WorldWideScience

Sample records for metal nanoparticle pollutants

  1. Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters

    CERN Document Server

    Dash, Monika

    2013-01-01

    Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

  2. Silica nanoparticles capture atmospheric lead: implications in the treatment of environmental heavy metal pollution.

    Science.gov (United States)

    Yang, Xifei; Shen, Zhiguo; Zhang, Bing; Yang, Jianping; Hong, Wen-Xu; Zhuang, Zhixiong; Liu, Jianjun

    2013-01-01

    Lead (Pb) contamination in the air is a severe global problem, most notably in China. Removal of Pb from polluted air remains a significant challenge. It is unclear what potential effects silica nanoparticles (SiNPs) exposure can have on atmospheric Pb. Here we first characterized the features of SiNPs by measuring the particle size, zeta potential and the specific surface area of SiO(2) particles using a Nicomp 380/ZLS submicron particle sizer, the Brunauer-Emmett-Teller (BET) method and transmission electronic microscopy (TEM). We measured the content of the metal Pb adsorbed by SiNPs exposed to two Pb polluted electric battery plants using inductively coupled plasma mass spectrometry (ICP-MS). It is found that SiNPs exposed to two Pb polluted electric battery plants absorb more atmospheric Pb compared to either blank control or micro-sized SiO(2) particles in a time-dependent manner. This is the first study demonstrating that SiNPs exposure can absorb atmospheric Pb in the polluted environment. These novel findings indicate that SiNPs have potential to serve as a significant adsorbent of Pb from industrial pollution, implicating a potentially novel application of SiNPs in the treatment of environmental heavy metal pollution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Nano-adsorbents for the removal of metallic pollutants from water and wastewater.

    Science.gov (United States)

    Sharma, Y C; Srivastava, V; Singh, V K; Kaul, S N; Weng, C H

    2009-05-01

    Of the variety of adsorbents available for the removal of heavy and toxic metals, activated carbon has been the most popular. A number of minerals, clays and waste materials have been regularly used for the removal of metallic pollutants from water and industrial effluents. Recently there has been emphasis on the application of nanoparticles and nanostructured materials as efficient and viable alternatives to activated carbon. Carbon nanotubes also have been proved effective alternatives for the removal of metallic pollutants from aqueous solutions. Because of their importance from an environmental viewpoint, special emphasis has been given to the removal of the metals Cr, Cd, Hg, Zn, As, and Cu. Separation of the used nanoparticles from aqueous solutions and the health aspects of the separated nanoparticles have also been discussed. A significant number of the latest articles have been critically scanned for the present review to give a vivid picture of these exotic materials for water remediation.

  4. Removal of Metal Nanoparticles Colloidal Solutions by Water Plants

    Science.gov (United States)

    Olkhovych, Olga; Svietlova, Nataliia; Konotop, Yevheniia; Karaushu, Olena; Hrechishkina, Svitlana

    2016-11-01

    The ability of seven species of aquatic plants ( Elodea canadensis, Najas guadelupensis, Vallisneria spiralis L., Riccia fluitans L., Limnobium laevigatum, Pistia stratiotes L., and Salvinia natans L.) to absorb metal nanoparticles from colloidal solutions was studied. It was established that investigated aquatic plants have a high capacity for removal of metal nanoparticles from aqueous solution (30-100%) which indicates their high phytoremediation potential. Analysis of the water samples content for elements including the mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag + Ag2O) before and after exposure to plants showed no significant differences when using submerged or free-floating hydrophytes so-called pleuston. However, it was found that the presence of submerged hydrophytes in aqueous medium ( E. canadensis, N. guadelupensis, V. spiralis L., and R. fluitans L.) and significant changes in the content of photosynthetic pigments, unlike free-floating hydrophytes ( L. laevigatum, P. stratiotes L., S. natans L.), had occur. Pleuston possesses higher potential for phytoremediation of contaminated water basins polluted by metal nanoparticles. In terms of removal of nanoparticles among studied free-floating hydrophytes, P. stratiotes L. and S. natans L. deserve on special attention.

  5. Conducting metal oxide and metal nitride nanoparticles

    Science.gov (United States)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  6. Decontaminating soil organic pollutants with manufactured nanoparticles.

    Science.gov (United States)

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

  7. Biotests and Biosensors for Ecotoxicology of Metal Oxide Nanoparticles: A Minireview

    Directory of Open Access Journals (Sweden)

    Kaja Kasemets

    2008-08-01

    Full Text Available Nanotechnologies have become a significant priority worldwide. Several manufactured nanoparticles - particles with one dimension less than 100 nm - are increasingly used in consumer products. At nanosize range, the properties of materials differ substantially from bulk materials of the same composition, mostly due to the increased specific surface area and reactivity, which may lead to increased bioavailability and toxicity. Thus, for the assessment of sustainability of nanotechnologies, hazards of manufactured nanoparticles have to be studied. Despite all the above mentioned, the data on the potential environmental effects of nanoparticles are rare. This mini-review is summarizing the emerging information on different aspects of ecotoxicological hazard of metal oxide nanoparticles, focusing on TiO2, ZnO and CuO. Various biotests that have been successfully used for evaluation of ecotoxic properties of pollutants to invertebrates, algae and bacteria and now increasingly applied for evaluation of hazard of nanoparticles at different levels of the aquatic food-web are discussed. Knowing the benefits and potential drawbacks of these systems, a suite of tests for evaluation of environmental hazard of nanoparticles is proposed. Special attention is paid to the influence of particle solubility and to recombinant metal-sensing bacteria as powerful tools for quantification of metal bioavailability. Using recombinant metal-specific bacterial biosensors and multitrophic ecotoxicity assays in tandem will create new scientific knowledge on the respective role of ionic species and of particles in toxicity of metal oxide nanoparticles.

  8. Vectorization by nanoparticles decreases the overall toxicity of airborne pollutants.

    Directory of Open Access Journals (Sweden)

    Rodolphe Carpentier

    Full Text Available Atmospheric pollution is mainly composed of volatile pollutants and particulate matter that strongly interact. However, their specific roles in the induction of cellular toxicity, in particular the impact of the vectorization of atmospheric pollutants by ultrafine particles, remains to be fully elucidated. For this purpose, non-toxic poly-lactic co-glycolic acid (PLGA nanoparticles were synthesized and three pollutants (benzo(apyrene, naphthalene and di-ethyl-hexyl-phthalate were adsorbed on the surface of the nanoparticles in order to evaluate the toxicity (cytotoxicity, genotoxicity and ROS induction of these complexes to a human airway epithelial cell line. The adsorption of the pollutants onto the nanoparticles was confirmed by HPLC analysis. Interestingly, the cytotoxicity assays (MTT, LDH and CellTox Green clearly demonstrated that the vectorization by nanoparticles decreases the toxicity of the adsorbed pollutants. Genotoxicity was assessed by the micronucleus test and the comet assay and showed no increase in primary DNA damage or in chromosomal aberrations of nanoparticle vectorized pollutants. Neither cytotoxicity nor genotoxicity was correlated with ROS induction. To conclude, our results indicate that the vectorization of pollutants by nanoparticles does not potentiate the toxicity of the pollutants studied and that, on the contrary, adsorption onto nanoparticles could protect cells against pollutants' toxicity.

  9. Vectorization by nanoparticles decreases the overall toxicity of airborne pollutants.

    Science.gov (United States)

    Carpentier, Rodolphe; Platel, Anne; Maiz-Gregores, Helena; Nesslany, Fabrice; Betbeder, Didier

    2017-01-01

    Atmospheric pollution is mainly composed of volatile pollutants and particulate matter that strongly interact. However, their specific roles in the induction of cellular toxicity, in particular the impact of the vectorization of atmospheric pollutants by ultrafine particles, remains to be fully elucidated. For this purpose, non-toxic poly-lactic co-glycolic acid (PLGA) nanoparticles were synthesized and three pollutants (benzo(a)pyrene, naphthalene and di-ethyl-hexyl-phthalate) were adsorbed on the surface of the nanoparticles in order to evaluate the toxicity (cytotoxicity, genotoxicity and ROS induction) of these complexes to a human airway epithelial cell line. The adsorption of the pollutants onto the nanoparticles was confirmed by HPLC analysis. Interestingly, the cytotoxicity assays (MTT, LDH and CellTox Green) clearly demonstrated that the vectorization by nanoparticles decreases the toxicity of the adsorbed pollutants. Genotoxicity was assessed by the micronucleus test and the comet assay and showed no increase in primary DNA damage or in chromosomal aberrations of nanoparticle vectorized pollutants. Neither cytotoxicity nor genotoxicity was correlated with ROS induction. To conclude, our results indicate that the vectorization of pollutants by nanoparticles does not potentiate the toxicity of the pollutants studied and that, on the contrary, adsorption onto nanoparticles could protect cells against pollutants' toxicity.

  10. Introduction to metal-nanoparticle plasmonics

    CERN Document Server

    Pelton, Matthew

    2013-01-01

    Based on a popular article in Laser and Photonics Reviews, this book provides an explanation and overview of the techniques used to model, make, and measure metal nanoparticles, detailing results obtained and what they mean. It covers the properties of coupled metal nanoparticles, the nonlinear optical response of metal nanoparticles, and the phenomena that arise when light-emitting materials are coupled to metal nanoparticles. It also provides an overview of key potential applications and offers explanations of computational and experimental techniques giving readers a solid grounding

  11. Cryochemistry of Metal Nanoparticles

    International Nuclear Information System (INIS)

    Sergeev, Gleb B.

    2003-01-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia

  12. Cryochemistry of Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, Gleb B. [Moscow State University, Laboratory of Low Temperature Chemistry, Chemistry Department (Russian Federation)], E-mail: gbs@kinet.chem.msu.ru

    2003-12-15

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  13. Cryochemistry of Metal Nanoparticles

    Science.gov (United States)

    Sergeev, Gleb B.

    2003-12-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia.

  14. PREPARATIONS AND APPLICATION OF METAL NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Adlim Adlim

    2010-06-01

    Full Text Available Terminology of metal nanoparticles, the uniqueness properties in terms of the surface atom, the quantum dot, and the magnetism are described. The further elaboration was on the synthesis of nanoparticles. Applications of metal nanoparticles in electronic, ceramic medical and catalysis were overviewed. The bibliography includes 81 references with 99% are journal articles.   Keywords: metal nanoparticles

  15. PREPARATIONS AND APPLICATION OF METAL NANOPARTICLES

    OpenAIRE

    Adlim, Adlim

    2010-01-01

    Terminology of metal nanoparticles, the uniqueness properties in terms of the surface atom, the quantum dot, and the magnetism are described. The further elaboration was on the synthesis of nanoparticles. Applications of metal nanoparticles in electronic, ceramic medical and catalysis were overviewed. The bibliography includes 81 references with 99% are journal articles.   Keywords: metal nanoparticles

  16. Nanotoxicology of Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Amedea B. Seabra

    2015-06-01

    Full Text Available This review discusses recent advances in the synthesis, characterization and toxicity of metal oxide nanoparticles obtained mainly through biogenic (green processes. The in vitro and in vivo toxicities of these oxides are discussed including a consideration of the factors important for safe use of these nanomaterials. The toxicities of different metal oxide nanoparticles are compared. The importance of biogenic synthesized metal oxide nanoparticles has been increasing in recent years; however, more studies aimed at better characterizing the potent toxicity of these nanoparticles are still necessary for nanosafely considerations and environmental perspectives. In this context, this review aims to inspire new research in the design of green approaches to obtain metal oxide nanoparticles for biomedical and technological applications and to highlight the critical need to fully investigate the nanotoxicity of these particles.

  17. Bi-metallic nanoparticles as cathode electrocatalysts

    Science.gov (United States)

    Lu, Jun; Amine, Khalil; Wang, Xiaoping; Luo, Xiangyi; Myers, Deborah J.

    2018-03-27

    A lithium-air battery cathode catalyst includes core-shell nanoparticles on a carbon support, wherein: a core of the core-shell nanoparticles is platinum metal; and a shell of the core-shell nanoparticles is copper metal; wherein: the core-shell nanoparticles have a weight ratio of the copper metal to the platinum metal from about 4% to about 6% copper to from about 2% to about 12% platinum, with a remaining percentage being the carbon support.

  18. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  19. Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization

    Science.gov (United States)

    Current breakthroughs in green nanotechnology are capable to transform many of the existing processes and products that enhance environmental quality, reduce pollution, and conserve natural and non-renewable resources. Noteworthy, successful use of metal nanoparticles and 10 nano...

  20. Nanotoxicity: the toxicity research progress of metal and metal-containing nanoparticles.

    Science.gov (United States)

    Ding, Lingling; Liu, Zhidong; Aggrey, Mike Okweesi; Li, Chunhua; Chen, Jing; Tong, Ling

    2015-01-01

    Along with the exuberant development of nanotechnology, a large number of nanoformulations or non materials are successfully applied in the clinics, biomedicine, cosmetics and industry. Despite some unique advantages of nanoformulations, there exist potentially worrying toxic effects, particularly those related to metal and metal-containing nanoparticles (NPs). Although various researches have been conducted to assess the metallic and metal-containing nanoparticles toxic effects, only little is known about the toxicity expressive types and evaluation, reasons and mechanisms, influencing factors and research methods of metal and metal-containing nanotoxicity. Therefore, it is of importance to acquire a better understanding of metal and metal-containing nanoparticles toxicity for medical application. This review presents a summary on the metal and metal-containing nanoparticles toxicity research progress consulting relevant literature.

  1. Chemoelectronic circuits based on metal nanoparticles

    Science.gov (United States)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  2. Method for producing metallic nanoparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  3. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications

    International Nuclear Information System (INIS)

    Sarkar, Sudipta; Guibal, E.; Quignard, F.; SenGupta, A. K.

    2012-01-01

    Metal and metal oxide nanoparticles exhibit unique properties in regard to sorption behaviors, magnetic activity, chemical reduction, ligand sequestration among others. To this end, attempts are being continuously made to take advantage of them in multitude of applications including separation, catalysis, environmental remediation, sensing, biomedical applications and others. However, metal and metal oxide nanoparticles lack chemical stability and mechanical strength. They exhibit extremely high pressure drop or head loss in fixed-bed column operation and are not suitable for any flow-through systems. Also, nanoparticles tend to aggregate; this phenomenon reduces their high surface area to volume ratio and subsequently reduces effectiveness. By appropriately dispersing metal and metal oxide nanoparticles into synthetic and naturally occurring polymers, many of the shortcomings can be overcome without compromising the parent properties of the nanoparticles. Furthermore, the appropriate choice of the polymer host with specific functional groups may even lead to the enhancement of the properties of nanoparticles. The synthesis of hybrid materials involves two broad pathways: dispersing the nanoparticles (i) within pre-formed or commercially available polymers; and (ii) during the polymerization process. This review presents a broad coverage of nanoparticles and polymeric/biopolymeric host materials and the resulting properties of the hybrid composites. In addition, the review discusses the role of the Donnan membrane effect exerted by the host functionalized polymer in harnessing the desirable properties of metal and metal oxide nanoparticles for intended applications.

  4. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles.

    Science.gov (United States)

    Sarkar, Abhijit; Ghosh, Manoranjan; Sil, Parames Chandra

    2014-01-01

    Metal and metal oxide nanoparticles are often used as industrial catalysts or to improve product's functional properties. Recent advanced nanotechnology have been expected to be used in various fields, ranging from sensors, environmental remediation to biomedicine, medical biology and imaging, etc. However, the growing use of nanoparticles has led to their release into environment and increased levels of these particles at nearby sites or the surroundings of their manufacturing factories become obvious. The toxicity of metal and metal oxide nanoparticles on humans, animals, and certainly to the environment has become a major concern to our community. However, controversies still remain with respect to the toxic effects and the mechanisms of these nanoparticles. The scientific community now feels that an understanding of the toxic effects is necessary to handle these nanoparticles and their use. A new discipline, named nanotoxicology, has therefore been developed that basically refers to the study of the interactions of nanoparticles with biological systems and also measures the toxicity level related to human health. Nanoparticles usually generate reactive oxygen species to a greater extent than micro-sized particles resulting in increased pro-inflammatory reactions and oxidative stress via intracellular signaling pathways. In this review, we mainly focus on the routes of exposure of some metal and metal oxide nanoparticles and how these nanoparticles affect us or broadly the cells of our organs. We would also like to discuss the responsible mechanism(s) of the nanoparticle-induced reactive oxygen species mediated organ pathophysiology. A brief introduction of the characterization and application of these nanoparticles has also been included in the article.

  5. Antimicrobial Polymers with Metal Nanoparticles

    Science.gov (United States)

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  6. Removal of heavy metals and pollutants by membrane adsorption techniques

    Science.gov (United States)

    Khulbe, K. C.; Matsuura, T.

    2018-03-01

    Application of polymeric membranes for the adsorption of hazardous pollutants may lead to the development of next-generation reusable and portable water purification appliances. Membranes for membrane adsorption (MA) have the dual function of membrane filtration and adsorption to be very effective to remove trace amounts of pollutants such as cationic heavy metals, anionic phosphates and nitrates. In this review article, recent progresses in the development of MA membranes are surveyed. In addition, recent progresses in the development of advanced adsorbents such as nanoparticles are summarized, since they are potentially useful as fillers in the host membrane to enhance its performance. The future directions of R&D in this field are also shown in the conclusion section.

  7. Shuttling single metal atom into and out of a metal nanoparticle.

    Science.gov (United States)

    Wang, Shuxin; Abroshan, Hadi; Liu, Chong; Luo, Tian-Yi; Zhu, Manzhou; Kim, Hyung J; Rosi, Nathaniel L; Jin, Rongchao

    2017-10-10

    It has long been a challenge to dope metal nanoparticles with a specific number of heterometal atoms at specific positions. This becomes even more challenging if the heterometal belongs to the same group as the host metal because of the high tendency of forming a distribution of alloy nanoparticles with different numbers of dopants due to the similarities of metals in outmost electron configuration. Herein we report a new strategy for shuttling a single Ag or Cu atom into a centrally hollow, rod-shaped Au 24 nanoparticle, forming AgAu 24 and CuAu 24 nanoparticles in a highly controllable manner. Through a combined approach of experiment and theory, we explain the shuttling pathways of single dopants into and out of the nanoparticles. This study shows that the single dopant is shuttled into the hollow Au 24 nanoparticle either through the apex or side entry, while shuttling a metal atom out of the Au 25 to form the Au 24 nanoparticle occurs mainly through the side entry.Doping a metal nanocluster with heteroatoms dramatically changes its properties, but it remains difficult to dope with single-atom control. Here, the authors devise a strategy to dope single atoms of Ag or Cu into hollow Au nanoclusters, creating precise alloy nanoparticles atom-by-atom.

  8. Synthesis of Metal Nanoparticles by Bacteria

    Directory of Open Access Journals (Sweden)

    Fikriye Alev Akçay

    2018-04-01

    Full Text Available Metal particles reduced to nano size by nanotechnological methods are confronted in many different fields such as biomedical and physicochemical, pharmaceutical, electric-electronic, automotive and food industries. Nanoparticles can be produced using chemical, physical and biological methods, of which chemical processes are in common use. However, physical and chemical methods are not environmentally friendly and economical because they require the use of high temperature, high pressure and toxic chemicals. For this reason, interest in the production of metal nanoparticles by biological methods, also called green technology, an environmentally friendly and sustainable approach, has increased in recent years. With some plant extracts and intracellular and extracellular secretions of microorganisms, some reduction reactions take place and metal nanoparticles are produced. Bacteria have been actively involved in nanotechnology in recent years due to their diversity in nature, their ease of isolation, and ease of nanoparticle synthesis. In this article, production and application of metal nanoparticles by using bacterial methods have been reviewed.

  9. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  10. Sustainable green catalysis by supported metal nanoparticles.

    Science.gov (United States)

    Fukuoka, Atsushi; Dhepe, Paresh L

    2009-01-01

    The recent progress of sustainable green catalysis by supported metal nanoparticles is described. The template synthesis of metal nanoparticles in ordered porous materials is studied for the rational design of heterogeneous catalysts capable of high activity and selectivity. The application of these materials in green catalytic processes results in a unique activity and selectivity arising from the concerted effect of metal nanoparticles and supports. The high catalytic performances of Pt nanoparticles in mesoporous silica is reported. Supported metal catalysts have also been applied to biomass conversion by heterogeneous catalysis. Additionally, the degradation of cellulose by supported metal catalysts, in which bifunctional catalysis of acid and metal plays the key role for the hydrolysis and reduction of cellulose, is also reported. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  11. A new rapid chemical route to prepare reduced graphene oxide using copper metal nanoparticles

    International Nuclear Information System (INIS)

    Wu Tao; Gao Jianping; Xu Xiaoyang; Qiu Haixia; Wang Wei; Gao Chunjuan

    2013-01-01

    Copper metal nanoparticles were used as a reducing agent to reduce graphene oxide (GO). The reaction was complete in about 10 min and did not involve the use of any toxic reagents or acids that are typically used in the reduction of GO by Zn and Fe powders. The high reduction activity of the Cu nanoparticles, compared to Cu powder, may be the result of the formation of Cu 2 O nanoparticles. The effect of the mass ratio of the metal to GO for this reduction was also investigated. The reduction of the GO was verified by ultraviolet–visible absorption spectroscopy, x-ray diffraction, thermogravimetric analysis, Raman spectroscopy, x-ray photoelectron spectroscopy and transmission electron microscopy. After reduction, Cu 2 O supported on reduced GO was formed and showed superior catalytic ability for the degradation of a model dye pollutant, methylene blue. (paper)

  12. Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengxiao, E-mail: beijingzsx@163.com [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China); Zhang, Yuanyuan [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China); Bi, Guoming [Yantai Enironmental Monitoring Center, Yantai 264025, Shandong Province (China); Liu, Junshen [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China); Wang, Zhigang [Yantai Enironmental Monitoring Center, Yantai 264025, Shandong Province (China); Xu, Qiang; Xu, Hui; Li, Xiaoyan [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China)

    2014-04-01

    Highlights: • The Fe{sub 3}O{sub 4}/PDA hybrid material was synthesized and characterized. • The PDA polymer was firstly applied in environmental remediation. • The Fe{sub 3}O{sub 4}/PDA exhibited high adsorption capacity for multiple pollutants. • Removal efficiencies of pollutants with Fe{sub 3}O{sub 4}/PDA were pH dependent. - Abstract: The polydopamine polymer decorated with magnetic nanoparticles (Fe{sub 3}O{sub 4}/PDA) was synthesized and applied for removal of multiple pollutants. The resulted Fe{sub 3}O{sub 4}/PDA was characterized with elemental analysis, thermo-gravimetric analyses, vibrating sample magnetometer, high resolution transmission electron microscope, Fourier transform infrared spectra, and X-ray photoelectron spectroscopy. The self-polymerization of dopamine could be completed within 8 h, and Fe{sub 3}O{sub 4} nanoparticles were embedded into PDA polymer. Superparamagnetism and large saturation magnetization facilitated collection of sorbents with a magnet. Based on the catechol and amine groups, the PDA polymer provided multiple interactions to combine with pollutants. To investigate the adsorption ability of Fe{sub 3}O{sub 4}/PDA, heavy metal ions and dyes were selected as target pollutants. The adsorption of pollutants was pH dependent due to the variation of surface charges at different solution pH. The removal efficiencies of cation pollutants enhanced with solution pH increasing, and that of anion pollutant was just the opposite. Under the optimal solution pH, the maximum adsorption capacity calculated from Langmuir adsorption isotherm for methylene blue, tartrazine, Cu{sup 2+}, Ag{sup +}, and Hg{sup 2+} were 204.1, 100.0, 112.9, 259.1, and 467.3 mg g{sup −1}, respectively. The Fe{sub 3}O{sub 4}/PDA shows great potential for multiple pollutants removal, and this study is the first application of PDA polymer in environmental remediation.

  13. Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal

    International Nuclear Information System (INIS)

    Zhang, Shengxiao; Zhang, Yuanyuan; Bi, Guoming; Liu, Junshen; Wang, Zhigang; Xu, Qiang; Xu, Hui; Li, Xiaoyan

    2014-01-01

    Highlights: • The Fe 3 O 4 /PDA hybrid material was synthesized and characterized. • The PDA polymer was firstly applied in environmental remediation. • The Fe 3 O 4 /PDA exhibited high adsorption capacity for multiple pollutants. • Removal efficiencies of pollutants with Fe 3 O 4 /PDA were pH dependent. - Abstract: The polydopamine polymer decorated with magnetic nanoparticles (Fe 3 O 4 /PDA) was synthesized and applied for removal of multiple pollutants. The resulted Fe 3 O 4 /PDA was characterized with elemental analysis, thermo-gravimetric analyses, vibrating sample magnetometer, high resolution transmission electron microscope, Fourier transform infrared spectra, and X-ray photoelectron spectroscopy. The self-polymerization of dopamine could be completed within 8 h, and Fe 3 O 4 nanoparticles were embedded into PDA polymer. Superparamagnetism and large saturation magnetization facilitated collection of sorbents with a magnet. Based on the catechol and amine groups, the PDA polymer provided multiple interactions to combine with pollutants. To investigate the adsorption ability of Fe 3 O 4 /PDA, heavy metal ions and dyes were selected as target pollutants. The adsorption of pollutants was pH dependent due to the variation of surface charges at different solution pH. The removal efficiencies of cation pollutants enhanced with solution pH increasing, and that of anion pollutant was just the opposite. Under the optimal solution pH, the maximum adsorption capacity calculated from Langmuir adsorption isotherm for methylene blue, tartrazine, Cu 2+ , Ag + , and Hg 2+ were 204.1, 100.0, 112.9, 259.1, and 467.3 mg g −1 , respectively. The Fe 3 O 4 /PDA shows great potential for multiple pollutants removal, and this study is the first application of PDA polymer in environmental remediation

  14. [Research advances in heavy metals pollution ecology of diatom].

    Science.gov (United States)

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  15. Impact of repeated single-metal and multi-metal pollution events on soil quality.

    Science.gov (United States)

    Burges, Aritz; Epelde, Lur; Garbisu, Carlos

    2015-02-01

    Most frequently, soil metal pollution results from the occurrence of repeated single-metal and, above all, multi-metal pollution events, with concomitant adverse consequences for soil quality. Therefore, in this study, we evaluated the impact of repeated single-metal and multi-metal (Cd, Pb, Cu, Zn) pollution events on soil quality, as reflected by the values of a variety of soil microbial parameters with potential as bioindicators of soil functioning. Specifically, parameters of microbial activity (potentially mineralizable nitrogen, β-glucosidase and acid phosphatase activity) and biomass (fungal and bacterial gene abundance by RT-qPCR) were determined, in the artificially metal-polluted soil samples, at regular intervals over a period of 26 weeks. Similarly, we studied the evolution over time of CaCl2-extractable metal fractions, in order to estimate metal bioavailability in soil. Different metals showed different values of bioavailability and relative bioavailability ([metal]bio/[metal]tot) in soil throughout the experiment, under both repeated single-metal and multi-metal pollution events. Both repeated Zn-pollution and multi-metal pollution events led to a significant reduction in the values of acid phosphatase activity, and bacterial and fungal gene abundance, reflecting the negative impact of these repeated events on soil microbial activity and biomass, and, hence, soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Metallic Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Hernando

    2005-01-01

    Full Text Available In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm, covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  17. Biomolecule-coated metal nanoparticles on titanium.

    Science.gov (United States)

    Christensen, Stephen L; Chatt, Amares; Zhang, Peng

    2012-02-07

    Immobilizations of nanoparticles and biomolecules on biocompatible substrates such as titanium are two promising approaches to bringing new functionalities to Ti-based biomaterials. Herein, we used a variety of X-ray spectroscopic techniques to study and better understand metal-thiolate interactions in biofunctionalized metal nanoparticle systems supported on Ti substrates. Using a facile one-step procedure, a series of Au nanoparticle samples with varied biomolecule coatings ((2-mercatopropionyl)glycine (MPG) and bovine serum albumin (BSA)) and biomolecule concentrations are prepared. Ag and Pd systems are also studied to observe change with varying metal composition. The structure and properties of these biomolecule-coated nanoparticles are investigated with scanning electron microscopy (SEM) and element-specific X-ray techniques, including extended X-ray absorption fine structure (Au L(3)-edge), X-ray absorption near-edge structure (Au L(3), Ag L(3), Pd L(3), and S K-edge), and X-ray photoelectron spectroscopy (Au 4f, Ag 3d, Pd 3d, and S 2p core level). It was found that, by comparison of SEM and X-ray spectroscopy results, the coating of metal nanoparticles with varying model biomolecule systems can have a significant effect on both surface coverage and organization. This work offers a facile chemical method for bio- and nanofunctionalization of Ti substrates as well as provides a physical picture of the structure and bonding of biocoated metal nanoparticles, which may lead to useful applications in orthopedics and biomedicine.

  18. Biomedical applications of green synthesized Nobel metal nanoparticles.

    Science.gov (United States)

    Khan, Zia Ul Haq; Khan, Amjad; Chen, Yongmei; Shah, Noor S; Muhammad, Nawshad; Khan, Arif Ullah; Tahir, Kamran; Khan, Faheem Ullah; Murtaza, Behzad; Hassan, Sadaf Ul; Qaisrani, Saeed Ahmad; Wan, Pingyu

    2017-08-01

    Synthesis of Nobel metal nanoparticles, play a key role in the field of medicine. Plants contain a substantial number of organic constituents, like phenolic compounds and various types of glycosides that help in synthesis of metal nanoparticles. Synthesis of metal nanoparticles by green method is one of the best and environment friendly methods. The major significance of the green synthesis is lack of toxic by-products produced during metal nanoparticle synthesis. The nanoparticles, synthesized by green method show various significant biological activities. Most of the research articles report the synthesized nanoparticles to be active against gram positive and gram negative bacteria. Some of these bacteria include Escherichia coli, Bacillus subtilis, Klebsiella pneumonia and Pseudomonas fluorescens. The synthesized nanoparticles also show significant antifungal activity against Trichophyton simii, Trichophyton mentagrophytes and Trichophyton rubrum as well as different types of cancer cells such as breast cancer cell line. They also exhibit significant antioxidant activity. The activities of these Nobel metal nano-particles mainly depend on the size and shape. The particles of small size with large surface area show good activity in the field of medicine. The synthesized nanoparticles are also active against leishmanial diseases. This research article explores in detail the green synthesis of the nanoparticles and their uses thereof. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Laser assisted embedding of nanoparticles into metallic materials

    International Nuclear Information System (INIS)

    Lin Dong; Suslov, Sergey; Ye Chang; Liao Yiliang; Liu, C. Richard; Cheng, Gary J.

    2012-01-01

    This paper reports a methodology of half-embedding nanoparticles into metallic materials. Transparent and opaque nanoparticles are chosen to demonstrate the process of laser assisted nanoparticle embedding. Dip coating method is used to coat transparent or opaque nanoparticle on the surface of metallic material. Nanoparticles are embedded into substrate by laser irradiation. In this study, the mechanism and process of nanoparticle embedding are investigated. It is found both transparent and opaque nanoparticles embedding are with high densities and good uniformities.

  20. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles.

    Science.gov (United States)

    Sathiyanarayanan, Ganesan; Dineshkumar, Krishnamoorthy; Yang, Yung-Hun

    2017-11-01

    Exopolysaccharides (EPSs) are structurally and functionally valuable biopolymer secreted by different prokaryotic and eukaryotic microorganisms in response to biotic/abiotic stresses and to survive in extreme environments. Microbial EPSs are fascinating in various industrial sectors due to their excellent material properties and less toxic, highly biodegradable, and biocompatible nature. Recently, microbial EPSs have been used as a potential template for the rapid synthesis of metallic nanoparticles and EPS-mediated metal reduction processes are emerging as simple, harmless, and environmentally benign green chemistry approaches. EPS-mediated synthesis of metal nanoparticles is a distinctive metabolism-independent bio-reduction process due to the formation of interfaces between metal cations and the polyanionic functional groups (i.e. hydroxyl, carboxyl and amino groups) of the EPS. In addition, the range of physicochemical features which facilitates the EPS as an efficient stabilizing or capping agents to protect the primary structure of the metal nanoparticles with an encapsulation film in order to separate the nanoparticle core from the mixture of composites. The EPS-capping also enables the further modification of metal nanoparticles with expected material properties for multifarious applications. The present review discusses the microbial EPS-mediated green synthesis/stabilization of metal nanoparticles, possible mechanisms involved in EPS-mediated metal reduction, and application prospects of EPS-based metal nanoparticles.

  1. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands

    NARCIS (Netherlands)

    Neouze, M.A.; Schubert, U.S.

    2008-01-01

    Metal or metal oxide nanoparticles possess unique features compared to equivalent larger-scale materials. For applications, it is often necessary to stabilize or functionalize such nanoparticles. Thus, modification of the surface of nanoparticles is an important chemical challenge. In this survey,

  2. Genotoxicity of metal nanoparticles.

    Science.gov (United States)

    Xie, Hong; Mason, Michael M; Wise, John Pierce

    2011-01-01

    Nanotechnology is currently used in industry, medicine, and military applications, as well as in more than 300 commercial products. Yet, the same properties that make these particles exciting for technology also make them daunting public health concerns because their toxicity is unknown and relatively unexplored. Increased attention is being placed on the study of metal particle genotoxicity; however, a lot of unknowns remain about their effects and the mechanisms. In this article, we highlight some metal and metal oxide nanoparticles of interest and discuss the current in vivo and in vitro studies of genotoxic effects. Many metal nanoparticles were found to cause chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. Inconsistencies are found in the literature, however, thus drawing conclusions is difficult due to a variety of factors. Therefore, the areas requiring further attention are highlighted and recommendations to improve our understanding of the genotoxic potential are addressed.

