intra-luminal Thrombus (ILT. ILT is a porous diluted structure (biphasic solid–fluid material and its impact on AAA biomechanics is controversially discussed in the literature. Specifically, pressure measurements showed that the ILT cannot protect the wall from the arterial pressure, while other (numerical and experimental studies showed that at the same time it reduces the stress in the wall. Method To explore this phenomenon further a poroelastic description of the ILT was integrated in Finite Element (FE Models of the AAA. The AAA model was loaded by a pressure step and a cyclic pressure wave and their transition into wall tension was investigated. To this end ILT’s permeability was varied within a microstructurally motivated range. Results The two-phase model verified that the ILT transmits the entire mean arterial pressure to the wall while, at the same time, it significantly reduces the stress in the wall. The predicted mean stress in the AAA wall was insensitive to the permeability of the ILT and coincided with the results of AAA models using a single-phase ILT description. Conclusion At steady state, the biphasic ILT behaves like a single-phase material in an AAA model. Consequently, computational efficient FE single-phase models, as they have been exclusively used in the past, accurately predict the wall stress in AAA models.

  4. A Reconciliation of Packed Column Permeability Data: Column Permeability as a Function of Particle Porosity

    Directory of Open Access Journals (Sweden)

    Hubert M. Quinn

    2014-01-01

    Full Text Available In his textbook teaching of packed bed permeability, Georges Guiochon uses mobile phase velocity as the fluid velocity term in his elaboration of the Darcy permeability equation. Although this velocity frame makes a lot of sense from a thermodynamic point of view, it is valid only with respect to permeability at a single theoretical boundary condition. In his more recent writings, however, Guiochon has departed from his long-standing mode of discussing permeability in terms of the Darcy equation and has embraced the well-known Kozeny-Blake equation. In this paper, his teaching pertaining to the constant in the Kozeny-Blake equation is examined and, as a result, a new correlation coefficient is identified and defined herein based on the velocity frame used in his teaching. This coefficient correlates pressure drop and fluid velocity as a function of particle porosity. We show that in their experimental protocols, Guiochon et al. have not adhered to a strict material balance of permeability which creates a mismatch of particle porosity and leads to erroneous conclusions regarding the value of the permeability coefficient in the Kozeny-Blake equation. By correcting the experimental data to properly reflect particle porosity we reconcile the experimental results of Guiochon and Giddings, resulting in a permeability reference chart which is presented here for the first time. This reference chart demonstrates that Guiochon’s experimental data, when properly normalized for particle porosity and other related discrepancies, corroborates the value of 267 for the constant in the Kozeny-Blake equation which was derived by Giddings in 1965.

  5. Permeability restoration in underground disposal reservoirs

    International Nuclear Information System (INIS)

    Grubbs, D.M.; Haynes, C.D.; Whittle, G.P.

    1973-09-01

    The aim of the research performed was to explore methods of permeability restoration in underground disposal reservoirs that may improve the receptive capacity of a well to a level that will allow continued use of the disposal zone without resorting to elevated injection pressures. The laboratory investigation employed a simulated open-hole completion in a disposal well wherein the entire formation face is exposed to the well bore. Cylindrical core samples from representative reservoir rocks through which a central vertical opening or borehole had been drilled were injected with a liquid waste obtained from a chemical manufacturing plant. This particular waste material was found to have a moderate plugging effect when injected into samples of reservoir rocks in a prior study. A review was made of the chemical considerations that might account for the reduction of permeability in waste injection. Purpose of this study was to ascertain the conditions under which the precipitation of certain compounds might occur in the injection of the particular waste liquid employed. A summary of chemical calculations is contained in Appendix B. The data may be useful in the treatment of wastes prior to injection and in the design of restoration procedures where analyses of waste liquids and interstitial materials are available. The results of permeability restoration tests were analyzed mathematically by curve-fitting techniques performed by a digital computer. A summary of the analyses is set forth in the discussion of test results and examples of computer printouts are included in Appendix A

  6. Advanced walling systems

    CSIR Research Space (South Africa)

    De Villiers, A

    2010-01-01

    Full Text Available The question addressed by this chapter is: How should advanced walling systems be planned, designed, built, refurbished, and end their useful lives, to classify as smart, sustainable, green or eco-building environments?...

  7. Anterior vaginal wall repair

    Science.gov (United States)

    ... may have you: Learn pelvic floor muscle exercises ( Kegel exercises ) Use estrogen cream in your vagina Try ... repair; Urinary incontinence - vaginal wall repair Patient Instructions Kegel exercises - self-care Self catheterization - female Suprapubic catheter ...

  8. Plasma-wall interaction

    International Nuclear Information System (INIS)

    Reichle, R.

    2004-01-01

    This document gathers the 43 slides presented in the framework of the week long lecture 'hot plasmas 2004' and dedicated to plasma-wall interaction in a tokamak. This document is divided into 4 parts: 1) thermal load on the wall, power extraction and particle recovery, 2) basic edge plasma physics, 3) processes that drive the plasma-solid interaction, and 4) material conditioning (surface treatment...) for ITER

  9. Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials.

    Science.gov (United States)

    Lin, Cheng-Fang; Wu, Chung-Hsin; Ho, Hsiu-Mai

    2006-01-01

    Water treatment plant sludge and municipal solid waste incinerator bottom ash are non-hazardous residues, and they can be reprocessed to produce useful materials for city public works. In this study, an effort was endeavored to investigate the properties of water permeable bricks made of water treatment sludge and bottom ash without involving an artificial aggregate step. The water treatment plant sludge was dried and ground, and the bottom ash was subjected to magnetic separation to remove ferrous metals. Both sludge and bottom ash were ground and sieved to a size of bottom ash and the blocks were molded under a pressure of 110 kg/cm2. Thereafter, the molded blocks were sintered at temperatures of 900-1200 degrees C for 60-360 min. The compressive strength, permeability and water absorption rate of the sintered brick were examined and compared to relevant standards. The amount of bottom ash added in the mixture with water treatment sludge affects both the compressive strength and the permeability of the sintered bricks. The two effects are antonymous as higher bottom ash content will develop a beehive configuration and have more voids in the brick. It is concluded that a 20% weight content of bottom ash under a sintering condition of 1150 degrees C for 360 min can generate a brick with a compressive strength of 256 kg/cm2, a water absorption ratio of 2.78% and a permeability of 0.016 cm/s.

  10. Comparison of dentin root canal permeability and morphology after irradiation with Nd:YAG, Er:YAG, and diode lasers.

    Science.gov (United States)

    Esteves-Oliveira, Marcella; de Guglielmi, Camila A B; Ramalho, Karen Müller; Arana-Chavez, Victor E; de Eduardo, Carlos Paula

    2010-09-01

    The aim of this study was to compare the effects of Nd:YAG, Er:YAG, and diode lasers on the morphology and permeability of root canal walls. The three laser wavelengths mentioned interact differently with dentin and therefore it is possible that the permeability changes caused will determine different indications during endodontic treatment. Twenty-eight human single-rooted teeth were instrumented up to ISO 40 and divided into four groups: group C, control (GC), non-laser irradiated; group N (GN), irradiated with Nd:YAG laser; group E (GE), with Er:YAG laser and group D (GD) with diode laser. After that, the roots were filled with a 2% methylene blue dye, divided into two halves and then photographed. The images were analyzed using Image J software and the percentage of dye penetration in the cervical, middle, and apical root thirds were calculated. Additional scanning electron microscopy (SEM) analyses were also performed. The analysis of variance (ANOVA) showed significant permeability differences between all groups in the middle and cervical thirds (p laser and diode laser (808 nm) root canal irradiation increase dentinal permeability and Nd:YAG (1,064 nm) laser decreases dentin permeability, within the studied parameters.

  11. EDZ and permeability in clayey rocks

    International Nuclear Information System (INIS)

    Levasseur, Severine; Collin, Frederic; Charlier, Robert; Besuelle, Pierre; Chambon, Rene; Viggiani, Cino

    2010-01-01

    Document available in extended abstract form only. Deep geological layers are being considered as potential host rocks for the high level radioactivity waste disposals. During drilling in host rocks, an excavated damaged zone - EDZ is created. The fluid transmissivity may be modified in this damaged zone. This paper deals with the permeability evolution in relation with diffuse and/or localized crack propagation in the material. We mainly focus on argillaceous rocks and on some underground laboratories: Mol URL in Boom clay, Bure URL in Callovo-Oxfordian clay and Mont-Terri URL in Opalinus clay. First, observations of damage around galleries are summarized. Structure of damage in localized zone or in fracture has been observed at underground gallery scale within the excavation damaged zone (EDZ). The first challenge for a correct understanding of all the processes occurring within the EDZ is the characterization at the laboratory scale of the damage and localization processes. The observation of the initiation and propagation of the localized zones needs for advanced techniques. X-ray tomography is a non-destructive imaging technique that allows quantification of internal features of an object in 3D. If mechanical loading of a specimen is applied inside a X-ray CT apparatus, successive 3D images at different loading steps show the evolution of the specimen. However, in general volumetric strain in a shear band is small compared to the shear strain and, unfortunately, in tomographic images grey level is mainly sensitive to the local mass density field. Such a limitation has been recently overcome by complementing X-ray tomography with 3D Volumetric Digital Image Correlation (V-DIC) which allows the determination of the full strain tensor field. Then it is possible to further explore the progression of localized deformation in the specimen. The second challenge is the robust modelling of the strain localized process. In fact, modelling the damage process with finite

  12. Synthesis of Plate-Like Nanoalumina and Its Effect on Gas Permeability of Carbon Fiber Epoxy Composite

    Directory of Open Access Journals (Sweden)

    Ghadamali Karimi Khozani

    2017-03-01

    Full Text Available In recent years considerable efforts have been made to develop gas impermeable polymer systems. Compared with metal system counterparts they have advantages such as low density and production costs. The most important challenge in development of impermeable polymer systems is to reduce their gas permeability by proper selection of system composition and process conditions. In this work, nanoparticles were initially synthesized using Al (NO33•9H2O and sodium dodecyl sulfate as a structure-directing agent via hydrothermal method and a plate-like structure was characterized by FESEM and EDAX analyses. In the second step, epoxy/plate-like nanoalumina nanocomposites and epoxy-carbon fiber composites containing 1, 2.5, and 5 wt% nanoalumina were prepared. The effect of nanoparticle loading level on permeability of nitrogen, argon, and carbon dioxide in epoxy/plate-like nanoalumina nanocomposites was investigated. It was observed that the permeability of epoxy/plate-like nanoalumina nanocomposites toward nitrogen, argon, and carbon dioxide gases reduced 83%, 74%, and 50%, respectively. It was deduced that the permeability reduction was clearly associated with the diameter of gas molecules. Generally speaking, the results showed that the incorporation of plate-like nanoalumina particles significantly reduced the gas permeability. Also, carbon dioxide gas permeability of carbon fiber epoxy composites containing plate-like nanoalumina was investigated to show the effect of ingredients on the gas permeability of the system. The results indicated that carbon dioxide gas permeability of epoxy carbon fiber composite containing 5 wt% of plate-like nanoalumina was totally reduced 84%.

  13. Quantification and Control of Wall Effects in Porous Media Experiments

    Science.gov (United States)

    Roth, E. J.; Mays, D. C.; Neupauer, R.; Crimaldi, J. P.

    2017-12-01

    Fluid flow dynamics in porous media are dominated by media heterogeneity. This heterogeneity can create preferential pathways in which local seepage velocities dwarf system seepage velocities, further complicating an already incomplete understanding of dispersive processes. In physical models of porous media flows, apparatus walls introduce preferential flow paths (i.e., wall effects) that may overwhelm other naturally occurring preferential pathways within the apparatus, leading to deceptive results. We used planar laser-induced fluorescence (PLIF) in conjunction with refractive index matched (RIM) porous media and pore fluid to observe fluid dynamics in the porous media, with particular attention to the region near the apparatus walls in a 17 cm x 8 cm x 7 cm uniform flow cell. Hexagonal close packed spheres were used to create an isotropic, homogenous porous media field in the interior of the apparatus. Visualization of the movement of a fluorescent dye revealed the influence of the wall in creating higher permeability preferential flow paths in an otherwise homogenous media packing. These preferential flow paths extended approximately one half of one sphere diameter from the wall for homogenously packed regions, with a quickly diminishing effect on flow dynamics for homogenous media adjacent to the preferential pathway, but with major influence on flow dynamics for adjoining heterogeneous regions. Multiple approaches to mitigate wall effects were investigated, and a modified wall was created such that the fluid dynamics near the wall mimics the fluid dynamics within the homogenous porous media. This research supports the design of a two-dimensional experimental apparatus that will simulate engineered pumping schemes for use in contaminant remediation. However, this research could benefit the design of fixed bed reactors or other engineering challenges in which vessel walls contribute to unwanted preferential flow.

  14. KETERASINGAN DALAM FILM WALL-E

    Directory of Open Access Journals (Sweden)

    Rahmadya Putra Nugraha

    2017-05-01

    Full Text Available Modern society nowadays technological advances at first create efficiency in human life. Further development of the technology thus drown human in a routine and automation of work created. The State is to be one of the causes of man separated from fellow or the outside world and eventually experiencing alienation. The movie as a mass media function to obtain the movie and entertainment can be informative or educative function is contained, even persuasive. The purpose of this research was conducted to find out the alienation in the movie Wall E. The concepts used to analyze the movie Wall E this is communication, movie, and alienation. The concept of alienation of human alienation from covering its own products of human alienation from its activities, the human alienation from nature of his humanity and human alienation from each other. Paradigm used is a critical paradigm with type a descriptive research with qualitative approach. The method used is the analysis of semiotics Roland Barthes to interpretation the scope of social alienation and fellow humans in the movie.This writing research results found that alienation of humans with other humans influenced the development of the technology and how the human it self represented of technology, not from our fellow human beings. Masyarakat modern saat ini kemajuan teknologi pada awalnya membuat efisiensi dalam kehidupan manusia. Perkembangan selanjutnya teknologi justru menenggelamkan manusia dalam suatu rutinitas dan otomatisasi kerja yang diciptakan. Keadaan itulah yang menjadi salah satu penyebab manusia terpisah dari sesama atau dunia luar dan akhirnya mengalami keterasingan. Film sebagai media massa berfungsi untuk memperoleh hiburan dan dalam film dapat terkandung fungsi informatif maupun edukatif, bahkan persuasif. Tujuan Penelitian ini dilakukan untuk mengetahui Keterasingan dalam film Wall E. Konsep-konsep yang digunakan untuk menganalisis film Wall E ini adalah komunikasi, film, dan

  15. Manganese and Zinc Spinel Ferrites Blended with Multi-Walled Carbon Nanotubes as Microwave Absorbing Materials

    Directory of Open Access Journals (Sweden)

    Ahmet Teber

    2017-01-01

    Full Text Available Magnetic and dielectric materials can be blended to enhance absorption properties at microwave frequencies, although the materials may have relatively weak attenuation capabilities by themselves. The specific goal of this work is to enhance microwave absorption properties of materials with interesting dielectric behavior by blending them with magnetic materials based on transition metals. The synthesized Mn1−xZnxFe2O4 (x = 0.0 and 1.0 spinel ferrite nanoparticles (MZF NPs were blended with commercial multi-walled carbon nanotubes (MWCNTs in various proportions with a binder matrix of paraffin. This simple and efficient process did not cause a significant variation in the energy states of MWCNTs. MZF NPs were synthesized with a citric acid assisted sol–gel method. Their electromagnetic characteristics and microwave absorption properties were investigated. These properties were derived from the microwave scattering parameters measured via the transmission line technique by using a vector network analyzer (VNA in conjunction with an X band waveguide system. The return loss (RL values of the samples were obtained from the electromagnetic constitutive parameters (permittivity and permeability. The results indicate that the minimum RL value and the bandwidth change significantly with the amount of ferrite material in the blend. These results encourage further development of MWCNTs blended with ferrite nanoparticles for broadband microwave applications.

