WorldWideScience

Sample records for metal nuclear reactor

  1. Liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Leigh, K.M.

    1980-01-01

    A liquid metal cooled nuclear reactor is described, wherein coolant is arranged to be flowed upwardly through a fuel assembly and having one or more baffles located above the coolant exit of the fuel assembly, the baffles being arranged so as to convert the upwardly directed motion of liquid metal coolant leaving the fuel assembly into a substantially horizontal motion. (author)

  2. Liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Guidez, Joel; Jarriand, Paul.

    1975-01-01

    The invention concerns a fast neutron nuclear reactor cooled by a liquid metal driven through by a primary pump of the vertical drive shaft type fitted at its lower end with a blade wheel. To each pump is associated an exchanger, annular in shape, fitted with a central bore through which passes the vertical drive shaft of the pump, its wheel being mounted under the exchanger. A collector placed under the wheel comprises an open upward suction bell for the liquid metal. A hydrostatic bearing is located above the wheel to guide the drive shaft and a non detachable diffuser into which at least one delivery pipe gives, envelopes the wheel [fr

  3. Improvements in liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, S.

    1980-01-01

    A concrete containment vault for a liquid metal cooled nuclear reactor is described which is lined with thermal insulation to protect the vault against heat radiated from the reactor during normal operation of the reactor but whose efficiency of heat insulation is reduced in an emergency to enable excessive heat from the reactor to be dissipated through the vault. (UK)

  4. Liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Scott, D.

    1981-01-01

    An improved method of constructing the diagrid used to support fuel assemblies of liquid metal fast breeder reactors, is described. The functions of fuel assembly support and coolant plenum are performed by discrete components of the diagrid each of which can serve the function of the other in the event of failure of one of the components. (U.K.)

  5. Heat dissipating nuclear reactor with metal liner

    Science.gov (United States)

    Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  6. Liquid metal cooled fast breeder nuclear reactor

    International Nuclear Information System (INIS)

    Scott, D.

    1979-01-01

    A liquid metal cooled fast breeder nuclear reactor has a core comprising a plurality of fuel assemblies supported on a diagrid and submerged in a pool of liquid metal coolant within a containment vessel, the diagrid being of triple component construction and formed of a short cylindrical plenum mounted on a conical undershell and loosely embraced by a fuel store carrier. The plenum merely distributes coolant through the fuel assemblies, the load of the assemblies being carried by the undershell by means of struts which penetrate the plenum. The reactor core, fuel store carrier and undershell provide secondary containment for the plenum. (UK)

  7. Liquid metal cooled nuclear reactor constructions

    International Nuclear Information System (INIS)

    Aspden, G.J.; Allbeson, K.F.

    1984-01-01

    In a liquid metal cooled nuclear reactor with a nuclear fuel assembly in a coolant-containing primary vessel housed within a concrete containment vault, there is thermal insulation to protect the concrete, the insulation being disposed between vessel and concrete and being hung from metal structure secured to and projecting from the concrete, the insulation consisting of a plurality of adjoining units each unit incorporating a pack of thermal insulating material and defining a contained void co-extensive with said pack and situated between pack and concrete, the void of each unit being connected to the voids of adjoining units so as to form continuous ducting for a fluid coolant. (author)

  8. Liquid metal pump for nuclear reactors

    International Nuclear Information System (INIS)

    Allen, H.G.; Maloney, J.R.

    1975-01-01

    A pump for use in pumping high temperature liquids at high pressures, particularly liquid metals used to cool nuclear reactors is described. It is of the type in which the rotor is submerged in a sump but is fed by an inlet duct which bypasses the sump. A chamber, kept full of fluid, surrounds the pump casing into which fluid is bled from the pump discharge and from which fluid is fed to the rotor bearings and hence to the sump. This equalizes pressure inside and outside the pump casing and reduces or eliminates the thermal shock to the bearings and sump tank

  9. Improvements in liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, S.

    1980-01-01

    Improvements in the design of the thermally insulating material used to shield the concrete containment walls in liquid metal cooled nuclear reactors are described in detail. The insulating material is composed of two layers and is placed between the primary vessel (usually steel) and the steel lined concrete containment vault. The outer layer, which clads the inner wall surface of the vault, is generally impervious to liquid metal coolant whilst the inner layer is pervious to the coolant. In normal operation, both layers protect the concrete from heat radiated from the reactor. In the event of a breach of the containment vessel, the resulting leakage of liquid metal coolant permeates the inner layer of insulating material, provides a means of heat transfer by conduction and hence reduces the overall insulating properties of the two layers. The outer layer continues to protect the wall surface of the vault from substantial direct contact with the liquid metal. Thus the two apparently conflicting requirements of good thermal insulation during normal operation and of heat transfer during loss of coolant accidents are satisfied by this novel design. Suggestions are given for possible materials for use as the insulating layers. (U.K.)

  10. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Duncombe, E.; Thatcher, G.

    1979-01-01

    The invention described relates to a liquid metal cooled fast breeder nuclear reactor in which the fuel assembly has an inner zone comprised mainly of fissile material and a surrounding outer zone comprised mainly of breeder material. According to the invention the sub-assemblies in the outer zone include electro-magnetic braking devices (magnets, pole pieces and armature) for regulating the flow of coolant through the sub-assemblies. The magnetic fields of the electro-magnetic breaking devices are temperature sensitive so that as the power output of the breeder sub-assemblies increases the electro-magnetic resistance to coolant flow is reduced thereby maintaining the temperature of the coolant outlets from the sub-assemblies substantially constant. (UK)

  11. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Gatley, J.A.

    1979-01-01

    Breeder fuel sub-assemblies with electromagnetic brakes and fluidic valves for liquid metal cooled fast breeder reactors are described. The electromagnetic brakes are of relatively small proportions and the valves are of the controlled vortex type. The outlet coolant temperature of at least some of the breeder sub-assemblies are maintained by these means substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (UK)

  12. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Thatcher, G.; Mitchell, A.J.

    1981-01-01

    Fuel sub-assemblies for liquid metal-cooled fast breeder reactors are described which each incorporate a fluid flow control valve for regulating the rate of flow through the sub-assembly. These small electro-magnetic valves seek to maintain the outlet coolant temperature of at least some of the breeder sub-assemblies substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (U.K.)

  13. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Durston, J.G.

    1976-01-01

    It is stated that in a liquid metal cooled fast breeder reactor wherein the core, intermediate heat exchangers and liquid metal pumps are immersed in a pool of coolant such as Na, the intermediate heat exchangers are suspended from the roof, and ducting is provided in the form of a core tank or shroud interconnected with 'pods' housing the intermediate exchangers for directing coolant from the core over the heat exchanger tubes and thence back to the main pool of liquid metal. Seals are provided between the intermediate heat exchanger shells and the walls of their 'pods' to prevent liquid metal flow by-passing the heat exchanger tube bundles. As the heat exchangers must be withdrawable for servicing, and because linear differential thermal expansion of the heat exchanger and its 'pod' must be accommodated the seals hitherto have been of the sliding kind, generally known as 'piston ring type seals'. These present several disadvantages; for example sealing is not absolute, and the metal to metal seal gives rise to wear and fretting by rubbing and vibration. This could lead to seizure or jamming by the deposition of impurities in the coolant. Another difficulty arises in the need to accommodate lateral thermal expansion of the ducting, including the core tank and 'pods'. Hitherto some expansion has been allowed for by the use of expansible bellow pairs in the interconnections, or alternatively by allowing local deformations of the core tank 'pods'. Such bellows must be very flexible and hence constitute a weak section of the ducting, and local deformations give rise to high stress levels that could lead to premature failure. The arrangement described seeks to overcome these difficulties by use of a gas pocket trapping means to effect a seal against vertical liquid flow between the heat exchanger shell and the wall of the heat exchanger housing. Full details of the arrangement are described. (U.K.)

  14. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, S.

    1976-01-01

    Reference is made to liquid metal cooled fast breeder reactors of the 'pool' kind. In this type of reactor the irradiated fuel is lowered into a transfer rotor for removal to storage facilities, this rotor normally having provision for the temporary storage of 20 irradiated fuel assemblies, each within a stainless steel bucket. For insertion or withdrawal of a fuel assembly the rotor is rotated to bring the fuel assembly to a loading or discharging station. The irradiated fuel assembly is withdrawn from the rotor within its bucket and the total weight is approximately 1000 kg, which is lifted about 27 m. In the event of malfunction the combination falls back into the rotor with considerable force. In order to prevent damage to the rotor fracture pins are provided, and to prevent damage to the reactor vessel and other parts of the reactor structure deformable energy absorbing devices are provided. After a malfunction the fractured pins and the energy absorbing devices must be replaced by remote control means operated from outside the reactor vault - a complex operation. The object of the arrangement described is to provide improved energy absorbing means for fuel assemblies falling into a fuel transfer rotor. The fuel assemblies are supported in the rotor by elastic means during transfer to storage and a hydraulic dash pot is provided in at least one position below the rotor for absorbing the energy of a falling fuel assembly. It is preferable to provide dash pots immediately below a receiving station for irradiated fuel assemblies and immediately below a discharge station. Each bucket is carried in a container that is elastically supported in the transfer rotor on a helical coil compression spring, so that, in the event of a malfunction the container and bucket are returned to their normal operating position after the force of the falling load has been absorbed by the dash pot. The transfer rotor may also be provided with recoil springs to absorb the recoil energy

  15. Fuel transfer manipulator for liquid metal nuclear reactors

    International Nuclear Information System (INIS)

    Sturges, R.H.

    1983-01-01

    A manipulator for transferring fuel assemblies between inclined fuel chutes of a liquid metal nuclear reactor installation. Hoisting means are mounted on a mount supported by beams pivotably attached by pins to the mount and to the floor in such a manner that pivoting of the beams causes movement and tilting of a hoist tube between positions of alignment with the inclined chutes. (author)

  16. Fuel rod for liquid metal-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Vinz, P.

    1976-01-01

    In fuel rods for nuclear reactors with liquid-metal cooling (sodium), with stainless steel tubes with a nitrated surface as canning, superheating or boiling delay should be avoided. The inner wall of the can is provided along its total length with a helical fin of stainless steel wire (diameter 0.05 to 0.5 mm) to be wetted by hot sodium. This fin is mounted under prestressing and has a distance in winding of 1/10 of the wire diameter. (UWI) [de

  17. Vessel supporting structure for liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Mahe, Armel; Jullien, Georges

    1974-01-01

    The supporting structure described is for a liquid metal cooled nuclear reactor, the vessel being of the type suspended to the end slab of the reactor. It includes a ring connected at one of its two ends to a single shell and at the other end to two shells. One of these three shells connected to the lower end of the ring forms the upper part of the vessel to be supported. The two other shells are embedded in two sperate parts of the slab. The ring and shell assembly is housed in an annular space provided in the end slab and separating it into two parts, namely a central part and a peripheral part [fr

  18. The role of metal complexes in nuclear reactor decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Prince, A.A.M.; Raghavan, P.S.; Gopalan, R. [Madras Christian College, Tambaram, Chennai (India); Velmurugan, S.; Narasimhan, S.V. [Bhabha Atomic Research Center (BARC) (IN). Water and Steam Chemistry Lab. (WSCL)

    2006-07-15

    Chemical decontamination is the process of removal of radioactivity from corrosion products formed on structural materials in the nuclear reactors. These corrosion products cause problems for the operation and maintenance of the plants. Removal of the radioactive contaminants can be achieved by dissolving the oxide from the system surface using organic complexing agents in low concentrations known as dilute chemical decontamination (DCD) formulations. These organic complexing agents attack the oxide surface and form metal complexes, which further accelerate the dissolution process. The stability of the complexes plays an important role in dissolving the radioactive contaminated oxides. In addition, the DCD process is operated through ion exchange resins for the removal of the dissolved metal ions and radioactive nuclides. In the present study, the kinetics of dissolution of various model corrosion products such as magnetite (Fe{sub 3}O{sub 4}), hematite ({alpha}-Fe{sub 2}O{sub 3}) and maghemite ({gamma}-Fe{sub 2}O{sub 3}) have been studied in the presence of complexing agents such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), hydroxyethylethylenediaminepentaacetic acid (HEEDTA), and 2,6 pyridinedicarboxylic acid (PDCA). The reductive roles of metal complexes and organic reducing agents are discussed. (orig.)

  19. Nuclear reactors

    International Nuclear Information System (INIS)

    Humphreys, P.; Davidson, D.F.; Thatcher, G.

    1980-01-01

    The cooling system of a liquid metal cooled fast breeder nuclear reactor of the pool kind is described. It has an intermediate heat exchange module comprising a tube-in-shell heat exchanger and an electromagnetic flow coupler in the base region of the module. Primary coolant is flowed through the heat exchanger being driven by electromagnetic interaction with secondary liquid metal coolant flow effected by a mechanical pump. (author)

  20. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    National Research Council Canada - National Science Library

    Can, Levent

    2006-01-01

    .... The overall focus of this study is the build up of induced radioactivity in the coolant of metal cooled reactors as well as the evaluation of other physical and chemical properties of such coolants...

  1. Aging of metal components in US nuclear reactors

    International Nuclear Information System (INIS)

    Mayfield, M.E.; Strosnider, J.R.

    1998-01-01

    This paper presents an overview of the aging of metal components in U.S. Light Water Reactors. The types of degradation being experienced in components such as the pressure vessel, piping, reactor internals, and steam generators, and the programs being implemented to manage the degradation are discussed. (author)

  2. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.

    1976-01-01

    A nuclear reactor containment vessel faced internally with a metal liner is provided with thermal insulation for the liner, comprising one or more layers of compressible material such as ceramic fiber, such as would be conventional in an advanced gas-cooled reactor and also a superposed layer of ceramic bricks or tiles in combination with retention means therefor, the retention means (comprising studs projecting from the liner, and bolts or nuts in threaded engagement with the studs) being themselves insulated from the vessel interior so that the coolant temperatures achieved in a High-Temperature Reactor or a Fast Reactor can be tolerated with the vessel. The layer(s) of compressible material is held under a degree of compression either by the ceramic bricks or tiles themselves or by cover plates held on the studs, in which case the bricks or tiles are preferably bedded on a yielding layer (for example of carbon fibers) rather than directly on the cover plates

  3. Metal plutonium conversion to components of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Subbotin, V.G.; Panov, A.V.; Mashirev, V.P.

    2000-01-01

    Capabilities of different technologies for plutonium conversion to the fuel components of nuclear reactors are studied. Advantages and shortcomings of aqueous and nonaqueous methods of plutonium treatment are shown. Proposals to combine and coordinate efforts of world scientific and technological community in solving problems concerning plutonium of energetic and weapon origin treatment were put forward. (authors)

  4. Metal plutonium conversion to components of nuclear reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, V.G.; Panov, A.V. [Russian Federal Nuclear Center, ALL-Russian Science and Research, Institute of Technical Physics, Snezhinsk (Russian Federation); Mashirev, V.P. [ALL-Russian Science and Research Institute of Chemical Technology, Moscow (Russian Federation)

    2000-07-01

    Capabilities of different technologies for plutonium conversion to the fuel components of nuclear reactors are studied. Advantages and shortcomings of aqueous and nonaqueous methods of plutonium treatment are shown. Proposals to combine and coordinate efforts of world scientific and technological community in solving problems concerning plutonium of energetic and weapon origin treatment were put forward. (authors)

  5. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  6. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    The Federal Target Program (FTP) of Russian Federation 'Nuclear Energy Technologies of the New Generation for 2010-2015 and for Perspective up to 2020' is aimed at development of advanced nuclear energy technologies on the basis of closed fuel cycle with fast reactors. There are advanced fast reactor technologies of the 4. generation with liquid metal cooled reactors. Development stages of maturity of fast sodium cooled reactor technology in Russia includes experimental reactors BR-5/10 (1958-2002) and BOR-60 (since 1969), nuclear power plants (NPPs) with BN-350 (1972-1999), BN-600 (since 1980), BN-800 (under construction), BN-1200 (under development). Further stage of development of fast sodium cooled reactor technology in Russia is commercialization. Lead-bismuth eutectic fast reactor technology has been proven at industrial scale for nuclear submarines in former Soviet Union. Lead based technology is currently under development and need for experimental justification. Current status and prospects of State Corporation 'Rosatom' participation in GIF activities was clarified at the 31. Meeting of Policy Group of the International Forum 'Generation-IV', Moscow, May 12-13, 2011. In June, 2010, 'Rosatom' joined the Sodium Fast Reactor Arrangement as an authorized representative of the Russian Government. It was also announced the intention of 'Rosatom' to sign the Memorandum on Lead Fast Reactor based on Russia's experience with lead-bismuth and lead cooled fast reactors. In accordance with the above FTP some innovative liquid metal cooled reactors of different design are under development in Russia. Gidropress, well known as WER designer, develops innovative lead-bismuth eutectic cooled reactor SVBR-100. NIKIET develops innovative lead cooled reactor BRESTOD-300. Some other nuclear scientific centres are also involved in this activity, e.g. Research and Development Institute for Power Engineering (RDIPE). Optimum

  7. Nuclear reactor

    International Nuclear Information System (INIS)

    Garabedian, G.

    1988-01-01

    A liquid reactor is described comprising: (a) a reactor vessel having a core; (b) one or more satellite tanks; (c) pump means in the satellite tank; (d) heat exchanger means in the satellite tank; (e) an upper liquid metal conduit extending between the reactor vessel and the satellite tank; (f) a lower liquid metal duct extending between the reactor vessel and satellite tanks the upper liquid metal conduit and the lower liquid metal duct being arranged to permit free circulation of liquid metal between the reactor vessel core and the satellite tank by convective flow of liquid metal; (g) a separate sealed common containment vessel around the reactor vessel, conduits and satellite tanks; (h) the satellite tank having space for a volume of liquid metal that is sufficient to dampen temperature transients resulting from abnormal operating conditions

  8. Sodium leak detection system for liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Modarres, D.

    1991-01-01

    This patent describes a device for detecting sodium leaks from a reactor vessel of a liquid sodium cooled nuclear reactor the reactor vessel being concentrically surrounded by a a containment vessel so as to define an airtight gap containing argon. It comprises: a light source for generating a first light beam, the first light beam having first and second predominant wavelengths, the first wavelength being substantially equal to an absorption line of sodium and the second wavelength being chosen such that it is not absorbed by sodium and argon; an optical multiplexer optically coupled to the light source; optically coupled to the multiplexer, each of the sensors being embedded in the containment vessel of the reactor, each of the sensors projecting the first light beam into the gap and collecting the first light beam after it has reflected off of a surface of the reactor vessel; a beam splitter optically coupled to each of the sensors through the multiplexer, the beam splitter splitting the first light beam into second and third light beams of substantially equal intensities; a first filter dispersed within a path of second light beam for filtering the second wavelength out of the third light beam; first and second detector beams disposed with in the paths of the second and third light beams so as to detect the intensities of the second and third light beams, respectively; and processing means connected to the first and second detector means for calculating the amount of the first wavelength which is absorbed when passing through the argon

  9. Liquid metal cooled fast breeder nuclear reactor constructions

    International Nuclear Information System (INIS)

    Chesworth, G.; Hind, J.R.; Hodgson, D.; Seed, G.

    1981-01-01

    In a nuclear reactor of the pool kind the primary vessel and fuel assembly are carried from the roof of the containment vault by tie straps. The primary vessel incorporates an annular yoke of 'k' cross-section the tie straps being attached to the upwardly directed vertical leg and the downwardly directed inclined leg. The upper and lower strakes of the primary vessel are extensions of the remaining legs. Load supporting welds therefore are of intermittent nature thereby limiting the effects of weld crack propagation

  10. Induction apparatus monitoring structural strains in liquid-metal-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Dean, S.A.; Evans, R.A.

    1981-01-01

    An improved method of monitoring induced torsional and linear strains in the internal structures of liquid metal cooled nuclear reactors is described. An electrical induction apparatus indicates the variation of magnetic coupling caused by a ferromagnetic member of the apparatus being subjected to such strains. (U.K.)

  11. Pumps of molten metal based on magnetohydrodynamicprinciple for cooling high-temperature nuclear reactors

    Czech Academy of Sciences Publication Activity Database

    Doležel, Ivo; Donátová, M.; Karban, P.; Ulrych, B.

    2009-01-01

    Roč. 85, č. 4 (2009), s. 13-15 ISSN 0033-2097 R&D Projects: GA ČR(CZ) GA102/07/0496 Institutional research plan: CEZ:AV0Z20570509 Keywords : pumps of molten metal * magnetohydrodynamic principle * nuclear reactors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.196, year: 2009

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    Hattori, Sadao; Sato, Morihiko.

    1994-01-01

    Liquid metals such as liquid metal sodium are filled in a reactor container as primary coolants. A plurality of reactor core containers are disposed in a row in the circumferential direction along with the inner circumferential wall of the reactor container. One or a plurality of intermediate coolers are disposed at the inside of an annular row of the reactor core containers. A reactor core constituted with fuel rods and control rods (module reactor core) is contained at the inside of each of the reactor core containers. Each of the intermediate coolers comprises a cylindrical intermediate cooling vessels. The intermediate cooling vessel comprises an intermediate heat exchanger for heat exchange of primary coolants and secondary coolants and recycling pumps for compulsorily recycling primary coolants at the inside thereof. Since a plurality of reactor core containers are thus assembled, a great reactor power can be attained. Further, the module reactor core contained in one reactor core vessel may be small sized, to facilitate the control for the reactor core operation. (I.N.)

  13. Apparatus for sealing a rotatable shield plug in a liquid metal nuclear reactor

    International Nuclear Information System (INIS)

    Winkleblack, R.K.

    1980-01-01

    An apparatus for sealing a rotatable shield plug in a nuclear reactor having liquid metal coolant is described. The apparatus includes a dip -ring seal adapted to provide a fluid barrier between the liquid metal and the atmosphere and to permit rotation of the shield plug. The apparatus also includes a static seal for the rotatable shield plug located between the dip-ring seal and the liquid metal. The static seal isolates the dip-ring seal from the liquid metal vapor during operation at power and can be disengaged for rotation of the shield plug

  14. Nuclear reactor

    International Nuclear Information System (INIS)

    Batheja, P.; Huber, R.; Rau, P.

    1985-01-01

    Particularly for nuclear reactors of small output, the reactor pressure vessel contains at least two heat exchangers, which have coolant flowing through them in a circuit through the reactor core. The circuit of at least one heat exchanger is controlled by a slide valve, so that even for low drive forces, particularly in natural circulation, the required even loading of the heat exchanger is possible. (orig./HP) [de

  15. Nuclear reactor

    International Nuclear Information System (INIS)

    Mysels, K.J.; Shenoy, A.S.

    1976-01-01

    A nuclear reactor is described in which the core consists of a number of fuel regions through each of which regulated coolant flows. The coolant from neighbouring fuel regions is combined in a manner which results in an averaging of the coolant temperature at the outlet of the core. By this method the presence of hot streaks in the reactor is reduced. (UK)

  16. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  17. Nuclear reactor

    International Nuclear Information System (INIS)

    Schulze, I.; Gutscher, E.

    1980-01-01

    The core contains a critical mass of UN or U 2 N 3 in the form of a noncritical solution with melted Sn being kept below a N atmosphere. The lining of the reactor core consists of graphite. If fission progresses part of the melted metal solution is removed and cleaned from fission products. The reactor temperatures lie in the range of 300 to 2000 0 C. (Examples and tables). (RW) [de

  18. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  19. Nuclear reactor

    International Nuclear Information System (INIS)

    Rau, P.

    1980-01-01

    The reactor core of nuclear reactors usually is composed of individual elongated fuel elements that may be vertically arranged and through which coolant flows in axial direction, preferably from bottom to top. With their lower end the fuel elements gear in an opening of a lower support grid forming part of the core structure. According to the invention a locking is provided there, part of which is a control element that is movable along the fuel element axis. The corresponding locking element is engaged behind a lateral projection in the opening of the support grid. The invention is particularly suitable for breeder or converter reactors. (orig.) [de

  20. Spectrographic determination of metallic impurities in organic coolants for nuclear reactors

    International Nuclear Information System (INIS)

    Martin Munoz, M.; Alvarez Gonzalez, F.

    1969-01-01

    A spectrochemical method for determining metallic impurities in organic coolants for nuclear reactors is given. The organic matter in solid samples is eliminated by controlled distillation and dry ashing in the presence of magnesium oxide as carrier. Liquid, samples are vacuum distillated. The residue is analyzed by carrier distillation and by total burning techniques. The analytical results are discussed and compared with those obtained destroying the organic matter without carrier and using the copper spark technique. (Author) 12 refs

  1. Nuclear sub-assembly for liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    1978-01-01

    The description is given of a nuclear sub-assembly comprising several spaced out fuel pins in a tubular shroud, the characteristic being that the section of the shroud forms a closed figure with six main straight sides in hexagonal shape, the main sides being joined by subsidiary sides which are either straight or convex towards the centre of the figure [fr

  2. Nuclear reactor

    International Nuclear Information System (INIS)

    Gilroy, J.E.

    1980-01-01

    An improved cover structure for liquid metal cooled fast breeder type reactors is described which it is claimed reduces the temperature differential across the intermediate grid plate of the core cover structure and thereby reduces its subjection to thermal stresses. (UK)

  3. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  4. Nuclear reactor

    International Nuclear Information System (INIS)

    Miyashita, Akio.

    1981-01-01

    Purpose: To facilitate and accelerate a leakage test of valves of a main steam pipe by adding a leakage test partition valve thereto. Constitution: A leakage testing partition valve is provided between a pressure vessel for a nuclear reactor and the most upstream side valve of a plurality of valves to be tested for leakage, a testing branch pipe is communicated with the downstream side of the partition valve, and the testing water for preventing leakage is introduced thereto through the branch pipe. Since main steam pipe can be simply isolated by closing the partition valve in the leakage test, the leakage test can be conducted without raising or lowering the water level in the pressure vessel, and since interference with other work in the reactor can be eliminated, the leakage test can be readily conducted parallel with other work in the reactor in a short time. Clean water can be used without using reactor water as the test water. (Yoshihara, H.)

  5. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  6. Coolant circulation system for a liquid metal nuclear reactor

    International Nuclear Information System (INIS)

    DeLuca, R.A.; Garabedian, G.

    1988-01-01

    This patent describes a liquid metal circulation system comprising an electromagnetic pump comprised of: (a) an elongated cylindrical pump support housing; (b) a cylindrical pressure dome structure coaxially situated and supported within the pump support housing, having a closed, hemispherical upper end and an open, cylindrical lower end; (c) a cylindrical pump coaxially situated within the pressure dome structure including: (1) a central core body of laminated transformer steel having six peripherally equally spaced helical grooves on its outer surface extending the entire length of the central core body, (2) a multiplicity of square, ceramic insulated copper wires situated in the helical grooves, (3) electrical leads extending from the terminal ends of the square copper wires through the upper end of the pressure dome structure and to a three-phase low voltage/high amperage power source, (4) an austenitic stainless steel jacket covering the outer surface of the central core body and covering the helically coiled square copper wires, the outer stainless steel jacket and the inner surface of the pressure dome structure defining an annular flow passage

  7. Nuclear reactor

    International Nuclear Information System (INIS)

    Scholz, M.

    1976-01-01

    An improvement of the accessibility of that part of a nuclear reactor serving for biological shield is proposed. It is intended to provide within the biological shield, distributed around the circumference of the reactor pressure vessel, several shielding chambers filled with shielding material, which are isolated gastight from the outside by means of glass panes with a given bursting strength. It is advantageous that, on the one hand, inspection and maintenance will be possible without great effort and, on the other, a large relief cross section will be at desposal if required. (UWI) [de

  8. Nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, R F; George, B V; Baglin, C J

    1978-05-10

    Reference is made to thermal insulation on the inner surfaces of containment vessels of fluid cooled nuclear reactors and particularly in situations where the thermal insulation must also serve a structural function and transmit substantial load forces to the surface which it covers. An arrangement is described that meets this requirement and also provides for core support means that favourably influences the flow of hot coolant from the lower end of the core into a plenum space in the hearth of the reactor. The arrangement comprises a course of thermally insulating bricks arranged as a mosaic covering a wall of the reactor and a course of thermally insulating tiles arranged as a mosaic covering the course of bricks. Full constructional details are given.

  9. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.; George, B.V.; Baglin, C.J.

    1978-01-01

    Reference is made to thermal insulation on the inner surfaces of containment vessels of fluid cooled nuclear reactors and particularly in situations where the thermal insulation must also serve a structural function and transmit substantial load forces to the surface which it covers. An arrangement is described that meets this requirement and also provides for core support means that favourably influences the flow of hot coolant from the lower end of the core into a plenum space in the hearth of the reactor. The arrangement comprises a course of thermally insulating bricks arranged as a mosaic covering a wall of the reactor and a course of thermally insulating tiles arranged as a mosaic covering the course of bricks. Full constructional details are given. (UK)

  10. Nuclear reactor

    International Nuclear Information System (INIS)

    Sasaki, Tomozo.

    1987-01-01

    Purpose: To improve the nuclear reactor availability by enabling to continuously exchange fuels in the natural-slightly enriched uranium region during operation. Constitution: A control rod is withdrawn to the midway of a highly enriched uranium region by means of control rod drives and the highly enriched uranium region is burnt to maintain the nuclear reactor always at a critical state. At the same time, fresh uranium-slightly enriched uranium is continuously supplied gravitationally from a fresh fuel reservoir through fuel reservoir to each of fuel pipes in the natural-slightly enriched uranium region. Then, spent fuels reduced with the reactivity by the burn up are successively taken out from the bottom of each of the fuel pipes through an exit duct and a solenoid valve to the inside of a spent fuel reservoir and the burn up in the natural-slightly enriched uranium region is conducted continuously. (Kawakami, Y.)

  11. Dependence of heavy metal burnup on nuclear data libraries for fast reactors

    CERN Document Server

    Ohki, S

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) is considering the highly burnt fuel as well as the recycling of minor actinide (MA) in the development of commercialized fast reactor cycle systems. Higher accuracy in burnup calculation is going to be required for higher mass plutonium isotopes ( sup 2 sup 4 sup 0 Pu, etc.) and MA nuclides. In the framework of research and development aiming at the validation and necessary improvements of fast reactor burnup calculation, we investigated the differences among the burnup calculation results with the major nuclear data libraries: JEF-2.2, ENDF/B-VI Release 5, JENDL-3.2, and JENDL-3.3. We focused on the heavy metal nuclides such as plutonium and MA in the central core region of a conventional sodium-cooled fast reactor. For main heavy metal nuclides ( sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U, sup 2 sup 3 sup 9 Pu, sup 2 sup 4 sup 0 Pu, and sup 2 sup 4 sup 1 Pu), number densities after 1-cycle burnup did not change over one or two percent. Library dependence was re...

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    Hattori, Sadao; Sekine, Katsuhisa.

    1987-01-01

    Purpose: To decrease the thickness of a reactor container and reduce the height and the height and plate thickness of a roof slab without using mechanical vibration stoppers. Constitution: Earthquake proofness is improved by filling fluids such as liquid metal between a reactor container and a secondary container and connecting the outer surface of the reactor container with the inner surface of the secondary container by means of bellows. That is, for the horizontal seismic vibrations, horizontal loads can be supported by the secondary container without providing mechanical vibration stoppers to the reactor container and the wall thickness can be reduced thereby enabling to simplify thermal insulation structure for the reduction of thermal stresses. Further, for the vertical seismic vibrations, verical loads can be transmitted to the secondary container thereby enabling to reduce the wall thickness in the same manner as for the horizontal load. By the effect of transferring the point of action of the container load applied to the roof slab to the outer circumferential portion, the intended purpose can be attained and, in addition, the radiation dose rate at the upper surface of the roof slab can be decreased. (Kamimura, M.)

  13. Spectrographic determination of metallic impurities in organic coolants for nuclear reactors; Determinacion espectrografica de impurezas metalicas en refrigerantes organicos para reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Martin Munoz, M; Alvarez Gonzalez, F

    1969-07-01

    A spectrochemical method for determining metallic impurities in organic coolants for nuclear reactors is given. The organic matter in solid samples is eliminated by controlled distillation and dry ashing in the presence of magnesium oxide as carrier. Liquid, samples are vacuum distillated. The residue is analyzed by carrier distillation and by total burning techniques. The analytical results are discussed and compared with those obtained destroying the organic matter without carrier and using the copper spark technique. (Author) 12 refs.

  14. Nuclear reactor

    International Nuclear Information System (INIS)

    Gibbons, J.F.; McLaughlin, D.J.

    1978-01-01

    In the pressure vessel of the water-cooled nuclear reactor there is provided an internal flange on which the one- or two-part core barrel is hanging by means of an external flange. A cylinder is extending from the reactor vessel closure downwards to a seat on the core cupport structure and serves as compression element for the transmission of the clamping load from the closure head to the core barrel (upper guide structure). With the core barrel, subject to tensile stress, between the vessel internal flange and its seat on one hand and the compression of the cylinder resp. hold-down element between the closure head and the seat on the other a very strong, elastic sprung structure is obtained. (DG) [de

  15. Nuclear reactor

    International Nuclear Information System (INIS)

    Aleite, W.; Bock, H.W.; Struensee, S.

    1976-01-01

    The invention concerns the use of burnable poisons in a nuclear reactor, especially in PWRs, in order to improve the controllability of the reactor. An unsymmetrical arrangement in the lattice is provided, if necessary also by insertion of special rods for these additions. It is proposed to arrange the burnable poisons in fuel elements taken over from a previous burn-up cycle and to distribute them, going out from the side facing the control rods, over not more than 20% of the lenth of the fuel elements. It seems sufficient, for the burnable poisons to bind an initial reactivity of only 0.1% and to become ineffective after normal operation of 3 to 4 months. (ORU) [de

  16. Nuclear reactor

    International Nuclear Information System (INIS)

    Jolly, R.

    1979-01-01

    The support grid for the fuel rods of a liquid metal cooled fast breeder reactor has a regular hexagonal contour and contains a large number of unit cells arranged honeycomb fashion. The totality of these cells make up a hexagonal shape. The grid contains a number of strips of material, and there is a window in each of three sidewalls staggered by one sidewall. The other sidewalls have embossed protrusions, thus generating a guide lining or guide bead. The windows reduce the rigidity of the areas in the middle between the ends of the cells. (DG) [de

  17. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  18. Nuclear reactor

    International Nuclear Information System (INIS)

    Anthony, A.J.; Gruber, E.A.

    1979-01-01

    A nuclear reactor with control rods in channels between fuel assemblies wherein the fuel assemblies incorporate guide rods which protrude outwardly into the control rod channels to prevent the control rods from engaging the fuel elements. The guide rods also extend back into the fuel assembly such that they are relatively rigid members. The guide rods are tied to the fuel assembly end or support plates and serve as structural members which are supported independently of the fuel element. Fuel element spacing and support means may be attached to the guide rods. 9 claims

  19. Jacking mechanism for upper internals structure of a liquid metal nuclear reactor

    International Nuclear Information System (INIS)

    Gillett, J.E.; Wineman, A.L.

    1983-01-01

    A jacking mechanism for raising the upper internals structure of a liquid metal nuclear reactor which jacking mechanism uses a system of gears and drive shafts to transmit force from a single motor to four mechanically synchronized ball jacks to raise and lower support columns which support the upper internals structure. The support columns each have a pin which rides in a slot in a housing fixed to the reactor head. The pin has two locking plates which can be rotated around the pin to bring the locking plates into engagement with the housing in a raised or a lowered position of the support column such that the support column is then supported by the locking plate and not by the ball screw jacks. (author)

  20. Nuclear reactors

    International Nuclear Information System (INIS)

    Yoshioka, Michiko.

    1985-01-01

    Purpose: To obtain an optimum structural arrangement of IRM having a satisfactory responsibility to the inoperable state of a nuclear reactor and capable of detecting the reactor power in an averaged manner. Constitution: As the structural arrangement of IRM, from 6 to 16 even number of IRM are bisected into equial number so as to belong two trip systems respectively, in which all of the detectors are arranged at an equal pitch along a circumference of a circle with a radius rl having the center at the position of the central control rod in one trip system, while one detector is disposed near the central control rod and other detectors are arranged substantially at an equal pitch along the circumference of a circle with a radius r2 having the center at the position for the central control rod in another trip system. Furthermore, the radius r1 and r2 are set such that r1 = 0.3 R, r2 = 0.5 R in the case where there are 6 IRM and r1 = 0.4 R and R2 = 0.8 R where there are eight IRM where R represents the radius of the reactor core. (Kawakami, Y.)

  1. Nuclear reactors

    International Nuclear Information System (INIS)

    Matheson, J.E.

    1983-01-01

    A nuclear reactor has an upper and a lower grid plate. Protrusions project from the upper grid plate. Fuel assemblies having end fittings fit between the grid plates. An arrangement is provided for accepting axial forces generated during the operation of the nuclear reactor by the flow of the cooling medium and thermal expansion and irradiation-induced growth of the fuel assembly, which comprises rods. Each fuel assembly rests on the lower grid plate and its upper end is elastically supported against the upper grid plate by the above-mentioned arrangement. The arrangement comprises four (for example) torsion springs each having a torsion tube and a torsion bar nested within the torsion tube and connected at one end thereto. The other end of the torsion bar is connected to an associated one of four lever arms. The torsion tube is rigidly connected to the other end fitting and the springs are disposed such that the lever arms are biassed against the protrusions. (author)

  2. Metallic sodium as a coolant of high speed nuclear reactors, (2)

    International Nuclear Information System (INIS)

    Atsumo, Hideo

    1975-01-01

    Tables are given on all the sodium loops in Japan and most of the sodium loops all over the world. Name and purpose of the loops, time of establishment, highest temperature, amount of sodium, flow rate, the materials used for the construction of the loops, and the diameter of the main pipings are given. Also, the problems related with these loops are discussed. For example, the high temperature sodium facility at HEDL-WADCO was made for the FFTF component test and instrument test, and uses 50,000 gallons of metallic sodium. The highest temperature is 590 0 C. The sodium flows at the rate of 60 g/m. The body is made of Type 304 stainless steel. Main data of existing sodium-cooled reactors in the world are also tabulated. The data include thermal output, electric output, the structure of the reactor cores, the dimensions of the cores, fuel used, the highest temperature in the reactors, the temperature of sodium at the inlet and outlet, the rate of multiplication, the amount of sodium used, number of control rods, number of heat exchangers, and the pressure of steam. The Monju type nuclear reactor in Japan uses 1,800 ton of sodium. (Fukutomi, T.)