  3. A Study of Heavy Metal Pollution in China: Current Status, Pollution-Control Policies and Countermeasures

    Directory of Open Access Journals (Sweden)

    Hui Hu

    2014-09-01

    Full Text Available In the past 30 years, China’s economy has experienced rapid development, which led to a vast increase in energy consumption and serious environmental pollution. Among the different types of pollution, heavy metal pollution has become one of the major environmental issues in China. A number of studies show that high level of heavy metal exposure is a frequent cause of permanent intellectual and developmental disabilities. In recent years, some traditional pollutants, such as sulfur dioxide and carbon dioxide, have been put under control in China. However, heavy metal pollution, which poses even greater risks to public health and sustainable development, has yet to gain policymakers’ attention. The purpose of this paper is to explore effective countermeasures for heavy metal pollution in China. The present study reviews the current status of China’s heavy metal pollution and analyzes related public policies and countermeasures against that pollution. It also presents a few recommendations and measures for prevention of heavy metal pollution.

  4. Surface free energy of alkali and transition metal nanoparticles

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-01-01

    Graphical abstract: Size dependent surface free energy of spherical, cubic and disk Au nanoparticles. - Highlights: • A model to account for the surface free energy of metallic nanoparticles is described. • The model requires only the cohesive energy of the nanoparticle. • The surface free energy of a number of metallic nanoparticles has been calculated, and the obtained values agree well with existing data. • Surface energy falls down very fast when the number of atoms is less than hundred. • The model is applicable to any metallic nanoparticle. - Abstract: This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data

  5. Stabilized chitosan/Fe(0)-nanoparticle beads to remove heavy metals from polluted sediments.

    Science.gov (United States)

    Liu, T; Sun, Y; Wang, Z L

    2016-01-01

    Sediment contamination by heavy metals has become a widespread problem that can affect the normal behaviors of rivers and lakes. After chitosan/Fe(0)-nanoparticles (CS-NZVI) beads were cross-linked with glutaraldehyde (GLA), their mechanical strength, stability and separation efficiency from the sediment were obviously improved. Moreover, the average aperture size of GLA-CS-NZVI beads was 20.6 μm and NZVI particles were nearly spherical in shape with a mean diameter of 40.2 nm. In addition, the pH showed an insignificant effect on the removal rates from the sediment. Due to the dissolution of metals species into aqueous solutions as an introduction of the salt, the removal rates of all heavy metals from the sediment were increased with an increase of the salinity. The competitive adsorption of heavy metals between the sediment particles and GLA-CS-NZVI beads became stronger as the sediment particles became smaller, leading to decreased removal rates. Therefore, the removal efficiency could be enhanced by optimizing experimental conditions and choosing appropriate materials for the target contaminants.

  6. Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fattahi, M., E-mail: fattahi.put@gmail.com [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Noei Aghaei, V. [Aerospace Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Dabiri, A.R. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Amirkhanlou, S. [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Akhavan, S.; Fattahi, Y. [Materials Engineering Department, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-11-11

    In the present work, accumulative roll bonding (ARB) was used as an effective method for manufacturing nanoparticle/Al composite filler metals of tungsten inert gas (TIG) welding. After welding, the distribution of ceramic nanoparticles and mechanical properties of welds were investigated. By applying ARB, ceramic nanoparticles were uniformly dispersed in the composite filler metals. Consequently, the welds produced by these filler metals had a uniform dispersion of ceramic nanoparticles in their compositions. The test results showed that the yield strength of welds was greatly increased when using the nanoparticle/Al composite filler metals. The improvement in the yield strength was attributed to the coefficient of thermal expansion mismatch and Orowan strengthening mechanisms. Therefore, according to the results presented in this paper, it can be concluded that the nanoparticle/Al composite filler metals can serve as a novel filler metal for TIG welding of aluminum and its alloys.

  7. Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tufail Ahmad

    2014-01-01

    Full Text Available Metal nanoparticles harbour numerous exceptional physiochemical properties absolutely different from those of bulk metal as a function of their extremely small size and large superficial area to volume. Naked metal nanoparticles are synthesized by various physical and chemical methods. Chemical methods involving metal salt reduction in solution enjoy an extra edge over other protocols owing to their relative facileness and capability of controlling particle size along with the attribute of surface tailoring. Although chemical methods are the easiest, they are marred by the use of hazardous chemicals such as borohydrides. This has led to inclination of scientific community towards eco-friendly agents for the reduction of metal salts to form nanoparticles. Tannic acid, a plant derived polyphenolic compound, is one such agent which embodies characteristics of being harmless and environmentally friendly combined with being a good reducing and stabilizing agent. In this review, first various methods used to prepare metal nanoparticles are highlighted and further tannic acid mediated synthesis of metal nanoparticles is emphasized. This review brings forth the most recent findings on this issue.

  8. Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles

    International Nuclear Information System (INIS)

    Ahmad, T.

    2014-01-01

    Metal nanoparticles harbour numerous exceptional physiochemical properties absolutely different from those of bulk metal as a function of their extremely small size and large superficial area to volume. Naked metal nanoparticles are synthesized by various physical and chemical methods. Chemical methods involving metal salt reduction in solution enjoy an extra edge over other protocols owing to their relative facileness and capability of controlling particle size along with the attribute of surface tailoring. Although chemical methods are the easiest, they are marred by the use of hazardous chemicals such as borohydrides. This has led to inclination of scientific community towards eco-friendly agents for the reduction of metal salts to form nanoparticles. Tannic acid, a plant derived polyphenolic compound, is one such agent which embodies characteristics of being harmless and environmentally friendly combined with being a good reducing and stabilizing agent. In this review, first various methods used to prepare metal nanoparticles are highlighted and further tannic acid mediated synthesis of metal nanoparticles is emphasized. This review brings forth the most recent findings on this issue.

  9. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  10. One-step synthesis of gold bimetallic nanoparticles with various metal-compositions

    International Nuclear Information System (INIS)

    Bratescu, Maria Antoaneta; Takai, Osamu; Saito, Nagahiro

    2013-01-01

    Highlights: ► Synthesis of bimetallic nanoparticles in an aqueous solution discharge. ► Alloying gold with divalent sp metals, trivalent sp metals, 3d or 4d metals. ► Formation mechanism of bimetallic nanoparticles by metal reduction and gold erosion. ► Blue and red shift of surface plasmon resonance. -- Abstract: A rapid, one-step process for the synthesis of bimetallic nanoparticles by simultaneous metal reduction and gold erosion in an aqueous solution discharge was investigated. Gold bimetallic nanoparticles were obtained by alloying gold with various types of metals belonging to one of the following categories: divalent sp metals, trivalent sp metals, 3d or 4d metals. The composition of the various gold bimetallic nanoparticles obtained depends on electrochemical factors, charge transfer between gold and other metal, and initial concentration of metal in solution. Transmission electron microscopy and energy dispersive spectroscopy show that the gold bimetallic nanoparticles were of mixed pattern, with sizes of between 5 and 20 nm. A red-shift of the surface plasmon resonance band in the case of the bimetallic nanoparticles Au–Fe, Au–Ga, and Au–In, and a blue-shift of the plasmon band of the Au–Ag nanoparticles was observed. In addition, the interaction of gold bimetallic nanoparticles with unpaired electrons, provided by a stable free radical molecule, was highest for those NPs obtained by alloying gold with a 3d metal

  11. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Optical limiting capability of the nanoparticle-embedded polymer film is demonstrated. Keywords. Polar crystal; uniaxial orientational order; thin film; second harmonic gen- eration; silver ... able content of metal nanoparticles would be of considerable value from an appli- ... polar chain and perpendicular to it [10].

  12. Absorption properties of metal-semiconductor hybrid nanoparticles.

    Science.gov (United States)

    Shaviv, Ehud; Schubert, Olaf; Alves-Santos, Marcelo; Goldoni, Guido; Di Felice, Rosa; Vallée, Fabrice; Del Fatti, Natalia; Banin, Uri; Sönnichsen, Carsten

    2011-06-28

    The optical response of hybrid metal-semiconductor nanoparticles exhibits different behaviors due to the proximity between the disparate materials. For some hybrid systems, such as CdS-Au matchstick-shaped hybrids, the particles essentially retain the optical properties of their original components, with minor changes. Other systems, such as CdSe-Au dumbbell-shaped nanoparticles, exhibit significant change in the optical properties due to strong coupling between the two materials. Here, we study the absorption of these hybrids by comparing experimental results with simulations using the discrete dipole approximation method (DDA) employing dielectric functions of the bare components as inputs. For CdS-Au nanoparticles, the DDA simulation provides insights on the gold tip shape and its interface with the semiconductor, information that is difficult to acquire by experimental means alone. Furthermore, the qualitative agreement between DDA simulations and experimental data for CdS-Au implies that most effects influencing the absorption of this hybrid system are well described by local dielectric functions obtained separately for bare gold and CdS nanoparticles. For dumbbell shaped CdSe-Au, we find a shortcoming of the electrodynamic model, as it does not predict the "washing out" of the optical features of the semiconductor and the metal observed experimentally. The difference between experiment and theory is ascribed to strong interaction of the metal and semiconductor excitations, which spectrally overlap in the CdSe case. The present study exemplifies the employment of theoretical approaches used to describe the optical properties of semiconductors and metal nanoparticles, to achieve better understanding of the behavior of metal-semiconductor hybrid nanoparticles.

  13. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    Science.gov (United States)

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  14. Transition Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Lydia; Thurber, Aaron P.; Anghel, Josh; Sabetian, Maryam; Engelhard, Mark H.; Tenne, D.; Hanna, Charles; Punnoose, Alex

    2010-08-13

    Recent claims that ferromagnetism can be produced in nanoparticles of metal oxides without the presence of transition metal dopants has been refuted in this work by investigating 62 high quality well-characterized nanoparticle samples of both undoped and Fe doped (0-10% Fe) ZnO. The undoped ZnO nanoparticles showed zero or negligible magnetization, without any dependence on the nanoparticle size. However, chemically synthesized Zn₁₋xFexO nanoparticles showed clear ferromagnetism, varying systematically with Fe concentration. Furthermore, the magnetic properties of Zn₁₋xFexO nanoparticles showed strong dependence on the reaction media used to prepare the samples. The zeta potentials of the Zn₁₋xFexO nanoparticles prepared using different reaction media were significantly different, indicating strong differences in the surface structure. Electron paramagnetic resonance studies clearly showed that the difference in the ferromagnetic properties of Zn₁₋xFexO nanoparticles with different surface structures originate from differences in the fraction of the doped Fe³⁺ ions that are coupled ferromagnetically.

  15. Impact of metal and metal oxide nanoparticles on plant: A critical review

    Science.gov (United States)

    Rastogi, Anshu; Zivcak, Marek; Sytar, Oksana; Kalaji, Hazem M.; He, Xiaolan; Mbarki, Sonia; Brestic, Marian

    2017-10-01

    An increasing need of nanotechnology in various industries may cause a huge environment dispersion of nanoparticles in coming years. A concern about nanoparticles interaction with flora and fauna is raised due to a growing load of it in the environment. In recent years, several investigators have shown impact of nanoparticles on plant growth and its accumulation in food source. This review examines the research performed in the last decade to show how metal and metal oxide nanoparticles are influencing the plant metabolisms. We addressed here, the impact of nanoparticle on plant in relation to its size, concentration, and exposure methodology. Based on the available reports, we proposed oxidative burst as a general mechanism through which the toxic effects of nanoparticles are spread in plants. This review summarises the current understanding and the future possibilities of plant-nanoparticle research.

  16. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin

    International Nuclear Information System (INIS)

    Wang, Niejun; Zhou, Lilin; Guo, Jun; Ye, Qiquan; Lin, Jin-Ming; Yuan, Jinying

    2014-01-01

    Graft through strategy was utilized to coat magnetic Fe 3 O 4 nanoparticles with poly(glycidyl methacrylate) using ordinary radical polymerization and then β-cyclodextrin was linked onto the surface of nanoparticles. With these nanoparticles modified with cyclodextrin groups, adsorption of two model environmental pollutants, bisphenol A and copper ions, was studied. Host–guest interactions between cyclodextrin and aromatic molecules had a great contribution to the adsorption of bisphenol A, while multiple hydroxyls of cyclodextrin also helped the adsorption of copper ions. These magnetic nanoparticles could be applied in the elimination, enrichment and detection of some environmental pollutants.

  17. Large patternable metal nanoparticle sheets by photo/e-beam lithography

    Science.gov (United States)

    Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru

    2017-10-01

    Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.

  18. Size Controlled Synthesis of Transition Metal Nanoparticles for Catalytic Applications

    KAUST Repository

    Esparza, Angel

    2011-07-07

    Catalysis offers cleaner and more efficient chemical reactions for environmental scientists. More than 90% of industrial processes are performed with a catalyst involved, however research it is still required to improve the catalyst materials. The purpose of this work is to contribute with the development of catalysts synthesis with two different approaches. First, the precise size control of non-noble metals nanoparticles. Second, a new one-pot synthesis method based on a microemulsion system was developed to synthesize size-controlled metal nanoparticles in oxide supports. The one-pot method represents a simple approach to synthesize both support and immobilized nanometer-sized non-noble metal nanoparticles in the same reaction system. Narrow size distribution nickel, cobalt, iron and cobalt-nickel nanoparticles were obtained. High metal dispersions are attainable regardless the metal or support used in the synthesis. Thus, the methodology is adaptable and robust. The sizecontrolled supported metal nanoparticles offer the opportunity to study size effects and metal-support interactions on different catalytic reactions with different sets of metals and supports.

  19. Noble Metal Nanoparticles for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Pedro V. Baptista

    2012-02-01

    Full Text Available In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory.

  20. Multifunctional metal ferrite nanoparticles for MR imaging applications

    International Nuclear Information System (INIS)

    Joshi, Hrushikesh M.

    2013-01-01

    Magnetic Resonance Imaging (MRI) is a very powerful non-invasive tool for in vivo imaging and clinical diagnosis. With rapid advancement in nanoscience and nanotechnology, there is rapid growth in nanoparticles-based contrast agents. Progress in synthetic protocols enable synthesis of multifunctional nanoparticles which facilitated efforts toward the development of multimodal contrast agents. In this review, recent developments in metal ferrite-based MR contrast agents have been described. Specifically, effect of size, shape, composition, assembly and surface modification of metal ferrite nanoparticles on their T 2 contrast have been discussed. The review further outlines the effect of leaching on MRI contrast and other various factors which affect the multimodal ability of the (T 1 –T 2 and T 2 -thermal activation) metal ferrite nanoparticles.

  1. Sustainable preparation of supported metal nanoparticles and their applications in catalysis.

    Science.gov (United States)

    Campelo, Juan M; Luna, Diego; Luque, Rafael; Marinas, José M; Romero, Antonio A

    2009-01-01

    Metal nanoparticles have attracted much attention over the last decade owing to their unique properties as compared to their bulk metal equivalents, including a large surface-to-volume ratio and tunable shapes. To control the properties of nanoparticles with particular respect to shape, size and dispersity is imperative, as these will determine the activity in the desired application. Supported metal nanoparticles are widely employed in catalysis. Recent advances in controlling the shape and size of nanoparticles have opened the possibility to optimise the particle geometry for enhanced catalytic activity, providing the optimum size and surface properties for specific applications. This Review describes the state of the art with respect to the preparation and use of supported metal nanoparticles in catalysis. The main groups of such nanoparticles (noble and transition metal nanoparticles) are highlighted and future prospects are discussed.

  2. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    International Nuclear Information System (INIS)

    Salvadori, M.C.; Teixeira, F.S.; Sgubin, L.G.; Cattani, M.; Brown, I.G.

    2014-01-01

    Highlights: • Metal nanoparticles can be produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. • The nanoparticles nucleate near the maximum of the implantation depth profile, that can be estimated by computer simulation using the TRIDYN. • Nanocomposites, obtained by this way, can be produced in different insulator materials. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. • The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted, reaching the percolation threshold. • Excellent agreement was found between the experimental results and the predictions of the theory. - Abstract: There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in

  3. Synthesis and functionalisation of metal and metal oxide nanoparticles for theranostics

    OpenAIRE

    Mundell, VJ

    2013-01-01

    Metal and metal oxide nanoparticles including calcium oxide, gold, and superparamagnetic iron oxide nanoparticles (SPIOs) were synthesised using a range of techniques including reduction, co-precipitation and spinning disc technology. SPIOs were primarily synthesised via a co-precipitation method using iron (II) chloride, iron (III) chloride and ammonia; a spinning disc reactor and gaseous ammonia were trialled successfully for scale up, producing spherical particles of 10-40 nm in diameter a...

  4. Functionalized paper--A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water.

    Science.gov (United States)

    Setyono, Daisy; Valiyaveettil, Suresh

    2016-01-25

    Paper, a readily available renewable resource, comprises of interwoven cellulosic fibers, which can be functionalized to develop interesting low-cost adsorbent material for water purification. In this study, polyethyleneimine (PEI)-functionalized paper was used for the removal of hazardous pollutants such as Au and Ag nanoparticles, Cr(VI) anions, Ni(2+), Cd(2+), and Cu(2+) cations from spiked water samples. Compared to untreated paper, the PEI-coated paper showed significant improvement in adsorption capacities toward the pollutants investigated in this study. Kinetics, isotherm models, pH, and desorption studies were carried out to study the adsorption mechanism of pollutants on the adsorbent surface. Adsorption of pollutants was better described by pseudo-second order kinetics and Langmuir isotherm model. Maximum adsorption of anionic pollutants was achieved at pH 5 while that of cations was at pH>6. Overall, the PEI-functionalized paper showed interesting Langmuir adsorption capacities for heavy metal ions such as Cr(VI) (68 mg/g), Ni(2+) (208 mg/g), Cd(2+) (370 mg/g), and Cu(2+) (435 mg/g) ions at neutral pH. In addition, the modified paper was also used to remove Ag-citrate (79 mg/g), Ag-PVP (46 mg/g), Au-citrate (30 mg/g), Au-PVP (17 mg/g) nanoparticles from water. Desorption of NPs from the adsorbent was done by washing with 2 M HCl or thiourea solution, while heavy metal ions were desorbed using 1 M NaOH or HNO3 solution. The modified paper retained its extraction efficiencies upon desorption of pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Antimicrobial properties of metal and metal-halide nanoparticles and their potential applications

    Science.gov (United States)

    Torrey, Jason Robert

    Heavy metals, including silver and copper, have been known to possess antimicrobial properties against bacterial, fungal, and viral pathogens. Metal nanoparticles (aggregations of metal atoms 1-200 nm in size) have recently become the subject of intensive study for their increased antimicrobial properties. In the current studies, metal and metal-halide nanoparticles were evaluated for their antibacterial efficacy. Silver (Ag), silver bromide (AgBr), silver iodide (AgI), and copper iodide (CuI) nanoparticles significantly reduced bacterial numbers of the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus within 24 hours and were more effective against P. aeruginosa. CuI nanoparticles were found to be highly effective, reducing both organisms by >4.43 log 10 within 15 minutes at 60 ppm Cu. CuI nanoparticles formulated with different stabilizers (sodium dodecyl sulfate, SDS; polyvinyl pyrrolidone, PVP) were further tested against representative Gram-positive and Gram-negative bacteria, Mycobacteria, a fungus (Candida albicans ), and a non-enveloped virus (poliovirus). Both nanoparticles caused significant reductions in most of the Gram-negative bacteria within five minutes (>5.09-log10). The Gram-positive bacterial species and C. albicans were more sensitive to the CuI-SDS than the CuI-PVP nanoparticles. In contrast, the acid-fast Mycobacterium smegmatis was more resistant to CuI-SDS than CuI-PVP nanoparticles. Poliovirus was more resistant than the other organisms tested except for Mycobacterium fortuitum, which displayed the greatest resistance to CuI nanoparticles. As an example of a real world antimicrobial application, polymer coatings embedded with various concentrations of CuI nanoparticles were tested for antibacterial efficacy against P. aeruginosa and S. aureus. Polyester-epoxy powder coatings were found to display superior uniformity, stability and antimicrobial properties against both organisms (>4.92 log 10 after six hours at

  6. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.

    Science.gov (United States)

    Divya, Kizhmuri P; Miroshnikov, Mikhail; Dutta, Debjit; Vemula, Praveen Kumar; Ajayan, Pulickel M; John, George

    2016-09-20

    The allure of integrating the tunable properties of soft nanomaterials with the unique optical and electronic properties of metal nanoparticles has led to the development of organic-inorganic hybrid nanomaterials. A promising method for the synthesis of such organic-inorganic hybrid nanomaterials is afforded by the in situ generation of metal nanoparticles within a host organic template. Due to their tunable surface morphology and porosity, soft organic materials such as gels, liquid crystals, and polymers that are derived from various synthetic or natural compounds can act as templates for the synthesis of metal nanoparticles of different shapes and sizes. This method provides stabilization to the metal nanoparticles by the organic soft material and advantageously precludes the use of external reducing or capping agents in many instances. In this Account, we exemplify the green chemistry approach for synthesizing these materials, both in the choice of gelators as soft material frameworks and in the reduction mechanisms that generate the metal nanoparticles. Established herein is the core design principle centered on conceiving multifaceted amphiphilic soft materials that possess the ability to self-assemble and reduce metal ions into nanoparticles. Furthermore, these soft materials stabilize the in situ generated metal nanoparticles and retain their self-assembly ability to generate metal nanoparticle embedded homogeneous organic-inorganic hybrid materials. We discuss a remarkable example of vegetable-based drying oils as host templates for metal ions, resulting in the synthesis of novel hybrid nanomaterials. The synthesis of metal nanoparticles via polymers and self-assembled materials fabricated via cardanol (a bioorganic monomer derived from cashew nut shell liquid) are also explored in this Account. The organic-inorganic hybrid structures were characterized by several techniques such as UV-visible spectroscopy, scanning electron microscopy (SEM), and

  7. Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.

    Science.gov (United States)

    Li, Keke; Liu, Anping; Wei, Dapeng; Yu, Keke; Sun, Xiaonan; Yan, Sheng; Huang, Yingzhou

    2018-04-25

    Benefiting from the induced image charge on metal film, the light energy is confined on a film surface under metal nanoparticle dimer, which is called electromagnetic field redistribution. In this work, electromagnetic field distribution of metal nanoparticle monomer or dimer on graphene is investigated through finite-difference time-domain method. The results point out that the electromagnetic field (EM) redistribution occurs in this nanoparticle/graphene hybrid system at infrared region where light energy could also be confined on a monolayer graphene surface. Surface charge distribution was analyzed using finite element analysis, and surface-enhanced Raman spectrum (SERS) was utilized to verify this phenomenon. Furthermore, the data about dielectric nanoparticle on monolayer graphene demonstrate this EM redistribution is attributed to strong coupling between light-excited surface charge on monolayer graphene and graphene plasmon-induced image charge on dielectric nanoparticle surface. Our work extends the knowledge of monolayer graphene plasmon, which has a wide range of applications in monolayer graphene-related film.

  8. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor

    International Nuclear Information System (INIS)

    Ahmed, Khan Behlol Ayaz; Raman, Thiagarajan; Veerappan, Anbazhagan

    2016-01-01

    Nanoparticles are being widely used as antibacterial agents with metal nanoparticles emerging as the most efficient antibacterial agents. There have been many studies which have reported the mechanism of antibacterial activity of nanoparticles on bacteria. In this review we aim to emphasize on all the possible mechanisms which are involved in the antibacterial activity of nanoparticles and also to understand their mode of action and role as bacterial enzyme inhibitor by comparing their antibacterial mechanism to that of antibiotics with enzyme inhibition as a major mechanism. With the emergence of widespread antibiotic resistance, nanoparticles offer a better alternative to our conventional arsenal of antibiotics. Once the biological safety of these nanoparticles is addressed, these nanoparticles can be of great medical importance in our fight against bacterial infections. - Highlights: • Mechanisms of antibiotics and metal nanoparticles resemble one another. • Bactericidal mechanisms of NPs are cell wall damage, and ROS generation. • Metal NPs inhibit membrane synthesis enzyme. • NPs can be used as antibacterial agents. • NP as antibacterial strategy important due to widespread antibiotic resistance

  9. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Khan Behlol Ayaz; Raman, Thiagarajan, E-mail: raman@biotech.sastra.edu; Veerappan, Anbazhagan, E-mail: anbazhagan@scbt.sastra.edu

    2016-11-01

    Nanoparticles are being widely used as antibacterial agents with metal nanoparticles emerging as the most efficient antibacterial agents. There have been many studies which have reported the mechanism of antibacterial activity of nanoparticles on bacteria. In this review we aim to emphasize on all the possible mechanisms which are involved in the antibacterial activity of nanoparticles and also to understand their mode of action and role as bacterial enzyme inhibitor by comparing their antibacterial mechanism to that of antibiotics with enzyme inhibition as a major mechanism. With the emergence of widespread antibiotic resistance, nanoparticles offer a better alternative to our conventional arsenal of antibiotics. Once the biological safety of these nanoparticles is addressed, these nanoparticles can be of great medical importance in our fight against bacterial infections. - Highlights: • Mechanisms of antibiotics and metal nanoparticles resemble one another. • Bactericidal mechanisms of NPs are cell wall damage, and ROS generation. • Metal NPs inhibit membrane synthesis enzyme. • NPs can be used as antibacterial agents. • NP as antibacterial strategy important due to widespread antibiotic resistance.

  10. Remediation of biochar on heavy metal polluted soils

    Science.gov (United States)

    Wang, Shuguang; Xu, Yan; Norbu, Namkha; Wang, Zhan

    2018-01-01

    Unreasonable mining and smelting of mineral resources, solid waste disposal, sewage irrigation, utilization of pesticides and fertilizers would result in a large number of heavy metal pollutants into the water and soil environment, causing serious damage to public health and ecological safety. In recent years, a majority of scholars tried to use biochar to absorb heavy metal pollutants, which has some advantages of extensive raw material sources, low-cost and high environmental stability. This paper reviewed the definition, properties of biochar, the mechanism of heavy metal sorption by biochar and some related problems and prospects, to provide some technical support for the application of biochar into heavy metal polluted soils.

  11. Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions

    Science.gov (United States)

    Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi

    2018-05-01

    A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.

  12. Impact of metal pollution on fungal diversity and community structures.

    Science.gov (United States)

    Op De Beeck, Michiel; Lievens, Bart; Busschaert, Pieter; Rineau, Francois; Smits, Mark; Vangronsveld, Jaco; Colpaert, Jan V

    2015-06-01

    The impact of metal pollution on plant communities has been studied extensively in the past, but little is known about the effects of metal pollution on fungal communities that occur in metal-polluted soils. Metal-tolerant ecotypes of the ectomycorrhizal fungus Suillus luteus are frequently found in pioneer pine forests in the Campine region in Belgium on metal-polluted soils. We hypothesized that metal pollution would play an important role in shaping below-ground fungal communities that occur in these soils and that Suillus luteus would be a dominant player. To test these hypotheses, the fungal communities in a young pine plantation in soil polluted with zinc, and cadmium were studied using 454 amplicon pyrosequencing. Results show that zinc, cadmium and soil organic matter content were strongly correlated with the fungal community composition, but no effects on fungal diversity were observed. As hypothesized, S. luteus was found to be a dominant member of the studied fungal communities. However, other dominant fungal species, such as Sistotrema sp., Wilcoxina mikolae and Cadophora finlandica were found as well. Their presence in metal-polluted sites is discussed. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Environmentally friendly preparation of metal nanoparticles

    Science.gov (United States)

    The book chapter summarizes the “state of the art” in the exploitation of various environmentally-friendly synthesis approaches, reaction precursors and conditions to manufacture metal and metal oxide nanoparticles for a vast variety of purposes.

  14. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment.

    Science.gov (United States)

    Li, Zhiyuan; Ma, Zongwei; van der Kuijp, Tsering Jan; Yuan, Zengwei; Huang, Lei

    2014-01-15

    Heavy metal pollution has pervaded many parts of the world, especially developing countries such as China. This review summarizes available data in the literature (2005-2012) on heavy metal polluted soils originating from mining areas in China. Based on these obtained data, this paper then evaluates the soil pollution levels of these collected mines and quantifies the risks these pollutants pose to human health. To assess these potential threat levels, the geoaccumulation index was applied, along with the US Environmental Protection Agency (USEPA) recommended method for health risk assessment. The results demonstrate not only the severity of heavy metal pollution from the examined mines, but also the high carcinogenic and non-carcinogenic risks that soil heavy metal pollution poses to the public, especially to children and those living in the vicinity of heavily polluted mining areas. In order to provide key management targets for relevant government agencies, based on the results of the pollution and health risk assessments, Cd, Pb, Cu, Zn, Hg, As, and Ni are selected as the priority control heavy metals; tungsten, manganese, lead-zinc, and antimony mines are selected as the priority control mine categories; and southern provinces and Liaoning province are selected as the priority control provinces. This review, therefore, provides a comprehensive assessment of soil heavy metal pollution derived from mines in China, while identifying policy recommendations for pollution mitigation and environmental management of these mines. © 2013.

  15. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    Science.gov (United States)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor); Wang, Wenzhong (Inventor); Dresselhaus, Mildred (Inventor)

    2009-01-01

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  16. A simple urea-based route to ternary metal oxynitride nanoparticles

    International Nuclear Information System (INIS)

    Gomathi, A.; Reshma, S.; Rao, C.N.R.

    2009-01-01

    Ternary metal oxynitrides are generally prepared by heating the corresponding metal oxides with ammonia for long durations at high temperatures. In order to find a simple route that avoids use of gaseous ammonia, we have employed urea as the nitriding agent. In this method, ternary metal oxynitrides are obtained by heating the corresponding metal carbonates and transition metal oxides with excess urea. By this route, ternary metal oxynitrides of the formulae MTaO 2 N (M=Ca, Sr or Ba), MNbO 2 N (M=Sr or Ba), LaTiO 2 N and SrMoO 3-x N x have been prepared successfully. The oxynitrides so obtained were generally in the form of nanoparticles, and were characterized by various physical techniques. - Graphical abstract: Nanoparticles of ternary metal oxynitrides can be synthesized by means of urea route. Given is the TEM image of the nanoparticles of CaTaO 2 N so obtained and the insets show the SAED pattern and HREM image of the nanoparticles

  17. Radiation chemical route for preparation of metal nanoparticles

    International Nuclear Information System (INIS)

    Kapoor, S.; Mukherjee, T.

    2006-01-01

    Nanoparticles show properties that are neither seen in the bulk or at atomic level. The unusual properties are governed by quantum size effect. Due to this various methodologies have been endeavored to control the size of the particles. In the present work we show the use of two complimentary techniques (radiation and photo) to synthesize and control the size of the metal particles. In-situ synthesis of fine silver, thallium and cadmium particles has been carried out by gamma-irradiation and electron pulse irradiation at room temperature in the pre-organized gel of polyacrylamide or cyclodextrin cavity. The role of generation of nuclei in high concentrations in stabilization of metal nanoparticles in hydrophobic cavity is shown. Similarly the importance of entrapment of metal ions in the polymer matrix during its formation is highlighted. The work is further extended to exploit the microemulsion droplets for stabilization of Cd nanoparticles. Utility of pulse radiolysis in probing the mechanism of the formation of metal nanoparticles is also shown. Ultrafast laser pulses were employed to control the morphology of the pre-prepared Pt nanoparticles. The changes in reduction of shape and size are considered to occur through melting and vaporization of the nanoparticles. Pt nanoparticles were coated on the inner walls of the tubular pyrex reactor and tested for their catalytic activity for oxidation of CO. It was observed that Pt nanoparticles prepared in the presence of a stabilizer (gelatin) showed a higher tendency to adhere to the inner walls of the pyrex reactor as compared to that prepared in the presence of silica nanoparticles. The catalyst was found to be active at ≥150 degree C giving CO 2 . Chemically reduced Pt nanoparticles stabilized on silica nanoparticles gave ∼7% CO conversion per hr. However, radiolytically prepared Pt nanoaprticles stabilized by gelatin gave ∼10% conversion per hr. The data indicates that catalytic oxidation of CO takes place

  18. Metal Nanoparticles as Targeted Carriers Circumventing the Blood-Brain Barrier.

    Science.gov (United States)

    Sintov, A C; Velasco-Aguirre, C; Gallardo-Toledo, E; Araya, E; Kogan, M J

    2016-01-01

    Metal nanoparticles have been proposed as a carrier and a therapeutic agent in biomedical field because of their unique physiochemical properties. Due to these physicochemical properties, they can be used in different fields of biomedicine. In relation to this, plasmonic nanoparticles can be used for detection and photothermal destruction of tumor cells or toxic protein aggregates, and magnetic iron nanoparticles can be used for imaging and for hyperthermia of tumor cells. In addition, both therapy and imaging can be combined in one nanoparticle system, in a process called theranostics. Metal nanoparticles can be synthesized to modulate their size and shape, and conjugated with different ligands, which allow their application in drug delivery, diagnostics, and treatment of central nervous system diseases. This review is focused on the potential applications of metal nanoparticles and their capability to circumvent the blood-brain barrier (BBB). Although many articles have demonstrated delivery of metal nanoparticles to the brain by crossing the BBB after systemic administration, the percentage of the injected dose that reaches this organ is low in comparison to others, especially the liver and spleen. In connection with this drawback, we elaborate the architecture of the BBB and review possible mechanisms to cross this barrier by engineered nanoparticles. The potential uses of metal nanoparticles for treatment of disorders as well as related neurotoxicological considerations are also discussed. Finally, we bring up for discussion a direct and relatively simpler solution to the problem. We discuss this in detail after having proposed the use of the intranasal administration route as a way to circumvent the BBB. This route has not been extensively studied yet for metal nanoparticles, although it could be used as a research tool for mechanistic understanding and toxicity as well as an added value for medical practice. © 2016 Elsevier Inc. All rights reserved.