  16. Detection of semi-volatile organic compounds in permeable pavement infiltrate

    Science.gov (United States)

    Abstract The Edison Environmental Center (EEC) has a research and demonstration permeable parking lot comprised of three different permeable systems: permeable asphalt, porous concrete and interlocking concrete permeable pavers. Water quality and quantity analysis has been ongoin...

  17. Upscaling of permeability field of fractured rock system: Numerical examples

    KAUST Repository

    Bao, K.

    2012-01-01

    When the permeability field of a given porous medium domain is heterogeneous by the existence of randomly distributed fractures such that numerical investigation becomes cumbersome, another level of upscaling may be required. That is such complex permeability field could be relaxed (i.e., smoothed) by constructing an effective permeability field. The effective permeability field is an approximation to the real permeability field that preserves certain quantities and provides an overall acceptable description of the flow field. In this work, the effective permeability for a fractured rock system is obtained for different coarsening scenarios starting from very coarse mesh all the way towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases, and very good agreement is obtained.

  18. In Vitro Intrinsic Permeability: A Transporter-Independent Measure of Caco-2 Cell Permeability in Drug Design and Development.

    Science.gov (United States)

    Fredlund, Linda; Winiwarter, Susanne; Hilgendorf, Constanze

    2017-05-01

    In vitro permeability data have a central place in absorption risk assessments in drug discovery and development. For compounds where active efflux impacts permeability in vitro, the inherent passive membrane permeability ("intrinsic permeability") gives a concentration-independent measure of the compound's permeability. This work describes the validation of an in vitro intrinsic permeability assay and application of the data in a predictive in silico model. Apparent intrinsic permeability (P app ) across Caco-2 cell monolayers is determined in the presence of an optimized cocktail of chemical inhibitors toward the three major efflux transporters ABCB1, ABCC2, and ABCG2. The intrinsic P app value gives an estimate of passive permeability, which is independent of transporter expression levels and not limited by solubility or cell toxicity. An in silico model has been established to predict the Caco-2 intrinsic permeability and shown to consistently identify highly permeable compounds. The new intrinsic permeability assay is useful for early absorption estimates and suitable for absorption risk assessment in DMPK and pharmaceutical development.

  19. Engineered Trehalose Permeable to Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Alireza Abazari

    Full Text Available Trehalose is a naturally occurring disaccharide which is associated with extraordinary stress-tolerance capacity in certain species of unicellular and multicellular organisms. In mammalian cells, presence of intra- and extracellular trehalose has been shown to confer improved tolerance against freezing and desiccation. Since mammalian cells do not synthesize nor import trehalose, the development of novel methods for efficient intracellular delivery of trehalose has been an ongoing investigation. Herein, we studied the membrane permeability of engineered lipophilic derivatives of trehalose. Trehalose conjugated with 6 acetyl groups (trehalose hexaacetate or 6-O-Ac-Tre demonstrated superior permeability in rat hepatocytes compared with regular trehalose, trehalose diacetate (2-O-Ac-Tre and trehalose tetraacetate (4-O-Ac-Tre. Once in the cell, intracellular esterases hydrolyzed the 6-O-Ac-Tre molecules, releasing free trehalose into the cytoplasm. The total concentration of intracellular trehalose (plus acetylated variants reached as high as 10 fold the extracellular concentration of 6-O-Ac-Tre, attaining concentrations suitable for applications in biopreservation. To describe this accumulation phenomenon, a diffusion-reaction model was proposed and the permeability and reaction kinetics of 6-O-Ac-Tre were determined by fitting to experimental data. Further studies suggested that the impact of the loading and the presence of intracellular trehalose on cellular viability and function were negligible. Engineering of trehalose chemical structure rather than manipulating the cell, is an innocuous, cell-friendly method for trehalose delivery, with demonstrated potential for trehalose loading in different types of cells and cell lines, and can facilitate the wide-spread application of trehalose as an intracellular protective agent in biopreservation studies.

  20. Nitric oxide turnover in permeable river sediment

    DEFF Research Database (Denmark)

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M

    2014-01-01

    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed......-nitroso-N-acetylpenicillamine (SNAP) (1) confirmed denitrification as the main NO consumption pathway, with N2O as its major product, (2) showed that denitrification combines one free NO molecule with one NO molecule formed from nitrite to produce N2O, and (3) suggested that NO inhibits N2O reduction....

  1. Microwave complex permeability and permittivity of nanoferrites

    Science.gov (United States)

    Sharma, Anjali; Afsar, Mohammed N.

    2011-04-01

    Complex permittivity and permeability of nanosized magnetic powders are studied for eight different bands to cover the frequency range from 2-40 GHz. A precise transmission-reflection based waveguide technique has been used to carry out measurements across the frequency bands. The algorithm for transmission and reflection calculations has been modified to account for variable sample thickness in the in-waveguide measurement setup. Diluted nanopowder sample has also been studied. The ferromagnetic resonance in nanoferrites has been observed to be sharper compared to microsized ferrites. Detailed analysis of measurement uncertainties and instrumentation errors has been performed.

  2. Permeability log using new lifetime measurements

    International Nuclear Information System (INIS)

    Dowling, D.J.; Boyd, J.F.; Fuchs, J.A.

    1975-01-01

    Comparative measurements of thermal neutron decay time are obtained for a formation after irradiation with a pulsed neutron source. Chloride ions in formation fluids are concentrated by the electrosmosis effect using charged poles on a well logging sonde. The formation is irradiated with fast neutrons and a first comparative measure of the thermal neutron decay time or neutron lifetime is taken. The chloride ions are then dispersed by acoustic pumping with a magnetostrictive transducer. The formation is then again irradiated with fast neutrons and a comparative measure of neutron lifetime is taken. The comparison is a function of the variation in chloride concentration between the two measurements which is related to formation permeability

  3. Rigid gas permeable lenses and patient management.

    Science.gov (United States)

    Terry, R; Schnider, C; Holden, B A

    1989-01-01

    The introduction of new rigid gas permeable (RGP) contact lens materials provides the practitioner with a number of alternatives for patient management. But whatever the lens materials used, problems related to the lenses, care and maintenance solutions, and patients may arise. This paper examines concerns such as parameter instability, durability of lenses, compatibility of materials and solutions, patient education and compliance, 3 and 9 o'clock staining, corneal distortion, and lid changes. Suggestions are made on ways to avoid or minimize problems related to RGP lens wear.

  4. Water permeability in human airway epithelium

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Procida, Kristina; Larsen, Per Leganger

    2005-01-01

    of those seen in AQP-associated water transport. Together, these results indicate the presence of an AQP in the apical membrane of the spheroids. Notably, identical values for P(f) were found in CF and non-CF airway preparations, as was the case also for the calculated spontaneous fluid absorption rates.......Osmotic water permeability (P(f)) was studied in spheroid-shaped human airway epithelia explants derived from nasal polyps by the use of a new improved tissue collection and isolation procedure. The fluid-filled spheroids were lined with a single cell layer with the ciliated apical cell membrane...

  5. Laser Additive Manufacturing of Gas Permeable Structures

    Science.gov (United States)

    Klahn, C.; Bechmann, F.; Hofmann, S.; Dinkel, M.; Emmelmann, C.

    Laser additive manufacturing offers a variety of new design possibilities. In mold making laser additive manufactured inserts with conformal cooling channels are already state of the art. Pneumatic ejectors for injection molds are a new application for laser additive manufacturing. The pneumatic ejectors require a durable gas permeable material. This material is produced by placing the scan vectors for the laser additive manufacturing process in a defined pattern. Trials with different plastics proofed the function and reliability of the pneumatic ejector concept in the injection molding cycle.

  6. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability

    Directory of Open Access Journals (Sweden)

    Karin ede Punder

    2015-05-01

    Full Text Available Chronic non-communicable diseases (NCDs are the leading causes of work absence, disability and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here we hypothesize that stresses (defined as homeostatic disturbances can induce low-grade inflammation by increasing the availability of water, sodium and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases.

  7. Depletion of E. coli in permeable pavement mineral aggregate storage and reuse systems.

    Science.gov (United States)

    Myers, B R; Beecham, S; van Leeuwen, J A; Keegan, A

    2009-01-01

    Permeable pavement reservoirs provide an important opportunity for the harvesting and storage of stormwater for reuse. This research aims to determine whether storage in dolomite, calcite and quartzite mineral aggregates in the base course of a permeable pavement impacts on the survival of the pathogen indicator organism Escherichia coli (E. coli) in storage. The reasons for depletion were also investigated. Twelve model permeable pavement storage reservoirs were filled, in triplicate, with dolomite, calcite and quartzite. Three reservoirs contained no aggregate. After filling with pathogen spiked rainwater, the concentration of E. coli was examined for 22 days in the reservoirs. The reservoirs were then agitated to determine if there was E. coli present which was not in aqueous suspension. The results of the experiments show that there is no significant difference in the depletion of E. coli found in reservoirs without aggregate, and those filled with dolomite or calcite. The rate of depletion was found to be significantly lower in the quartzite filled reservoirs. Agitation of the reservoirs yielded increases in the aqueous concentration of E. coli in all reservoir types, suggesting that the bacteria are adhering to the surface of the mineral aggregate and to the reservoir walls.

  8. Ultrathin Gas Permeable Oxide Membranes for Chemical Sensing: Nanoporous Ta2O5 Test Study

    Directory of Open Access Journals (Sweden)

    Alexander Imbault

    2015-09-01

    Full Text Available Conductometric gas sensors made of gas permeable metal oxide ultrathin membranes can combine the functions of a selective filter, preconcentrator, and sensing element and thus can be particularly promising for the active sampling of diluted analytes. Here we report a case study of the electron transport and gas sensing properties of such a membrane made of nanoporous Ta2O5. These membranes demonstrated a noticeable chemical sensitivity toward ammonia, ethanol, and acetone at high temperatures above 400 °C. Different from traditional thin films, such gas permeable, ultrathin gas sensing elements can be made suspended enabling advanced architectures of ultrasensitive analytical systems operating at high temperatures and in harsh environments.

  9. Thermal treatment wall

    Science.gov (United States)

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  10. Flood Mitigation by Permeable Pavements in Chinese Sponge City Construction

    Directory of Open Access Journals (Sweden)

    Maochuan Hu

    2018-02-01

    Full Text Available It is important to evaluate the effectiveness of permeable pavements on flood mitigation at different spatial scales for their effective application, for example, sponge city construction in China. This study evaluated the effectiveness of three types of permeable pavements (i.e., permeable asphalts (PA, permeable concretes (PC, and permeable interlocking concrete pavers (PICP on flood mitigation at a community scale in China using a hydrological model. In addition, the effects of clogging and initial water content in permeable pavements on flood mitigation performance were assessed. The results indicated that in 12 scenarios, permeable pavements reduced total surface runoff by 1–40% and peak flow by 7–43%, respectively. The hydrological performance of permeable pavements was limited by clogging and initial water content. Clogging resulted in the effectiveness on total surface runoff reduction and peak flow reduction being decreased by 62–92% and 37–65%, respectively. By increasing initial water content at the beginning of the simulation, the effectiveness of total runoff reduction and peak flow reduction decreased by 57–85% and 37–67%, respectively. Overall, among the three types of permeable pavements, PC without clogging had the best performance in terms of flood mitigation, and PICP was the least prone to being clogged. Our findings demonstrate that both the type and the maintenance of permeable pavements have significant effects on their performance in the flood mitigation.

  11. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress

    Science.gov (United States)

    Rukhlenko, Oleksii S.; Dudchenko, Olga A.; Zlobina, Ksenia E.; Guria, Georgy Th.

    2015-01-01

    Increased shear stress such as observed at local stenosis may cause drastic changes in the permeability of the vessel wall to procoagulants and thus initiate intravascular blood coagulation. In this paper we suggest a mathematical model to investigate how shear stress-induced permeability influences the thrombogenic potential of atherosclerotic plaques. Numerical analysis of the model reveals the existence of two hydrodynamic thresholds for activation of blood coagulation in the system and unveils typical scenarios of thrombus formation. The dependence of blood coagulation development on the intensity of blood flow, as well as on geometrical parameters of atherosclerotic plaque is described. Relevant parametric diagrams are drawn. The results suggest a previously unrecognized role of relatively small plaques (resulting in less than 50% of the lumen area reduction) in atherothrombosis and have important implications for the existing stenting guidelines. PMID:26222505

  12. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  13. Fault Zone Architecture and Mineralogy: Implications in Fluid Flow and Permeability in Crustal Scale Fault Zones in the Southern Andes.

    Science.gov (United States)

    Roquer, T.; Terrón, E.; Perez-Flores, P.; Arancibia, G.; Cembrano, J. M.

    2014-12-01

    Fluid flow in the upper crust is controlled by the permeability and interconnection of fractures in the fault zones. The permeability within the fault zone is determined by its activity, architecture and, in particular, by the mineralogy of the core and the damage zone. Whereas the permeability structure of a fault zone can be defined by the volume proportion of the core with respect to the damage zone, the relationship between the mineralogy and permeability along fault zones still remains obscure. This work examines structural and mineralogical data to show the relationship between the mineral composition of the fault zone with its permeability in the Liquiñe-Ofqui Fault System (LOFS) and the Arc-oblique Long-lived Fault Systems (ALFS), Southern Chile. The LOFS is an active ca. 1200 km long strike-slip Cenozoic intra-arc structure that strikes NNE in its master traces and NE in its subsidiary traces, with dextral and dextral-normal movement mostly developed in the last 6 My. Although the LOFS and the ALFS cross-cut each other, the ALFS is an apparently older basement fault system where seismic and field evidences record sinistral, sinistral-normal and sinistral-reverse movements. One 22-m-long NE transect was mapped orthogonal to a segment of the ALFS, where host rocks are Miocene andesitic rocks. Structural and XRD sampling were conducted in the core and damage zone. Structural mapping shows a multiple core, NW-striking fault zone with foliated gouge and an asymmetric damage zone, where the hanging wall has significantly higher mesoscopic fracture density than the footwall. The hanging wall is characterized by NW-striking, steeply dipping veins. Preliminary XRD results indicate the presence of homogenously distributed Ca-rich zeolite (mainly laumontite) in the core and the veins of the damage zone, which could indicate that the core acted as a conduit for low-temperature (ca. 220°C) fluids.

  14. Complex permeability and permittivity variation of carbonyl iron rubber in the frequency range of 2 to 18 GHz

    Directory of Open Access Journals (Sweden)

    Adriana Medeiros Gama

    2010-04-01

    Full Text Available The complex dielectric permittivity (e and magnetic permeability (m of Radar Absorbing Materials (RAM based on metallic magnetic particles (carbonyl iron particles embedded in a dielectric matrix (silicon rubber have been studied in the frequency range of 2 to 18 GHz. The relative permeability and permittivity of carbonyl iron-silicon composites for various mass fractions are measured by the transmission/reflection method using a vector network analyzer. The concentration dependence of permittivity and permeability on the frequency is analyzed. In a general way, the results show that e´ parameter shows a more significant variation among the evaluated parameters (e”, m”, m’. The comparison of dielectric and magnetic loss tangents (e”/e” and m”/m’, respectively shows more clearly the variation of both parameters (e and m according to the frequency. It is also observed that higher carbonyl iron content fractions favor both dielectric and magnetic loss tangents.