  3. Jacking mechanism for upper internals structure of a liquid metal nuclear reactor

    International Nuclear Information System (INIS)

    Gillett, J.E.; Wineman, A.L.

    1984-01-01

    A jacking mechanism is described for raising the upper internals structure of a liquid metal nuclear reactor which jacking mechanism uses a system of gears and drive shafts to transmit force from a single motor to four mechanically synchronized ball jacks to raise and lower support columns which support the upper internals structure. The support columns have a pin structure which rides up and down in a slot in a housing fixed to the reactor head. The pin has two locking plates which can be rotated around the pin to bring bolt holes through the locking plates into alignment with a set of bolt holes in the housing, there being a set of such housing bolt holes corresponding to both a raised and a lowered position of the support column. When the locking plate is so aligned, a surface of the locking plate mates with a surface in the housing such that the support column is then supported by the locking plate and not by the ball jacks. Since the locking plates are to be installed and bolted to the housing during periods of reactor operation, the ball jacks need not be sized to react the large forces which occur or potentially could occur on the upper internals structure of the reactor during operation. The locking plates react these loads. The ball jacks, used only during refueling, can be smaller, which enable conventionally available equipment to fulfill the precision requirements for the task within available space

  4. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    International Nuclear Information System (INIS)

    Travelli, A.

    1988-01-01

    A nuclear fuel-containing plate structure for a nuclear reactor is described; such structure comprising a pair of malleable metallic non-fissionable matrix plates having confronting surfaces which are pressure bonded together and fully united to form a bonded surface, and elongated malleable wire-like fissionable fuel members separately confined and fully enclosed between the matrix plates along the interface to afford a high fuel density as well as structural integrity and effective retention of fission products. The plates have separate recesses formed in the confronting surfaces for closely receiving the wire-like fissionable fuel members. The wire-like fissionable fuel members are made of a maleable uranium alloy capable of being formed into elongated wire-like members and capable of withstanding pressure bonding. The wire-like fissionable fuel members are completely separated and isolated by fully united portions of the interface

  5. Heat dissipating nuclear reactor

    Science.gov (United States)

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  6. Nuclear reactor

    International Nuclear Information System (INIS)

    Schweiger, F.; Glahe, E.

    1976-01-01

    In a nuclear reactor of the kind which is charged with spherical reaction elements and in which control rods are arranged to be thrust directly into the charge, each control rod has at least one screw thread on its external surface so that as the rod is thrust into the charge it is caused to rotate and thus make penetration easier. The length of each control rod may have two distinct portions, a latter portion which carries a screw thread and a lead-in portion which is shorter than the latter portion and which may carry a thread of greater pitch than that on the latter portion or may have a number of axially extending ribs instead of a thread

  7. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.; George, B.V.; Baglin, C.J.

    1979-01-01

    In a nuclear reactor (e.g. one having coolant down-flow through a core to a hearth below) thermal insulation (e.g. of a floor of the hearth) comprises a layer of bricks and a layer of tiles thereon, with smaller clearances between the tiles than between the bricks but with the bricks being of reduced cross-section immediately adjacent the tiles so as to be surrounded by interconnected passages, of relatively large dimensions, constituting a continuous chamber extending behind the layer of tiles. By this arrangement, lateral coolant flow in the inter-brick clearances is much reduced. The reactor core is preferably formed of hexagonal columns, supported on diamond-shaped plates each supported on a pillar resting on one of the hearth-floor tiles. Each plate has an internal duct, four upper channels connecting the duct with coolant ducts in four core columns supported by the plate, and lower channels connecting the duct to a downwardly-open recess common to three plates, grouped to form a hexagon, at their mutually-adjacent corners. This provides mixing, and temperature-averaging, of coolant from twelve columns

  8. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    International Nuclear Information System (INIS)

    Hunsbedt, A.; Boardman, C.E.

    1993-01-01

    A dual passive cooling system for liquid metal cooled nuclear fission reactors is described, comprising the combination of: a reactor vessel for containing a pool of liquid metal coolant with a core of heat generating fissionable fuel substantially submerged therein, a side wall of the reactor vessel forming an innermost first partition; a containment vessel substantially surrounding the reactor vessel in spaced apart relation having a side wall forming a second partition; a first baffle cylinder substantially encircling the containment vessel in spaced apart relation having an encircling wall forming a third partition; a guard vessel substantially surrounding the containment vessel and first baffle cylinder in spaced apart relation having a side wall forming a forth partition; a sliding seal at the top of the guard vessel edge to isolate the dual cooling system air streams; a second baffle cylinder substantially encircling the guard vessel in spaced part relationship having an encircling wan forming a fifth partition; a concrete silo substantially surrounding the guard vessel and the second baffle cylinder in spaced apart relation providing a sixth partition; a first fluid coolant circulating flow course open to the ambient atmosphere for circulating air coolant comprising at lent one down comer duct having an opening to the atmosphere in an upper area thereof and making fluid communication with the space between the guard vessel and the first baffle cylinder and at least one riser duct having an opening to the atmosphere in the upper area thereof and making fluid communication with the space between the first baffle cylinder and the containment vessel whereby cooling fluid air can flow from the atmosphere down through the down comer duct and space between the forth and third partitions and up through the space between the third and second partition and the riser duct then out into the atmosphere; and a second fluid coolant circulating flow

  9. Nuclear reactors

    International Nuclear Information System (INIS)

    Pearson, K.G.

    1977-01-01

    Reference is made to auxiliary means of cooling the nuclear fuel clusters used in light or heavy water cooled nuclear reactors. One method is to provide one or more spray cooling tubes. From holes in the side walls of those tubes coolant water may be sprayed laterally into the cluster against the rods. The flow of main coolant may thus be supplemented or even replaced by the auxiliary coolant. A difficulty, however, is that only those fuel rods close to a spray cooling tube can readily be reached by the auxiliary coolant. In the arrangement described, where the fuel rods are spaced apart by transverse grids, at least one of the interspaces between the grids is provided with an axially extending auxiliary coolant conduit having lateral holes through which an auxiliary coolant is sprayed into the cluster. A deflector is provided that extends from a transverse grid into a position in front of the holes and deflects auxiliary coolant on to parts of the fuel rods otherwise inaccessible to the auxiliary coolant. The construction of the deflector is described. (U.K.)

  10. Improvements to secondary coolant circuits of a liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Brachet, Alain.

    1981-01-01

    This invention concerns improvements to secondary coolant-systems for sodium cooled nuclear reactors. It further concerns a protective device for a free level mechanical pump which prevents any gas bubbles due to leaks of the working gas of the pump from entering the secondary system of the nuclear reactor [fr

  11. Nuclear reactors

    International Nuclear Information System (INIS)

    Middleton, J.E.

    1977-01-01

    Reference is made to water cooled reactors and in particular to the cooling system of steam generating heavy water reactors (SGHWR). A two-coolant circuit is described for the latter. Full constructural details are given. (U.K.)

  12. Heavy metals-bioremediation by highly radioresistant Deinococcus radiodurans biofilm prospective use in nuclear reactor decontamination

    International Nuclear Information System (INIS)

    Shukla, Sudhir K.; Subba Rao, T.

    2015-01-01

    of heavy metals. The study signifies the potential use of D. radiodurans biofilms, which can tolerate >20 kGy in nuclear reactor decontamination process for the removal of active heavy metals. (author)

  13. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    Aspden, G.J.

    1980-01-01

    A nuclear reactor construction comprising a reactor core submerged in a pool of liquid metal coolant in a primary vessel which is suspended from the roof structure of a containment vault. Control rods supported from the roof structure are insertable in the core which is carried on a support structure from the wall of the primary vessel. To prevent excessive relaxation of the support structure whereby the control rods would be displaced relative to the core, the support structure incorporates a normally inactive secondary structure designed to become effective in bracing the primary structure against further relaxation beyond a predetermined limit. (author)

  14. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1975-01-01

    A liquid metal cooled nuclear reactor is described which has an equal number of fuel sub-assemblies and sensing instruments. Each instrument senses temperature and rate of coolant flow of a coolant derived from a group of three sub-assemblies so that an abnormal value for one sub-assembly will be indicated on three instruments thereby providing for redundancy of up to two of the three instruments. The abnormal value may be a precurser to unstable boiling of coolant

  15. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  16. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  17. Nuclear reactor sealing system

    International Nuclear Information System (INIS)

    McEdwards, J.A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system is disclosed. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel

  18. Nuclear reactors; graphical symbols

    International Nuclear Information System (INIS)

    1987-11-01

    This standard contains graphical symbols that reveal the type of nuclear reactor and is used to design graphical and technical presentations. Distinguishing features for nuclear reactors are laid down in graphical symbols. (orig.) [de

  19. Guidebook to nuclear reactors

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-05-01

    A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen

  20. Nuclear reactor

    International Nuclear Information System (INIS)

    Sakurai, Mikio; Yamauchi, Koki.

    1983-01-01

    Purpose: To improve the channel stability and the reactor core stability in a spontaneous circulation state of coolants. Constitution: A reactor core stabilizing device comprising a differential pressure automatic ON-OFF valve is disposed between each of a plurality of jet pumps arranged on a pump deck. The stabilizing device comprises a piston exerted with a pressure on the lower side of the pump deck by way of a pipeway and a valve for flowing coolants through the bypass opening disposed to the pump deck by the opening and closure of the valve ON-OFF. In a case where the jet pumps are stopped, since the differential pressure between the upper and the lower sides of the pump deck is removed, the valve lowers gravitationally into an opened state, whereby the coolants flow through the bypass opening to increase the spontaneous circulation amount thereby improve the stability. (Yoshino, Y.)

  1. Nuclear reactor

    International Nuclear Information System (INIS)

    Jungmann, A.

    1975-01-01

    Between a PWR's reactor pressure vessel made of steel and the biological shield made of concrete there is a gap. This gap is filled up with a heat insulation facting the reactor pressure vessel, for example with insulating concrete segments jacketed with sheet steel and with an additional layer. This layer serves for smooth absorption of compressive forces originating in radial direction from the reactor pressure vessel. It consists of cylinder-segment shaped bricks made of on situ concrete, for instance. The bricks have cooling agent ports in one or several rows which run parallel to the wall of the pressure vessel and in alignment with superposed bricks. Between the layer of bricks and the biological shield or rather the heat insulation, there are joints which are filled, however, with injected mortar. That guarantees a smooth series of connected components resistant tom compression. Besides, a slip foil can be set between the heat insulation and the joining joint filled with mortar for the reduction of the friction at thermal expansions. (TK) [de

  2. Nuclear reactor

    International Nuclear Information System (INIS)

    Shirakawa, Toshihisa.

    1979-01-01

    Purpose: To prevent cladding tube injuries due to thermal expansion of each of the pellets by successively extracting each of the control rods loaded in the reactor core from those having less number of notches, as well as facilitate the handling work for the control rods. Constitution: A recycle flow control device is provided to a circulation pump for forcibly circulating coolants in the reactor container and an operational device is provided for receiving each of the signals concerning number of notches for each of the control rods and flow control depending on the xenon poisoning effect obtained from the signals derived from the in-core instrument system connected to the reactor core. The operational device is connected with a control rod drive for moving each of the control rods up and down and a recycle flow control device. The operational device is set with a pattern for the aimed control rod power and the sequence of extraction. Upon extraction of the control rods, they are extracted successively from those having less notch numbers. (Moriyama, K.)

  3. Multiple lead seal assembly for a liquid-metal-cooled fast-breeder nuclear reactor

    International Nuclear Information System (INIS)

    Hutter, E.; Pardini, J.A.

    1977-01-01

    A reusable multiple lead seal assembly provides leak-free passage of stainless-steel-clad instrument leads through the cover on the primary tank of a liquid-metal-cooled fast-breeder nuclear reactor. The seal isolates radioactive argon cover gas and sodium vapor within the primary tank from the exterior atmosphere and permits reuse of the assembly and the stainless-steel-clad instrument leads. Leads are placed in flutes in a seal body, and a seal shell is then placed around the seal body. Circumferential channels in the body and inner surface of the shell are contiguous and together form a conduit which intersects each of the flutes, placing them in communication with a port through the wall of the seal shell. Liquid silicone rubber sealant is injected into the flutes through the port and conduit; the sealant fills the space in the flutes not occupied by the leads themselves and dries to a rubbery hardness. A nut, threaded onto a portion of the seal body not covered by the seal shell, jacks the body out of the shell and shears the sealant without damage to the body, shell, or leads. The leads may then be removed from the body. The sheared sealant is cleaned from the body, leads, and shell and the assembly may then be reused with the same or different leads. 3 claims, 6 figures

  4. Conceptual study of a complementary scram system for liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Vanmaercke, S.; Van den Eynde, G.; Tijskens, E.; Bartosiewicz, Y.

    2009-01-01

    GEN-IV reactors promise higher safety and reliability as one of the major improvements over previous generations of reactors. To achieve that, all GEN-IV reactor concepts require two completely independent shutdown systems that rely on different operating principles. For liquid metal cooled reactors the first system is an absorber-rod based solution. The second system that by requirement should rely on another principle, is however quite a challenge to design. The second system used in current PWR reactors is to dissolve a neutron absorber, boric acid, into the primary coolant. This method cannot be used in liquid metal cooled reactors because of the high cost of cleaning the coolant. In this paper an overview of the existing literature on scram systems is given, each with their advantages and limitations. A promising new concept is also presented. This concept leads to a totally passive self activating device using small absorbing particles that flow into a dedicated channel to shutdown the reactor. The system consists of tubes filled with particles of an absorber material. During normal operation, these particles are kept above the active core by means of a metallic seal. In case of an accident, the system is activated by the temperature increase in the coolant. This leads to melting of the metal seal. The ongoing work conducted at SCK·CEN and UCL/TERM aims at assessing the reliability of this new concept both experimentally and numerically. This study is multidisciplinary as neutronic and thermal hydraulics issues are tackled. Most challenging is however the thermal hydraulics related to understanding and predicting the liberation and flow of the absorber particles during a shutdown. Simple experiments are envisaged to compare to numerical simulations using the Discrete Element Method for simulating the particles. In a later stage this will be coupled with Smoothed Particles Hydrodynamics for simulating the melting of the seal. Some preliminary experimental and

  5. Development and computational simulation of thermoelectric electromagnetic pumps for controlling the fluid flow in liquid metal cooled space nuclear reactors

    International Nuclear Information System (INIS)

    Borges, E.M.

    1991-01-01

    Thermoelectric Electromagnetic (TEEM) Pumps can be used for controlling the fluid flow in the primary and secondary circuits of liquid metal cooled space nuclear reactor. In order to simulate and to evaluate the pumps performance, in steady-state, the computer program BEMTE has been developed to study the main operational parameters and to determine the system actuation point, for a given reactor operating power. The results for each stage of the program were satisfactory, compared to experimental data. The program shows to be adequate for the design and simulating of direct current electromagnetic pumps. (author)

  6. Safety device for nuclear reactor

    International Nuclear Information System (INIS)

    Jacquelin, Roland.

    1977-01-01

    This invention relates to a safety device for a nuclear reactor, particularly a liquid metal (generally sodium) cooled fast reactor. This safety device includes an absorbing element with a support head connected by a disconnectable connector formed by the armature of an electromagnet at the end of an axially mobile vertical control rod. This connection is so designed that in the event of it becoming disconnected, the absorbing element gravity slides in a passage through the reactor core into an open container [fr

  7. Nuclear reactor

    International Nuclear Information System (INIS)

    Schabert, H.P.; Weber, R.; Bauer, A.

    1975-01-01

    The refuelling of a PWR power reactor of about 1,200 MWe is performed by a transport pipe in the containment leading from an external to an internal fuel pit. A wagon to transport the fuel elements can go from a vertical loading position to an also vertical deloading position in the inner fuel pit via guide rollers. The necessary horizontal movement is effected by means of a cable line through the transport pipe which is inclined at least 10 0 . Gravity thus helps in the movement to the deloading position. The cable line with winch is fastened outside the containment. Swivelling devices tip the wagon from the horizontal to the vertical position or vice versa. Loading and deloading are done laterally. (TK/LH) [de

  8. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.

    1976-01-01

    In the system described the fuel elements are arranged vertically in groups and are supported in such a manner as to tend to tilt them towards the center of the respective group, the fuel elements being urged laterally into abutment with one another. The elements have interlocking bearing pads, whereby lateral movement of adjacent elements is resisted; this improves the stability of the reactor core during refuelling operations. Fuel elements may comprise clusters of parallel fuel pins enclosed in a wrapper of hexagonal cross section, with bearing pads in the form of spline-like ribs located on each side of the wrapper and extending parallel to the longitudinal axis of the fuel element, being interlockable with ribs on pads of adjacent fuel elements. The arrangement is applicable to a reactor core in which fuel elements and control rod guide tubes are arranged in modules each of which comprises a cluster of at least three fuel elements, one of which is rigidly supported whilst the others are resiliently tilted towards the center of the cluster so as to lean on the rigidly supported element. It is also applicable to modules comprising a cluster of six fuel elements, each resiliently tilted towards a central void to form a circular arch. The modules may include additional fuel elements located outside the clusters and also resiliently tilted towards the central voids, the latter being used to accommodate control rod guide tubes. The need for separate structural members to act as leaning posts is thus avoided. Such structural members are liable to irradiation embrittlement, that could lead to core failure. (U.K.)

  9. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  10. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  11. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    Irion, L.; Tautz, J.; Ulrych, G.

    1976-01-01

    This additional patent complements the arrangement of non-return valves to prevent loss of cooling water on fracture of external tubes in the main coolant circuit (according to PS 24 24 427.7) by ensuring that the easily movable valves only operate in case of a fault, but do not flutter in operation, because the direction of flow is not the same at each location where they are installed. The remedy for this undesirable effect consists of allocating 1 non-return valve unit with 5 to 10 valves to each (of several) ducts for the cooling water intake. These units are installed in the annular space between the reactor vessel and the pressure vessel below the inlet of the ducts. Due to flow guidance surfaces in the same space, the incoming cooling water is deflected downwards and as the guiding surfaces are closed at the sides, must pass parallel to the valves of the non-return valve unit. On fracture of the external cooling water inlet pipe concerned, all valves of this unit close due to reversal of flow on the outlet side. (TK) [de

  13. Nuclear reactor facility

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    In order to improve the performance of manitenance and inspections it is proposed for a nuclear reactor facility with a primary circuit containing liquid metal to provide a thermally insulated chamber, within which are placed a number of components of the primary circuit, as e.g. valves, recirculation pump, heat exchangers. The isolated placement permit controlled preheating on one hand, but prevents undesirable heating of adjacent load-bearing elements on the other. The chamber is provided with heating devices and, on the outside, with cooling devices; it is of advantage to fill it with an inert gas. (UWI) 891 HP [de

  14. Nuclear reactors. Introduction

    International Nuclear Information System (INIS)

    Boiron, P.

    1997-01-01

    This paper is an introduction to the 'nuclear reactors' volume of the Engineers Techniques collection. It gives a general presentation of the different articles of the volume which deal with: the physical basis (neutron physics and ionizing radiations-matter interactions, neutron moderation and diffusion), the basic concepts and functioning of nuclear reactors (possible fuel-moderator-coolant-structure combinations, research and materials testing reactors, reactors theory and neutron characteristics, neutron calculations for reactor cores, thermo-hydraulics, fluid-structure interactions and thermomechanical behaviour of fuels in PWRs and fast breeder reactors, thermal and mechanical effects on reactors structure), the industrial reactors (light water, pressurized water, boiling water, graphite moderated, fast breeder, high temperature and heavy water reactors), and the technology of PWRs (conceiving and building rules, nuclear parks and safety, reactor components and site selection). (J.S.)

  15. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  16. Physics of nuclear reactors

    International Nuclear Information System (INIS)

    Baeten, Peter

    2006-01-01

    This course gives an introduction to Nuclear Reactor Physics. The first chapter explains the most important parameters and concepts in nuclear reactor physics such as fission, cross sections and the effective multiplication factor. Further on, in the second chapter, the flux distributions in a stationary reactor are derived from the diffusion equation. Reactor kinetics, reactor control and reactor dynamics (feedback effects) are described in the following three chapters. The course concludes with a short description of the different types of existing and future reactors. (author)

  17. Structure of liquid metal cooled nuclear reactor with loops and steady vessel

    International Nuclear Information System (INIS)

    Costes, D.

    1990-01-01

    This structure comprises, in a vessel containing liquid metal, a nuclear core steadied on an alimentation diagrid and external loops comprising heat exchanger and reinjection pump of sodium in the diagrid. The vessel has the bottom resting on the concrete surround with a thermal stratification of the sodium between the bottom and the diagrid. This disposition has for advantage to allow a vertical connection of the sodium reinjection channel. This channel is contained in a metal sheath with a sliding leak tightness [fr

  18. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    Science.gov (United States)

    Jones, Robert D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level.

  19. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Jones, R.D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level

  20. Nuclear reactor with a suspended vessel

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1977-01-01

    This invention relates to a nuclear reactor with a suspended vessel and applies in particular when this is a fast reactor, the core or active part of the reactor being inside the vessel and immersed under a suitable volume of flowing liquid metal to cool it by extracting the calories released by the nuclear fission in the fuel assemblies forming this core [fr

  1. Control for nuclear reactor

    International Nuclear Information System (INIS)

    Ash, E.B.; Bernath, L.; Facha, J.V.

    1980-01-01

    A nuclear reactor is provided with several hydraulically-supported spherical bodies having a high neutron absorption cross section, which fall by gravity into the core region of the reactor when the flow of supporting fluid is shut off. (auth)

  2. Nuclear reactor installation

    International Nuclear Information System (INIS)

    Jungmann, A.

    1976-01-01

    A nuclear reactor metal pressure vessel is surrounded by a concrete wall forming an annular space around the vessel. Thermal insulation is in this space and surrounds the vessel, and a coolant-conductive layer is also in this space surrounding the thermal insulation, coolant forced through this layer reducing the thermal stress on the concrete wall. The coolant-conductive layer is formed by concrete blocks laid together and having coolant passages, these blocks being small enough individually to permit them to be cast from concrete at the reactor installation, the thermal insulation being formed by much larger sheet-metal clad concrete segments. Mortar is injected between the interfaces of the coolant-conductive layer and concrete wall and the interfaces between the fluid-conductive layer and the insulation, a layer of slippery sheet material being interposed between the insulation and the mortar. When the pressure vessel is thermally expanded by reactor operation, the annular space between it and the concrete wall is completely filled by these components so that zero-excursion rupture safeguard is provided for the vessel. 4 claims, 1 figure

  3. Nuclear reactor spacer assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.; Groves, M.D.

    1979-01-01

    A fuel assembly for a nuclear reactor is disclosed wherein the fuel element receiving and supporting grid is comprised of a first metal, the guide tubes which pass through the grid assembly are comprised of a second metal and the grid is supported on the guide tubes by means of expanded sleeves located intermediate the grid and guide tubes. The fuel assembly is fabricated by inserting the sleeves, of initial outer diameter commensurate with the guide tube outer diameters, through the holes in the grid assembly provided for the guide tubes and thereafter expanding the sleeves radially outwardly along their entire length such that the guide tubes can subsequently be passed through the sleeves. The step of radial expansion, as a result of windows provided in the sleeves having dimensions commensurate with the geometry of the grid, mechanically captures the grid and simultaneously preloads the sleeve against the grid whereby relative motion between the grid and guide tube will be precluded

  4. Nuclear reactor types

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    The characteristics of different reactor types designed to exploit controlled fission reactions are explained. Reactors vary from low power research devices to high power devices especially designed to produce heat, either for direct use or to produce steam to drive turbines to generate electricity or propel ships. A general outline of basic reactors (thermal and fast) is given and then the different designs considered. The first are gas cooled, including the Magnox reactors (a list of UK Magnox stations and reactor performance is given), advanced gas cooled reactors (a list of UK AGRs is given) and the high temperature reactor. Light water cooled reactors (pressurized water [PWR] and boiling water [BWR] reactors) are considered next. Heavy water reactors are explained and listed. The pressurized heavy water reactors (including CANDU type reactors), boiling light water, steam generating heavy water reactors and gas cooled heavy water reactors all come into this category. Fast reactors (liquid metal fast breeder reactors and gas cooled fast reactors) and then water-cooled graphite-moderated reactors (RBMK) (the type at Chernobyl-4) are discussed. (U.K.)

  5. Nuclear reactor theory

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2007-09-01

    This textbook is composed of two parts. Part 1 'Elements of Nuclear Reactor Theory' is composed of only elements but the main resource for the lecture of nuclear reactor theory, and should be studied as common knowledge. Much space is therefore devoted to the history of nuclear energy production and to nuclear physics, and the material focuses on the principles of energy production in nuclear reactors. However, considering the heavy workload of students, these subjects are presented concisely, allowing students to read quickly through this textbook. (J.P.N.)

  6. Methodology to evaluate the crack growth rate by stress corrosion cracking in dissimilar metals weld in simulated environment of PWR nuclear reactor

    International Nuclear Information System (INIS)

    Paula, Raphael G.; Figueiredo, Celia A.; Rabelo, Emerson G.

    2013-01-01

    Inconel alloys weld metal is widely used to join dissimilar metals in nuclear reactors applications. It was recently observed failures of weld components in plants, which have triggered an international effort to determine reliable data on the stress corrosion cracking behavior of this material in reactor environment. The objective of this work is to develop a methodology to determine the crack growth rate caused by stress corrosion in Inconel alloy 182, using the specimen (Compact Tensile) in simulated PWR environment. (author)

  7. System for bearing a nuclear reactor vessel cooled by liquid metal

    International Nuclear Information System (INIS)

    Mahe, A.; Jullien, G.

    1976-01-01

    The invention relates to a bearing system for supporting a nuclear reactor vessel of the kind which is suspended from the reactor closure slab. The bearing system comprises a ring connected at one end to a collar and at the other end to two collars. The collar connected to the bottom end of the ring forms the top part of the vessel to be supported while the other two collars fit into the slab at two separate places. The ring and collars are disposed in an annular space formed in the slab and dividing it into two parts, i.e., a central part and a peripheral part surrounding the central part of the slab

  8. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  9. Refuelling nuclear reactors

    International Nuclear Information System (INIS)

    Stacey, J.; Webb, J.; White, W.P.; McLaren, N.H.

    1981-01-01

    An improved nuclear reactor refuelling machine is described which can be left in the reactor vault to reduce the off-load refuelling time for the reactor. The system comprises a gripper device rangeable within a tubular chute, the gripper device being movable by a pantograph. (U.K.)

  10. Complex risk analysis for loss of electric power in liquid metal nuclear reactor by system dynamics (SD) method

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering

    2012-07-15

    The power stabilization of the nuclear power plants (NPPs) is investigated in the aspect of the liquid metal coolant. The quantification of the risk analysis is performed by the system dynamics (SD) method which is processed by the feedback and accumulation complex algorithms. The Vensim software package is used for the simulations, which is supported by the Monte-Carlo method. There are 2 kinds of considerations as the economic and safety properties. The result shows the stability of the operations when the power can be decided. This shows the higher efficiency of the reactor. The failure frequency is 16/60 = 27%. In the event of Power Stabilized, the failure event is in the quite lower frequency rate. The commercial use of the reactor is important in the operations. (orig.)

  11. Nuclear reactor shutdown system

    International Nuclear Information System (INIS)

    Mangus, J.D.; Cooper, M.H.

    1982-01-01

    An improved nuclear reactor shutdown system is described comprising a temperature sensitive device connected to control the electric power supply to a magnetic latch holding a body of a neutron absorbing material. The temperature sensitive device is exposed to the reactor coolant so that when the reactor coolant temperature rises above a specific level, the temperature sensitive device will cause deenergization of the magnetic latch to allow the body of neutron absorbing material to enter the reactor core. (author)

  12. Nuclear reactor internals arrangement

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A nuclear reactor internals arrangement is disclosed which facilitates reactor refueling. A reactor vessel and a nuclear core is utilized in conjunction with an upper core support arrangement having means for storing withdrawn control rods therein. The upper core support is mounted to the underside of the reactor vessel closure head so that upon withdrawal of the control rods into the upper core support, the closure head, the upper core support and the control rods are removed as a single unit thereby directly exposing the core for purposes of refueling

  13. Indian advanced nuclear reactors

    International Nuclear Information System (INIS)

    Saha, D.; Sinha, R.K.

    2005-01-01

    For sustainable development of nuclear energy, a number of important issues like safety, waste management, economics etc. are to be addressed. To do this, a number of advanced reactor designs as well as fuel cycle technologies are being pursued worldwide. The advanced reactors being developed in India are the AHWR and the CHTR. Both the reactors use thorium based fuel and have many passive features. This paper describes the Indian advanced reactors and gives a brief account of the international initiatives for the sustainable development of nuclear energy. (author)

  14. Reactors. Nuclear propulsion ships

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2001-01-01

    This article has for object the development of nuclear-powered ships and the conception of the nuclear-powered ship. The technology of the naval propulsion P.W.R. type reactor is described in the article B.N.3 141 'Nuclear Boilers ships'. (N.C.)

  15. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  16. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  17. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  18. Nuclear reactor core catcher

    International Nuclear Information System (INIS)

    1977-01-01

    A nuclear reactor core catcher is described for containing debris resulting from an accident causing core meltdown and which incorporates a method of cooling the debris by the circulation of a liquid coolant. (U.K.)

  19. Seals in nuclear reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The aim of this invention is the provision of improved seals for reactor vessels in which fuel assemblies are located together with inlets and outlets for the circulation of a coolant. The object is to provide a seal arrangement for the rotatable plugs of nuclear reactor closure heads which has good sealing capacities over a wide gap during operation of the reactor but which also permits uninhibited rotation of the plugs for maintenance. (U.K.)

  20. Nuclear reactor simulator

    International Nuclear Information System (INIS)

    Baptista, Vinicius Damas

    1996-01-01

    The Nuclear Reactor Simulator was projected to help the basic training in the formation of the Nuclear Power Plants operators. It gives the trainee the opportunity to see the nuclear reactor dynamics. It's specially indicated to be used as the support tool to NPPT (Nuclear Power Preparatory Training) from NUS Corporation. The software was developed to Intel platform (80 x 86, Pentium and compatible ones) working under the Windows operational system from Microsoft. The program language used in development was Object Pascal and the compiler used was Delphi from Borland. During the development, computer algorithms were used, based in numeric methods, to the resolution of the differential equations involved in the process. (author)

  1. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  2. Nuclear reactor fuel sub-assemblies

    International Nuclear Information System (INIS)

    Ford, J.; Bishop, J.F.W.

    1981-01-01

    An improved fuel sub-assembly for liquid metal cooled fast breeder nuclear reactors is described which facilitates dismantling operations for reprocessing purposes. The method of dismantling is described. (U.K.)

  3. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  4. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  5. The possibility of prediction of the lifetime of metallic nuclear fuel elements in a radiation field of thermal nuclear reactors

    International Nuclear Information System (INIS)

    Livne, Z.; Ramon, P.

    1979-01-01

    An attempt is made to clarify the possible causes of failure of irradiated nuclear fuel cartridges, in order to determine the parameters which govern the lifetime of the fuel and a way to predict it. Measurements of mechanical properties of irradiated uranium metal and cladding, can serve as a basis for failure prediction. Testing irradiated fuel elements by bending till fracture enables to evaluate the integral character of the fuel element, along the cross-section, taking into account the difference in brittleness of several zones. It is likely that the bending test, which indicates the behaviour of a stress-strain function, is a faster and more reliable way to determine the mechanical properties of irradiated nuclear fuel. Since the stresses applied to the cladding during irradiation are locally hydrostatic, its postirradiation blow-up provide information on strength and elasticity variations of the irradiated cladding material. (B.G.)

  6. Energy from nuclear reactors

    International Nuclear Information System (INIS)

    Hospe, J.

    1977-01-01

    This VDI-Nachrichten series has the target to provide a technical-objective basis for the discussion of the pros and cons of nuclear power. The first part deals with LWR-type reactors which so far have prevailed in nuclear power generation. (orig.) [de

  7. EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages

    International Nuclear Information System (INIS)

    P. Bernot

    2001-01-01

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M and O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% 235 U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited to

  8. EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2001-02-27

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% {sup 235}U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited

  9. Nuclear reactors to come

    International Nuclear Information System (INIS)

    Lung, M.

    2002-01-01

    The demand for nuclear energy will continue to grow at least till 2050 because of mainly 6 reasons: 1) the steady increase of the world population, 2) China, India and Indonesia will reach higher social standard and their energy consumption will consequently grow, 3) fossil energy resources are dwindling, 4) coal will be little by little banned because of its major contribution to the emission of green house effect gas, 5) renewable energies need important technological jumps to be really efficient and to take the lead, and 6) fusion energy is not yet ready to take over. All these reasons draw a promising future for nuclear energy. Today 450 nuclear reactors are operating throughout the world producing 17% of the total electrical power demand. In order to benefit fully of this future, nuclear industry has to improve some characteristics of reactors: 1) a more efficient use of uranium (it means higher burnups), 2) a simplification and automation of reprocessing-recycling chain of processes, 3) efficient measures against proliferation and against any misuse for terrorist purposes, and 4) an enhancement of safety for the next generation of reactors. The characteristics of fast reactors and of high-temperature reactors will likely make these kinds of reactors the best tools for energy production in the second half of this century. (A.C.)

  10. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  11. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  12. Nuclear reactor monitoring system

    International Nuclear Information System (INIS)

    Drummond, C.N.; Bybee, R.T.; Mason, F.L.; Worsham, H.J.

    1976-01-01

    The invention pertains to an improved monitoring system for the neutron flux in a nuclear reactor. It is proposed to combine neutron flux detectors, a thermoelement, and a background radiation detector in one measuring unit. The spatial arrangement of these elements is fixed with great exactness; they are enclosed by an elastic cover and are brought into position in the reactor with the aid of a bent tube. The arrangement has a low failure rate and is easy to maintain. (HP) [de

  13. Nuclear reactor container

    International Nuclear Information System (INIS)

    Hosaka, Seiichi.

    1988-01-01

    Cables coverd with non-halogen covering material are used as electric wire cables wired for supplying electric power to a reactor recycling pump. Silicone rubber having specified molecular formula is used for the non-halogen covering material. As a result, formation of chlorine in a nuclear reactor container can be eliminated and increase in the deposited salts to SUS pipeways, etc. can be prevented, to avoid the occurrence of stress corrosion cracks. (H.T.)

  14. Technology of nuclear reactors

    International Nuclear Information System (INIS)

    Ravelet, F.

    2016-01-01

    This academic report for graduation in engineering first presents operation principles of a nuclear reactor core. It presents core components, atomic nuclei, the notions of transmutation and radioactivity, quantities used to characterize ionizing radiations, the nuclear fission, statistical aspects of fission and differences between fast and slow neutrons, a comparison between various heat transfer fluids, the uranium enrichment process, and different types of reactor (boiling water, natural uranium and heavy water, pressurized water, and fourth generation). Then, after having recalled the French installed power, the author proposes an analysis of a typical 900 MWe nuclear power plant: primary circuit, reactor, fuel, spent fuel, pressurizer and primary pump, secondary circuit, aspects related to control-command, regulation, safety and exploitation. The last part proposes a modelling of the thermodynamic cycle of a pressurized water plant by using an equivalent Carnot cycle, a Rankine cycle, and a two-phase expansion cycle with drying-overheating

  15. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  16. Nuclear reactor buildings

    International Nuclear Information System (INIS)

    Nagashima, Shoji; Kato, Ryoichi.

    1985-01-01

    Purpose: To reduce the cost of reactor buildings and satisfy the severe seismic demands in tank type FBR type reactors. Constitution: In usual nuclear reactor buildings of a flat bottom embedding structure, the flat bottom is entirely embedded into the rock below the soils down to the deck level of the nuclear reactor. As a result, although the weight of the seismic structure can be decreased, the amount of excavating the cavity is significantly increased to inevitably increase the plant construction cost. Cross-like intersecting foundation mats are embedded to the building rock into a thickness capable withstanding to earthquakes while maintaining the arrangement of equipments around the reactor core in the nuclear buildings required by the system design, such as vertical relationship between the equipments, fuel exchange systems and sponteneous drainings. Since the rock is hard and less deformable, the rigidity of the walls and the support structures of the reactor buildings can be increased by the embedding into the rock substrate and floor responsivity can be reduced. This enables to reduce the cost and increasing the seismic proofness. (Kamimura, M.)

  17. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  18. Generalities about nuclear reactors

    International Nuclear Information System (INIS)

    Jaouen, C.; Beroux, P.

    2012-01-01

    From Zoe, the first nuclear reactor, till the current EPR, the French nuclear industry has always advanced by profiting from the feedback from dozens of years of experience and operations, in particular by drawing lessons from the most significant events in its history, such as the Fukushima accident. The new generations of reactors must improve safety and economic performance so that the industry maintain its legitimacy and its share in the production of electricity. This article draws the history of nuclear power in France, gives a brief description of the pressurized water reactor design, lists the technical features of the different versions of PWR that operate in France and compares them with other types of reactors. The feedback experience concerning safety, learnt from the major nuclear accidents Three Miles Island (1979), Chernobyl (1986) and Fukushima (2011) is also detailed. Today there are 26 third generation reactors being built in the world: 4 EPR (1 in Finland, 1 in France and 2 in China); 2 VVER-1200 in Russia, 8 AP-1000 (4 in China and 4 in the Usa), 8 APR-1400 (4 in Korea and 4 in UAE), and 4 ABWR (2 in Japan and 2 in Taiwan)

  19. Nuclear reactor control column

    International Nuclear Information System (INIS)

    Bachovchin, D.M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor

  20. Stress Distribution in the Dissimilar Metal Butt Weld of Nuclear Reactor Piping due to the Simulation Technique for the Repair Welding

    International Nuclear Information System (INIS)

    Lee, Hweeseung; Huh, Namsu; Kim, Jinsu; Lee, Jinho

    2013-01-01

    During welding, the dissimilar metal butt welds of nuclear piping are typically subjected to repair welding in order to eliminate defects that are found during post-weld inspection. It has been found that the repair weld can significantly increase the tensile residual stress in the weldment, and therefore, accurate estimation of the weld residual stress due to repair weld, especially for dissimilar metal welds using Ni-based alloy 82/182 in nuclear components, is of great importance in order to assess susceptibility to primary water stress corrosion cracking. In the present study, the stress distributions of dissimilar metal butt welds in nuclear reactor piping subjected to repair weld were investigated based on detailed nonlinear finite element analyses. Particular emphasis was placed on the variation of the stress distribution in the dissimilar metal butt weld according to the finite element welding analysis sequence for the repair welding process

  1. Nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    This patent describes an improved liquid metal nuclear reactor construction comprising: (a) a nuclear reactor core having a bottom platform support structure; (b) a reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core; (c) a containment structure surrounding the reactor vessel and having a sidewall spaced outwardly from the reactor vessel side wall and having a base mat spaced below the reactor vessel bottom end wall; (d) a central small diameter post anchored to the containment structure base mat and extending upwardly to the reactor vessel to axially fix the bottom end wall of the reactor vessel and provide a center column support for the lower end of the reactor core; (e) annular support structure disposed in the reactor vessel on the bottom end wall and extending about the lower end of the core; (f) structural support means disposed between the containment structure base mat and bottom end of the reactor vessel wall and cooperating for supporting the reactor vessel at its bottom end wall on the containment structure base mat to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event; (g) a bed of insulating material disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall; freely expand radially from the central post as it heats up while providing continuous support thereof; (h) a deck supported upon the wall of the containment vessel above the top open end of the reactor vessel; and (i) extendible and retractable coupling means extending between the deck and the top open end of the reactor vessel and flexibly and sealably interconnecting the reactor vessel at its top end to the deck

  2. Reactors of different types in the world nuclear power

    International Nuclear Information System (INIS)

    Simonov, K.V.