  19. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  20. heavy metal pollution asse al pollution assessment in the sediments

    African Journals Online (AJOL)

    User

    ABSTRACT. Sediments were collected from Dumba and to assess the pollution statusof the sedim. Cadmium (Cd), Chromium (Cr), Copper (Cu. (Zn) and Arsenic (As) were analysed using concentration of heavy metals varies bet with standard average shale to assess pollution in Dumba and KwataYobe sedi assessed ...

  1. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants

    OpenAIRE

    Makarov, V. V.; Love, A. J.; Sinitsyna, O. V.; Makarova, S. S.; Yaminsky, I. V.; Taliansky, M. E.; Kalinina, N. O.

    2014-01-01

    While metal nanoparticles are being increasingly used in many sectors of the economy, there is growing interest in the biological and environmental safety of their production. The main methods for nanoparticle production are chemical and physical approaches that are often costly and potentially harmful to the environment. The present review is devoted to the possibility of metal nanoparticle synthesis using plant extracts. This approach has been actively pursued in recent years as an alternat...

  2. Heavy Metals Pollution in Lake Mariut

    International Nuclear Information System (INIS)

    Saad, M.A.H.; Ezzat, A.A.E.; El-Rayis, O.A.; Hafez, H.

    1981-01-01

    The occurrence and distribution of heavy metals in the water of the heavily polluted Lake Mariut (Egypt) during August 1978 to September 1979 as well as the accumulation of these metals in the different parts of the common fish, Tilapia species, were studied. The study represents a second part of a pilot project on pollution of Lake Mariut supported by IAEA. The mean concentrations of the measured Zn, Gu, Fe, Mn and Cd in the lake water were 10.9, 4.2, 19.1, 26.2 and 0.62 μg/l, respectively

  3. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    Directory of Open Access Journals (Sweden)

    G. U. Chibuike

    2014-01-01

    Full Text Available Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

  4. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles.

    Science.gov (United States)

    Manivasagan, Panchanathan; Nam, Seung Yun; Oh, Junghwan

    2016-11-01

    The use of marine microorganisms as potential biofactories for green synthesis of metallic nanoparticles is a relatively new field of research with considerable prospects. This method is eco-friendly, time saving, and inexpensive and can be easily scaled up for large-scale synthesis. The increasing need to develop simple, nontoxic, clean, and environmentally safe production methods for nanoparticles and to decrease environmental impact, minimize waste, and increase energy productivity has become important in this field. Marine microorganisms are tiny organisms that live in marine ecosystems and account for >98% of biomass of the world's ocean. Marine microorganisms synthesize metallic nanoparticles either intracellularly or extracellularly. Marine microbially-produced metallic nanoparticles have received considerable attention in recent years because of their expected impact on various applications such as medicine, energy, electronic, and space industries. The present review discusses marine microorganisms as potential biofactories for the green synthesis of metallic nanoparticles and their potential applications.

  5. Pollution of the Rhine with toxic metals

    Energy Technology Data Exchange (ETDEWEB)

    Breder, R

    1981-07-17

    In the chapter of chemical analytics of traces contamination and element wastes are described. Another chapter is called ''sampling and treatment of samples''. In the chapter of determination methods are described atomic absorption spectrometry and inverse voltammetry. The chapter on the origin of metals in rivers deals with natural sources and anthropogenic pollution. The next chapter is called ''metal distribution and transfer events within the components water suspended matter and sediment''. Some toxicological aspects are treated, too. The chapter of anthropogenic metal pollution of the Rhine deals with some aspects of importance of the Rhine, the selection of the sampling places and metal contents in waters suspended matters and sediments. Another chapter treats the general relevance of data.

  6. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Katarzyna Kluczyk

    2018-06-01

    Full Text Available Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA and semi-classical (hydrodynamic theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.

  7. Metal nanoparticles in DBS card materials modification

    Science.gov (United States)

    Metelkin, A.; Frolov, G.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    In the recent years the method of collecting and storing Dried Blood Spots (DBS) on special cellulose membrane (paper) has gained wide popularity. But possible damage of biosamples caused by microorganisms in case of their incomplete drying is a disadvantage of the method. It can be overcome by treating sample-collection membranes with colloidal solutions of metal nanoparticles, having antibacterial effect. The team studied antibacterial properties of nonwoven material samples with various coatings (alcohol sols of copper, aluminium, iron, titanium, silver and vanadium nanoparticles). Colloidal solutions of nanoparticles were obtained by means of electroerosion method with further low-temperature plasma condensation. Antibacterial activity of fiberglass and cellulose membrane samples with nanoparticle coatings was studied using B. cereus and plaque bacteria cultures. It was revealed that nanostructured coatings can suppress bacterial activity; in addition they can diffuse from the membrane surface into medium which leads to widening the areas of inhibiting testing cultures’ growth. Thus, membrane materials treatment with alcohol-sols of metal nanoparticles can be seen as promising for conferring antibacterial properties to DBS carriers.

  8. Metal nanoparticles in DBS card materials modification

    International Nuclear Information System (INIS)

    Metelkin, A; Frolov, G; Kuznetsov, D; Kolesnikov, E; Chuprunov, K; Kondakov, S; Osipov, A; Samsonova, J

    2015-01-01

    In the recent years the method of collecting and storing Dried Blood Spots (DBS) on special cellulose membrane (paper) has gained wide popularity. But possible damage of biosamples caused by microorganisms in case of their incomplete drying is a disadvantage of the method. It can be overcome by treating sample-collection membranes with colloidal solutions of metal nanoparticles, having antibacterial effect. The team studied antibacterial properties of nonwoven material samples with various coatings (alcohol sols of copper, aluminium, iron, titanium, silver and vanadium nanoparticles). Colloidal solutions of nanoparticles were obtained by means of electroerosion method with further low-temperature plasma condensation. Antibacterial activity of fiberglass and cellulose membrane samples with nanoparticle coatings was studied using B. cereus and plaque bacteria cultures. It was revealed that nanostructured coatings can suppress bacterial activity; in addition they can diffuse from the membrane surface into medium which leads to widening the areas of inhibiting testing cultures’ growth. Thus, membrane materials treatment with alcohol-sols of metal nanoparticles can be seen as promising for conferring antibacterial properties to DBS carriers. (paper)

  9. Biosynthesis of Metal Nanoparticles: A Review

    International Nuclear Information System (INIS)

    Kulkarni, N.; Muddapur, U.

    2014-01-01

    The synthesis of nano structured materials, especially metallic nanoparticles, has accrued utmost interest over the past decade owing to their unique properties that make them applicable in different fields of science and technology. The limitation to the use of these nanoparticles is the paucity of an effective method of synthesis that will produce homogeneous size and shape nanoparticles as well as particles with limited or no toxicity to the human health and the environment. The biological method of nanoparticle synthesis is a relatively simple, cheap, and environmentally friendly method than the conventional chemical method of synthesis and thus gains an upper hand. The bio mineralization of nanoparticles in protein cages is one of such biological approaches used in the generation of nanoparticles. This method of synthesis apart from being a safer method in the production of nanoparticles is also able to control particle morphology.

  10. Biosynthesis of Metal Nanoparticles: A Review

    Directory of Open Access Journals (Sweden)

    Narendra Kulkarni

    2014-01-01

    Full Text Available The synthesis of nanostructured materials, especially metallic nanoparticles, has accrued utmost interest over the past decade owing to their unique properties that make them applicable in different fields of science and technology. The limitation to the use of these nanoparticles is the paucity of an effective method of synthesis that will produce homogeneous size and shape nanoparticles as well as particles with limited or no toxicity to the human health and the environment. The biological method of nanoparticle synthesis is a relatively simple, cheap, and environmentally friendly method than the conventional chemical method of synthesis and thus gains an upper hand. The biomineralization of nanoparticles in protein cages is one of such biological approaches used in the generation of nanoparticles. This method of synthesis apart from being a safer method in the production of nanoparticles is also able to control particle morphology.

  11. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    Science.gov (United States)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2018-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  12. Understanding metals pollutions

    International Nuclear Information System (INIS)

    Bril, H.; Bollinger, J.C.

    2006-01-01

    Either from natural or anthropic origin, be it normal or accidental (Tchernobyl), metallic elements are found everywhere in our environment. After a presentation of their repartition and mobility in water, sediments or soils, the mechanisms allowing their dispersion or their concentration are shown. Finally, transfers between environmental compartments are presented, before evoking the case of polluted sites: diagnostic, remediation and long-time management. (authors)

  13. Terahertz pulse generation from metal nanoparticle ink

    Science.gov (United States)

    Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Phan, Thanh Nhat Khoa; Nakajima, Makoto

    2016-11-01

    Terahertz pulse generation from metallic nanostructures irradiated by femtosecond laser pulses is of interest because the conversion efficiency from laser pulses to terahertz waves is increased by the local field enhancement resulting from the plasmon oscillation. In this talk we present our recent study on terahertz generation from metal nanoparticle ink. We baked a silver nanoparticle ink spin-coated onto a glass coverslip in various temperatures. On the surface of the baked ink, bumpy nanostructures are spontaneously formed, and the average size of bumps depends on the baking temperature. These structures are expected to lead to local field enhancement and then large nonlinear polarizations on the surface. The baked ink was irradiated by the output of regeneratively amplified Ti:sapphire femtosecond laser at an incidence angle of 45°. Waveforms of generated terahertz pulses are detected by electro-optical sampling. The generation efficiency was high when the average diameter of bumps was around 100 nm, which is realized when the ink is baked in 205 to 235°C in our setup. One of our next research targets is terahertz wave generation from micro-patterned metallic nanoparticle ink. It is an advantage of the metal nanoparticle ink that by using inkjet printers one can fabricate various patterns with micrometer scales, in which terahertz waves have a resonance. Combination of microstructures made by a printer and nanostructure spontaneously formed in the baking process will provide us terahertz emitters with unique frequency characteristics.

  14. Synthesis of metallic nanoparticles in SiO2 matrices

    International Nuclear Information System (INIS)

    Gutierrez W, C.; Mondragon G, G.; Perez H, R.; Mendoza A, D.

    2004-01-01

    Metallic nanoparticles was synthesized in SiO 2 matrices by means of a process of two stages. The first one proceeded via sol-gel, incorporating the metallic precursors to the reaction system before the solidification of the matrix. Later on, the samples underwent a thermal treatment in atmosphere of H 2 , carrying out the reduction of the metals that finally formed to the nanoparticles. Then it was detected the presence of smaller nanoparticles than 20 nm, dispersed and with the property of being liberated easily of the matrix, conserving a free surface, chemically reactive and with response to external electromagnetic radiation. The system SiO 2 -Pd showed an important thermoluminescent response. (Author)

  15. Precipitation of heterogeneous nanostructures: Metal nanoparticles and dielectric nanocrystallites

    International Nuclear Information System (INIS)

    Masai, Hirokazu; Takahashi, Yoshihiro; Fujiwara, Takumi; Tokuda, Yomei; Yoko, Toshinobu

    2010-01-01

    Heterogeneous precipitation of nanocrystallites of metallic Bi and anatase was observed in CaO-Bi 2 O 3 -B 2 O 3 -Al 2 O 3 -TiO 2 glass-ceramics. Addition of AlN reduced the Bi 2 O 3 to Bi metal nanoparticles, which were uniformly dispersed in the glass. After heat-treatment of the Bi-precipitated glass around the glass transition temperature, nanocrystalline anatase precipitated out without aggregation of the Bi metal particles. It was found that the anatase nanocrystal size was affected by the distance between a nanocrystal and a precipitated Bi nanoparticle. The glass-ceramic produced is a functional material containing a random dispersion of different types of nanoparticles with different dielectric constants.

  16. A general method to incorporate metal nanoparticles in zeolites and zeotypes

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed herein is a method for producing a zeolite, zeolite-like or zeotype structure with selective formation of metal, metal oxide or metal sulphide nanoparticles and/or clusters inside the zeolite, zeolite-like or zeotype structure.......Disclosed herein is a method for producing a zeolite, zeolite-like or zeotype structure with selective formation of metal, metal oxide or metal sulphide nanoparticles and/or clusters inside the zeolite, zeolite-like or zeotype structure....

  17. Deposition of metallic nanoparticles on carbon nanotubes via a fast evaporation process

    International Nuclear Information System (INIS)

    Ren Guoqiang; Xing Yangchuan

    2006-01-01

    A new technique was developed for the deposition of colloidal metal nanoparticles on carbon nanotubes. It involves fast evaporation of a suspension containing sonochemically functionalized carbon nanotubes and colloidal nanoparticles. It was demonstrated that metallic nanoparticles with different sizes and concentrations can be deposited on the carbon nanotubes with only a few agglomerates. The technique does not seem to be limited by what the nanoparticles are, and therefore would be applicable to the deposition of other nanoparticles on carbon nanotubes. PtPd and CoPt 3 alloy nanoparticles were used to demonstrate the deposition process. It was found that the surfactants used to disperse the nanoparticles can hinder the nanoparticle deposition. When the nanoparticles were washed with ethanol, they could be well deposited on the carbon nanotubes. The obtained carbon nanotube supported metal nanoparticles were characterized by transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and cyclic voltammetry

  18. Localized Plasmon resonance in metal nanoparticles using Mie theory

    Science.gov (United States)

    Duque, J. S.; Blandón, J. S.; Riascos, H.

    2017-06-01

    In this work, scattering light by colloidal metal nanoparticles with spherical shape was studied. Optical properties such as diffusion efficiencies of extinction and absorption Q ext and Q abs were calculated using Mie theory. We employed a MATLAB program to calculate the Mie efficiencies and the radial dependence of electric field intensities emitted for colloidal metal nanoparticles (MNPs). By UV-Vis spectroscopy we have determined the LSPR for Cu nanoparticles (CuNPs), Ni nanoparticles (NiNPs) and Co nanoparticles (CoNPs) grown by laser ablation technique. The peaks of resonances appear in 590nm, 384nm and 350nm for CuNPs, NiNPs and CoNPs respectively suspended in water. Changing the medium to acetone and ethanol we observed a shift of the resonance peaks, these values agreed with our simulations results.

  19. Potential application of metal nanoparticles for dosimetric systems: Concepts and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, Eder José, E-mail: ederguidelli@pg.ffclrp.usp.br; Baffa, Oswaldo, E-mail: ederguidelli@pg.ffclrp.usp.br [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP (Brazil)

    2014-11-07

    Metallic nanoparticles increase the delivered dose and consequently enhance tissue radio sensitization during radiation therapy of cancer. The Dose Enhancement Factor (DEF) corresponds to the ratio between the dose deposited on a tissue containing nanoparticles, and the dose deposited on a tissue without nanoparticles. In this sense, we have used electron spin resonance spectroscopy (ESR) to investigate how silver and gold nanoparticles affect the dose deposition in alanine dosimeters, which act as a surrogate of soft tissue. Besides optimizing radiation absorption by the dosimeter, the optical properties of these metal nanoparticles could also improve light emission from materials employed as radiation detectors. Therefore, we have also examined how the plasmonic properties of noble metal nanoparticles could enhance radiation detection using optically stimulated luminescence (OSL) dosimetry. This work will show results on how the use of gold and silver nanoparticles are beneficial for the ESR and OSL dosimetric techniques, and will describe the difficulties we have been facing, the challenges to overcome, and the perspectives.

  20. Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China

    Directory of Open Access Journals (Sweden)

    Huixuan Li

    2015-07-01

    Full Text Available China’s socioeconomic transitions have dramatically accelerated its economic growth in last three decades, but also companioned with continuous environmental degradation. This study will advance the knowledge of heavy metal water pollution in China from a spatial–temporal perspective. Specifically, this study addressed the following: (1 spatial patterns of heavy metal water pollution levels were analyzed using data of prefecture-level cities from 2004 to 2011; and (2 spatial statistical methods were used to examine the underlying socioeconomic and physical factors behind water pollution including socioeconomic transitions (industrialization, urbanization, globalization and economic development, and environmental characteristic (natural resources, hydrology and vegetation coverage. The results show that only Cr pollution levels increased over the years. The individual pollution levels of the other four heavy metals, As, Cd, Hg, and Pb, declined. High heavy metal water pollution levels are closely associated with both anthropogenic activities and physical environments, in particular abundant mineral resources and industrialization prosperity. On the other hand, economic development and urbanization play important roles in controlling water pollution problems. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and strategies for protecting water sources and controlling water pollution; thus improving the quality of living environments.

  1. Multiscale study of metal nanoparticles

    Science.gov (United States)

    Lee, Byeongchan

    Extremely small structures with reduced dimensionality have emerged as a scientific motif for their interesting properties. In particular, metal nanoparticles have been identified as a fundamental material in many catalytic activities; as a consequence, a better understanding of structure-function relationship of nanoparticles has become crucial. The functional analysis of nanoparticles, reactivity for example, requires an accurate method at the electronic structure level, whereas the structural analysis to find energetically stable local minima is beyond the scope of quantum mechanical methods as the computational cost becomes prohibitingly high. The challenge is that the inherent length scale and accuracy associated with any single method hardly covers the broad scale range spanned by both structural and functional analyses. In order to address this, and effectively explore the energetics and reactivity of metal nanoparticles, a hierarchical multiscale modeling is developed, where methodologies of different length scales, i.e. first principles density functional theory, atomistic calculations, and continuum modeling, are utilized in a sequential fashion. This work has focused on identifying the essential information that bridges two different methods so that a successive use of different methods is seamless. The bond characteristics of low coordination systems have been obtained with first principles calculations, and incorporated into the atomistic simulation. This also rectifies the deficiency of conventional interatomic potentials fitted to bulk properties, and improves the accuracy of atomistic calculations for nanoparticles. For the systematic shape selection of nanoparticles, we have improved the Wulff-type construction using a semi-continuum approach, in which atomistic surface energetics and crystallinity of materials are added on to the continuum framework. The developed multiscale modeling scheme is applied to the rational design of platinum

  2. Electroluminescence Efficiency Enhancement using Metal Nanoparticles

    National Research Council Canada - National Science Library

    Soref, Richard A; Khurgin, J. B; Sun, G

    2008-01-01

    We apply the "effective mode volume" theory to evaluate enhancement of the electroluminescence efficiency of semiconductor emitters placed in the vicinity of isolated metal nanoparticles and their arrays...

  3. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties.

    Science.gov (United States)

    Stankic, Slavica; Suman, Sneha; Haque, Francia; Vidic, Jasmina

    2016-10-24

    Th antibacterial activity of metal oxide nanoparticles has received marked global attention as they can be specifically synthesized to exhibit significant toxicity to bacteria. The importance of their application as antibacterial agents is evident keeping in mind the limited range and effectiveness of antibiotics, on one hand, and the plethora of metal oxides, on the other, along with the propensity of nanoparticles to induce resistance being much lower than that of antibiotics. Effective inhibition against a wide range of bacteria is well known for several nano oxides consisting of one metal (Fe 3 O 4 , TiO 2 , CuO, ZnO), whereas, research in the field of multi-metal oxides still demands extensive exploration. This is understandable given that the relationship between physicochemical properties and biological activity seems to be complex and difficult to generalize even for metal oxide nanoparticles consisting of only one metal component. Also, despite the broad scope that metal oxide nanoparticles have as antibacterial agents, there arise problems in practical applications taking into account the cytotoxic effects. In this respect, the consideration of polymetallic oxides for biological applications becomes even greater since these can provide synergetic effects and unify the best physicochemical properties of their components. For instance, strong antibacterial efficiency specific of one metal oxide can be complemented by non-cytotoxicity of another. This review presents the main methods and technological advances in fabrication of nanostructured metal oxides with a particular emphasis to multi-metal oxide nanoparticles, their antibacterial effects and cytotoxicity.

  4. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties

    Directory of Open Access Journals (Sweden)

    Slavica Stankic

    2016-10-01

    Full Text Available Abstract Th antibacterial activity of metal oxide nanoparticles has received marked global attention as they can be specifically synthesized to exhibit significant toxicity to bacteria. The importance of their application as antibacterial agents is evident keeping in mind the limited range and effectiveness of antibiotics, on one hand, and the plethora of metal oxides, on the other, along with the propensity of nanoparticles to induce resistance being much lower than that of antibiotics. Effective inhibition against a wide range of bacteria is well known for several nano oxides consisting of one metal (Fe3O4, TiO2, CuO, ZnO, whereas, research in the field of multi-metal oxides still demands extensive exploration. This is understandable given that the relationship between physicochemical properties and biological activity seems to be complex and difficult to generalize even for metal oxide nanoparticles consisting of only one metal component. Also, despite the broad scope that metal oxide nanoparticles have as antibacterial agents, there arise problems in practical applications taking into account the cytotoxic effects. In this respect, the consideration of polymetallic oxides for biological applications becomes even greater since these can provide synergetic effects and unify the best physicochemical properties of their components. For instance, strong antibacterial efficiency specific of one metal oxide can be complemented by non-cytotoxicity of another. This review presents the main methods and technological advances in fabrication of nanostructured metal oxides with a particular emphasis to multi-metal oxide nanoparticles, their antibacterial effects and cytotoxicity.

  5. The Synergic Characteristics of Surface Water Pollution and Sediment Pollution with Heavy Metals in the Haihe River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Peiru Kong

    2018-01-01

    Full Text Available Aquatic environmental deterioration is becoming a serious problem due to rapid urbanization and economic development, particularly in developing countries. As two important components of the aquatic environment, water quality and sediment pollution are widely considered to be concerns; however, they are considered separately in most cases. The relationship between water quality and sediment pollution with heavy metals has been little addressed. In this study, the Haihe River Basin (HRB, one of the most polluted areas in China, was used as a case study, and the eutrophication index (EI and the potential ecological risk index (RI were employed to evaluate water quality and sediment pollution of heavy metals, respectively. The results showed that generally in the HRB, the water quality was poor, while the risk of heavy metal pollution was relatively low. Surface water quality was mainly influenced by sewage discharges from human daily life, and heavy metal pollution was affected by industry structure, in that the areas with resource/energy consumption industries and high-pollution industries often have high risks of heavy metal pollution Synergic pollution from water eutrophication and sediment pollution with heavy metals was found, especially in the central areas of the HRB, and it was largely dependent on the type of human activities. In the places with intensive human activities, such as secondary industry, eutrophication occurred simultaneously with heavy metal pollution, other than in less human-affected areas. These findings are useful for planning aquatic environment protections and river ecosystem management.

  6. Gold nanoparticles modified with coordination compounds of metals: synthesis and application

    International Nuclear Information System (INIS)

    Beloglazkina, Elena K; Majouga, Alexander G; Romashkina, Renata B; Zyk, Nikolai V; Zefirov, Nikolai S

    2012-01-01

    The data on the preparation methods and applications of gold nanoparticles with coordinated metal ions on the surfaces are generalized. The currently available data on the interaction of metal ions with gold nanoparticles modified with organic (particularly, sulfur-containing) ligands comprising terminal chelating groups are considered in detail as well as the applications of such modified nanoparticles. The bibliography includes 141 references.

  7. Biocompatible Metal-Oxide Nanoparticles: Nanotechnology Improvement of Conventional Prosthetic Acrylic Resins

    Directory of Open Access Journals (Sweden)

    Laura S. Acosta-Torres

    2011-01-01

    Full Text Available Nowadays, most products for dental restoration are produced from acrylic resins based on heat-cured Poly(Methyl MethAcrylate (PMMA. The addition of metal nanoparticles to organic materials is known to increase the surface hydrophobicity and to reduce adherence to biomolecules. This paper describes the use of nanostructured materials, TiO2 and Fe2O3, for simultaneously coloring and/or improving the antimicrobial properties of PMMA resins. Nanoparticles of metal oxides were included during suspension polymerization to produce hybrid metal oxides-alginate-containing PMMA. Metal oxide nanoparticles were characterized by dynamic light scattering, and X-ray diffraction. Physicochemical characterization of synthesized resins was assessed by a combination of spectroscopy, scanning electron microscopy, viscometry, porosity, and mechanical tests. Adherence of Candida albicans cells and cellular compatibility assays were performed to explore biocompatibility and microbial adhesion of standard and novel materials. Our results show that introduction of biocompatible metal nanoparticles is a suitable means for the improvement of conventional acrylic dental resins.

  8. Biocompatible Metal-Oxide Nanoparticles: Nanotechnology Improvement of Conventional Prosthetic Acrylic Resins

    International Nuclear Information System (INIS)

    Acosta-Torres, L.S.; Lopez-Marin, L.M.; Padron, G.H.; Castano, V.M.; Nunez-Anita, R.E.

    2011-01-01

    Nowadays, most products for dental restoration are produced from acrylic resins based on heat-cured Poly(Methyl Methacrylate) (PMMA). The addition of metal nanoparticles to organic materials is known to increase the surface hydrophobicity and to reduce adherence to biomolecules. This paper describes the use of nano structured materials, TiO 2 and Fe 2 O 3 , for simultaneously coloring and/or improving the antimicrobial properties of PMMA resins. Nanoparticles of metal oxides were included during suspension polymerization to produce hybrid metal oxides-alginate-containing PMMA. Metal oxide nanoparticles were characterized by dynamic light scattering, and X-ray diffraction. Physicochemical characterization of synthesized resins was assessed by a combination of spectroscopy, scanning electron microscopy, viscometry, porosity, and mechanical tests. Adherence of Candida albicans cells and cellular compatibility assays were performed to explore biocompatibility and microbial adhesion of standard and novel materials. Our results show that introduction of biocompatible metal nanoparticles is a suitable means for the improvement of conventional acrylic dental resins.

  9. A review of ion and metal pollutants in urban green water infrastructures.

    Science.gov (United States)

    Kabir, Md Imran; Daly, Edoardo; Maggi, Federico

    2014-02-01

    In urban environments, the breakdown of chemicals and pollutants, especially ions and metal compounds, can be favoured by green water infrastructures (GWIs). The overall aim of this review is to set the basis to model GWIs using deterministic approaches in contrast to empirical ones. If a better picture of chemicals and pollutant input and an improved understanding of hydrological and biogeochemical processes affecting these pollutants were known, GWIs could be designed to efficiently retain these pollutants for site-specific meteorological patterns and pollutant load. To this end, we surveyed the existing literature to retrieve a comprehensive dataset of anions and cations, and alkaline and transition metal pollutants incoming to urban environments. Based on this survey, we assessed the pollution load and ecological risk indexes for metals. The existing literature was then surveyed to review the metal retention efficiency of GWIs, and possible biogeochemical processes related to inorganic metal compounds were proposed that could be integrated in biogeochemical models of GWIs. © 2013.

  10. Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis.

    Science.gov (United States)

    Banerjee, Abhinandan; Theron, Robin; Scott, Robert W J

    2012-01-09

    Gold and palladium nanoparticles were prepared by lithium borohydride reduction of the metal salt precursors in tetraalkylphosphonium halide ionic liquids in the absence of any organic solvents or external nanoparticle stabilizers. These colloidal suspensions remained stable and showed no nanoparticle agglomeration over many months. A combination of electrostatic interactions between the coordinatively unsaturated metal nanoparticle surface and the ionic-liquid anions, bolstered by steric protection offered by the bulky alkylated phosphonium cations, is likely to be the reason behind such stabilization. The halide anion strongly absorbs to the nanoparticle surface, leading to exceptional nanoparticle stability in halide ionic liquids; other tetraalkylphosphonium ionic liquids with non-coordinating anions, such as tosylate and hexafluorophosphate, show considerably lower affinities towards the stabilization of nanoparticles. Palladium nanoparticles stabilized in the tetraalkylphosphonium halide ionic liquid were stable, efficient, and recyclable catalysts for a variety of hydrogenation reactions at ambient pressures with sustained activity. Aerial oxidation of the metal nanoparticles occurred over time and was readily reversed by re-reduction of oxidized metal salts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Trees as bioindicator of heavy metal pollution in three European cities

    Energy Technology Data Exchange (ETDEWEB)

    Sawidis, T. [Department of Botany, University of Thessaloniki, 54124 Thessaloniki (Greece); Breuste, J., E-mail: juergen.breuste@sbg.ac.at [Department of Geography and Geology, University of Salzburg, 5010 Salzburg (Austria); Mitrovic, M.; Pavlovic, P. [Department of Ecology, Institute for Biological Research ' Sinisa Stankovic' , University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade (Serbia); Tsigaridas, K. [Department of Botany, University of Thessaloniki, 54124 Thessaloniki (Greece)

    2011-12-15

    Concentrations of four heavy metals were determined in tree leaves and bark collected from polluted and non-polluted areas of three European cities (Salzburg, Belgrade and Thessaloniki) for a comparative study. Platanus orientalis L. and Pinus nigra Arn., widespread in urban northern and southern Europe, were tested for their suitability for air quality biomonitoring. Leaves and barks were collected uniformly of an initial quantity of about 30 g of each sample. Analysis was accomplished by electrothermal atomic absorption spectrometry after total digestion. Site-dependent variations were found with the highest concentration level measured in Belgrade, followed by Thessaloniki and Salzburg. A higher accumulation of heavy metals was found in bark compared to leaves. Pine tree bark, accumulating higher concentrations of trace metals compared to plane tree bark, shows a higher efficiency as bioindicator for urban pollution. Both indicator species are suitable for comparative studies on bioindication of urban air pollution. - Highlights: > Oriental plane and Austrian pine are suitable for comparative urban air quality biomonitoring of heavy metal pollution. > Pine tree is excellently suitable as urban bioindicator as it accumulates high concentrations of trace metals. > The highest heavy metal pollution was found in Belgrade followed by Thessaloniki and Salzburg. - Oriental plane (Platanus orientalis L.) and Austrian pine (Pinus nigra Arn.), widespread in urban northern and southern Europe, are suitable for comparative biomonitoring of urban air pollution.

  12. Trees as bioindicator of heavy metal pollution in three European cities

    International Nuclear Information System (INIS)

    Sawidis, T.; Breuste, J.; Mitrovic, M.; Pavlovic, P.; Tsigaridas, K.

    2011-01-01

    Concentrations of four heavy metals were determined in tree leaves and bark collected from polluted and non-polluted areas of three European cities (Salzburg, Belgrade and Thessaloniki) for a comparative study. Platanus orientalis L. and Pinus nigra Arn., widespread in urban northern and southern Europe, were tested for their suitability for air quality biomonitoring. Leaves and barks were collected uniformly of an initial quantity of about 30 g of each sample. Analysis was accomplished by electrothermal atomic absorption spectrometry after total digestion. Site-dependent variations were found with the highest concentration level measured in Belgrade, followed by Thessaloniki and Salzburg. A higher accumulation of heavy metals was found in bark compared to leaves. Pine tree bark, accumulating higher concentrations of trace metals compared to plane tree bark, shows a higher efficiency as bioindicator for urban pollution. Both indicator species are suitable for comparative studies on bioindication of urban air pollution. - Highlights: → Oriental plane and Austrian pine are suitable for comparative urban air quality biomonitoring of heavy metal pollution. → Pine tree is excellently suitable as urban bioindicator as it accumulates high concentrations of trace metals. → The highest heavy metal pollution was found in Belgrade followed by Thessaloniki and Salzburg. - Oriental plane (Platanus orientalis L.) and Austrian pine (Pinus nigra Arn.), widespread in urban northern and southern Europe, are suitable for comparative biomonitoring of urban air pollution.

  13. Nanoscale wide-band semiconductors for photocatalytic remediation of aquatic pollution.

    Science.gov (United States)

    Sarkar, Biplab; Daware, Akshay Vishnu; Gupta, Priya; Krishnani, Kishore Kumar; Baruah, Sunandan; Bhattacharjee, Surajit

    2017-11-01

    Water pollution is a serious challenge to the public health. Among different forms of aquatic pollutants, chemical and biological agents create paramount threat to water quality when the safety standards are surpassed. There are many conventional remediatory strategies that are practiced such as resin-based exchanger and activated charcoal/carbon andreverse osmosis. Newer technologies using plants, microorganisms, genetic engineering, and enzyme-based approaches are also proposed for aquatic pollution management. However, the conventional technologies have shown impending inadequacies. On the other hand, new bio-based techniques have failed to exhibit reproducibility, wide specificity, and fidelity in field conditions. Hence, to solve these shortcomings, nanotechnology ushered a ray of hope by applying nanoscale zinc oxide (ZnO), titanium dioxide (TiO 2 ), and tungsten oxide (WO 3 ) particles for the remediation of water pollution. These nanophotocatalysts are active, cost-effective, quicker in action, and can be implemented at a larger scale. These nanoparticles are climate-independent, assist in complete mineralization of pollutants, and can act non-specifically against chemically and biologically based aquatic pollutants. Photocatalysis for environmental remediation depends on the availability of solar light. The mechanism of photocatalysis involves the formation of electron-hole pairs upon light irradiations at intensities higher than their band gap energies. In the present review, different methods of synthesis of nanoscale ZnO, TiO 2 , and WO 3 as well as their structural characterizations have been discussed. Photodegradation of organic pollutants through mentioned nanoparticles has been reviewed with recent advancements. Enhancing the efficacy of photocatalysis through doping of TiO 2 and ZnO nanoparticles with non-metals, metals, and metal ions has also been documented in this report.