  15. Haemophilia, AIDS and lung epithelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    O' Doherty, M.J.; Page, C.J.; Harrington, C.; Nunan, T.; Savidge, G. (Haemophilia Centre and Coagulation Research Unit, Department of Nuclear Medicine, Rayne Institute, St. Thomas' Hospital, London (United Kingdom))

    1990-01-01

    Lung {sup 99m}Tc DTPA transfer was measured in HIV antibodypositive haemophiliacs (11 smokers, 26 nonsmokers, 5 patients with Pneumocystis carinii pneumonia (PCP)). Lung {sup 99m}Tc DTPA transfer as a marker of lung epithelial permeability was measured as the half time of transfer (from airspace into blood). This half time was faster in smokers compred to nonsmokers and the transfer curve was monoexponential. In nonsmokers no difference was observed between asymptomatic HIV-positive haemophiliacs and normal subjects, with the exception of the lung bases. At the lung basis in HIV-positive haemophiliac nonsmokers the transfer was faster than in normal individuals, implying increased alveolar permeability. Pneumocystis carinii pneumonia resulted in a rapid transfer of {sup 99m}Tc DTPA (mean T50 of 2 minutes) and the transfer curve was biphasic, confirming previous observations in homosexual HIV antibody-positive patients with PCP. These changes returned to a monoexponential profile by 6 weeks following successful treatment. The DTPA lung transfer study may enable clinicians to instigate therapy for PCP without the need for initial bronchoscopy and provide a noninvasive method for the reassessment of patients should further respiratory signs or symptoms develop. This method is considered to be highly cost-effective in that it obviates the use of factor VIII concentrates required to cover bronchoscopic procedures and, with its early application and ease of use as a follow-up investigation, permits the evaluation of patients on an outpatient basis, thus reducing hospital costs. (au).

  16. Permeability of protective coatings to tritium

    International Nuclear Information System (INIS)

    Braun, J.M.

    1987-10-01

    The permeability of four protective coatings to tritium gas and tritiated water was investigated. The coatings, including two epoxies, one vinyl and one urethane, were selected for their suitability in CANDU plant service in Ontario Hydro. Sorption rates of tritium gas into the coatings were considerably larger than for tritiated water, by as much as three to four orders of magnitude. However, as a result of the very large solubility of tritiated water in the coatings, the overall permeability to tritium gas and tritiated water are comparable, being somewhat larger for HTO. Marked differences were also evident among the four coatings, the vinyl proving to be unique in behaviour and morphology. Because of a highly porous surface structure water condensation takes place at high relative humidities, leading to an abnormally high retention of free water. Desorption rates from the four coatings were otherwise quite similar. Of practical importance was the observation that more effective desorption of tritiated water could be carried out at relatively high humidities, in this case 60%. It was believed that isotopic exchange was responsible for this phenomenon. It appears that epoxy coatings having a high pigment-to-binder ratio are most suited for coating concrete in tritium handling facilities

  17. Haemophilia, AIDS and lung epithelial permeability

    International Nuclear Information System (INIS)

    O'Doherty, M.J.; Page, C.J.; Harrington, C.; Nunan, T.; Savidge, G.

    1990-01-01

    Lung 99m Tc DTPA transfer was measured in HIV antibodypositive haemophiliacs (11 smokers, 26 nonsmokers, 5 patients with Pneumocystis carinii pneumonia (PCP)). Lung 99m Tc DTPA transfer as a marker of lung epithelial permeability was measured as the half time of transfer (from airspace into blood). This half time was faster in smokers compred to nonsmokers and the transfer curve was monoexponential. In nonsmokers no difference was observed between asymptomatic HIV-positive haemophiliacs and normal subjects, with the exception of the lung bases. At the lung basis in HIV-positive haemophiliac nonsmokers the transfer was faster than in normal individuals, implying increased alveolar permeability. Pneumocystis carinii pneumonia resulted in a rapid transfer of 99m Tc DTPA (mean T50 of 2 minutes) and the transfer curve was biphasic, confirming previous observations in homosexual HIV antibody-positive patients with PCP. These changes returned to a monoexponential profile by 6 weeks following successful treatment. The DTPA lung transfer study may enable clinicians to instigate therapy for PCP without the need for initial bronchoscopy and provide a noninvasive method for the reassessment of patients should further respiratory signs or symptoms develop. This method is considered to be highly cost-effective in that it obviates the use of factor VIII concentrates required to cover bronchoscopic procedures and, with its early application and ease of use as a follow-up investigation, permits the evaluation of patients on an outpatient basis, thus reducing hospital costs. (au)

  18. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    Energy Technology Data Exchange (ETDEWEB)

    Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  19. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  20. Therapeutic benefits of enhancing permeability barrier for atopic eczema

    Directory of Open Access Journals (Sweden)

    George Man

    2015-06-01

    Full Text Available The regulatory role of epidermal permeability barrier function in cutaneous inflammation has been well appreciated. While barrier disruption induces cutaneous inflammation, improvement of permeability barrier function alleviates inflammation. Studies have demonstrated that improvement of epidermal permeability barrier function not only prevents the development of atopic eczema, but also delays the relapse of these diseases. Moreover, enhancing the epidermal permeability barrier also alleviates atopic eczema. Furthermore, co-applications of barrier enhancing products with glucocorticoids can increase the therapeutic efficacy and reduce the adverse effects of glucocorticoids in the treatment of atopic eczema. Therefore, utilization of permeability barrier enhancing products alone or in combination with glucocorticoids could be a valuable approach in the treatment of atopic eczema. In this review, we discuss the benefits of improving the epidermal permeability barrier in the management of atopic eczema.

  1. Permeability Evolution of Slowly Slipping Faults in Shale Reservoirs

    Science.gov (United States)

    Wu, Wei; Reece, Julia S.; Gensterblum, Yves; Zoback, Mark D.

    2017-11-01

    Slow slip on preexisting faults during hydraulic fracturing is a process that significantly influences shale gas production in extremely low permeability "shale" (unconventional) reservoirs. We experimentally examined the impacts of mineralogy, surface roughness, and effective stress on permeability evolution of slowly slipping faults in Eagle Ford shale samples. Our results show that fault permeability decreases with slip at higher effective stress but increases with slip at lower effective stress. The permeabilities of saw cut faults fully recover after cycling effective stress from 2.5 to 17.5 to 2.5 MPa and increase with slip at constant effective stress due to asperity damage and dilation associated with slip. However, the permeabilities of natural faults only partially recover after cycling effective stress returns to 2.5 MPa and decrease with slip due to produced gouge blocking fluid flow pathways. Our results suggest that slowly slipping faults have the potential to enhance reservoir stimulation in extremely low permeability reservoirs.

  2. Strengthening of Shear Walls

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg

    -plane loaded walls and disks is however not included in any guidelines, and only a small fraction of scientists have initiated research within this topic. Furthermore, studies of the principal behavior and response of a strengthened disk has not yet been investigated satisfactorily, and this is the principal...

  3. Endometriosis Abdominal wall

    International Nuclear Information System (INIS)

    Alvarez, M.; Carriquiry, L.

    2003-01-01

    Endometriosis of abdominal wall is a rare entity wi ch frequently appears after gynecological surgery. Case history includes three cases of parietal endometriosis wi ch were treated in Maciel Hospital of Montevideo. The report refers to etiological diagnostic aspects and highlights the importance of total resection in order to achieve definitive healing

  4. eWALL

    DEFF Research Database (Denmark)

    Kyriazakos, Sofoklis; Mihaylov, Mihail; Anggorojati, Bayu

    2016-01-01

    challenge with impact in multiple sectors. In this paper we present an innovative ICT solution, named eWALL, that aims to address these challenges by means of an advanced ICT infrastructure and home sensing environment; thus differentiating from existing eHealth and eCare solutions. The system of e...

  5. Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining

    Directory of Open Access Journals (Sweden)

    Fangtian Wang

    2017-09-01

    Full Text Available A thin coal seam mined as a protective coal seam above a gas outburst coal seam plays a central role in decreasing the degree of stress placed on a protected seam, thus increasing gas permeability levels and desorption capacities to dramatically eliminate gas outburst risk for the protected seam. However, when multiple layers of coal seams are present, stress-relieved gas from adjacent coal seams can cause a gas explosion. Thus, the post-drainage of gas from fractured and de-stressed strata should be applied. Comprehensive studies of gas permeability evolution mechanisms and gas seepage rules of protected seams close to protective seams that occur during protective seam mining must be carried out. Based on the case of the LongWall (LW 23209 working face in the Hancheng coal mine, Shaanxi Province, this paper presents a seepage model developed through the FLAC3D software program (version 5.0, Itasca Consulting Group, Inc., Minneapolis, MI, USA from which gas flow characteristics can be reflected by changes in rock mass permeability. A method involving theoretical analysis and numerical simulation was used to analyze stress relief and gas permeability evolution mechanisms present during broken rock mass compaction in a goaf. This process occurs over a reasonable amount of extraction time and in appropriate locations for comprehensive gas extraction technologies. In using this comprehensive gas drainage technological tool, the safe and efficient co-extraction of thin coal seams and gas resources can be realized, thus creating a favorable environment for the safe mining of coal and gas outburst seams.

  6. Assessing the permeability of engineered capillary networks in a 3D culture.

    Directory of Open Access Journals (Sweden)

    Stephanie J Grainger

    Full Text Available Many pathologies are characterized by poor blood vessel growth and reduced nutrient delivery to the surrounding tissue, introducing a need for tissue engineered blood vessels. Our lab has developed a 3D co-culture method to grow interconnected networks of pericyte-invested capillaries, which can anastamose with host vasculature following implantation to restore blood flow to ischemic tissues. However, if the engineered vessels contain endothelial cells (ECs that are misaligned or contain wide junctional gaps, they may function improperly and behave more like the pathologic vessels that nourish tumors. The purpose of this study was to test the resistance to permeability of these networks in vitro, grown with different stromal cell types, as a metric of vessel functionality. A fluorescent dextran tracer was used to visualize transport across the endothelium and the pixel intensity was quantified using a customized MATLAB algorithm. In fibroblast-EC co-cultures, the dextran tracer easily penetrated through the vessel wall and permeability was high through the first 5 days of culture, indicative of vessel immaturity. Beyond day 5, dextran accumulated at the periphery of the vessel, with very little transported across the endothelium. Quantitatively, permeability dropped from initial levels of 61% to 39% after 7 days, and to 7% after 2 weeks. When ECs were co-cultured with bone marrow-derived mesenchymal stem cells (MSCs or adipose-derived stem cells (AdSCs, much tighter control of permeability was achieved. Relative to the EC-fibroblast co-cultures, permeabilities were reduced 41% for the EC-MSC co-cultures and 50% for the EC-AdSC co-cultures after 3 days of culture. By day 14, these permeabilities decreased by 68% and 77% over the EC-fibroblast cultures. Co-cultures containing stem cells exhibit elevated VE-cadherin levels and more prominent EC-EC junctional complexes when compared to cultures containing fibroblasts. These data suggest the stromal

  7. Study on Surface Permeability of Concrete under Immersion

    OpenAIRE

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-01

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured af...

  8. Experiment Study on Permeability of Solidified Dianchi Peaty Soil

    Directory of Open Access Journals (Sweden)

    Wang Mingshan

    2015-01-01

    Full Text Available In this paper, the permeability of Dianchi solidified peaty soil was studied by laboratory tests. The peaty soil was solidified by addicting cement, ardealite, lime, fly ash and their combination, and the coeffi-cient of permeability under different curing stages were measured through the variable head method. Results showed that the coefficient of permeability of solidified peaty soil increased with the growth of the dosage of curing stagent and reduced with the growth of the stage. When the determined dosage in the deep mixing pile is used, it would be meet the permeability the need of the engineering.

  9. 21 CFR 876.5860 - High permeability hemodialysis system.

    Science.gov (United States)

    2010-04-01

    ..., hematocrit, urea, etc.). (3) The high permeability hemodialysis system accessories include, but are not..., hematocrit, and blood recirculation monitors). (b) Classification. Class II. The special controls for this...

  10. Air-injection field tests to determine the effect of a heat cycle on the permeability of welded tuff

    International Nuclear Information System (INIS)

    Lee, K.H.; Ueng, Tzou-Shin.

    1991-01-01

    As part of a series of prototype tests conducted in preparation for site characterization of the potential nuclear-waste repository site at Yucca Mountain, Nevada, air-injection tests were conducted in the welded tuffs in G-Tunnel at the Nevada Test Site. The objectives were to characterize the permeability of the highly fractured tuff around a horizontal heater emplacement borehole, and to determine the effect of a heating and cooling cycle on the rock-mass permeability. Air was injected into packed-off intervals along the heater borehole. The bulk permeability of the rock adjacent to the test interval and the aperture of fractures intersecting the interval were computed from the air-flow rate, temperature, and pressure at steady state. The bulk permeability of intervals along with borehole varied from a minimum of 0.08 D to a maximum of over 144 D and the equivalent parallel-plate apertures of fractures intersecting the borehole varied from 70 to 589 μm. Higher permeabilities seemed to correlate spatially with the mapped fractures. The rock was then heated for a period of 6.5 months with an electrical-resistive heater installed in the borehole. After heating, the rock was allowed to cool down to the ambient temperature. The highest borehole wall temperature measured was 242 degree C. Air injection tests were repeated following the heating and cooling cycle, and the results showed significant increases in bulk permeability ranging from 10 to 1830% along the borehole. 8 ref., 6 figs., 3 tabs

  11. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Mantha, Pallavi [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2013-05-01

    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  12. Characterization of the mechanical and hydraulic damage in the excavation damaged zone of MHM with gas permeability measurement

    International Nuclear Information System (INIS)

    Yang, D.

    2008-09-01

    On the feasibility evaluation of nuclear waste storage in deep formations, the essential issues are as follows: the stability of underground structures over the reversible period, the influence of cavity excavation on geomechanical properties of the wall rock and the variation of those properties during the different phases while storage realization. The work presented here covers the investigations on the variation of geomechanical properties of the approximately 500 m deep MHM in France (mudstone in the departments of Meuse/Haute-Marne), chosen as a potential medium for nuclear waste disposal by ANDRA. In order to measure the very low permeability of mudstone and to observe the dependency on saturation, a special test scheme on measurement of gas permeability has been developed. In the scheme, in situ referenced stresses have been chosen as the stresses acting on the solid matrix. The gas permeability has been determined with both analytical and numerical methods. To estimate the mechanical damage of storage induced by the excavation, laboratory tests on gas permeability have been conducted on samples recovered from different locations situated at different distances from the wall of the main access shaft of the MHM (from 0,1 m to 12,5 m). Results of gas permeability obtained under an isotropic stress of 11 MPa vary between 10 -21 and 10 -22 m 2 and do not show significant variations between damaged zones (near the wall) and intact zones (sample located 12 m from the wall). The observations in laboratory tests coincide with in situ damage characterizations. The variation of gas permeability under the cycle of loading and unloading is an order less than the initial value under the isotropic stress. Taking into account the precision of the testing system, this variation is not significant. The oviparous intact samples have been imposed different saturations by salt solutions (with a relative humidity from 25 % to 98 %) to form a cycle of de- and re-saturation. The

  13. Intense Magnetized Plasma-Wall Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Bruno S. [UNR; Fuelling, Stephan [UNR

    2013-11-30

    This research project studied wall-plasma interactions relevant to fusion science. Such interactions are a critical aspect of Magneto-Inertial Fusion (MIF) because flux compression by a pusher material, in particular the metal for the liner approach to MIF, involves strong eddy current heating on the surface of the pusher, and probably interactions and mixing of the pusher with the interior fuel during the time when fusion fuel is being burned. When the pusher material is a metal liner, high-energy-density conditions result in fascinating behavior. For example, "warm dense matter" is produced, for which material properties such as resistivity and opacity are not well known. In this project, the transformation into plasma of metal walls subjected to pulsed megagauss magnetic fields was studied with an experiment driven by the UNR 1 MA Zebra generator. The experiment was numerically simulated with using the MHRDR code. This simple, fundamental high-energy-density physics experiment, in a regime appropriate to MIF, has stimulated an important and fascinating comparison of numerical modeling codes and tables with experiment. In addition, we participated in developing the FRCHX experiment to compress a field-reversed-configuration (FRC) plasma with a liner, in collaboration with researchers from Air Force Research Laboratory and Los Alamos National Lab, and we helped develop diagnostics for the Plasma Liner Experiment (PLX) at LANL. Last, but not least, this project served to train students in high-energy-density physics.