    1991-01-01

    The status of the world nuclear power is briefly reviewed. It is noted that PWR reactors have decisive significance in the world power. The second place is related to gas-cooled graphite-moderated reactors. Channel-type heavy water moderated reactors are relatively important. Nuclear power future is associated with fast liquid-metal cooled breeder reactors

  3. Experience in the development of metal uranium-base nuclear fuel for heavy-water gas-cooled reactors

    International Nuclear Information System (INIS)

    Ashikhmin, V.P.; Vorob'ev, M.A.; Gusarov, M.S.; Davidenko, A.S.; Zelenskij, V.F.; Ivanov, V.E.; Krasnorutskij, V.S.; Petel'guzov, I.A.; Stukalov, A.I.

    1978-01-01

    Investigations were carried out to solve the problem of making the development of radiation-resistant uranium fuel for power reactors including the heavy-water gas-cooled KS-150 reactor. Factors are considered that limit the lifetime of uranium fuel elements, and the ways of suppressing them are discussed. Possible reasons of the insufficient radiation resistance of uranium rod fuel element and the progress attained are analyzed. Some general problems on the fuel manufacture processes are discussed. The main results are presented on the operation of the developed fuel in research reactor loops and the commercial heavy-water KS-150 reactor. The results confirm an exceptionally high radiation resistance of fuel to burn-ups of 1.5-2%. The successful solution of a large number of problems associated with the development of metal uranium fuel provides for new possibilities of using metal uranium in power reactors

  4. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    Baddley, A.H.

    1981-01-01

    A method of constructing a radiation shielding plug for use in the roof of the coolant containment vault of liquid metal cooled fast breeder reactors is described. The construction allows relative movement of that part of service cables and pipes which are carried by the fixed roof and that part which is carried by the rotatable plug. (U.K.)

  5. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  6. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sasaki, Y.; Tashima, J.

    1975-01-01

    A description is given of nuclear reactor fuel assemblies arranged in the form of a lattice wherein there is attached to the interface of one of two adjacent fuel assemblies a plate spring having a concave portion curved toward said interface and to the interface of the other fuel assembly a plate spring having a convex portion curved away from said interface

  7. Materials for nuclear reactors

    International Nuclear Information System (INIS)

    Banerjee, S.; Kamath, H.S.

    2005-01-01

    The improved performance of present generation nuclear reactors and the realization of advanced reactor concepts, both, require development of better materials. Physical metallurgy/materials science principles which have been exploited in meeting the exacting requirements of nuclear reactor materials (fuels and structural materials), are outlined citing a few specific examples. While the incentive for improvement of traditional fuels (e.g., UO 2 fuel) is primarily for increasing the average core burn up, the development of advanced fuels (e.g., MOX, mixed carbide, nitride, silicide and dispersion fuels) are directed towards better utilization of fissile and fertile inventories through adaptation of innovative fuel cycles. As the burn up of UO 2 fuel reaches higher levels, a more detailed and quantitative understanding of the phenomena such as fission gas release, fuel restructuring induced by radiation and thermal gradients and pellet-clad interaction is being achieved. Development of zirconium based alloys for both cladding and pressure tube applications is discussed with reference to their physical metallurgy, fabrication techniques and in-reactor degradation mechanisms. The issue of radiation embrittlement of reactor pressure vessels (RPVs) is covered drawing a comparison between the western and eastern specifications of RPV steels. The search for new materials which can stand higher rates of atomic displacement due to radiation has led to the development of swelling resistant austenitic and ferritic stainless steels for fast reactor applications as exemplified by the development of the D-9 steel for Indian fast breeder reactor. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  8. Nuclear reactor assembly

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    A nuclear reactor assembly includes a reactor pressure tank having a substantially cylindrical side wall surrounded by the wall of a cylindrical cavity formed by a biological shield. A rotative cylindrical wall is interposed between the walls and has means for rotating it from outside of the shield, and a probe is carried by the rotative wall for monitoring the pressure tank's wall. The probe is vertically movable relative to the rotative cylindrical wall, so that by the probe's vertical movement and rotation of the rotative cylinder, the reactor's wall can be very extensively monitored. If the reactor pressure tank's wall fails, it is contained by the rotative wall which is backed-up by the shield cavity wall. (Official Gazette)

  9. CANDU nuclear reactor technology

    International Nuclear Information System (INIS)

    Kakaria, B. K.

    1994-01-01

    AECL has over 40 years of experience in the nuclear field. Over the past 20 years, this unique Canadian nuclear technology has made a worldwide presence, In addition to 22 CANDU reactors in Canada, there are also two in India, one in Pakistan, one in Argentina, four in Korea and five in Romania. CANDU advancements are based on evolutionary plant improvements. They consist of system performance improvements, design technology improvements and research and development in support of advanced nuclear power. Given the good performance of CANOU plants, it is important that this CANDU operating experience be incorporated into new and repeat designs

  10. Moderator for nuclear reactor

    International Nuclear Information System (INIS)

    Milgram, M.S.; Dunn, J.T.; Hart, R.S.

    1995-01-01

    This invention relates to a moderator for a nuclear reactor and more specifically, to a composite moderator. A moderator is designed to slow down, or thermalize, neutrons which are released during nuclear reactions in the reactor fuel. Pure or almost pure materials like light water, heavy water, beryllium or graphite are used singly as moderators at present. All these materials, are used widely. Graphite has a good mechanical strength at high temperatures encountered in the nuclear core and therefore is used as both the moderator and core structural material. It also exhibits a low neutron-capture cross section and high neutron scattering cross section. However, graphite is susceptible to attach by carbon dioxide and/or oxygen where applicable, and releases stress energy under certain circumstances, although under normal operating conditions these reactions can be controlled. (author). 1 tab

  11. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  12. Nuclear reactor installation

    International Nuclear Information System (INIS)

    Keller, W.

    1976-01-01

    A nuclear reactor installation includes a pressurized-water coolant reactor vessel and a concrete biological shield surrounding this vessel. The shield forms a space between it and the vessel large enough to permit rapid escape of the pressurized-water coolant therefrom in the event the vessel ruptures. Struts extend radially between the vessel and shield for a distance permitting normal radial thermal movement of the vessel, while containing the vessel in the event it ruptures, the struts being interspaced from each other to permit rapid escape of the pressurized-water coolant from the space between the shield and the vessel

  13. Australia's new nuclear reactor

    International Nuclear Information System (INIS)

    Kemeny, L.

    2007-01-01

    On 19 and 20 April 2007, the Australian Nuclear Science and Technology Organisation (ANSTO) celebrated the recent commissioning of its new, world-class, OPAL (Open Pool Australian Lightwater) research reactor at the Lucas Heights. On the 19th, scientists, business leaders and academics were introduced to the reactor and its technical capacity for the manufacture of radiopharmaceuticals, its material science applications, its environmental services and its neutron scattering facilities for business applications. The formal OPAL opening function took place that evening and, on the 20th, Prime Minister John Howard visited ANSTO to be briefed about OPAL and to be shown the work being carried out at Lucas Heights

  14. Refueling of nuclear reactor

    International Nuclear Information System (INIS)

    Kaufmann, J.W.; Swidwa, K.J.; Hornak, L.P.

    1989-01-01

    This patent describes an apparatus for refueling a nuclear reactor, the reactor being disposed for refueling under water in a pit in a containment, the apparatus including a bridge to be mounted moveably over the pit on the containment, first means connected to the bridge, for moving the bridge forward and backward on the containment over the pit along a first path, a first pulse generator, connected to the moving means, responsive to the movement of the bridge, for producing pulses, means, connected to the generator,for counting the pulses, the count of the pulses being dependent on the distance of the movement of the bridge

  15. Licensing of nuclear reactor operators

    International Nuclear Information System (INIS)

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  16. Nuclear reactor containment device

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu.

    1980-01-01

    Purpose: To reduce the volume of a containment shell and decrease the size of a containment equipment for BWR type reactors by connecting the containment shell and a suppression pool with slanted vent tubes to thereby shorten the vent tubes. Constitution: A pressure vessel containing a reactor core is installed at the center of a building and a containment vessel for the nuclear reactor that contains the pressure vessel forms a cabin. To a building situated below the containment shell, is provided a suppression chamber in which cooling water is charged to form a suppression pool. The suppression pool is communicated with vent tubes that pass through the partition wall of the containment vessel. The vent tubes are slanted and their lower openings are immersed in coolants. Therefore, if accident is resulted and fluid at high temperature and high pressure is jetted from the pressure vessel, the jetting fluid is injected and condensated in the cooling water. (Moriyama, K.)

  17. Nuclear reactor container

    International Nuclear Information System (INIS)

    Ishiyama, Takenori.

    1989-01-01

    This invention concerns a nuclear reactor container in which heat is removed from a container by external water injection. Heat is removed from the container by immersing the lower portion of the container into water and scattering spary water from above. Thus, the container can be cooled by the spray water falling down along the outer wall of the container to condensate and cool vapors filled in the container upon occurrence of accidents. Further, since the inside of the container can be cooled also during usual operation, it can also serve as a dry well cooler. Accordingly, heat is removed from the reactor container upon occurrence of accidents by the automatic operation of a spray device corresponding to the change of the internal temperature and the pressure in the reactor container. Further, since all of these devices are disposed out of container, maintenance is also facilitated. (I.S.)

  18. The nuclear reactor systems

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This paper describes the various nuclear reactor systems, starting with the Generation II, then the present development of the Generation III and the stakes and challenges of the future Generation IV. Some have found appropriate to oppose reactor systems or generations one to another, especially by minimizing the enhancements of generation III compared to generation II or by expecting the earth from generation IV (meaning that generation III is already obsolete). In the first part of the document (chapter 2), some keys are given to the reader to develop its proper opinion. Chapter 3 describes more precisely the various reactor systems and generations. Chapter 4 discusses the large industrial manoeuvres around the generation III, and the last chapter gives some economical references, taking into account, for the various means of power generation, the impediments linked to climate protection

  19. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  20. Nuclear reactor refueling system

    International Nuclear Information System (INIS)

    Wade, E.E.

    1978-01-01

    A system for transferring fuel assemblies between a nuclear reactor core and a fuel storage area while the fuel assembies remain completely submerged in a continuous body of coolant is described. The system comprises an in-vessel fuel transfer machine located inside the reactor vessel and an ex-vessel fuel transfer machine located in a fuel storage tank. The in-vessel fuel transfer machine comprises two independently rotatable frames with a pivotable fuel transfer apparatus disposed on the lower rotatable frame. The ex-vessel fuel transfer machine comprises one frame with a pivotable fuel transfer apparatus disposed thereon. The pivotable apparatuses are capable of being aligned with each other to transfer a fuel assembly between the reactor vessel and fuel storage tank while the fuel assembly remains completely submerged in a continuous body of coolant. 9 claims, 7 figures

  1. Decommissioning a nuclear reactor

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1991-01-01

    The process of decommissioning a facility such as a nuclear reactor or reprocessing plant presents many waste management options and concerns. Waste minimization is a primary consideration, along with protecting a personnel and the environment. Waste management is complicated in that both radioactive and chemical hazardous wastes must be dealt with. This paper presents the general decommissioning approach of a recent project at Los Alamos. Included are the following technical objectives: site characterization work that provided a thorough physical, chemical, and radiological assessment of the contamination at the site; demonstration of the safe and cost-effective dismantlement of a highly contaminated and activated nuclear-fuelded reactor; and techniques used in minimizing radioactive and hazardous waste. 12 figs

  2. Nuclear reactor operator licensing

    International Nuclear Information System (INIS)

    Bursey, R.J.

    1978-01-01

    The Atomic Energy Act of 1954, which was amended in 1974 by the Energy Reorganization Act, established the requirement that individuals who had the responsibility of operating the reactors in nuclear power plants must be licensed. Section 107 of the act states ''the Commission shall (1) prescribe uniform conditions for licensing individuals; (2) determine the qualifications of such individuals; and (3) issue licenses to such individuals in such form as the Commission may prescribe.'' The article discusses the types of licenses, the selection and training of individuals, and the administration of the Nuclear Regulatory Commission licensing examinations

  3. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr

  4. Shields for nuclear reactors

    International Nuclear Information System (INIS)

    Aspden, G.J.

    1984-01-01

    The patent concerns shields for nuclear reactors. The roof shield comprises a normally fixed radial outer portion, a radial inner portion rotatable about a vertical axis, and a connection between the inner and outer portions. In the event of hypothecal core disruption conditions, a cantilever system on the inner wall allows the upward movement of the inner wall, in order to prevent loss of containment. (UK)

  5. Compact nuclear reactor

    International Nuclear Information System (INIS)

    Juric, S.I.

    1975-01-01

    A compact nuclear reactor of the pressurized-water variety is described which has two separate parts separably engageable for ease of inspection, maintenance and repair. One of the parts is a pressure vessel having an active core and the other of the parts is a closure adapted on its lower surface with an integral steam generator. An integral pump, external pressurizer and control rods are provided which communicate with the active core when engaged to form a total unit. (U.S.)

  6. Nuclear power reactor technology

    International Nuclear Information System (INIS)

    1978-09-01

    Risoe National Laboratory was established more than twenty years ago with research and development of nuclear reactor technology as its main objective. The Laboratory has by now accumulated many years of experience in a number of areas vital to nuclear reactor technology. The work and experience of, and services offered by the Laboratory within the following fields are described: Health physics site supervision; Treatment of low and medium level radioactive waste; Core performance evaluation; Transient analysis; Accident analysis; Fuel management; Fuel element design, fabrication and performance evaluation; Non-destructive testing of nuclear fuel; Theoretical and experimental structural analysis; Reliability analysis; Site evaluation. Environmental risk and hazard calculation; Review and analysis of safety documentation. Risoe has already given much assistance to the authorities, utilities and industries in such fields, carrying out work on both light and heavy water reactors. The Laboratory now offers its services to others as a consultant, in education and training of staff, in planning, in qualitative and quantitative analysis, and for the development and specification of fabrication techniques. (author)

  7. Improved nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding liquid metal coolant and housing the core within the pool. A generally cylindrical concrete containment structure surrounds the reactor vessel and a central support pedestal is anchored to the containment structure base mat and supports the bottom wall of the reactor vessel and the reactor core. The periphery of the reactor vessel bore is supported by an annular structure which allows thermal expansion but not seismic motion of the vessel, and a bed of thermally insulating material uniformly supports the vessel base whilst allowing expansion thereof. A guard ring prevents lateral seismic motion of the upper end of the reactor vessel. The periphery of the core is supported by an annular structure supported by the vessel base and keyed to the vessel wall so as to be able to expand but not undergo seismic motion. A deck is supported on the containment structure above the reactor vessel open top by annular bellows, the deck carrying the reactor control rods such that heating of the reactor vessel results in upward expansion against the control rods. (author)

  8. Nuclear data needs for subcritical reactors with heavy-metal coolant

    International Nuclear Information System (INIS)

    Ignatyuk, A.V.

    2001-01-01

    Requests on improvement of evaluated data files for minor actinides (MA) are briefly reviewed. New evaluations of neutron cross sections for Np-237, Am-241 and Am-243 after the corresponding tests and verifications should satisfy the required accuracies of data for developing MA-burners. More difficult problems arise for curium isotopes, evaluated data of which are strongly divergent. International expertise of available evaluations could be very desirable. Needs in data improvements for perspective heavy-metal liquid coolants are outlined. (author)

  9. Nuclear reactor pressure vessel with an inner metal coating covered with a high temperature resistant thermal insulator

    International Nuclear Information System (INIS)

    1974-01-01

    The thermal insulator covering the metal coating of a reactor vessel is designed for resisting high temperatures. It comprises one or several porous layers of ceramic fibers or of stacked metal foils, covered with a layer of bricks or ceramic tiles. The latter are fixed in position by fasteners comprising pins fixed to the coating and passing through said porous layers and fasteners (nut or bolts) for individually fixing the bricks to said pins, whereas ceramic plugs mounted on said bricks or tiles provide for the thermal insulation of the pins and of the nuts or bolts; such a thermal insulation can be applied to high-temperature reactors or to fast reactors [fr

  10. Requirements of coolants in nuclear reactors

    International Nuclear Information System (INIS)

    Abass, O. A. M.

    2014-11-01

    This study discussed the purposes and types of coolants in nuclear reactors to generate electricity. The major systems and components associated with nuclear reactors are cooling system. There are two major cooling systems utilized to convert the heat generated in the fuel into electrical power. The primary system transfers the heat from the fuel to the steam generator, where the secondary system begins. The steam formed in the steam generator is transferred by the secondary system to the main turbine generator, where it s converted into electricity after passing through the low pressure turbine. There are various coolants used in nuclear reactors-light water, heavy water and liquid metal. The two major types of water-cooled reactors are pressurized water reactors (PWR) and boiling water reactors (BWR) but pressurized water reactors are more in the world. Also discusses this study the reactors and impact of the major nuclear accidents, in the April 1986 disaster at the Chernobyl nuclear power plant in Ukraine was the product operators, and in the March 2011 at the Fukushima nuclear power plant in Japan was the product of earthquake of magnitude 9.0, the accidents caused the largest uncontrolled radioactive release into the environment.(Author)

  11. Nuclear reactor cavity streaming shield

    International Nuclear Information System (INIS)

    Klotz, R.J.; Stephen, D.W.

    1978-01-01

    The upper portion of a nuclear reactor vessel supported in a concrete reactor cavity has a structure mounted below the top of the vessel between the outer vessel wall and the reactor cavity wall which contains hydrogenous material which will attenuate radiation streaming upward between vessel and the reactor cavity wall while preventing pressure buildup during a loss of coolant accident

  12. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  13. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  14. Radiation detector for use in nuclear reactors

    International Nuclear Information System (INIS)

    Cisco, T.C.; Grimaila, A.G.

    1981-01-01

    A multi-sensor radiation detection system for removable insertion into a nuclear reactor is described in which one conductor of all the sensors is a single, common element. This single common element is contained within a tubular metallic sheath and in crosssection comprises a multiple radial armed metallic conductor having a star shaped cross-section dimensioned to form wedgeshaped compartments throughout the active radiation detecting length of the metallic sheath

  15. Nuclear reactor trip system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Each parameter of the processes of a nuclear reactor and components operatively associated with it is monitored by a set of four like sensors. A trip system normally operates on a ''two out four'' configuration; i.e., to trip the reactor it is necessary that at least two sensors of a set sense an off-normal parameter. This assumes that all sensors are in normal operating condition. However, when a sensor is in test or is subject to maintenance or is defective or disabled, the ''two out of four''configuration would be reduced to a ''one out of three'' configuration because the affected sensor is taken out of service. This would expose the system to the possibility that a single sensor failure, which may be spurious, will cause a trip of the reactor. To prevent this, it is necessary that the affected sensor be bypassed. If only one sensor is bypassed, the system operates on a ''two out of three'' configuration. With two sensors bypassed, the sensing of an off-normal parameter by a third sensor trips the reactor. The by-pass circuit also disables the circuit coupling the by-passed sensor to the trip circuit. (author)

  16. Nuclear Reactor Sharing Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Ohio State University Research Reactor (OSURR) is licensed to operate at a maximum power level of 500 kW. A pool-type reactor using flat-plate, low enriched fuel elements, the OSURR provides several experimental facilities including two 6-inch i.d. beam ports, a graphite thermal column, several graphite-isotope-irradiation elements, a pneumatic transfer system (Rabbit), various dry tubes, and a Central Irradiation Facility (CIF). The core arrangement and accessibility facilitates research programs involving material activation or core parameter studies. The OSURR control room is large enough to accommodate laboratory groups which can use control instrumentation for monitoring of experiments. The control instrumentation is relatively simple, without a large amount of duplication. This facilitates opportunities for hands-on experience in reactor operation by nuclear engineering students making reactor parameter measurements. For neutron activation analysis and analyses of natural environmental radioactivity, the NRL maintains the gamma ray spectroscopy system (GRSS). It is comprised of two PC-based 8192-channel multichannel analyzers (MCAs) with all the required software for quantitative analysis. A 3 double-prime x 3 double-prime NaI(Tl), a 14 percent Ge(Li), and a High Purity Germanium detector are currently available for use with the spectroscopy system

  17. Development of Korea advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Park, C.K.

    1998-01-01

    Future nuclear power plants should not only have the features of improved safety and economic competitiveness but also provide a means to resolve spent fuel storage problems by minimizing volume of high level wastes. It is widely believed that liquid metal reactors (LMRs) have the highest potential of meeting these requirements. In this context, the LMR development program was launched as a national long-term R and D program in 1992, with a target to introduce a commercial LMR around 2030. Korea Advanced Liquid Metal Reactor (KALIMER), a 150 MWe pool-type sodium cooled prototype reactor, is currently under the conceptual design study with the target schedule to complete its construction by the mid-2010s. This paper summarizes the KALIMER development program and major technical features of the reactor system. (author)

  18. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Sasagawa, Masaru; Masuda, Hiroyuki; Mogi, Toshihiko; Kanazawa, Nobuhiro.

    1994-01-01

    In a reactor core, a fuel inventory at an outer peripheral region is made smaller than that at a central region. Fuel assemblies comprising a small number of large-diameter fuel rods are used at the central region and fuel assemblies comprising a great number of smalldiameter fuel rods are used at the outer peripheral region. Since a burning degradation rate of the fuels at the outer peripheral region can be increased, the burning degradation rate at the infinite multiplication factor of fuels at the outer region can substantially be made identical with that of the fuels in the inner region. As a result, the power distribution in the direction of the reactor core can be flattened throughout the entire period of the burning cycle. Further, it is also possible to make the degradation rate of fuels at the outer region substantially identical with that of fuels at the inner side. A power peak formed at the outer circumferential portion of the reactor core of advanced burning can be lowered to improve the fuel integrity, and also improve the reactor safety and operation efficiency. (N.H.)

  19. Pressure vessel for nuclear reactors

    International Nuclear Information System (INIS)

    1975-01-01

    The invention applies to a pressure vessel for nuclear reactors whose shell, made of cast metal segments, has a steel liner. This liner must be constructed to withstand all operational stresses and to be easily repairable. The invention solves this problem by installing the liner at a certain distance from the inner wall of the pressure vessel shell and by filling this clearance with supporting concrete. Both the concrete and the steel liner must have a lower prestress than the pressure vessel shell. In order to avoid damage to the liner when prestressing the pressure vessel shell, special connecting elements are provided which consist of welded-on fastening elements projecting into recesses in the cast metal segments of the pressure vessel. Their design is described in detail. (TK) [de

  20. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a cooling water intake collector for a nuclear reactor. It includes multiple sub-collectors extending out in a generally parallel manner to each other, each one having a first end and a second one separated along their length, and multiple water outlets for connecting each one to a corresponding pressure tube of the reactor. A first end tube and a second one connect the sub-collector tubes together to their first and second ends respectively. It also includes multiple collector tubes extending transversely by crossing over the sub-collector tubes and separated from each other in the direction of these tubes. Each collector tubes has a water intake for connecting to a water pump and multiple connecting tubes separated over its length and connecting each one to the corresponding sub-collector [fr

  1. Seals in nuclear reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The seals described are for use in a nuclear reactor where there are fuel assemblies in a vessel, an inlet and an outlet for circulating a coolant in heat transfer relationship with the fuel assemblies and a closure head on the vessel in a tight fluid relationship. The closure head comprises rotatable plugs which have mechanical seals disposed in the annulus around each plug while allowing free rotation of the plug when the seal is not actuated. The seal is usually an elastomer or copper. A means of actuating the seal is attached for drawing it vertically into the annulus for sealing. When the reactor coolant is liquid sodium, contact with oxygen must be avoided and argon cover gas fills the space between the bottom of the closure head and the coolant liquid level and the annuli in the closure head. (U.K.)

  2. Nuclear reactor container

    International Nuclear Information System (INIS)

    Yamaki, Rika; Kawabe, Ryuhei.

    1989-01-01

    A venturi scrubber is connected to a nuclear reactor container. Gases containing radioactive aerosols in the container are introduced into the venturi scrubber in the form of a high speed stream under the pressure of the container. The radioactive aerosols are captured by inertia collision due to the velocity difference between the high speed gas stream and water droplets. In the case of the present invention, since the high pressure of the reactor container generated upon accident is utilized, compressor, etc. is no more required, thereby enabling to reduce the size of the aerosol removing device. Further, since no external power is used, the radioactive aerosols can be removed with no starting failure upon accidents. (T.M.)

  3. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a nuclear reactor fuel assembly comprising a cluster of fuel elements supported by transversal grids so that their axes are parallel to and at a distance from each other, in order to establish interstices for the axial flow of a coolant. At least one of the interstices is occupied by an axial duct reserved for an auxiliary cooling fluid and is fitted with side holes through which the auxiliary cooling fluid is sprayed into the cluster. Deflectors extend as from a transversal grid in a position opposite the holes to deflect the cooling fluid jet towards those parts of the fuel elements that are not accessible to the auxiliary coolant. This assembly is intended for reactors cooled by light or heavy water [fr

  4. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Marmonier, Pierre; Mesnage, Bernard; Nervi, J.C.

    1975-01-01

    This invention refers to fuel assemblies for a liquid metal cooled fast neutron reactor. Each assembly is composed of a hollow vertical casing, of regular polygonal section, containing a bundle of clad pins filled with a fissile or fertile substance. The casing is open at its upper end and has a cylindrical foot at its lower end for positioning the assembly in a housing provided in the horizontal diagrid, on which the core assembly rests. A set of flat bars located on the external surface of the casing enables it to be correctly orientated in its housing among the other core assemblies [fr

  5. Activity transport in nuclear reactors

    International Nuclear Information System (INIS)

    Narasimhan, S.V.

    2000-01-01

    The chemistry of the primary coolant is such that the general material loss is immeasurably low. However, the generation of radioactive corrosion products in the coolant, their transportation and distribution to different out of core surfaces occur irrevocably through the life cycle of the reactor. This phenomena leading to the build up of radiation field, which is unique to the nuclear reactor systems, is the only major problem of any significance. Minimization of this phenomenon can be done by many ways. The processes involved in the mechanism of activity transport are quite complex and are not at all thoroughly understood. The codes that have been developed so far use many empirical coefficients for some of the rate processes, which are either partially justified by simulated experimental studies or supported theoretically. In a multi-metal system like that of the reactor, the corrosion rates or release rates need not be similar especially in reactors like PHWRs. The mechanisms involved in the formation of protective oxide coating are quite complex to model in a simplified manner. The paper brings out some these features involved in the activity transport modeling and analyses the need for extensive field related experimental work to substantiate the model. (author)

  6. Fast reactors in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkovskii, O

    1981-02-01

    The possible applications are discussed of fast reactor nuclear power plants. Basic differences are explained in fast and thermal reactors, mainly with a view to nuclear fuel utilization. Discussed in more detail are the problems of nuclear fuel reproduction and the nost important technical problems of fast reactors. Flow charts are shown of heat transfer for fast reactors BN-350 (loop design) and BN-600 (integral coolant circuit design). Main specifications are given for demonstration and power fast reactors in operation, under construction and in project-stage.

  7. Nuclear reactor plant

    International Nuclear Information System (INIS)

    Schabert, H.P.; Laurer, E.

    1977-01-01

    The invention is concerned with a quick-closing valve on the main-steam pipe of a nuclear reactor plant. The quick-closing valve serves as isolating valve and as safety valve permitting depressurization in case of an accident. For normal operation a tube-shaped gate valve is provided as valve disc, enclosing an auxiliary valve disc to be used in case of accidents and which is opened at increased pressure to provide a smaller flow cross-section. The design features are described in detail. (RW) [de

  8. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E. D.

    1984-01-01

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value

  9. Nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E. D.

    1984-10-16

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value.

  10. Nuclear reactor control assembly

    International Nuclear Information System (INIS)

    Negron, S.B.

    1991-01-01

    This patent describes an assembly for providing global power control in a nuclear reactor having the core split into two halves. It comprises a disk assembly formed from at least two disks each machined with an identical surface hole pattern such that rotation of one disk relative to the other causes the hole pattern to open or close, the disk assembly being positioned substantially at the longitudinal center of and coaxial with the core halves; and means for rotating at least one of the disks relative to the other

  11. Execution of programme of post-service study of the condition of nuclear icebreaker Lenin reactor 1 pressure vessel metal and perspectives of application of results to increase service life of nuclear icebreakers reactor vessels

    International Nuclear Information System (INIS)

    Platonov, P.Ya.; Shtrombakh, Ya.I.; Amaev, A.D.; Krasikov, E.A.; Korolev, Yu.N.; Zabusov, O.O.; Glushakov, G.M.

    2001-01-01

    With the aim of determining the irradiation-induced embrittlement of a base metal and a weld metal in a pressure vessel of the nuclear icebreaker Lenin after 18 years operation the specimens cut out of a vessel wall are used to study the chemical composition and to carry out impact tests. From the test results the temperature dependences of fracture energy are built which define the irradiation embrittlement of a low alloy steel. It is noted that the annealing at 475 deg C for 100 h results in complete restoration of impact strength. Based on the results obtained the following conclusions are formulated: a reactor vessel base metal has high resistance to brittle fracture and high radiation resistance; a weld metal possesses rather high radiation resistance but unsatisfactory ductile-brittle transition temperature (∼ 63 deg C); for cladded vessels there is a potential reserve in the form of enhanced radiation resistance of an undercladding layer; in the final stage of operation the coolant temperature is recommended to be kept at the highest possible level [ru

  12. Nuclear reactor container

    International Nuclear Information System (INIS)

    Kawabe, Ryuhei; Yamaki, Rika.

    1989-01-01

    Aerosol filters considered so far for nuclear reactor containers in conventional BWR type nuclear power plants make the facility larger and involve a risk of clogging. In view of the above, in the present invention, the diameter of a flow channel of gases entering from a bent pipe to a suppression pool is made smaller thereby decreasing the diameter of gas bubbles in the supperssional pool. Since this reduces the force of surface tension, the diameter of resulted gas bubbles is made remarkably smaller as compared with the case where the gases are released from the lower end of the bent pipe. Since the absorption velocity of bubble-entrained aerosols into water is in proportion to the square of the bubble diameter, the absorption efficiency can be increased remarkably by reducing the diameter of the gas bubbles. Accordingly, it is possible to improve the efficiency of eliminating radioactivity of released gases. (K.M.)

  13. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1976-01-01

    Reference is made to the instrumentation of liquid metal cooled fast reactors. In order to ensure the safe operation of such reactors it is necessary to constantly monitor the coolant flowing through the fuel assemblies for temperature and rate of flow, requiring a large number of sensors. An improved and simplified arrangement is claimed in which the fuel assemblies feed a fraction of coolant to three instrument units arranged to sense the temperature and rate of flow of samples of coolant. Each instrument unit comprises a sleeve housing a sensing unit and has a number of inlet ducts arranged for receiving coolant from a fuel assembly together with a single outlet. The sensing unit has three thermocouple hot junctions connected in series, the hot junctions and inlet ducts being arranged in pairs. Electromagnetic windings around an inductive core are arranged to sense variation in flow of liquid metal by flux distortion. Fission product sensing means may also be provided. Full constructional details are given. (U.K.)

  14. Thermionic nuclear reactor systems

    International Nuclear Information System (INIS)

    Kennel, E.B.

    1986-01-01

    Thermionic nuclear reactors can be expected to be candidate space power supplies for power demands ranging from about ten kilowatts to several megawatts. The conventional ''ignited mode'' thermionic fuel element (TFE) is the basis for most reactor designs to date. Laboratory converters have been built and tested with efficiencies in the range of 7-12% for over 10,000 hours. Even longer lifetimes are projected. More advanced capabilities are potentially achievable in other modes of operation, such as the self-pulsed or unignited diode. Coupled with modest improvements in fuel and emitter material performance, the efficiency of an advanced thermionic conversion system can be extended to the 15-20% range. Advanced thermionic power systems are expected to be compatible with other advanced features such as: (1) Intrinsic subcritically under accident conditions, ensuring 100% safety upon launch abort; (2) Intrinsic low radiation levels during reactor shutdown, allowing manned servicing and/or rendezvous; (3) DC to DC power conditioning using lightweight power MOSFETS; and (4) AC output using pulsed converters

  15. Nuclear reactor building

    International Nuclear Information System (INIS)

    Oshima, Nobuaki.

    1991-01-01

    The secondary container in a nuclear reactor building is made of a transparent structure having a shielding performance such as lead glass, by which the inside of the secondary container can be seen without undergoing radiation exposure. In addition, an operator transportation facility capable of carrying about 5 to 10 operators at one time is disposed, and the side of the facility on the secondary container is constituted with a transparent material such as glass, to provide a structure capable of observing the inside of the secondary container. The ventilation and air conditioning in the operator's transportation facility is in communication with the atmosphere of a not-controlled area. Accordingly, operators at the outside of the reactor building can reach the operator's transportation facility without taking and procedures for entering the controlled area and without undergoing radiation exposure. The inside of the secondary container in the reactor building can be seen from various directions through the transparent structure having the shielding performance. (N.H.)

  16. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  17. Nuclear reactor power supply

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The sets of process signals derived from the sensor assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector is interposed between the protection system and the control system. This selector prevents a parameter signal of a set of signals, which differs from the other parameters signals of the set by more than twice the allowable variation of the sensors which produce the set, from passing to the control system. The selectors include a pair of signal selection units, one unit sending selected process signals to primary control channels and the other sending selected process signals to back-up control channels. Test signals are periodically impressed by a test unit on a selected pair of a selected unit and control channels. When test signals are so impressed the selected control channel is disabled from transmitting control signals to the reactor and/or its associated components. This arrangement eliminates the possibility that a single component failure which may be spurious will cause an inadvertent trip of the reactor during test

  18. Nuclear reaction data and nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Paver, N [University of Trieste (Italy); Herman, M [International Atomic Energy Agency, Vienna (Austria); Gandini, A [ENEA, Rome (Italy)

    2001-12-15

    These two volumes contain the lecture notes of the workshop 'Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety', which was held at the Abdus Salam ICTP in the Spring of 2000. The workshop consisted of five weeks of lecture courses followed by practical computer exercises on nuclear data treatment and design of nuclear power systems. The spectrum of topics is wide enough to timely cover the state-of-the-art and the perspectives of this broad field. The first two weeks were devoted to nuclear reaction models and nuclear data evaluation. Nuclear data processing for applications to reactor calculations was the subject of the third week. On the last two weeks reactor physics and on-going projects in nuclear power generation, waste disposal and safety were presented.

  19. CONTAIN LMR/1B-Mod.1, A computer code for containment analysis of accidents in liquid-metal-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Murata, K.K.; Carroll, D.E.; Bergeron, K.D.; Valdez, G.D.

    1993-01-01

    The CONTAIN computer code is a best-estimate, integrated analysis tool for predicting the physical, chemical, and radiological conditions inside a nuclear reactor containment building following the release of core material from the primary system. CONTAIN is supported primarily by the U. S. Nuclear Regulatory Commission (USNRC), and the official code versions produced with this support are intended primarily for the analysis of light water reactors (LWR). The present manual describes CONTAIN LMR/1B-Mod. 1, a code version designed for the analysis of reactors with liquid metal coolant. It is a variant of the official CONTAIN 1.11 LWR code version. Some of the features of CONTAIN-LMR for treating the behavior of liquid metal coolant are in fact present in the LWR code versions but are discussed here rather than in the User's Manual for the LWR versions. These features include models for sodium pool and spray fires. In addition to these models, new or substantially improved models have been installed in CONTAIN-LMR. The latter include models for treating two condensables (sodium and water) simultaneously, sodium atmosphere and pool chemistry, sodium condensation on aerosols, heat transfer from core-debris beds and to sodium pools, and sodium-concrete interactions. A detailed description of each of the above models is given, along with the code input requirements

  20. Latching device for nuclear reactor housing

    International Nuclear Information System (INIS)

    Barnes, J.G.

    1981-01-01

    A latching device for use in liquid metal cooled nuclear reactors is described which is not detached under normal operational loads on the absorber sub-assemblies. The sub-assemblies are however easily detached for repair or replacement. (U.K.)