  14. Relation between the degree of lung pollution by air pollution and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, H; Endo, R; Takemoto, K

    1975-04-01

    Human and dog lungs were analyzed for 13 kinds of heavy metals. The human lungs (all of Tokyo citizens) showed a broad range of dust sedimentation, some correlation between the degree of pollution and the amount of cadmium, nickel, and chromium only, and conspicuous individual differences seemingly due to occupation. No correlation was found between the amount of pulmonary metals, and age, or sex. In dog lungs there was no correlation between the local pollution and the amount of iron, copper, zinc, cobalt, and cadmium. Cadmium, nickel, lead, and chromium showed a correlation between local air pollution in human lungs. In dogs obtained in Korea, Ni and Cr were higher than in dog lungs obtained in Jinsen.

  15. Chemical sensors based on molecularly modified metallic nanoparticles

    International Nuclear Information System (INIS)

    Haick, Hossam

    2007-01-01

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  16. Impact of metal pollution on shrimp Crangon affinis by NMR-based metabolomics

    International Nuclear Information System (INIS)

    Ji, Chenglong; Yu, Deliang; Wang, Qing; Li, Fei; Zhao, Jianmin; Wu, Huifeng

    2016-01-01

    Both cadmium and arsenic are the important metal/metalloid pollutants in the Bohai Sea. In this work, we sampled the dominant species, shrimp Crangon affinis, from three sites, the Middle of the Bohai Sea (MBS), the Yellow River Estuary (YRE) and the Laizhou Bay (LZB) along the Bohai Sea. The concentrations of metals/metalloids in shrimps C. affinis indicated that the YRE site was polluted by Cd and Pb, while the LZB site was contaminated by As. The metabolic differences between shrimps C. affinis from the reference site (MBS) and metal-pollution sites (YRE and LZB) were characterized using NMR-based metabolomics. Results indicated that the metal pollutions in YRE and LZB induced disturbances in osmotic regulation and energy metabolism via different metabolic pathways. In addition, a combination of alanine and arginine might be the biomarker of Cd contamination, while BCAAs and tyrosine could be the biomarkers of arsenic contamination in C. affinis. - Highlights: •YRE and LZB are mainly polluted by Cd and As, respectively. •Metal pollutions caused differential effects in C. affinis from different sites. •Metabolomics is useful to elucidate metal pollution-induced biological effects.

  17. Heavy metal pollution disturbs immune response in wild ant populations

    International Nuclear Information System (INIS)

    Sorvari, Jouni; Rantala, Liisa M.; Rantala, Markus J.; Hakkarainen, Harri; Eeva, Tapio

    2007-01-01

    Concern about the effects of environmental contaminants on immune function in both humans and wildlife is growing and practically nothing is known about this impact on terrestrial invertebrates, even though they are known to easily accumulate pollutants. We studied the effect of industrial heavy metal contamination on immune defense of a free-living wood ant (Formica aquilonia). To find out whether ants show an adapted immune function in a polluted environment, we compared encapsulation responses between local and translocated colonies. Local colonies showed higher heavy metal levels than the translocated ones but the encapsulation response was similar between the two groups, indicating that the immune system of local ants has not adapted to high contamination level. The encapsulation response was elevated in moderate whereas suppressed in high heavy metal levels suggesting higher risk for infections in heavily polluted areas. - Heavy metal pollution affects immune function in ants

  18. Mushrooms pollution by radioactivity and heavy metals

    International Nuclear Information System (INIS)

    Delatouche, L.

    2001-01-01

    Some basic notions of radioactivity are recalled first (definition, origin, measurement units, long- and short-term effects..). Then, the pedology of soils and the properties and toxicity of 3 heavy metals (lead, cadmium, mercury) are presented to better understand the influence of some factors (genre, age, ecological type, pollution, conservation..) on the contamination of macro-mycetes by radioactivity and heavy metals. The role of chemists is to inform the consumers about these chemical and radioactive pollutions and to give some advices about the picking up (quantities, species and places to avoid) and the cooking of mushrooms. (J.S.)

  19. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    Science.gov (United States)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  20. Simultaneous synthesis of polyaniline nanofibers and metal (Ag and Pt) nanoparticles

    International Nuclear Information System (INIS)

    Huang, Li-Ming; Liao, Wei-Hao; Ling, Han-Chern; Wen, Ten-Chin

    2009-01-01

    An approach for the synthesis of Ag/Pt nanoparticle-incorporated polyaniline (PANI) nanofibers and Ag/Pt nanoparticles was developed that considers both thermodynamic and kinetic aspects. Ag/Pt nanoparticles and PANI nanofibers are generated simultaneously by the reduction of Ag + /Pt 4+ ions to Ag/Pt nanoparticles and by the polymerization of aniline (ANI) to PANI nanofibers. The PANI nanofibers serve as anchor seeds for the formation of Ag/Pt nanoparticles. The simple and inexpensive route for the preparation of PANI-Ag/Pt nanocomposites can be extended to the polymerization of ANI derivatives and the formation of metal/metal oxides for applications such as sensors, direct methanol fuel cells, and capacitors.

  1. Intense generation of respirable metal nanoparticles from a low-power soldering unit

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Virginia [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Irusta, Silvia [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain); Balas, Francisco [Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain); Instituto de Carboquímica – Consejo Superior de Investigaciones Científicas (ICB-CSIC), 50018 Zaragoza (Spain); Santamaria, Jesus, E-mail: Jesus.Santamaria@unizar.es [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain)

    2013-07-15

    Highlights: • Intense generation of nanoparticles in the breathing range from a flux-soldering unit is detected. • Coagulation in the aerosol phase leads to 200-nm respirable nanoparticles up to 30 min after operation. • Nanoparticle concentration in the working environment depends on the presence of ambient air. • Metal-containing nanoparticles are collected in TEM grids and filters in the hundreds of nanometer range. -- Abstract: Evidence of intense nanoparticle generation from a low power (45 W) flux soldering unit is presented. This is a familiar device often used in daily life, including home repairs and school electronic laboratories. We demonstrate that metal-containing nanoparticles may reach high concentrations (ca. 10{sup 6} particles/cm{sup 3}) within the breathing range of the operator, with initial size distributions centered at 35–60 nm The morphological and chemical analysis of nanoparticle agglomerates collected on TEM grids and filters confirms their multiparticle structure and the presence of metals.

  2. Intense generation of respirable metal nanoparticles from a low-power soldering unit

    International Nuclear Information System (INIS)

    Gómez, Virginia; Irusta, Silvia; Balas, Francisco; Santamaria, Jesus

    2013-01-01

    Highlights: • Intense generation of nanoparticles in the breathing range from a flux-soldering unit is detected. • Coagulation in the aerosol phase leads to 200-nm respirable nanoparticles up to 30 min after operation. • Nanoparticle concentration in the working environment depends on the presence of ambient air. • Metal-containing nanoparticles are collected in TEM grids and filters in the hundreds of nanometer range. -- Abstract: Evidence of intense nanoparticle generation from a low power (45 W) flux soldering unit is presented. This is a familiar device often used in daily life, including home repairs and school electronic laboratories. We demonstrate that metal-containing nanoparticles may reach high concentrations (ca. 10 6 particles/cm 3 ) within the breathing range of the operator, with initial size distributions centered at 35–60 nm The morphological and chemical analysis of nanoparticle agglomerates collected on TEM grids and filters confirms their multiparticle structure and the presence of metals

  3. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment.

    Science.gov (United States)

    Yang, Qianqi; Li, Zhiyuan; Lu, Xiaoning; Duan, Qiannan; Huang, Lei; Bi, Jun

    2018-06-14

    Soil heavy metal pollution has been becoming serious and widespread in China. To date, there are few studies assessing the nationwide soil heavy metal pollution induced by industrial and agricultural activities in China. This review obtained heavy metal concentrations in soils of 402 industrial sites and 1041 agricultural sites in China throughout the document retrieval. Based on the database, this review assessed soil heavy metal concentration and estimated the ecological and health risks on a national scale. The results revealed that heavy metal pollution and associated risks posed by cadmium (Cd), lead (Pb) and arsenic (As) are more serious. Besides, heavy metal pollution and associated risks in industrial regions are severer than those in agricultural regions, meanwhile, those in southeast China are severer than those in northwest China. It is worth noting that children are more likely to be affected by heavy metal pollution than adults. Based on the assessment results, Cd, Pb and As are determined as the priority control heavy metals; mining areas are the priority control areas compared to other areas in industrial regions; food crop plantations are the priority control areas in agricultural regions; and children are determined as the priority protection population group. This paper provides a comprehensive ecological and health risk assessment on the heavy metals in soils in Chinese industrial and agricultural regions and thus provides insights for the policymakers regarding exposure reduction and management. Copyright © 2018. Published by Elsevier B.V.

  4. A Review on Metal Nanoparticles Nucleation and Growth on/in Graphene

    OpenAIRE

    Francesco Ruffino; Filippo Giannazzo

    2017-01-01

    In this review, the fundamental aspects (with particular focus to the microscopic thermodynamics and kinetics mechanisms) concerning the fabrication of graphene-metal nanoparticles composites are discussed. In particular, the attention is devoted to those fabrication methods involving vapor-phase depositions of metals on/in graphene-based materials. Graphene-metal nanoparticles composites are, nowadays, widely investigated both from a basic scientific and from several technological point of v...

  5. Differential plasma protein binding to metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Deng, Zhou J; Mortimer, Gysell; Minchin, Rodney F; Schiller, Tara; Musumeci, Anthony; Martin, Darren

    2009-01-01

    Nanoparticles rapidly interact with the proteins present in biological fluids, such as blood. The proteins that are adsorbed onto the surface potentially dictate the biokinetics of the nanomaterials and their fate in vivo. Using nanoparticles with different sizes and surface characteristics, studies have reported the effects of physicochemical properties on the composition of adsorbed plasma proteins. However, to date, few studies have been conducted focusing on the nanoparticles that are commonly exposed to the general public, such as the metal oxides. Using previously established ultracentrifugation approaches, two-dimensional gel electrophoresis and mass spectrometry, the current study investigated the binding of human plasma proteins to commercially available titanium dioxide, silicon dioxide and zinc oxide nanoparticles. We found that, despite these particles having similar surface charges in buffer, they bound different plasma proteins. For TiO 2 , the shape of the nanoparticles was also an important determinant of protein binding. Agglomeration in water was observed for all of the nanoparticles and both TiO 2 and ZnO further agglomerated in biological media. This led to an increase in the amount and number of different proteins bound to these nanoparticles. Proteins with important biological functions were identified, including immunoglobulins, lipoproteins, acute-phase proteins and proteins involved in complement pathways and coagulation. These results provide important insights into which human plasma proteins bind to particular metal oxide nanoparticles. Because protein absorption to nanoparticles may determine their interaction with cells and tissues in vivo, understanding how and why plasma proteins are adsorbed to these particles may be important for understanding their biological responses.

  6. Impacts of metal and metal oxide nanoparticles on marine organisms

    International Nuclear Information System (INIS)

    Baker, Tony J.; Tyler, Charles R.; Galloway, Tamara S.

    2014-01-01

    Increasing use of metal and metal oxide nanoparticles [Me(O)NPs] in products means many will inevitably find their way into marine systems. Their likely fate here is sedimentation following hetero-aggregation with natural organic matter and/or free anions, putting benthic, sediment-dwelling and filter feeding organisms most at risk. In marine systems, Me(O)NPs can absorb to micro-organisms with potential for trophic transfer following consumption. Filter feeders, especially bivalves, accumulate Me(O)NPs through trapping them in mucus prior to ingestion. Benthic in-fauna may directly ingest sedimented Me(O)NPs. In fish, uptake is principally via the gut following drinking, whilst Me(O)NPs caught in gill mucus may affect respiratory processes and ion transport. Currently, environmentally-realistic Me(O)NP concentrations are unlikely to cause significant adverse acute health problems, however sub-lethal effects e.g. oxidative stresses have been noted in many organisms, often deriving from dissolution of Ag, Cu or Zn ions, and this could result in chronic health impacts. -- Highlights: • Nanoparticle (NP) use increasing, and NPs ultimately discharged to marine systems. • Metal ion dissolution from NPs causes oxidative stress at relevant concentrations. • Bioaccumulation and trophic transfer of NPs likely at all levels of marine food webs. • Biofilms and filter feeders are major NP accumulators, but many Classes lack study. • Current release levels unlikely to cause chronic damage, but may be a future issue. -- Exposure to metal (oxide) nanoparticles causes sub-lethal effects in marine organisms, the extent of which is related principally to the organisms' feeding regime, habitat and lifestyle

  7. Metal-nanoparticle single-electron transistors fabricated using electromigration

    DEFF Research Database (Denmark)

    Bolotin, K I; Kuemmeth, Ferdinand; Pasupathy, A N

    2004-01-01

    We have fabricated single-electron transistors from individual metal nanoparticles using a geometry that provides improved coupling between the particle and the gate electrode. This is accomplished by incorporating a nanoparticle into a gap created between two electrodes using electromigration, all...... on top of an oxidized aluminum gate. We achieve sufficient gate coupling to access more than ten charge states of individual gold nanoparticles (5–15 nm in diameter). The devices are sufficiently stable to permit spectroscopic studies of the electron-in-a-box level spectra within the nanoparticle as its...

  8. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    Science.gov (United States)

    Liu, Ying; Liu, Xiaoheng; Wang, Xin

    2011-12-01

    Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.

  9. Indices of soil contamination by heavy metals - methodology of calculation for pollution assessment (minireview).

    Science.gov (United States)

    Weissmannová, Helena Doležalová; Pavlovský, Jiří

    2017-11-07

    This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.

  10. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles.

    Science.gov (United States)

    Liu, Lichen; Corma, Avelino

    2018-05-23

    Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal-support interaction, and metal-reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities (single atoms, nanoclusters, and nanoparticles) in a unifying manner.

  11. Effects of heavy metal pollution on enzyme activities in railway cut slope soils.

    Science.gov (United States)

    Meng, Xiaoyi; Ai, Yingwei; Li, Ruirui; Zhang, Wenjuan

    2018-03-07

    Railway transportation is an important transportation mode. However, railway transportation causes heavy metal pollution in surrounding soils. Heavy metal pollution has a serious negative impact on the natural environment, including a decrease of enzyme activities in soil and degradation of sensitive ecosystems. Some studies investigated the heavy metal pollution at railway stations or certain transportation hubs. However, the pollution accumulated in artificial cut slope soil all along the rails is still questioned. The interest on non-point source pollution from railways is increasing in an effort to protect the soil quality along the line. In this study, we studied spatial distributions of heavy metals and five enzyme activities, i.e., urease (UA), saccharase (SAC), protease (PRO), catalase (CAT), and polyphenol oxidase (POA) in the soil, and the correlation among them beside three different railways in Sichuan Province, China, as well. Soil samples were respectively collected from 5, 10, 25, 50, 100, and 150 m away from the rails (depth of 0-8 cm). Results showed that Mn, Cd, Cu, and Zn were influenced by railway transportation in different degrees while Pb was not. Heavy metal pollution was due to the abrasion of the gravel bed as well as the tracks and freight transportation which caused more heavy metal pollution than passenger transportation. Enzymatic activities were significantly negatively correlated with heavy metals in soils, especially Zn and Cu. Finally, it is proposed that combined use of PRO and POA activities could be an indicator of the heavy metal pollution in cut slope soils. The protective measures aimed at heavy metal pollution caused by railway transportation in cut slope soils are urgent.

  12. The mechanism of metal nanoparticle formation in plants: limits on accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Haverkamp, R. G., E-mail: r.haverkamp@massey.ac.nz; Marshall, A. T. [Massey University, School of Engineering and Advanced Technology (New Zealand)

    2009-08-15

    Metal nanoparticles have many potential technological applications. Biological routes to the synthesis of these particles have been proposed including production by vascular plants, known as phytoextraction. While many studies have looked at metal uptake by plants, particularly with regard to phytoremediation and hyperaccumulation, few have distinguished between metal deposition and metal salt accumulation. This work describes the uptake of AgNO{sub 3}, Na{sub 3}Ag(S{sub 2}O{sub 3}){sub 2}, and Ag(NH{sub 3}){sub 2}NO{sub 3} solutions by hydroponically grown Brassica juncea and the quantitative measurement of the conversion of these salts to silver metal nanoparticles. Using X-ray absorption near edge spectroscopy (XANES) to determine the metal speciation within the plants, combined with atomic absorption spectroscopy (AAS) for total Ag, the quantity of reduction of Ag{sup I} to Ag{sup 0} is reported. Transmission electron microscopy (TEM) showed Ag particles of 2-35 nm. The factors controlling the amount of silver accumulated are revealed. It is found that there is a limit on the amount of metal nanoparticles that may be deposited, of about 0.35 wt.% Ag on a dry plant basis, and that higher levels of silver are obtained only by the concentration of metal salts within the plant, not by deposition of metal. The limit on metal nanoparticle accumulation, across a range of metals, is proposed to be controlled by the total reducing capacity of the plant for the reduction potential of the metal species and limited to reactions occurring at an electrochemical potential greater than 0 V (verses the standard hydrogen electrode).

  13. Enzymatic biosensors based on the use of metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Shi, Xinhao; Gu, Wei; Li, Bingyu; Chen, Ningning; Zhao, Kai; Xian, Yuezhong

    2014-01-01

    Over the past decades, various techniques have been developed to obtain materials at a nanoscale level to design biosensors with high sensitivity, selectivity and efficiency. Metal oxide nanoparticles (MONPs) are of particular interests and have received much attention because of their unique physical, chemical and catalytic properties. This review summarizes the progress made in enzymatic biosensors based on the use of MONPs. Synthetic methods, strategies for immobilization, and the functions of MONPs in enzymatic biosensing systems are reviewed and discussed. The article is subdivided into sections on enzymatic biosensors based on (a) zinc oxide nanoparticles, (b) titanium oxide nanoparticles, (c) iron oxide nanoparticles, and (d) other metal oxide nanoparticles. While substantial advances have been made in MONPs-based enzymatic biosensors, their applications to real samples still lie ahead because issues such as reproducibility and sensor stability have to be solved. (author)

  14. [Heavy metal pollution ecology of macro-fungi: research advances and expectation].

    Science.gov (United States)

    Zhou, Qi-xing; An, Xin-long; Wei, Shu-he

    2008-08-01

    Macro-fungi are the main component of biosphere and one of the ecological resources, and play very important roles in matter cycling and in maintaining ecological balances. This paper summarized and reviewed the research advances in the eco-toxicological effects of heavy metals on macro-fungi, the bioaccumulation function of macro-fungi on heavy metals, the ecological adaptation mechanisms of macro-fungi to heavy metal pollution, the role of macro-fungi as a bio-indicator of heavy metal pollution, and the potential of macro-fungi in the ecological remediation of contaminated environment. To strengthen the researches on the heavy metal pollution ecology of macro-fungi would be of practical significance in the reasonable utilization of macro-fungi resources and in the ecological remediation of contaminated environment.

  15. Characteristics of heavy metal pollution on roadside soil along highway

    Science.gov (United States)

    Zheng, Chaocheng

    2017-10-01

    Highway traffic is the main source of heavy metal pollution. Due to limited cropland, it is very common to plant crops along the highways. So, in view of agricultural products safety, heavy metal pollution by highway traffic to soils along highway is widely concerned. Therefore, to study distribution traits, accumulative laws and influence factors of heavy metals in agricultural soils could provide scientific evidence and theoretical basis for environmental protection along express way.

  16. Synthesis of Pd and Rh metal nanoparticles in the interlayer space of organically modified montmorillonite

    International Nuclear Information System (INIS)

    Patel, Hasmukh A.; Bajaj, Hari C.; Jasra, Raksh Vir

    2008-01-01

    This study reports the synthesis of palladium and rhodium metal nanoparticles supported on montmorillonite (MMT) and partially organically modified MMT (POMM) using tetraamine palladium and hexaamine rhodium complex as precursor for palladium and rhodium respectively. The synthesized nanoparticles were characterized by powder X-ray diffraction PXRD and TEM. The PXRD study shows characteristic crystallographic planes for Pd and Rh metal and confirm the formation of metal nanoparticles in MMT and POMM. The TEM images reveal the effect of organic modification of MMT on decreasing particle size of Pd and Rh metal. The Pd and Rh metal nanoparticles are agglomerated in pristine MMT while nanoparticles are well dispersed in POMM. ICP-AES analysis was carried out to estimate quantitative amount of Pd and Rh metal in MMT and POMM

  17. Pollution assessment and source apportionment of heavy metals in contaminated site soils

    Science.gov (United States)

    Zheng, Hongbo; Ma, Yan

    2018-03-01

    Pollution characteristics of heavy metals in soil were analyzed with a typical contaminated site as the case area. The pollution degree of the element was evaluated by indexes of geoaccumulation (Igeo). The potential ecological risk of heavy metals was assessed with potential ecological risk index model. Principal component analysis (PCA) model was simultaneously carried out to identify the main sources of heavy metals in topsoils. The results indicated that: 1. Mean values of 11 kinds of metals in topsoils were greater than respective soil background values, following the order: Zn>Pb>V>Cr>Cu>Ni>Co>As>Sb>Cd>Hg. Heavy metals with a certain accumulation in the research area were significantly affected by external factors. 2. Igeo results showed that Cd and Zn reached strongly polluted degree, while Pb with moderately to strongly polluted, Sb and Hg with moderately polluted, Cu, Co, Ni and Cr with unpolluted to moderately polluted, V and As with un-polluted. 3. Potential ecological risk assessment showed the degree of ecological risk with Cd at very high risk, Hg at high risk, Pb at moderate risk and others at low risk. The comprehensive risk of all the metals was very high. 4. PCA got three main sources with contributions, including industrial activities (44.18%), traffic and burning dust (26.68%) and soil parent materials (12.20%).

  18. Surface effects in metallic iron nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Linderoth, Søren

    1994-01-01

    Nanoparticles of metallic iron on carbon supports have been studied in situ by use of Mossbauer spectroscopy. The magnetic anisotropy energy constant increases with decreasing particle size, presumably because of the influence of surface anisotropy. Chemisorption of oxygen results in formation...

  19. Novel routes to metal nanoparticles : electrodeposition and reactions at liquid-liquid interfaces

    OpenAIRE

    Johans, Christoffer

    2003-01-01

    This thesis considers the nucleation and growth, synthesis, and catalytic application of metallic nanoparticles at liquid|liquid interfaces. It comprises five publications, a previously unpublished synthesis of polymer coated palladium nanoparticles, and an introduction to the relevant literature. Three publications are concerned with electrodeposition of metal nanoparticles at liquid|liquid interfaces. One publication and the results presented here consider the synthesis of silver and pallad...

  20. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry.

    Science.gov (United States)

    Adil, Syed Farooq; Assal, Mohamed E; Khan, Mujeeb; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Liz-Marzán, Luis M

    2015-06-07

    The immense importance of nanoparticles and their applications is a strong motivation for exploring new synthetic techniques. However, due to strict regulations that manage the potential environmental impacts greener alternatives for conventional synthesis are the focus of intense research. In the scope of this perspective, a concise discussion about the use of green reducing and stabilizing agents toward the preparation of metal nanoparticles is presented. Reports on the synthesis of noble metal nanoparticles using plant extracts, ascorbic acid and sodium citrate as green reagents are summarized and discussed, pointing toward an urgent need of understanding the mechanistic aspects of the involved reactions.

  1. Size and shape dependent lattice parameters of metallic nanoparticles

    International Nuclear Information System (INIS)

    Qi, W. H.; Wang, M. P.

    2005-01-01

    A model is developed to account for the size and shape dependent lattice parameters of metallic nanoparticles, where the particle shape difference is considered by introducing a shape factor. It is predicted that the lattice parameters of nanoparticles in several nanometers decrease with decreasing of the particle size, which is consistent with the corresponding experimental results. Furthermore, it is found that the particle shape can lead to 10% of the total lattice variation. The model is a continuous media model and can deal with the nanoparticles larger than 1 nm. Since the shape factor approaches to infinity for nanowires and nanofilms, therefore, the model cannot be generalized to the systems of nanowires and nanofilms. For the input parameters are physical constants of bulk materials, therefore, the present model may be used to predict the lattice variation of different metallic nanoparticles with different lattice structures

  2. A comparative proteomic study on the effects of metal pollution in oysters Crassostrea hongkongensis.

    Science.gov (United States)

    Xu, Lanlan; Ji, Chenglong; Wu, Huifeng; Tan, Qiaoguo; Wang, Wen-Xiong

    2016-11-15

    The metal pollution has posed great risk on the coastal organisms along the Jiulongjiang Estuary in South China. In this work, two-dimensional electrophoresis-based proteomics was applied to the oysters Crassostrea hongkongensis from metal pollution sites to characterize the proteomic responses to metal pollution. Metal accumulation and proteomic responses indicated that the oysters from BJ site were more severely contaminated than those from FG site. Compared with those oyster samples from the clean site (JZ), metal pollution induced cellular injuries, oxidative and immune stresses in oyster heapatopancreas from both BJ and FG sites via differential metabolic pathways. In addition, metal pollution in BJ site induced disturbance in energy and lipid metabolisms in oysters. Results indicated that cathepsin L and ferritin GF1 might be the biomarkers of As and Fe in oyster C. hongkongensis, respectively. This study demonstrates that proteomics is a useful tool for investigating biological effects induced by metal pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Epidemiological Study on Metal Pollution of Ningbo in China

    Directory of Open Access Journals (Sweden)

    Zhou Li

    2018-02-01

    Full Text Available Background: In order to search for effective control and prevention measures, the status of metal pollution in Ningbo, China was investigated. Methods: Nine of the most common contaminating metals including lead (Pb, cadmium (Cd, copper (Cu, iron (Fe, manganese (Mn, chromium (Cr, nickel (Ni, zinc (Zn, and mercury (Hg in samples of vegetables, rice, soil, irrigation water, and human hair were detected using inductively coupled plasma-mass spectrometry (ICP-MS. Three different districts including industrial, suburban and rural areas in Ningbo were studied through a stratified random sample method. Results: (1 Among all of the detected vegetable samples, Cd exceeded the standard limit rates in industrial, suburban and rural areas as high as 43.9%, 27.5% and 5.0%, respectively; indicating the severity of Cd pollution in Ningbo. (2 The pollution index (PI of Cd and Zn in soil (1.069, 1.584, respectively suggests that soil is slightly polluted by Cd and Zn. Among all samples, metal contamination levels in soil were all relatively high. (3 A positive correlation was found between the concentrations of Pb, Cd and Cu in vegetables and soil; Pb, Cu, Cr and Ni in vegetables and irrigation water, as well as, Cu and Ni in rice and irrigation water; and, (4 Higher Pb and Cd concentrations were found in student scalp hair in both industrial and suburban areas compared to rural areas. (5 Hg and Pb that are found in human scalp hair may be more easily absorbed from food than any of the other metals. Conclusions: In general, certain harmful metal pollutions were detected in both industrial and suburban areas of Ningbo in China.

  4. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review

    International Nuclear Information System (INIS)

    Korotcenkov, Ghenadii; Cho, Beong K.; Brinzari, Vladimir

    2016-01-01

    This review (with 170 refs.) discusses approaches towards surface functionalizaton of metal oxides by gold nanoparticles, and the application of the resulting nanomaterials in resistive gas sensors. The articles is subdivided into sections on (a) methods for modification of metal oxides with gold nanoparticles; (b) the response of gold nanoparticle-modified metal oxide sensors to gaseous species, (c) a discussion of the limitations of such sensors, and (d) a discussion on future tasks and trends along with an outlook. It is shown that, in order to achieve significant improvements in sensor parameters, it is necessary to warrant a good control the size and density of gold nanoparticles on the surface of metal oxide crystallites, the state of gold in the cluster, and the properties of the metal oxide support. Current challenges include an improved reproducibility of sensor preparation, better long-term stabilities, and a better resistance to sintering and poisoning of gold clusters during operation. Additional research focused on better understanding the role of gold clusters and nanoparticles in gas-sensing effects is also required. (author)

  5. Effect of Metal Oxides on Plant Germination: Phytotoxicity of Nanoparticles, Bulk Materials, and Metal Ions

    Czech Academy of Sciences Publication Activity Database

    Landa, Přemysl; Cyrusová, Tereza; Jeřábková, J.; Drábek, O.; Vaněk, Tomáš; Podlipná, Radka

    2016-01-01

    Roč. 227, č. 12 (2016), č. článku 448. ISSN 0049-6979 R&D Projects: GA MŠk(CZ) LD14100; GA MŠk LD14125 Institutional support: RVO:61389030 Keywords : zno nanoparticles * pseudokirchneriella-subcapitata * particle solubility * oxidative stress * root-growth * toxicity * aluminum * cuo * ph * cytotoxicity * Nanoparticles * Phytotoxicity * Accumulation * Germination * Sinapis alba Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.702, year: 2016

  6. Impact of Soil Heavy Metal Pollution on Food Safety in China.

    Science.gov (United States)

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China.

  7. Impact of Soil Heavy Metal Pollution on Food Safety in China

    Science.gov (United States)

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China. PMID:26252956

  8. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles

    OpenAIRE

    Abedini, Alam; Daud, Abdul Razak; Abdul Hamid, Muhammad Azmi; Kamil Othman, Norinsan; Saion, Elias

    2013-01-01

    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation ...

  9. Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery.

    Science.gov (United States)

    Rai, Mahendra; Ingle, Avinash P; Gupta, Indarchand; Brandelli, Adriano

    2015-12-30

    The unique properties of nanomaterials can be applied to solve different problems including new ways of drug delivery. Noble metal nanoparticles are most promising because they have been used for medicinal purposes since ancient time. It is evident from the past studies that the metallic nanoparticles are much more effective against various microorganisms when compared to their conventional counterparts. However, decoration of such nanoparticles with biomaterials add more advantages to their antimicrobial activity. Decoration of metal nanoparticles with biopolymers is a quite new area of research. Studies performed hitherto shown that nanoparticles of noble metals like silver, gold and platinum demonstrated better antibacterial, antifungal and antiviral activities when conjugated with biopolymers. The development of such technology has potential to develop materials that are more effective in the field of health science. Considering the importance and uniqueness of this concept, the present review aims to discuss the use of biopolymer-decorated metal nanoparticles for combating various diseases caused by microbial pathogens. Moreover, the nanotoxicity aspect has also been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Heavy Metal Pollution in Settled Dust Associated with Different Urban Functional Areas in a Heavily Air-Polluted City in North China

    Science.gov (United States)

    Wan, Dejun; Han, Zhangxiong; Yang, Jinsong; Yang, Guanglin; Liu, Xingqi

    2016-01-01

    Understanding variations of heavy metals in atmospheric particles between different functional areas is significant for pollution control and urban planning in cities. To reveal pollution and spatial distribution of heavy metals in atmospheric particles from different urban functional areas in Shijiazhuang in North China, 43 settled dust samples were collected over the main urban area and heavy metal concentrations were determined in their pollution indexes (IPIs) of the ten heavy metals are 2.7–13.6 (5.7 ± 2.2), suggesting high or very high pollution levels of most dust. Relatively lower IPIs occur mainly in the administration-education area, the commercial area, and other unclassified sites; while peaks occur mainly in the North Railway Station, the northeastern industrial area, and some sites near heavily trafficked areas, implying the significant influence of intensive industrial (including coal combustion) and traffic activities on atmospheric heavy metal accumulation. These results suggest a clear need of mitigating atmospheric heavy metal pollution via controlling emissions of toxic metals (especially Cd and Pb) from industrial and traffic sources in the city. PMID:27834903

  11. Heavy Metal Pollution in Settled Dust Associated with Different Urban Functional Areas in a Heavily Air-Polluted City in North China.

    Science.gov (United States)

    Wan, Dejun; Han, Zhangxiong; Yang, Jinsong; Yang, Guanglin; Liu, Xingqi

    2016-11-10

    Understanding variations of heavy metals in atmospheric particles between different functional areas is significant for pollution control and urban planning in cities. To reveal pollution and spatial distribution of heavy metals in atmospheric particles from different urban functional areas in Shijiazhuang in North China, 43 settled dust samples were collected over the main urban area and heavy metal concentrations were determined in their pollution indexes (IPIs) of the ten heavy metals are 2.7-13.6 (5.7 ± 2.2), suggesting high or very high pollution levels of most dust. Relatively lower IPIs occur mainly in the administration-education area, the commercial area, and other unclassified sites; while peaks occur mainly in the North Railway Station, the northeastern industrial area, and some sites near heavily trafficked areas, implying the significant influence of intensive industrial (including coal combustion) and traffic activities on atmospheric heavy metal accumulation. These results suggest a clear need of mitigating atmospheric heavy metal pollution via controlling emissions of toxic metals (especially Cd and Pb) from industrial and traffic sources in the city.

  12. Melting decontamination and recycling of radioactive polluted metals from uranium mining and metallurgy

    International Nuclear Information System (INIS)

    Chen Anquan

    2011-01-01

    Melting method is a primary method used for decontamination of radioactive polluted metal from uranium mining and metallurgy. The decontamination mechanism of the method, the way selection and its features are introduced. Taking the ten year's work of CNNC Uranium Mining and Metallurgy Radioactive Polluted Metal Melting Processing Center as example, the effects of processing radioactive polluted metals by smelting method are discussed. The surface pollution levels of radioactive polluted metal from uranium mining and metallurgy decreased from 4-48 Bq/cm 2 before decontamination to 0.004-0.016 Bq/cm 2 after decontamination, and the specific activity of its metal is less than 1 Bq/g, which is below the solution control level proposed by IAEARS-G1.7 'the application of the concepts of exclusion, immunity and solution control'. The metals after decontamination can be recycled by producing tooth plate and bucket teeth of excavator used in mines. (authors)

  13. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    Science.gov (United States)

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  14. Robust Synthesis of Ciprofloxacin-Capped Metallic Nanoparticles and Their Urease Inhibitory Assay.