  14. Simulation of first-wall radiation effects

    International Nuclear Information System (INIS)

    Logan, C.M.; Anderson, J.D.; Hansen, L.F.

    1975-01-01

    Many of the effects induced in metals as a result of exposure to a radiation environment are intimately associated with the energy of primary recoil atoms (PKAs). Protons with an energy of 16 MeV closely reproduce the PKA energy spectrum which will be present at the first wall in a D--T fusion reactor and should therefore closely reproduce the radiation effects induced by PKAs in the first wall. A preliminary experiment with protons was conducted to measure the sputtering rate and to look for the phenomenon of chunk emission recently observed by Kaminsky and co-workers in samples exposed to 14-MeV neutrons. We are also able to observe the average projected transport range of activated PKAs. (U.S.)

  15. Novel domain wall dynamics in synthetic antiferromagnets

    Science.gov (United States)

    Yang, See-Hun; Parkin, Stuart

    2017-08-01

    In this article, we review fascinating new mechanisms on recently observed remarkable current driven domain wall motion in nanowires formed from perpendicularly magnetized synthetic antiferromagnets interfaced with heavy metallic layers, sources of spin-orbit torques. All the associated torques such as volumetric adiabatic and non-adiabatic spin-transfer-torque, spin-orbit torques, shape anisotropy field torques, Dzyaloshinkii-Moriya interaction torques and most importantly a new powerful torque, exchange coupling torque, will be discussed based on an analytical model that provides an intuitive description of domain wall dynamics in synthetic ferromagnets as well as synthetic antiferromagnets. In addition, the current driven DW motion in the presence of in-plane fields will be investigated, thus deepening our knowledge about the role of the exchange coupling torque, which will be of potential use for application to various novel spintronic devices.

  16. Mesoporous metal oxides and processes for preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Suib, Steven L.; Poyraz, Altug Suleyman

    2018-03-06

    A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.

  17. Rising damp in building walls: the wall base ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, A.S.; Delgado, J.M.P.Q.; Freitas, V.P. de [Faculdade de Engenharia da Universidade do Porto, Laboratorio de Fisica das Construcoes (LFC), Departamento de Engenharia Civil, Porto (Portugal)

    2012-12-15

    This work intends to validate a new system for treating rising damp in historic buildings walls. The results of laboratory experiments show that an efficient way of treating rising damp is by ventilating the wall base, using the HUMIVENT technique. The analytical model presented describes very well the observed features of rising damp in walls, verified by laboratory tests, who contributed for a simple sizing of the wall base ventilation system that will be implemented in historic buildings. (orig.)

  18. Treatment for cracked and permeable Houston clay

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Leung, M.

    1991-01-01

    In this study, the treatability of a field clay (obtained from Houston, Texas) and a clay-sand mixture to reduce their hydraulic conductivity was evaluated. Remolded field clay and clay-sand mixture with and without methanol contamination were treated to reduce their hydraulic conductivity by permeating very dilute grout solutions. The concentration of sodium silicate in the grout solution was 8%, while the solid content in the cement grout was 0.3%. The hydraulic conductivity of permeable Houston clay (hydraulic conductivity >10 -5 cm/sec) could be reduced to less than 10 -7 cm/sec (U.S. EPA limit for soil barriers) by permeating with a selected combination of grout solutions

  19. Composite binders for concrete with reduced permeability

    Science.gov (United States)

    Fediuk, R.; Yushin, A.

    2016-02-01

    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m2, it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa).

  20. Permeable disks at low Reynolds numbers

    Science.gov (United States)

    Viola, Ignazio Maria; Cummins, Cathal; Mastropaolo, Enrico; Nakayama, Naomi

    2017-11-01

    The wake of a permeable disk can be rather exceptional: a toroidal vortex can form and remains stably at a fixed distance from the disk. The streamwise length of the vortex depends on the Reynolds and Darcy numbers. We investigate this fascinating flow for Reynolds numbers from 10 to 130 and Darcy numbers (Da) from 10-9 to 1. Direct numerical simulations are performed on a 2D grid with axisymmetric boundary conditions. Three flow regimes are observed: for low Da (effectively impervious), the wake is characterized by the presence of a toroidal vortex whose length is approximately equal to that of an impervious disk. For 10-6 RPG-2015-255].

  1. Acoustic--nuclear permeability logging system

    International Nuclear Information System (INIS)

    Dowling, D.J.; Arnold, D.M.

    1978-01-01

    A down hole logging tool featuring a neutron generator, an acoustic disturbance generator, and a radiation detection system is described. An array of acoustic magnetostriction transducers is arranged about the target of a neutron accelerator. Two gamma ray sensors are separated from the accelerator target by shielding. According to the method of the invention, the underground fluid at the level of a formation is bombarded by neutrons which react with oxygen in the fluid to produce unstable nitrogen 16 particles according to the reaction 16 O(n,p) 16 N. Acoustic pulses are communicated to the fluid, and are incident on the boundary of the borehole at the formation. The resulting net flow of fluid across the boundary is determined from radiation detection measurements of the decaying 16 N particles in the fluid. A measure of the permeability of the formation is obtained from the determination of net fluid flow across the boundary

  2. Permeability of Dental Adhesives - A SEM Assessment.

    Science.gov (United States)

    Malacarne-Zanon, Juliana; de Andrade E Silva, Safira M; Wang, Linda; de Goes, Mario F; Martins, Adriano Luis; Narvaes-Romani, Eliene O; Anido-Anido, Andrea; Carrilho, Marcela R O

    2010-10-01

    To morphologically evaluate the permeability of different commercial dental adhesives using scanning electron microscopy. SEVEN ADHESIVE SYSTEMS WERE EVALUATED: one three-step system (Scotchbond Multi-Purpose - MP); one two-step self-etching primer system (Clearfil SE Bond - SE); three two-step etch-and-rinse systems (Single Bond 2 - SB; Excite - EX; One-Step - OS); and two single-step self-etching adhesives (Adper Prompt - AP; One-Up Bond F - OU). The mixture of primer and bond agents of the Clearfil SE Bond system (SE-PB) was also tested. The adhesives were poured into a brass mold (5.8 mm x 0.8 mm) and light-cured for 80 s at 650 mW/cm2. After a 24 h desiccation process, the specimens were immersed in a 50% ammoniac silver nitrate solution for tracer permeation. Afterwards, they were sectioned in ultra-fine slices, carbon-coated, and analyzed under backscattered electrons in a scanning electron microscopy. MP and SE showed slight and superficial tracer permeation. In EX, SB, and OS, permeation extended beyond the inner superficies of the specimens. SE-PB did not mix well, and most of the tracer was precipitated into the primer agent. In AP and OU, "water-trees" were observed all over the specimens. Different materials showed distinct permeability in aqueous solution. The extent of tracer permeation varied according to the composition of each material and it was more evident in the more hydrophilic and solvated ones.

  3. Colloid transport in dual-permeability media.

    Science.gov (United States)

    Leij, Feike J; Bradford, Scott A

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Kochkin, V. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  5. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  6. Inner- and outer-wall sorting of double-walled carbon nanotubes

    Science.gov (United States)

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  7. Permeability Variation Models for Unsaturated Coalbed Methane Reservoirs

    Directory of Open Access Journals (Sweden)

    Lv Yumin

    2016-05-01

    Full Text Available A large number of models have been established to describe permeability variation with the depletion of reservoir pressure to date. However, no attempt has been made to draw enough attention to the difference in the effect of various factors on permeability variation in different production stages of unsaturated CoalBed Methane (CBM reservoirs. This paper summarizes the existing and common permeability models, determines the relationship between various effects (effective stress effect, matrix shrinkage effect and Klinkenberg effect and desorption characteristics of the recovery of unsaturated CBM reservoirs, then establishes two improved models to quantificationally describe permeability variation, and finally discusses the effects of various factors (gas saturation, cleat porosity, Poisson’s ratio and shrinkage coefficient on permeability variation. The results show that permeability variation during the recovery of unsaturated CBM reservoirs can be divided into two stages: the first one is that permeability variation is only affected by the effective stress effect, and the second is that permeability variation is affected by the combination of the effective stress effect, matrix shrinkage effect and Klinkenberg effect. In the second stage, matrix shrinkage effect and Klinkenberg effect play much more significant role than the effective stress effect, which leads to an increase in permeability with depletion of reservoir pressure. Sensitivity analysis of parameters in the improved models reveals that those parameters associated with gas saturation, such as gas content, reservoir pressure, Langmuir volume and Langmuir pressure, have a significant impact on permeability variation in the first stage, and the important parameters in the second stage are the gas content, reservoir pressure, Langmuir volume, Langmuir pressure, Poisson’s ratio, Young’s modulus and shrinkage coefficient during the depletion of reservoir pressure. A comparative

  8. Ion Permeability of Free-Suspended Layer-by-Layer (LbL Films Prepared Using an Alginate Scaffold

    Directory of Open Access Journals (Sweden)

    Katsuhiko Sato

    2013-06-01

    Full Text Available Layer-by-layer (LbL films were prepared over an aperture (diameter 1–5 mm on a glass plate to study ion permeation across free-suspended LbL films. LbL films were prepared by depositing alternating layers of poly(allylamine hydrochloride (PAH and poly(styrene sulfonate (PSS on the surface of a glass plate with an aperture filled with an alginate gel, followed by dissolution of the alginate gel. PAH-PSS films prepared in this way showed permeability to inorganic salts, depending on the size and charge. Permeability to alkali metal chlorides depended on the Stokes radius of the alkali metal cations. The effect of the type of halide was negligible because of the halides’ smaller ionic radii. Permeation of multivalent ions such as Ru(NH363+ and [Fe(CN6]3− was severely suppressed owing to Donnan exclusion.

  9. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason

    2013-01-01

    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  10. Fetal abdominal wall defects.

    Science.gov (United States)

    Prefumo, Federico; Izzi, Claudia

    2014-04-01

    The most common fetal abdominal wall defects are gastroschisis and omphalocele, both with a prevalence of about three in 10,000 births. Prenatal ultrasound has a high sensitivity for these abnormalities already at the time of the first-trimester nuchal scan. Major unrelated defects are associated with gastroschisis in about 10% of cases, whereas omphalocele is associated with chromosomal or genetic abnormalities in a much higher proportion of cases. Challenges in management of gastroschisis are related to the prevention of late intrauterine death, and the prediction and treatment of complex forms. With omphalocele, the main difficulty is the exclusion of associated conditions, not all diagnosed prenatally. An outline of the postnatal treatment of abdominal wall defects is given. Other rarer forms of abdominal wall defects are pentalogy of Cantrell, omphalocele, bladder exstrophy, imperforate anus, spina bifida complex, prune-belly syndrome, body stalk anomaly, and bladder and cloacal exstrophy; they deserve multidisciplinary counselling and management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Light shining through walls

    International Nuclear Information System (INIS)

    Redondo, Javier; Ringwald, Andreas

    2010-11-01

    Shining light through walls? At first glance this sounds crazy. However, very feeble gravitational and electroweak effects allow for this exotic possibility. Unfortunately, with present and near future technologies the opportunity to observe light shining through walls via these effects is completely out of question. Nevertheless there are quite a number of experimental collaborations around the globe involved in this quest. Why are they doing it? Are there additional ways of sending photons through opaque matter? Indeed, various extensions of the standard model of particle physics predict the existence of new particles called WISPs - extremely weakly interacting slim particles. Photons can convert into these hypothetical particles, which have no problems to penetrate very dense materials, and these can reconvert into photons after their passage - as if light was effectively traversing walls. We review this exciting field of research, describing the most important WISPs, the present and future experiments, the indirect hints from astrophysics and cosmology pointing to the existence of WISPs, and finally outlining the consequences that the discovery of WISPs would have. (orig.)

  12. First wall for thermonuclear device

    International Nuclear Information System (INIS)

    Shibuya, Yoji.

    1988-01-01

    Purpose: To reduce the thermal stresses resulted to tiles and suppress the temperature rise for mounting jigs in first walls for a thermonuclear device. Constitution: A support mounting rod as a tile mounting and fixing jig and a fixing support connected therewith are disposed to the inside of an armour tile composed of high melting material and, further, a spring is disposed between the lower portion of the tile and the base plate. The armour tile can easily be fixed to the base plate by means of the resilient member by rotating the support member and abutting the support member against the support member abutting portion of the base plate. Further, since the contact and fixing surface of the armour tile and the fixing jig is situated below the tile inside the cooled base plate, the temperature rise can be suppressed as compared with the usual case. Since screw or like other clamping portion is not used for fixing the tile, heat resistant ceramics can be used with no restriction only to metal members, to thereby moderate the restriction in view of the temperature. (Kamimura, M.)

  13. Wall Street som kreationistisk forkynder

    DEFF Research Database (Denmark)

    Ekman, Susanne

    2016-01-01

    Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong......Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong...

  14. Domain Walls with Strings Attached

    Energy Technology Data Exchange (ETDEWEB)

    Shmakova, Marina

    2001-08-20

    We have constructed a bulk and brane action of IIA theory which describes a pair of BPS domain walls on S{sub 1}/Z{sub 2}, with strings attached. The walls are given by two orientifold O8-planes with coincident D8-branes and F1-D0-strings are stretched between the walls. This static configuration satisfies all matching conditions for the string and domain wall sources and has 1/4 of unbroken supersymmetry.

  15. Dependence of the Casimir-Polder interaction between an atom and a cavity wall on atomic and material properties

    International Nuclear Information System (INIS)

    Mostepanenko, V M; Babb, J F; Caride, A O; Klimchitskaya, G L; Zanette, S I

    2006-01-01

    The Casimir-Polder and van der Waals interactions between an atom and a flat cavity wall are investigated under the influence of real conditions including the dynamic polarizability of the atom, actual conductivity of the wall material and nonzero temperature of the wall. The cases of different atoms near metal and dielectric walls are considered. It is shown that to obtain accurate results for the atom-wall interaction at short separations, one should use the complete tabulated optical data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. At relatively large separations in the case of a metal wall, one may use the plasma model dielectric function to describe the dielectric properties of the wall material. The obtained results are important for the theoretical interpretation of experiments on quantum reflection and Bose-Einstein condensation

  16. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2014-11-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were prepared via chemical vapor deposition (CVD using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs. Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.

  17. Formation and yield of multi-walled carbon nanotubes synthesized via chemical vapour deposition routes using different metal-based catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH.

    Science.gov (United States)

    Hussein, Mohd Zobir; Jaafar, Adila Mohamad; Yahaya, Asmah Hj; Masarudin, Mas Jaffri; Zainal, Zulkarnain

    2014-11-05

    Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.

  18. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  19. Heavy metal bioaccumulation and biomarkers of oxidative stress in ...

    African Journals Online (AJOL)

    Human activities can have dramatic effects on animal populations around urban areas with heavy metal contamination being a primary cause of harm. Amphibians, as residents of aquatic systems and with their semi-permeable skin are especially susceptible to heavy metal contamination. To better understand the effect of ...