  1. Nuclear reactors safety issues

    International Nuclear Information System (INIS)

    Barre, Francois; Seiler, Nathalie

    2008-01-01

    Full text of publication follows: Since the seventies, economic incentives have led the utilities to drive a permanent evolution of the light water reactor (LWR). The evolution deals with the reactor designs as well as the way to operate them in a more flexible manner. It is for instance related to the fuel technologies and management. On the one hand, the technologies are in continuous evolution, such as the fuel pellets (MOX, Gd fuel, or Cr doped fuels..) as well as advanced cladding materials (M5 TM , MDA or ZIRLO). On the other hand, the fuel management is also subject to continuous evolution in particular in terms of increasing the level of burn-up, the reactor (core) power, the enrichment, as well as the duration of reactor cycles. For instance, in a few years in France, the burn-up has raised beyond the value of 39 GWj/t, initially authorized up to 52 GWj/t for the UO 2 fuel. In the near future, utilities foreseen to reach fuel burn-up of 60 GWj/t for MOX fuel and 70 GWj/t for UO 2 fuel. Furthermore, the future reactor of fourth generation will use new fuels of advanced conception. Furthermore with the objective of improving the safety margins, methods and calculation tools used by the utilities in the elaboration of their safety demonstrations submitted to the Safety Authority, are in movement. The margin evaluation methodologies often consist of a calculation chain of best-estimate multi-field simulations (e.g. various codes being coupled to simulate in a realistic way the evolution of the thermohydraulic, neutronic and mechanic state of the reactor). The statistical methods are more and more sophisticated and the computer codes are integrating ever-complex physical models (e.g. three-dimensional at fine scale). Following this evolution, the Institute of Radioprotection and Nuclear Safety (IRSN), whose one of the roles is to examine the safety records and to rend a technical expertise, considers the necessity of reevaluating the safety issues for advanced

  2. Tank type nuclear reactors

    International Nuclear Information System (INIS)

    Naito, Kesahiro; Shimoyashiki, Shigehiro; Yokota, Norikatsu; Takahashi, Kazuo.

    1985-01-01

    Purpose: To improve the seismic proofness and the radiation shielding of LMFBR type reactors by providing the reactor with a structure reduced in the size and the weight, excellent in satisfactory heat insulating property and having radioactive material capturing performance. Constitution: Two sheets of ceramic plate members (for instance, mullite, steatite, beryllium ceramics or the like) which can be fabricated into plate-like shape and have high heat insulating property are overlapped with each other, between which magnetic heat-insulating material with magnetizing magnetic ceramics (for example, Lisub(0.5)Fesub(2.5)O 4 , Ni-Fe 2 O 4 , Fe-Fe 2 O 4 ) are sandwiched and the whole assembly is covered with metal coating material (for example, stainless steels). The inside of the coating material is evacuated or filled with an inert gas with low heat-conductivity (argon) at a pressure less than 1 kg/cm 2 abs, considering that the temperature goes higher and the inner pressure increases upon operation. In this way, the size of the laminated structure can be reduced to about 1/7 of the conventional case. The magnetic heat insulating materials can capture the magnetic impurities in sodium. (Kawakami, Y.)

  3. Nuclear reactors for the future

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Kamble, M.T.; Dulera, I.V.

    2013-01-01

    For the sustainable development of nuclear power plants with enhanced safety features, economic competitiveness, proliferation resistance and physical protection, several advanced reactor developments have been initiated world-wide. The major advanced reactor initiatives and the proposed advanced reactor concepts have been briefly reviewed along with their advantages and challenges. Various advanced reactor designs being pursued in India have also been briefly described in the paper. (author)

  4. Nuclear reactor cooling device

    International Nuclear Information System (INIS)

    Hoshi, Masaya; Makihara, Yoshiaki.

    1985-01-01

    Purpose: To improve the heat transfer performance, as well as reducing and simplifying the structure while preventing the intrusion of primary coolants to utilization systems. Constitution: Heat transfer from the primary coolant circuit to the utilization circuits is conducted by means of heat pipe type heat exchangers. The heat exchanger comprises a tightly closed vessel divided by a partition wall, through which a plurality of heat pipes are passed. The primary coolants receiving the heat from the nuclear reactor enter the first chamber of the heat exchanger to heat the evaporating portion of the heat pipes. The heated flow of steams in the heat pipes transfer to the condensating portion in the second chamber to conduct heat exchange with the utilization system. In this way, since secondary coolant circuits are saved, the heat transfer performance can be improved significantly and the risk of failure can be reduced. (Kamimura, M,)

  5. Nuclear reactor control apparatus

    International Nuclear Information System (INIS)

    Sridhar, B.N.

    1983-01-01

    Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod

  6. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Vikhorev, Yu.V.; Biryukov, G.I.; Kirilyuk, N.A.; Lobanov, V.N.

    1977-01-01

    A fuel assembly is proposed for nuclear reactors allowing remote replacement of control rod bundles or their shifting from one assembly to another, i.e., their multipurpose use. This leads to a significant increase in fuel assembly usability. In the fuel assembly the control rod bundle is placed in guide tube channels to which baffles are attached for fuel element spacing. The remote handling of control rods is provided by a hollow cylinder with openings in its lower bottom through which the control rods pass. All control rods in a bundle are mounted to a cross beam which in turn is mounted in the cylinder and is designed for grasping the whole rod bundle by a remotely controlled telescopic mechanism in bundle replacement or shifting. (Z.M.)

  7. Nuclear reactor container

    International Nuclear Information System (INIS)

    Shioiri, Akio.

    1992-01-01

    In a nuclear reactor container, a vent tube communication port is disposed to a pressure suppression pool at a position higher than the pool water therein for communication with an upper dry well, and the upper end opening of a dry well communication pipe is disposed at a position higher than the communication port. When condensate return pipeline is ruptured in the upper dry well, water in a water source pool is injected to the pressure vessel and partially discharged out of the ruptured port and a depressurization valve connected to the pressure vessel to the inside of the upper dry well. The discharged water stays in the upper dry well and, when the water level reaches the height of the vent tube communication port, it flows into the pressure suppression pool. Even in a state that the entire amount of water in the water source pool is supplied, since water does not reach the upper opening port of the dry well communication pipe, water does not flow into a lower dry well. Accordingly, the motor of a control rod drives disposed in the lower dry well can be prevented from submerging. The reactor core can be cooled more reliably, to improve the reliability of the pressure suppression function. (N.H.)

  8. Unconventional liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.

    1989-06-01

    This report describes the rationale for, design of and analytical studies on an unconventional sodium-cooled power reactor, called the Trench Reactor. It derives its name from the long, narrow sodium pool in which the reactor is placed. Unconventional features include: pool shape; reactor shape (also long and narrow); reflector control; low power density; hot-leg primary pumping; absence of a cold sodium pool; large core boxes rather than a large number of subassemblies; large diameter metal fuel; vessel suspension from cables; and vessel cooling by natural circulation of building atmosphere (nitrogen) at all times. These features all seem feasible. They result in a system that is capable of at least a ten year reload interval and shows good safety through direct physical response to loss-of-heat-sink, loss-of-flow and limited-reactivity nuclear transients. 43 figs., 43 tabs

  9. Lubrication of nuclear reactor components

    International Nuclear Information System (INIS)

    Wild, E.; Mack, K.J.

    1978-01-01

    Safe operation of liquid metal cooled nuclear reactors requires a knowledge of the tribological behaviour of contacting components at high temperatures with slow relative movement at high frictional loads in a chemically aggressive environment. Experiments have been performed on various material combinations in liquid sodium and argon. Because of the small sliding movements, hydrodynamic lubrication is not expected and thus surface finish is an important factor. Tests have been performed on brushed, ground and lapped surfaces. Among the material combinations tested a CrC-coating on a 1.4961 stainless steel substrate performed well. Friction coefficients of 0.35-0.5 in argon and 0.1-1.2 in liquid sodium were recorded. (author)

  10. Challenges Related to the Use of Liquid Metal and Molten Salt Coolants in Advanced Reactors. Report of the collaborative project COOL of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-05-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in 2000, based on a resolution by the IAEA General Conference (GC(44)/RES/21). INPRO aims at helping to ensure that nuclear energy is available in the twenty-first century in a sustainable manner, and seeks to bring together all interested Member States, both technology holders and technology users, to jointly consider actions to achieve desired innovations. INPRO is taking care of the specific needs of developing countries. One of the aims of INPRO is to develop options for enhanced sustainability through promotion of technical and institutional innovations in nuclear energy technology through collaborative projects among IAEA Member States. Collaboration among INPRO members is fostered on selected innovative nuclear technologies to bridge technology gaps. Collaborative projects have been selected so that they complement other national and international R and D activities. The INPRO Collaborative Project COOL on Investigation of Technological Challenges Related to the Removal of Heat by Liquid Metal and Molten Salt Coolants from Reactor Cores Operating at High Temperatures investigated the technological challenges of cooling reactor cores that operate at high temperatures in advanced fast reactors, high temperature reactors and accelerator driven systems by using liquid metals and molten salts as coolants. The project was initiated in 2008 and was led by India; experts from Brazil, China, Germany, India, Italy and the Republic of Korea participated and provided chapters of this report. The INPRO Collaborative Project COOL addressed the following fields of research regarding liquid metal and molten salt coolants: (i) survey of thermophysical properties; (ii) experimental investigations and computational fluid dynamics studies on thermohydraulics, specifically pressure drop and heat transfer under different operating conditions; (iii) monitoring and control of coolant

  11. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  12. Nuclear reactor container

    International Nuclear Information System (INIS)

    Moriyama, Takeo; Ochiai, Kanehiro; Niino, Tsuyoshi; Kodama, Toyokazu; Hirako, Shizuka.

    1988-01-01

    Purpose: To obtain structures suitable to a container structures for nuclear power plants used in those districts where earthquakes occur frequently, in which no local stresses are caused to the fundamental base portions and the workability for the fundamental structures is improved. Constitution: Basic stabilizers are attached to a nuclear reactor container (PCV) and a basic concrete recess for receiving a basic stabilizer is disposed in basic concretes. A top stabilizer is joined and fixed to a top stabilizer receiving plate at the inside of an outer shielding wall. On the other hand, a PCV top recess for conducting the load of PCV to the top stabilizer is attached to the top of the PCV. By disposing stabilizer structures allowing miner displacements at the two points, that is, the top and the lowermost portion of the PCV, no local stress concentrations can be generated to the extension on the axial direction of components due to the inner pressure of the PCV and to the horizontal load applied to the upper portion of the PCV upon earthquakes. (Yoshino, Y.)

  13. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  14. Reactor design for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Koenig, D.R.; Ranken, W.A.

    1979-01-01

    Conceptual design studies of a nuclear power plant for electric propulsion of spacecrafts have been on going for several years. An attractive concept which has evolved from these studies and which has been described in previous publications, is a heat-pipe cooled, fast spectrum nuclear reactor that provides 3 MW of thermal energy to out-of-core thermionic converters. The primary motivation for using heat pipes is to provide redundancy in the core cooling system that is not available in gas or liquid-metal cooled reactors. Detailed investigation of the consequences of heat pipe failures has resulted in modifications to the basic reactor design and has led to consideration of an entirely different core design. The new design features an integral laminated core configuration consisting of alternating layers of UO 2 and molybdenum sheets that span the entire diameter of the core. Design characteristics are presented and compared for the two reactors

  15. Method of reducing radioactivity in nuclear reactors

    International Nuclear Information System (INIS)

    Koshino, Yasuo

    1987-01-01

    Purpose: To prevent increase of radiation dose ratio in primary coolant circuit pipeways of nuclear reactor and reduce operators' exposure dose upon periodical inspection, etc. Method: β-diketone such as acetylacetone is added in a predetermined amount to reactor cooling water. β-diketone dissolves to catch metal ions and iron oxides as the main ingredient of cruds. The resultant β-diketone complex of metals is slightly water soluble neutron molecule, and the total metal amount in the reactor coolant is at a concentration of less than 10 ppb and completely dissolved in water. Accordingly, deposition of clads in the coolant to pipeways can be prevented thereby enabling to prevent the increase in the radiation dose ratio in the pipeways and thus reduce the operators' exposure dose. (Takahashi, M.)

  16. Study and characterization of noble metal deposits on similar rusty surfaces to those of the reactor U-1 type BWR of nuclear power station of Laguna Verde

    International Nuclear Information System (INIS)

    Flores S, V. H.

    2011-01-01

    In the present investigation work, were determined the parameters to simulate the conditions of internal oxidation reactor circulation pipes of the nuclear power plant of Laguna Verde in Veracruz. We used 304l stainless steel cylinders with two faces prepared with abrasive paper of No. 600, with the finality to obtain similar surface to the internal circulation piping nuclear reactor. Oxides was formed within an autoclave (Autoclave MEX-02 unit B), which is a device that simulates the working conditions of the nuclear reactor, but without radiation generated by the fission reaction within the reactor. The oxidation conditions were a temperature of 280 C and pressure of 8 MPa, similar conditions to the reactor operating in nuclear power plant of Laguna Verde in Veracruz, Mexico (BWR conditions), with an average conductivity of 4.58 ms / cm and 2352 ppb oxygen to simulate normal water chemistry NWC. Were obtained deposits of noble metal oxides formed on 304l stainless steel samples, in a 250 ml autoclave at a temperature range of 180 to 200 C. The elements that were used to deposit platinum-rhodium (Pt-Rh) with aqueous Na 2 Pt (OH) 6 and Na 3 Rh (NO 2 ) 6 , Silver (Ag) with an aqueous solution of AgNO 3 , zirconium (Zr) with aqueous Zr O (NO 3 ) and ZrO 2 , and zinc (Zn) in aqueous solution of Zn (NO 3 ) 2 under conditions of normal water chemistry. Also there was the oxidation of 304l stainless steel specimens in normal water chemistry with a solution of Zinc (Zn) (NWC + Zn). Oxidation of the specimens in water chemistry with a solution of zinc (Zn + NWC) was prepared in two ways: within the MEX-02 autoclave unit A in a solution of zinc and a flask at constant temperature in zinc solution. The oxides formed and deposits were characterized by scanning electron microscopy, energy dispersive X-ray analysis, elemental field analysis and X-ray diffraction. By other hand was evaluated the electrochemical behavior of the oxides formed on the surface of 304l stainless steel

  17. Evolution of the liquid metal reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1989-01-01

    This paper reports on the integral fat reactor (IFR) concept. A key feature of the IFR concept is the metallic fuel, the original choice in liquid metal reactor development. An IFR development program is detailed by the authors

  18. Nuclear reactor kinetics and control

    International Nuclear Information System (INIS)

    Lewins, J.

    1978-01-01

    A consistent, integrated account of modern developments in the study of nuclear reactor kinetics and the problem of their efficient and safe control. It aims to prepare the student for advanced study and research or practical work in the field. Special features include treatments of noise theory, reliability theory and safety related studies. It covers all aspects of the operation and control of nuclear reactors, power and research and is complete in providing physical data methods of calculation and solution including questions of equipment reliability. The work uses illustrations of the main types of reactors in use in the UK, USA and Europe. Each chapter contains problems and worked examples suitable for course work and study. The subject is covered in chapters, entitled: introductory review; neutron and precursor equations; elementary solutions at low power; linear reactor process dynamics with feedback; power reactor control systems; fluctuations and reactor noise; safety and reliability; nonlinear systems (safety and control); analogue computing. (author)

  19. Nuclear reactor control rod

    International Nuclear Information System (INIS)

    Cearley, J.E.; Izzo, K.R.

    1987-01-01

    This patent describes a vertically oriented bottom entry control rod from a nuclear reactor: a frame including an elongated central spine of cruciform cross section connected between an upper support member and a lower support member both of cruciform shape having four laterally extending arms. The arms are in alignment with the arms of the lower support member and each aligned upper and lower support members has a sheath extending between; absorber plates of neutron absorber material, different from the material of the frame, one of the absorber plates is positioned within a sheath beneath each of the arms; attachment means suspends the absorber plates from the arms of the upper support member within a sheath; elongated absorber members positioned within a sheath between each of the suspended absorber plates and an arm of the lower support member; and joint means between the upper ends of the absorber members and the lower ends of the suspended absorber plates for minimizing gaps; the sheath means encloses the suspended absorber plates and the absorber members extending between aligned arms of the upper and lower support members and secured

  20. Nuclear reactor container

    International Nuclear Information System (INIS)

    Fukui, Tooru; Murase, Michio; Kataoka, Yoshiyuki; Hidaka, Masataka; Sumita, Isao; Tominaga, Kenji.

    1992-01-01

    In a nuclear reactor container, a chamber in communication with a wet well of a pressure suppression chamber is disposed and situated to such a position that the temperature is lower than a chamber containing pool water upon occurrence of loss of coolant accident. In addition, the inner surface of the pressure suppression chamber is constituted with steel walls in contact with pool water, and an outer circumferential pool is disposed at the outer circumferential surface thereof. Further, a circulation channel is disposed, and a water intake port is disposed at a position higher than an exit to the pool water, and a water discharge port is opened in the pool water at a position lower than the exit to the pool water. With such a constitution, the allowable temperature of the pressure suppression pool water can be elevated to a saturated steam temperature corresponding to the resistant pressure of the container, so that the temperature difference between the pressure suppression pool and the outer side thereof is increased by so much, to improve thermal radiation performance. Accordingly, it can be utilized as a pressure suppression means for a plant of greater power. Further, thermal conduction efficiency from the pool water region of the pressure suppression chamber to the outer circumferential pool water is improved, or thermal radiation area is enlarged due to the circulation channel, to improve the heat radiation performance. (N.H.)

  1. Nuclear reactor vessel inspection apparatus

    International Nuclear Information System (INIS)

    Blackstone, E.G.; Lofy, R.A.; Williams, L.P.

    1979-01-01

    Apparatus for the in situ inspection of a nuclear reactor vessel to detect the location and character of flaws in the walls of the vessel, in the welds joining the various sections of the vessel, in the welds joining attachments such as nozzles, elbows and the like to the reactor vessel and in such attachments wherein an inspection head carrying one or more ultrasonic transducers follows predetermined paths in scanning the various reactor sections, welds and attachments

  2. Control rod drive of nuclear reactor

    International Nuclear Information System (INIS)

    Zhuchkov, I.I.; Gorjunov, V.S.; Zaitsev, B.I.

    1980-01-01

    This invention relates to nuclear reactors and, more particularly, to a drive of a control rod of a nuclear reactor and allows power control, excess reactivity compensation, and emergency shut-down of a reactor. (author)

  3. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  4. Nuclear reactor in deep water

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Events during October 1980, when the Indian Point 2 nuclear reactor was flooded by almost 500 000 litres of water from the Hudson river, are traced and the jumble of human errors and equipment failures chronicled. Possible damage which could result from the reactor getting wet and from thermal shock are considered. (U.K.)

  5. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    An improvement is proposed concerning the easier disengagement of the coupling at the reactor coolant pump for a nuclear reactor transporting a pressurized coolant. According to the invention the disengaging coupling consists of two parts separated by screws. At least one of the screws contains a propellent charge ananged within a bore and provided with a speed-dependent ignition device in such a way that by separation of the screws at overspeeds the coupling is disengaged. The sub-claims are concerned with the kind of ignition ot the propellent charge. (UWI) [de

  6. Transmutation of nuclear waste in nuclear reactors

    International Nuclear Information System (INIS)

    Abrahams, K.; Kloosterman, J.L.; Pilate, S.; Wehmann, U.K.

    1996-03-01

    The objective of this joint study of ECN, Belgonucleaire, and Siemens is to investigate possibilities for transmutation of nuclear waste in regular nuclear reactors or in special transmutation devices. Studies of possibilities included the limits and technological development steps which would be needed. Burning plutonium in fast reactors, gas-cooled high-temperature reactors and light water reactors (LWR) have been considered. For minor actinides the transmutation rate mainly depends on the content of the minor actinides in the reactor and to a much less degree on the fact whether one uses a homogeneous system (with the actinides mixed into the fuel) or a heterogeneous system. If one wishes to stabilise the amount of actinides from the present LWRs, about 20% of all nuclear power would have to be generated in special burner reactors. It turned out that reactor transmutation of fission products would require considerable recycling efforts and that the time needed for a substantial transmutation would be rather long for the presently available levels of the neutron flux. If one would like to design burner systems which can serve more light water reactors, a large effort would be needed and other burners (possibly driven by accelerators) should be considered. (orig.)

  7. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  8. A low cost liquid metal reactor design

    International Nuclear Information System (INIS)

    Arnold, W.H.; Anderson, C.A.; Mangus, J.D.

    1984-01-01

    A new, compact Liquid Metal Reactor (LMR) plant arrangement designed by Westinghouse, featuring factory-fabricated modules and an integrated fuel cycle facility, has made it possible to project a commercially competitive LMR plant for the near future. This innovative liquid metal-cooled plant design will allow a combination of capital, fuel, operation and maintenance costs that could be lower than today's fossil-fueled or light water reactor plant costs, and incorporate features which enhance public safety even beyond current high standards. Following early core loadings, the plant feeds only on depleted uranium. No shipment of fuel is required. And the plant can be tailored to produce enough plutonium to meet its need or to provide fuel for other nuclear plants

  9. Liquid metal tribology in fast breeder reactors

    International Nuclear Information System (INIS)

    Wild, E.; Mack, K.J.; Gegenheimer, M.

    1984-11-01

    Liquid Metal Cooled Fast Breeder Reactors (LMFBR) require mechanisms operating in various sodium liquid and sodium vapor environments for extended periods of time up to temperatures of 900 K under different chemical properties of the fluid. The design of tribological systems in those reactors cannot be based on data and past experience of so-called conventional tribology. Although basic tribological phenomena and their scientific interpretation apply in this field, operating conditions specific to nuclear reactors and prevailing especially in the nuclear part of such facilities pose special problems. Therefore, in the framework of the R and D-program accompanying the construction phase of SNR 300 experiments were carried out to provide data and knowledge necessary for the lay-out of friction systems between mating surfaces of contacting components. Initially, screening tests isolated material pairs with good slipping properties and maximum wear resistance. Those materials were subjected to comprehensive parameter investigations. A multitude of laboratory scale tests have been performed under largely reactor specific conditions. Unusual superimpositions of parameters were analyzed and separated to find their individual influence on the friction process. The results of these experiments were made available to the reactor industry as well as to factories producing special tribo-materials. (orig.) [de

  10. Sodium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hammers, H.W.

    1982-01-01

    The invention concerns a sodium-cooled nuclear reactor, whose reactor tank contains the primary circuit, shielding surrounding the reactor core and a primary/secondary heat exchanger, particularly a fast breeder reactor on the module principle. In order to achieve this module principle it is proposed to have electromagnetic circulating pumps outside the reactor tank, where the heat exchanger is accomodated in an annular case above the pumps. This case has several openings at the top end to the space above the reactor core, some smaller openings in the middle to the same space and is connected at the bottom to an annular space between the tank wall and the reactor core. As a favoured variant, it is proposed that the annular electromagnetic pumps should be arranged concentrically to the reactor tank, where there is an annual duct on the inside of the reactor tank. In this way the sodium-cooled nuclear reactor is made suitable as a module with a large number of such elements. (orig.) [de

  11. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  12. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  13. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V [ed.; Feinberg, O; Morozov, A [Russian Research Centre ` Kurchatov Institute` , Moscow (Russian Federation); Devell, L [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  14. Advanced nuclear reactor types and technologies

    International Nuclear Information System (INIS)

    Ignatiev, V.; Devell, L.

    1995-01-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary

  15. Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    Schabert, H.P.; Ropers, J.

    1976-01-01

    A pressurized-water reactor pressure vessel connects via a main coolant pipe loop including a main coolant pump, with the lower portion of at least one vertical steam generator horizontally offset from the pressure vessel. This equipment is contained by a concrete structure entirely enclosing the pressure vessel and forming a generator room horizontally enclosing the generator and the loop and extending upwardly to an open top closed by a horizontal ceiling. The concrete structure is completely surrounded by a spherical steel containment shell designed to withstand any internal fluid pressure which might result from an accidental release of the coolant inside of this shell, and the shell forms a large space above the entire concrete structure. The ceiling above the generator room is a horizontal steel gridlike construction defining a plurality of vertical openings which are normally closed by horizontal sheet metal plates which are hinged to the gridlike construction and are light enough in weight to be forced upwardly, to open the openings, when the plates receive upward force from fluid pressure below them resulting from the loop, or other equipment in the generator room, accidentally permitting a sudden release of the pressurized-water coolant. The high fluid pressure that would otherwise develop within the concrete generator room, is in this way almost immediately relieved via the openings of the grid-like construction, by the plates being forced upwardly, the pressure being then dissipated upwardly in the large space above the top of the concrete structure, provided by the steel containment shell. This prevents the upstanding wall portions of the generator room from being stressed, and possibly damaged, by any sudden release of coolant in the generator room. Other features are disclosed

  16. Radioactive nuclides in nuclear reactors

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1982-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around nuclear reactors. The curricula of the courses contain also chemical subject materials. With reference to the foreign curricula, a plan of educational subject material of chemistry was considered for students of the school in the previous report (JAERI-M 9827), where the first part of the plan, ''Fundamentals of Reactor Chemistry'', was reviewed. This report is a review of the second part of the plan containing fission products chemistry, actinoids elements chemistry and activated reactor materials chemistry. (author)

  17. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  18. Nuclear data for nuclear reactor analyses

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1984-01-01

    A discussion of nuclear data is presented emphasizing to what extent data are known and to what accuracy. The principal data of interest is that for neutron cross-sections. The changing status of data, evaluated nuclear data files and data validation and improvement are described. Although the discussion relates to nuclear data for reactor analysis may of the results also apply to fusion, accelerator, shielding, biomedical, space and defense studies. (U.K.)

  19. The future of nuclear reactors

    International Nuclear Information System (INIS)

    Teller, E.

    1989-01-01

    The Atomic Energy Commission Advisory Committee on Reactor Safeguards began work in early 1948 with the firm and unanimous conviction that nuclear power could not survive a significant damaging accident. They as a committee felt that their job was to make reactors so safe that no such event would ever occur. However, ambitious reactor planners did not like all the buts and cautions that the committee was raising. They seemed to delay unduly their setting sail into the brave new world of clean, cheap, safe nuclear energy. The committee was soon nicknamed the Committee on Reactor Prevention. Reactors, of course, represented a tremendous step into the future. To an unprecedented extent, they were based on theory. But the committee did not have the luxury of putting a preliminary model into operation and waiting for difficulties to show up. In assessing new designs and developments, they had to anticipate future difficulties. Their proposals in good part were accepted, but their deep emphasis on safety did not become a part of the program. Today, forty years later, the author still believes both in the need for nuclear reactors and in the need of a thorough-going, pervasive emphasis on their safety. Real, understandable safety can be achieved, and that achievement is the key to our nuclear future. The details he gives are only examples. The need for reactors that are not only safe but obviously safe can be ignored only at our peril

  20. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at simplying gas-cooled nuclear reactors. For the cooling gas, the reactor is provided with a main circulation system comprising one or several energy conversion main groups such as gas turbines, and an auxiliary circulation system comprising at least one steam-generating boiler heated by the gas after its passage through the reactor core and adapted to feed a steam turbine with motive steam. The invention can be applied to reactors the main groups of which are direct-cycle gas turbines [fr

  1. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  2. Technique of nuclear reactors controls

    International Nuclear Information System (INIS)

    Weill, J.

    1953-12-01

    This report deal about 'Techniques of control of the nuclear reactors' in the goal to achieve the control of natural uranium reactors and especially the one of Saclay. This work is mainly about the measurement into nuclear parameters and go further in the measurement of thermodynamic variables,etc... putting in relief the new features required on behalf of the detectors because of their use in the thermal neutrons flux. In the domain of nuclear measurement, we indicate the realizations and the results obtained with thermal neutron detectors and for the measurement of ionizations currents. We also treat the technical problem of the start-up of a reactor and of the reactivity measurement. We give the necessary details for the comprehension of all essential diagrams and plans put on, in particular, for the reactor of Saclay. (author) [fr

  3. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  4. Liquid metal reactor development

    International Nuclear Information System (INIS)

    Cho, Man; Kim, Yeong Cheol; Kim, Shi Hwan; Choi, Yeong Myeong; Sho, Dong Seop; Kim, Yeong In; Park, Joo Hwan; Kim, Yeong Kyoon; Song, Hoon; Kim, Yeong In; Cho, Chang Yeon; Cho, Seok Hong; Lee, Dong Jin; Kim, Jong Sook; Jeon, Hyeong Ryeon; Kim, Jeong Do; Kim, Deok In; Lee, Ui Jin; Kil, Chung Seop; Choi, Yeong Rok; Moon, Kap Seok; Yoo, Bong; Lee, Hyeong Yeon; Seo, Uk Hwan; Lee, Jae Han; Park, Yeon Pyo; Nam, Ho Yoon; Kim, Yong Ik; Min, Byeong Tae; Choi, Seok Ki; Kim, Yoo Kon; Lee, Yong Beom; Hwang, Jong Seon; An, Do Hui; Kang, Hui Seok; Choi, Byeong Hae; Kang, Yeong Hwan; Ryoo, Uh Seok; Joo, Ki Nam; Kim, Dae Hwan; Ji, Shee Hwan; Park, Deok Keun; Kim, Seong Soo; Maeng, Wan Yeong; Park, Shee Jin; Kim, Yeong Seok; Jang, Moon Hui; Hong, Joon Hwa; Han, Jeong Ho; No, Kyee Ho; Park, Ji Yeon; Jeong, Yong Hwan; Lee, Deok Hyeon; Jeong, Chung Hwan; Cho, Shee Hyeon; Kim, Dong Hwa; Seong, Ki Ung; Lee, Ki Yeong; Kim, Ui Kwang; Hong, Sang Hee

    1993-05-01

    On this year the study was performed in two parts : The establishment of LMR development plan, and the development of LMR coolant technology 1. The establishment of LMR technologies, the domestic political and technical environment, economics and technical maturity were duly considered for comparative analysis. In this year technologies specific to LMRs and technologies common to both PWRs and LMRs were identified to understand the inter-relationships between those two categorized technologies. Including those two categories, an overall LMR technology tree was drawn up taking into consideration technologies and tasks necessary to the pool type design of the primary and secondary cooling systems. And technology options that should be thoroughly evaluated their comparative feasibilities and applicabilities in trade-off study were derived as a preliminary procedure for the selection of the reactor type. 2. The development of LMR coolant technology. Many relevant basic technologies should be developed for LMR to have the inherent safety characteristics and to be economical. Since the sodium(Na) being used as the coolant in LMR has several thermo-hydraulic characteristics differing from water, the sodium handling technique which provides the maximum utilization of the thermo-hydraulic merits of the sodium and the protection measures against its defects is one of the most important technologies for the development of LMR. In the present study many problems associated with the establishment of the technology for measuring and controlling the impurity in the Na-facility have been investigated. The conceptual design of the purity control system in the Na-facility and related purity control system have been also made. The test-run of the Na-loop facility constructed last year has been performed, which provided the technology necessary for operation and repair of the Na-facility

  5. A nuclear power reactor

    International Nuclear Information System (INIS)

    Borrman, B.E.; Broden, P.; Lundin, N.

    1979-12-01

    The invention consists of shock absorbing support beams fastened to the underside of the reactor tank lid of a BWR type reactor, whose purpose is to provide support to the steam separator and dryer unit against accelerations due to earthquakes, without causing undue thermal stresses in the unit due to differential expansion. (J.I.W.)

  6. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  7. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  8. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  9. Liquid-metal-cooled reactor

    International Nuclear Information System (INIS)

    Zhuchkov, I.I.; Filonov, V.S.; Zaitsev, B.I.; Artemiev, L.N.; Rakhimov, V.V.

    1976-01-01

    A liquid-metal-cooled reactor is described comprising two rotatable plugs, one of them, having at least one hole, being arranged internally of the other, a recharging mechanism with a guide tube adapted to be moved through the hole of the first plug by means of a drive, and a device for detecting stacks with leaky fuel elements, the recharging mechanism tube serving as a sampler

  10. Multimedia on nuclear reactors physics

    International Nuclear Information System (INIS)

    Dies, Javier; Puig, Francesc

    2010-01-01

    The paper present an example of measures that have been found to be effective in the development of innovative educational and training technology. A multimedia course on nuclear reactor physics is presented. This material has been used for courses at master level at the universities; training for engineers at nuclear power plant as modular 2 weeks course; and training operators of nuclear power plant. The multimedia has about 785 slides and the text is in English, Spanish and French. (authors)

  11. Nuclear reactor containing facility

    International Nuclear Information System (INIS)

    Hidaka, Masataka; Murase, Michio.

    1994-01-01

    In a reactor containing facility, a condensation means is disposed above the water level of a cooling water pool to condensate steams of the cooling water pool, and return the condensated water to the cooling water pool. Upon occurrence of a pipeline rupture accident, steams generated by after-heat of a reactor core are caused to flow into a bent tube, blown from the exit of the bent tube into a suppression pool and condensated in a suppression pool water, thereby suppressing the pressure in the reactor container. Cooling water in the cooling water pool is boiled by heat conduction due to the condensation of steams, then the steams are exhausted to the outside of the reactor container to remove the heat of the reactor container to the outside of the reactor. In addition, since cooling water is supplied to the cooling water pool quasi-permanently by gravity as a natural force, the reactor container can be cooled by the cooling water pool for a long period of time. Since the condensation means is constituted with a closed loop and interrupted from the outside, radioactive materials are never released to the outside. (N.H.)

  12. GE's advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Berglund, R.C.

    1993-01-01

    The excess of US electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which open-quotes are designed to ensure that the nuclear power option is available to utilities.close quotes Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14-point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other open-quotes enabling conditions.close quotes GE is participating in this national effort and GE's family of advanced nuclear power plants feature two reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the US and worldwide. Both possess the features necessary to do so safety, reliably, and economically

  13. Method for operating nuclear reactor

    International Nuclear Information System (INIS)

    Utamura, Motoaki; Urata, Megumu; Uchida, Shunsuke

    1978-01-01

    Purpose: In order to judge the fuel failures, if any, without opening a reactor container for BWR type reactors, a method has been described for measuring the difference between the temperature dependent iodine spike value and the pressure dependent iodine spike value in the pressure vessel. Method: After the scram of a nuclear reactor, steam generated by decay heat is condensed in a remaining heat exchanger and cooling water is returned through a recycling pipe line to a reactor core. At the same time, a control rod drive system pump is operated, the reactor core is filled with the cooling water. Then, the coolant is taken from the recycling pipe line to cool the reactor core. After applying the temperature fluctuation, the cooling water is sampled at a predetermined time interval at a sampling point to determine the changes with time in the radioactive concentration of iodine. When the radioactivity of iodine in the cooling water is lowered sufficiently by a reactor purifying system, the nuclear reactor vessel is depressurized. After applying pressure fluctuation, iodine spike value is determined. (Kawakami, Y.)

  14. Nuclear reactor (1960)

    International Nuclear Information System (INIS)

    Maillard, M.L.

    1960-01-01

    The first French plutonium-making reactors G1, G2 and G3 built at Marcoule research center are linked to a power plant. The G1 electrical output does not offset the energy needed for operating this reactor. On the contrary, reactors G2 and G3 will each generate a net power of 25 to 30 MW, which will go into the EDF grid. This power is relatively small, but the information obtained from operation is great and will be helpful for starting up the power reactor EDF1, EDF2 and EDF3. The paper describes how, previous to any starting-up operation, the tests performed, especially those concerned with the power plant and the pressure vessel, have helped to bring the commissioning date closer. (author) [fr

  15. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sakurai, Shungo; Ogiya, Shunsuke.

    1990-01-01

    In a fuel assembly, if the entire fuels comprise mixed oxide fuels, reactivity change in cold temperature-power operation is increased to worsen the reactor shutdown margin. The reactor shutdown margin has been improved by increasing the burnable poison concentration thereby reducing the reactivity of the fuel assembly. However, since unburnt poisons are present at the completion of the reactor operation, the reactivity can not be utilized effectively to bring about economical disadvantage. In view of the above, the reactivity change between lower temperature-power operations is reduced by providing a non-boiling range with more than 9.1% of cross sectional area at the inside of a channel at the central portion of the fuel assembly. As a result, the amount of the unburnt burnable poisons is decreased, the economy of fuel assembly is improved and the reactor shutdown margin can be increase. (N.H.)

  16. Nuclear reactor monitoring device

    International Nuclear Information System (INIS)

    Mihashi, Ishi; Honma, Hitoshi.

    1993-01-01

    The monitoring device of the present invention comprises a reactor core/reactor system data measuring and controlling device, a radioactivity concentration calculation device for activated coolants for calculating a radioactivity concentration of activated coolants in a main steam and reactor water by using an appropriate physical model, a radioactivity concentration correlation and comparison device for activated coolants for comparing correlationship with a radiation dose and an abnormality alarm device. Since radioactivity of activated primary coolants is monitored at each of positions in the reactor system and occurrence of leakage and the amount thereof from a primary circuit to a secondary circuit is monitored if the reactor has secondary circuit, integrity of the reactor system can be ensured and an abnormality can be detected rapidly. Further, radioactivity concentration of activated primary circuit coolants, represented by 16 N or 15 C, is always monitored at each of positions of PWR primary circuits. When a heat transfer pipe is ruptured in a steam generator, leakage of primary circuit coolants is detected rapidly, as well as the amount of the leakage can be informed. (N.H.)

  17. Issues of high-burnup fuel for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Belac, J.; Milisdoerfer, L.

    2004-12-01

    A brief description is given of nuclear fuels for Generation III+ and IV reactors, and the major steps needed for a successful implementation of new fuels in prospective types of newly designed power reactors are outlined. The following reactor types are discussed: gas cooled fast reactors, heavy metal (lead) cooled fast reactors, molten salt cooled reactors, sodium cooled fast reactors, supercritical water cooled reactors, and very high temperature reactors. The following are regarded as priority areas for future investigations: (i) spent fuel radiotoxicity; (ii) proliferation volatility; (iii) neutron physics characteristics and inherent safety element assessment; technical and economic analysis of the manufacture of advanced fuels; technical and economic analysis of the fuel cycle back end, possibilities of spent nuclear fuel reprocessing, storage and disposal. In parallel, work should be done on the validation and verification of analytical tools using existing and/or newly acquired experimental data. (P.A.)

  18. Separated type nuclear superheating reactor

    International Nuclear Information System (INIS)

    Hida, Kazuki.

    1993-01-01

    In a separated type nuclear superheating reactor, fuel assemblies used in a reactor core comprise fuel rods made of nuclear fuel materials and moderator rods made of solid moderating materials such as hydrogenated zirconium. Since the moderating rods are fixed or made detachable, high energy neutrons generated from the fuel rods are moderated by the moderating rods to promote fission reaction of the fuel rods. Saturated steams supplied from the BWR type reactor by the fission energy are converted to high temperature superheated steams while passing through a steam channel disposed between the fuel rods and the moderating rods and supplied to a turbine. Since water is not used but solid moderating materials sealed in a cladding tube are used as moderation materials, isolation between superheated steams and water as moderators is not necessary. Further, since leakage of heat is reduced to improve a heat efficiency, the structure of the reactor core is simplified and fuel exchange is facilitated. (N.H.)