    Science.gov (United States)

    Nisar, Muhammad; Khan, Shujaat Ali; Qayum, Mughal; Khan, Ajmal; Farooq, Umar; Jaafar, Hawa Z E; Zia-Ul-Haq, Muhammad; Ali, Rashid

    2016-03-25

    The fluoroquinolone antibacterial drug ciprofloxacin (cip) has been used to cap metallic (silver and gold) nanoparticles by a robust one pot synthetic method under optimized conditions, using NaBH₄ as a mild reducing agent. Metallic nanoparticles (MNPs) showed constancy against variations in pH, table salt (NaCl) solution, and heat. Capping with metal ions (Ag/Au-cip) has significant implications for the solubility, pharmacokinetics and bioavailability of fluoroquinolone molecules. The metallic nanoparticles were characterized by several techniques such as ultraviolet visible spectroscopy (UV), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) methods. The nanoparticles synthesized using silver and gold were subjected to energy dispersive X-ray tests in order to show their metallic composition. The NH moiety of the piperazine group capped the Ag/Au surfaces, as revealed by spectroscopic studies. The synthesized nanoparticles were also assessed for urease inhibition potential. Fascinatingly, both Ag-cip and Au-cip NPs exhibited significant urease enzyme inhibitory potential, with IC50 = 1.181 ± 0.02 µg/mL and 52.55 ± 2.3 µg/mL, compared to ciprofloxacin (IC50 = 82.95 ± 1.62 µg/mL). MNPs also exhibited significant antibacterial activity against selected bacterial strains.

  15. Risk Assessment of Heavy Metal Pollution in Soils of Gejiu Tin Ore and Other Metal Deposits of Yunnan Province

    Science.gov (United States)

    Yang, Shuran; Danek, Tomas; Cheng, Xianfeng; Huang, Qianrui

    2017-12-01

    This paper aims to study three main metal mining areas in Yunnan Province, to summarize and analyze the heavy metal pollution situation in each mining area, and to assess the ecological risk of the mining areas. The results showed that heavy metal pollution existed in different regions of the three mining areas with pollution elements of Cd, As, Cu, Pb, Zn. Risk level, besides Zhen Yuan mining area (class C), for the other two areas was class D, with Beichang mining area in Lanping as the most serious polluted mining area.

  16. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  17. Heavy metal concentrations in forest litter - indicators of pollutant depositions

    International Nuclear Information System (INIS)

    Angehrn-Bettinazzi, C.; Hertz, J.

    1990-01-01

    By means of a comparison of the heavy metal concentrations in organic litter from different sites it was examined to what extent the heavy metal concentrations correlate with the atmospheric pollution situation. It follows from the variance analyses: The atmospheric pollution situation is the dominating factor for the heavy metal concentration in L litter. The elements Cd and Zn show a pH-sensitivity at the same time. The lead concentration in the L n and L v horizons reflects the atmospheric pollution situation of the corresponding site. Specific pollution patterns, e.g. in the case of hillside sites, are neither detected through the gravitational deposition (open land) nor through the airborne dust concentration; these can be recognized by the monitor 'litter'. Only horizons in the intercrown area with identical tree vegetation, which are characterized in detail, must be used for monitoring. (orig.) [de

  18. Semiconductor-metal transition of Se in Ru-Se Catalyst Nanoparticles

    Science.gov (United States)

    Babu, P. K.; Lewera, Adam; Oldfield, Eric; Wieckowski, Andrzej

    2009-03-01

    Ru-Se composite nanoparticles are promising catalysts for the oxygen reduction reaction (ORR) in fuel cells. Though the role of Se in enhancing the chemical stability of Ru nanoparticles is well established, the microscopic nature of Ru-Se interaction was not clearly understood. We carried out a combined investigation of ^77Se NMR and XPS on Ru-Se nanoparticles and our results indicate that Se, a semiconductor in elemental form, becomes metallic when interacting with Ru. ^77Se spin-lattice relaxation rates are found to be proportional to T, the well-known Korringa behavior characteristic of metals. The NMR results are supported by the XPS binding energy shifts which suggest that a possible Ru->Se charge transfer could be responsible for the semiconductor->metal transition of Se which also makes Ru less susceptible to oxidation during ORR.

  19. Fabrication of metallic nanoparticles by spinodal dewetting of thin films: A high-throughput approach

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, William D.; Miller, James B. [U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA 15262 (United States); Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Yolcu, Cem [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Gellman, Andrew J., E-mail: gellman@cmu.edu [U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA 15262 (United States); Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2012-11-01

    Metal nanoparticles on structured supports are used in a variety of technological applications including biosensing, energy harvesting, and electronics. In every case, the functions and properties of the metallic nanostructures depend on both their composition and structure (i.e. size, shape, and spatial distribution). Among the challenges to the development of metal nanoparticles for these applications is the characterization of relationships between their structure and their functional properties over multiple structural degrees of freedom spanning a large range of values. In this work, a method for creating a morphological gradient of metal nanoparticles on a substrate is described. The approach, suited for high-throughput fabrication and characterization, is based on spinodal dewetting of a metallic thin film from its substrate. Through control of initial film thickness, anneal temperature, and anneal time, spinodal dewetting results in supported nanoparticles with well-defined and controlled structure. The approach is demonstrated through its application to preparation of Pd nanoparticles on a silicon nitride substrate. The morphologies of the particles were characterized by scanning electron and atomic force microscopies. Free energy-based stability and topological analyses were used to confirm the dewetting mechanism. In addition, the stability theory provides a connection to the thermophysical properties of the resulting nanoparticle array. The dewetting approach is general to any metal/support system and provides an alternative, inexpensive, and robust means to rapidly create metal nanostructures with control of morphology. It shows promise for large scale production of metal nanoparticles structures, as well as understanding basic stability properties of thin metal films. - Highlights: Black-Right-Pointing-Pointer Pd dewetting from SiN occurs by a spinodal dewetting mechanism. Black-Right-Pointing-Pointer Dewetting occurs at temperatures well below the

  20. Fabrication of metallic nanoparticles by spinodal dewetting of thin films: A high-throughput approach

    International Nuclear Information System (INIS)

    Michalak, William D.; Miller, James B.; Yolcu, Cem; Gellman, Andrew J.

    2012-01-01

    Metal nanoparticles on structured supports are used in a variety of technological applications including biosensing, energy harvesting, and electronics. In every case, the functions and properties of the metallic nanostructures depend on both their composition and structure (i.e. size, shape, and spatial distribution). Among the challenges to the development of metal nanoparticles for these applications is the characterization of relationships between their structure and their functional properties over multiple structural degrees of freedom spanning a large range of values. In this work, a method for creating a morphological gradient of metal nanoparticles on a substrate is described. The approach, suited for high-throughput fabrication and characterization, is based on spinodal dewetting of a metallic thin film from its substrate. Through control of initial film thickness, anneal temperature, and anneal time, spinodal dewetting results in supported nanoparticles with well-defined and controlled structure. The approach is demonstrated through its application to preparation of Pd nanoparticles on a silicon nitride substrate. The morphologies of the particles were characterized by scanning electron and atomic force microscopies. Free energy-based stability and topological analyses were used to confirm the dewetting mechanism. In addition, the stability theory provides a connection to the thermophysical properties of the resulting nanoparticle array. The dewetting approach is general to any metal/support system and provides an alternative, inexpensive, and robust means to rapidly create metal nanostructures with control of morphology. It shows promise for large scale production of metal nanoparticles structures, as well as understanding basic stability properties of thin metal films. - Highlights: ► Pd dewetting from SiN occurs by a spinodal dewetting mechanism. ► Dewetting occurs at temperatures well below the melting point of Pd. ► Spinodal dewetting allows

  1. Metal nanoparticles for microscopy and spectroscopy

    NARCIS (Netherlands)

    Zijlstra, P.; Orrit, M.; Koenderink, A.F.; Mello Donegá, de C.

    2014-01-01

    Metal nanoparticles interact strongly with light due to a resonant response of their free electrons. These ‘plasmon’ resonances appear as very strong extinction and scattering for particular wavelengths, and result in high enhancements of the local field compared to the incident electric field. In

  2. PILLARED ZEOLITES AMENDMENTS INFLUENCE FROM POLLUTED SOIL ON HEAVY METALS BIOACCUMULATION IN TOMATOES

    Directory of Open Access Journals (Sweden)

    SMARANDA MASU

    2007-05-01

    Full Text Available Due to anthropic activities, the presence of metals in polluted soils has effects on plants development and metals bioaccumulation into trophic levels. In this paper, were followed experiments regarding the tomatoes development into polluted soils with 43.4 – 58.4 mg Cd/kg d.s. and 500- 633 mg Pb/kg d.s. Nickel, zinc and copper content in soils are in the range of diffuse pollution values. Comparatively, an experiment was realized with polluted soils and amended with pillared zeolites. Pillared zeolites change metals distribution in soil fractions and their solubility. Tomato plants grew onto polluted soils, but did not present fruits. Tomatoes from polluted and amended soils presented fruits and metals in tissues (Zn  Cu  Ni. Zinc concentration was five times greater then Ni. Fruits do not accumulate cadmium and lead.

  3. Effects of deposition of heavy-metal-polluted harbor mud on microbial diversity and metal resistance in sandy marine sediments

    DEFF Research Database (Denmark)

    Toes, Ann-Charlotte M; Finke, Niko; Kuenen, J Gijs

    2008-01-01

    Deposition of dredged harbor sediments in relatively undisturbed ecosystems is often considered a viable option for confinement of pollutants and possible natural attenuation. This study investigated the effects of deposition of heavy-metal-polluted sludge on the microbial diversity of sandy...... the finding that some groups of clones were shared between the metal-impacted sandy sediment and the harbor control, comparative analyses showed that the two sediments were significantly different in community composition. Consequences of redeposition of metal-polluted sediment were primarily underlined...... with cultivation-dependent techniques. Toxicity tests showed that the percentage of Cd- and Cu-tolerant aerobic heterotrophs was highest among isolates from the sandy sediment with metal-polluted mud on top....

  4. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Senkbeil, Silja; Jensen, Thomas G.

    2012-01-01

    Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for direct in-field sensing at remote locations. This report demonstrates the vast potential of gold nanoparticle-based microfluidic sensors for the rapid, in......-field, detection of two important classes of environmental contaminants – heavy metals and pesticides. Using gold nanoparticle-based microfluidic sensors linked to a simple digital camera as the detector, detection limits as low as 0.6 μg L−1 and 16 μg L−1 could be obtained for the heavy metal mercury...... and the dithiocarbamate pesticide ziram, respectively. These results demonstrate that the attractive optical properties of gold nanoparticle probes combine synergistically with the inherent qualities of microfluidic platforms to offer simple, portable and sensitive sensors for environmental contaminants....

  5. Ion-induced effects on metallic nanoparticles

    International Nuclear Information System (INIS)

    Klimmer, Andreas

    2010-01-01

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L1 0 phase. (orig.)

  6. Study of Coating Geometries and Photoluminescence Properties of Metal Nanoparticles/Graphite Composites

    Directory of Open Access Journals (Sweden)

    Pasquale Barone

    2014-01-01

    Full Text Available In this work we present the results of a study of growth and characterization of metal nanoparticles (Ag, Au, and Co/carbon surfaces. The nanoparticles grew by laser ablation technique and their dimensions were controlled by light scattering study and AFM microscopy before their insertion on graphite surface. Nanoparticles appear randomly disposed on carbon surfaces aggregating to form big particles only in the case of silver. The different behavior of metal nanoparticles on carbon surface was explained in terms of different metal wetting of surface, in agreement with previous theoretical results of He et al. Chemical information, obtained by X-ray photoelectron spectroscopy, indicated that the doping process is a simple physisorption while the interfacial interaction between particles and carbon layers causes local defects in graphite structure and the appearance of a strong photoluminescence signal for all composites. Moreover, the visible optical absorption decreases about 10% indicating the progressive metallization of carbon surface.

  7. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Science.gov (United States)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  8. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-01-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al 2 O 3 and Fe 3 O 4 , on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  9. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An, E-mail: lian2010@lut.cn

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  10. Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Robert N.; Stark, Wendelin J. [Institute for Chemical and Bioengineering, ETH Zuerich (Switzerland)], E-mail: wendelin.stark@chem.ethz.ch

    2006-10-15

    Metallic bismuth nanoparticles of over 98% purity were prepared by a modified flame spray synthesis method in an inert atmosphere by oxygen-deficient combustion of a bismuth-carboxylate based precursor. The samples were characterized by X-ray diffraction, thermal analysis and scanning electron microscopy confirming the formation of pure, crystalline metallic bismuth nanoparticles. Compression of the as-prepared powder resulted in highly dense, nanocrystalline pills with strong electrical conductivity and bright metallic gloss.

  11. Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS

    International Nuclear Information System (INIS)

    Baia, M; Melinte, G; Iancu, V; Baia, L; Barbu-Tudoran, L; Diamandescu, L; Cosoveanu, V; Danciu, V

    2011-01-01

    Highly porous nanocomposites based on TiO2 aerogel and silver colloidal particles were prepared by different methods in order to study their capacity to detect pollutant species adsorbed on metallic nanoparticles surface from aqueous solution. The efficiency of the obtained composites to detect contaminants from water by means of SERS was evaluated using acrylamide and crystal violet as test molecules. It was found that the detection limits depend both on pollutant and composite type, and were determined to be in the range of 10 -1 -10 -4 M for acrylamide and around 10 -5 M for the dye molecule. These results prove the potential of the prepared porous composites for further use in the development of new SERS-based sensors devices.

  12. Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS

    Energy Technology Data Exchange (ETDEWEB)

    Baia, M; Melinte, G; Iancu, V; Baia, L [Faculty of Physics, Babes-Bolyai University, 400084, Cluj-Napoca (Romania); Barbu-Tudoran, L [Faculty of Biology and Geology, Babes-Bolyai University, 400015, Cluj-Napoca (Romania); Diamandescu, L [National Institute of Materials Physics, PO Box MG-7, 77125, Bucharest-Magurele (Romania); Cosoveanu, V; Danciu, V, E-mail: lucian.baia@phys.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028, Cluj-Napoca (Romania)

    2011-07-06

    Highly porous nanocomposites based on TiO2 aerogel and silver colloidal particles were prepared by different methods in order to study their capacity to detect pollutant species adsorbed on metallic nanoparticles surface from aqueous solution. The efficiency of the obtained composites to detect contaminants from water by means of SERS was evaluated using acrylamide and crystal violet as test molecules. It was found that the detection limits depend both on pollutant and composite type, and were determined to be in the range of 10{sup -1}-10{sup -4} M for acrylamide and around 10{sup -5} M for the dye molecule. These results prove the potential of the prepared porous composites for further use in the development of new SERS-based sensors devices.

  13. Evaluation of heavy metals pollution of Nokoue Lake

    African Journals Online (AJOL)

    use

    African Journal of Environmental Science and Technology Vol. 5(3), pp. 255-261, March ... Key words: Nokoue Lake, pollution, heavy metal, texture. INTRODUCTION ... certain anthropogenic trace metals released by industries and domestic .... storage on ice, complete filling containers, use of plastic materials for storage ...

  14. Composite nanoparticles containing rare earth metal and methods of preparation thereof

    Science.gov (United States)

    Kandapallil, Binil Itty Ipe; Krishnan, Lakshmi; Johnson, Francis

    2018-04-10

    The present invention is directed to composite nanoparticles comprising a metal, a rare earth element, and, optionally, a complexing ligand. The invention is also directed to composite nanoparticles having a core-shell structure and to processes for preparation of composite nanoparticles of the invention.

  15. Catalysis by metallic nanoparticles in solution: Thermosensitive microgels as nanoreactors

    OpenAIRE

    Roa, Rafael; Angioletti-Uberti, Stefano; Lu, Yan; Dzubiella, Joachim; Piazza, Francesco; Ballauff, Matthias

    2018-01-01

    Metallic nanoparticles have been used as catalysts for various reactions, and the huge literature on the subject is hard to overlook. In many applications, the nanoparticles must be affixed to a colloidal carrier for easy handling during catalysis. These "passive carriers" (e.g., dendrimers) serve for a controlled synthesis of the nanoparticles and prevent coagulation during catalysis. Recently, hybrids from nanoparticles and polymers have been developed that allow us to change the catalytic ...

  16. Titanate nanotubes sensitized with silver nanoparticles: Synthesis, characterization and in-situ pollutants photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Barrocas, B.; Nunes, C.D. [Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Carvalho, M.L. [LIBPhys-UNL, Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação and Departamento de Física da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Monteiro, O.C., E-mail: ocmonteiro@ciencias.ulisboa.pt [Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal)

    2016-11-01

    Highlights: • Combination of titanate nanotubes with crystalline silver nanoparticles is described. • AgHTNT demonstrated high photocatalytic activity for hydroxyl radical production. • AgHTNT exhibits the best photocatalytic activity for phenol removal. • Recycling does not affect AgHTNT photocatalytic performance. • Silver nanoparticles growth continues during several irradiation cycles. - Abstract: In this work, titanate nanotubes were modified with silver nanoparticles to produce new nanocomposite materials with enhanced photocatalytic activity for phenol removal. The TNTs were produced using a hydrothermal approach and, after being submitted to an Ag{sup +} exchange process, metallic Ag nanoparticles were obtained over the nanotubes surface. The prepared materials were structural, morphological and optical characterized by X-ray powder diffraction, micro X-ray fluorescence, transmission electron microscopy, diffused reflectance spectroscopy and X-ray photoelectron spectroscopy. The characterization results indicate that Ag{sup +} was immobilized not only in the nanotubes external surface but mainly in the TiO{sub 6} interlayers space. The application of this new nanocomposite material on photocatalytic degradation of pollutants was investigated. First, the evaluation of hydroxyl radical formation, using the terephthalic acid as a probe was studied. The photocatalytic activity of the sensitized materials for phenol degradation was afterwards evaluated. The results show that the nanocomposite sample is the best catalyst, achieving 98.0% photodegradation efficiency of a 0.2 mM phenol solution within 20 min under UV–vis radiation. The reusability of the prepared samples as photocatalysts was evaluated in four successive degradation assays, using fresh phenol solutions. The sensitized sample demonstrated excellent catalytic reusability ability, without loss of photochemical stability. The structural and morphological characterization during these

  17. Metal nanoparticles in liquid phase catalysis; from recent advances to future goals.

    Science.gov (United States)

    Zahmakıran, Mehmet; Ozkar, Saim

    2011-09-01

    Metal nanoparticles have attracted much attention over the last decade owing to their unique properties, different to their bulk counterparts, which pave the way for their application in different fields from materials science and engineering to biomedical applications. Of particular interest, the use of metal nanoparticles in catalysis has brought superior efficiency in terms of activity, selectivity and lifetime to heterogeneous catalysis. This article reviews the recent developments in the synthesis routes and the catalytic performance of metal nanoparticles depending on the solvent used for various organic and inorganic transformations. Additionally, we also discuss the prevalent complications and their possible solutions plus future prospects in the field of nanocatalysis.

  18. Impact of Soil Heavy Metal Pollution on Food Safety in China.

    Directory of Open Access Journals (Sweden)

    Xiuying Zhang

    Full Text Available Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995 in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China.

  19. Elevational and Spatial Gradients of Atmospheric Metal Pollution in the North Pacific

    Science.gov (United States)

    Jongebloed, U. A.; Osterberg, E. C.; Kreutz, K. J.; Ferris, D. G.; Campbell, S.; Saylor, P. L.; Winski, D.; Handley, M.

    2017-12-01

    The industrial revolution has led to a several-fold increase in the atmospheric concentrations of heavy metals and metalloids including Pb, Cd, Cu, Zn, Hg and As. Modern emissions inventories identify Asia as the largest emitter of many of these toxic pollutants, which are subsequently transported eastwards across the North Pacific Ocean by prevailing westerly winds in the mid-upper troposphere. Previous ice cores collected from the Yukon Territory in the eastern North Pacific reveal evolution-dependent metal pollution histories; the highest (5300 m elevation) core from Mt. Logan records a nearly pure trans-Pacific Asian pollution record, whereas cores from lower sites like the Eclipse Icefield (3017 m) record a complex combination of Asian and more local North American emission. However, it is unclear if this elevation gradient of pollution sources is found in other regions of the North Pacific. Furthermore, the previous ice core records end in the late 1990's, before efforts by some Asian nations to reduce metal pollution, and it is unknown if North Pacific atmospheric metal concentrations have declined in response to these efforts. Here we investigate metal and metalloid concentrations and sources recorded in ice core and snow pit samples recovered from a vertical transect spanning 2200 - 5242 m within Denali National Park in the Central Alaska Range. We compare these metal concentrations and crustal enrichment factors to data from the Yukon Territory to investigate North Pacific regional metal gradients. We also present preliminary results from a new 60 m ice core from the Eclipse Icefield to evaluate recent trends in metal concentrations since the end of the Mt. Logan and original Eclipse records in 1998, and compare this to the recent metal pollution history recorded in the 2013 Denali Ice Core collected from the summit plateau (3900 m) of Mt. Hunter.

  20. Interrelationships of metal transfer factor under wastewater reuse and soil pollution.

    Science.gov (United States)

    Papaioannou, D; Kalavrouziotis, I K; Koukoulakis, P H; Papadopoulos, F; Psoma, P

    2018-06-15

    The transfer of heavy metals under soil pollution wastewater reuse was studied in a Greenhouse experiment using a randomized block design, including 6 treatments of heavy metals mixtures composed of Zn, Mn, Cd, Co, Cu, Cr, Ni, and Pb, where each metal was taking part in the mixture with 0, 10, 20, 30, 40, 50 mg/kg respectively, in four replications. The Beta vulgaris L (beet) was used as a test plant. It was found that the metal transfer factors were statistically significantly related to the: (i) DTPA extractable soil metals, (ii) the soil pollution level as assessed by the pollution indices, (iii) the soil pH, (iv) the beet dry matter yield and (v) the interactions between the heavy metals in the soil. It was concluded that the Transfer Factor is subjected to multifactor effects and its real nature is complex, and there is a strong need for further study for the understanding of its role in metal-plant relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of heavy metal pollution on red wood ant (Formica s. str.) populations

    International Nuclear Information System (INIS)

    Eeva, T.; Sorvari, J.; Koivunen, V.

    2004-01-01

    We studied the species composition, mound population densities, relative abundance and colony sizes of red wood ants along a well known air pollution gradient of a copper smelter in Southwest Finland. The dominant species, Formica aquilonia, was further studied for heavy metal (Al, Cu, Cd, Ni, Zn, As, Pb, Hg) levels and morphological characters (body mass, head width, labial gland disease) of workers. We found five species belonging to Formica s. str., and two of them showed changes in their relative abundance, which could not be explained by natural habitat differences. Nest mound volumes were 34% smaller in the polluted area, suggesting that smaller colonies can be maintained there. The heavy metal levels in F. aquilonia workers were higher in the polluted area for all metals, except Hg. The largest relative differences between the study areas (polluted/unpolluted) were found for As (4.1), Ni (2.4), Cu (2.1) and Pb (1.8). Morphological characters of workers were not related to the heavy metal levels. Our data showed that red wood ants can tolerate relatively high amounts of heavy metals and maintain reproducing colonies even in a heavily polluted area, but on the basis of smaller colony sizes, pollution stress may also cause trade-offs in reproduction. - Capsule: Five species of red wood ants vary in their sensitivity to heavy metal pollution but all of them had smaller colonies in a polluted area

  2. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles

    KAUST Repository

    Jin, Zhao; Xiao, Manda; Bao, Zhihong; Wang, Peng; Wang, Jianfang

    2012-01-01

    Catalytic microspheres: A general approach is demonstrated for the facile preparation of mesoporous metal oxide microspheres loaded with noble metal nanoparticles (see TEM image in the picture). Among 18 oxide/noble metal catalysts, TiO 2/0.1 mol Pd microspheres showed the highest turnover frequency in NaBH 4 reduction of 4-nitrophenol (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles

    KAUST Repository

    Jin, Zhao

    2012-04-26

    Catalytic microspheres: A general approach is demonstrated for the facile preparation of mesoporous metal oxide microspheres loaded with noble metal nanoparticles (see TEM image in the picture). Among 18 oxide/noble metal catalysts, TiO 2/0.1 mol Pd microspheres showed the highest turnover frequency in NaBH 4 reduction of 4-nitrophenol (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    Science.gov (United States)

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  5. Heavy metals pollution status in surface sediments (rivers and artifical lakes, Serbia)

    Science.gov (United States)

    Sakan, Sanja; Đorđević, Dragana

    2017-04-01

    Potentially hazardous trace elements, often in literature referred as "heavy metals", are deemed serious pollutants due to their toxicity, persistence and non-degradability in the environment. These elements play an important role in extent of water pollution and threaten the health of populations and ecosystems. As the sink of heavy metals, sediment beds adsorb metals in quantities that are many times higher than those found in the water column in the long-term polluted water environment. It is believed that most of the metal content, as much as 90% in aquatic sediments is bound to sediments. Metal contamination in these sediments could be directly affect the river water quality, resulting in potential consequences to the sensitive lowest levels of the food chain and ultimately to human health. The objective of this research was the evaluation of heavy metal contamination level in sediments of the most important rivers and artificial lakes in Serbia. The heavy metal enrichment in studied sediments was conducted by using: determination of total metal content, sequential extraction procedure for the fractionation of studied elements, quantification of the metal enrichment degree in the sediments by calculating geo-accumulation indices, determination of actual and potential element availability and application of BRAI index for the assessment of heavy metal bioavailability. The sediments were found to be contaminated by heavy metals to various extents, mostly with Cd, Cu, and Zn. The significant variation in heavy metal distribution among samples collected in this large region, encompassing all Serbian watersheds, suggests the selective contamination of sediments by heavy metals. Elevated concentrations of elements in most cases were detected in samples of river sediments, since artificial lake reservoirs are usually built in rural areas, where the less anthropogenic pollution. Rivers often flow through the towns and these water basins less or more loaded

  6. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    Science.gov (United States)

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J. C.

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (I geo), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution. PMID:22645468

  7. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    Directory of Open Access Journals (Sweden)

    Ehsanul Kabir

    2012-01-01

    Full Text Available There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo, calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  8. Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh.

    Science.gov (United States)

    Islam, Md Saiful; Hossain, M Belal; Matin, Abdul; Islam Sarker, Md Shafiqul

    2018-07-01

    Heavy metal pollution in sediment resources may pose serious threat to ecosystem and human health through food web. In this study, surface sediment samples of 10 stations along the Feni River estuary were analyzed to profile the accumulation, sources and pollution levels of heavy metals. The results revealed that the average contents (μg g -1 ) of eight selected heavy metals followed the order of Mn (37.85) > Cr (35.28) > Ni (33.27) > Co (31.02) > Pb (6.47) > Ag (1.09) > As (0.85) > Hg (0.71), and the concentrations varied spatially and seasonally with relatively higher levels at upward stations and during the rainy season. According to sediment quality guidelines (SQGs), the sediment samples were heavily contaminated with Ag and Hg, and moderately with Co. Threshold effect concentration (TEC) and probable effect concentration (PEC) values indicated that the concentration of only Ni and Cr were likely to occasionally exhibit adverse effects on the ecosystem. Enrichment factor (EF), geo-accumulation index (I geo ) and contamination factor (CF) analyses revealed that Ag, Co and Hg were at moderate to high pollution levels and the rests (As, Cr, Ni, Pb and Mn) were at no to low pollution levels. Potential ecological risk index (PERI) also showed that Ag, Co and Hg were the most potential ecological risk factor being determined in this studied area. Correlation matrix combined with multivariate principal component analysis and cluster analysis suggest that Ag, Co, Ni and Hg originated from anthropogenic sources (agrochemicals, silver nanoparticles anti-microbial agent, silver plating), whereas As, Cr, Pb and Mn primarily originated from natural geological background. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Heavy metals anthropogenic pollutants in Austria

    International Nuclear Information System (INIS)

    Anderl, M.; Gager, M.; Gugele, B.; Huttunen, K.; Kurzweil, A.; Poupa, S.; Ritter, M.; Wappel, D.; Wieser, M.

    2004-01-01

    Several heavy metals from anthropogenic sources are emitted in the atmosphere damaging the air quality and the human health, besides they accumulate on the soil and lately are transmitted into the human food chain. Therefore at international level there is a concern to reduce them. Austrian heavy metals emissions (cadmium, mercury and lead) during 1990-2002 are given including an analysis of causes and sources. Lead is the main pollutant and the main sector responsible is the industry. 5 figs. (nevyjel)

  10. The use of mosses as environmental metal pollution indicators.

    Science.gov (United States)

    Aceto, Maurizio; Abollino, Ornella; Conca, Raffaele; Malandrino, Mery; Mentasti, Edoardo; Sarzanini, Corrado

    2003-01-01

    The possibility of using mosses as environmental indicators of metal pollution has been investigated. Mosses of the species Bryum argenteum were collected from different parts of Piedmont (Italy), ranging from highly polluted areas to nearly uncontaminated mountain areas. Periodical samplings were planned in every site on a monthly base, in order to check variations of metal uptake throughout one year; correlations with pluviometric and thermal patterns were investigated for all sampling stations. On every moss sample 20 elements, ranging from major (K, P, Al, Ca, Fe and Mg) to minor (Mn, Na, Ti and Zn) and trace (As, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb and Sr), were quantitatively determined by inductively coupled plasma-atomic emission spectrometry or graphite furnace-atomic absorption spectrometry, depending on the needed sensitivity. Statistical analyses, carried out with principal component analysis and cluster analysis methods, revealed that a good correlation exists between metal content in mosses and pollution degree in the areas sampled.

  11. The possible use of soluble humic substances for remediation of heavy metal polluted soils

    DEFF Research Database (Denmark)

    Borggaard, Ole K.; Jensen, Julie Katrine; Holm, Peter Engelund

    2008-01-01

    Polluted soil is a common and serious environmental problem. While reliable methods exist for cleaning soil contaminated by organic compounds through degradation, remediation of heavy metal polluted soils awaits an appropriate solution. This is because heavy metals are nondegradable and generally....... Therefore, the potential of soluble natural humic substances (HS) to extract heavy metals from contaminated soils is tested as an environmental friendly substitute for EDTA. A strongly polluted urban soil and a moderately polluted agricultural soil were extracted at neutral pH in batch mode by three HS...... extraction. Heavy metal extraction with dissolved HS is compared with EDTA at the same concentration and sequential extraction has been performed to identify extracted pools. The results indicate a clear potential of using HS solutions for remediation of heavy metal polluted soils, which is fortunate...

  12. Photoactivable caps for reactive metal nanoparticles

    Science.gov (United States)

    Patel, Ashish

    The synthesis and stabilization of reactive metal nanoparticles is often challenging under normal atmospheric conditions. This problem can be alleviated by capping and passivation. Our lab has focused on forming polymer coatings on the surface of reactive metal nanoparticles. We discovered a convenient and effective route for stabilization of aluminum nanoparticles (Al NPs), which uses the nascent metal core as a polymerization initiator for various organic monomers. In our previous work, we used this method to passivate the Al NPs using variety of epoxides and copolymers of epoxides and alkenes. These products have demonstrated air stability for weeks to months with little to no degradation in the active Al content. Since our previously synthesized Al NP's were not beneficial for rapid and efficient thermodynamic access to the active Al core, our goal was find polymers that could easily be photochemically activated to enhance such access. Since poly(methyl methacrylate) (PMMA) has photodegrading properties, we used PMMA as a capping agent to passivate Al NPs. In this work, we present capping and stabilization of Al NPs with PMMA, and also with 1,2-epoxyhexane/ PMMA. In our previous work, we increased the stability of Al NP capped with 1,2-epoxy-9-decene by adding 1,13-tetradecadiene as a cross-linker. Here, we used the methyl methacrylate (MMA) monomer as cross-linker for Al NP capped with 1,2-epoxy-9-decene. We have also used the MMA as capping agent. We use powder x-ray diffractametry (PXRD), differential scanning calorimetry (DSC), and thermogravity analysis (TGA) to confirm the presence of elemental Al and ATR-FTIR to confirm the presence of polymers.

  13. DNA Modified with Metal Nanoparticles: Preparation and Characterization of Ordered Metal-DNA Nanostructures in a Solution and on a Substrate

    Directory of Open Access Journals (Sweden)

    Nina Kasyanenko

    2016-01-01

    Full Text Available DNA interaction with silver and aluminum nanoparticles in a solution has been investigated with the AFM, SEM, dynamic light scattering, viscometry, and spectral methods. The comparison of DNA interaction with nanoparticles synthesized by the reduction of Ag+ ions and with nanoparticles obtained by the electric discharge plasma method was done. DNA metallization in a solution and on n-silicon surface with metal nanoparticles or by the reduction of silver ions after their binding to DNA was executed and studied. It was shown that DNA strands with regular location of silver or aluminum nanoparticles can be prepared. The conditions for the formation of silver nanoparticles and silver nanoclusters on DNA were analyzed.