  20. Permeability Study of Austenitic Stainless Steel Surfaces Produced by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Emmanuel Segura-Cardenas

    2017-11-01

    Full Text Available Selective laser melting (SLM is emerging as a versatile process for fabricating different metal components with acceptable mechanical properties and geometrical accuracy. The process has been used in the manufacturing of several parts (e.g., aerospace or biomedical components, and offers the capability to tailor the performance of several surface and mechanical properties. In this work, permeability properties and surface roughness of stainless steel (SS316L surfaces were evaluated through experimentation with three different laser scanning patterns (chessboard, meander, and stripe, and different sloping angles between the fabricated surface and the laser beam incident on the process. Results showed that for each scanning pattern, the roughness decreased as the sloping angle increased consistently in all experimental trials. Furthermore, in the case of the permeability evaluation, the manufactured surfaces showed changes in properties for each series of experiments performed with different scanning patterns. The chessboard pattern showed a change of 67° to 107° in contact angle, while the meander and stripe patterns showed a variation in contact angle in a range of 65° to 85°. The different scanning strategies in the SLM process resulted in an alternative method for surface enhancement with different hydrophobicity properties, valuable for designing the most appropriate permeability characteristics for specific applications.

  1. Molded Concrete Center Mine Wall

    Science.gov (United States)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  2. Build an Interactive Word Wall

    Science.gov (United States)

    Jackson, Julie

    2018-01-01

    Word walls visually display important vocabulary covered during class. Although teachers have often been encouraged to post word walls in their classrooms, little information is available to guide them. This article describes steps science teachers can follow to transform traditional word walls into interactive teaching tools. It also describes a…

  3. El concreto permeable: uso y estándares

    OpenAIRE

    Patiño, Oscar

    2013-01-01

    El concreto permeable (pervious concrete en inglés) es un material fabricado de manera similar al concreto regular, pero utiliza menor cantidad de cemento con poco o sin agregados finos, permitiéndole espacios vacíos entre sus partículas, de ahí su comportamiento permeable.

  4. Nitrogen Transformations in Three Types of Permeable Pavement

    Science.gov (United States)

    In 2009, USEPA constructed a 0.4-ha (1-ac) parking lot at the Edison Environmental Center in Edison, NJ, that incorporated three different permeable pavement types - permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). The driving lanes...

  5. Update to Permeable Pavement Research at the Edison ...

    Science.gov (United States)

    The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavements including interlocking concrete permeable pavers, pervious concrete, and porous asphalt. The permeable pavements are limited to parking spaces while adjacent driving lanes are impermeable and drain to the permeable surfaces. The parking lot is instrumented for continuous monitoring with thermistors and water content reflectometers that measure moisture as infiltrate passes through the storage gallery beneath the permeable pavements into the underlying native soil. Each permeable surface of the parking lot has four lined sections that capture infiltrate in tanks for water quality analyses; these tanks are capable of holding volumes up to 4.1 m3, which represents up to 38 mm (1.5 in.) for direct rainfall on the porous pavement and runoff from adjacent driving lanes that drain into the permeable surface.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, surface hydrology, and infiltration and evaporation rates. This presentation summarizes these past findings and addresses current water quality efforts including pH, solids analysis, total organic carbon, and chemical oxygen demand. Stormwater runoff continues to be a major cause of water pollution in

  6. Duration of ultrasound-mediated enhanced plasma membrane permeability

    NARCIS (Netherlands)

    Lammertink, Bart; Deckers, Roel; Storm, Gerrit; Moonen, Chrit; Bos, Clemens

    2015-01-01

    Ultrasound (US) induced cavitation can be used to enhance the intracellular delivery of drugs by transiently increasing the cell membrane permeability. The duration of this increased permeability, termed temporal window, has not been fully elucidated. In this study, the temporal window was

  7. Clay and Shale Permeability at Lab to Regional Scale

    Science.gov (United States)

    Neuzil, C.

    2017-12-01

    Because clays, shales, and other clay-rich media tend to be only poorly permeable, and are laterally extensive and voluminous, they play key roles in problems as diverse as groundwater supply, waste confinement, exploitation of conventional and unconventional oil and gas, and deformation and failure in the crust. Clay and shale permeability is a crucial but often highly uncertain analysis parameter; direct measurements are challenging, error-prone, and - perhaps most importantly - provide information only at quite small scales. Fortunately, there has been a dramatic increase in clay and shale permeability data from sources that include scientific ocean drilling, nuclear waste repository research, groundwater resource studies, liquid waste and CO2 sequestration, and oil and gas research. The effect of lithology as well as porosity on matrix permeability can now be examined and permeability - scale relations are becoming discernable. A significant number of large-scale permeability estimates have been obtained by inverse methods that essentially treat large-scale flow systems as natural experiments. They suggest surprisingly little scale-dependence in clay and shale permeabilities in subsiding basins and accretionary complexes. Stable continental settings present a different picture; as depths increase beyond 1 km, scale dependence mostly disappears even over the largest areas. At depths less than 1 km, secondary permeability is not always present over areas of 1 - 10 km2, but always evident for areas in excess of about 103 km2. Transmissive fractures have been observed in very low porosity (human activities.

  8. Permeability dependence of streaming potential coefficient in porous media

    NARCIS (Netherlands)

    Thanh, L.D.; Sprik, R.

    2015-01-01

    In theory, the streaming potential coefficient depends not only on the zeta potential but also on the permeability of the rocks that partially determines the surface conductivity of the rocks. However, in practice, it is hard to show the permeability dependence of streaming potential coefficients

  9. Determination of hydrogen permeability in uncoated and coated superalloys

    Science.gov (United States)

    Bhattacharyya, S.; Vesely, E. J., Jr.; Hill, V. L.

    1981-01-01

    Hydrogen permeability, diffusivity, and solubility data were obtained for eight wrought and cast high temperature alloys over the range 650 to 815 C. Data were obtained for both uncoated alloys and wrought alloys coated with four commercially available coatings. Activation energies for permeability, diffusivity and solubility were calculated.

  10. Transverse permeability of woven fabrics (CD-rom)

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Akkerman, Remko; Loendersloot, Richard; van den Berg, S.; Boisse, P.

    2008-01-01

    transverse permeability is an essential input in describing the consolidation process of CETEX® laminates. A two-dimensional, finite difference based, Stokes flow solver has been developed to determine the mesoscopic permeability of arbitrary fabric structures. The use of a multigrid solver

  11. A drainage data-based calculation method for coalbed permeability

    International Nuclear Information System (INIS)

    Lai, Feng-peng; Li, Zhi-ping; Fu, Ying-kun; Yang, Zhi-hao

    2013-01-01

    This paper establishes a drainage data-based calculation method for coalbed permeability. The method combines material balance and production equations. We use a material balance equation to derive the average pressure of the coalbed in the production process. The dimensionless water production index is introduced into the production equation for the water production stage. In the subsequent stage, which uses both gas and water, the gas and water production ratio is introduced to eliminate the effect of flush-flow radius, skin factor, and other uncertain factors in the calculation of coalbed methane permeability. The relationship between permeability and surface cumulative liquid production can be described as a single-variable cubic equation by derivation. The trend shows that the permeability initially declines and then increases after ten wells in the southern Qinshui coalbed methane field. The results show an exponential relationship between permeability and cumulative water production. The relationship between permeability and cumulative gas production is represented by a linear curve and that between permeability and surface cumulative liquid production is represented by a cubic polynomial curve. The regression result of the permeability and surface cumulative liquid production agrees with the theoretical mathematical relationship. (paper)

  12. Recovery of Porosity and Permeability for High Plasticity Clays

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Foged, Niels Nielsen

    Clays, which have been loaded to a high stress level, will under certain conditions keep low porosity and permeability due to the high degree of compression. In some situations it seems that porosity and permeability will recover to a very high extent when the clay is unloaded. This seems...

  13. Mapping permeability over the surface of the Earth

    Science.gov (United States)

    Gleeson, Tom; Smith, Leslie; Moosdorf, Nils; Hartmann, Jens; Durr, Hans H.; Manning, Andrew H.; van Beek, Ludovicus P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of -5 x 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change.

  14. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized singlewalled ...

  15. Cell wall biology: perspectives from cell wall imaging.

    Science.gov (United States)

    Lee, Kieran J D; Marcus, Susan E; Knox, J Paul

    2011-03-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth, are major repositories for photosynthetically accumulated carbon, and, in addition, impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose, hemicelluloses, and pectic polysaccharides. During the evolution of land plants, polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  16. Vertical Alignment of Single-Walled Carbon Nanotubes on Nanostructure Fabricated by Atomic Force Microscope

    National Research Council Canada - National Science Library

    Lee, Haiwon

    2007-01-01

    This project focused on the behavior of single-wall carbon nanotubes (SWCNTs) in the electrophoresis cells and aligned growth of SWCNTs by thermal chemical vapor deposition on selectively deposited metallic nanoparticle...

  17. Analytical 1D models of the wall thermal resistance of rectangular minichannels applied in heat exchangers

    Directory of Open Access Journals (Sweden)

    Rybiński Witold

    2016-09-01

    Full Text Available The paper presents four 1-dimensional models of thermal resistance of walls in a heat exchanger with rectangular minichannels. The first model is the simplest one, with a single wall separating two fluids. The second model of the so called equivalent wall takes into account total volume of intermediate walls between layers of minichannels and of side walls of minichannels. The next two more complicated models take separately into account thermal resistance of these walls. In these two models side walls are treated as fins. The results of models comparison are presented. It is shown that thermal resistance may be neglected for metal walls but it should be taken into account for the walls made of plastics. For the case of non-neglected wall thermal resistance the optimum wall thickness was derived. Minichannel heat exchangers made of plastic are larger than those built of metal, but are significantly cheaper. It makes possible to use of such exchangers in inexpensive microscale ORC installations.

  18. Altered Mycobacterium tuberculosis Cell Wall Metabolism and Physiology Associated With RpoB Mutation H526D

    Directory of Open Access Journals (Sweden)

    Victoria L. Campodónico

    2018-03-01

    Full Text Available Background:Mycobacterium tuberculosis (Mtb rpoB mutations are associated with global metabolic remodeling. However, the net effects of rpoB mutations on Mtb physiology, metabolism and function are not completely understood. Based on previous work, we hypothesized that changes in the expression of cell wall molecules in Mtb mutant RpoB 526D lead to changes in cell wall permeability and to altered resistance to environmental stresses and drugs.Methods: The phenotypes of a fully drug-susceptible clinical strain of Mtb and its paired rifampin-monoresistant, RpoB H526D mutant progeny strain were compared.Results: The rpoB mutant showed altered colony morphology, bacillary length and cell wall thickness, which were associated with increased cell wall permeability and susceptibility to the cell wall detergent sodium dodecyl sulfate (SDS after exposure to nutrient starvation. Relative to the isogenic rifampin-susceptible strain, the RpoB H526D mutant showed altered bacterial cellular metabolic activity and an eightfold increase in susceptibility to the cell-wall acting drug vancomycin.Conclusion: Our data suggest that RpoB mutation H526D is associated with altered cell wall physiology and resistance to cell wall-related stress. These findings are expected to contribute to an improved understanding of the pathogenesis of drug-resistant M. tuberculosis infections.

  19. A theoretical model for gas permeability in a composite membrane

    International Nuclear Information System (INIS)

    Serrano, D. A

    2009-01-01

    We present in this work an analytical expression for permeability in a two-layer composite membrane, which was derived assuming the same hypothesis as those of Adzumi model for permeability in a homogeneous membrane. Whereas in Adzumi model permeability shows a linear dependence on the mean pressure, our model for a composite membrane related permeability to pressure through a rather complex expression, which covers the whole range of flow, from molecular-Knudsen to viscous-Poiseuille regimes. The expression obtained for permeability contained information of membrane structural properties as pore size, porosity and thickness of each layer, as well as gas nature and operational conditions. Our two-layer-model expression turns into Adzumi formula when the structure of the layers approach to each other. [es

  20. Left ventricular wall stress compendium.

    Science.gov (United States)

    Zhong, L; Ghista, D N; Tan, R S

    2012-01-01

    Left ventricular (LV) wall stress has intrigued scientists and cardiologists since the time of Lame and Laplace in 1800s. The left ventricle is an intriguing organ structure, whose intrinsic design enables it to fill and contract. The development of wall stress is intriguing to cardiologists and biomedical engineers. The role of left ventricle wall stress in cardiac perfusion and pumping as well as in cardiac pathophysiology is a relatively unexplored phenomenon. But even for us to assess this role, we first need accurate determination of in vivo wall stress. However, at this point, 150 years after Lame estimated left ventricle wall stress using the elasticity theory, we are still in the exploratory stage of (i) developing left ventricle models that properly represent left ventricle anatomy and physiology and (ii) obtaining data on left ventricle dynamics. In this paper, we are responding to the need for a comprehensive survey of left ventricle wall stress models, their mechanics, stress computation and results. We have provided herein a compendium of major type of wall stress models: thin-wall models based on the Laplace law, thick-wall shell models, elasticity theory model, thick-wall large deformation models and finite element models. We have compared the mean stress values of these models as well as the variation of stress across the wall. All of the thin-wall and thick-wall shell models are based on idealised ellipsoidal and spherical geometries. However, the elasticity model's shape can vary through the cycle, to simulate the more ellipsoidal shape of the left ventricle in the systolic phase. The finite element models have more representative geometries, but are generally based on animal data, which limits their medical relevance. This paper can enable readers to obtain a comprehensive perspective of left ventricle wall stress models, of how to employ them to determine wall stresses, and be cognizant of the assumptions involved in the use of specific models.

  1. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    Science.gov (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  2. Predicting skin permeability from complex chemical mixtures.

    Science.gov (United States)

    Riviere, Jim E; Brooks, James D

    2005-10-15

    Occupational and environmental exposure to topical chemicals is usually in the form of complex chemical mixtures, yet risk assessment is based on experimentally derived data from individual chemical exposures from a single, usually aqueous vehicle, or from computed physiochemical properties. We present an approach using hybrid quantitative structure permeation relationships (QSPeR) models where absorption through porcine skin flow-through diffusion cells is well predicted using a QSPeR model describing the individual penetrants, coupled with a mixture factor (MF) that accounts for physicochemical properties of the vehicle/mixture components. The baseline equation is log k(p) = c + mMF + a sigma alpha2(H) + b sigma beta2(H) + s pi2(H) + rR2 + vV(x) where sigma alpha2(H) is the hydrogen-bond donor acidity, sigma beta2(H) is the hydrogen-bond acceptor basicity, pi2(H) is the dipolarity/polarizability, R2 represents the excess molar refractivity, and V(x) is the McGowan volume of the penetrants of interest; c, m, a, b, s, r, and v are strength coefficients coupling these descriptors to skin permeability (k(p)) of 12 penetrants (atrazine, chlorpyrifos, ethylparathion, fenthion, methylparathion, nonylphenol, rho-nitrophenol, pentachlorophenol, phenol, propazine, simazine, and triazine) in 24 mixtures. Mixtures consisted of full factorial combinations of vehicles (water, ethanol, propylene glycol) and additives (sodium lauryl sulfate, methyl nicotinate). An additional set of 4 penetrants (DEET, SDS, permethrin, ricinoleic acid) in different mixtures were included to assess applicability of this approach. This resulted in a dataset of 16 compounds administered in 344 treatment combinations. Across all exposures with no MF, R2 for absorption was 0.62. With the MF, correlations increased up to 0.78. Parameters correlated to the MF include refractive index, polarizability and log (1/Henry's Law Constant) of the mixture components. These factors should not be considered final

  3. EFFECT OF AQUEOUS PHASE PROPERTIES ON CLAY PARTICLE ZETA POTENTIAL AND ELECTRO-OSMOTIC PERMEABILITY: IMPLICATIONS FOR ELECTRO-KINETIC SOIL REMEDIATION PROCESSES

    Science.gov (United States)

    The influence of aqueous phase properties (pH, ionic strength and divalent metal ion concentration) on clay particle zeta potential and packed-bed electro-osmotic permeability was quantified. Although pH strongly altered the zeta potential of a Georgia kaolinite, it did not signi...