  19. Innovative designs of nuclear reactors

    International Nuclear Information System (INIS)

    Gabaraev, B.A.; Cherepnin, Y.S.

    2010-01-01

    The world development scenarios predict at least a 2.5 time increase in the global consumption of primary energy in the first half of the twenty-first century. Much of this growth can be provided by the nuclear power which possesses important advantages over other energy technologies. However, the large deployment of nuclear sources may take place only when the new generation of reactors appears on the market and will be free of the shortcomings found in the existing nuclear power installations. The public will be more inclined to accept nuclear plants that have better economics; higher safety; more efficient management of the radioactive waste; lower risk of nuclear weapons proliferation, and provided that the focus is made on the energy option free of ∇ e 2 generation. Currently, the future of nuclear power is trusted to the technology based on fast reactors and closed fuel cycle. The latter implies reprocessing of the spent nuclear fuel of the nuclear plants and re-use of plutonium produced in power reactors

  20. Mobile nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Thompson, R.E.; Spurrier, F.R.; Jones, A.R.

    1978-01-01

    A containment vessel for use in mobile nuclear reactor installations is described. The containment vessel completely surrounds the entire primary system, and is located as close to the reactor primary system components as is possible in order to minimize weight. In addition to being designed to withstand a specified internal pressure, the containment vessel is also designed to maintain integrity as a containment vessel in case of a possible collision accident

  1. New generation of nuclear reactors

    International Nuclear Information System (INIS)

    Chwaszczewski, S.

    2000-01-01

    The development trends of the construction of nuclear reactors has been performed on the background of worldwide electricity demand for now and predicted for future. The social acceptance, political and economical circumstances has been also taken into account. Seems to Electric Power Research Institute (US) and other national authorities the advanced light water reactors have the best features and chances for further development and commercial applications in future

  2. Nuclear reactor core safety device

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1977-01-01

    The danger of a steam explosion from a nuclear reactor core melt-down can be greatly reduced by adding a gasifying agent to the fuel that releases a large amount of gas at a predetermined pre-melt-down temperature that ruptures the bottom end of the fuel rod and blows the finely divided fuel into a residual coolant bath at the bottom of the reactor. This residual bath should be equipped with a secondary cooling loop

  3. Nuclear reactor apparatus

    International Nuclear Information System (INIS)

    Braun, H.E.; Bonnet, H.P.

    1978-01-01

    The reactor and its containment, instead of being supported on a solid concrete pad, are supported on a truss formed of upper and lower reinforced horizontal plates and vertical walls integrated into a rigid structure. The plates and walls from chambers within which the auxiliary components of the reactor, such as valves, pumping equipment and various tanks, are disposed. Certain of the chambers are also access passages for personnel, pipe chases, valve chambers and the like. In particular the truss includes an annular chamber. This chamber is lined and sealed by a corrosion-resistant liner and contains coolant and serves as a refueling cooling storage tank. This tank is directly below the primary-coolant conductor loops which extend from the reactor above the upper plate. The upper plate includes a sump connected to the tank through which coolant flows into the tank in the event of the occurrence of a loss-of-coolant accident. The truss extends beyond the containment and has chambers in the extending annulus. Pumps for circulating the coolant between the refueling coolant storage tank and the reactor are provided in certain of these chambers. The pumps are connected to the reactor by relatively short coolant conductors. Access to these pumps is readily afforded through hatches in the extending annulus

  4. BWR type nuclear reactors

    International Nuclear Information System (INIS)

    Yamamoto, Toru.

    1987-01-01

    Purpose: To obtain reactor core characteristics with less changes in the excess reactivity due to fuel burnup even when the operation period varies. Constitution: In a BWR type reactor where fuel assemblies containing fuel rods incorporated with burnable poisons are arranged, the fuel assemblies are grouped into first fuel assemblies and second fuel assemblies. Then, the number of fuel rods incorporated with burnable poisons within the first fuel assemblies is made greater than that of the second fuel rods, while the concentration of the burnable poisons in the fuel rods incorporated with the burnable poisons in the first fuel assemblies is made lower than that of the fuel rods incorporated with the burnable poisons in the second fuel assemblies. In the BWR type reactor constituted in this way, the reactor core characteristics can be improved by changing the ratio between the first fuel assemblies and the second fuel assemblies charged to the reactor core, thereby decreasing the changes in the burnup of the excess reactivity. (Kamimura, M.)

  5. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  6. AREVA's nuclear reactors portfolio

    International Nuclear Information System (INIS)

    Marincic, A.

    2009-01-01

    A reasonable assumption for the estimated new build market for the next 25 years is over 340 GWe net. The number of prospect countries is growing almost each day. To address this new build market, AREVA is developing a comprehensive portfolio of reactors intended to meet a wide range of power requirements and of technology choices. The EPR reactor is the flagship of the fleet. Intended for large power requirements, the four first EPRs are being built in Finland, France and China. Other countries and customers are in view, citing just two examples: the Usa where the U.S. EPR has been selected as the technology of choice by several U.S utilities; and the United Kingdom where the Generic Design Acceptance process of the EPR design submitted by AREVA and EDF is well under way, and where there is a strong will to have a plant on line in 2017. For medium power ranges, the AREVA portfolio includes a boiling water reactor and a pressurized water reactor which both offer all of the advantages of an advanced plant design, with excellent safety performance and competitive power generation cost: -) KERENA (1250+ MWe), developed in collaboration with several European utilities, and in particular with Eon; -) ATMEA 1 (1100+ MWe), a 3-loop evolutionary PWR which is being developed by AREVA and Mitsubishi. AREVA is also preparing the future and is deeply involved into Gen IV concepts. It has developed the ANTARES modular HTR reactor (pre-conceptual design completed) and is building upon its vast Sodium Fast Reactor experience to take part into the development of the next prototype. (author)

  7. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  8. Nuclear reactor core assembly

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1978-01-01

    The object of the present invention is to provide a fast reactor core assembly design for use with a fluid coolant such as liquid sodium or carbon monoxide incorporating a method of increasing the percentage of coolant flow though the blanket elements relative to the total coolant flow through the blanket and fuel elements during shutdown conditions without using moving parts. It is claimed that deterioration due to reactor radiation or temperature conditions is avoided and ready modification or replacement is possible. (U.K.)

  9. Space nuclear reactor safety

    International Nuclear Information System (INIS)

    Damon, D.; Temme, M.; Brown, N.

    1990-01-01

    Definition of safety requirements and design features of the SP-100 space reactor power system has been guided by a mission risk analysis. The analysis quantifies risk from accidental radiological consequences for a reference mission. Results show that the radiological risk from a space reactor can be made very low. The total mission risk from radiological consequences for a shuttle-launched, earth orbit SP-100 mission is estimated to be 0.05 Person-REM (expected values) based on a 1 mREM/yr de Minimus dose. Results are given for each mission phase. The safety benefits of specific design features are evaluated through risk sensitivity analyses

  10. Nuclear reactors theory

    International Nuclear Information System (INIS)

    Naudan, G.; Nigon, J.L.

    1993-01-01

    After principles of chain reaction and criticality notion, a descriptive model of neutrons behaviour is exposed from a local point of view (this model is called four factors model). One justifies the use of middle values for the calculation of the distribution in space of reactor, quantities representing heterogeneous middle from a local point of view (fuel, moderator, can or clad, and so on ...) by substitution of an equivalent homogeneous middle. Time dependence, dynamical behaviour of reactor are studied. Long term effects of evolution of constituents elements of heart under irradiation, and ways to balance this evolution are in the last paragraph. 18 refs., 26 figs

  11. Nuclear power reactor safety

    International Nuclear Information System (INIS)

    Pon, G.A.

    1976-10-01

    This report is based on the Atomic Energy of Canada Limited submission to the Royal Commission on Electric Power Planning on the safety of CANDU reactors. It discusses normal operating conditions, postulated accident conditions, and safety systems. The release of radioactivity under normal and accident conditions is compared to the limits set by the Atomic Energy Control Regulations. (author)

  12. Improvements in or relating to nuclear reactors

    International Nuclear Information System (INIS)

    Timofeev, A.V.; Batjukov, V.I.; Fadeev, A.I.; Shapkin, A.F.; Shikhiyan, T.G.; Ordynsky, G.V.; Drachev, V.P.; Pogodin, E.N.

    1980-01-01

    A refuelling installation for nuclear reactor complexes is described for recharging the reactor vessels of such complexes with new fuel assemblies and for removing spent fuel assemblies from the reactor vessel. (U.K.)

  13. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1990-10-01

    The selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts. 3 refs., 3 figs

  14. CONTROLLED NUCLEAR FUSION REACTOR

    Science.gov (United States)

    Tuck, J.L.; Kruskal, M.; Colgate, S.A.; Rosenbluth, M.N.

    1962-01-01

    A plasma generating and heating device is described which comprises a ceramic torus with exterior layers of a thick metal membrane and a metallic coil. In operation, the coil generates a B/sub z/ field prior to the formation of an enclosing plasma sheath. Diffusion of the trapped magnetic field outward through the plasma sheath causes enhanced heating, particularly after the sheath has been pinched. (D.L.C.)

  15. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  16. Cryogenics in nuclear reactor technology

    International Nuclear Information System (INIS)

    Dharmadurai, G.

    1982-01-01

    The cryogenic technology has significantly contributed to the development of several proven techniques for use in the nuclear power industry. A noteworthy feature is the unique role of cryogenics in minimising the release of radioactive and some chemical pollutants to the environment during the operation of various plants associated with this industry. The salient technological features of several cryogenic processes relevant to the nuclear reactor technology are discussed. (author)

  17. Nuclear power plant with several reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grishanin, E I; Ilyunin, V G; Kuznetsov, I A; Murogov, V M; Shmelev, A N

    1972-05-10

    A design of a nuclear power plant suggested involves several reactors consequently transmitting heat to a gaseous coolant in the joint thermodynamical circuit. In order to increase the power and the rate of fuel reproduction the low temperature section of the thermodynamical circuit involves a fast nuclear reactor, whereas a thermal nuclear reactor is employed in the high temperature section of the circuit for intermediate heating and for over-heating of the working body. Between the fast nuclear and the thermal nuclear reactors there is a turbine providing for the necessary ratio between pressures in the reactors. Each reactor may employ its own coolant.

  18. The US Liquid-Metal Reactor Program - overview and status

    International Nuclear Information System (INIS)

    Quinn, J.E.; Gyorey, G.L.; Salerno, L.N.

    1992-01-01

    The US Advanced Liquid-Metal Reactor (ALMR) Program has three major elements being developed in an integrated fashion to produce a system meeting the US long-term nuclear energy needs. Reactor design, one of those elements, is the focus of this paper. The other two elements, the integral fast reactor metal-fuel cycle and the light water reactor (LWR) spent-fuel actinide recycle, will be addressed in companion papers. The ALMR is adaptable to multiple missions with few modifications such as the core arrangements. The missions identified to date are (a) the extension of the existing uranium resources through breeding and highly efficient uranium utilization, (b) the recycle and utilization of the long-life actinides in LWR spent fuel as fissile material for the ALMR, and (c) the conversion of excess weapons fissil material into electricity. In addition to these missions, the reactor design is adaptable to either the metal-fuel cycle or the oxide fuel cycle

  19. Health requirements for nuclear reactor operators

    International Nuclear Information System (INIS)

    1980-05-01

    The health prerequisites established for the qualification of nuclear reactor operators according to CNEN-NE-1.01 Guidelines Licensing of nuclear reactor operators, CNEN-12/79 Resolution, are described. (M.A.) [pt

  20. Neutron noise in nuclear reactors

    International Nuclear Information System (INIS)

    Blaquiere, A.; Pachowska, R.

    1961-06-01

    The power of a nuclear reactor, in the operating conditions, presents fluctuations due to various causes. This random behaviour can be included in the study of 'noises'. Among other sources of noise, we analyse hereafter the fluctuations due: a) to the discontinuous emissions of neutrons from an independent source; b) to the multiplication of neutrons inside the reactor. The method which we present makes use of the analogies between the rules governing a nuclear reactor in operation and a number of radio-electrical systems, in particular the feed-back loops. The reactor can be characterized by its 'passing band' and is described as a system submitted to a sequence of random pulses. In non linear operating condition, the effect of neutron noise is defined by means of a non-linear functional, this theory is thus related to previous works the references of which are given at the end of the present report. This leads us in particular in the case of nuclear reactors to some results given by A. Blaquiere in the case of radio-electrical loops. (author) [fr

  1. Nuclear reactors and disarmament

    International Nuclear Information System (INIS)

    Almagro, J.C.; Estrada Oyuela, M.E.; Garcia Moritan, R.

    1987-01-01

    From a brief analysis of the perspectives of nuclear weapons arsenals reduction, a rational use of the energetic potential of the ogives and the authentic destruction of its warlike power is proposed. The fissionable material conversion contained in the nuclear fuel ogives for peaceful uses should be part of the disarmament agreements. This paper pretends to give an approximate idea on the resources re assignation implicancies. (Author)

  2. Cooling nuclear reactor fuel

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1975-01-01

    Reference is made to water or water/steam cooled reactors of the fuel cluster type. In such reactors it is usual to mount the clusters in parallel spaced relationship so that coolant can pass freely between them, the coolant being passed axially from one end of the cluster in an upward direction through the cluster and being effective for cooling under normal circumstances. It has been suggested, however, that in addition to the main coolant flow an auxiliary coolant flow be provided so as to pass laterally into the cluster or be sprayed over the top of the cluster. This auxiliary supply may be continuously in use, or may be held in reserve for use in emergencies. Arrangements for providing this auxiliary cooling are described in detail. (U.K.)

  3. Light-water nuclear reactors

    International Nuclear Information System (INIS)

    Drevon, G.

    1983-01-01

    This work gives basic information on light-water reactors which is advanced enough for the reader to become familiar with the essential objectives and aspects of their design, their operation and their insertion in the industrial, economic and human environment. In view of the capital role of electric energy in the modern economy a significant place is given to electron-nuclear power stations, particularly those of the type adopted for the French programme. The work includes sixteen chapters. The first chapter relates the history and presents the various applications of light water reactors. The second refers to the general elementary knowledge of reactor physics. The third chapter deals with the high power light-water nuclear power station and thereby introduces the ensuing chapters which, up to and including chapter 13, are devoted to the components and the various aspects of the operation of power stations, in particular safety and the relationship with the environment. Chapter 14 provides information on the reactors adapted to applications other than the generation of electricity on an industrial scale. Chapter 15 shows the extent of the industrial effort devoted to light-water reactors and chapter 16 indicates the paths along which the present work is preparing the future of these reactors. The various chapters have been written to allow for separate consultation. An index of the main technical terms and a bibliography complete the work [fr

  4. Nuclear reactor PBMR and cogeneration

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.

    2013-10-01

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  5. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  6. Nuclear reactor core

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo; Ishibashi, Yoko; Mochida, Takaaki; Haikawa, Katsumasa; Yamanaka, Akihiro.

    1995-01-01

    A reactor core is radially divided into an inner region, an outer region and an outermost region. As a fuel, three kinds of fuels, namely, a high enrichment degree fuel at 3.4%, a middle enrichment degree fuel at 2.3% and a low enrichment degree at 1.1% of a fuel average enrichment degree of fission product are used. Each of the fuels is bisected to upper and lower portions at an axial center thereof. The difference of average enrichment degrees between upper and lower portions is 0.1% for the high enrichment degree fuel, 0.3% for the middle enrichment degree fuel and 0.2% for the low enrichment degree fuel. In addition, the composition of fuels in each of radial regions comprises 100% of the low enrichment degree fuels in the outermost region, 91% of the higher enrichment degree fuels and 9% of the middle enrichment degree fuels in the outer region, and 34% of the high enrichment degree fuels and 30% of the middle enrichment degree fuels in the inner region. With such a constitution, fuel economy can be improved while maintaining the thermal margin in an initially loaded reactor core of a BWR type reactor. (I.N.)

  7. Nuclear reactor recyclation device

    International Nuclear Information System (INIS)

    Takigawa, Yukio; Chuma, Kazuto

    1987-01-01

    Purpose: To prevent the unevenness for the coolant flow rate even when abnormality occurs to one of recycling pumps. Constitution: A plurality of jet pumps disposed at an interval around the reactor core are divided circumferentially into two sets, and a pipeway is disposed to the outside of each pair including recycling pumps corresponding to each of the sets. The pipeway is connected to the recycling inlet of the jet pump by way of a manifold. The discharge portion of the recycling pumps of the loop pipeway are connected with each other by way of communication pipes, and a normally closed valve is disposed to the communication pipe and the normally closed valve of the communication pipe is opened upon detecting abnormality for one of the recycling pumps. Thus, if either one of the pair of recycling pumps shows abnormal state, coolants flows from the other of pipeway to the outside of the loop pipeway and coolants are supplied from all the jet pumps to the reactor core portion and, accordingly, the not-uniform flow rate can be prevented to eliminate undesired effect on the reactor core. (Kamimura, M.)

  8. Nuclear reactor core stabilizing arrangement

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1976-01-01

    A nuclear reactor core stabilizing arrangement is described wherein a plurality of actuators, disposed in a pattern laterally surrounding a group of elongated fuel assemblies, press against respective contiguous fuel assemblies on the periphery of the group to reduce the clearance between adjacent fuel assemblies thereby forming a more compacted, vibration resistant core structure. 7 claims, 4 drawing figures

  9. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  10. Nuclear reactor safety protection device

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Noguchi, Atomi; Matsumiya, Shoichi; Furusato, Ken-ichiro; Arita, Setsuo.

    1994-01-01

    The device of the present invention extremely reduces a probability of causing unnecessary scram of a nuclear reactor. That is, four control devices receive signals from each of four sensors and output four trip signals respectively in a quardruplicated control device. Each of the trip signals and each of trip signals via a delay circuit are inputted to a logical sum element. The output of the logical sum circuit is inputted to a decision of majority circuit. The decision of majority circuit controls a scram pilot valve which conducts scram of the reactor by way of a solenoid coils. With such procedures, even if surge noises of a short pulse width are mixed to the sensor signals and short trip signals are outputted, there is no worry that the scram pilot valve is actuated. Accordingly, factors of lowering nuclear plant operation efficiency due to erroneous reactor scram can be reduced. (I.S.)

  11. Surveillance of nuclear power reactors

    International Nuclear Information System (INIS)

    Marini, J.

    1983-01-01

    Surveillance of nuclear power reactors is now a necessity imposed by such regulatory documents as USNRC Regulatory Guide 1.133. In addition to regulatory requirements, however, nuclear reactor surveillance offers plant operators significant economic advantages insofar as a single day's outage is very costly. The economic worth of a reactor surveillance system can be stated in terms of the improved plant availability provided through its capability to detect incidents before they occur and cause serious damage. Furthermore, the TMI accident has demonstrated the need for monitoring certain components to provide operators with clear information on their functional status. In response to the above considerations, Framatome has developed a line of products which includes: pressure vessel leakage detection systems, loose part detection systems, component vibration monitoring systems, and, crack detection and monitoring systems. Some of the surveillance systems developed by Framatome are described in this paper

  12. Updating of ASME Nuclear Code Case N-201 to Accommodate the Needs of Metallic Core Support Structures for High Temperature Gas Cooled Reactors Currently in Development

    International Nuclear Information System (INIS)

    Basol, Mit; Kielb, John F.; MuHooly, John F.; Smit, Kobus

    2007-01-01

    On September 29, 2005, ASME Standards Technology, LLC (ASME ST-LLC) executed a multi-year, cooperative agreement with the United States DOE for the Generation IV Reactor Materials project. The project's objective is to update and expand appropriate materials, construction, and design codes for application in future Generation IV nuclear reactor systems that operate at elevated temperatures. Task 4 was embarked upon in recognition of the large quantity of ongoing reactor designs utilizing high temperature technology. Since Code Case N-201 had not seen a significant revision (except for a minor revision in September, 2006 to change the SA-336 forging reference for 304SS and 316SS to SA-965 in Tables 1.2(a) and 1.2(b), and some minor editorial changes) since December 1994, identifying recommended updates to support the current high temperature Core Support Structure (CSS) designs and potential new designs was important. As anticipated, the Task 4 effort identified a number of Code Case N-201 issues. Items requiring further consideration range from addressing apparent inconsistencies in definitions and certain material properties between CC-N-201 and Subsection NH, to inclusion of additional materials to provide the designer more flexibility of design. Task 4 developed a design parameter survey that requested input from the CSS designers of ongoing high temperature gas cooled reactor metallic core support designs. The responses to the survey provided Task 4 valuable input to identify the design operating parameters and future needs of the CSS designers. Types of materials, metal temperature, time of exposure, design pressure, design life, and fluence levels were included in the Task 4 survey responses. The results of the survey are included in this report. This research proves that additional work must be done to update Code Case N-201. Task 4 activities provide the framework for the Code Case N-201 update and future work to provide input on materials. Candidate

  13. The failure diagnoses of nuclear reactor systems

    International Nuclear Information System (INIS)

    Sheng Huanxing.

    1986-01-01

    The earlier period failure diagnoses can raise the safety and efficiency of nuclear reactors. This paper first describes the process abnormality monitoring of core barrel vibration in PWR, inherent noise sources in BWR, sodium boiling in LMFBR and nuclear reactor stability. And then, describes the plant failure diagnoses of primary coolant pumps, loose parts in nuclear reactors, coolant leakage and relief valve location

  14. Decommissioning of Salaspils nuclear reactor

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnachs, J.; Popelis, A.

    2002-01-01

    In May 1995, the Latvian Government decided to shut down the Research Reactor Salaspils (SRR) and to dispense with nuclear energy in future. The reactor has been out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH from 1998-1999. he Latvian Government decided on 26 October 1999 to start the direct dismantling to 'green field' in 2001. The results of decommissioning and dismantling performed in 1999-2001 are presented and discussed. The main efforts were devoted to collecting and conditioning 'historical' radioactive waste from different storages outside and inside the reactor hall. All radioactive material more than 20 tons were conditioned in concrete containers for disposal in the radioactive waste depository 'Radons' in the Baldone site. Personal protective and radiation measurement equipment was upgraded significantly. All non-radioactive equipment and material outside the reactor buildings were free-released and dismantled for reuse or conventional disposal. Weakly contaminated material from the reactor hall was collected and removed for free-release measurements. The technology of dismantling of the reactor's systems, i.e. second cooling circuit, zero power reactors and equipment, is discussed in the paper. (author)

  15. Nuclear reactor effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L.; Essig, T.H. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  16. Nuclear reactor effluent monitoring

    International Nuclear Information System (INIS)

    Minns, J.L.; Essig, T.H.

    1993-01-01

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC's program results

  17. Nuclear reactor engineering: Reactor design basics. Fourth edition, Volume One

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in design and operation of nuclear power plants. Extensively updated, the fourth edition includes new material on reactor safety and risk analysis, regulation, fuel management, waste management, and operational aspects of nuclear power. This volume contains the following: energy from nuclear fission; nuclear reactions and radiations; neutron transport; nuclear design basics; nuclear reactor kinetics and control; radiation protection and shielding; and reactor materials

  18. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Sato, Takashi.

    1979-01-01

    Purpose: To allow sufficient removal of radioactive substance released in the reactor containment shell upon loss of coolants accidents thus to sufficiently decrease the exposure dose to human body. Constitution: A clean-up system is provided downstream of a heat exchanger and it is branched into a pipeway to be connected to a spray nozzle and further connected by way of a valve to a reactor container. After the end of sudden transient changes upon loss of coolants accidents, the pool water stored in the pressure suppression chamber is purified in the clean-up system and then sprayed in the dry-well by way of a spray nozzle. The sprayed water dissolves to remove water soluble radioactive substances floating in the dry-well and then returns to the pressure suppression chamber. Since radioactive substances in the dry-well can thus removed rapidly and effectively and the pool water can be reused, public hazard can also be decreased. (Horiuchi, T.)

  19. Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future

  20. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    D'Eye, R.W.M.; Shennan, J.V.; Ford, L.H.

    1977-01-01

    Fuel element with particles from ceramic fissionable material (e.g. uranium carbide), each one being coated with pyrolitically deposited carbon and all of them being connected at their points of contact by means of an individual crossbar. The crossbar consists of silicon carbide produced by reaction of silicon metal powder with the carbon under the influence of heat. Previously the silicon metal powder together with the particles was kneaded in a solvent and a binder (e.g. epoxy resin in methyl ethyl ketone plus setting agent) to from a pulp. The reaction temperature lies at 1750 0 C. The reaction itself may take place in a nitrogen atmosphere. There will be produced a fuel element with a high overall thermal conductivity. (DG) [de

  1. Economic analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Owen, P.S.; Parker, M.B.; Omberg, R.P.

    1979-05-01

    The report presents several methods for estimating the power costs of nuclear reactors. When based on a consistent set of economic assumptions, total power costs may be useful in comparing reactor alternatives. The principal items contributing to the total power costs of a nuclear power plant are: (1) capital costs, (2) fuel cycle costs, (3) operation and maintenance costs, and (4) income taxes and fixed charges. There is a large variation in capital costs and fuel expenses among different reactor types. For example, the standard once-through LWR has relatively low capital costs; however, the fuel costs may be very high if U 3 O 8 is expensive. In contrast, the FBR has relatively high capital costs but low fuel expenses. Thus, the distribution of expenses varies significantly between these two reactors. In order to compare power costs, expenses and revenues associated with each reactor may be spread over the lifetime of the plant. A single annual cost, often called a levelized cost, may be obtained by the methods described. Levelized power costs may then be used as a basis for economic comparisons. The paper discusses each of the power cost components. An exact expression for total levelized power costs is derived. Approximate techniques of estimating power costs will be presented

  2. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  3. A nuclear reactor

    International Nuclear Information System (INIS)

    Keller, W.

    1974-01-01

    Between the steel pressure vessel of the pressurized water power reactor and the biological shield a gap is found which enables inspections as well as cooling by air or gas. Within the gap, fins are equally distributed around the circumference of the pressure vessel summing parallel to each other and to the longitudinal axis of the vessel or being inclined. The fins cross the gap for about 9/10. Each fin consists of a sectional bar supported with its foot on a girder. The girder has got a rectangular steel section of two sectional iron parts. Between one of the parts and a plate anchored in the biological shield a ceramic body is inserted as a heat insulation. A further heat insulation of aluminium foils connects the fins with each other and divides the gap into two concentric subspaces which can be streamed through by a gas having different temperatures. (DG) [de

  4. Nuclear reactor container

    International Nuclear Information System (INIS)

    Fujimoto, Kiyoshi; Kataoka, Yoshiyuki; Murase, Michio; Fujii, Tadashi; Susuki, Akira.

    1994-01-01

    A wet well space above a pressure suppression pool is divided into a first wet well on the side in contact with the pressure suppression pool and a second wet well on the side not in contact with the pool. Cooling water is contained in the second wet well and it is in communication with the first wet well by pipelines. Since steams flown into the second well are condensed in the cooling water, they continuously transfer from the first wet well to the second wet well, thereby capable of eliminating the effects of incondensible gases in the first wet well. With such procedures, the effect of the incondensible gases can be eliminated even without cooling from the outside of the reactor. Heat accumulation can be increased in a container of any material, so that thermal load on cooling circuits for removing after-heat can be mitigated. (T.M.)

  5. Nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, R F

    1974-07-11

    The core of the fast neutron reactor consisting, among other components, of fuel elements enriched in plutonium is divided into modules. Each module contains a bundle of four or six elongated components (fuel elements and control rods). In the arrangement with four components, one is kept rigid while the other three are elastically yielding inclined towards the center and lean against the rigid component. In the modules with six pieces, each component is elastically yielding inclined towards a central cavity. In this way, they form a circular arc. A control rod may be placed in the cavity. In order to counteract a relative lateral movement, the outer surfaces of the components which have hexagonal cross-sections have interlocking bearing cushions. The bearing cushions consist of keyway-type ribs or grooves with the wedges or ribs gripping in the grooves of the neighbouring components. In addition, the ribs have oblique entering surfaces.

  6. Cable handling system for use in a nuclear reactor

    International Nuclear Information System (INIS)

    Crosgrove, R.O.; Larson, E.M.; Moody, E.

    1982-01-01

    A cable handling system for use in an installation such as a nuclear reactor is disclosed herein along with relevant portions of the reactor which, in a preferred embodiment, is a liquid metal fast breeder reactor. The cable handling system provides a specific way of interconnecting certain internal reactor components with certain external components, through an assembly of rotatable plugs. Moreover, this is done without having to disconnect these components from one another during rotation of the plugs and yet without interfering with other reactor components in the vicinity of the rotating plugs and cable handling system

  7. Nuclear reactor fuelling machine

    International Nuclear Information System (INIS)

    Peberdy, J.M.

    1976-01-01

    The refuelling machine described comprises a rotatable support structure having a guide tube attached to it by a parellel linkage mechanism, whereby the guide tube can be displaced sideways from the support structure. A gripper unit is housed within the guide tube for gripping the end of a fuel assembly or other reactor component and has means for maintenance in the engaging condition during travel of the unit along the guide tube, except for a small portion of the travel at one end of the guide tube, where the inner surface of the guide tube is shaped so as to maintain the gripper unit in a disengaging condition. The gripper unit has a rotatable head, means for moving it linearly within the guide tube so that a component carried by the unit can be housed in the guide tube, and means for rotating the head of the unit through 180 0 relative to its body, to effect rotation of a component carried by the unit. The means for rotating the head of the gripper unit comprises ring and pinion gearing, operable through a series of rotatable shafts interconnected by universal couplings. The reason for provision for 180 0 rotation is that due to the variation in the neutron flux across the reactor core the side of a fuel assembly towards the outside of the core will be subjected to a lower neutron flux and therefore will grow less than the side of the fuel assembly towards the inside of the core. This can lead to bowing and possible jamming of the fuel assemblies. Full constructional details are given. See also BP 1112384. (U.K.)

  8. Subcriticality determination of nuclear reactor

    International Nuclear Information System (INIS)

    Borisenko, V.I.; Goranchuk, V.V.; Sidoruk, N.M.; Volokh, A.F.

    2014-01-01

    In this article the subcriticality determination of nuclear reactor is considered. Emphasized that, despite the requirements of regulatory documents on the subcriticality determination of WWER from the beginning of their operation, so far, this problem has not been solved. The results of subcriticality determination of Rossi-α method of the WWER-M is presented. The possibility of subcriticality determination of WWER is considered. The possibility of subcriticality determination of Rossi-α method with time resolution is of about 100 microseconds is also considered. The possible reasons for the error in subcriticality determination of the reactor are indicated

  9. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    Weissenfluh, J.A.

    1978-01-01

    A shield for use with nuclear reactor systems to attenuate radiation resulting from reactor operation is described. The shield comprises a container preferably of a thin, flexible or elastic material, which may be in the form of a bag, a mattress, a toroidal segment or toroid or the like filled with radiation attenuating liuid. Means are provided in the container for filling and draining the container in place. Due to its flexibility, the shield readily conforms to irregularities in surfaces with which it may be in contact in a shielding position

  10. Fast Reactors and Nuclear Nonproliferation

    International Nuclear Information System (INIS)

    Avrorina, E.N.; Chebeskovb, A.N.

    2013-01-01

    Conclusion remarks: 1. Fast reactor start-up with U-Pu fuel: – dependent on thermal reactors, – no needs in U enrichment, – needs in SNF reprocessing, – Pu is a little suitable for NED, – practically impossible gun-type NED, – difficulties for implosion-type NED: necessary tests, advanced technologies, etc. – Pu in blankets is similar to WPu by isotopic composition, – Use of blanket for production isotopes (e.g. 233 U), – Combined reprocessing of SNF: altogether blanket and core, – Blanket elimination: decrease in Pu production – No pure Pu separation. 2. Fast reactor start-up with U fuel: - Needs in both U enrichment and SNF reprocessing, - Independent of thermal reactors, - Good Pu bred in the core let alone blankets, - NED of simple gun-type design, - Increase of needs in SWU, - Increased demands in U supply. 3. Fast reactors for export: - Uranium shortage, - To replace thermal reactors in future, - No blankets (depends on the country, though), - Fuel supply and SNF take back, - International centers for rendering services of NFC. Time has come to remove from FRs and their NFC the label unfairly identifying them as the most dangerous installations of nuclear power from the standpoint of being a proliferation problem

  11. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  12. Applications in nuclear data and reactor physics

    International Nuclear Information System (INIS)

    Cullen, D.E.; Muranaka, R.; Schmidt, J.

    1986-01-01

    This book presents the papers given at a conference on reactor kinetics and nuclear data collections. Topics considered at the conference included nuclear data processing, PWR core design calculations, reactor neutron dosimetry, in-core fuel management, reactor safety analysis, transients, two-phase flow, fuel cycles of research reactors, slightly enriched uranium, highly enriched uranium, reactor start-up, computer codes, and the transport of spent fuel elements

  13. Nuclear reactor safety

    International Nuclear Information System (INIS)

    Buhl, A.R.

    1979-01-01

    Dr. Buhl feels that nuclear-energy issues are too complex to be understood as single topics, and can only be understood in relationship to broader issues. In fact, goals and risks associated with all energy options must be seen as interrelated with other broad issues, and it should be understood that there are presently no clearcut criteria to ensure that the best decisions are made. The technical community is responsible for helping the public to understand the basic incompatibility of hard and soft technologies and that there is no risk-free energy source. Four principles are outlined for assessing the risks of various energy technologies: (1) take a holistic view; (2) compare the risk with the unit energy output; (3) compare the risk with those of everyday activities; and (4) identify unusual risks associated with a particular option. Dr. Buhl refers to the study conducted by Dr. Inhaber of Canada who used this approach and concluded that nuclear power and natural gas have the lowest overall risk

  14. Nuclear reactor refuelable in space

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Buden, D.; Mims, J.E.

    1992-01-01

    This patent describes a gas cooled nuclear reactor suitable for use in space. It comprises a lightweight structure comprising a plurality of at least three sections, each sector comprising a container for a reactor core separate and distinct from the reactor cores of the other sectors, each sector being capable of operating on its own and in cooperation with one or more of the other sectors and each sector having a common juncture with every other structure; and means associated with each sector independently introducing gas coolant into and extracting coolant from each sector to cool the core therein, wherein in event of failure of the cooling system of a core in a sector, one or more of the other sectors comprise means for conducting heat away from the failed sector core and means for convecting the heat away, and wherein operation of the one or more other sectors is maintained

  15. Present status of space nuclear reactor

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1996-01-01

    USA and former USSR led space development, and had the experience of launching nuclear reactor satellites. In USA, the research and development of space nuclear reactor were advanced mainly by NASA, and in 1965, the nuclear reactor for power source ''SNAP-10A'' was launched and put on the orbit around the earth. Thereafter, the reactor was started up, and the verifying test at 500 We was successfully carried out. Also for developing the reactor for thermal propulsion, NERVA/ROVER project was done till 1973, and the technological basis was established. The space Exploration Initiative for sending mankind to other solar system planets than the earth is the essential point of the future projects. In former USSR, the ground experiment of the reactor for 800 We power source ''Romashka'', the development of the reactor for 10 kWe power source ''Topaz-1 and 2'', the flight of the artificial satellites, Cosmos 954 and Cosmos 1900, on which nuclear reactors were mounted, and the operation of 33 ocean-monitoring satellites ''RORSAT'' using small fast reactors were carried out. The mission of space development and the nuclear reactors as power source, the engineering of space nuclear reactors, the present status and the trend of space nuclear reactor development, and the investigation by the UN working group on the safety problem of space nuclear reactors are described. (K.I.)

  16. Gasification with nuclear reactor heat

    International Nuclear Information System (INIS)

    Weisbrodt, I.A.

    1977-01-01

    The energy-political ultimate aims for the introduction of nuclear coal gasification and the present state of technology concerning the HTR reactor, concerning gasification and heat exchanging components are outlined. Presented on the plans a) for hydro-gasification of lignite and for steam gasification of pit coal for the production of synthetic natural gas, and b) for the introduction of a nuclear heat system. The safety and environmental problems to be expected are portrayed. The main points of development, the planned prototype plant and the schedule of the project Pototype plant Nuclear Process heat (PNP) are specified. In a market and economic viability study of nuclear coal gasification, the application potential of SNG, the possible construction programme for the FRG, as well as costs and rentability of SNG production are estimated. (GG) [de

  17. Nuclear reactor strategies

    International Nuclear Information System (INIS)

    Konno, H.; Srinivasan, T.N.

    1975-01-01

    Reference is made to a linear programming model considered by Hafele and Manne ('Strategies for a Transition from Fossil to Nuclear Fuels'. 11ASA Research Report RR-74-7) in which the sum of discounted costs of meeting demand for electrical and non-electrical energy over a horizon of 75 years divided into 25 periods of 3 years is minimised subject to constraints, inter alia, on the total availability of fossil fuel and low cost ($15/lb) natural uranium. The sensitivity of the Hafele-Manne results are explored with respect to changes in some crucial parameters and assumptions namely; variation in discount rate, variation in current costs of operation of HTRB, variation in costs and availability of natural uranium, market penetration constraints, changing capital costs, price responsive demands, petroleum prices, and minimisation of PETG consumption with constraints on the sum of discounted costs. (U.K.)

  18. Five MW Nuclear Heating Reactor

    International Nuclear Information System (INIS)

    Zhang Dafang; Dong Duo; Su Qingshan

    1997-01-01

    The 5 MW Nuclear Heating Reactor (NHR-5) developed and designed by the Institute of Nuclear Energy Technology (INET) has been operated for four winter seasons since 1989. During the time of commissioning and operation a number of experiments including self-stability, self-regulation, and simulation of ATWS etc. were carried out. Some operating experiences such as water chemistry, radiation protection and environmental impacts and so on were also obtained at the same time. All of these results demonstrate the design of the NHR-5 is successful. (author). 9 refs, 11 figs, 5 tabs

  19. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  20. Reactors for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades

  1. Five MW Nuclear Heating Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dafang, Zhang; Duo, Dong; Qingshan, Su [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The 5 MW Nuclear Heating Reactor (NHR-5) developed and designed by the Institute of Nuclear Energy Technology (INET) has been operated for four winter seasons since 1989. During the time of commissioning and operation a number of experiments including self-stability, self-regulation, and simulation of ATWS etc. were carried out. Some operating experiences such as water chemistry, radiation protection and environmental impacts and so on were also obtained at the same time. All of these results demonstrate the design of the NHR-5 is successful. (author). 9 refs, 11 figs, 5 tabs.