  14. Facile synthesis of Curcuma longa tuber powder engineered metal nanoparticles for bioimaging applications

    Science.gov (United States)

    Sankar, Renu; Rahman, Pattanathu K. S. M.; Varunkumar, Krishnamoorthy; Anusha, Chidambaram; Kalaiarasi, Arunachalam; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2017-02-01

    Nanomaterials based fluorescent agents are rapidly becoming significant and promising transformative tools for improving medical diagnostics for extensive in vivo imaging modalities. Compared with conventional fluorescent agents, nano-fluorescence has capabilities to improve the in vivo detection and enriched targeting efficiencies. In our laboratory we synthesized fluorescent metal nanoparticles of silver, copper and iron using Curcuma longa tuber powder by simple reduction. The physicochemical properties of the synthesized metal nanoparticles were attained using UV-visible spectrophotometry, scanning electron microscopy with EDAX spectroscopy, dynamic light scattering, Fourier-transform infrared spectroscopy and X-ray diffraction. The Curcuma longa tuber powder has one of the bioactive compound Curcumin might act as a capping agent during the synthesis of nanoparticles. The synthesized metal nanoparticles fluorescence property was confirmed by spectrofluorometry. When compared with copper and iron nanoparticles the silver nanoparticles showed high fluorescence intensity under spectrofluorometry. Moreover, in vitro cell images of the silver nanoparticles in A549 cell lines also correlated with the results of spectrofluorometry. These silver nanoparticles show inspiring cell-imaging applications. They enter into cells without any further modifications, and the fluorescence property can be utilized for fluorescence-based cell imaging applications.

  15. Functionalized magnetic nanoparticles for the decontamination of water polluted with cesium

    Directory of Open Access Journals (Sweden)

    Ahmed S. Helal

    2016-05-01

    Full Text Available Magnetic nanoparticles are attracting considerable interest because of their potential applications in practically all fields of science and technology, including the removal of heavy metals from contaminated waters. It is, therefore, of great importance to adapt the surfaces of these nanoparticles according to the application. In this work advanced nanoparticles (NPs with well-tailored surface functionalities were synthesized using the polyol method. The efficiency of a chelating agent, succinyl-β-cyclodextrin (SBCD, was first investigated spectrophotometrically and by Isothermal Titration Calorimetry (ITC. SBCD was then grafted onto nanoparticles previously functionalized with 3-aminopropyl triethoxsilane (NP-APTES. The resulting NP-SBCD system was then incubated with a solution of cesium. After magnetic separation, the solid residue was removed from the supernatant and characterized by X-Ray Photoelectron spectrometry (XPS, X-Ray Fluorescence spectrometry (XRF and Superconducting QUantum Interference Device (SQUID magnetometry. These characterizations show the presence of cesium in the solid residue, which indicates Cs uptake by the NP-SBCD system. This nanohybrid system constitutes a promising model for heavy metal decontamination.

  16. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer

    KAUST Repository

    Lee, Jung-Yong

    2010-04-29

    We analyze the enhancement in optical absorption of an absorbing medium when spherical metal nanoparticles are embedded in it. Our analysis uses generalized Mie theory to calculate the absorbed optical power as a function of the distance from the metal nanoparticle. This analysis is used to evaluate the potential of enhancing optical absorption in thin-film solar cells by embedding spherical metal nanoparticles. We consider the trade-off between maximizing overall optical absorption and ensuring that a large fraction of the incident optical power is dissipated in the absorbing host medium rather than in the metal nanoparticle. We show that enhanced optical absorption results from strong scattering by the metal nanoparticle which locally enhances the optical electric fields. We also discuss the effect of a thin dielectric encapsulation of the metal nanoparticles. ©2010 Optical Society of America.

  17. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer

    KAUST Repository

    Lee, Jung-Yong; Peumans, Peter

    2010-01-01

    We analyze the enhancement in optical absorption of an absorbing medium when spherical metal nanoparticles are embedded in it. Our analysis uses generalized Mie theory to calculate the absorbed optical power as a function of the distance from the metal nanoparticle. This analysis is used to evaluate the potential of enhancing optical absorption in thin-film solar cells by embedding spherical metal nanoparticles. We consider the trade-off between maximizing overall optical absorption and ensuring that a large fraction of the incident optical power is dissipated in the absorbing host medium rather than in the metal nanoparticle. We show that enhanced optical absorption results from strong scattering by the metal nanoparticle which locally enhances the optical electric fields. We also discuss the effect of a thin dielectric encapsulation of the metal nanoparticles. ©2010 Optical Society of America.

  18. [APPROACHES TO URBAN AREA RANKING ACCORDINGLY TO THE LEVEL OF HEAVY METAL POLLUTION].

    Science.gov (United States)

    Stepanova, N V; Valeeva, E R; Fomina, S F

    2015-01-01

    Urban area ranking was performed according to the level of the heavy metal pollution based on the data of the snow and soil chemical characteristics. With reference to cumulative rates of the snow cover and soil pollution by heavy metals in the territory of the city of Kazan there were selected four areas: I--Derbyshki; II--Teplocontrol; III--Gorki; IV--Kirovsky district. The pollution level of snow cover in the territory of the city was determined by pollution level indices calculated with the application of Maximum Permissible Concentration (MPC) of chemical substances in ambient waters for household and recreational and service facilities use. The assessment of the pollution level in soils in the city showed the total territory of Kazan to be mildly polluted by manganese, concerning other heavy metals the categories of the soil pollution vary on areas. Results of hair biological monitoring in children are an informative auxiliary tool for the evaluation of the present ecological situation concerning heavy metals in certain territories of the city.

  19. SWAXS investigations on diffuse boundary nanostructures of metallic nanoparticles synthesized by electrical discharges

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaoai, E-mail: xiaoai.guo@kit.edu; Gutsche, Alexander; Nirschl, Hermann [Karlsruhe Institute of Technology, Institute for Mechanical Process Engineering and Mechanics (Germany)

    2013-11-15

    Metallic nanoparticles have attracted a particular interest in scientific research and industrial applications due to their unique size-dependent physical and chemical properties. An eco-friendly and cost-effective synthesis method called electrical discharge enables large scale production of metallic nanoparticles. Systematic investigations of such synthesized metallic nanoparticles help to optimize the synthesis process and improve the product quality. In this work, for the first time we have investigated the diffuse interfacial boundary nanostructures of the metallic nanoparticles, which were synthesized under different conditions by electrical glow and arc discharges in the carrier gas, by means of a small- and wide-angle X-ray scattering (SWAXS) technique using a laboratory X-ray source. Meanwhile, this unique SWAXS technique allows simultaneous study of the primary particle size, morphology, and crystallinity. The metallic nanoparticles (copper and nickel) under investigation cover a size range of 10–80 nm, and the determined thickness of the diffuse boundary nanostructured layer of metallic nanoparticles is in the range of 1–3 nm. The experimental results obtained by SWAXS were compared to the TEM/EDX observation and the XRD reference patterns from RRUFF database, and a good agreement was found. Our SWAXS investigations indicated that the existence of a diffuse nanostructured solid layer on the synthesized metallic nanoparticle surface causes a negative deviation of the scattering intensity (Ι∝q{sup -α}, α>4) from Porod’s law which corresponds to the case of ideal two-phase particle systems with sharp boundaries (Ι∝q{sup -α}, α=4) . This implies that the electron density profile is not sharp but changes gradually between two phases, and hence the exponent α is greater than four. Two electron density profile models, sigmoidal electron-density gradient model and linear electron-density gradient model, have been taken into account in

  20. Haematological status of wintering great tits (Parus major) along a metal pollution gradient

    Energy Technology Data Exchange (ETDEWEB)

    Geens, Ann, E-mail: ann.geens@ua.ac.be [Department of Biology, University of Antwerp, Ethology, Universiteitsplein 1, B-2610 Antwerp (Belgium); Dauwe, Tom [Department of Biology, University of Antwerp, Ethology, Universiteitsplein 1, B-2610 Antwerp (Belgium); VITO, Boeretang 200, B-2400 Mol (Belgium); Bervoets, Lieven; Blust, Ronny [Department of Biology, University of Antwerp, Ecophysiology, Biochemistry and Toxicology, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Eens, Marcel [Department of Biology, University of Antwerp, Ethology, Universiteitsplein 1, B-2610 Antwerp (Belgium)

    2010-02-01

    In the long-term biomonitoring of wild populations inhabiting polluted areas, the use of non-destructive biomarkers as markers of condition is very important. We examined the possible effects of metal pollution on the haematological status of adult great tits (Parus major) along a well-established pollution gradient near a non-ferrous smelter in Belgium. We measured blood and feather metal concentrations and assessed the haematological status (amount of red blood cells, haemoglobin concentration, haematocrit, mean corpuscular volume and mean corpuscular haemoglobin) of adult great tits during winter at four study sites. Metal concentrations in blood and feathers indicated that cadmium and lead were the most important metals in the pollution gradient under study. Measurements of haematological parameters revealed that haemoglobin concentration, haematocrit, mean corpuscular volume and mean corpuscular haemoglobin were lower in great tits from the more polluted sites. These parameters were significantly negatively correlated with blood lead concentration. The amount of red blood cells, however, did not significantly differ among study sites. Our results indicate that the haematological status of great tits is negatively affected by metal pollution and may therefore be used as a successful biomarker for monitoring the negative impact of metal exposure in the wild.

  1. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    Science.gov (United States)

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.

  2. PROSPECTS OF MODIFICATION OF BALNEOLOGICAL REMEDIES WITH BIOGENEOUS METALLS NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    M. B. Mamuchieva

    2015-01-01

    Full Text Available The article considers the issues of mineral waters modification with biogeneous metals nanoparticles, since they have extremely important meaning for human's organism and their production in green and biologically compliant form is hard to overestimate. Russian scientists discovered low toxicity of these nanomaterials. So the use of biogeneuos metals in form of nanoparticles allows lowering of their toxicity compared with its use in forms of ions.

  3. Size characterization of metal oxide nanoparticles in commercial sunscreen products

    Science.gov (United States)

    Bairi, Venu Gopal; Lim, Jin-Hee; Fong, Andrew; Linder, Sean W.

    2017-07-01

    There is an increase in the usage of engineered metal oxide (TiO2 and ZnO) nanoparticles in commercial sunscreens due to their pleasing esthetics and greater sun protection efficiency. A number of studies have been done concerning the safety of nanoparticles in sunscreen products. In order to do the safety assessment, it is pertinent to develop novel analytical techniques to analyze these nanoparticles in commercial sunscreens. This study is focused on developing analytical techniques that can efficiently determine particle size of metal oxides present in the commercial sunscreens. To isolate the mineral UV filters from the organic matrices, specific procedures such as solvent extraction were identified. In addition, several solvents (hexane, chloroform, dichloromethane, and tetrahydrofuran) have been investigated. The solvent extraction using tetrahydrofuran worked well for all the samples investigated. The isolated nanoparticles were characterized by using several different techniques such as transmission electron microscopy, scanning electron microscopy, dynamic light scattering, differential centrifugal sedimentation, and x-ray diffraction. Elemental analysis mapping studies were performed to obtain individual chemical and morphological identities of the nanoparticles. Results from the electron microscopy techniques were compared against the bulk particle sizing techniques. All of the sunscreen products tested in this study were found to contain nanosized (≤100 nm) metal oxide particles with varied shapes and aspect ratios, and four among the 11 products were showed to have anatase TiO2.

  4. Heavy Metal Pollution Around International Hatay Airport

    Directory of Open Access Journals (Sweden)

    Abdullah Özkan

    2017-02-01

    Full Text Available In this study, it was aimed to determine the heavy metal pollution in the agricultural lands around Hatay airport and travel possible alteration in the amount of heavy metal on the land in accordance with the distance to the airport. For this purpose, the airport was chosen as the center and 27 soil samples were obtained around the airport at 2 km intervals in depth ranging from 0 to 30 cm. Lead (Pb, cadmium (Cd, nickel (Ni, chrome (Cr, cobalt (Co, aluminium (Al, iron (Fe, copper (Cu, manganese (Mn and zinc (Zn elements in soil samples were analysed using MP-AES instrument by DTPA method. (3 repetition for each sample. As a result of the analysis, heavy metal concentrations were found as Pb 0-1.45 mg/kg, Cd 0-0.220 mg/kg, Ni 0-3.95 mg/kg, Cr 0-0.780 mg/kg, Co 0-0.270 mg/kg, Al 0-0.700 mg/kg, Fe 1.47- 16.2 mg/kg, Cu 0.400-5.35 mg/kg, Mn 0-19 mg/kg and Zn 0.050-3.14 mg/kg. When comparing the obtained data through this study with allowable concentrations of heavy metals in soil of Environment and Forest Directorates Guidance, it was determined that the heavy metal concentration of the soil does not pose any problems in terms of heavy metal pollution. Besides, iron concentration was decreased when the distance to the airport is increased.

  5. Heavy metal pollution in surface soils of Pearl River Delta, China.

    Science.gov (United States)

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.

  6. Dissolution of metal and metal oxide nanoparticles in aqueous media

    International Nuclear Information System (INIS)

    Odzak, Niksa; Kistler, David; Behra, Renata; Sigg, Laura

    2014-01-01

    The dissolution of Ag (citrate, gelatin, polyvinylpyrrolidone and chitosan coated), ZnO, CuO and carbon coated Cu nanoparticles (with two nominal sizes each) has been studied in artificial aqueous media, similar in chemistry to environmental waters, for up to 19 days. The dissolved fraction was determined using DGT (Diffusion Gradients in Thin films), dialysis membrane (DM) and ultrafiltration (UF). Relatively small fractions of Ag nanoparticles dissolved, whereas ZnO dissolved nearly completely within few hours. Cu and CuO dissolved as a function of pH. Using DGT, less dissolved Ag was measured compared to UF and DM, likely due to differences in diffusion of organic complexes. Similar dissolved metal concentrations of ZnO, Cu and CuO nanoparticles were determined using DGT and UF, but lower using DM. The results indicate that there is a need to apply complementary techniques to precisely determine dissolution of nanoparticles in aqueous media. - Highlights: • Three different techniques used simultaneously to measure NPs dissolution. • ZnO-NPs are the most soluble, followed by CuO-NPs, carbon coated Cu-NPs and Ag-NPs. • Dissolution is an important process affecting the fate of nanoparticles. • Complementary techniques are needed to precisely determine dissolution of NPs. - Dissolution of several types of nanoparticles was examined in aqueous media using three complementary techniques

  7. Systematic study of ligand structures of metal oxide EUV nanoparticle photoresists

    KAUST Repository

    Jiang, Jing

    2015-03-19

    Ligand stabilized metal oxide nanoparticle resists are promising candidates for EUV lithography due to their high sensitivity for high-resolution patterning and high etching resistance. As ligand exchange is responsible for the patterning mechanism, we systematically studied the influence of ligand structures of metal oxide EUV nanoparticles on their sensitivity and dissolution behavior. ZrO2 nanoparticles were protected with various aromatic ligands with electron withdrawing and electron donating groups. These nanoparticles have lower sensitivity compared to those with aliphatic ligands suggesting the structures of these ligands is more important than their pka on resist sensitivity. The influence of ligand structure was further studied by comparing the nanoparticles’ solubility for a single type ligand to mixtures of ligands. The mixture of nanoparticles showed improved pattern quality. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  8. Influence of industrial heavy metal pollution on soil free-living nematode population

    International Nuclear Information System (INIS)

    Pen-Mouratov, Stanislav; Shukurov, Nosir; Steinberger, Yosef

    2008-01-01

    The effect of distance from a heavy metal pollution source on the soil nematode community (trophic structure, sex structure, and taxa composition) was investigated along a 15-km transect originating at the Almalyk Industrial Complex, Uzbekistan (pollution source). The soil nematode community was exposed to heavy metal influence both directly and through soil properties changes. Pollution effect on the density and biomass of soil free-living nematodes was found to be highest at pollution source, with fungivores and plant parasites dominating at the upper and deeper soil layers next to the pollution source. These groups decreased along the transect, yielding domination to bacteria- and fungi-feeders. The sex ratio of nematode communities was found to be dependent on heavy metal pollution levels, with the juveniles being the most sensitive nematode group. The Maturity and modified Maturity Indices, reflecting the degree of disturbance of the soil ecosystem, were found to be the most sensitive indices. - Trophic structure and sex ratio of soil nematode population are sensitive tools for monitoring industrial pollution

  9. Influence of industrial heavy metal pollution on soil free-living nematode population

    Energy Technology Data Exchange (ETDEWEB)

    Pen-Mouratov, Stanislav [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 (Israel); Shukurov, Nosir [Institute of Geology and Geophysics, Academy of Sciences, Tashkent 700041 (Uzbekistan); Steinberger, Yosef [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 (Israel)], E-mail: steinby@mail.biu.ac.il

    2008-03-15

    The effect of distance from a heavy metal pollution source on the soil nematode community (trophic structure, sex structure, and taxa composition) was investigated along a 15-km transect originating at the Almalyk Industrial Complex, Uzbekistan (pollution source). The soil nematode community was exposed to heavy metal influence both directly and through soil properties changes. Pollution effect on the density and biomass of soil free-living nematodes was found to be highest at pollution source, with fungivores and plant parasites dominating at the upper and deeper soil layers next to the pollution source. These groups decreased along the transect, yielding domination to bacteria- and fungi-feeders. The sex ratio of nematode communities was found to be dependent on heavy metal pollution levels, with the juveniles being the most sensitive nematode group. The Maturity and modified Maturity Indices, reflecting the degree of disturbance of the soil ecosystem, were found to be the most sensitive indices. - Trophic structure and sex ratio of soil nematode population are sensitive tools for monitoring industrial pollution.

  10. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    Science.gov (United States)

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-05-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where

  11. MOSSES AND LICHENS – BIOINDICATORS OF HEAVY METALS POLLUTION OF FOREST ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    BEGU A.

    2014-03-01

    Full Text Available This study is a comparative investigation of the content of heavy metals (Pb, Cu, Ni, Zn and Cr in mosses and lichens recorded in ten deciduous forests in the Republic of Moldova included in a transnational grid (16x16 km of forest monitoring throughout Europe. The content of heavy metals doesn’t differ significant by depending on the location of studied forest ecosystems. The trends of larger accumulation are observed near the local stationary and mobile sources of pollution. Mosses were confirmed as good indicators of air pollution with heavy metals to forest ecosystems located near sources of pollution and lichens show good bio-indicators particularities for background pollution. The good correlation between the concentrations of moss and lichen were Cr, Cu and Ni, and the low correlation between Pb and Zn, which are considered to be metals which are amenable to long-distance dispersal.

  12. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients.

    Science.gov (United States)

    Azarbad, Hamed; Niklińska, Maria; Laskowski, Ryszard; van Straalen, Nico M; van Gestel, Cornelis A M; Zhou, Jizhong; He, Zhili; Wen, Chongqing; Röling, Wilfred F M

    2015-01-01

    Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did, however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes), but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appears to be a more promising strategy. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review

    Directory of Open Access Journals (Sweden)

    Omena Bernard Ojuederie

    2017-12-01

    Full Text Available Environmental pollution from hazardous waste materials, organic pollutants and heavy metals, has adversely affected the natural ecosystem to the detriment of man. These pollutants arise from anthropogenic sources as well as natural disasters such as hurricanes and volcanic eruptions. Toxic metals could accumulate in agricultural soils and get into the food chain, thereby becoming a major threat to food security. Conventional and physical methods are expensive and not effective in areas with low metal toxicity. Bioremediation is therefore an eco-friendly and efficient method of reclaiming environments contaminated with heavy metals by making use of the inherent biological mechanisms of microorganisms and plants to eradicate hazardous contaminants. This review discusses the toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation. It also emphasized the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate, highlighting recent advances in microbial bioremediation and phytoremediation for the removal of heavy metals from the environment as well as future prospects and limitations. However, strict adherence to biosafety regulations must be followed in the use of biotechnological methods to ensure safety of the environment.

  14. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review

    Science.gov (United States)

    Ojuederie, Omena Bernard

    2017-01-01

    Environmental pollution from hazardous waste materials, organic pollutants and heavy metals, has adversely affected the natural ecosystem to the detriment of man. These pollutants arise from anthropogenic sources as well as natural disasters such as hurricanes and volcanic eruptions. Toxic metals could accumulate in agricultural soils and get into the food chain, thereby becoming a major threat to food security. Conventional and physical methods are expensive and not effective in areas with low metal toxicity. Bioremediation is therefore an eco-friendly and efficient method of reclaiming environments contaminated with heavy metals by making use of the inherent biological mechanisms of microorganisms and plants to eradicate hazardous contaminants. This review discusses the toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation. It also emphasized the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate, highlighting recent advances in microbial bioremediation and phytoremediation for the removal of heavy metals from the environment as well as future prospects and limitations. However, strict adherence to biosafety regulations must be followed in the use of biotechnological methods to ensure safety of the environment. PMID:29207531

  15. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications

    Science.gov (United States)

    Saif, Sadia; Tahir, Arifa; Chen, Yongsheng

    2016-01-01

    Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe2O3/Fe3O4) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles. PMID:28335338

  16. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications

    Directory of Open Access Journals (Sweden)

    Sadia Saif

    2016-11-01

    Full Text Available Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI and iron oxide (Fe2O3/Fe3O4 nanoparticles (NPs and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles.

  17. The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China

    International Nuclear Information System (INIS)

    Tang, Rongli; Ma, Keming; Zhang, Yuxin; Mao, Qizheng

    2013-01-01

    Highlights: ·We explored the pollution characters of metals in street dust of Beijing. ·Area-source pollution and point-source pollution exist simultaneously. ·We identified the spatial autocorrelation intensities and ranges of metals. ·Metal pollution anomalies were identified by cluster and outlier analyses. ·Urban activities strongly influence the distributions of metals. - Abstract: The components and concentrations of metals in street dust are indictors of environmental pollution. To explore the pollution levels of Cd, Cr, Cu, Mn, Ni and Pb in street dust and their spatial distribution characteristics, 220 dust samples were collected in a grid pattern from urban street surfaces in Beijing. Multivariate statistics and spatial analyses were adopted to investigate the associations between metals and to identify their pollution patterns. In comparison with the soil background values, elevated metal concentrations were found, except those for Mn and Ni. The results of the geo-accumulation index (I geo ) and the potential ecological risk index (Er i ) of the metals revealed the following orders: Cd > Cu > Cr > Pb > Ni > Mn and Cd > Cu > Pb > Cr > Ni. Levels of I geo ranging from 0 to 5 were found and about 80% of the samples were below the moderately polluted level. The Er i values of single elements were within the low ecological risk level in most sampling sites. Most of the metals in the street dust of Beijing were statistically significantly correlated. It is hard to clearly identify the sources of each metal in the street dust since local environments are very complex. Cadmium, Cu, Cr, Mn and Pb showed medium spatial autocorrelations within the sampling region. Similar spatial distribution patterns were observed for Cu, Cr and Pb, and these metals had relatively high spatial variabilities and were enriched in the center of the city with several peaks scattered in the suburbs. Metal pollution anomalies were identified by using cluster and outlier analyses

  18. DEVELOPMENT OF THE U.S. EPA'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL

    Science.gov (United States)

    Metal finishing processes are a type of chemical processes and can be modeled using Computer Aided Process Engineering (CAPE). Currently, the U.S. EPA is developing the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), a pollution prevention software tool for the meta...

  19. Metal nanoparticle film-based room temperature Coulomb transistor.

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-07-01

    Single-electron transistors would represent an approach to developing less power-consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations.

  20. Boosting catalytic activity of metal nanoparticles for 4-nitrophenol reduction: Modification of metal naoparticles with poly(diallyldimethylammonium chloride)

    Energy Technology Data Exchange (ETDEWEB)

    You, Jyun-Guo; Shanmugam, Chandirasekar [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); Liu, Yao-Wen; Yu, Cheng-Ju [Department of Applied Physics and Chemistry, University of Taipei, Taiwan (China); Tseng, Wei-Lung, E-mail: tsengwl@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan (China)

    2017-02-15

    Highlights: • The choice of capping ligand determines catalytic activity of metal nanocatalysts. • PDDA-capped metal nanoparticles electrostatically interact with 4-NP and BH4{sup −}. • PDDA-capped metal nanoparticles have good recyclability and large scalability. • PDDA-capped Pd nanoparticles show the highest rate constant and activity parameter. - Abstract: Most of the previously reported studies have focused on the change in the size, morphology, and composition of metal nanocatalysts for improving their catalytic activity. Herein, we report poly(diallyldimethylammonium chloride) [PDDA]-stabilized nanoparticles (NPs) of platinum (Pt) and palladium (Pd) as highly active and efficient catalysts for hydrogenation of 4-nitrophenol (4-NP) in the presence of NaBH4. PDDA-stabilized Pt and Pd NPs possessed similar particle size and same facet with citrate-capped Pt and Pd NPs, making this study to investigate the inter-relationship between catalytic activity and surface ligand without the consideration of the effects of particle size and facet. Compared to citrate-capped Pt and Pd NPs, PDDA-stabilized Pt and Pd NPs exhibited excellent pH and salt stability. PDDA could serve as an electron acceptor for metal NPs to produce the net positive charges on the metal surface, which provide strong electrostatic attraction with negatively charged nitrophenolate and borohydride ions. The activity parameter and rate constant of PDDA-stabilized metal NPs were higher than those of citrate-capped metal NPs. Compared to the previously reported Pd nanomaterials for the catalysis of NaBH4-mediated reduction of 4-NP, PDDA-stabilized Pd NPs exhibited the extremely high activity parameter (195 s{sup −1} g{sup −1}) and provided excellent scalability and reusability.

  1. Seasonal changes in antioxidant enzyme activities of freshwater biofilms in a metal polluted Mediterranean stream.

    Science.gov (United States)

    Bonet, Berta; Corcoll, Natàlia; Acuňa, Vicenç; Sigg, Laura; Behra, Renata; Guasch, Helena

    2013-02-01

    While seasonal variations in fluvial communities have been extensively investigated, effects of seasonality on community responses to environmental and/or chemical stress are poorly documented. The aim of this study was to describe antioxidant enzyme activity (AEA) variability in fluvial biofilms over an annual cycle, under multi-stress scenarios due to environmental variability (e.g., light intensity, water flow, and temperature) and metal pollution (Zn, Mn and Fe). The annual monitoring study was performed at three sites according to their water and biofilm metal concentrations. Metal concentration was affected by water flow due to dilution. Low flow led to higher dissolved Zn concentrations, and thus to higher Zn accumulation in the biofilm. Water temperature, light intensity and phosphate concentration were the environmental factors which determined the seasonality of biofilm responses, whereas dissolved Zn and Zn accumulation in biofilms were the parameters linked to sites and periods of highest metal pollution. Community algal succession, from diatoms in cold conditions to green algae in warm conditions, was clearer in the non metal-polluted site than in those metal-polluted, presumably due to the selection pressure exerted by metals. Most AEA were related with seasonal environmental variability at the sites with low or no-metal pollution, except glutathione-S-transferase (GST) which was related with Zn (dissolved and accumulated in biofilm) pollution occurring at the most polluted site. We can conclude that seasonal variations of community composition and function are masked by metal pollution. From this study we suggest the use of a multi-biomarker approach, including AEA and a set of biological and physicochemical parameters as an effect-based field tool to assess metal pollution. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Atmospheric Heavy Metal Pollution - Development of Chronological ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Atmospheric Heavy Metal Pollution - Development of Chronological Records and Geochemical Monitoring. Rohit Shrivastav. General Article Volume 6 Issue 4 April 2001 pp 62-68 ...

  3. Feasibility analysis of EDXRF method to detect heavy metal pollution in ecological environment

    Science.gov (United States)

    Hao, Zhixu; Qin, Xulei

    2018-02-01

    The change of heavy metal content in water environment, soil and plant can reflect the change of heavy metal pollution in ecological environment, and it is important to monitor the trend of heavy metal pollution in eco-environment by using water environment, soil and heavy metal content in plant. However, the content of heavy metals in nature is very low, the background elements of water environment, soil and plant samples are complex, and there are many interfering factors in the EDXRF system that will affect the spectral analysis results and reduce the detection accuracy. Through the contrastive analysis of several heavy metal elements detection methods, it is concluded that the EDXRF method is superior to other chemical methods in testing accuracy and method feasibility when the heavy metal pollution in soil is tested in ecological environment.

  4. A Review on Metal Nanoparticles Nucleation and Growth on/in Graphene

    Directory of Open Access Journals (Sweden)

    Francesco Ruffino

    2017-07-01

    Full Text Available In this review, the fundamental aspects (with particular focus to the microscopic thermodynamics and kinetics mechanisms concerning the fabrication of graphene-metal nanoparticles composites are discussed. In particular, the attention is devoted to those fabrication methods involving vapor-phase depositions of metals on/in graphene-based materials. Graphene-metal nanoparticles composites are, nowadays, widely investigated both from a basic scientific and from several technological point of views. In fact, these graphene-based systems present wide-range tunable and functional electrical, optical, and mechanical properties which can be exploited for the design and production of innovative and high-efficiency devices. This research field is, so, a wide and multidisciplinary section in the nanotechnology field of study. So, this review aims to discuss, in a synthetic and systematic framework, the basic microscopic mechanisms and processes involved in metal nanoparticles formation on graphene sheets by physical vapor deposition methods and on their evolution by post-deposition processes. This is made by putting at the basis of the discussions some specific examples to draw insights on the common general physical and chemical properties and parameters involved in the synergistic interaction processes between graphene and metals.

  5. Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates.

    Science.gov (United States)

    Zhang, Zhiyue; Maji, Samarendra; da Fonseca Antunes, André B; De Rycke, Riet; Hoogenboom, Richard; De Geest, Bruno G

    2016-06-13

    Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble-metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer-like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt-free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion-induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer-coated nanoparticles and a hydrophobic substrate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Metal nanoparticles (other than gold or silver) prepared using plant extracts for medical applications

    Science.gov (United States)

    Pasca, Roxana-Diana; Santa, Szabolcs; Racz, Levente Zsolt; Racz, Csaba Pal

    2016-12-01

    There are many modalities to prepare metal nanoparticles, but the reducing of the metal ions with plant extracts is one of the most promising because it is considerate less toxic for the environment, suitable for the use of those nanoparticles in vivo and not very expensive. Various metal ions have been already studied such as: cobalt, copper, iron, platinum, palladium, zinc, indium, manganese and mercury and the number of plant extracts used is continuously increasing. The prepared systems were characterized afterwards with a great number of methods of investigation: both spectroscopic (especially UV-Vis spectroscopy) and microscopic (in principal, electron microscopy-TEM) methods. The applications of the metal nanoparticles obtained are diverse and not completely known, but the medical applications of such nanoparticles occupy a central place, due to their nontoxic components, but some diverse industrial applications do not have to be forgotten.

  7. Regional distribution and pollution evaluation of heavy metal pollution in topsoils of the Chengdu plain

    International Nuclear Information System (INIS)

    Li Bing; Wang Changquan; Yang Juan; Tan Ting; Li Huanxiu; Li Qiquan; Yuan Quan

    2009-01-01

    197 farm field samples were designated by GPS and the spatial distribution characteristic and pollution evaluation of Cd, Pb, Cr and Hg in the soils were studied. Compared to the background investigated 20 years ago, the content of Cd in Guanghan, Xindu, Qionglai increased 1, 1.26 and 2 times; respectively; and the content of Pb in Xinjin, Deyang, Guanghan, Xindu increased 1.1 and 3.3 times. However, the content of Cr and Hg in most regions changed much smaller. The results of Kriging interpolation analysis of the heavy metals showed that the content of Cd was grandly decreased followed with the direction from northeast to southwest, the content of other elements exhibited the regional characteristics. The geoaccumulation index was used to evaluate the heavy metals pollution and results indicated that nearly 50% of the soils was polluted by Pb and Cd in different degrees influenced by men activities. With the key contaminated area of Xindu, Guanghan, Xinjing, Deyang the pollution ranks of Pb in soils was in 1 to 4. The Cd pollution although small, but still ranks in 1 to 2 level, the pollution area was bigger, mainly distributed in Xindu, Deyang, Guanghan, Shuangliu, Xinjing, Pengzhou. Only a small number of samples was contaminated by Cr or Hg. (authors)

  8. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.

    Science.gov (United States)

    Mejia, Camilo A; Huang, Ningfeng; Povinelli, Michelle L

    2012-09-01

    We predict the formation of optically trapped, metal-dielectric nanoparticle clusters above photonic crystal microcavities. We determine the conditions on particle size and position for a gold particle to be trapped above the microcavity. We then show that strong field redistribution and enhancement near the trapped gold nanoparticle results in secondary trapping sites for a pair of dielectric nanoparticles.

  9. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; Obiora, S. C.

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  10. Metal Nanoparticles Covered with a Metal-Organic Framework: From One-Pot Synthetic Methods to Synergistic Energy Storage and Conversion Functions.

    Science.gov (United States)

    Kobayashi, Hirokazu; Mitsuka, Yuko; Kitagawa, Hiroshi

    2016-08-01

    Hybrid materials composed of metal nanoparticles and metal-organic frameworks (MOFs) have attracted much attention in many applications, such as enhanced gas storage and catalytic, magnetic, and optical properties, because of the synergetic effects between the metal nanoparticles and MOFs. In this Forum Article, we describe our recent progress on novel synthetic methods to produce metal nanoparticles covered with a MOF (metal@MOF). We first present Pd@copper(II) 1,3,5-benzenetricarboxylate (HKUST-1) as a novel hydrogen-storage material. The HKUST-1 coating on Pd nanocrystals results in a remarkably enhanced hydrogen-storage capacity and speed in the Pd nanocrystals, originating from charge transfer from Pd nanocrystals to HKUST-1. Another material, Pd-Au@Zn(MeIM)2 (ZIF-8, where HMeIM = 2-methylimidazole), exhibits much different catalytic activity for alcohol oxidation compared with Pd-Au nanoparticles, indicating a design guideline for the development of composite catalysts with high selectivity. A composite material composed of Cu nanoparticles and Cr3F(H2O)2O{C6H3(CO2)3}2 (MIL-100-Cr) demonstrates higher catalytic activity for CO2 reduction into methanol than Cu/γ-Al2O3. We also present novel one-pot synthetic methods to produce composite materials including Pd/ZIF-8 and Ni@Ni2(dhtp) (MOF-74, where H4dhtp = 2,5-dihydroxyterephthalic acid).