  4. Laboratory Permeability and Seismic velocity anisotropy measurements across the Alpine Fault, New Zealand

    Science.gov (United States)

    Faulkner, D.; Allen, M. J.; Tatham, D.; Mariani, E.; Boulton, C. J.

    2015-12-01

    The Alpine Fault, a transpressional plate boundary between the Australia-Pacific plates, is known to rupture periodically (200-400yr) with large magnitude earthquakes (Mw~8) and is currently nearing the end of its latest interseismic period. The hydraulic and elastic properties of fault zones influence the nature and style of earthquake rupture and associated processes; investigating these properties in Alpine Fault rocks yields insights into conditions late in the seismic cycle. We present a suite of laboratory permeability and P (Vp) and S (Vs) wave velocity measurements preformed on diverse fault rock lithologies recovered during the first phase of the Deep Fault Drilling Project (DFDP-1). DFDP-1 drilled two boreholes reaching depths of 100.6m and 151.4m and retrieved fault rocks from both the hanging wall and footwall, including ultramylonites, ultracomminuted gouges and variably foliated and unfoliated cataclasites. Drilling revealed a typical shallow fault structure: localised principal slip zones (PSZ) of gouge nested within a damage zone overprinted by a zone of alteration, a record of enhanced fluid-rock interaction. Core material was tested in three orthogonal directions, orientated relative to the down core axis and, when present, foliation. Measurements were conducted with pore pressure held at 5MPa over an effective pressure (Peff) range of 5-105MPa, equivalent to pressure conditions down to ~7km depth. Using the Pulse Transient technique permeabilities at Peff=5MPa range from 10-17 to 10-20m2, decreasing to 10-18 to 10-21m2 at Peff=105MPa. Vp and Vs decrease with increased proximity to the PSZ with Vp in the hanging wall spanning 4500-5900m/s, dropping to 3900-4200m/s at the PSZ and then increasing to 4400-5600m/s in the foot wall. Wave velocities and permeability are enhanced parallel to tectonic fabrics e.g. foliation defined by aligned phyllosillicates and quartz- feldspar clasts. These measurements constrain interseismic conditions within the

  5. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  6. Boiling radial flow in fractures of varying wall porosity

    Energy Technology Data Exchange (ETDEWEB)

    Barnitt, Robb Allan

    2000-06-01

    The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

  7. Occupy Wall Street

    DEFF Research Database (Denmark)

    Jensen, Michael J.; Bang, Henrik

    2013-01-01

    This article analyzes the political form of Occupy Wall Street on Twitter. Drawing on evidence contained within the profiles of over 50,000 Twitter users, political identities of participants are characterized using natural language processing. The results find evidence of a traditional...... oppositional social movement alongside a legitimizing countermovement, but also a new notion of political community as an ensemble of discursive practices that are endogenous to the constitution of political regimes from the “inside out.” These new political identities are bound by thin ties of political...

  8. Using artificial intelligence to predict permeability from petrographic data

    Energy Technology Data Exchange (ETDEWEB)

    Maqsood Ali; Adwait Chawathe [New Mexico Petroleum Recovery Research Centre (Mexico)

    2000-10-01

    Petrographic data collected during thin section analysis can be invaluable for understanding the factors that control permeability distribution. Reliable prediction of permeability is important for reservoir characterization. The petrographic elements (mineralogy, porosity types, cements and clays, and pore morphology) interact with each other uniquely to generate a specific permeability distribution. It is difficult to quantify accurately this interaction and its consequent effect on permeability, emphasizing the non-linear nature of the process. To capture these non-linear interactions, neural networks were used to predict permeability from petrographic data. The neural net was used as a multivariate correlative tool because of its ability to learn the non-linear relationships between multiple input and output variables. The study was conducted on the upper Queen formation called the Shattuck Member (Permian age). The Shattuck Member is composed of very fine-grained arkosic sandstone. The core samples were available from the Sulimar Queen and South Lucky Lake fields located in Chaves County, New Mexico. Nineteen petrographic elements were collected for each permeability value using a combined minipermeameter-petrographic technique. In order to reduce noise and overfitting the permeability model, these petrographic elements were screened, and their control (ranking) with respect to permeability was determined using fuzzy logic. Since the fuzzy logic algorithm provides unbiased ranking, it was used to reduce the dimensionality of the input variables. Based on the fuzzy logic ranking, only the most influential petrographic elements were selected as inputs for permeability prediction. The neural net was trained and tested using data from Well 1-16 in the Sulimar Queen field. Relying on the ranking obtained from the fuzzy logic analysis, the net was trained using the most influential three, five, and ten petrographic elements. A fast algorithm (the scaled conjugate

  9. Factors Influencing Stormwater Mitigation in Permeable Pavement

    Directory of Open Access Journals (Sweden)

    Chun Yan Liu

    2017-12-01

    Full Text Available Permeable pavement (PP is used worldwide to mitigate surface runoff in urban areas. Various studies have examined the factors governing the hydrologic performance of PP. However, relatively little is known about the relative importance of these governing factors and the long-term hydrologic performance of PP. This study applied numerical models—calibrated and validated using existing experimental results—to simulate hundreds of event-based and two long-term rainfall scenarios for two designs of PP. Based on the event-based simulation results, rainfall intensity, rainfall volume, thickness of the storage layer and the hydraulic conductivity of the subgrade were identified as the most influential factors in PP runoff reduction. Over the long term, PP performed significantly better in a relatively drier climate (e.g., New York, reducing nearly 90% of runoff volume compared to 70% in a relatively wetter climate (e.g., Hong Kong. The two designs of PP examined performed differently, and the difference was more apparent in the relatively wetter climate. This study generated insights that will help the design and implementation of PP to mitigate stormwater worldwide.

  10. Protective effects of Donepezil against endothelial permeability.

    Science.gov (United States)

    Tang, Xuelu; Di, Xiuhua; Liu, Yilin

    2017-09-15

    The endothelium lines the interior surface of blood vessels, and under pathophysiologic conditions, its integrity can be compromised due to a disturbance in the expression of tight junctions. Donepezil is a licensed drug used in the palliative treatment of Alzheimer's disease (AD). Increasing evidence has reported that donepezil has an anti-inflammatory activity. However, little information is available regarding the role of donepezil in vascular diseases. In this study, we found that pretreatment with donepezil significantly ameliorated endothelial permeability induced by tumor necrosis factor (TNF-α) by restoring the expression of the tight junction proteins vascular endothelial cadherin (VE-cadherin) and zonula occludens-1 (ZO-1) in human umbilical vein endothelial cells (HUVECs). Mechanistically, our results indicate that donepezil regulates the expression and activity of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1), but not matrix metalloproteinase-2 (MMP-2) or tissue inhibitor of metalloproteinases 2 (TIMP-2). Importantly, the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/ serine-threonine kinase (AKT)/ nuclear factor kappa B (NF-κB) pathway was found to be involved in this process. These results suggest that donepezil may potentially play an important therapeutic role in vascular diseases. Copyright © 2017. Published by Elsevier B.V.

  11. Electrically Driven Ion Separations in Permeable Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, Merlin [Michigan State Univ., East Lansing, MI (United States)

    2017-04-21

    Membranes are attractive for a wide range of separations due to their low energy costs and continuous operation. To achieve practical fluxes, most membranes consist of a thin, selective skin on a highly permeable substrate that provides mechanical strength. Thus, this project focused on creating new methods for forming highly selective ultrathin skins as well as modeling transport through these coatings to better understand their unprecedented selectivities. The research explored both gas and ion separations, and the latter included transport due to concentration, pressure and electrical potential gradients. This report describes a series of highlights of the research and then provides a complete list of publications supported by the grant. These publications have been cited more than 4000 times. Perhaps the most stunning finding is the recent discovery of monovalent/divalent cation and anion selectivities around 1000 when modifying cation- and anion-exchange membranes with polyelectrolyte multilayers (PEMs). This discovery builds on many years of exciting research. (Citation numbers refer to the journal articles in the bibliography.)

  12. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-02-07

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  13. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  14. Percolation and permeability of heterogeneous fracture networks

    Science.gov (United States)

    Adler, Pierre; Mourzenko, Valeri; Thovert, Jean-François

    2013-04-01

    Natural fracture fields are almost necessarily heterogeneous with a fracture density varying with space. Two classes of variations are quite frequent. In the first one, the fracture density is decreasing from a given surface; the fracture density is usually (but not always see [1]) an exponential function of depth as it has been shown by many measurements. Another important example of such an exponential decrease consists of the Excavated Damaged Zone (EDZ) which is created by the excavation process of a gallery [2,3]. In the second one, the fracture density undergoes some local random variations around an average value. This presentation is mostly focused on the first class and numerical samples are generated with an exponentially decreasing density from a given plane surface. Their percolation status and hydraulic transmissivity can be calculated by the numerical codes which are detailed in [4]. Percolation is determined by a pseudo diffusion algorithm. Flow determination necessitates the meshing of the fracture networks and the discretisation of the Darcy equation by a finite volume technique; the resulting linear system is solved by a conjugate gradient algorithm. Only the flow properties of the EDZ along the directions which are parallel to the wall are of interest when a pressure gradient parallel to the wall is applied. The transmissivity T which relates the total flow rate per unit width Q along the wall through the whole fractured medium to the pressure gradient grad p, is defined by Q = - T grad p/mu where mu is the fluid viscosity. The percolation status and hydraulic transmissivity are systematically determined for a wide range of decay lengths and anisotropy parameters. They can be modeled by comparison with anisotropic fracture networks with a constant density. A heuristic power-law model is proposed which accurately describes the results for the percolation threshold over the whole investigated range of heterogeneity and anisotropy. Then, the data

  15. Biopharmaceutics permeability classification of lorcaserin, a selective 5-hydroxytryptamine 2C agonist: method suitability and permeability class membership.

    Science.gov (United States)

    Chen, Chuan; Ma, Michael G; Fullenwider, Cody L; Chen, Weichao G; Sadeque, Abu J M

    2013-12-02

    The objectives of the study were (1) to demonstrate that a Caco-2 cell-based permeability assay, developed in our laboratory, is suitable to identify the permeability classification according to the US Food and Drug Administration Biopharmaceutics Classification System guidance, and (2) to use the validated Caco-2 method to determine permeability class membership of lorcaserin. Lorcaserin, marketed in United States as Belviq, is a selective human 5-hydroxytryptamine 2C agonist used for weight management. First, the permeability of twenty commercially available drugs was determined in the apical-to-basolateral direction at a final concentration of 10 μM, with the pH of transporter buffer in the apical and basolateral compartments being 6.8 and 7.4, respectively. A rank-order relationship between in vitro permeability results and the extent of human intestinal absorption for the drugs tested was observed. Second, the apparent permeability coefficient values of lorcaserin at 2, 20, and 200 μM and apical pH values of 6.8 and 7.4 in the apical-to-basolateral direction were determined using the validated method and found to be comparable to those of the high-permeability internal standard metoprolol. Lorcaserin permeability across Caco-2 cell monolayers was not dependent on the variation of apical pH. Furthermore, lorcaserin was not a substrate for efflux transporters such as P-glycoprotein. In conclusion, using the validated Caco-2 permeability assay, it was shown that lorcaserin is a highly permeable compound.

  16. Cell Wall Metabolism in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Hyacinthe Le Gall

    2015-02-01

    Full Text Available This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic, transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i an increased level in xyloglucan endotransglucosylase/hydrolase (XTH and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  17. Compression characteristics and permeability of saturated Gaomiaozi ca-bentonite

    International Nuclear Information System (INIS)

    Sun Wenjing; Sun De'an; Fang Lei

    2012-01-01

    The compression characteristics and permeability of compacted Gaomiaozi Ca-bentonite saturated by the water uptake tests are studied by conducting a series of one-dimension compression tests. The permeability coefficient can be calculated by the Terzaghi's one-dimensional consolidation theory after the consolidation coefficient is obtained by the square root of time method. It is found that the compression curves of compacted specimens saturated by the water uptake tests tend to be consistent in the relatively high stress range. The compression indexes show a linear decrease with increasing dry density and the swelling index is a constant. The permeability coefficient decreases with increasing compression stress, and they show the linear relationship in double logarithmic coordinates. Meanwhile, the permeability coefficient shows a linear decrease with decreasing void ratio, which has no relationship with initial states, stress states and stress paths. The permeability coefficient k of GMZ Ca-bentonite at dry density Pd of 1.75 g/cm 3 can be calculated as 2.0 × 10 -11 cm/s by the linear relationship between Pd and log k. It is closed to the permeability coefficient of GMZ Ca-bentonite with the same dry density published in literature, which testifies that the method calculating the permeability coefficient is feasible from the consolidation coefficient obtained by the consolidation test. (authors)

  18. IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2002-09-30

    Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.

  19. Stress dependence of permeability of intact and fractured shale cores.

    Science.gov (United States)

    van Noort, Reinier; Yarushina, Viktoriya

    2016-04-01

    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  20. Permeability studies of artificial and natural cancellous bone structures.

    Science.gov (United States)

    Syahrom, Ardiyansyah; Abdul Kadir, Mohammed Rafiq; Abdullah, Jaafar; Öchsner, Andreas

    2013-06-01

    In the development of artificial cancellous bones, two major factors need to be considered: the integrity of the overall structure and its permeability. Whilst there have been many studies analysing the mechanical properties of artificial and natural cancellous bones, permeability studies, especially those using numerical simulation, are scarce. In this study, idealised cancellous bones were simulated from the morphological indices of natural cancellous bone. Three different orientations were also simulated to compare the anisotropic nature of the structure. Computational fluid dynamics methods were used to analyse fluid flow through the cancellous structures. A constant mass flow rate was used to determine the intrinsic permeability of the virtual specimens. The results showed similar permeability of the prismatic plate-and-rod model to the natural cancellous bone. The tetrakaidecahedral rod model had the highest permeability under simulated blood flow conditions, but the plate counterpart had the lowest. Analyses on the anisotropy of the virtual specimens showed the highest permeability for the horizontal orientation. Linear relationships were found between permeability and the two physical properties, porosity and bone surface area. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Characterization and estimation of permeability correlation structure from performance data

    Energy Technology Data Exchange (ETDEWEB)

    Ershaghi, I.; Al-Qahtani, M. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-08-01

    In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.

  2. Wave transmission over permeable submerged breakwaters; Transmision del oleaje en rompeolas sumergidos permeables

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-y-Zurvia-Flores, Jaime Roberto; Fragoso-Sandoval, Lucio [Instituto Politecnico Nacional(Mexico)

    2008-10-15

    The permeable submerged breakwaters represent a coastal protection alternative, where some degree of wave energy transmission is acceptable. Such would be the case of tourist beach protection in Mexico. In previous researches, like those performed by D'Angremond et al. (1996), Seabrook and Hall (1998), and Briganti et al. (2003), the empirical formulas developed, give only some limited information over the spatial distribution of wave energy over the structure. Therefore, a decision was made to conduct a study on a reduced physical model of a permeable submerged breakwater based on the results presented by those researchers and with possible applications. Therefore this paper presents the development of a study of wave transmission over permeable submerged breakwaters performed in a reduced physical model of different sections of a submerged rockfill breakwater of the trapezoidal type. This was done in a narrow wave flume with a hydraulic irregular wave generator controlled by a computer that was used to generate and to reproduce different types of irregular waves to be used in the tests. It also has a wave meter with four sensors, and they are connected to a computer in order to process the wave data. The main objective of the study was to determine in an experimental way the influence of the several parameters of submerged breakwater over the wave transmission coefficient. Our experimental results were comparable to those obtained by D'Angremond et al. (1996) and Seabrook and Hall (1998). The results show that the sumerged breakwater parameters of most influence over the wave transmission coefficient were relative submergence and the relative width crest of the sumerged breakwater, and that the formula by Seabrook and Hall correlates best with our results. [Spanish] Los rompeolas sumergidos permeables representan actualmente una alternativa de proteccion de costas, donde un cierto grado de transmision de energia del oleaje es aceptable, como seria el

  3. Update to Permeable Pavement Research at the Edison Environmental Center - proceedings

    Science.gov (United States)

    The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavements including interlocking concrete permeable pavers, p...