  2. Conditioning of nuclear reactor fuel

    International Nuclear Information System (INIS)

    1975-01-01

    A method of conditioning the fuel of a nuclear reactor core to minimize failure of the fuel cladding comprising increasing the fuel rod power to a desired maximum power level at a rate below a critical rate which would cause cladding damage is given. Such conditioning allows subsequent freedom of power changes below and up to said maximum power level with minimized danger of cladding damage. (Auth.)

  3. Nuclear reactor core flow baffling

    International Nuclear Information System (INIS)

    Berringer, R.T.

    1979-01-01

    A flow baffling arrangement is disclosed for the core of a nuclear reactor. A plurality of core formers are aligned with the grids of the core fuel assemblies such that the high pressure drop areas in the core are at the same elevations as the high pressure drop areas about the core periphery. The arrangement minimizes core bypass flow, maintains cooling of the structure surrounding the core, and allows the utilization of alternative beneficial components such as neutron reflectors positioned near the core

  4. Nuclear reactors in remote earth

    International Nuclear Information System (INIS)

    Garzon, L.; Cavero, A.

    1999-01-01

    Same basic geological principles along with other facts, have allowed us to establish the existence in the remote past (Between 2.5 and 4 x 10''9 years ago) of the uranium deposits and/or uranium mineralized volumes, which be-have as nuclear reactors. A simplified neutronic diffusion model have allowed us to describe the main characteristics of such systems. The obtained results indicate that this phenomenon was a rather frequent fact. (Author) 7 refs

  5. An introduction to the engineering of fast nuclear reactors

    CERN Document Server

    Judd, Anthony M

    2014-01-01

    An invaluable resource for both graduate-level engineering students and practising nuclear engineers who want to expand their knowledge of fast nuclear reactors, the reactors of the future! This book is a concise yet comprehensive introduction to all aspects of fast reactor engineering. It covers topics including neutron physics; neutron flux spectra; flux distribution; Doppler and coolant temperature coefficients; the performance of ceramic and metal fuels under irradiation, structural changes, and fission-product migration; the effects of irradiation and corrosion on structural materials, irradiation swelling; heat transfer in the reactor core and its effect on core design; coolants including sodium and lead-bismuth alloy; coolant circuits; pumps; heat exchangers and steam generators; and plant control. The book includes new discussions on lead-alloy and gas coolants, metal fuel, the use of reactors to consume radioactive waste, and accelerator-driven subcritical systems.

  6. Containment for low temperature district nuclear-heating reactor

    International Nuclear Information System (INIS)

    He Shuyan; Dong Duo

    1992-03-01

    Integral arrangement is adopted for Low Temperature District Nuclear-heating Reactor. Primary heat exchangers, control rod drives and spent fuel elements are put in the reactor pressure vessel together with reactor core. Primary coolant flows through reactor core and primary heat exchangers in natural circulation. Primary coolant pipes penetrating the wall of reactor pressure vessel are all of small diameters. The reactor vessel constitutes the main part of pressure boundary of primary coolant. Therefore the small sized metallic containment closed to the wall of reactor vessel can be used for the reactor. Design principles and functions of the containment are as same as the containment for PWR. But the adoption of small sized containment brings about some benefits such as short period of manufacturing, relatively low cost, and easy for sealing. Loss of primary coolant accident would not be happened during the rupture accident of primary coolant pressure boundary inside the containment owing to its intrinsic safety

  7. Nuclear characteristic simulation device for reactor core

    International Nuclear Information System (INIS)

    Arakawa, Akio; Kobayashi, Yuji.

    1994-01-01

    In a simulation device for nuclear characteristic of a PWR type reactor, there are provided a one-dimensional reactor core dynamic characteristic model for simulating one-dimensional neutron flux distribution in the axial direction of the reactor core and average reactor power based on each of inputted signals of control rod pattern, a reactor core flow rate, reactor core pressure and reactor core inlet enthalphy, and a three-dimensional reactor core dynamic characteristic mode for simulating three-dimensional power distribution of the reactor core, and a nuclear instrumentation model for calculating read value of the nuclear instrumentation disposed in the reactor based on the average reactor core power and the reactor core three-dimensional power distribution. A one-dimensional neutron flux distribution in the axial direction of the reactor core, a reactor core average power, a reactor core three-dimensional power distribution and a nuclear instrumentation read value are calculated. As a result, the three-dimensional power distribution and the power level are continuously calculated. Further, since the transient change of the three-dimensional neutron flux distribution is calculated accurately on real time, more actual response relative to a power monitoring device of the reactor core and operation performance can be simulated. (N.H.)

  8. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  9. Actinide transmutation in nuclear reactors

    International Nuclear Information System (INIS)

    Bultman, J.H.

    1995-01-01

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP)

  10. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J H

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  11. Reactor accidents and nuclear catastrophes

    International Nuclear Information System (INIS)

    Kirchhoff, R.; Linde, H.J.

    1979-01-01

    Assuming some preliminary knowledge of the fundamentals of atomic physics, the book describes the effects of ionizing radiation on the human organism. In order to assess the potential hazards of reactor accidents and the extent of a nuclear catastrophe, the technology of power generation in nuclear power stations is presented together with its potential dangers as well as the physical and medical processes occurring during a nuclear weapons explosion. The special medical aspects are presented which range from first aid in the case of a catastrophe to the accute radiation syndrome, the treatment of burns to the therapy of late radiolesions. Finally, it is confirmed that the treatment of radiation injured persons does not give rise to basically new medical problems. (orig./HP) [de

  12. Thermal barrier and support for nuclear reactor fuel core

    International Nuclear Information System (INIS)

    Betts, W.S. Jr.; Pickering, J.L.; Black, W.E.

    1987-01-01

    A nuclear reactor is described having a thermal barrier for supporting a fuel column of a nuclear reactor core within a reactor vessel having a fixed rigid metal liner. The fuel column has a refractory post extending downward. The thermal barrier comprises, in combination, a metallic core support having an interior chamber secured to the metal liner; fibrous thermal insulation material covering the metal liner and surrounding the metallic core support; means associated with the metallic core support and resting on the top for locating and supporting the full column post; and a column of ceramic material located within the interior chamber of the metallic core support, the height of the column is less than the height of the metallic core support so that the ceramic column will engage the means for locating and supporting the fuel column post only upon plastic deformation of the metallic core support; the core support comprises a metallic cylinder and the ceramic column comprises coaxially aligned ceramic pads. Each pad has a hole located within the metallic cylinder by means of a ceramic post passing through the holes in the pads

  13. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    Preda, M.; Carabulea, A.

    2008-01-01

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  14. Condensation During Nuclear Reactor Loca

    International Nuclear Information System (INIS)

    Rihan, Y.; Teamah, M.; Sorour, M.; Soliman, S.

    2008-01-01

    Two-phase channel flow with condensation is a common phenomenon occurs in a number of nuclear reactor accident scenarios. It also plays an important role during the operation of the safety coolant injection systems in advanced nuclear reactors. Semiempirical correlations and simple models based on the analogy between heat and mass transfer processes have been previously applied. Rigorous models, compatible with the state-of-the-art numerical algorithms used in thermal-hydraulic computer codes, are scare, and are of great interest. The objective of this research is to develop a method for modeling condensation, with noncondensable gases, compatible with the state-of-the-art numerical methods for the solution of multi-phase field equations. A methodology for modeling condensation, based on the stagnant film theory, and compatible with the reviewed numerical algorithms, is developed. The model treats the coupling between the heat and mass transfer processes, and allows for an implicit treatment of the mass and momentum exchange terms as the gas-liquid interphase, without iterations. The developed model was used in the application of loss of coolant in pressurized water reactor accidents

  15. Exporting apocalypse: CANDU reactors and nuclear proliferation

    International Nuclear Information System (INIS)

    McKay, Paul.

    The author believes that the peaceful use of nuclear technology leads inevitably to the production of nuclear weapons, and that CANDU reactors are being bought by countries that are likely to build bombs. He states that exports of reactors and nuclear materials cannot be defended and must be stopped

  16. Emergency system for nuclear reactors

    International Nuclear Information System (INIS)

    1976-01-01

    The invention concerns a circuit called 'of emergency help' intended to remove, in a safe and quick manner, the residual thermal power on the safety vessel of a fast neutron reactor cooled by a liquid metal flow, in the event of a failure occurring inside the main reactor vessel or on it. This system includes a network of spray nozzle tubes, distributed around and near the external surface of the safety vessel, to project on to the surface of the vessel a mist of a liquid having high latent vaporisation heat. The steam produced on contact with the safety vessel is collected in the space provided between the safety vessel and the external protection vessel by at least one collector pipe for dischaging this steam outside the vessel. Under a preferred design mode of the invention the liquid is water the use of which turns out to be particularly advantageous in practice owing to its favourable physical properties and its low cost [fr

  17. Nuclear reactor power control device

    International Nuclear Information System (INIS)

    Koshi, Yuji; Sakata, Akira; Karatsu, Hiroyuki.

    1987-01-01

    Purpose: To control abrupt changes in neutron fluxes by feeding back a correction signal obtained from a deviation between neutron fluxes and heat fluxes for changing the reactor core flow rate to a recycling flow rate control system upon abrupt power change of a nuclear reactor. Constitution: In addition to important systems, that is, a reactor pressure control system and a recycling control system in the power control device of a BWR type power plant, a control circuit for feeding back a deviation between neutron fluxes and heat fluxes to a recycling flow rate control system is disposed. In the suppression circuit, a deviation signal is prepared in an adder from neutron flux and heat flux signals obtained through a primary delay filter. The deviation signal is passed through a dead band and an advance/delay filter into a correction signal, which is adapted to be fed back to the recycling flow rate control system. As a result, the reactor power control can be conducted smoothly and it is possible to effectively suppress the abrupt change or over shoot of the neutron fluxes and abrupt power change. (Kamimura, M.)

  18. Improvements in streaking nuclear reactors

    International Nuclear Information System (INIS)

    Pedrick, A.P.

    1976-01-01

    In this type of reactor atomic nuclei are stripped of their electron shells by heating to form a very high temperature plasma which is passed at high speed through a chamber in which they are forced into contact with a 'wall' formed by a unidirectional stream of photons from continuous laser beams. In this way it should be possible to brush off from the surface of the nuclei protons and neutrons, with release of their binding energy. The energy thus produced can be subjected to much more gentle control than with a fission or fusion reactor. Furthermore, if this concept can be successfully applied to elements of high atomic number which are normally regarded as stable and unfissionable, a vast new source of nuclear energy release will have been made available. It also seems possible that an atomic nucleus might be spun sufficiently in such a reactor to disintegrate it completely into nucleons by simple centrifugal action, with great release of binding energy. The reactor described has a central body with radial ducts through which the nuclei are passed, and a number of lasers are provided whose beams are arranged so that the nuclei are discharged at the cross-over point of two or more laser beams which form a corner at the junction of two or more photon walls. (U.K.)

  19. Power supply with nuclear reactor

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Each parameter of the processes of a nuclear reactor and components operatively associated therewith is monitored by a set of four like sensors. A trip system normally operates on a 'two out of four' configuration; i.e., to trip the reactor it is necessary that at least two sensors of a set sense an off-normal parameter. This assumes that all sensors are in normal operating condition. However, when a sensor is in test or is subject to maintenance or is defective or disabled, the 'two out of four' configuration would be reduced to a 'one out of three' configuration because the affected sensor is taken out of service. This would expose the system to the possibility that a single sensor failure, which may be spurious, will cause a trip of the reactor. To prevent this, it is necessary that the affected sensor be bypassed. If only one sensor is bypassed, the system operates on a 'two out of three' configuration. With two sensors bypassed, the sensing of an off-normal parameter by a third sensor trips the reactor

  20. Performance and safety design of the advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Berglund, R.C.; Magee, P.M.; Boardman, C.E.; Gyorey, G.L.

    1991-01-01

    The Advanced Liquid Metal Reactor (ALMR) program led by General Electric is developing, under U.S. Department of Energy sponsorship, a conceptual design for an advanced sodium-cooled liquid metal reactor plant. This design is intended to improve the already excellent level of plant safety achieved by the nuclear power industry while at the same time providing significant reductions in plant construction and operating costs. In this paper, the plant design and performance are reviewed, with emphasis on the ALMR's unique passive design safety features and its capability to utilize as fuel the actinides in LWR spent fuel

  1. Comments on nuclear reactor safety in Ontario

    International Nuclear Information System (INIS)

    1987-08-01

    The Chalk River Technicians and Technologists Union representing 500 technical employees at the Chalk River Nuclear Laboratories of AECL submit comments on nuclear reactor safety to the Ontario Nuclear Safety Review. Issues identified by the Review Commissioner are addressed from the perspective of both a labour organization and experience in the nuclear R and D field. In general, Local 1568 believes Ontario's CANDU nuclear reactors are not only safe but also essential to the continued economic prosperity of the province

  2. Irradiation behavior of metallic fast reactor fuels

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985

  3. Subchannel analysis in nuclear reactors

    International Nuclear Information System (INIS)

    Ninokata, H.; Aritomi, M.

    1992-01-01

    This book contains 10 informative papers, presented at the International Seminar on Subchannel Analysis 1992 (ISSCA '92), organized by the Institute of Applied Energy, in collaboration with Atomic Energy Society of Japan, Tokyo Electric Power Company, Kansai Electric Power Company, Nuclear Power Engineering Corporation and the Japan Atomic Energy Research Institute, and held at the TIS-Green Forum, Tokyo, Japan, 30 October 1992. The seminar ISSCA '92 was intended to review the current state-of-the-arts of the method being applied to advanced nuclear reactors including Advanced BWRs, Advanced PWRs and LMRs, and to identify the problems to be solved, improvements to be made, and the needs of R and Ds that were required from the new fuel bundles design. The critical review was to focus on the performances of currently available subchannel analysis codes with regard to heat transfer and fluid flows in various types of nuclear reactor bundles under both steady-state and transient operating conditions, CHF, boiling transition (BT) or dryout behaviors and post BT. The behaviors of physical modeling and numerical methods in these extreme conditions were discussed and the methods critically evaluated in comparison with experiments. (author) (J.P.N.)

  4. Method of safely operating nuclear reactor

    International Nuclear Information System (INIS)

    Ochiai, Kanehiro.

    1976-01-01

    Purpose: To provide a method of safely operating an nuclear reactor, comprising supporting a load applied to a reactor container partly with secondary container facilities thereby reducing the load borne by the reactor container when water is injected into the core to submerge the core in an emergency. Method: In a reactor emergency, water is injected into the reactor core thereby to submerge the core. Further, water is injected into a gap between the reactor container and the secondary container facilities. By the injection of water into the gap between the reactor container and the secondary container facilities a large apparent mass is applied to the reactor container, as a result of which the reactor container undergoes the same vibration as that of the secondary container facilities. Therefore, the load borne by the reactor container itself is reduced and stress at the bottom part of the reactor container is released. This permits the reactor to be operated more safely. (Moriyama, K.)

  5. Fuel assembly and nuclear reactor core

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Aoyama, Motoo; Yamashita, Jun-ichi.

    1995-01-01

    The present invention concerns a fuel assembly and a nuclear reactor core capable of improving a transmutation rate of transuranium elements while improving a residual rate of fission products. In a reactor core of a BWR type reactor to which fuel rods with transuranium elements (TRU) enriched are loaded, the enrichment degree of transuranium elements occupying in fuel materials is determined not less than 2wt%, as well as a ratio of number of atoms between hydrogen and fuel heavy metals in an average reactor core under usual operation state (H/HM) is determined not more than 3 times. In addition, a ratio of the volumes between coolant regions and fuel material regions is determined not more than 2 times. A T ratio (TRU/Pu) is lowered as the TRU enrichment degree is higher and the H/HM ratio is lower. In order to reduce the T ratio not more than 1, the TRU enrichment degree is determined as not less than 2wt%, and the H/HM ratio is determined to not more than 3 times. Accordingly, since the H/HM ratio is reduced to not more than 1, and TRU is transmuted while recycling it with plutonium, the transmutation ratio of transuranium elements can be improved while improving the residual rate of fission products. (N.H.)

  6. Nuclear Capacity Building through Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    Four Instruments: •The IAEA has recently developed a specific scheme of services for Nuclear Capacity Building in support of the Member States cooperating research reactors (RR) willing to use RRs as a primary facility to develop nuclear competences as a supporting step to embark into a national nuclear programme. •The scheme is composed of four complementary instruments, each of them being targeted to specific objective and audience: Distance Training: Internet Reactor Laboratory (IRL); Basic Training: Regional Research Reactor Schools; Intermediate Training: East European Research Reactor Initiative (EERRI); Group Fellowship Course Advanced Training: International Centres based on Research Reactors (ICERR)

  7. Artificial intelligence in nuclear reactor operation

    International Nuclear Information System (INIS)

    Da Ruan; Benitez-Read, J.S.

    2005-01-01

    Assessment of four real fuzzy control applications at the MIT research reactor in the US, the FUGEN heavy water reactor in Japan, the BR1 research reactor in Belgium, and a TRIGA Mark III reactor in Mexico will be examined through a SWOT analysis (strengths, weakness, opportunities, and threats). Special attention will be paid to the current cooperation between the Belgian Nuclear Research Centre (SCK·CEN) and the Mexican Nuclear Centre (ININ) on AI-based intelligent control for nuclear reactor operation under the partial support of the National Council for Science and Technology of Mexico (CONACYT). (authors)

  8. Metallic materials for heat exchanger components and highly stressed internal of HTR reactors for nuclear process heat generation

    International Nuclear Information System (INIS)

    1982-01-01

    The programme was aimed at the development and improvement of materials for the high-temperature heat exchanger components of a process steam HTR. The materials must have high resistance to corrosion, i.e. carburisation and internal oxidation, and high long-term toughness over a wide range of temperatures. They must also meet the requirements set in the nuclear licensing procedure, i.e. resistance to cyclic stress and irradiation, non-destructive testing, etc. Initially, it was only intended to improve and qualify commercial alloys. Later on an alloy development programme was initiated in which new, non-commercial alloys were produced and modified for use in a nuclear process heat facility. Separate abstracts were prepared for 19 pays of this volume. (orig./IHOE) [de

  9. Fuel element for a nuclear reactor

    International Nuclear Information System (INIS)

    Linning, D.L.

    1977-01-01

    An improvement of the fuel element for a fast nuclear reactor described in patent 15 89 010 is proposed which should avoid possible damage due to swelling of the fuel. While the fuel element according to patent 15 89 010 is made in the form of a tube, here a further metal jacket is inserted in the centre of the fuel rod and the intermediate layer (ceramic uranium compound) is provided on both sides, so that the nuclear fuel is situated in the centre of the annular construction. Ceramic uranium or plutonium compounds (preferably carbide) form the fuel zone in the form of circular pellets, which are surrounded by annular gaps, so that gaseous fission products can escape. (UWI) [de

  10. Nuclear reactor control room construction

    International Nuclear Information System (INIS)

    Lamuro, R.C.; Orr, R.

    1993-01-01

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures

  11. Metallic uranium as fuel for fast reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de

    1988-01-01

    This paper presents a first overview of the use of metallic uranium and its alloys as an option for fuel for rapid reactors. Aspects are discussed concerning uranium alloys which present high solubility in the gamma phase. (author)

  12. Fuel element for nuclear reactors

    International Nuclear Information System (INIS)

    Cadwell, D.J.

    1982-01-01

    The invention concerns a fuel element for nuclear reactors with fuel rods and control rod guide tubes, where the control rod guide tubes are provided with flat projections projecting inwards, in the form of local deformations of the guide tube wall, in order to reduce the radial play between the control rod concerned and the guide tube, and to improve control rod movement. This should ensure that wear on the guide tubes is largely prevented which would be caused by lateral vibration of the control rods in the guide tubes, induced by the flow of coolant. (orig.) [de

  13. Molten salts in nuclear reactors

    International Nuclear Information System (INIS)

    Dirian, J.; Saint-James

    1959-01-01

    Collection of references dealing with the physicochemical studies of fused salts, in particular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thorium are examined, and the physical properties, density, viscosity, vapour pressure etc... going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recuperation after irradiation in a nuclear reactor is discussed. (author) [fr

  14. Fuel bundle for nuclear reactor

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.; Ford, K.L.

    1977-01-01

    The invention concerns a new, simple and inexpensive system for assembling and dismantling a nuclear reactor fuel bundle. Several fuel rods are fitted in parallel rows between two retaining plates which secure the fuel rods in position and which are maintained in an assembled position by means of several stays fixed to the two end plates. The invention particularly refers to an improved apparatus for fixing the stays to the upper plate by using locking fittings secured to rotating sleeves which are applied against this plate [fr

  15. Reactor calculations and nuclear information

    International Nuclear Information System (INIS)

    Lang, D.W.

    1977-12-01

    The relationship of sets of nuclear parameters and the macroscopic reactor quantities that can be calculated from them is examined. The framework of the study is similar to that of Usachev and Bobkov. The analysis is generalised and some properties required by common sense are demonstrated. The form of calculation permits revision of the parameter set. It is argued that any discrepancy between a calculation and measurement of a macroscopic quantity is more useful when applied directly to prediction of other macroscopic quantities than to revision of the parameter set. The mathematical technique outlined is seen to describe common engineering practice. (Author)

  16. A Heat Transfer Model for a Stratified Corium-Metal Pool in the Lower Plenum of a Nuclear Reactor

    International Nuclear Information System (INIS)

    Sohal, M.S.; Siefken, L.J.

    1999-01-01

    This preliminary design report describes a model for heat transfer in a corium-metal stratified pool. It was decided to make use of the existing COUPLE model. Currently available correlations for natural convection heat transfer in a pool with and without internal heat generation were obtained. The appropriate correlations will be incorporated in the existing COUPLE model. Heat conduction and solidification modeling will be done with existing algorithms in the COUPLE. Assessment of the new model will be done by simple energy conservation problems

  17. Radiation embrittlement of Spanish nuclear reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Bros, J.; Ballesteros, A.; Lopez, A.

    1993-01-01

    Commercial pressurized water reactor (PWR) and boiling water reactor (BWR) nuclear power plants contain a series of pressure vessel steel surveillance capsules as the principal means of monitoring radiation effects on the pressure vessel. Changes in fracture toughness are more severe in surveillance capsules than in reactor vessel materials because of their proximity of the reactor core. Therefore, it is possible to predict changes in fracture toughness of the reactor vessel materials. This paper describes the status of the reactor vessel surveillance program relating to Spanish nuclear power plants. To date, twelve capsules have been removed and analyzed from seven of the nine Spanish reactors in operation. The results obtained from the analysis of these capsules are compared with the predictions of the Nuclear Regulatory Commission (NRC) Regulatory Guide 1.99, Rev. 2, by means of measured and expected increase of the nil-ductility transition reference temperature (RT NDT ). The comparison is made considering the different variables normally included in the studies of radiation response of reactor pressure vessel materials, such as copper content of steel, level of neutron fluence above 1 MeV, base metal or weld metal, and so forth. The surveillance data have been used for determining the adjusted reference temperatures and upper shelf energies at any time. The results have shown that the seven pressure vessels are in excellent condition to continue operating with safety against brittle fracture beyond the design life, without the need to recuperate the degraded properties of the materials by annealing of the vessel

  18. Pool type liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Guthrie, B.M.

    1978-08-01

    Various technical aspects of the liquid metal fast breeder reactor (LMFBR), specifically pool type LMFBR's, are summarized. The information presented, for the most part, draws upon existing data. Special sections are devoted to design, technical feasibility (normal operating conditions), and safety (accident conditions). A survey of world fast reactors is presented in tabular form, as are two sets of reference reactor parameters based on available data from present and conceptual LMFBR's. (auth)

  19. Nuclear reactor built, being built, or planned

    International Nuclear Information System (INIS)

    1991-06-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1990. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly

  20. Nuclear reactor instrumentation power monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1989-01-01

    The present invention concerns a nuclear reactor instrumentation power monitor that can be used in, for example, BWR type nuclear power plants. Signals from multi-channel detectors disposed on field units are converted respectively by LPRM signal circuits. Then, the converted signals are further converted by a multiplexer into digital signals and transmitted as serial data to a central monitor unit. The thus transmitted serial data are converted into parallel data in the signal processing section of the central monitor unit. Then, LPRM signals are taken out from each of channel detectors to conduct mathematical processing such as trip judgment or averaging. Accordingly, the field unit and the central monitor unit can be connected by way of only one data transmission cable thereby enabling to reduce the number of cables. Further, since the data are transmitted on digital form, it less undergoes effect of noises. (I.S.)

  1. Internal corium catcher of a nuclear reactor

    International Nuclear Information System (INIS)

    Anatolii S Vlasov; Vladimir N Mineev; Aleksandr S Sidorov; Yuri A Zeigarnik

    2005-01-01

    Full text of publication follows: A corium catcher is one of the main devices of a nuclear reactor that provides corium melt and fission products retention within a containment during severe accidents. Several studies and design developments have shown that corium retention within a reactor vessel can be attained with a moderate capacity of the latter (up to 600 - 650 MW el.). With a higher reactor capacity external corium catchers are applied both at Russian (VVER-1000) and European (EPR) reactors. In the external catcher of a VVER-1000 reactor, most technological problems are solved due to using sacrificial material. They are as follows: (a) endo-thermal interaction of corium and sacrificial material reduces a level of the temperatures in the final melt pool; (b) solution in the melt of a great amount of the sacrificial material reduces the specific heat release density and the heat flux density at the boundaries of a melt; (c) due to changing of the oxide-component density an inverse stratification of the metallic and oxide components of the corium takes place, thus excluding heat-flux focusing in the zone of the metallic layer and making it possible to supply water on the free surface of the corium without a danger of incipience of the vapor explosion; (d) final oxidation of zirconium occurs without hydrogen generation. The above principles have been realized in the external catcher of the VVER- 1000 reactor at Tyanvan NPS that is presently under construction in China. Successfully solving of the problems concerning to the external catcher makes it possible to return on the new conceptual and technological basis to the idea of retention of the corium melt inside the vessel of a nuclear reactor of large capacity, that is, to provide the reactor vessel to play a role of an internal catcher. For this purpose, a reactor vessel is elongated by approximately two meters. In the lower part of the vessel, on elliptical bottom, pieces of sacrificial material are arranged

  2. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    International Nuclear Information System (INIS)

    Allen, Francis; Bonin, Hugues

    2008-01-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU TM nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  3. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Francis [Director General Nuclear Safety, 280 Slater St, Ottawa, K1A OK2 (Canada); Bonin, Hugues [Royal Military College of Canada, 11 General Crerar Cres, Kingston, K7K 7B4 (Canada)

    2008-07-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU{sup TM} nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  4. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  5. Nuclear reactor system for ABWR

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Kitagawa, Koji

    1997-01-01

    Various tests and measurements were performed during the pre-operational test run of Unit No. 6 of The Tokyo Electric Power Co., Inc.'s Kashiwazaki-Kariwa Nuclear Power Station, the first advanced boiling water reactor (ABWR) unit in the world, and the design and performance adequacy of the ABWR were confirmed. The realization of the ABWR in Japan took about 20 years. It was decided that technologies for the reactor internal pump (RIP) and the fine-motion control rod drive (FMCRD), which had been applied in Europe, would be incorporated in the ABWR aiming at simplification of its structure and operation. These main components were evaluated, modified and verified in consideration of the unique Japanese environment, such as seismic conditions, through a joint study program with Japanese utilities as well as an improvement and standardization program in cooperation with the government. In addition to incorporating RIP and FMCRD technologies, the ABWR also has improved features in terms of the design of the reactor pressure vessel and internals, as well as automated servicing equipment for the RIP, FMCRD, and primary containment vessel. (author)

  6. Nuclear reactor power supply system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The sets of process signals derived from the sensor assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector prevents a parameter signal which differs from the other parameter signals of the set by more than twice the allowable variation from passing to the control system. Test signals are periodically impressed by a test unit on a selected pair of a selection unit and control channels. This arrangement eliminates the possibility that a single component failure which may be spurious will cause an inadvertent trip of the reactor during test. (author)

  7. Fuel assemblies for nuclear reactors

    International Nuclear Information System (INIS)

    Leclercg, J.

    1985-01-01

    Improvements to guide tubes for the fuel assemblies of light water nuclear reactors, said assemblies being immersed in operation in the cooling water of the core of such a reactor, the guide tubes being of the type made from zircaloy and fixed at their two ends respectively to an upper end part and a lower end part made from stainless steel or Irconel and which incorporate devices for braking the fall of the control rods which they house during the rapid shutdown of the reactor, wherein the said braking devices are constituted by means for restricting the diameter of the guide tubes comprising for each guide tube a zircaloy inner sleeve spot welded to the said guide tube and whose internal diameter permits the passage, with a calibrated clearance, of the corresponding control rod, the sleeve being distributed over the lower portion of each guide tube and associated with orifices made in the actual guide tubes to produce the progressive hydraulic absorption of the end of the fall of the control rods

  8. Fuel assemblies for nuclear reactor

    International Nuclear Information System (INIS)

    Nishi, Akihito.

    1987-01-01

    Purpose: To control power-up rate at the initial burning stage of new fuel assemblies due to fuel exchange in a pressure tube type power reactor. Constitution: Burnable poisons are disposed to a most portion of fuel pellets in a fuel assembly to such a low concentration as the burn-up rate changes with time at the initial stage of the burning. The most portion means substantially more than one-half part of the pellets and gadolinia is used as burn-up poisons to be dispersed and the concentration is set to less than about 0.2 %. Upon elapse of about 15 days after the charging, the burnable poisons are eliminated and the infinite multiplication factors are about at 1.2 to attain a predetermined power state. Since the power-up rate of the nuclear reactor fuel assembly is about 0.1 % power/hour and the power-up rate of the fuel assembly around the exchanged channel is lower than that, it can be lowered sufficiently than the limit for the power-up rate practiced upon reactor start-up thereby enabling to replace fuels during power operation. (Horiuchi, T.)

  9. Directory of Nuclear Research Reactors 1994

    International Nuclear Information System (INIS)

    1995-08-01

    The Directory of Nuclear Research Reactors is an output of the Agency's computerized Research Reactor Data Base (RRDB). It contains administrative, technical and utilization information on research reactors known to the Agency at the end of December 1994. The data base converted from mainframe to PC is written in Clipper 5.0 and the publication generation system uses Excel 4. The information was collected by the Agency through questionnaires sent to research reactor owners. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the RRDB. This system contains all the information and data previously published in the Agency's publication, Directory of Nuclear Research Reactor, as well as updated information

  10. The physics of nuclear reactors

    CERN Document Server

    Marguet, Serge

    2017-01-01

    This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: •   The slowing-down of neutrons in matter •   The charged particles and electromagnetic rays •   The calculation scheme, especially the simplification hypothesis •   The concept of criticality based on chain reactions •   The theory of homogeneous and heterogeneous reactors •   The problem of self-shielding �...

  11. Nuclear materials for fission reactors

    International Nuclear Information System (INIS)

    Matzke, H.; Schumacher, G.

    1992-01-01

    This volume brings together 47 papers from scientists involved in the fabrication of new nuclear fuels, in basic research of nuclear materials, their application and technology as well as in computer codes and modelling of fuel behaviour. The main emphasis is on progress in the development of non -oxide fuels besides reporting advances in the more conventional oxide fuels. The two currently performed large reactor safety programmes CORA and PHEBUS-FP are described in invited lectures. The contributions review basic property measurements, as well as the present state of fuel performance modelling. The performance of today's nuclear fuel, hence UO 2 , at high burnup is also reviewed with particular emphasis on the recently observed phenomenon of grain subdivision in the cold part of the oxide fuel at high burnup, the so-called 'rim' effect. Similar phenomena can be simulated by ion implantation in order to better elucidate the underlying mechanism and reviews on high resolution electron microscopy provide further information. The papers will provide a useful treatise of views, ideas and new results for all those scientists and engineers involved in the specific questions of current nuclear waste management

  12. Simulated nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Berta, V.T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end

  13. Nuclear reactor core servicing apparatus

    International Nuclear Information System (INIS)

    Andrea, C.

    1977-01-01

    Disclosed is an improved core servicing apparatus for a nuclear reactor of the type having a reactor vessel, a vessel head having a head penetration therethrough, a removable plug adapted to fit in the head penetration, and a core of the type having an array of elongated assemblies. The improved core servicing apparatus comprises a plurality of support columns suspended from the removable plug and extending downward toward the nuclear core, rigid support means carried by each of the support columns, and a plurality of servicing means for each of the support columns for servicing a plurality of assemblies. Each of the plurality of servicing means for each of the support columns is fixedly supported in a fixed array from the rigid support means. Means are provided for rotating the rigid support means and servicing means between condensed and expanded positions. When in the condensed position, the rigid support means and servicing means lie completely within the coextensive boundaries of the plug, and when in the expanded position, some of the rigid support means and servicing means lie without the coextensive boundaries of the plug

  14. Overview of Nuclear Reactor Technologies Portfolio

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2012-01-01

    Office of Nuclear Energy Roadmap R&D Objectives: • Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; • Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; • Develop sustainable nuclear fuel cycles; • Develop capabilities to reduce the risks of nuclear proliferation and terrorism

  15. Small size modular fast reactors in large scale nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, U.G.; Stepanov, V.S.; Klimov, N.N.; Kopytov, I.I.; Krushelnitsky, V.N.

    2005-01-01

    The report presents an innovative nuclear power technology (NPT) based on usage of modular type fast reactors (FR) (SVBR-75/100) with heavy liquid metal coolant (HLMC) i. e. eutectic lead-bismuth alloy mastered for Russian nuclear submarines' (NS) reactors. Use of this NPT makes it possible to eliminate a conflict between safety and economic requirements peculiar to the traditional reactors. Physical features of FRs, an integral design of the reactor and its small power (100 MWe), as well as natural properties of lead-bismuth coolant assured realization of the inherent safety properties. This made it possible to eliminate a lot of safety systems necessary for the reactor installations (RI) of operating NPPs and to design the modular NPP which technical and economical parameters are competitive not only with those of the NPP based on light water reactors (LWR) but with those of the steam-gas electric power plant. Multipurpose usage of transportable reactor modules SVBR-75/100 of entirely factory manufacture assures their production in large quantities that reduces their fabrication costs. The proposed NPT provides economically expedient change over to the closed nuclear fuel cycle (NFC). When the uranium-plutonium fuel is used, the breeding ratio is over one. Use of proposed NPT makes it possible to considerably increase the investment attractiveness of nuclear power (NP) with fast neutron reactors even today at low costs of natural uranium. (authors)

  16. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards

  17. Developing remote techniques for liquid metal reactors

    International Nuclear Information System (INIS)

    Fenemore, Peter

    1987-01-01

    Three devices have been designed in Britain to meet the need for special remote equipment and techniques required to inspect the reactor vessel and internals of liquid metal reactors. The ''Links Manipulator Under-Sodium Viewing System'' - a device to be used for the surveillance of reactor internals, which are submerged in sodium. An ''Automatic Guided Vehicle'' - a free roving vehicle to be used to survey the externals of the reactor vessel. The ''Snake Manipulator'' - an articulated arm used to gain access to restricted areas. (author)

  18. Reactor use in nuclear engineering programs

    International Nuclear Information System (INIS)

    Murray, R.L.

    1975-01-01

    Nuclear reactors for dual use in training and research were established at about 50 universities in the period since 1950, with assistance by the U. S. Atomic Energy Commission and the National Science Foundation. Most of the reactors are in active use for a variety of educational functions--laboratory teaching of undergraduates and graduate students, graduate research, orientation of visitors, and nuclear power plant reactor operator training, along with service to the technical community. As expected, the higher power reactors enjoy a larger average weekly use. Among special programs are reactor sharing and high-school teachers' workshops

  19. Proliferation Resistant Nuclear Reactor Fuel

    International Nuclear Information System (INIS)

    Gray, L.W.; Moody, K.J.; Bradley, K.S.; Lorenzana, H.E.

    2011-01-01

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and

  20. Problems of nuclear reactor safety. Vol. 1

    International Nuclear Information System (INIS)

    Shal'nov, A.V.

    1995-01-01

    Proceedings of the 9. Topical Meeting 'Problems of nuclear reactor safety' are presented. Papers include results of studies and developments associated with methods of calculation and complex computerized simulation for stationary and transient processes in nuclear power plants. Main problems of reactor safety are discussed as well as rector accidents on operating NPP's are analyzed

  1. A nuclear power reactor concept for Brazil

    International Nuclear Information System (INIS)

    Sefidvash, F.

    1980-01-01

    For the purpose of developing an independent national nuclear technology and effective manner of transferring such a technology, as well as developing a modern reactor, a new nuclear power reactor concept is proposed which is considered as a suitable and viable project for Brazil to support its development and finally construct its prototype as an indigeneous venture. (Author) [pt

  2. The Design of a Nuclear Reactor

    Indian Academy of Sciences (India)

    The aim of this largely pedagogical article is toemploy pre-college physics to arrive at an understanding of a system as complex as a nuclear reactor. We focus on three key issues: the fuelpin, the moderator, and lastly the dimensions ofthe nuclear reactor.

  3. The Design of a Nuclear Reactor

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The aim of this largely pedagogical article is toemploy pre-college physics to arrive at an understanding of a system as complex as a nuclear reactor. We focus on three key issues: the fuelpin, the moderator, and lastly the dimensions ofthe nuclear reactor.

  4. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  5. Minimizing or eliminating refueling of nuclear reactor

    Science.gov (United States)

    Doncals, Richard A.; Paik, Nam-Chin; Andre, Sandra V.; Porter, Charles A.; Rathbun, Roy W.; Schwallie, Ambrose L.; Petras, Diane S.

    1989-01-01

    Demand for refueling of a liquid metal fast nuclear reactor having a life of 30 years is eliminated or reduced to intervals of at least 10 years by operating the reactor at a low linear-power density, typically 2.5 kw/ft of fuel rod, rather than 7.5 or 15 kw/ft, which is the prior art practice. So that power of the same magnitude as for prior art reactors is produced, the volume of the core is increased. In addition, the height of the core and it diameter are dimensioned so that the ratio of the height to the diameter approximates 1 to the extent practicable considering the requirement of control and that the pressure drop in the coolant shall not be excessive. The surface area of a cylinder of given volume is a minimum if the ratio of the height to the diameter is 1. By minimizing the surface area, the leakage of neutrons is reduced. By reducing the linear-power density, increasing core volume, reducing fissile enrichment and optimizing core geometry, internal-core breeding of fissionable fuel is substantially enhanced. As a result, core operational life, limited by control worth requirements and fuel burnup capability, is extended up to 30 years of continuous power operation.