  11. Preliminary Assessment of Heavy Metal Pollution of Opa Reservoir, Ile

    African Journals Online (AJOL)

    big timmy

    Awolowo University (OAU), Ile-Ife, Nigeria, with a view to assessing its pollution level. ... Heavy metals are not biodegradable, but are assimilated .... samples were filtered (with Whatman filter paper. No 42) and ..... acidity,Water, Air Soil Pollut.

  12. Synthesis and Characterization of Metal Sulfides Nanoparticles/Poly(methyl methacrylate) Nanocomposites

    OpenAIRE

    Ajibade, Peter A.; Mbese, Johannes Z.

    2014-01-01

    Metal sulfides nanoparticles in poly(methyl methacrylate) matrices were prepared and characterized by infrared spectroscopy, thermogravimetric analysis, powder X-ray diffraction, scanning electron microscope (SEM), and transmission electron microscope (TEM). The FTIR confirms the dispersion of the nanoparticles in PMMA matrices with the C=O and C–O–C bonds of the PMMA shifting slightly which may be attributed to the interactions between the nanoparticles and PMMA. The ZnS nanoparticles in PMM...

  13. Metal nanoparticle film–based room temperature Coulomb transistor

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-01-01

    Single-electron transistors would represent an approach to developing less power–consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations. PMID:28740864

  14. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels

    Science.gov (United States)

    Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.

    2016-03-01

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  15. Carbon composites with metal nanoparticles for Alcohol fuel cells

    Science.gov (United States)

    Ventrapragada, Lakshman; Siddhardha, R. S.; Podilla, Ramakrishna; Muthukumar, V. S.; Creager, Stephen; Rao, A. M.; Ramamurthy, Sai Sathish

    2015-03-01

    Graphene due to its high surface area and superior conductivity has attracted wide attention from both industrial and scientific communities. We chose graphene as a substrate for metal nanoparticle deposition for fuel cell applications. There are many chemical routes for fabrication of metal-graphene composites, but they have an inherent disadvantage of low performance due to the usage of surfactants, that adsorb on their surface. Here we present a design for one pot synthesis of gold nanoparticles and simultaneous deposition on graphene with laser ablation of gold strip and functionalized graphene. In this process there are two natural advantages, the nanoparticles are synthesized without any surfactants, therefore they are pristine and subsequent impregnation on graphene is linker free. These materials are well characterized with electron microscopy to find their morphology and spectroscopic techniques like Raman, UV-Vis. for functionality. This gold nanoparticle decorated graphene composite has been tested for its electrocatalytic oxidation of alcohols for alkaline fuel cell applications. An electrode made of this composite showed good stability for more than 200 cycles of operation and reported a low onset potential of 100 mV more negative, an important factor for direct ethanol fuel cells.

  16. Heavy metals pollution in the eastern part of Peshawar metropolis, north Pakistan

    International Nuclear Information System (INIS)

    Hamidullah, S.; Saifullah; Shah, M.T.

    1997-01-01

    Heavy metals are considered one of the harmful substances threatening the environment in the modern industrialised world. Peshawar city, the capital of NWFP, is one of the metropolises of Pakistan, facing a tremendous environmental chaos due to pollution from extensive vehicular examinations and small and large industrial installation in the city. Heavy metal including Cr, Co, Cu, Ni, Zn, Fe an Pb have dangerously polluted the atmosphere and sewerage system of Peshawar city and its suburbs. Both stationary and mobile sources can be named as responsible for this pollution. Traffic mobility is considered as playing a major role in keeping the metals constantly in air is a better sorting agent than water. The mobility path of these heavy metals from ground surface thorough sewerage system, to Shahalam river has been traced. (author)

  17. Noble Metal Nanoparticles Applications in Cancer

    Directory of Open Access Journals (Sweden)

    João Conde

    2012-01-01

    Full Text Available Nanotechnology has prompted new and improved materials for biomedical applications with particular emphasis in therapy and diagnostics. Special interest has been directed at providing enhanced molecular therapeutics for cancer, where conventional approaches do not effectively differentiate between cancerous and normal cells; that is, they lack specificity. This normally causes systemic toxicity and severe and adverse side effects with concomitant loss of quality of life. Because of their small size, nanoparticles can readily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. This way, a variety of nanoparticles with the possibility of diversified modification with biomolecules have been investigated for biomedical applications including their use in highly sensitive imaging assays, thermal ablation, and radiotherapy enhancement as well as drug and gene delivery and silencing. Here, we review the available noble metal nanoparticles for cancer therapy, with particular focus on those already being translated into clinical settings.

  18. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    International Nuclear Information System (INIS)

    Zhu, S.; Zhou, W.

    2010-01-01

    Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA) method, and finite-difference time domain (FDTD) method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL) and focused ion beam (FIB) are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs)-potential Alzheimer's disease (AD) biomarkers, and staphylococcal enterotoxin B (SEB) in nano-Moore per liter (nM) concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  19. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shaoli Zhu

    2010-01-01

    Full Text Available Noble metal, especially gold (Au and silver (Ag nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR. In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA method, and finite-difference time domain (FDTD method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL and focused ion beam (FIB are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs-potential Alzheimer's disease (AD biomarkers, and staphylococcal enterotixn B (SEB in nano-Moore per liter (nM concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  20. High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics

    International Nuclear Information System (INIS)

    Abargues, R; Marques-Hueso, J; Canet-Ferrer, J; Pedrueza, E; Valdes, J L; Jimenez, E; MartInez-Pastor, J P

    2008-01-01

    Polymer nanocomposites containing noble metal nanoparticles are promising materials for plasmonic applications. In this paper, we report on a high-resolution negative-tone nanocomposite resist based on poly(vinyl alcohol) where silver nanoparticles and nanopatterns are simultaneously generated by electron-beam lithography. Our results indicate nanostructures with a relatively high concentration of nanoparticles and, consequently, an electromagnetic coupling among the nanoparticles. Therefore, the patternable nanocomposite described in this work may be a suitable material for future plasmonic circuitry

  1. Immunotoxicology in wood mice along a heavy metal pollution gradient

    International Nuclear Information System (INIS)

    Tersago, Katrien; De Coen, Wim; Scheirs, Jan; Vermeulen, Katrien; Blust, Ronny; Bockstaele, Dirk van; Verhagen, Ron

    2004-01-01

    We carried out an immunotoxicological field study of wood mice in three populations along a heavy metal pollution gradient. Heavy metal concentrations in liver tissue indicated that exposure to silver, arsenic, cadmium, cobalt and lead decreased with increasing distance from a non-ferrous smelter. Host resistance to the endoparasite Heligmosomoides polygyrus decreased with increasing exposure, while the abundance of tick larvae and the nematode Syphacia stroma was unrelated to heavy metal exposure. Spleen mass was increased at the intermediate and the most polluted sites and was positively correlated with the number of H. polygyrus and tick larvae. Proportion of early apoptotic leukocytes increased towards the smelter and was positively related to cadmium exposure. Red and white blood cell counts and lysozyme activity showed no relationship with metal exposure. All together, our observations suggest negative effects of heavy metal exposure on the immune function of wood mice under field conditions. - Capsule: Complex interactions among metal burden, immune response and parasite burden suggest negative effects of heavy metal exposure on the immune system of wood mice

  2. Highly efficient removal of arsenic metal ions with high superficial area hollow magnetite nanoparticles synthetized by AACVD method

    Energy Technology Data Exchange (ETDEWEB)

    Monárrez-Cordero, B.; Amézaga-Madrid, P.; Antúnez-Flores, W.; Leyva-Porras, C.; Pizá-Ruiz, P. [Centro de Investigación en Materiales Avanzados S.C., and Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Chihuahua, Chih. C.P. 31109 (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., and Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Chihuahua, Chih. C.P. 31109 (Mexico)

    2014-02-15

    Highlights: ► Fast and high arsenic removal efficiency, almost 100% in one minute. ► Successful synthesis of high purity magnetite hollow nanoparticles is reported. ► They were synthesized by one step aerosol assisted CVD technique. ► Detailed microstructural characterization by electron microscopy was performed. -- Abstract: New nanotechnology alternatives and methodologies have been developed in order to overcome the limitations of conventional techniques for metal ions removal from water. Currently, the removal of heavy metals requires multiple steps which include the separation and post-treatment of the generated sludge. Usually, this sludge is composed of dangerous environmental pollutants mixed with the material used for removing the metal ion. Thus, the removal of these metals becomes a challenging task. Herein we report the synthesis of magnetite nanoparticles with high specific area by the aerosol assisted chemical vapour deposition method. Deposition temperature were fixed at 450 °C and a mixture of Ar–air were used as a carrier gas, a flow of 1.0 and 0.015 L min{sup −1} were used for Ar and air, respectively. The precursor solution was a dilution of Fe (II) chloride in methanol, with different concentration 0.01, 0.05 and 0.1 mol dm{sup −3}. The crystalline structure of the nanoparticles was characterized by grazing incidence X-ray diffraction. Morphology and microstructure were analyzed by field emission scanning electron microscopy, scanning probe microscopy and transmission electron microscopy. Magnetic properties were evaluated with a vibrating sample magnetometer and specific area was measured by the Brunauer–Emmett–Teller method. To determine the removal efficiency of arsenic ion from water, several tests were carried out at six exposition times 1, 3, 5, 10, 20 and 30 min. Results showed high removal efficiency, more than 99%, in less than 1 min.

  3. XPS and NRA investigations during the fabrication of gold nanostructured functionalized screen-printed sensors for the detection of metallic pollutants

    Science.gov (United States)

    Jasmin, Jean-Philippe; Miserque, Frédéric; Dumas, Eddy; Vickridge, Ian; Ganem, Jean-Jacques; Cannizzo, Caroline; Chaussé, Annie

    2017-03-01

    An all covalent nanostructured lead sensor was built by the successive grafting of gold nanoparticles and carboxylic ligands at the surface of self-adhesive carbon screen-printed electrodes (SPEs). Surface analysis techniques were used in each step in order to investigate the structuration of this sensor. The self-adhesive surfaces were made from the electrochemical grafting of p-phenylenediamine at the surface of the SPEs via diazonium salts chemistry. The quantity of grafted aniline functions, estimated by Nuclear Reaction Analysis (NRA) performed with p-phenylenediamine labelled with 15N isotope, is in agreement with an almost complete coverage of the electrode surface. The subsequent diazotization of the aniline functions at the surface of the SPEs was performed; X-ray Photoelectron Spectroscopy (XPS) allowed us to consider a quantitative conversion of the aniline functions into diazonium moieties. The spontaneous grafting of gold nanoparticles on the as-obtained reactive surfaces ensures the nanostructuration of the material, and XPS studies showed that the covalent bonding of the gold nanoparticles at the surface of the SPEs induces a change both in the Au-4f (gold nanoparticles) and Cl-2p (carbon ink) core level signals. These unusual observations are explained by an interaction between the carbon ink constituting the substrate and the gold nanoparticles. Heavy and toxic metals are considered of major environmental concern because of their non-biodegradability. In a final step, the grafting of the carboxylic ligands at the surface of the SPEs and an accumulation step in the presence of lead(II) cations allowed us to evidence the interest of nanostructured materials as metallic pollutants sensors.

  4. Investigation of heavy metal pollutants at various depths in the Gulf of Izmit

    International Nuclear Information System (INIS)

    Ergül, Halim Aytekin; Varol, Tolga; Ay, Ümit

    2013-01-01

    Highlights: • Monitoring seasonal variations in heavy metal pollution. • Heavy metal levels according to depth in seawater from the Gulf of Izmit. • Industrial activity and biological life co-exist in Izmit Bay. -- Abstract: In this study, we report results concerning the accumulation of heavy metals in seawater from Izmit Bay. The bay was divided into the three parts: the eastern, the central and the western basins. The goal of this study was to determine levels of heavy metals at various depths in the bay between April 2008 and May 2010. Liquid–liquid extractions were performed on seawater samples. An atomic absorption spectrophotometer was used to measure levels of six metals: lead, cadmium, chromium, iron, manganese and zinc. We applied our results to evaluate the status of pollution in the Gulf of Izmit. Significant seasonal differences in metal concentrations and higher concentrations of many metals in water near the shore are evidence for uncontrolled release of pollutants in the water

  5. Block-copolymer assisted synthesis of arrays of metal nanoparticles and their catalytic activities for the growth of SWNTs

    International Nuclear Information System (INIS)

    Bhaviripudi, Sreekar; Reina, Alfonso; Qi, Jifa; Kong, Jing; Belcher, Angela M

    2006-01-01

    Block copolymer micellar templates were used for the controlled synthesis of large arrays of mono-metallic (Fe, Co, Ni, Mo) and bi-metallic (Fe-Mo) nanoparticles with average diameters ranging from 1 to 4 nm and the distance between the nanoparticles ranging from 40 to 45 nm. XPS data reveal the presence of mono-metallic nanoparticles in their oxidized states. These uniform arrays of nanoparticles serve as an excellent tool to investigate the catalytic effect of different metal/metal oxide nanoparticles for the growth of carbon nanotubes, and in this work, they were used to investigate the growth of single-walled carbon nanotubes with the chemical vapour deposition (CVD) process, using both ethanol and hydrocarbon (methane + ethylene) gases as carbon sources. The periodicity and the arrangement of nanoparticles were unaffected even at high growth temperatures, indicating that nanoparticle agglomeration on the Si substrate does not take place during growth. AFM and SEM results reveal uniform growth of nanotubes with diameters smaller than the initial size of the catalyst nanoparticles. The Fe, Co and Ni nanoparticles all serve as effective catalysts for nanotube growth with both types of carbon feed stock, and Co and Ni give rise to a relatively higher yield than Fe. The catalytic activity of Fe and bi-metallic Fe-Mo nanoparticles of similar size and identical densities using ethanol CVD are also compared

  6. Biological synthesis of metallic nanoparticles using algae.

    Science.gov (United States)

    Castro, Laura; Blázquez, María Luisa; Muñoz, Jesus Angel; González, Felisa; Ballester, Antonio

    2013-09-01

    The increasing demand and limited natural resources of noble metals make its recovery from dilute industrial wastes attractive, especially when using environmentally friendly methods. Nowadays, the high impact that nanotechnology is having in both science and society offers new research possibilities. Gold and silver nanoparticles were biosynthesised by a simple method using different algae as reducing agent. The authors explored the application of dead algae in an eco-friendly procedure. The nanoparticle formation was followed by UV-vis absorption spectroscopy and transmission electron microscopy. The functional groups involved in the bioreduction were studied by Fourier transform infrared spectroscopy.

  7. XPS and NRA investigations during the fabrication of gold nanostructured functionalized screen-printed sensors for the detection of metallic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jasmin, Jean-Philippe [Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587, CNRS-Université Evry Val d’Essonne-CEA, 1 rue du père Jarlan, 91025 Evry Cedex (France); Miserque, Frédéric [Den-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Dumas, Eddy [Institut Lavoisier de Versailles, UMR 8180, CNRS-Université de Versailles Saint-Quentin-en-Yvelines, 78035 Versailles (France); Vickridge, Ian; Ganem, Jean-Jacques [INSP, UMR 7588, CNRS- Université Pierre et Marie Curie, 4 place Jussieu, boîte courrier 840 75252 Paris, Cedex 05 (France); Cannizzo, Caroline, E-mail: caroline.cannizzo@univ-evry.fr [Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587, CNRS-Université Evry Val d’Essonne-CEA, 1 rue du père Jarlan, 91025 Evry Cedex (France); Chaussé, Annie [Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587, CNRS-Université Evry Val d’Essonne-CEA, 1 rue du père Jarlan, 91025 Evry Cedex (France)

    2017-03-01

    Highlights: • Functionalized nanostructured SPEs were made by multi-step diazonium salt chemistry. • Investigation of SPEs surface by XPS and NRA shows monolayer coverage by aminobenzyl groups. • Complete conversion of aminobenzyl groups into diazonium functions was also evidenced. • Covalent grafting of AuNPs onto SPEs lead to an unusual modification of Au-4f core level spectrum. • Ligand and lead signals showed the interest of nanostructurated SPEs for trace metals detection. - Abstract: An all covalent nanostructured lead sensor was built by the successive grafting of gold nanoparticles and carboxylic ligands at the surface of self-adhesive carbon screen-printed electrodes (SPEs). Surface analysis techniques were used in each step in order to investigate the structuration of this sensor. The self-adhesive surfaces were made from the electrochemical grafting of p-phenylenediamine at the surface of the SPEs via diazonium salts chemistry. The quantity of grafted aniline functions, estimated by Nuclear Reaction Analysis (NRA) performed with p-phenylenediamine labelled with {sup 15}N isotope, is in agreement with an almost complete coverage of the electrode surface. The subsequent diazotization of the aniline functions at the surface of the SPEs was performed; X-ray Photoelectron Spectroscopy (XPS) allowed us to consider a quantitative conversion of the aniline functions into diazonium moieties. The spontaneous grafting of gold nanoparticles on the as-obtained reactive surfaces ensures the nanostructuration of the material, and XPS studies showed that the covalent bonding of the gold nanoparticles at the surface of the SPEs induces a change both in the Au-4f (gold nanoparticles) and Cl-2p (carbon ink) core level signals. These unusual observations are explained by an interaction between the carbon ink constituting the substrate and the gold nanoparticles. Heavy and toxic metals are considered of major environmental concern because of their non

  8. XPS and NRA investigations during the fabrication of gold nanostructured functionalized screen-printed sensors for the detection of metallic pollutants

    International Nuclear Information System (INIS)

    Jasmin, Jean-Philippe; Miserque, Frédéric; Dumas, Eddy; Vickridge, Ian; Ganem, Jean-Jacques; Cannizzo, Caroline; Chaussé, Annie

    2017-01-01

    Highlights: • Functionalized nanostructured SPEs were made by multi-step diazonium salt chemistry. • Investigation of SPEs surface by XPS and NRA shows monolayer coverage by aminobenzyl groups. • Complete conversion of aminobenzyl groups into diazonium functions was also evidenced. • Covalent grafting of AuNPs onto SPEs lead to an unusual modification of Au-4f core level spectrum. • Ligand and lead signals showed the interest of nanostructurated SPEs for trace metals detection. - Abstract: An all covalent nanostructured lead sensor was built by the successive grafting of gold nanoparticles and carboxylic ligands at the surface of self-adhesive carbon screen-printed electrodes (SPEs). Surface analysis techniques were used in each step in order to investigate the structuration of this sensor. The self-adhesive surfaces were made from the electrochemical grafting of p-phenylenediamine at the surface of the SPEs via diazonium salts chemistry. The quantity of grafted aniline functions, estimated by Nuclear Reaction Analysis (NRA) performed with p-phenylenediamine labelled with "1"5N isotope, is in agreement with an almost complete coverage of the electrode surface. The subsequent diazotization of the aniline functions at the surface of the SPEs was performed; X-ray Photoelectron Spectroscopy (XPS) allowed us to consider a quantitative conversion of the aniline functions into diazonium moieties. The spontaneous grafting of gold nanoparticles on the as-obtained reactive surfaces ensures the nanostructuration of the material, and XPS studies showed that the covalent bonding of the gold nanoparticles at the surface of the SPEs induces a change both in the Au-4f (gold nanoparticles) and Cl-2p (carbon ink) core level signals. These unusual observations are explained by an interaction between the carbon ink constituting the substrate and the gold nanoparticles. Heavy and toxic metals are considered of major environmental concern because of their non

  9. Distribution of Heavy Metal Pollution in Surface Soil Samples in China: A Graphical Review.

    Science.gov (United States)

    Duan, Qiannan; Lee, Jianchao; Liu, Yansong; Chen, Han; Hu, Huanyu

    2016-09-01

    Soil pollution in China is one of most wide and severe in the world. Although environmental researchers are well aware of the acuteness of soil pollution in China, a precise and comprehensive mapping system of soil pollution has never been released. By compiling, integrating and processing nearly a decade of soil pollution data, we have created cornerstone maps that illustrate the distribution and concentration of cadmium, lead, zinc, arsenic, copper and chromium in surficial soil across the nation. These summarized maps and the integrated data provide precise geographic coordinates and heavy metal concentrations; they are also the first ones to provide such thorough and comprehensive details about heavy metal soil pollution in China. In this study, we focus on some of the most polluted areas to illustrate the severity of this pressing environmental problem and demonstrate that most developed and populous areas have been subjected to heavy metal pollution.

  10. Nanoparticle dispersion in liquid metals by electromagnetically induced acoustic cavitation

    International Nuclear Information System (INIS)

    Kaldre, Imants; Bojarevičs, Andris; Grants, Ilmārs; Beinerts, Toms; Kalvāns, Matīss; Milgrāvis, Mikus; Gerbeth, Gunter

    2016-01-01

    Aim of this study is to investigate experimentally the effect of magnetically induced cavitation applied for the purpose of nanoparticle dispersion in liquid metals. The oscillating magnetic force due to the azimuthal induction currents and the axial magnetic field excites power ultrasound in the sample. If the fields are sufficiently high then it is possible to achieve the acoustic cavitation threshold in liquid metals. Cavitation bubble collapses are known to create microscale jets with a potential to break nanoparticle agglomerates and disperse them. The samples are solidified under the contactless ultrasonic treatment and later analyzed by electron microscopy and energy-dispersive X-ray spectroscopy (EDX). It is observed that SiC nanoparticles are dispersed in an aluminum magnesium alloy, whereas in tin the same particles remain agglomerated in micron-sized clusters despite a more intense cavitation.

  11. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    KAUST Repository

    Sabella, Stefania

    2014-04-09

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment-where particles are abundantly internalized-is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a "lysosome-enhanced Trojan horse effect" since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. The Royal Society of Chemistry 2014.

  12. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    KAUST Repository

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-01-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment-where particles are abundantly internalized-is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a "lysosome-enhanced Trojan horse effect" since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. The Royal Society of Chemistry 2014.

  13. Modern approaches to remediation of heavy metal polluted soils: A review

    Science.gov (United States)

    Koptsik, G. N.

    2014-07-01

    The main principles and approaches to remediation of in situ polluted soils aimed at the removal or control of heavy metals (washing, stabilization, phytoremediation, and natural restoration) are analyzed. The prospects of gentle methods of stabilization oriented at the reduction of the mobility and biological availability of heavy metals due to the processes of adsorption, ionic exchange, and precipitation are emphasized. The use of sorbents and the traditional application of liming and phosphates to fix metal pollutants in soils is considered. The necessary conditions for successful soil remediation are the assessment of its economic efficiency, the analysis of the ecological risks, and confirming the achievement of the planned purposes related to the content of available metals in the soils.

  14. Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil.

    Science.gov (United States)

    Brandl, Ferdinand; Bertrand, Nicolas; Lima, Eliana Martins; Langer, Robert

    2015-07-21

    Nanotechnology may offer fast and effective solutions for environmental clean-up. Herein, amphiphilic diblock copolymers are used to develop a platform of photosensitive core-shell nanoparticles. Irradiation with ultraviolet light removes the protective layer responsible for colloidal stability; as a result, the nanoparticles are rapidly and irreversibly converted to macroscopic aggregates. The associated phase separation allows measuring the partitioning of small molecules between the aqueous phase and nanoparticles; data suggests that interactions are enhanced by decreasing the particle size. Adsorption onto nanoparticles can be exploited to efficiently remove hydrophobic pollutants from water and contaminated soil. Preliminary in vivo experiments suggest that treatment with photocleavable nanoparticles can significantly reduce the teratogenicity of bisphenol A, triclosan and 17α-ethinyl estradiol without generating obviously toxic byproducts. Small-scale pilot experiments on wastewater, thermal printing paper and contaminated soil demonstrate the applicability of the approach.

  15. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution

    International Nuclear Information System (INIS)

    Finger, Annett; Lavers, Jennifer L.; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D.; Robertson, Bruce; Scarpaci, Carol

    2015-01-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution. - Highlights: • Trace metals measured in blood and feathers. • Arsenic, Mercury and Lead significantly higher at urban colony. • Correlations found between trace metals in feathers and blood. • Little Penguins are suitable bioindicators for coastal metal pollution. - This study confirms the suitability of the Little Penguin as a bioindicator of coastal metal pollution in coastal areas using non-destructive sampling methods

  16. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2015-10-01

    Full Text Available The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

  17. Heavy metals pollution influences the soil of Baia Mare city Roumania

    International Nuclear Information System (INIS)

    Dumitrescu, L.; Petrescu, L.; Stanescu, L.F.; Bilal, E.

    2010-01-01

    For a connection between the environment close by industrial area and residential area; where the consequences heavy metal pollution are more acute, we had drawn samples inside Romplumb S.A. factory in Baia Mare city (Romania), the main heavy metal pollution agent, close by this factory, cross roads, areas close by parks and areas far off the main pollution agent. These samples had drawn both on the surface soil and 15 cm depth. In this subchapter we will present the analyses types and the results of these analyses taking into account the chemistry composition of drawing samples. A half of each sample was crushed very fine for ICP, XRF. From uncrushed half a part was crushed at 2 accordance with ICP results and these distributions on maps, we can see that the biggest heavy metals amount is in N-E of Baia Mare (zone I) due to the main pollution factor, Romplumb S.A... The pollution for zone II is not as big as zone I. Heavy metals in this zone are due to emission released by Romplumb S.A. and Phonix S.A. which are carry by air and due to the cross roads. The high amount of heavy metal from Baia Mare soils affects more and more people health. Health Direction Baia Mare made a lot of investigation on Baia Mare Soil. The results of these investigations are: - The hope life is smaller with 2,2 years than usual - Mortality is bigger with 10-15% than usual - Avitaminoza D*2 is 65-95% - Metabolism diseases due to Pb are frequent with 40-60%

  18. Metal pollutants and radionuclides in the Baltic Sea - an overview

    Directory of Open Access Journals (Sweden)

    Piotr Szefer

    2002-06-01

    Full Text Available This overview presents in detail the state of knowledge of the abilities of various components of the Baltic Sea environment to accumulate trace elements and radionuclides. Particular components of the Baltic ecosystem (abiotic and biotic are considered as potential monitors of pollutants. The use of seaweeds, e.g. Fucus vesiculosus or Zostera marina is recommended, also molluscs, e.g. Mytilus edulis, for biomonitoring surveys of metal pollutants and radionuclides in the Baltic Sea. However, several requirements need to be met if results are to be reliable. Since metal levels and radionuclide activities in the growing tips of F. vesiculosus reflect exclusively the levels of their dissolved species in the ambient seawater, this alga is very useful for monitoring dissolved species of metal pollutants and radioisotopes in the Baltic ecosystem. In contrast, M. edulis, a filter feeder is an appropriate tool for monitoring trace elements occurring in both chemical forms, i.e. dissolved and suspended species. Therefore, full information on the bioavailability and toxicity of heavy metals (depending on their chemical speciation as pollutants of the Baltic Sea can be obtained if at least two biomonitoring organisms are applied simultaneously, e.g. F. vesiculosus and M. edulis. Moreover, the data matrix can be interpreted more accurately if not only trace element but also macroelement concentrations (Ca, Mg, Na, K in these two representatives of Baltic phyto- and zoobenthos are taken into consideration; this point requires special attention. Two coastal species of fish, i.e. Zoarces viviparus and Perca fluviatilis, are good biomonitors of metallic contaminants, so their use as sentinels is recommended. The budgets of chemical elements and the ecological status of the Baltic Sea are presented. Several "black spots", e.g. large estuaries and seaport towns, heavily polluted by trace elements, are identified in the Baltic Sea and other enclosed seas such the

  19. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Grażyna A. Płaza

    2014-08-01

    Full Text Available Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance.

  20. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    Science.gov (United States)

    Płaza, Grażyna A.; Chojniak, Joanna; Banat, Ibrahim M.

    2014-01-01

    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance. PMID:25110864

  1. Metal Oxide Nanoparticle Photoresists for EUV Patterning

    KAUST Repository

    Jiang, Jing

    2014-01-01

    © 2014SPST. Previous studies of methacrylate based nanoparticle have demonstrated the excellent pattern forming capability of these hybrid materials when used as photoresists under 13.5 nm EUV exposure. HfO2 and ZrO2 methacrylate resists have achieved high resolution (∼22 nm) at a very high EUV sensitivity (4.2 mJ/cm2). Further investigations into the patterning process suggests a ligand displacement mechanism, wherein, any combination of a metal oxide with the correct ligand could generate patterns in the presence of the suitable photoactive compound. The current investigation extends this study by developing new nanoparticle compositions with transdimethylacrylic acid and o-toluic acid ligands. This study describes their synthesis and patterning performance under 248 nm KrF laser (DUV) and also under 13.5 nm EUV exposures (dimethylacrylate nanoparticles) for the new resist compositions.

  2. Fast adsorption kinetics of highly dispersed ultrafine nickel/carbon nanoparticles for organic dye removal

    Science.gov (United States)

    Kim, Taek-Seung; Song, Hee Jo; Dar, Mushtaq Ahmad; Lee, Hack-Jun; Kim, Dong-Wan

    2018-05-01

    Magnetic metal/carbon nano-materials are attractive for pollutant adsorption and removal. In this study, ultrafine nickel/carbon nanoparticles are successfully prepared via electrical wire explosion processing in ethanol media for the elimination of pollutant organic dyes such as Rhodamine B and methylene blue in aqueous solutions. High specific surface areas originating from both the nano-sized particles and the existence of carbon on the surface of Ni nanoparticles enhance dye adsorption capacity. In addition to this, the excellent dispersity of Ni/C nanoparticles in aqueous dye solutions leads to superior adsorption rates. The adsorption kinetics for the removal of organic dyes by Ni/C nanoparticles agree with a pseudo-second-order model and follow Freundlich adsorption isotherm behavior.

  3. Incorporation of metal nanoparticles into wood substrate and methods

    Science.gov (United States)

    Rector, Kirk D; Lucas, Marcel

    2015-11-04

    Metal nanoparticles were incorporated into wood. Ionic liquids were used to expand the wood cell wall structure for nanoparticle incorporation into the cell wall structure. Nanoparticles of elemental gold or silver were found to be effective surface enhanced Raman spectroscopy (SERS) imaging contrast or sensing agents. Nanoparticles of elemental iron were found to be efficient microwave absorbers and caused localized heating for disrupting the integrity of the lignocellulosic matrix. Controls suggest that the localized heating around the iron nanoparticles reduces losses of cellulose in the form of water, volatiles and CO.sub.2. The ionic liquid is needed during the incorporation process at room temperature. The use of small amounts of ionic liquid combined with the absence of an ionic liquid purification step and a lower energy and water use are expected to reduce costs in an up-scaled pretreatment process.

  4. In vitro antiplasmodial activity of PDDS-coated metal oxide nanoparticles against Plasmodium falciparum

    Science.gov (United States)

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram

    2013-06-01

    Malaria is the most important parasitic disease, leading to annual death of about one million people and the Plasmodium falciparum develops resistant to well-established antimalarial drugs. The newest antiplasmodial drug from metal oxide nanoparticles helps in addressing this problem. Commercial nanoparticles such as Fe3O4, MgO, ZrO2, Al2O3 and CeO2 coated with PDDS and all the coated and non-coated nanoparticles were screened for antiplasmodial activity against P. falciparum. The Al2O3 nanoparticles (71.42 ± 0.49 μg ml-1) showed minimum level of IC50 value and followed by MgO (72.33 ± 0.37 μg ml-1) and Fe3O4 nanoparticles (77.23 ± 0.42 μg ml-1). The PDDS-Fe3O4 showed minimum level of IC50 value (48.66 ± 0.45 μg ml-1), followed by PDDS-MgO (60.28 ± 0.42 μg ml-1) and PDDS-CeO2 (67.06 ± 0.61 μg ml-1). The PDDS-coated metal oxide nanoparticles showed superior antiplasmodial activity than the non-PDDS-coated metal oxide nanoparticles. Statistical analysis reveals that, significant in vitro antiplasmodial activity ( P activity and it might be used for the development of antiplasmodial drugs.

  5. Electrodialytic decontamination of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted soil is a newly developed method, which combines the electrokinetic mevement of ions in soil with the principle of electrodialytis. The method has been proven to work in laboratory scale and at present two types of pilot plant tests are made....

  6. Climate change effects on enchytraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation.

    Science.gov (United States)

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2015-10-01

    Climate change may alter physical, chemical and biological properties of ecosystems, affecting organisms but also the fate of chemical pollutants. This study aimed to find out how changes in climate conditions (air temperature, soil moisture content) affect the toxicity of metal-polluted soils to the soft-bodied soil organism Enchytraeus crypticus, linking enchytraeid performance with changes in soil available and body metal concentrations. Bioassays with E. crypticus were performed under different combinations of air temperature (20 and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) in dilution series of three metal-polluted soils (mine tailing, forest and watercourse). After 21 d exposure, enchytraeid reproduction was determined, and soil available (extracted with 0.01 M CaCl2) and body Cd, Cu, Pb and Zn concentrations in surviving adults were determined. In general, Cd, Pb and Zn availability decreased upon incubation under the different climate scenarios. In the watercourse soil, with initially higher available metal concentrations (678 µg Cd kg(-1), 807 µg Pb kg(-1) and 31,020 µg Zn kg(-1)), decreases were greatest at 50% WHC probably due to metal immobilization as carbonates. Enchytraeid reproduction was negatively affected by higher available metal concentrations, with reductions up to 98% in the watercourse soil compared to the control soil at 30% WHC. Bioaccumulation of Cd, Pb and Zn was higher when drier conditions were combined with the higher temperature of 25 °C. Changes in metal bioavailability and bioaccumulation explained the toxicity of soil polluted by metal mine wastes to enchytraeids under changing environmental conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Genetic structure of Suillus luteus populations in heavy metal polluted and nonpolluted habitats.