  4. Update to Permeable Pavement Research at the Edison Environmental Center - abstract

    Science.gov (United States)

    Abstract The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers...

  5. Update to permeable pavement research at the Edison Environmental Center - slides

    Science.gov (United States)

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable paver...

  6. Theoretical Analysis of Metamaterial Insertions for Resistive-Wall Beam-Coupling Impedance Reduction

    CERN Document Server

    Danisi, A; Masi, A; Losito, R; Salvant, B

    2014-01-01

    Resistive-wall impedance usually constitutes a significant percentage of the total beam-coupling impedance budget of an accelerator. Reduction techniques often entail high electrical-conductivity coatings. This paper investigates the use of negative-permittivity or negative-permeability materials for sensibly reducing or theoretically nearly cancelling resistive-wall impedance. The proposed approach is developed by means of an equivalent transmission-line model. The effectiveness of such materials is discussed both for negative-permittivity and for negative-permeability cases, which actually show different impacts and can be then target of proper engineering. This first-stage study opens the possibility of considering metamaterials for impedance mitigation or for proper experimental setups.

  7. Altered Metabolism of LDL in the Arterial Wall Precedes Atherosclerosis Regression

    DEFF Research Database (Denmark)

    Bartels, Emil D.; Christoffersen, Christina; Lindholm, Marie W.

    2015-01-01

    Rationale: Plasma cholesterol lowering is beneficial in patients with atherosclerosis. However, it is unknown how it affects entry and degradation of low-density lipoprotein (LDL) particles in the lesioned arterial wall. Objective: We studied the effect of lipid-lowering therapy on LDL permeability...... and degradation of LDL particles in atherosclerotic aortas of mice by measuring the accumulation of iodinated LDL particles in the arterial wall. Methods and Results: Cholesterol-fed, LDL receptor–deficient mice were treated with either an anti-Apob antisense oligonucleotide or a mismatch control antisense...... oligonucleotide once a week for 1 or 4 weeks before injection with preparations of iodinated LDL particles. The anti-Apob antisense oligonucleotide reduced plasma cholesterol by ≈90%. The aortic LDL permeability and degradation rates of newly entered LDL particles were reduced by ≈50% and ≈85% already after 1...

  8. In-situ porous reactive wall for treatment of Cr(VI) and trichloroethylene in groundwater

    International Nuclear Information System (INIS)

    Blowes, D.W.; Bennett, T.A.; Gillham, R.W.

    1997-01-01

    A permeable reactive wall for treating groundwater contaminated with hexavalent chromium (Cr(VI)) and trichloroethylene (TCE) was installed at the U.S. Coast Guard Support Center in Elizabeth City, NC in June, 1996. The porous reactive wall is 46 m long, 0.6 m wide, and 7.3 m deep. The reactive wall was installed in less then six hours using a continuous trenching technique which simultaneously removed the aquifer material and replaced it with reactive material. The wall is composed of 100% elemental iron in the form of iron filings. Preliminary laboratory experiments, with site groundwater and reactive materials similar to the full-scale wall components, were successful in decreasing 11 mg/L Cr(VI) to < 0.01 mg/L and 1700 μg/L TCE to < 1 μg/L. Detailed field monitoring commenced in November, 1996. The monitoring program includes groundwater sampling upgradient, downgradient and within the reactive wall, and collection of core samples for mineralogical and microbiological study. Preliminary results from the monitoring program indicate that the wall successfully removes Cr(VI) from influent concentrations of 6 mg/L to < 0.01 mg/L, and TCE from 5600 μg/L to 5.3 μg/L within the wall

  9. Compressible fluid flow through rocks of variable permeability

    International Nuclear Information System (INIS)

    Lin, W.

    1977-01-01

    The effectiveness of course-grained igneous rocks as shelters for burying radioactive waste can be assessed by determining the rock permeabilities at their in situ pressures and stresses. Analytical and numerical methods were used to solve differential equations of one-dimensional fluid flow through rocks with permeabilities from 10 4 to 1 nD. In these calculations, upstream and downstream reservoir volumes of 5, 50, and 500 cm 3 were used. The optimal size combinations of the two reservoirs were determined for measurements of permeability, stress, strain, acoustic velocity, and electrical conductivity on low-porosity, coarse-grained igneous rocks

  10. A topology optimization method for design of negative permeability metamaterials

    DEFF Research Database (Denmark)

    Diaz, A. R.; Sigmund, Ole

    2010-01-01

    the effective permeability, obtained after solving Maxwell's equations on a representative cell of a periodic arrangement using a full 3D finite element model. The effective permeability depends on the layout of copper, and the subject of the topology optimization problem is to find layouts that result......A methodology based on topology optimization for the design of metamaterials with negative permeability is presented. The formulation is based on the design of a thin layer of copper printed on a dielectric, rectangular plate of fixed dimensions. An effective media theory is used to estimate...

  11. Determination of filtrations and permeability of an earth dam

    International Nuclear Information System (INIS)

    Gomez, H.R.; Baro, G.B.; Gillen, Ricardo.

    1975-11-01

    The aim of this work was to measure with the aid of a radioactive tracer the speed flow of the water filtrating from Sumampa Dam in northeastern Catamarca, while being in operation, and with these data determine if the actual permeability corresponds to the projected one. Iodine-131 was used as tracer and periodical samples were taken from the down stream water in order to determine its activity concentration. In previous perforations ionic interchange resines were used so as to measure simultaneously the fixed Iodine-131. The permeability of the dam was calculated from the obtained speed based on time-concentration curves and applying Darcy formulas for permeability. (author) [es

  12. Measurement of the increase in the capillary permeability in skin with Evans blue labelled with iodine-125 or 131

    International Nuclear Information System (INIS)

    Sugarava, S.; Goncalves, J.M.

    1976-01-01

    The quantitative evaluation of bradykinin and histamine with Evans blue labelled with iodine -125 or 131 is described. The activity upon vascular permeability was performed in the abdominal wall of rats injecting intravenously solution of labelled Evans blue and 0,1 ml of vasoactive drugs solution intradermally. Skin discs were cut with circular punch for external counting, quantitative results being compared with control discs. By using this method, satisfactory log dose-reponse curves were obtained for bradykinin and histamine that followed the general trend of S - shaped curves [pt

  13. Constructing Asymmetric Polyion Complex Vesicles via Template Assembling Strategy: Formulation Control and Tunable Permeability

    Directory of Open Access Journals (Sweden)

    Junbo Li

    2017-11-01

    Full Text Available A strategy for constructing polyion complex vesicles (PICsomes with asymmetric structure is described. Poly(methylacrylic acid-block-poly(N-isopropylacrylamide modified gold nanoparticles (PMAA-b-PNIPAm-@-Au NPs were prepared and then assembled with poly(ethylene glycol-block-poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine] (PEG-b-PMMPImB via polyion complex of PMMA and PMMPImB. After removing the Au NPs template, asymmetric PICsomes composed of a PNIPAm inner-shell, PIC wall, and PEG outer-corona were obtained. These PICsomes have low protein absorption and thermally tunable permeability, provided by the PEG outer-corona and the PNIPAm inner-shell, respectively. Moreover, PICsome size can be tailored by using templates of predetermined sizes. This novel strategy for constructing asymmetric PICsomes with well-defined properties and controllable size is valuable for applications such as drug delivery, catalysis and monitoring of chemical reactions, and biomimetics.

  14. A thin permeable-membrane device for single-molecule manipulation.

    Science.gov (United States)

    Park, Chang-Young; Jacobson, David R; Nguyen, Dan T; Willardson, Sam; Saleh, Omar A

    2016-01-01

    Single-molecule manipulation instruments have unparalleled abilities to interrogate the structure and elasticity of single biomolecules. Key insights are derived by measuring the system response in varying solution conditions; yet, typical solution control strategies require imposing a direct fluid flow on the measured biomolecule that perturbs the high-sensitivity measurement and/or removes interacting molecules by advection. An alternate approach is to fabricate devices that permit solution changes by diffusion of the introduced species through permeable membranes, rather than by direct solution flow through the sensing region. Prior implementations of permeable-membrane devices are relatively thick, disallowing their use in apparatus that require the simultaneous close approach of external instrumentation from two sides, as occurs in single-molecule manipulation devices like the magnetic tweezer. Here, we describe the construction and use of a thin microfluidic device appropriate for single-molecule studies. We create a flow cell of only ∼500 μm total thickness by sandwiching glass coverslips around a thin plastic gasket and then create permeable walls between laterally separated channels in situ through photo-induced cross-linking of poly(ethylene glycol) diacrylate hydrogels. We show that these membranes permit passage of ions and small molecules (thus permitting solution equilibration in the absence of direct flow), but the membranes block the passage of larger biomolecules (thus retaining precious samples). Finally, we demonstrate the suitability of the device for high-resolution magnetic-tweezer experiments by measuring the salt-dependent folding of a single RNA hairpin under force.

  15. A thin permeable-membrane device for single-molecule manipulation

    Science.gov (United States)

    Park, Chang-Young; Jacobson, David R.; Nguyen, Dan T.; Willardson, Sam; Saleh, Omar A.

    2016-01-01

    Single-molecule manipulation instruments have unparalleled abilities to interrogate the structure and elasticity of single biomolecules. Key insights are derived by measuring the system response in varying solution conditions; yet, typical solution control strategies require imposing a direct fluid flow on the measured biomolecule that perturbs the high-sensitivity measurement and/or removes interacting molecules by advection. An alternate approach is to fabricate devices that permit solution changes by diffusion of the introduced species through permeable membranes, rather than by direct solution flow through the sensing region. Prior implementations of permeable-membrane devices are relatively thick, disallowing their use in apparatus that require the simultaneous close approach of external instrumentation from two sides, as occurs in single-molecule manipulation devices like the magnetic tweezer. Here, we describe the construction and use of a thin microfluidic device appropriate for single-molecule studies. We create a flow cell of only ˜500 μm total thickness by sandwiching glass coverslips around a thin plastic gasket and then create permeable walls between laterally separated channels in situ through photo-induced cross-linking of poly(ethylene glycol) diacrylate hydrogels. We show that these membranes permit passage of ions and small molecules (thus permitting solution equilibration in the absence of direct flow), but the membranes block the passage of larger biomolecules (thus retaining precious samples). Finally, we demonstrate the suitability of the device for high-resolution magnetic-tweezer experiments by measuring the salt-dependent folding of a single RNA hairpin under force.

  16. Magnetic loss, permeability, and anisotropy compensation in CoO-doped Mn-Zn ferrites

    Science.gov (United States)

    Beatrice, Cinzia; Dobák, Samuel; Tsakaloudi, Vasiliki; Ragusa, Carlo; Fiorillo, Fausto; Martino, Luca; Zaspalis, Vassilis

    2018-04-01

    Mn-Zn ferrite samples prepared by conventional solid state reaction method and sintering at 1325 °C were Co-enriched by addition of CoO up to 6000 ppm and characterized versus frequency (DC - 1GHz), peak polarization (2 mT - 200 mT), and temperature (23 °C - 120 °C). The magnetic losses at room temperature are observed to pass through a deep minimum value around 4000 ppm CoO at all polarizations values. This trend is smoothed out either by approaching the MHz range or by increasing the temperature. Conversely, the initial permeability attains its maximum value around the same CoO content, while showing moderate monotonical decrease with increasing CoO at the typical working temperatures of 80 - 100 °C. The energy losses, measured by a combination of fluxmetric and transmission line methods, are affected by the eddy currents, on the conventional 5 mm thick ring samples, only beyond a few MHz. Their assessment relies on the separation of rotational and domain wall processes, which can be done by analysis of the complex permeability and its frequency behavior. This permits one, in particular, to calculate the magnetic anisotropy and its dependence on CoO content and temperature and bring to light its decomposition into the host lattice and Co2+ temperature dependent contributions. The temperature and doping dependence of initial permeability and magnetic losses can in this way be qualitatively justified, without invoking the passage through zero value of the effective anisotropy constant upon doping.

  17. Image diagnostic evaluation of pulmonary vascular permeability

    International Nuclear Information System (INIS)

    Kato, Shiro; Asai, Sumihiko; Shimada, Yuji; Ogawa, Kenichi; Nakamoto, Ryumei; Yoshimura, Masaharu; Nomura, Sumi.

    1990-01-01

    To determine the validity of computed tomography (CT) in evaluating pulmonary vascular permeability, dynamic CT scans were consequently obtained from 23 dogs with oleic acid-induced pulmonary edema (the edema group) and 12 normal dogs (the control group). The findings of CT were compared with the wet/dry lung weight ratio and the iodine concentration in the lung tissue. The time-density curve of ROI created over the left ventricular cavity reached the maximum density value at 2 minutes after the injection of contrast medium, and it returned to the pre-injection level 5 to 10 minutes later. Similar tendency was observed for the right and left lung fields in the control group; however, in the edema group, the maximum CT numbers attained at 2 minutes were only slightly reduced later on. The ratio of CT numbers at 5 and 10 minutes after the injection to that at 2 minutes was defined as the residual CT number ratio. The residual CT number ratios for both the left ventricular cavity and the right and left lung fields were significantly higher in the edema group than the normal group. The lung/heart CT number ratio at 5 and 10 minutes was also significantly higher in the edema group than the control group. In addition, both the wet/dry weight ratio of the right and left lungs and iodine concentration in the lung tissue were significantly higher in the edema group than the control group. There was a significant linear correlation between the wet/dry lung weight ratio and the iodine concentration for both the right lung (r=0.819) and for the left lung (r=0.871). (N.K.)

  18. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo......M hip implant. A Danish surveillance programme has been initiated addressing these problems....

  19. Researching for sustained translation from site cluster permeability into building courtyard and interior atrium

    Science.gov (United States)

    Teddy Badai Samodra, FX; Defiana, Ima; Setyawan, Wahyu

    2018-03-01

    Many previous types of research have discussed the permeability of site cluster. Because of interaction and interconnected attribute, it will be better that there is its translation into lower context such as building and interior scale. In this paper, the sustainability design performance of both similar designs of courtyard and atrium are investigated continuing the recommendation of site space permeability. By researching related literature review and study through Ecotect Analysis and Ansys Fluent simulations, the pattern transformation and optimum courtyard and atrium design could comply the requirement. The results highlighted that the air movement from the site could be translated at the minimum of 50% higher to the building and indoor environment. Thus, it has potency for energy efficiency when grid, loop, and cul-de-sac site clusters, with 25% of ground coverage, have connectivity with building courtyard compared to the atrium. Energy saving is higher when using low thermal transmittance of transparent material and its lower area percentages for the courtyard walls. In general, it was more energy efficient option as part of a low rise building, while the courtyard building performed better with increasing irregular building height more than 90% of the difference.

  20. Congenital lateral abdominal wall hernia.

    Science.gov (United States)

    Montes-Tapia, Fernando; Cura-Esquivel, Idalia; Gutiérrez, Susana; Rodríguez-Balderrama, Isaías; de la O-Cavazos, Manuel

    2016-08-01

    Congenital abdominal wall defects that are located outside of the anterior wall are extremely rare and difficult to classify because there are no well accepted guidelines. There are two regions outside of the anterior wall: the flank or lateral wall; and the lumbar region. We report the case of a patient with an oval 3 cm-diameter hernia defect located above the anterior axillary line, which affects all layers of the muscular wall. An anorectal malformation consisting of a recto-vestibular fistula was also identified, and chest X-ray showed dextrocardia. The suggested treatment is repair of the defect before 1 year of age. Given that the anomalies described may accompany lateral abdominal wall hernia, it is important to diagnose and treat the associated defects. © 2016 Japan Pediatric Society.