  6. Metal fire implications for advanced reactors. Part 1, literature review

    International Nuclear Information System (INIS)

    Nowlen, Steven Patrick; Radel, Ross F.; Hewson, John C.; Olivier, Tara Jean; Blanchat, Thomas K.

    2007-01-01

    Public safety and acceptance is extremely important for the nuclear power renaissance to get started. The Advanced Burner Reactor and other potential designs utilize liquid sodium as a primary coolant which provides distinct challenges to the nuclear power industry. Fire is a dominant contributor to total nuclear plant risk events for current generation nuclear power plants. Utilizing past experience to develop suitable safety systems and procedures will minimize the chance of sodium leaks and the associated consequences in the next generation. An advanced understanding of metal fire behavior in regards to the new designs will benefit both science and industry. This report presents an extensive literature review that captures past experiences, new advanced reactor designs, and the current state-of-knowledge related to liquid sodium combustion behavior

  7. Oklo reactors and implications for nuclear science

    OpenAIRE

    Davis, E. D.; Gould, C. R.; Sharapov, E. I.

    2014-01-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlie...

  8. Thermochemistry of nuclear fuels in advanced reactors

    International Nuclear Information System (INIS)

    Agarwal, Renu

    2015-01-01

    The presence of a large number of elements, accompanied with steep temperature gradient results in dynamic chemistry during nuclear fuel burn-up. Understanding this chemistry is very important for efficient and safe usage of nuclear fuels. The radioactive nature of these fuels puts lot of constraint on regulatory bodies to ensure their accident free operation in the reactors. One of the common aims of advanced fuels is to achieve high burn-up. As burn-up of the fuel increases, chemistry of fission-products becomes increasingly more important. To understand different phenomenon taking place in-pile, many out of-pile experiments are carried out. Extensive studies of thermodynamic properties, phase analysis, thermophysical property evaluation, fuel-fission product clad compatibility are carried out with relevant compounds and simulated fuels (SIMFUEL). All these data are compiled and jointly evaluated using different computational methods to predict fuel behaviour during burn-up. Only when this combined experimental and theoretical information confirms safe operation of the pin, a test pin is prepared and burnt in a test reactor. Every fuel has a different chemistry and different constraints associated with it. In this talk, various thermo-chemical aspects of some of the advanced fuels, mixed carbide, mixed nitride, 'Pu' rich MOX, 'Th' based AHWR fuels and metallic fuels will be discussed. (author)

  9. Liquid metal cooled reactors: Experience in design and operation

    International Nuclear Information System (INIS)

    2007-12-01

    In 2002, within the framework of the Department of Nuclear Energy's Technical Working Group on Fast Reactors (TWG-FR), and according to the expressed needs of the TWG-FR Member States to maintain and increase the present knowledge and expertise in fast reactor science and technology, the IAEA established its initiative seeking to establish a comprehensive, international inventory of fast reactor data and knowledge. More generally, at the IAEA meeting of senior officials convened to address issues of nuclear knowledge management underlying the safe and economic use of nuclear science and technology (Vienna, 17-19 June 2002), there was widespread agreement that, for sustainability reasons for fissile sources and waste management, long-term development of nuclear power as a part of the world's future energy mix will require the fast reactor technology. Furthermore, given the decline in fast reactor development projects, data retrieval and knowledge preservation efforts in this area are of particular importance. This consensus concluded from the recognition of immediate need gave support to the IAEA initiative for fast reactor data and knowledge preservation. To implement the IAEA initiative, the scope of fast reactor knowledge preservation activities and a road map for implementation have been developed. The IAEA supports and coordinates data retrieval and interpretation efforts in the Member States joining the initiative and ensures the collaboration with other international organizations (mainly OECD/NEA) and eventually establishes and maintains a portal for accessing the fast reactor knowledge base. The IAEA assists Member State activities by providing an umbrella for information exchange and collaborative R and D to pool resources and expertise within the framework of the TWG-FR and the Agency's International Nuclear Information System (INIS) and Nuclear Knowledge Management Section (NKMS). The IAEA collects and summarizes the scientific and technical information

  10. Digital computer operation of a nuclear reactor

    International Nuclear Information System (INIS)

    Colley, R.W.

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state

  11. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  12. Applications of computational intelligence in nuclear reactors

    International Nuclear Information System (INIS)

    Jayalal, M.L.; Jehadeesan, R.

    2016-01-01

    Computational intelligence techniques have been successfully employed in a wide range of applications which include the domains of medical, bioinformatics, electronics, communications and business. There has been progress in applying of computational intelligence in the nuclear reactor domain during the last two decades. The stringent nuclear safety regulations pertaining to reactor environment present challenges in the application of computational intelligence in various nuclear sub-systems. The applications of various methods of computational intelligence in the domain of nuclear reactors are discussed in this paper. (author)

  13. The US Liquid Metal Reactor Development Program

    International Nuclear Information System (INIS)

    Till, C.E.; Arnold, W.H.; Griffith, J.D.

    1988-01-01

    The US Liquid Metal Reactor Development Program has been restructured to take advantage of the opportunity today to carry out R and D on truly advanced reactor technology. The program gives particular emphasis to improvements to reactor safety. The new directions are based on the technology of the Integral Fast Reactor (IFR). Much of the basis for superior safety performance using IFR technology has been experimentally verified and aggressive programs continue in EBR-II and TREAT. Progress has been made in demonstrating both the metallic fuel and the new electrochemical processes of the IFR. The FFTF facility is converting to metallic fuel; however, FFTF also maintains a considerable US program in oxide fuels. In addition, generic programs are continuing in steam generator testing, materials development, and, with international cooperation, aqueous reprocessing. Design studies are carried out in conjunction with the IFR technology development program. In summary, the US maintains an active development program in Liquid Metal Reactor technology, and new directions in reactor safety are central to the program

  14. Fuel assemblies for nuclear reactors

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    In a nuclear fuel assembly, hollow guide posts protrude into a fuel assembly and fitting grill from a biased spring pad with a plunger that moves with the spring pad plugging one end of each of the guide posts. A plate on the end fitting grill that has a hole for fluid discharge partially plugs the other end of the guide post. Pressurized water coolant that fills the guide post volume acts as a shock absorber and should the reactor core receive a major seismic or other shock, the fuel assembly is compelled to move towards a pad depending from a transversely disposed support grid. The pad bears against the spring pad and the plunger progressively blocks the orifices provided by slots in the guide posts thus gradually absorbing the applied shock. After the orifice has been completely blocked, controlled fluid discharge continues through a hole coil spring cooperating in the attenuation of the shock. (author)

  15. Severe accidents in nuclear reactors

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Dumitrescu, Iulia; Tunaru, Mariana

    2004-01-01

    The likelihood of accidents leading to core meltdown in nuclear reactors is low. The consequences of such an event are but so severe that developing and implementing of adequate measures for preventing or diminishing the consequences of such events are of paramount importance. The analysis of major accidents requires sophisticated computation codes but necessary are also relevant experiments for checking the accuracy of the predictions and capability of these codes. In this paper an overview of the severe accidents worldwide with definitions, computation codes and relating experiments is presented. The experimental research activity of severe accidents was conducted in INR Pitesti since 2003, when the Institute jointed the SARNET Excellence Network. The INR activity within SARNET consists in studying scenarios of severe accidents by means of ASTEC and RELAP/SCDAP codes and conducting bench-scale experiments

  16. Noise thermometry in nuclear reactors

    International Nuclear Information System (INIS)

    Hoewener, H.

    1985-08-01

    Since in nuclear reactors the measuring sensor cannot be easily replaced, the value of the sensor resistance, as well as the selection of transmission lines with respect to good transmission characteristics of the whole arrangement and minimizing the correlative error terms, must already be optimized when designing a noise thermometer arrangement. The TRARAU computer program was developed for this purpose enabling the influences of the lines to be computed by taking into consideration all the effects occurring through the lines, such as transmission errors and correlative error terms. In order to check the accuracy of the TRARAU computer program a series of laboratory measurements were implemented enabling both the pure transmission behaviour of the line arrangement with respect to the measuring signal to be detected, as well as the overall line error. In all cases this resulted in a very good agreement of the measured values with the computed values. The transmission behaviour of noise thermometer arrangements occuring in practice were studied with the example of two reactor experiments. In both cases it was possible to demonstrate successfully the potential of the computer program TRARAU. As the parametric studies have shown, optimum matching over unlimited band widths is not feasible in principle. By reducing the upper band limit, however, the line error can practically always be kept sufficiently small. With good matching larger band widths can also be used. (orig./HP) [de

  17. Small nuclear reactors for desalination

    International Nuclear Information System (INIS)

    Goldsmith, K.

    1978-01-01

    Small nuclear reactors are considered to have an output of not more than 400MW thermal. Since they can produce steam at much higher conditions than needed by the brine heater of a multi-flash desalination unit, it may be economically advantageous to use small reactors for a dual-purpose installation of appropriate size, producing both electricity and desalted water, rather than for a single-purpose desalination plant only. Different combinations of dual-purpose arrangements are possible depending principally on the ratio of electricity to water output required. The costs of the installation as well as of the products are critically dependent on this ratio. For minimum investment costs, the components of the dual-purpose installation should be of a standardised design based on normal commercial power plant practice. This then imposes some restrictions on the plant arrangement but, on the other hand, it facilitates selection of the components. Depending on the electricity to water ratio to be achieved, the conventional part of the installation - essentially the turbines - will form a combination of back-pressure and condensing machines. Each ratio will probably lead to an optimum combination. In the economic evaluation of this arrangement, a distinction must be made between single-purpose and dual-purpose installations. The relationship between output and unit costs of electricity and water will be different for the two cases, but the relation can be expressed in general terms to provide guidelines for selecting the best dimensions for the plant. (author)

  18. Recirculation system for nuclear reactors

    International Nuclear Information System (INIS)

    Braun, H. E.; Dollard, W. J.; Tower, S. N.

    1980-01-01

    A recirculation system for use in pressurized water nuclear reactors to increase the output temperature of the reactor coolant, thereby achieving a significant improvement in plant efficiency without exceeding current core design limits. A portion of the hot outlet coolant is recirculated to the inlets of the peripheral fuel assemblies which operate at relatively low power levels. The outlet temperature from these peripheral fuel assemblies is increased to a temperature above that of the average core outlet. The recirculation system uses external pumps and introduces the hot recirculation coolant to the free space between the core barrel and the core baffle, where it flows downward and inward to the inlets of the peripheral fuel assemblies. In the unlikely event of a loss of coolant accident, the recirculation system flow path through the free space and to the inlets of the fuel assemblies is utilized for the injection of emergency coolant to the lower vessel and core. During emergency coolant injection, the emergency coolant is prevented from bypassing the core through the recirculation system by check valves inserted into the recirculation system piping

  19. Reactor building for a nuclear reactor

    International Nuclear Information System (INIS)

    Haidlen, F.

    1976-01-01

    The invention concerns the improvement of the design of a liner, supported by a latticed steel girder structure and destined for guaranteeing a gastight closure for the plant compartments in the reactor building of a pressurized water reactor. It is intended to provide the steel girder structure on their top side with grates, being suited for walking upon, and to hang on their lower side diaphragms in modular construction as a liner. At the edges they may be sealed with bellows in order to avoid thermal stresses. The steel girder structure may at the same time serve as supports for parts of the steam pipe. (RW) [de

  20. Study and characterization of noble metal deposits on similar rusty surfaces to those of the reactor U-1 type BWR of nuclear power station of Laguna Verde; Estudio y caracterizacion de depositos de metales nobles sobre superficies oxidadas similares a las del reactor de la Central de Laguna Verde (CNLV) U1 del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Flores S, V. H.

    2011-07-01

    In the present investigation work, were determined the parameters to simulate the conditions of internal oxidation reactor circulation pipes of the nuclear power plant of Laguna Verde in Veracruz. We used 304l stainless steel cylinders with two faces prepared with abrasive paper of No. 600, with the finality to obtain similar surface to the internal circulation piping nuclear reactor. Oxides was formed within an autoclave (Autoclave MEX-02 unit B), which is a device that simulates the working conditions of the nuclear reactor, but without radiation generated by the fission reaction within the reactor. The oxidation conditions were a temperature of 280 C and pressure of 8 MPa, similar conditions to the reactor operating in nuclear power plant of Laguna Verde in Veracruz, Mexico (BWR conditions), with an average conductivity of 4.58 ms / cm and 2352 ppb oxygen to simulate normal water chemistry NWC. Were obtained deposits of noble metal oxides formed on 304l stainless steel samples, in a 250 ml autoclave at a temperature range of 180 to 200 C. The elements that were used to deposit platinum-rhodium (Pt-Rh) with aqueous Na{sub 2}Pt (OH){sub 6} and Na{sub 3}Rh (NO{sub 2}){sub 6}, Silver (Ag) with an aqueous solution of AgNO{sub 3}, zirconium (Zr) with aqueous Zr O (NO{sub 3}) and ZrO{sub 2}, and zinc (Zn) in aqueous solution of Zn (NO{sub 3}){sub 2} under conditions of normal water chemistry. Also there was the oxidation of 304l stainless steel specimens in normal water chemistry with a solution of Zinc (Zn) (NWC + Zn). Oxidation of the specimens in water chemistry with a solution of zinc (Zn + NWC) was prepared in two ways: within the MEX-02 autoclave unit A in a solution of zinc and a flask at constant temperature in zinc solution. The oxides formed and deposits were characterized by scanning electron microscopy, energy dispersive X-ray analysis, elemental field analysis and X-ray diffraction. By other hand was evaluated the electrochemical behavior of the oxides

  1. The program of reactors and nuclear power plants; Programa de reactores y centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Carlos R [Comision Nacional de Energia Atomica, General San Martin (Argentina). Centro Atomico Constituyentes

    2001-07-01

    Into de framework of the program of research reactors and nuclear power plants, the operating Argentine reactors are described. The uses of the research reactors in Argentina are summarized. The reactors installed by Argentina in other countries (Peru, Algeria, Egypt) are briefly described. The CAREM project for the design and construction of an innovator small power reactor (27 MWe) is also described in some detail. The next biennial research and development program for reactor is briefly outlined.

  2. Daddy, What's a Nuclear Reactor?

    International Nuclear Information System (INIS)

    Reisenweaver, Dennis W.

    2008-01-01

    No matter what we think of the nuclear industry, it is part of mankind's heritage. The decommissioning process is slowly making facilities associated with this industry disappear and not enough is being done to preserve the information for future generations. This paper provides some food for thought and provides a possible way forward. Industrial archaeology is an ever expanding branch of archaeology that is dedicated to preserving, interpreting and documenting our industrial past and heritage. Normally it begins with analyzing an old building or ruins and trying to determine what was done, how it was done and what changes might have occurred during its operation. We have a unique opportunity to document all of these issues and provide them before the nuclear facility disappears. Entombment is an acceptable decommissioning strategy; however we would have to change our concept of entombment. It is proposed that a number of nuclear facilities be entombed or preserved for future generations to appreciate. This would include a number of different types of facilities such as different types of nuclear power and research reactors, a reprocessing plant, part of an enrichment plant and a fuel manufacturing plant. One of the main issues that would require resolution would be that of maintaining information of the location of the buried facility and the information about its operation and structure, and passing this information on to future generations. This can be done, but a system would have to be established prior to burial of the facility so that no information would be lost. In general, our current set of requirements and laws may need to be re-examined and modified to take into account these new situations. As an alternative, and to compliment the above proposal, it is recommended that a study and documentation of the nuclear industry be considered as part of twentieth century industrial archaeology. This study should not only include the power and fuel cycle

  3. Nuclear reactor philosophy and criteria

    International Nuclear Information System (INIS)

    Atchison, R.J.

    1979-07-01

    Nuclear power plant safety criteria and principles developed in Canada are directed towards minimizing the chance of failure of the fuel and preventing or reducing to an acceptably low level the escape of fission products should fuel failure occur. Safety criteria and practices are set forth in the Reactor Siting Guide, which is based upon the concept of defence in depth. The Guide specifies that design and construction shall follow the best applicable code, standard or practice; the total of all serious process system failures shall not exceed one in three years; special safety systems are to be physically and functionally separate from process systems and each other; and safety systems shall be testable, with unavailability less than 10 - 3 . Doses to the most exposed member of the public due to normal operation, serious process failures, and dual failures are specified. Licensees are also required to consider the effects of extreme conditions due to airplane crashes, explosions, turbine disintegration, pipe burst, and natural disasters. Safety requirements are changing as nuclear power plant designs evolve and in response to social and economic pressures

  4. Nuclear waste management, reactor decommisioning, nuclear liability and public attitudes

    International Nuclear Information System (INIS)

    Green, R.E.

    1982-01-01

    This paper deals with several issues that are frequently raised by the public in any discussion of nuclear energy, and explores some aspects of public attitudes towards nuclear-related activities. The characteristics of the three types of waste associated with the nuclear fuel cycle, i.e. mine/mill tailings, reactor wastes and nuclear fuel wastes, are defined, and the methods currently being proposed for their safe handling and disposal are outlined. The activities associated with reactor decommissioning are also described, as well as the Canadian approach to nuclear liability. The costs associated with nuclear waste management, reactor decommissioning and nuclear liability are also discussed. Finally, the issue of public attitudes towards nuclear energy is addressed. It is concluded that a simple and comprehensive information program is needed to overcome many of the misconceptions that exist about nuclear energy and to provide the public with a more balanced information base on which to make decisions

  5. Reactor physics aspects of burning actinides in a nuclear reactor

    International Nuclear Information System (INIS)

    Hage, W.; Schmidt, E.

    1978-01-01

    A short review of the different recycling strategies of actinides other than fuel treated in the literature, is given along with nuclear data requirements for actinide build-up and transmutation studies. The effects of recycling actinides in a nuclear reactor on the flux distribution, the infinite neutron multiplication factor, the reactivity control system, the reactivity coefficients and the delayed neutron fraction are discussed considering a notional LWR or LMFBR as an Actinide Trasmutaton Reactor. Some operational problems of Actinide Transmutation reactors are mentioned, which are caused by the α-decay heat and the neutron sources of Actinide Target Elements

  6. Prospect of realizing nuclear fusion reactors

    International Nuclear Information System (INIS)

    1989-01-01

    This Report describes the results of the research work on nuclear fusion, which CRIEPI has carried out for about ten years from the standpoint of electric power utilities, potential user of its energy. The principal points are; (a) economic analysis (calculation of costs) based on Japanese analysis procedures and database of commercial fusion reactors, including fusion-fission hybrid reactors, and (b) conceptual design of two types of hybrid reactors, that is, fission-fuel producing DMHR (Demonstration Molten-Salt Hybrid Reactor) and electric-power producing THPR (Tokamak Hybrid Power Reactor). The Report consists of the following chapters: 1. Introduction. 2. Conceptual Design of Hybrid Reactors. 3. Economic Analysis of Commercial Fusion Reactors. 4. Basic Studies Applicable Also to Nuclear Fusion Technology. 5. List of Published Reports and Papers; 6. Conclusion. Appendices. (author)

  7. Research works at the Physics Institute nuclear reactor for the nuclear power engineering

    International Nuclear Information System (INIS)

    Gavars, V.V.; Kalnin'sh, D.O.; Lapenas, A.A.; Tomsons, E.Ya.; Ulmanis, U.A.

    1985-01-01

    Methods for neutron spectra determination in the nuclear reactor core and vessel have been developed. On their base the neutron spectra at the Novo-Voronezh and kola NPPs have been measured. Such measurements are necessary for the determination of the nuclear fuel reprocessing coefficients, for the evaluation of the construction radiation-damage stability and the NPP economical efficiency on the whole. A new type of the reactor regulator - a liquid metal one - has been created. Such regulators are promising in respect of their use at the NPPs. The base for studying new radiation-damage-stable insulators has been founded. The materials obtained are now applied to designing the reactors of the second (fast) and the third (thermonuclear H) generations. There have developed and by a long-time exploitation checked a hot loop, used for materials irradiation. the nuclear reactor in Salaspils provides training of students being the new brain-power for the nuclear power engineering

  8. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  9. Reactors physics. Bases of nuclear physics

    International Nuclear Information System (INIS)

    Diop, Ch.M.

    2006-01-01

    The aim of nuclear reactor physics is to quantify the relevant macroscopic data for the characterization of the neutronic state of a reactor core and to evaluate the effects of radiations (neutrons and gamma radiations) on organic matter and on inorganic materials. This first article presents the bases of nuclear physics in the context of nuclear reactors: 1 - reactor physics and nuclear physics; 2 - atomic nucleus - basic definitions: nucleus constituents, dimensions and mass of the atomic nucleus, mass defect, binding energy and stability of the nucleus, strong interaction, nuclear momentums of nucleons and nucleus; 3 - nucleus stability and radioactivity: equation of evolution with time - radioactive decay law; alpha decay, stability limit of spontaneous fission, beta decay, electronic capture, gamma emission, internal conversion, radioactivity, two-body problem and notion of radioactive equilibrium. (J.S.)

  10. Fabrication of metallic fuel for fast breeder reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arbind; Mittal, R.K.; Prasad, R.S.; Mahule, N.; Kumar, Arun; Prasad, G.J.

    2012-01-01

    Natural uranium oxide fuelled PHWRs comprises of first stage of Indian nuclear power programme. Liquid metal fast breeder reactors fuelled by Pu (from PHWR's) form the second stage. A shorter reactor doubling time is essential in order to accelerate the nuclear power growth in India. Metallic fuels are known to provide shorter doubling times, necessitating to be used as driver fuel for fast breeder reactors. One of the fabrication routes for metallic fuels having random grain orientation, is injection casting technique. The technique finds its basis in an elementary physical concept - the possibility of supporting a liquid column within a tube, by the application of a pressure difference across the liquid interface inside and outside the tube. At AFD, BARC a facility has been set-up for injection casting of uranium rods in quartz tube moulds, demoulding of cast rods, end-shearing of rods and an automated inspection system for inspection of fuel rods with respect to mass, length, diameter and diameter variation along the length and internal and external porosities/voids. All the above facilities have been set-up in glove boxes and have successfully been used for fabrication of uranium bearing fuel rods. The facility has been designed for fabrication and inspection of Pu-bearing metallic fuels also, if required

  11. Overview moderator material for nuclear reactor components

    International Nuclear Information System (INIS)

    Mairing Manutu Pongtuluran; Hendra Prihatnadi

    2009-01-01

    In order for a reactor design is considered acceptable absolute technical requirement is fulfilled because the most important part of a reactor design. Safety considerations emphasis on the handling of radioactive substances emitted during the operation of a reactor and radioactive waste handling. Moderator material is a layer that interacts directly with neutrons split the nuclear fuel that will lead to changes in physical properties, nuclear properties, mechanical properties and chemical properties. Reviews moderator of this time is of the types of moderator is often used to meet the requirements as nuclear material. (author)

  12. Preparation fo nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  13. Preparation of nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN, are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  14. Chapter 12. Nullification of nuclear reactors

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Harangozo, M.

    2000-01-01

    This is a chapter of textbook of radioecology for university students. In this chapter authors deal with problems connected with nullification of nuclear reactors. There are tree basic methods of nullification of nuclear reactors: (1) conservation, (2) safe close (wall up, embed in concrete), (3) direct dismantlement and remotion and two combined ways: (1) combination of mothball with subsequent dismantlement and remotion and (2) combination of safe close with subsequent dismantlement and remotion. Activity levels as well as volumes of radioactive wastes connected with decommissioning of nuclear reactors are reviewed

  15. Nuclear reactor steam depressurization valve

    International Nuclear Information System (INIS)

    Moore, G.L.

    1991-01-01

    This patent describes improvement in a nuclear reactor plant, an improved steam depressurization valve positioned intermediate along a steam discharge pipe for controlling the venting of steam pressure from the reactor through the pipe. The improvement comprises: a housing including a domed cover forming a chamber and having a partition plate dividing the chamber into a fluid pressure activation compartment and a steam flow control compartment, the valve housing being provided with an inlet connection and an outlet connection in the steam flow control compartment, and a fluid duct in communication with a source of fluid pressure for operating the valve; a valve set mounted within the fluid flow control compartment comprising a cylindrical section surrounding the inlet connection with one end adjoining the connection and having a radially projecting flange at the other end with a contoured extended valve sealing flange provided with an annular valve sealing member, and a valve cylinder traversing the partition plate and reciprocally movable within an opening in the partition plate with one terminal and extending into the fluid pressure activation compartment and the other terminal end extending into the steam flow control compartment coaxially aligned with the valve seat surrounding the inlet connection, the valve cylinder being surrounded by two bellow fluid seals and provided with guides to inhibit lateral movement, an end of the valve cylinder extending into the fluid flow control compartment having a radially projecting flange substantially conterminous with the valve seat flange and having a contoured surface facing and complimentary to the contoured valve seating surface whereby the two contoured valve surfaces can meet in matching relationship, thus providing a pressure actuated reciprocatable valve member for making closing contact with the valve seat and withdrawing therefrom for opening fluid flow through the valve

  16. Artificial intelligence applications to nuclear reactor diagnostics

    International Nuclear Information System (INIS)

    Lee, J.C.; Hassberger, J.A.; Wehe, D.K.

    1987-01-01

    The authors research into applications of artificial intelligence to nuclear reactor diagnostics involves three main areas. In the first area, the authors combine reactor simulation models and expert systems to diagnose the state of the plant. The second area examines ways in which the rule or knowledge base of an intelligent controller can be generated systematically from either fault trees or acquired plant data. Third, efforts are described to develop the capabilities to validate these techniques in a realistic reactor setting. The techniques are applicable to all reactor types, including fast reactors

  17. New advanced small and medium nuclear power reactors: possible nuclear power plants for Australia

    International Nuclear Information System (INIS)

    Dussol, R.J.

    2003-01-01

    In recent years interest has increased in small and medium sized nuclear power reactors for generating electricity and process heat. This interest has been driven by a desire to reduce capital costs, construction times and interest during construction, service remote sites and ease integration into small grids. The IAEA has recommended that the term 'small' be applied to reactors with a net electrical output less than 300 MWe and the term 'medium' to 300-700 MWe. A large amount of experience has been gained over 50 years in the design, construction and operation of small and medium nuclear power reactors. Historically, 100% of commercial reactors were in these categories in 1951-1960, reducing to 21% in 1991-2000. The technologies involved include pressurised water reactors, boiling water reactors, high temperature gas-cooled reactors, liquid metal reactors and molten salt reactors. Details will be provided of two of the most promising new designs, the South African Pebble Bed Modular Reactor (PBMR) of about 110 MWe, and the IRIS (International Reactor Innovative and Secure) reactor of about 335 MWe. Their construction costs are estimated to be about US$l,000/kWe with a generating cost for the PBMR of about US1.6c/kWh. These costs are lower than estimated for the latest designs of large reactors such as the European Pressurised Reactor (EPR) designed for 1,600 MWe for use in Europe in the next decade. It is concluded that a small or medium nuclear power reactor system built in modules to follow an increasing demand could be attractive for generating low cost electricity in many Australian states and reduce problems arising from air pollution and greenhouse gas emissions from burning fossil fuels

  18. Advanced nuclear reactor safety issues and research needs

    International Nuclear Information System (INIS)

    2002-01-01

    On 18-20 February 2002, the OECD Nuclear Energy Agency (NEA) organised, with the co-sponsorship of the International Atomic Energy Agency (IAEA) and in collaboration with the European Commission (EC), a Workshop on Advanced Nuclear Reactor Safety Issues and Research Needs. Currently, advanced nuclear reactor projects range from the development of evolutionary and advanced light water reactor (LWR) designs to initial work to develop even further advanced designs which go beyond LWR technology (e.g. high-temperature gas-cooled reactors and liquid metal-cooled reactors). These advanced designs include a greater use of advanced technology and safety features than those employed in currently operating plants or approved designs. The objectives of the workshop were to: - facilitate early identification and resolution of safety issues by developing a consensus among participating countries on the identification of safety issues, the scope of research needed to address these issues and a potential approach to their resolution; - promote the preservation of knowledge and expertise on advanced reactor technology; - provide input to the Generation IV International Forum Technology Road-map. In addition, the workshop tried to link advancement of knowledge and understanding of advanced designs to the regulatory process, with emphasis on building public confidence. It also helped to document current views on advanced reactor safety and technology, thereby contributing to preserving knowledge and expertise before it is lost. (author)

  19. Nuclear reactor fuel sub-assemblies

    International Nuclear Information System (INIS)

    Dodd, J.A.

    1981-01-01

    An improved fuel sub-assembly for a liquid metal cooled fast breeder reactor, is described, in which fatigue damage due to buffeting by cross-current flows is reduced and protection is provided against damage by contact with other reactor structures during loading and unloading of the sub-assembly. (U.K.)

  20. Nuclear Burning Wave Modular Fast Reactor Concept

    International Nuclear Information System (INIS)

    Kodochigov, N.G.; Sukharev, Yu.P.

    2014-01-01

    The necessity to provide nuclear power industry, comparable in a scope with power industry based on a traditional fuel, inspired studies of an open-cycle fast reactor aimed at: - solution of the problem of fuel provision by implementing the highest breeding characteristics of new fissile materials of raw isotopes in a fast reactor and applying accumulated fissile isotopes in the same reactor, independently on a spent fuel reprocessing rate in the external fuel cycle; - application of natural or depleted uranium for makeup fuel, which, with no spent fuel reprocessing, forms the most favorable non-proliferation conditions; - application of inherent properties of the core and reactor for safety provision. The present report, based on previously published papers, gives the theoretical backgrounds of the concept of the reactor with a nuclear burning wave, in which an enriched-fuel core (driver) is replaced by a blanket, and basic conditions for nuclear burning wave initiating and keeping are shown. (author)

  1. Nuclear propulsion apparatus with alternate reactor segments

    International Nuclear Information System (INIS)

    Szekely, T.

    1979-01-01

    Nuclear propulsion apparatus comprising: (a) means for compressing incoming air; (b) nuclear fission reactor means for heating said air; (c) means for expanding a portion of the heated air to drive said compressing means; (d) said nuclear fission reactor means being divided into a plurality of radially extending segments; (e) means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and (f) means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus. 12 claims

  2. Dynamics of nuclear reactor operational cycles

    International Nuclear Information System (INIS)

    Chapman, L.D.; Wayland, J.R.

    With this system dynamics computer model, one can explore the long term effects of a nuclear reactor program. Given an input demand for reactors, the consequences on each sector and the interactions among sectors can be simulated to provide a better understanding of the time development of a nuclear reactor program. The model permits the determination of various levels of activity as a function of time for plant enrichment, fuel fabrication, fuel reprocessing and storage of waste products. In addition, the rates of construction of reactors, spent fuel transit, disposal of waste, mining, shipping, recycling and enrichment can be investigated for optimal planning purposes. The model has been written in a very general manner so that it can be used to simulate any nuclear reactor program. It is an easy task to relate the amount of accidental or operational release of radioactive contaminants into our environment to the activity levels of each of the above sectors. (U.S.)

  3. Inherent safe fast breeder reactors and actinide burners, metallic fuel

    International Nuclear Information System (INIS)

    Dorner, S.; Schumacher, G.

    1991-04-01

    Nuclear power without breeder strategy uses the possibilities for the energy supply only to a small extend compared to the possibilities of fast breeder reactors, which offer an energy supply for thousands of years. Moreover, a fast neutron device offers the opportunity to run an actinide-burner that could improve the situation of waste management. Within this concept metallic fuel could play a key role. The present report shows some important aspects of the concept like the pyrometallic reprocessing, the behaviour of metallic fuel during a core meltdown accident and others. The report should contribute to the discussion of these problems and initialize further work

  4. Historical civilian nuclear accident based Nuclear Reactor Condition Analyzer

    Science.gov (United States)

    McCoy, Kaylyn Marie

    There are significant challenges to successfully monitoring multiple processes within a nuclear reactor facility. The evidence for this observation can be seen in the historical civilian nuclear incidents that have occurred with similar initiating conditions and sequences of events. Because there is a current lack within the nuclear industry, with regards to the monitoring of internal sensors across multiple processes for patterns of failure, this study has developed a program that is directed at accomplishing that charge through an innovation that monitors these systems simultaneously. The inclusion of digital sensor technology within the nuclear industry has appreciably increased computer systems' capabilities to manipulate sensor signals, thus making the satisfaction of these monitoring challenges possible. One such manipulation to signal data has been explored in this study. The Nuclear Reactor Condition Analyzer (NRCA) program that has been developed for this research, with the assistance of the Nuclear Regulatory Commission's Graduate Fellowship, utilizes one-norm distance and kernel weighting equations to normalize all nuclear reactor parameters under the program's analysis. This normalization allows the program to set more consistent parameter value thresholds for a more simplified approach to analyzing the condition of the nuclear reactor under its scrutiny. The product of this research provides a means for the nuclear industry to implement a safety and monitoring program that can oversee the system parameters of a nuclear power reactor facility, like that of a nuclear power plant.

  5. Calculation models for a nuclear reactor

    International Nuclear Information System (INIS)

    Tashanii, Ahmed Ali

    2010-01-01

    Determination of different parameters of nuclear reactors requires neutron transport calculations. Due to complicity of geometry and material composition of the reactor core, neutron calculations were performed for simplified models of the real arrangement. In frame of the present work two models were used for calculations. First, an elementary cell model was used to prepare cross section data set for a homogenized-core reactor model. The homogenized-core reactor model was then used to perform neutron transport calculation. The nuclear reactor is a tank-shaped thermal reactor. The semi-cylindrical core arrangement consists of aluminum made fuel bundles immersed in water which acts as a moderator as well as a coolant. Each fuel bundle consists of aluminum cladded fuel rods arranged in square lattices. (author)

  6. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  7. Nuclear reactor fuel assembly grid

    International Nuclear Information System (INIS)

    Alder, J.L.; Kmonk, S.; Racki, F.R.

    1981-01-01

    A grid for a nuclear reactor fuel assembly which includes intersecting straps arranged to form a structure of egg crate configuration. The cells defined by the intersecting straps are adapted to contain axially extending fuel rods, each of which occupy one cell, while each control rod guide tube or thimble occupies the space of four cells. To effect attachment of each guide thimble to the grid, a short intermediate sleeve is brazed to the strap walls and the guide thimble is then inserted therein and mechanically secured to the sleeve walls. Each sleeve preferably, although not necessarily, is equipped with circumferentially spaced openings useful in adjusting dimples and springs in adjacent cells. To accurately orient each sleeve in position in the grid, the ends of straps extending in one direction project through transversely extending straps and terminate in the wall of the guide sleeve. Other straps positioned at right angles thereto terminate in that portion of the wall of a strap which lies next to a wall of the sleeve

  8. Hysteresis phenomenon in nuclear reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pirayesh, Behnam; Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch; Akbari, Monireh [Shahid Rajaee Teacher Training Univ., Tehran (Iran, Islamic Republic of). Dept. of Mathematics

    2017-05-15

    This paper applies a nonlinear analysis method to show that hysteresis phenomenon, due to the Saddle-node bifurcation, may occur in the nuclear reactor. This phenomenon may have significant effects on nuclear reactor dynamics and can even be the beginning of a nuclear reactor accident. A system of four dimensional nonlinear ordinary differential equations was considered to study the hysteresis phenomenon in a typical nuclear reactor. It should be noted that the reactivity was considered as a nonlinear function of state variables. The condition for emerging hysteresis was investigated using Routh-Hurwitz criterion and Sotomayor's theorem for saddle node bifurcation. A numerical analysis is also provided to illustrate the analytical results.

  9. SEISMIC DESIGN CRITERIA FOR NUCLEAR POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R. A.

    1963-10-15

    The nature of nuclear power reactors demands an exceptionally high degree of seismic integrity. Considerations involved in defining earthquake resistance requirements are discussed. Examples of seismic design criteria and applications of the spectrum technique are described. (auth)

  10. Sensors for use in nuclear reactor cores

    International Nuclear Information System (INIS)

    Brown, W.L.; Geronime, R.L.

    1978-01-01

    Sensors including radiation detectors and the like for use within the core of nuclear reactors and which are constructed in a manner to provide optimum reliability of the sensor during use are described

  11. Reactor core and initially loaded reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo.

    1989-01-01

    In BWR type reactors, improvement for the reactor shutdown margin is an important characteristic condition togehter with power distribution flattening . However, in the reactor core at high burnup degree, the reactor shutdown margin is different depending on the radial position of the reactor core. That is , the reactor shutdown margin is smaller in the outer peripheral region than in the central region of the reactor core. In view of the above, the reactor core is divided radially into a central region and as outer region. The amount of fissionable material of first fuel assemblies newly loaded in the outer region is made less than the amount of the fissionable material of second fuel assemblies newly loaded in the central region, to thereby improve the reactor shutdown margin in the outer region. Further, the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower portion of the first fuel assemblies is made smaller than the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower region of the second fuel assemblies, to thereby obtain a sufficient thermal margin in the central region. (K.M.)

  12. Liquid metal fast reactor transient design

    International Nuclear Information System (INIS)

    Horak, C.; Purvis, E. III

    2000-01-01

    An examination has been made of how the currently available computing capabilities could be used to reduce Liquid Metal Fast Reactor design, manufacturing, and construction cost. While the examination focused on computer analyses some other promising means to reduce costs were also examined. (author)

  13. Transfer hook for nuclear fuel assemblies and nuclear reactor having a such hook

    International Nuclear Information System (INIS)

    Thevenot, L.P.

    1990-01-01

    For removing irradiated nuclear fuel assemblies above the level of the liquid metal in the vessel without loss of cooling, the hook mechanism has a guide tube with two annular cavities and a pump to circulate the reactor cooling fluid which flows out by gravity. A such hook used in a LMFBR reduces the height of the reactor vessel and consequently the initial capital cost [fr

  14. Nuclear reactor shield including magnesium oxide

    International Nuclear Information System (INIS)

    Rouse, C.A.; Simnad, M.T.

    1981-01-01

    An improvement is described for nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux. The reactor shielding includes means providing structural support, neutron moderator material, neutron absorber material and other components, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron

  15. Nuclear fast neutron reactor cooled by a liquid metal and of which internal structures are equipped with a thermal protection device

    International Nuclear Information System (INIS)

    Lemercier, G.; Lions, N.

    1986-01-01

    The internal structures of a nuclear fast neutron reactor are covered at least partially, on the most hot side, by a thermal protection device. This device comprises modular plates arranged end to end with a certain play between themselves and taking approximately the shape of the internal structures. Each plate is fixed in its center on the internal structures by a stud. A small plate fixed at one of the corners of each plate and covering partially the adjacent plates ensures the safety fixing of these ones [fr

  16. Advanced nuclear reactors and their simulators

    International Nuclear Information System (INIS)

    Chaushevski, Anton; Boshevski, Tome

    2003-01-01

    Population growth, economy development and improvement life standard impact on continually energy needs as well as electricity. Fossil fuels have limited reserves, instability market prices and destroying environmental impacts. The hydro energy capacities highly depend on geographic and climate conditions. The nuclear fission is significant factor for covering electricity needs in this century. Reasonable capital costs, low fuel and operating expenses, environmental acceptable are some of the facts that makes the nuclear energy an attractive option especially for the developing countries. The simulators for nuclear reactors are an additional software tool in order to understand, study research and analyze the processes in nuclear reactors. (Original)

  17. Nuclear data requirements for fusion reactor shielding

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1979-01-01

    The nuclear data requirements for experimental, demonstration and commercial fusion reactors are reviewed. Particular emphasis is given to the shield as well as major reactor components of concern to the nuclear performance. The nuclear data requirements are defined as a result of analyzing four key areas. These are the most likely candidate materials, energy range, types of needed nuclear data, and the required accuracy in the data. Deducing the latter from the target goals for the accuracy in prediction is also discussed. A specific proposal of measurements is recommended. Priorities for acquisition of data are also assigned. (author)

  18. Air box shock absorber for a nuclear reactor

    International Nuclear Information System (INIS)

    Pradhan, A.V.; George, J.A.

    1977-01-01

    Disclosed is an air box type shock absorber primarily for use in an ice condenser compartment of a nuclear reactor. The shock absorber includes a back plate member and sheet metal top, bottom, and front members. The front member is prefolded, and controlled clearances are provided among the members for predetermined escape of air under impact and compression. Prefolded internal sheet metal stiffeners also absorb a portion of the kinetic energy imparted to the shock absorber, and limit rebound. An external restraining rod guided by restraining straps insures that the sheet metal front member compresses inward upon impact. 6 claims, 11 figures

  19. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  20. Method for refuelling a nuclear reactor core

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This invention relates to an improved method for refuelling a nuclear reactor core inside a reactor vessel. The technique allows a substantial reduction in the refuelling time as compared with previously known methods and permits fewer out of core operations and smaller temporary storage space. (U.K.)

  1. Nuclear data requirements for fusion reactor nucleonics

    International Nuclear Information System (INIS)

    Bhat, M.R.; Abdou, M.A.

    1980-01-01

    Nuclear data requirements for fusion reactor nucleonics are reviewed and the present status of data are assessed. The discussion is divided into broad categories dealing with data for Fusion Materials Irradiation Test Facility (FMIT), D-T Fusion Reactors, Alternate Fuel Cycles and the Evaluated Data Files that are available or would be available in the near future

  2. Fuel assemblies for use in nuclear reactors

    International Nuclear Information System (INIS)

    Schluderberg, D.C.

    1981-01-01

    A fuel assembly for use in pressurized water cooled nuclear fast breeder reactors is described in which moderator to fuel ratios, conducive to a high Pu-U-D 2 O reactor breeding ratio, are obtained whilst at the same time ensuring accurate spacing of fuel pins without the parasitic losses associated with the use of spacer grids. (U.K.)

  3. Design of an organic simplified nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shirvan, Koroush [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States); Forrest, Eric [Primary Standards Laboratory, Sandia National Laboratories, Albuquerque (United States)

    2016-08-15

    Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  4. Problems of nuclear reactor safety. Vol. 2

    International Nuclear Information System (INIS)

    Goncharov, L.A.

    1995-01-01

    Theses of proceedings of the 9 Topical Meeting on problems of nuclear power plant safety are presented. Reports include results of neutron-physical experiments carried out for reactor safety justification. Concepts of advanced reactors with improved safety are considered. Results of researches on fuel cycles are given too

  5. Design of an Organic Simplified Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-08-01

    Full Text Available Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  6. Emergency cooling system for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Murata, Ryoichi; Fujiwara, Toshikatsu.

    1980-01-01

    Purpose: To suitably cool liquid metal as coolant in emergency in a liquid metal cooled reactor by providing a detector for the pressure loss of the liquid metal passing through a cooling device in a loop in which the liquid metal is flowed and communicating the detector with a coolant flow regulator. Constitution: A nuclear reactor is stopped in nuclear reaction by control element or the like in emergency. If decay heat is continuously generated for a while and secondary coolant is insufficiently cooled with water or steam flowed through a steam and water loop, a cooler is started. That is, low temperature air is supplied by a blower through an inlet damper to the cooler to cool the secondary coolant flowed into the cooler through a bypass pipe so as to finally safely stop an entire plant. Since the liquid metal is altered in its physical properties by the temperature at this time, it is detected to regulate the opening of the valve of the damper according to the detected value. (Sekiya, K.)

  7. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    1986-11-01

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices [sr

  8. Radionuclide trap for liquid metal cooled reactors

    International Nuclear Information System (INIS)

    McGuire, J.C.; Brehm, W.F.

    1978-10-01

    At liquid metal cooled reactor operating temperatures, radioactive corrosion product transport and deposition in the primary system will be sufficiently high to limit access time for maintenance of system components. A radionuclide trap has been developed to aid in controlling radioactivity transport. This is a device which is located above the reactor core and which acts as a getter, physically immobilizing radioactive corrosion products, particularly 54 Mn. Nickel is the getter material used. It is most effective at temperatures above 450 0 C and effectiveness increases with increasing temperature. Prototype traps have been tested in sodium loops for 40,000 hours at reactor primary temperatures and sodium velocities. Several possible in-reactor trap sites were considered but a location within the top of each driver assembly was chosen as the most convenient and effective. In this position the trap is changed each time fuel is changed

  9. Research nuclear reactor RA - Annual Report 1989

    International Nuclear Information System (INIS)

    Sotic, O.

    1989-12-01

    Annual report concerning the project 'RA research nuclear reactor' for 1989, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities [sr

  10. RA Research nuclear reactor - Annual report 1987

    International Nuclear Information System (INIS)

    1987-12-01

    Annual report concerning the project 'RA research nuclear reactor' for 1987, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities [sr

  11. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  12. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  13. Materials for generation-IV nuclear reactors

    International Nuclear Information System (INIS)

    Alvarez, M. G.

    2009-01-01

    Materials science and materials development are key issues for the implementation of innovative reactor systems such as those defined in the framework of the Generation IV. Six systems have been selected for Generation IV consideration: gas-cooled fast reactor, lead-cooled fast reactor, molten salt-cooled reactor, sodium-cooled fast reactor, supercritical water-cooled reactor, and very high temperature reactor. The structural materials need to resist much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. For this reason, the first consideration in the development of Generation-IV concepts is selection and deployment of materials that operate successfully in the aggressive operating environments expected in the Gen-IV concepts. This paper summarizes the Gen-IV operating environments and describes the various candidate materials under consideration for use in different structural applications. (author)

  14. Use of hafnium in control bars of nuclear reactors

    International Nuclear Information System (INIS)

    Ramirez S, J.R.; Alonso V, G.

    2003-01-01

    Recently the use of hafnium as neutron absorber material in nuclear reactors has been reason of investigation by virtue of that this material has nuclear properties as to the neutrons absorption and structural that can prolong the useful life of the control mechanisms of the nuclear reactors. In this work some of those more significant hafnium properties are presented like nuclear material. Also there are presented calculations carried out with the HELIOS code for fuel cells of uranium oxide and of uranium and plutonium mixed oxides under controlled conditions with conventional bars of boron carbide and also with similar bars to which are substituted the absorbent material by metallic hafnium, the results are presented in this work. (Author)

  15. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  16. Fast-acting nuclear reactor control device

    International Nuclear Information System (INIS)

    Kotlyar, O.M.; West, P.B.

    1993-01-01

    A fast-acting nuclear reactor control device is described for controlling a safety control rod within the core of a nuclear reactor, the reactor controlled by a reactor control system, the device comprising: a safety control rod drive shaft and an electromagnetic clutch co-axial with the drive shaft operatively connected to the safety control rod for driving and positioning the safety control rod within or without the reactor core during reactor operation, the safety rod being oriented in a substantially vertical position to allow the rod to fall into the reactor core under the influence of gravity during shutdown of the reactor; the safety control rod drive shaft further operatively connected to a hydraulic pump such that operation of the drive shaft simultaneously drives and positions the safety control rod and operates the hydraulic pump such that a hydraulic fluid is forced into an accumulator, filling the accumulator with oil for the storage and supply of primary potential energy for safety control rod insertion such that the release of potential energy in the accumulator causes hydraulic fluid to flow through the hydraulic pump, converting the hydraulic pump to a hydraulic motor having speed and power capable of full length insertion and high speed driving of the safety control rod into the reactor core; a solenoid valve interposed between the hydraulic pump and the accumulator, said solenoid valve being a normally open valve, actuated to close when the safety control rod is out of the reactor during reactor operation; and further wherein said solenoid opens in response to a signal from the reactor control system calling for shutdown of the reactor and rapid insertion of the safety control rod into the reactor core, such that the opening of the solenoid releases the potential energy in the accumulator to place the safety control rod in a safe shutdown position

  17. Computerized reactor monitor and control for nuclear reactors

    International Nuclear Information System (INIS)

    Buerger, L.

    1982-01-01

    The analysis of a computerized process control system developed by Transelektro-KFKI-Videoton (Hangary) for a twenty-year-old research reactor in Budapest and or a new one in Tajura (Libya) is given. The paper describes the computer hardware (R-10) and the implemented software (PROCESS-24K) as well as their applications at nuclear reactors. The computer program provides for man-machine communication, data acquisition and processing, trend and alarm analysis, the control of the reactor power, reactor physical calculations and additional operational functions. The reliability and the possible further development of the computerized systems which are suitable for application at reactors of different design are also discussed. (Sz.J.)

  18. Nuclear power reactors: reactor safety and military and civil defence

    International Nuclear Information System (INIS)

    Hvinden, T.

    1976-01-01

    The formation of fission products and plutonium in reactors is briefly described, followed by a short general discussion of reactor safety. The interaction of reactor safety and radioactive release considerations with military and civil defence is thereafter discussed. Reactors and other nuclear plants are factors which must be taken into account in the defence of the district around the site, and as potential targets of both conventional and guerilla attacks and sabotage, requiring special defence. The radiological hazards arising from serious damage to a power reactor by conventional weapons are briefly discussed, and the benefits of underground siting evaluated. Finally the author discusses the significance of the IAEA safeguards work as a preventive factor. (JIW)

  19. Reactor coolant pumps for nuclear reactors

    International Nuclear Information System (INIS)

    Harand, E.; Richter, G.; Tschoepel, G.

    1975-01-01

    A brake for the pump rotor of a main coolant pump or a shutoff member on the pump are provided in order to prevent excess speeds of the pump rotor. Such excess speeds may occur in PWR type reactors with water at a pressure below, e.g., 150 bars if there is leakage from a coolant line associated with the main coolant pump. As a brake, a centrifugal brake depending upon the pump speed or a brake ring arranged on the pump housing and acting on the pump rotor, which ring would be activated by pressure differentials in the pump, may be used. If the pressure differences between suction and pressure sockets are very small, a controlled hydraulic increase of the pressure force on the brake may also be provided. Furthermore, a turbine brake may be provided. A slide which is automatically movable in closing position along the pump rotor axis is used as a shutoff element. It is of cylindrical configuration and is arranged concentrically with the rotor axis. (DG) [de

  20. Integral Fast Reactor: A future source of nuclear energy

    International Nuclear Information System (INIS)

    Southon, R.

    1993-01-01

    Argonne National Laboratory is developing a reactor concept that would be an important part of the worlds energy future. This report discusses the Integral Fast Reactor (IFR) concept which provides significant improvements over current generation reactors in reactor safety, plant complexity, nuclear proliferation, and waste generation. Two major facilities, a reactor and a fuel cycle facility, make up the IFR concept. The reactor uses fast neutrons and metal fuel in a sodium coolant at atmospheric pressure that relies on laws of physics to keep it safe. The fuel cycle facility is a hot cell using remote handling techniques for fabricating reactor fuel. The fuel feed stock includes spent fuel from the reactor, and potentially, spent light water reactor fuel and plutonium from weapons. This paper discusses the unique features of the IFR concept and the differences the quality assurance program has from current commercial practices. The IFR concept provides an opportunity to design a quality assurance program that makes use of the best contemporary ideas on management and quality

  1. Reactor physics for non-nuclear engineers

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2011-01-01

    A one-term undergraduate course in reactor physics is described. The instructional format is strongly influenced by its intended audience of non-nuclear engineering students. In contrast to legacy treatments of the subject, the course focuses on the physics of nuclear power reactors with no attempt to include instruction in numerical methods. The multi-physics of power reactors is emphasized highlighting the close interactions between neutronic and thermal phenomena in design and analysis. Consequently, the material's sequencing also differs from traditional treatments, for example treating kinetics before the neutron diffusion is introduced. (author)

  2. Safety studies concerning nuclear power reactors

    International Nuclear Information System (INIS)

    Bailly, Jean; Pelce, Jacques

    1980-01-01

    The safety of nuclear installations poses different technical problems, whether concerning pressurized water reactors or fast reactors. But investigating methods are closely related and concern, on the one hand, the behavior of shields placed between fuel and outside and, on the other, analysis of accidents. The article is therefore in two parts based on the same plan. Concerning light water reactors, the programme of studies undertaken in France accounts for the research carried out in countries where collaboration agreements exist. Concerning fast reactors, France has the initiative of their studies owing to her technical advance, which explains the great importance of the programmes under way [fr

  3. Nuclear reactor auxiliary heat removal system

    International Nuclear Information System (INIS)

    Thompson, R.E.; Pierce, B.L.

    1977-01-01

    An auxiliary heat removal system to remove residual heat from gas-cooled nuclear reactors is described. The reactor coolant is expanded through a turbine, cooled in a heat exchanger and compressed by a compressor before reentering the reactor coolant. The turbine powers both the compressor and the pump which pumps a second fluid through the heat exchanger to cool the reactor coolant. A pneumatic starter is utilized to start the turbine, thereby making the auxiliary heat removal system independent of external power sources

  4. Arkansas Tech University TRIGA nuclear reactor

    International Nuclear Information System (INIS)

    Sankoorikal, J.; Culp, R.; Hamm, J.; Elliott, D.; Hodgson, L.; Apple, S.

    1990-01-01

    This paper describes the TRIGA nuclear reactor (ATUTR) proposed for construction on the campus of Arkansas Tech University in Russellville, Arkansas. The reactor will be part of the Center for Energy Studies located at Arkansas Tech University. The reactor has a steady state power level of 250 kW and can be pulsed with a maximum reactivity insertion of $2.0. Experience gained in dismantling and transporting some of the components from Michigan State University, and the storage of these components will be presented. The reactor will be used for education, training, and research. (author)

  5. Concepts for space nuclear multi-mode reactors

    International Nuclear Information System (INIS)

    Myrabo, L.; Botts, T.E.; Powell, J.R.

    1983-01-01

    A number of nuclear multi-mode reactor power plants are conceptualized for use with solid core, fixed particle bed and rotating particle bed reactors. Multi-mode systems generate high peak electrical power in the open cycle mode, with MHD generator or turbogenerator converters and cryogenically stored coolants. Low level stationkeeping power and auxiliary reactor cooling (i.e., for the removal of reactor afterheat) are provided in a closed cycle mode. Depending on reactor design, heat transfer to the low power converters can be accomplished by heat pipes, liquid metal coolants or high pressure gas coolants. Candidate low power conversion cycles include Brayton turbogenerator, Rankine turbogenerator, thermoelectric and thermionic approaches. A methodology is suggested for estimating the system mass of multi-mode nuclear power plants as a function of peak electric power level and required mission run time. The masses of closed cycle nuclear and open cycle chemical power systems are briefly examined to identify the regime of superiority for nuclear multi-mode systems. Key research and technology issues for such power plants are also identified

  6. Nuclear data usage for research reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Soyama, Kazuhiko; Amano, Toshio

    1996-01-01

    In the department of research reactor, many neutronics calculations have been performed to construct, to operate and to modify research reactors of JAERI with several kinds of nuclear data libraries. This paper presents latest two neutronic analyses on research reactors. First one is design work of a low enriched uranium (LEU) fuel for JRR-4 (Japan Research Reactor No.4). The other is design of a uranium silicon dispersion type (silicide) fuel of JRR-3M (Japan Research Reactor No.3 Modified). Before starting the design work, to estimate the accuracy of computer code and calculation method, experimental data are calculated with several nuclear data libraries. From both cases of calculations, it is confirmed that JENDL-3.2 gives about 1 %Δk/k higher excess reactivity than JENDL-3.1. (author)

  7. Simulation of a marine nuclear reactor

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Kyouya, Masahiko; Kobayashi, Hideo; Ochiai, Masaaki

    1995-01-01

    A Nuclear-powered ship Engineering Simulation SYstem (NESSY) has been developed by the Japan Atomic Energy Research Institute as an advanced design tool for research and development of future marine reactors. A marine reactor must respond to changing loads and to the ship's motions because of the ship's maneuvering and its presence in a marine environment. The NESSY has combined programs for the reactor plant behavior calculations and the ship's motion calculations. Thus, it can simulate reactor power fluctuations caused by changing loads and the ship's motions. It can also simulate the behavior of water in the pressurizer and steam generators. This water sloshes in response to the ship's motions. The performance of NESSY has been verified by comparing the simulation calculations with the measured data obtained by experiments performed using the nuclear ship Mutsu. The effects of changing loads and the ship's motions on the reactor behavior can be accurately simulated by NESSY

  8. Use of hafnium in control bars of nuclear reactors; Uso de hafnio en barras de control de reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin-mx

    2003-07-01

    Recently the use of hafnium as neutron absorber material in nuclear reactors has been reason of investigation by virtue of that this material has nuclear properties as to the neutrons absorption and structural that can prolong the useful life of the control mechanisms of the nuclear reactors. In this work some of those more significant hafnium properties are presented like nuclear material. Also there are presented calculations carried out with the HELIOS code for fuel cells of uranium oxide and of uranium and plutonium mixed oxides under controlled conditions with conventional bars of boron carbide and also with similar bars to which are substituted the absorbent material by metallic hafnium, the results are presented in this work. (Author)

  9. U.S. Nuclear Power Reactor Plant Status

    Data.gov (United States)

    Nuclear Regulatory Commission — Demographic data on U.S. commercial nuclear power reactors, including: plant name/unit number, docket number, location, licensee, reactor/containment type, nuclear...

  10. Nuclear instrumentation for research reactors; Instrumentacion nuclear para reactores nucleares de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Unidad de Actividades de Reactores y Centrales Nucleares. Sector Instrumentacion y Control

    1997-10-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70`. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs.

  11. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  12. Small reactors and the 'second nuclear era'

    International Nuclear Information System (INIS)

    Egan, J.R.

    1984-01-01

    Predictions of the nuclear industry's demise are premature and distort both history and politics. The industry is reemerging in a form commensurate with the priorities of those people and nations controlling the global forces of production. The current lull in plant orders is due primarily to the world recession and to factors related specifically to reactor size. Traditional economies of scale for nuclear plants have been greatly exaggerated. Reactor vendors and governments in Great Britain, France, West Germany, Japan, the United States, Sweden, Canada, and the Soviet Union are developing small reactors for both domestic applications and export to the Third World. The prefabricated, factory-assembled plants under 500 MWe may alleviate many of the existing socioeconomic constraints on nuclear manufacturing, construction, and operation. In the industrialized world, small reactors could furnish a qualitatively new energy option for utilities. But developing nations hold the largest potential market for small reactors due to the modest size of their electrical systems. These units could double or triple the market potential for nuclear power in this century. Small reactors will both qualitatively and quantitatively change the nature of nuclear technology transfers, offering unique advantages and problems vis-a-vis conventional arrangements. (author)

  13. Neutron flux measuring system for nuclear reactor

    International Nuclear Information System (INIS)

    Aoki, Kazuo.

    1977-01-01

    Purpose: To avoid the generation of an undesired scram signal due to abrupt changes in the neutron level given to the detectors disposed near the boundary between the moderator and the atmosphere. Constitution: In a nuclear reactor adapted to conduct power control by the change of the level in the moderator such as heavy water, the outputs from the neutron detectors disposed vertically are averaged and the nuclear reactor is scramed corresponding to the averaged value. In this system, moderator level detectors are additionally provided to the nuclear reactor and their outputs, moderator level signal, are sent to a power averaging device where the output signals of the neutron detectors are judged if they are delivered from neutrons in the moderator or not depending on the magnitude of the level signal and the outputs of the detectors out of the moderator are substantially excluded. The reactor interlock signal from the device is utilized as a scram signal. (Seki, T.)

  14. The US Advanced Liquid-Metal Reactor Program

    International Nuclear Information System (INIS)

    Brolin, E.C.

    1992-01-01

    Based on National Energy Strategy projections, utilities will be required to substantially increase electric generating capacity over the next 40 yr to meet economic growth requirements and replace retiring capacity. Although aggressive conservation measures can save up to 85 GW(electric), ∼195 GW(electric) of additional generating capcity will still be needed by 2010. Assuming startup of new plants around 2000, US Department of Energy (DOE) analyses show that nuclear power can contribute 195 GW(electric) of capacity by 2030, or ∼20% of total electric generation. The DOE is involved in a number of strategies designed to revitalize the nuclear power industry and enable it to meet this projected need for additional capacity. Among these is an integrated overall strategy for advanced reactor development and high-level waste management. A high priority in pursuit of this strategy is the Advanced Liquid-Metal Reactor (ALMR) Program

  15. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  16. Method for processing spent nuclear reactor fuel

    International Nuclear Information System (INIS)

    Levenson, M.; Zebroski, E.L.

    1981-01-01

    A method and apparatus are claimed for processing spent nuclear reactor fuel wherein plutonium is continuously contaminated with radioactive fission products and diluted with uranium. Plutonium of sufficient purity to fabricate nuclear weapons cannot be produced by the process or in the disclosed reprocessing plant. Diversion of plutonium is prevented by radiation hazards and ease of detection

  17. Nuclear reactor unit shutdown planning

    International Nuclear Information System (INIS)

    Gardais, J.P.

    1994-01-01

    In order to optimize the reactor maintenance shutdown efficiency and the reactor availability, an audit had been performed on the shutdown organization at EDF: management, skills, methods and experience feedback have been evaluated; several improvement paths have been identified: project management, introduction of shutdown management professionals, shutdown permanent industrialization, and experience feedback engineering

  18. Astrid (fast breeder nuclear reactor)

    International Nuclear Information System (INIS)

    2014-01-01

    This document presents ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a French project of sodium-cooled fast breeder reactor, fourth generation reactor which should be fuelled by uranium 238 rather than uranium 235, and should therefore need less extracted natural uranium to produce electricity. The operation principle of fast breeder reactors is described. They notably directly consume plutonium, allow an easier radioactive waste management as they transform long life radioactive elements into shorter life elements by transmutation. The regeneration process is briefly described, and the various operation modes are evoked (iso-generator, sub-generator, and breeder). Some peculiarities of sodium-cooled reactors are outlined. The Astrid operation principle is described, its main design innovations outlined. Various challenges are discussed regarding safety of supply and waste processing, and the safety of future reactors. Major actors are indicated: CEA, Areva, EDF, SEIV Alcen, Toshiba, Rolls Royce, and Comex. Some key data are indicated: expected lifetime, expected availability rate, cost. The projected site is Marcoule and fast breeder reactors operated or under construction in the world are indicated. The document also proposes an overview of the background and evolution of reactors of 4. generation

  19. Complete automation of nuclear reactors control

    International Nuclear Information System (INIS)

    Weill, J.

    1955-01-01

    The use of nuclear reactor for energy production induces the installation of automatic control systems which need to be safe enough and can adapt to the industrial scale of energy production. These automatic control systems have to insure the constancy of power level and adjust the power produced to the energy demand. Two functioning modes are considered: nuclear plant connected up to other electric production systems as hydraulic or thermic plants or nuclear plants functioning on an independent network. For nuclear plants connected up with other production plants, xenon poisoning and operating cost lead to keep working at maximum power the nuclear reactors. Thus, the power modulation control system will not be considered and only start-up control, safety control, and control systems will be automated. For nuclear power plants working on an independent network, the power modulation control system is needed to economize fuel. It described the automated control system for reactors functioning with constant power: a power measurement system constituted of an ionization chamber and a direct-current amplifier will control the steadfastness of the power produced. For reactors functioning with variable power, the automated power control system will allow to change the power and maintain it steady with all the necessary safety and will control that working conditions under P max and R max (maximum power and maximum reactivity). The effects of temperature and xenon poisoning will also be discussed. Safety systems will be added to stop completely the functioning of the reactor if P max is reached. (M.P.)

  20. Regulatory aspects of nuclear reactor decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.

    1990-01-01

    The paper discusses the regulatory aspects of decommissioning commercial nuclear power stations in the UK. The way in which the relevant legislation has been used for the first time in dealing with the early stages of decommissioning commercial nuclear reactor is described. International requirements and how they infit with the UK system are also covered. The discussion focusses on the changes which have been required, under the Nuclear Site Licence, to ensure that the licensee carries out of work of reactor decommissioning in a safe and controlled manner. (Author)

  1. Thermionic reactors for space nuclear power

    Science.gov (United States)

    Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.

    1985-01-01

    Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.

  2. A new fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Sefidvash, F.

    1986-01-01

    A new nuclear reactor design based on the fluidized bed concept is proposed. A current design utilizes spherical fuel of slightly enriched Zircaloy-clad uranium dioxide fluidized by light water under pressure. The reactor is modular in system; therefore, any size reactor can be constructed from the basic standard modul. The reactor physics calculations show that reactivity increases with porosity to a maximum value and thereafter decreases. This produces inherent safety and eliminates the need for control rods and burnable poisons. The heat transfer calculations show that the maximum power extracted from the reactor core is not limited to the material temperature limits but to the maximum mass flow of coolant, which corresponds to the desired operating porosity. Design simplicity and inherent safety make it an attractive small reactor design. (Author) [pt

  3. Overview of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Nguyen Thai Sinh; Luong Ba Vien

    2016-01-01

    The present reactor called Dalat Nuclear Research Reactor (DNRR) has been reconstructed from the former TRIGA Mark II reactor which was designed by General Atomic (GA, San Diego, California, USA), started building in early 1960s, put into operation in 1963 and operated until 1968 at nominal power of 250 kW. In 1975, all fuel elements of the reactor were unloaded and shipped back to the USA. The DNRR is a 500-kW pool-type research reactor using light water as both moderator and coolant. The reactor is used as a neutron source for the purposes of: (1) radioactive isotope production; (2) neutron activation analysis; and (3) research and training

  4. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1993-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigates water treatment process for nuclear reactor utilization. Analysis of outwater chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerants to obtain the optimum quantity of pure water which reached to 15 cubic-meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30%. Output water chemistry agrees with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined

  5. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1992-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigate water treatment process for nuclear reactor utilization. Analysis of output water chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerates to obtain the optimum quantity of pure water which reached to 15 cubic meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30 %. output water chemistry agree with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined.5 fig., 3 tab

  6. Desalination of seawater with nuclear reactors

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2003-01-01

    About 40 % of the world population is concerned with water scarcity. This article reviews the different techniques of desalination: distillation (MED and MSF), reverse osmosis (RO), and electrodialysis (ED). The use of nuclear energy rests on several arguments: 1) it is economically efficient compared to fossil energy. 2) nuclear reactors provide heat covering a broad range of temperature, which allows the implementation of all the desalination techniques. 3) the heat normally lost at the heat sink could be used for desalination. And 4) nuclear is respectful of the environment. The feedback experience concerning nuclear desalination is estimated to about 100 reactor-years, it is sufficient to allow the understanding of all the physical and technological processes involved. In Japan, 8 PWR-type reactors are coupled to MED, MSF, and RO desalination techniques, the water produced is used locally mainly for feeding steam generators. (A.C.)

  7. Desalination of seawater with nuclear reactors

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2001-01-01

    About 40 % of the world population is concerned with water scarcity. This article reviews the different techniques of desalination: distillation (MED and MSF), reverse osmosis (RO), and electrodialysis (ED). The use of nuclear energy rests on several arguments: 1) it is economically efficient compared to fossil energy; 2) nuclear reactors provide heat covering a broad range of temperature, which allows the implementation of all the desalination techniques; 3) the heat normally lost at the heat sink could be used for desalination; and 4) nuclear is respectful of the environment. The feedback experience concerning nuclear desalination is estimated to about 100 reactor-years, it is sufficient to allow the understanding of all the physical and technological processes involved. In Japan, 8 PWR-type reactors are coupled to MED, MSF, and RO desalination techniques, the water produced is used locally mainly for feeding steam generators. (A.C.)

  8. Basic training of nuclear power reactor personnel

    International Nuclear Information System (INIS)

    Palabrica, R.J.

    1981-01-01

    The basic training of nuclear power reactor personnel should be given very close attention since it constitutes the foundation of their knowledge of nuclear technology. Emphasis should be given on the thorough understanding of basic nuclear concepts in order to have reasonable assurance of successful assimilation by those personnel of more specialized and advanced concepts to which they will be later exposed. Basic training will also provide a means for screening to ensure that those will be sent for further spezialized training will perform well. Finally, it is during the basic training phase when nuclear reactor operators will start to acquire and develop attitudes regarding reactor operation and it is important that these be properly founded. (orig.)

  9. Nuclear data needs for fusion reactors

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    The nuclear design of fusion components (e.g., first wall, blanket, shield, magnet, limiter, divertor, etc.) requires an accurate prediction of the radiation field, the radiation damage parameters, and the activation analysis. The fusion nucleonics for these tasks are reviewed with special attention to point out nuclear data needs and deficiencies which effect the design process. The main areas included in this review are tritium breeding analyses, nuclear heating calculations, radiation damage in reactor components, shield designs, and results of uncertainty analyses as applied to fusion reactor studies. Design choices and reactor parameters that impact the neutronics performance of the blanket are discussed with emphasis on the tritium breeding ratio. Nuclear data required for kerma factors, shielding analysis, and radiation damage are discussed. Improvements in the evaluated data libraries are described to overcome the existing problems. 84 refs., 11 figs., 9 tabs

  10. Present status and future perspective of R and D on lead heavy metal-cooled fast reactors

    International Nuclear Information System (INIS)

    Takahashi, Minoru

    2007-01-01

    Since a lead heavy metal (lead-bismuth eutectic) is chemically inert and has higher boiling point compared to a sodium, a lead heavy metal-cooled fast reactor can be inherently safe and has good nuclear characteristics and is so suitable to a medium-small size of the reactor. R and D on corrosion of a lead heavy metal has been carried out in the world and this issue might be solved to choose specific corrosion resistant alloys for structural materials and fuel cans of a lead heavy metal-cooled reactor. This article reviews present status and future perspective on lead heavy metal-cooled fast reactors. (T. Tanaka)

  11. Nuclear reactor lid cooling which can work by natural circulation

    International Nuclear Information System (INIS)

    Wagner, J.

    1985-01-01

    The well-known air cooling of the lid of liquid metal cooled nuclear reactors is improved by the start of natural convection flow ensuring removal of heat in a sufficiently short time, if the blower fails. Go and return branches of the individual cooling circuits are arranged at different heights for this purpose. The circulation is supported by opening valves, which provide a direct path into the reactor building for the cooling air. The draught can be increased by setting up special chimneys. The start of circulation is aided by the temporary opening of another valve. (orig.) [de

  12. Maintenance system for immersed seals, specifically for nuclear reactors

    International Nuclear Information System (INIS)

    Poindexter, A.M.; Ricks, H.E.

    1977-01-01

    The invention concerns the immersed seals of nuclear reactors and specifically a maintenance system for the immersed seals of the revolving closing plugs of liquid metal breeder nuclear reactors. A liquid sodium immersed joint may be located at a given place or be surrounded by heating elements so that the sodium stays liquid whilst the reactor is working. In other cases, the sodium in the immersed seal is allowed to solidify whilst the reactor is working, thereby increasing the efficiency of the seal. At all events, the sodium must be in a liquid state during reloading with fuel to enable the plug to turn. The invention consists in fitting an ultrasonic transducer to the closure head of the reactor vessel so that the vibration emitting surface directs these vibrations towards the immersed seals so as to detach the deposits of impurities on them and ensure the wetting of the metal surfaces of which they are formed. Additionally, an envelope that can be placed around the ultrasonic transducer in conjunction with a suction appliance provides a mechanism through which the impurities can be removed from the area of the immersed seal [fr

  13. FOIL ELEMENT FOR NUCLEAR REACTOR

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.; Spinrad, B.I.

    1963-07-16

    A method of making a foil-type fuel element is described. A foil of fuel metal is perforated in; regular design and sheets of cladding metal are placed on both sides. The cladding metal sheets are then spot-welded to each other through the perforations, and the edges sealed. (AEC)

  14. Feedback of reactor operating data to nuclear methods development

    International Nuclear Information System (INIS)

    Crowther, R.L.; Kang, C.M.; Parkos, G.R.; Wolters, R.A.

    1978-01-01

    The problems in obtaining power reactor data for reliable nuclear methods development and the major sources of power reactor data for this purpose are reviewed. Specific examples of the use of power reactor data in nuclear methods development are discussed. The paper concludes with recommendations on the key elements of an effective program to use power reactor data in nuclear methods development

  15. Heavy water moderated tubular type nuclear reactor

    International Nuclear Information System (INIS)

    Oohashi, Masahisa.

    1986-01-01

    Purpose: To enable to effectively change the volume of heavy water per unit fuel lattice in heavy water moderated pressure tube type nuclear reactors. Constitution: In a nuclear reactor in which fuels are charged within pressure tubes and coolants are caused to flow between the pressure tubes and the fuels, heavy water tubes for recycling heavy water are disposed to a gas region formed to the outside of the pressure tubes. Then, the pressure tube diameter at the central portion of the reactor core is made smaller than that at the periphery of the reactor core. Further, injection means for gas such as helium is disposed to the upper portion for each of the heavy water tubes so that the level of the heavy water can easily be adjusted by the control for the gas pressure. Furthermore, heavy water reflection tubes are disposed around the reactor core. In this constitution, since the pitch for the pressure tubes can be increased, the construction and the maintenance for the nuclear reactor can be facilitated. Also, since the liquid surface of the heavy water in the heavy water tubes can be varied, nuclear properties is improved and the conversion ratio is improved. (Ikeda, J.)

  16. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  17. Review of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Connelly, J.W.; Storr, G.J.

    1989-01-01

    Two types of severe reactor accidents - loss of coolant or coolant flow and transient overpower (TOP) accidents - are described and compared. Accidents in research reactors are discussed. The 1961 SL1 accident in the US is used as an illustration as it incorporates the three features usually combined in a severe accident - a design flaw or flaws in the system, a circumvention of safety circuits or procedures, and gross operator error. The SL1 reactor, the reactivity accident and the following fuel-coolant interaction and steam explosion are reviewed. 3 figs

  18. Advanced liquid metal reactor plant control system

    International Nuclear Information System (INIS)

    Dayal, Y.; Wagner, W.; Zizzo, D.; Carroll, D.

    1993-01-01

    The modular Advanced Liquid Metal Reactor (ALMR) power plant is controlled by an advanced state-of-the-art control system designed to facilitate plant operation, optimize availability, and protect plant investment. The control system features a high degree of automatic control and extensive amount of on-line diagnostics and operator aids. It can be built with today's control technology, and has the flexibility of adding new features that benefit plant operation and reduce O ampersand M costs as the technology matures

  19. Role of fast reactor and its cycle to reduce nuclear waste burden

    Energy Technology Data Exchange (ETDEWEB)

    Arie, Kazuo; Oomori, Takashi; Okita, Takeshi [Toshiba Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Kawashima, Masatoshi [Toshiba Nuclear Engineering Services Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama, 235-8523 (Japan); Kotake, Shoji [The Japan Atomic Power Company, 1-1, Kanda-Mitoshiro-cho, Chiyoda-ku, Tokyo 101-0053 (Japan); Fuji-ie, Yoichi [Nuclear Salon Fuji-ie, 1-11-10, Yushima, Bunkyo-ku, Tokyo 113-0034 (Japan)

    2013-07-01

    The role of the metal fuel fast reactor with recycling of actinides and the five long-lived fission products based on the concept of the Self-Consistent Nuclear Energy System has been examined by evaluating the reduction of nuclear wastes during the transition period to this reactor system. The evaluation was done in comparison to an LWR once-through case and a conventional actinide recycling oxide fast reactor. As a result, it is quantitatively clarified that a metal fuel fast reactor with actinide and the five long-lived fission products (I{sup 129}, Tc{sup 99}, Zr{sup 93}, Cs{sup 135} and Sn{sup 126}) recycling could play a significant role in reducing the nuclear waste burden including the current LWR wastes. This can be achieved by using a fast neutron spectrum reactor enhanced with metal fuel that brings high capability as a 'waste burner'. (authors)

  20. Nuclear reactor shutdown control rod assembly

    International Nuclear Information System (INIS)

    Bilibin, K.

    1988-01-01

    This patent describes a nuclear reactor having a reactor core and a reactor coolant flowing therethrough, a temperature responsive, self-actuated nuclear reactor shutdown control rod assembly, comprising: an upper drive line terminating at its lower end with a substantially cylindrical wall member having inner and outer surfaces; a lower drive line having a lower end adapted to be attached to a neutron absorber; a ring movable disposed about the outer surface of the wall member of the upper drive line; thermal actuation means adapted to be in heat exchange relationship with coolant in an associated reactor core and in contact with the ring, and balls located within the openings in the upper drive line. When reactor coolant approaches a predetermined design temperature the actuation means moves the ring sufficiently so that the balls move radially out from the recess and into the space formed by the second portion of the ring thereby removing the vertical support for the lower drive line such that the lower drive line moves downwardly and inserts an associated neutron absorber into an associated reactor core resulting in automatic reduction of reactor power