  1. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.

    Science.gov (United States)

    Vikingsson, L; Claessens, B; Gómez-Tejedor, J A; Gallego Ferrer, G; Gómez Ribelles, J L

    2015-08-01

    In tissue engineering the design and optimization of biodegradable polymeric scaffolds with a 3D-structure is an important field. The porous scaffold provide the cells with an adequate biomechanical environment that allows mechanotransduction signals for cell differentiation and the scaffolds also protect the cells from initial compressive loading. The scaffold have interconnected macro-pores that host the cells and newly formed tissue, while the pore walls should be micro-porous to transport nutrients and waste products. Polycaprolactone (PCL) scaffolds with a double micro- and macro-pore architecture have been proposed for cartilage regeneration. This work explores the influence of the micro-porosity of the pore walls on water permeability and scaffold compliance. A Poly(Vinyl Alcohol) with tailored mechanical properties has been used to simulate the growing cartilage tissue inside the scaffold pores. Unconfined and confined compression tests were performed to characterize both the water permeability and the mechanical response of scaffolds with varying size of micro-porosity while volume fraction of the macro-pores remains constant. The stress relaxation tests show that the stress response of the scaffold/hydrogel construct is a synergic effect determined by the performance of the both components. This is interesting since it suggests that the in vivo outcome of the scaffold is not only dependent upon the material architecture but also the growing tissue inside the scaffold׳s pores. On the other hand, confined compression results show that compliance of the scaffold is mainly controlled by the micro-porosity of the scaffold and less by hydrogel density in the scaffold pores. These conclusions bring together valuable information for customizing the optimal scaffold and to predict the in vivo mechanical behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Synthesis of carbon nanotubes bridging metal electrodes

    International Nuclear Information System (INIS)

    Kotlar, M.; Vojs, M.; Marton, M.; Vesel, M.; Redhammer, R.

    2012-01-01

    In our work we demonstrate growth of carbon nanotubes that can conductively bridge the metal electrodes. The role of different catalysts was examined. Interdigitated metal electrodes are made from copper and we are using bimetal Al/Ni as catalyst for growth of carbon nanotubes. We are using this catalyst composition for growth of the single-walled carbon nanotube network. (authors)

  3. Dynamics of monopole walls

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, R., E-mail: rafael.maldonado@durham.ac.uk; Ward, R.S., E-mail: richard.ward@durham.ac.uk

    2014-06-27

    The moduli space of centred Bogomolny–Prasad–Sommerfield 2-monopole fields is a 4-dimensional manifold M with a natural metric, and the geodesics on M correspond to slow-motion monopole dynamics. The best-known case is that of monopoles on R{sup 3}, where M is the Atiyah–Hitchin space. More recently, the case of monopoles periodic in one direction (monopole chains) was studied a few years ago. Our aim in this note is to investigate M for doubly-periodic fields, which may be visualized as monopole walls. We identify some of the geodesics on M as fixed-point sets of discrete symmetries, and interpret these in terms of monopole scattering and bound orbits, concentrating on novel features that arise as a consequence of the periodicity.

  4. Abdominal wall hernias

    DEFF Research Database (Denmark)

    Henriksen, Nadia A; Mortensen, Joachim H; Lorentzen, Lea

    2016-01-01

    that abdominal wall hernia formation is associated with altered collagen metabolism. The aim of this study was to evaluate biomarkers for type IV and V collagen turnover in patients with multiple hernias and control subjects without hernia. METHODS: Venous blood was collected from 88 men (mean age, 62 years......) with a history of more than 3 hernia repairs and 86, age-matched men without hernias. Biomarkers for synthesis of collagen type IV (P4NP) and type V (P5CP) as well as breakdown (C4M and C5M) were measured in serum by validated, solid-phase, competitive assays. Collagen turnover was indicated by the ratio between...... the biomarker for synthesis and breakdown. RESULTS: Type IV collagen turnover was 1.4-fold increased in patients with multiple hernias compared to control subjects (P turnover was 1.7-fold decreased (P

  5. Bacterial Cell Wall Components

    Science.gov (United States)

    Ginsberg, Cynthia; Brown, Stephanie; Walker, Suzanne

    Bacterial cell-surface polysaccharides cells are surrounded by a variety of cell-surface structures that allow them to thrive in extreme environments. Components of the cell envelope and extracellular matrix are responsible for providing the cells with structural support, mediating intercellular communication, allowing the cells to move or to adhere to surfaces, protecting the cells from attack by antibiotics or the immune system, and facilitating the uptake of nutrients. Some of the most important cell wall components are polysaccharide structures. This review discusses the occurrence, structure, function, and biosynthesis of the most prevalent bacterial cell surface polysaccharides: peptidoglycan, lipopolysaccharide, arabinogalactan, and lipoarabinomannan, and capsular and extracellular polysaccharides. The roles of these polysaccharides in medicine, both as drug targets and as therapeutic agents, are also described.

  6. Observations on resistive wall modes

    International Nuclear Information System (INIS)

    Gerwin, R.A.; Finn, J.M.

    1996-01-01

    Several results on resistive wall modes and their application to tokamaks are presented. First, it is observed that in the presence of collisional parallel dynamics there is an exact cancellation to lowest order of the dissipative and sound wave effects for an ideal Ohm's law. This is easily traced to the fact that the parallel dynamics occurs along the perturbed magnetic field lines for such electromagnetic modes. Such a cancellation does not occur in the resistive layer of a tearing-like mode. The relevance to models for resistive wall modes using an electrostatic Hammett-Perkins type operator to model Landau damping will be discussed. Second, we observe that with an ideal Ohm's law, resistive wall modes can be destabilized by rotation in that part of parameter space in which the ideal MHD modes are stable with the wall at infinity. This effect can easily be explained by interpreting the resistive wall instability in terms of mode coupling between the backward stable MHD mode and a stable mode locked into the wall. Such an effect can occur for very small rotation for tearing-resistive wall modes in which inertia dominates viscosity in the layer, but the mode is stabilized by further rotation. For modes for which viscosity dominates in the layer, rotation is purely stabilizing. For both tearing models, a somewhat higher rotation frequency gives stability essentially whenever the tearing mode is stable with a perfectly conducting wall. These tearing/resistive wall results axe also simply explained in terms of mode coupling. It has been shown that resonant external ideal modes can be stabilized in the presence of resistive wall and resistive plasma with rotation of order the nominal tearing mode growth rate. We show that these modes behave as resistive wall tearing modes in the sense above. This strengthens the suggestion that rotational stabilization of the external kink with a resistive wall is due to the presence of resistive layers, even for ideal modes

  7. Flexoelectricity in nematic domain walls.

    Science.gov (United States)

    Elston, Steve J

    2008-07-01

    Flexoelectric effects are studied in the domain walls of a nematic liquid crystal device showing the Freedericksz transition. Walls parallel to the alignment direction have a strong twist distortion and an electro-optic effect dominated by e1-e3 is seen. Walls perpendicular to the alignment direction have a strong splay-bend distortion and an electro-optic effect dominated by e1+e3 is seen. This allows the study of both flexoelectric coefficient combinations in a single device.

  8. Electrical resisitivity of mechancially stablized earth wall backfill

    Science.gov (United States)

    Snapp, Michael; Tucker-Kulesza, Stacey; Koehn, Weston

    2017-06-01

    Mechanically stabilized earth (MSE) retaining walls utilized in transportation projects are typically backfilled with coarse aggregate. One of the current testing procedures to select backfill material for construction of MSE walls is the American Association of State Highway and Transportation Officials standard T 288: ;Standard Method of Test for Determining Minimum Laboratory Soil Resistivity.; T 288 is designed to test a soil sample's electrical resistivity which correlates to its corrosive potential. The test is run on soil material passing the No. 10 sieve and believed to be inappropriate for coarse aggregate. Therefore, researchers have proposed new methods to measure the electrical resistivity of coarse aggregate samples in the laboratory. There is a need to verify that the proposed methods yield results representative of the in situ conditions; however, no in situ measurement of the electrical resistivity of MSE wall backfill is established. Electrical resistivity tomography (ERT) provides a two-dimensional (2D) profile of the bulk resistivity of backfill material in situ. The objective of this study was to characterize bulk resistivity of in-place MSE wall backfill aggregate using ERT. Five MSE walls were tested via ERT to determine the bulk resistivity of the backfill. Three of the walls were reinforced with polymeric geogrid, one wall was reinforced with metallic strips, and one wall was a gravity retaining wall with no reinforcement. Variability of the measured resistivity distribution within the backfill may be a result of non-uniform particle sizes, thoroughness of compaction, and the presence of water. A quantitative post processing algorithm was developed to calculate mean bulk resistivity of in-situ backfill. Recommendations of the study were that the ERT data be used to verify proposed testing methods for coarse aggregate that are designed to yield data representative of in situ conditions. A preliminary analysis suggests that ERT may be utilized

  9. CELLULAR COMPARTMENTALIZATION AND HEAVY METAL ...

    African Journals Online (AJOL)

    CELLULAR COMPARTMENTALIZATION AND HEAVY METAL LOAD IN THE MOSS. Barbula lambarenensis AROUND A MEGA CEMENT FACTORY IN SOUTHWEST NIGERIA. *. Ogunkunle, C. O. and Fatoba, P. O.. Department of Plant Biology, University of Ilorin .... the free transport of Zn across the cell wall as it.

  10. Cell wall evolution and diversity

    Directory of Open Access Journals (Sweden)

    Jonatan Ulrik Fangel

    2012-07-01

    Full Text Available Plant cell walls display a considerable degree of diversity in their compositions and molecular architectures. In some cases the functional significance of a particular cell wall type appears to be easy to discern: secondary cells walls are often heavy reinforced with lignin that provides the required durability; the thin cell walls of pollen tubes have particular compositions that enable their tip growth; lupin seed cell walls are characteristically thickened with galactan used as a storage polysaccharide. However, more frequently the evolutionary mechanisms and selection pressures that underpin cell wall diversity and evolution are unclear. The rapidly increasing availability of transcriptome and genome data sets, development of high-throughput methods for cell wall analyses, and expansion of molecular probe sets, are providing new insights into the diversity and occurrence of cell wall polysaccharides and associated biosynthetic genes. Such research is important for refining our understanding of some of the fundamental processes that enabled plants to colonise land and subsequently radiate so comprehensively. The study of cell wall structural diversity is also an important aspect of the industrial utilization of global polysaccharide bio-resources.

  11. Water permeability is a measure of severity in acute appendicitis.

    Science.gov (United States)

    Pini, Nicola; Pfeifle, Viktoria A; Kym, Urs; Keck, Simone; Galati, Virginie; Holland-Cunz, Stefan; Gros, Stephanie J

    2017-12-01

    Acute appendicitis is the most common indication for pediatric abdominal emergency surgery. Determination of the severity of appendicitis on clinical grounds is challenging. Complicated appendicitis presenting with perforation, abscess or diffuse peritonitis is not uncommon. The question remains why and when acute appendicitis progresses to perforation. The aim of this study was to assess the impact of water permeability on the severity of appendicitis. We show that AQP1 expression and water permeability in appendicitis correlate with the stage of inflammation and systemic infection parameters, leading eventually to perforation of the appendix. AQP1 is also expressed within the ganglia of the enteric nervous system and ganglia count increases with inflammation. Severity of appendicitis can be correlated with water permeability measured by AQP1 protein expression and increase of ganglia count in a progressive manner. This introduces the question if regulation of water permeability can present novel curative or ameliorating therapeutic options.

  12. Investigation of stormwater quality improvements utilizing permeable friction course (PFC).

    Science.gov (United States)

    2010-09-01

    This report describes research into the water quality and hydraulics of the Permeable Friction Course (PFC). : Water quality monitoring of 3 locations in the Austin area indicates up to a 90 percent reduction in pollutant : discharges from PFC compar...

  13. Investigation of negative permeability metamaterials for wireless power transfer

    Science.gov (United States)

    Xin, Wenhui; Mi, Chunting Chris; He, Fei; Jiang, Meng; Hua, Dengxin

    2017-11-01

    In order to enhance the transmission efficiency of wireless power transfer (WPT), a negative permeability metamaterials (NPM) with a structure of honeycomb composed by units of hexagon-shaped spirals copper is proposed in this paper. The unit parameters of the NPM are optimized, to make sure the negative permeability at the special frequency. The S-parameters of the designed NPM are measured by a network analyzer and the permeability is extracted, it shows the honeycomb NPM has a negative permeability at 6.43 MHz. A two-coil WPT is setup and the transmission efficiency of WPT embedded with NPM at the different position and with different structure are investigated. The measured results show that the 2-slab honeycomb NPM have a good perform compared with the 1-slab NPM, and the efficiency can be increased up to 51%. The results show that honeycomb NPM embedded in the WPT help to improve the transmission efficiency remarkable.

  14. Study on Surface Permeability of Concrete under Immersion.

    Science.gov (United States)

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-28

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured after 30-day immersion. The early increase in surface permeability should be mainly attributed to the leaching of calcium hydroxide, while the later decrease to the refinement of pore structure due to hydration. The two effects work simultaneously and compete throughout the immersion period. The proposed mechanisms get support from microscopic measurements and observations.

  15. Measurement of relative permeability of fuel cell diffusion media

    KAUST Repository

    Hussaini, I.S.

    2010-06-01

    Gas diffusion layer (GDL) in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented and new correlations for in-plane relative permeability of water and air are established. © 2010 Elsevier B.V. All rights reserved.

  16. Xenon NMR measurements of permeability and tortuosity in reservoir rocks.

    Science.gov (United States)

    Wang, Ruopeng; Pavlin, Tina; Rosen, Matthew Scott; Mair, Ross William; Cory, David G; Walsworth, Ronald Lee

    2005-02-01

    In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores.

  17. Effect Of Hot Water Injection On Sandstone Permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke

    2012-01-01

    of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx......The seasonal imbalance between supply and demand of renewable energy requires temporary storage, which can be achieved by hot water injection in warm aquifers. This requires that the permeability and porosity of the aquifer are not reduced significantly by heating. We present an overview...

  18. Diagenetic effect on permeabilities of geothermal sandstone reservoirs

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    The Danish subsurface contains abundant sedimentary deposits, which can be utilized for geothermal heating. The Upper Triassic – Lower Jurassic continental-marine sandstones of the Gassum Formation has been utilised as a geothermal reservoir for the Thisted Geothermal Plant since 1984 extracting...... and permeability is caused by increased diagenetic changes of the sandstones due to increased burial depth and temperatures. Therefore, the highest water temperatures typically correspond with the lowest porosities and permeabilities. Especially the permeability is crucial for the performance of the geothermal......-line fractures. Continuous thin chlorite coatings results in less porosity- and permeability-reduction with burial than the general reduction with burial, unless carbonate cemented. Therefore, localities of sandstones characterized by these continuous chlorite coatings may represent fine geothermal reservoirs...

  19. Investigation clogging dynamic of permeable pavement systems using embeded sensors

    Data.gov (United States)

    U.S. Environmental Protection Agency — Permeable pavement is a stormwater control measure commonly selected in both new and retrofit applications. However, there is limited information about the clogging...

  20. Lightweight, Low Permeability, Cryogenic Thoraeus RubberTM Inflatables Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed a candidate state-of-the-art inflatable as a novel bladder material for life critical, space habitats that maintains low air permeability...