    Science.gov (United States)

    Muller, Ludo A H; Vangronsveld, Jaco; Colpaert, Jan V

    2007-11-01

    The genetic structure of populations of the ectomycorrhizal basidiomycete Suillus luteus in heavy metal polluted and nonpolluted areas was studied. Sporocarps were collected at nine different locations and genotyped at four microsatellite loci. Six of the sampling sites were severely contaminated with heavy metals and were dominated by heavy metal-tolerant individuals. Considerable genetic diversity was found within the geographical subpopulations, but no reduction of the genetic diversity, current or historic, was observed in subpopulations inhabiting polluted soils. The genetic differentiation between the geographical subpopulations was low, and no evidence for clustering of subpopulations from polluted soils vs. subpopulations from nonpolluted soils was found. These results indicate that heavy metal pollution has a limited effect on the genetic structure of S. luteus populations, and this may be due to the high frequency of sexual reproduction and extensive gene flow in S. luteus, which allows rapid evolution of the tolerance trait while maintaining high levels of genetic diversity.

  8. Self-Assembling Protein Materials for Metal Nanoparticle Templation

    Science.gov (United States)

    2015-05-01

    can enhance fluorescence of the metal itself, the Raman signal of a molecule on the surface of the metal, and the scattering of light. These physical...and application in surface-enhanced Raman scattering. Chem. Commun. 1984–1986 (2009). doi:10.1039/b822507a 149. Scheibel, T. et al. Conducting...Nanoparticles of Uniform Size and Shape. Biomacromolecules 13, 98–105 (2012). 206. Teja, A. S. & Koh , P.-Y. Synthesis, properties, and applications of

  9. Earliest evidence of pollution by heavy metals in archaeological sites.

    Science.gov (United States)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-21

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  10. Metallic nanoparticles in dielectrics: A comparative study

    KAUST Repository

    Agambayev, Agamyrat; Farhat, Mohamed; Bagci, Hakan; Salama, Khaled N.

    2017-01-01

    The Maxwell-Garnett method is used to predict the effective dielectric constant and the tangent loss of various composites consisting of a PVDF-TrFE-CFE-matrix and metallic microsphere fillers made of Cu, Ni, W, Zn, or Fe. Simulation results demonstrate that for small filler fraction values and at low frequencies, the electrical properties of the resulting composite do not depend on the conductivity of the filler. These findings show that composites fabricated using cheaper metal nanoparticle fillers are as effective as those fabricated using expensive ones.

  11. Metallic nanoparticles in dielectrics: A comparative study

    KAUST Repository

    Agambayev, Agamyrat

    2017-10-25

    The Maxwell-Garnett method is used to predict the effective dielectric constant and the tangent loss of various composites consisting of a PVDF-TrFE-CFE-matrix and metallic microsphere fillers made of Cu, Ni, W, Zn, or Fe. Simulation results demonstrate that for small filler fraction values and at low frequencies, the electrical properties of the resulting composite do not depend on the conductivity of the filler. These findings show that composites fabricated using cheaper metal nanoparticle fillers are as effective as those fabricated using expensive ones.

  12. Heavy metal accumulation in Littoraria scabra along polluted and pristine mangrove areas of Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, H. de [Ecophysiology, Biochemistry and Toxicology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)], E-mail: hans.dewolf@ua.ac.be; Rashid, R. [Ecophysiology, Biochemistry and Toxicology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2008-04-15

    The periwinkle Littoraria scabra was collected at polluted and pristine mangrove sites along the Tanzanian coastline, including Msimbazi, Mbweni (i.e. Dar es Salaam) and Kisakasaka, Nyamanzi and Maruhubi (i.e. Zanzibar). Periwinkles were morphologically characterized, sexed and their heavy metal content was determined using ICP-MS. Analysis revealed that L. scabra from polluted areas contained higher soft tissue heavy metal levels, were significantly smaller and weighed less compared to their conspecifics from the unpolluted mangroves. The current morphological observations may be explained in terms of growth and/or mortality rate differences between the polluted and non-polluted sites. Although a variety of stressors may account for these adverse morphological patterns, our data suggest a close relationship with the soft tissue heavy metal content. Compared to soft tissue heavy metal levels that were measured in L. scabra along the same area in 1998, most metals, except for arsenic, chromium and iron have decreased dramatically. - Anthropogenic activities result in heavy metal accumulation and adverse morphological effects in the mangrove gastropod Littoraria scabra.

  13. Heavy metal accumulation in Littoraria scabra along polluted and pristine mangrove areas of Tanzania

    International Nuclear Information System (INIS)

    Wolf, H. de; Rashid, R.

    2008-01-01

    The periwinkle Littoraria scabra was collected at polluted and pristine mangrove sites along the Tanzanian coastline, including Msimbazi, Mbweni (i.e. Dar es Salaam) and Kisakasaka, Nyamanzi and Maruhubi (i.e. Zanzibar). Periwinkles were morphologically characterized, sexed and their heavy metal content was determined using ICP-MS. Analysis revealed that L. scabra from polluted areas contained higher soft tissue heavy metal levels, were significantly smaller and weighed less compared to their conspecifics from the unpolluted mangroves. The current morphological observations may be explained in terms of growth and/or mortality rate differences between the polluted and non-polluted sites. Although a variety of stressors may account for these adverse morphological patterns, our data suggest a close relationship with the soft tissue heavy metal content. Compared to soft tissue heavy metal levels that were measured in L. scabra along the same area in 1998, most metals, except for arsenic, chromium and iron have decreased dramatically. - Anthropogenic activities result in heavy metal accumulation and adverse morphological effects in the mangrove gastropod Littoraria scabra

  14. Synthesis of organically-capped metallic zinc nanoparticles using electrical explosion of wires (EEW) coupled with PIERMEN

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader, Elseddik M.; Jelliss, Paul A., E-mail: jellissp@slu.edu; Buckner, Steven W., E-mail: buckners@slu.edu

    2015-01-15

    In this study zinc nanoparticles (ZNPs) were produced using electrical explosion of wires (EEW) with NP size around 100 nm. The explosion chamber was constructed from Teflon to withstand the shockwave, to allow growth and reaction of the incipient ZNPs in various organic solvents, and to allow a constant flow of argon creating an inert atmosphere. We utilized polymerization initiation by electron-rich metallic nanoparticles (PIERMEN) as the capping technique for the reactive ZNPs. Epoxides and alkenes served as the capping monomers. Epoxide caps underwent oligomerization on the surface of the NPs to form a protective polyether cap which renders the particles stable, non-pyrophoric in air, and dispersible in organic solvents. We investigated various Zn to monomer molar ratios varying from 1:1 to 10:1. Polyethylene glycol was also used as a capping agent and was found to give the smallest average Zn core sizes with the metal core diameters varying from 15 to 20 nm. Several solvents were used to study differences in resultant particle size and we observe toluene to give the smallest metal cores. Transmission electron microscopy shows the spherical particles with the metallic core embedded in a polymer matrix. The sample consists of predominantly smaller particles, but there was also a broad size distribution giving a range of 20–150 nm. Powder X-ray diffraction (PXRD) was used to confirm the identity of the metallic NPs. The capping agents were characterized using both attenuated total reflectance-Fourier transform infra-red (ATR-FTIR) and Raman spectroscopies. There was no evidence for formation of zinc oxide with appropriate organic capping agents and solvent combinations; thus, this is the first report of production of pure metallic zinc nanoparticles with an organic cap using EEW. - Highlights: • Organically-capped Zn metal nanoparticles are produced by EEW in organic solution. • Incipient Zn metal nanoparticles initiate oligomerization of epoxide and

  15. Heavy metal pollutant tolerance of Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A.; Jana, S.

    1986-01-01

    The effects of Hg, As, Pb, Cu, Cd, and Cr (1,2 and 5 mg L/sup -1/ each) on Azolla pinnata R. Br. were analyzed. The treatments (2 and 5 mg L/sup -1/) of the heavy metal pollutants decreased Hill activity, chlorophyll, protein and dry wt, and increased tissue permeability over control values. The effects were most pronounced with the treatment of 5 mg L/sup -1/. The harmful effects of the metals were, in general, found by the treatments in the order: Cd > Hg > Cu > As > Pb > Cr. There was no significant change in these parameters at 1 mg L/sup -1/ of the metals over control. Thus Azolla pinnata shows tolerance to the heavy metals tested up to 1 mg L/sup -1/ each.

  16. Interaction of soil heavy metal pollution with industrialisation and the landscape pattern in Taiyuan city, China.

    Science.gov (United States)

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning.

  17. Evaluation of Trichoptera as an indicator organism for environmental pollution by heavy metals

    International Nuclear Information System (INIS)

    Aizawa, Shoichi; Tsunoda, Kin-ichi; Akatsuka, Masayoshi; Inoue, Sadao; Akaiwa, Hideo

    1994-01-01

    A method of analysis for heavy metals in trichopteran larvae by AAS was established to evaluate this aquatic insect as an indicator organism for environmental pollution by heavy metals. A wet digestion method with nitric acid and hydrogen peroxide was found to be suitable for the decomposition of trichopteran larva samples. No serious variation in heavy metal contents was found in individual samples collected from one sampling point. A weak negative correlation was observed between the body length and the heavy metal contents of trichopteran larvae. In addition, the heavy metal content of trichopteran larvae seems to show a seasonal fluctuation. Trichopteran larvae in the Watarase River, which has abandoned copper and manganese mines along its upper stream, show an enriched heavy metal content as compared with those in other non-polluted rivers. Moreover, this aquatic insect in the Kiryu River also shows enrichment of manganese due to abandoned manganese mines situated upstream. These facts suggest that the trichopteran larva in a useful indicator organism for environmental pollution by heavy metals. (author)

  18. Microwave assisted green synthesis and characterizations of noble metal nanoparticles and their roles as catalysts in organic reduction reactions and anticancer agent

    Science.gov (United States)

    Francis, Sijo; Koshy, Ebey P.; Mathew, Beena

    2018-04-01

    Nanomaterials are interesting chemicals that uncover the explorations and expectations of decades. The report suggests environmentally benevolent and easy route for the synthesis of noble metal nanoparticles. Personnel, laboratory and ecological benefits of the synthesized nanoparticles are demonstrated herein. The aqueous extract from the leaves of Litchi chinensis Sonn is performed as the alternative reducing agent. The microwave activated silver and gold nanoparticles have spherical geometries with crystalline essence. X-ray diffraction technique witnessed the face centered cubic lattice for the nano silver and gold particles that preferentially oriented towards the (111) plane. The reduction of nitro anilines is performed to elucidate the heterogeneous catalytic power of the nanoparticles. The nano catalyst is a potential candidate to meet the challenges raised from organic pollutant dye that cause environmental contamination. The chemical stability, low-cost factor and plant based origin of the new nanoparticles are admired. The multitudes of health hazards especially human carcinoma can be effectively inhibited by the silver and gold nanoparticles. The leaf extract, silver and gold nanoparticles showed IC50 values 66.56 ± 0.80, 23.55 ± 0.43 and 20.38 ± 0.41 μg ml‑1 respectively against the human lung adenocarcinoma cell lines A549 determined using the MTT dye conversion assay.

  19. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells

    Directory of Open Access Journals (Sweden)

    Ohayon-Courtès Céline

    2011-03-01

    Full Text Available Abstract Background Some manufactured nanoparticles are metal-based and have a wide variety of applications in electronic, engineering and medicine. Until now, many studies have described the potential toxicity of NPs on pulmonary target, while little attention has been paid to kidney which is considered to be a secondary target organ. The objective of this study, on human renal culture cells, was to assess the toxicity profile of metallic nanoparticles (TiO2, ZnO and CdS usable in industrial production. Comparative studies were conducted, to identify whether particle properties impact cytotoxicity by altering the intracellular oxidative status. Results Nanoparticles were first characterized by size, surface charge, dispersion and solubility. Cytotoxicity of NPs was then evaluated in IP15 (glomerular mesangial and HK-2 (epithelial proximal cell lines. ZnO and CdS NPs significantly increased the cell mortality, in a dose-dependent manner. Cytotoxic effects were correlated with the physicochemical properties of NPs tested and the cell type used. Analysis of reactive oxygen species and intracellular levels of reduced and oxidized glutathione revealed that particles induced stress according to their composition, size and solubility. Protein involved in oxidative stress such as NF-κb was activated with ZnO and CdS nanoparticles. Such effects were not observed with TiO2 nanoparticles. Conclusion On glomerular and tubular human renal cells, ZnO and CdS nanoparticles exerted cytotoxic effects that were correlated with metal composition, particle scale and metal solubility. ROS production and oxidative stress induction clearly indicated their nephrotoxic potential.

  20. Toxicity of Transition Metal Oxide Nanoparticles: Recent Insights from in vitro Studies

    Directory of Open Access Journals (Sweden)

    Robert S. Aronstam

    2010-10-01

    Full Text Available Nanotechnology has evolved to play a prominent role in our economy. Increased use of nanomaterials poses potential human health risk. It is therefore critical to understand the nature and origin of the toxicity imposed by nanomaterials (nanotoxicity. In this article we review the toxicity of the transition metal oxides in the 4th period that are widely used in industry and biotechnology. Nanoparticle toxicity is compellingly related to oxidative stress and alteration of calcium homeostasis, gene expression, pro-inflammatory responses, and cellular signaling events. The precise physicochemical properties that dictate the toxicity of nanoparticles have yet to be defined, but may include element-specific surface catalytic activity (e.g., metallic, semiconducting properties, nanoparticle uptake, or nanoparticle dissolution. These in vitro studies substantially advance our understanding in mechanisms of toxicity, which may lead to safer design of nanomaterials.

  1. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China

    Directory of Open Access Journals (Sweden)

    Bifeng Hu

    2018-04-01

    Full Text Available Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI and Nemerow integrated pollution index (NIPI were calculated for every surface sample (0–20 cm to assess the degree of heavy metal pollution. Ordinary kriging (OK was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK. The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution.

  2. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China.

    Science.gov (United States)

    Hu, Bifeng; Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan; Shi, Zhou

    2018-04-10

    Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0-20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution.

  3. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China

    Science.gov (United States)

    Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan

    2018-01-01

    Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0–20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution. PMID:29642623

  4. Metal nanoparticles via the atom-economy green approach.

    Science.gov (United States)

    Kalidindi, Suresh Babu; Sanyal, Udishnu; Jagirdar, Balaji R

    2010-05-03

    Metal nanoparticles (NPs) of Cu (air-stable), Ag, and Au have been prepared using an atom-economy green approach. Simple mechanical stirring of solid mixtures (no solvent) of a metal salt and ammonia borane at 60 degrees C resulted in the formation of metal NPs. In this reaction, ammonia borane is transformed into a BNH(x) polymer, which protects the NPs formed and halts their growth. This results in the formation of the BNH(x) polymer protected monodisperse NPs. Thus, ammonia borane used in these reactions plays a dual role (reducing agent and precursor for the stabilizing agent).

  5. Intertidal beach sands as monitors for heavy metal pollution in coastal water bodies

    International Nuclear Information System (INIS)

    Lacerda, L.D. de; Pfeiffer, W.C.; Fiszman, M.

    Intertidal beach sands were investigated for their use as indicators of metal transport in a contaminated water body, Sepetiba Bay, Rio de Janeiro, Brazil, and are proposed as an alternative and rapid screening method to determine metal pollution status of coastal areas. The results showed that, at least for Cu, Cr, Zn and Pb, beach sands can be included in the existing environmental monitoring programs for heavy metal pollution in water bodies. (Author) [pt

  6. New organometallic salts as precursors for the functionalization of carbon nanotubes with metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Nunez, G., E-mail: galonso@cnyn.unam.mx; Garza, L. Morales de la; Rogel-Hernandez, E.; Reynoso, E. [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia (Mexico); Licea-Claverie, A.; Felix-Navarro, R. M. [Instituto Tecnologico de Tijuana, Centro de Graduados e Investigacion (Mexico); Berhault, G. [UMR 5256 CNRS-Universite de Lyon, Institut de Recherches sur la Catalyse et l' Environnement de Lyon (France); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados S. C. (Mexico)

    2011-09-15

    New organometallic salts were synthesized in aqueous solution and were used as precursors for the functionalization of carbon nanotubes (CNT) by metallic nanoparticles. The precursors were obtained by reaction between HAuCl{sub 4}, (NH{sub 4}){sub 2}PtCl{sub 6}, (NH{sub 4}){sub 2}PdCl{sub 6}, or (NH{sub 4}){sub 3}RhCl{sub 6} with cetyltrimethylammonium bromide (CTAB). The as-obtained (CTA){sub n}Me{sub x}Cl{sub y} salts (with Me = Au, Pt, Pd, Rh) were characterized by Fourier-transform infra-red (FTIR) spectroscopy, {sup 1}H nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis. These precursors were then used to synthesize metallic nanoparticles of Au, Pt, Pd, and Rh over multiwalled carbon nanotubes (MWCNT). Characterization by scanning transmission electron microscopy (STEM) and thermogravimetric analysis under air reveals that the CNT-supported catalysts exhibit high loading and good dispersion of the metallic nanoparticles with small average particle sizes. The present preparation procedure therefore allows obtaining high densities of small metallic nanoparticles at the surface of MWCNT.

  7. The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO{sub 2} by radiolytic method

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Marek [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdansk (Poland); Nadolna, Joanna, E-mail: joanna.nadolna@ug.edu.pl [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Department of Environmental Technology, University of Gdansk, 80-308 Gdansk (Poland); Gołąbiewska, Anna [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Mazierski, Paweł [Department of Environmental Technology, University of Gdansk, 80-308 Gdansk (Poland); Klimczuk, Tomasz [Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233 Gdansk (Poland); Remita, Hynd [Laboratoire de Chimie Physique, CNRS-UMR 8000, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); CNRS, Laboratoire de Chimie Physique, UMR 8000, 91405 Orsay (France); Zaleska-Medynska, Adriana [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Department of Environmental Technology, University of Gdansk, 80-308 Gdansk (Poland)

    2016-08-15

    Highlights: • Pd-Pt decorated TiO{sub 2} shows the highest activity under visible light among all. • Concurrent addition of metal precursors results in rise of BNPs size and Vis-activity. • Subsequent addition of metal precursors enhances UV–vis stability of modified TiO{sub 2}. • Superoxide radicals are responsible for pollutants degradation over BNPs-TiO{sub 2}. - Abstract: TiO{sub 2} (P25) was modified with small and relatively monodisperse mono- and bimetallic clusters (Ag, Pd, Pt, Ag/Pd, Ag/Pt and Pd/Pt) induced by radiolysis to improve its photocatalytic activity. The as-prepared samples were characterized by X-ray fluorescence spectrometry (XRF), photoluminescence spectrometry (PL), diffuse reflectance spectroscopy (DRS), X-ray powder diffractometry (XRD), scanning transition electron microscopy (STEM) and BET surface area analysis. The effect of metal type (mono- and bimetallic modification) as well as deposition method (simultaneous or subsequent deposition of two metals) on the photocatalytic activity in toluene removal in gas phase under UV–vis irradiation (light-emitting diodes- LEDs) and phenol degradation in liquid phase under visible light irradiation (λ > 420 nm) were investigated. The highest photoactivity under Vis light was observed for TiO{sub 2} co-loaded with platinum (0.1%) and palladium (0.1%) clusters. Simultaneous addition of metal precursors results in formation of larger metal nanoparticles (15–30 nm) on TiO{sub 2} surface and enhances the Vis-induced activity of Ag/Pd-TiO{sub 2} up to four times, while the subsequent metal ions addition results in formation of metal particle size ranging from 4 to 20 nm. Subsequent addition of metal precursors results in formation of BNPs (bimetallic nanoparticle) composites showing higher stability in four cycles of toluene degradation under UV–vis. Obtained results indicated that direct electron transfer from the BNPs to the conduction band of the semiconductor is responsible for

  8. Development of membrane filters with nanostructured porous layer by coating of metal nanoparticles sintered onto a micro-filter

    International Nuclear Information System (INIS)

    Park, Seok Joo; Park, Young Ok; Lee, Dong Geun; Ryu, Jeong In

    2008-01-01

    The membrane filter adhered with nanostructured porous layer was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto a conventional micron-fibrous metal filter as a substrate filter. The Sintered-Nanoparticle-Agglomerates-coated NanoStructured porous layer Membrane Filter (SNA-NSMF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by adhesion of nanoparticle-agglomerates of dendrite structure sintered onto the micron-fibrous metal filter. The size of nanoparticle-agglomerates of dendrite structure decreased with increasing the sintering temperature because nanoparticle-agglomerates shrank. When shrinking nanoparticle-agglomerates were deposited and treated with heat onto the conventional micron-fibrous metal filter, pore size of nanostructured porous layer decreased. Therefore, pressure drops of SNA-NSMFs increased from 0.3 to 0.516 KPa and filtration efficiencies remarkably increased from 95.612 to 99.9993%

  9. Heavy Metals and Organic Pollutants in Sediments of Dar es ...

    African Journals Online (AJOL)

    The Florida criteria (MacDonald 1993) for assessment of pollution of tropical marine sediments was adopted in oredr to evaluate the extent of pollution in Dar es Salaam harbour sediments. The Florida criteria is one of the established references for sediment quality assessment. Heavy metals that had concentrations above ...

  10. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta

    International Nuclear Information System (INIS)

    Dong, Chenyin; Zhang, Weiguo; Ma, Honglei; Feng, Huan; Lu, Honghua; Dong, Yan; Yu, Lizhong

    2014-01-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36′ E, 31°00′ N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of 137 Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr −1 for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χ ARM ) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140–236 cm). Co-variation between magnetic properties (χ, SIRM and χ ARM ) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings. - Highlights: • Magnetic parameters can be used as heavy metal pollution proxy. • Heavy metal contents in the Yangtze River estuary increase since the 1960s. • Heavy metal pollution is largely driven by population growth in the catchment

  11. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chenyin [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Zhang, Weiguo, E-mail: wgzhang@sklec.ecnu.edu.cn [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Ma, Honglei [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Feng, Huan [Department of Earth and Environmental Studies, Montclair State University, NJ 07043 (United States); Lu, Honghua [Department of Geography, College of Resources and Environmental Science, East China Normal University, Shanghai 200241 (China); Dong, Yan [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China); Institute of Geographic Engineering Technology, School of Geographical Science, Nantong University, Nantong 226007 (China); Yu, Lizhong [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062 (China)

    2014-04-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36′ E, 31°00′ N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of {sup 137}Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr{sup −1} for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χ{sub ARM}) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140–236 cm). Co-variation between magnetic properties (χ, SIRM and χ{sub ARM}) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings. - Highlights: • Magnetic parameters can be used as heavy metal pollution proxy. • Heavy metal contents in the Yangtze River estuary increase since the 1960s. • Heavy metal pollution is largely driven by population growth in the catchment.

  12. Mesomorphic glass nanocomposites made of metal alkanoates and nanoparticles as emerging nonlinear-optical materials

    Science.gov (United States)

    Garbovskiy, Y.; Klimusheva, G.; Mirnaya, T.

    2016-09-01

    Mesomorphic metal alkanoates is very promising yet overlooked class of nonlinear-optical materials. Metal alkanoates can exhibit a broad variety of condensed states of matter including solid crystals, plastic crystals, lyotropic and thermotropic ionic liquid crystals, liquids, mesomorphic glasses, and Langmuir-Blodgett films. Glass-forming properties of metal alkanoates combined with their use as nano-reactors and anisotropic host open up simple and efficient way to design various photonic nanomaterials. Despite very interesting physics, the experimental data on optical and nonlinearoptical properties of such materials are scarce. The goal of the present paper is to fill the gap by discussing recent advances in the field of photonic materials made of metal alkanoates, organic dyes, and nanoparticles. Optical and nonlinear-optical properties of the following materials are reviewed: (i) mesomorphic glass doped with organic dyes; (ii) smectic glass composed of cobalt alkanoates; (iii) semiconductor nanoparticles embedded in a glassy host; (iv) metal nanoparticles - glass (the cobalt octanoate) nanocomposites.

  13. Effect of metal oxide nanoparticles on Godavari river water treatment

    Science.gov (United States)

    Goud, Ravi Kumar; Ajay Kumar, V.; Reddy, T. Rakesh; Vinod, B.; Shravani, S.

    2018-05-01

    Nowadays there is a continuously increasing worldwide concern for the development of water treatment technologies. In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Nanomaterials reveal good results than other techniques used in water treatment because of its high surface area to volume ratio. In the present work, iron oxide and copper oxide nanoparticles were synthesized by simple heating method. The synthesized nanoparticles were used to purify Godavari river water. The effect of nanoparticles at 70°C temperature, 12 centimeter of sand bed height and pH of 8 shows good results as compared to simple sand bed filter. The attained values of BOD5, COD and Turbidity were in permissible limit of world health organization.

  14. Pollution load index for heavy metals in Mian-Ab plain soil, Khuzestan, Iran.

    Science.gov (United States)

    Jorfi, Sahand; Maleki, Rohangiz; Jaafarzadeh, Neemat; Ahmadi, Mehdi

    2017-12-01

    Soil pollution by heavy metals is a major concern in agricultural area. Potential impact of heavy metals in agricultural soil on human health by accumulating in food chain demonstrated elsewhere. In this regard Mian-Ab plain as a major agricultural site of Khuzestan province considered for Arsenic, cadmium and lead concentration as the main potential toxic pollutants in soil. 50 topsoil samples were collected and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Also Contamination level of selected heavy metals in Mian-Ab Plain, was assessed by single factor contaminant index (PI) and pollution load index (PLI). Results show mean concentration of arsenic, cadmium and lead were 2.52, 0.30 and 7.21 mg kg -1 . Base on PLI results 12 point (24%) of the studied area show moderately polluted and 38 point (76%) show unpolluted area.

  15. Soil quality changes in response to their pollution by heavy metals, Georgia.

    Science.gov (United States)

    Matchavariani, Lia; Kalandadze, Besik; Lagidze, Lamzira; Gokhelashvili, Nino; Sulkhanishvili, Nino; Paichadze, Nino; Dvalashvili, Giorgi

    2015-01-01

    The present study deals with the composition, migration and accumulation of heavy metals in irrigated soils, plants and partially natural waters; and also, establishing the possible sources of pollution and their impact on environmental situation. The content of toxic elements in the irrigated soils adjacent to ore mining and processing enterprise were studied. Content of toxic elements in the irrigated soils adjacent to ore mining, showed that more than half of territory was seriously polluted by copper and zinc. Some part of the area were considered catastrophically polluted. Expressed technogenesis taking place influenced irrigation. Heavy metals like copper, zinc and manganese negative by effected the properties of soil, thus composition and soil-forming processes taking place in the soil. It was especially well represented in the deterioration of hydro-physical potential of the soil. Irrigation of agricultural land plots by water, polluted with heavy metals changed the pH. Balanced correlation among solid, liquid and gas phases was disrupted. In highly polluted soil, the cementing processes took place that sharply increased the bulk density of the soil, deteriorated the porosity of soil and reduced water permeability critically.

  16. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Pasupuleti Visweswara Rao

    2016-01-01

    Full Text Available Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities.

  17. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying; Das, Shyamal K.; Moganty, Surya S.; Archer, Lynden A.

    2012-01-01

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes

  18. Research on heavy metal pollution of river Ganga: A review

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2017-06-01

    Full Text Available River Ganga is considered sacred by people of India for providing life sustenance to environment and ecology. Anthropogenic activities have generated important transformations in aquatic environments during the last few decades. Advancement of human civilization has put serious questions to the safe use of river water for drinking and other purposes. The river water pollution due to heavy metals is one of the major concerns in most of the metropolitan cities of developing countries. These toxic heavy metals entering the environment may lead to bioaccumulation and biomagnifications. These heavy metals are not readily degradable in nature and accumulate in the animal as well as human bodies to a very high toxic amount leading to undesirable effects beyond a certain limit. Heavy metals in riverine environment represent an abiding threat to human health. Exposure to heavy metals has been linked to developmental retardation, kidney damage, various cancers, and even death in instances of very high exposure. The following review article presents the findings of the work carried out by the various researchers in the past on the heavy metal pollution of river Ganga.

  19. Workplace exposure to nanoparticles from gas metal arc welding process

    International Nuclear Information System (INIS)

    Zhang, Meibian; Jian, Le; Bin, Pingfan; Xing, Mingluan; Lou, Jianlin; Cong, Liming; Zou, Hua

    2013-01-01

    Workplace exposure to nanoparticles from gas metal arc welding (GMAW) process in an automobile manufacturing factory was investigated using a combination of multiple metrics and a comparison with background particles. The number concentration (NC), lung-deposited surface area concentration (SAC), estimated SAC and mass concentration (MC) of nanoparticles produced from the GMAW process were significantly higher than those of background particles before welding (P < 0.01). A bimodal size distribution by mass for welding particles with two peak values (i.e., 10,000–18,000 and 560–320 nm) and a unimodal size distribution by number with 190.7-nm mode size or 154.9-nm geometric size were observed. Nanoparticles by number comprised 60.7 % of particles, whereas nanoparticles by mass only accounted for 18.2 % of the total particles. The morphology of welding particles was dominated by the formation of chain-like agglomerates of primary particles. The metal composition of these welding particles consisted primarily of Fe, Mn, and Zn. The size distribution, morphology, and elemental compositions of welding particles were significantly different from background particles. Working activities, sampling distances from the source, air velocity, engineering control measures, and background particles in working places had significant influences on concentrations of airborne nanoparticle. In addition, SAC showed a high correlation with NC and a relatively low correlation with MC. These findings indicate that the GMAW process is able to generate significant levels of nanoparticles. It is recommended that a combination of multiple metrics is measured as part of a well-designed sampling strategy for airborne nanoparticles. Key exposure factors, such as particle agglomeration/aggregation, background particles, working activities, temporal and spatial distributions of the particles, air velocity, engineering control measures, should be investigated when measuring workplace

  20. Workplace exposure to nanoparticles from gas metal arc welding process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Meibian [Zhejiang Provincial Center for Disease Control and Prevention (China); Jian, Le [Curtin University of Technology, School of Public Health, Curtin Health Innovation Research Institute (Australia); Bin, Pingfan [Wujin District Center for Disease Control and Prevention (China); Xing, Mingluan [Zhejiang Provincial Center for Disease Control and Prevention (China); Lou, Jianlin [Zhejiang Academy of Medical Sciences (China); Cong, Liming; Zou, Hua, E-mail: hzou@cdc.zj.cn [Zhejiang Provincial Center for Disease Control and Prevention (China)

    2013-11-15

    Workplace exposure to nanoparticles from gas metal arc welding (GMAW) process in an automobile manufacturing factory was investigated using a combination of multiple metrics and a comparison with background particles. The number concentration (NC), lung-deposited surface area concentration (SAC), estimated SAC and mass concentration (MC) of nanoparticles produced from the GMAW process were significantly higher than those of background particles before welding (P < 0.01). A bimodal size distribution by mass for welding particles with two peak values (i.e., 10,000–18,000 and 560–320 nm) and a unimodal size distribution by number with 190.7-nm mode size or 154.9-nm geometric size were observed. Nanoparticles by number comprised 60.7 % of particles, whereas nanoparticles by mass only accounted for 18.2 % of the total particles. The morphology of welding particles was dominated by the formation of chain-like agglomerates of primary particles. The metal composition of these welding particles consisted primarily of Fe, Mn, and Zn. The size distribution, morphology, and elemental compositions of welding particles were significantly different from background particles. Working activities, sampling distances from the source, air velocity, engineering control measures, and background particles in working places had significant influences on concentrations of airborne nanoparticle. In addition, SAC showed a high correlation with NC and a relatively low correlation with MC. These findings indicate that the GMAW process is able to generate significant levels of nanoparticles. It is recommended that a combination of multiple metrics is measured as part of a well-designed sampling strategy for airborne nanoparticles. Key exposure factors, such as particle agglomeration/aggregation, background particles, working activities, temporal and spatial distributions of the particles, air velocity, engineering control measures, should be investigated when measuring workplace

  1. Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest.

    Science.gov (United States)

    Rousk, Johannes; Rousk, Kathrin

    2018-05-07

    Heavy metals are some of the most persistent and potent anthropogenic environmental contaminants. Although heavy metals may compromise microbial communities and soil fertility, it is challenging to causally link microbial responses to heavy metals due to various confounding factors, including correlated soil physicochemistry or nutrient availability. A solution is to investigate whether tolerance to the pollutant has been induced, called Pollution Induced Community Tolerance (PICT). In this study, we investigated soil microbial responses to a century-old gradient of metal ore pollution in an otherwise pristine subarctic birch forest generated by a railway source of iron ore transportation. To do this, we determined microbial biomass, growth, and respiration rates, and bacterial tolerance to Zn and Cu in replicated distance transects (1 m-4 km) perpendicular to the railway. Microbial biomass, growth and respiration rates were stable across the pollution gradient. The microbial community structure could be distinguished between sampled distances, but most of the variation was explained by soil pH differences, and it did not align with distance from the railroad pollution source. Bacterial tolerance to Zn and Cu started from background levels at 4 km distance from the pollution source, and remained at background levels for Cu throughout the gradient. Yet, bacterial tolerance to Zn increased 10-fold 100 m from the railway source. Our results show that the microbial community structure, size and performance remained unaffected by the metal ore exposure, suggesting no impact on ecosystem functioning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Heavy metal pollution in Akita prefecture (mainly in the Kosaka township)

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, K.

    1973-01-01

    In June 1972, the adult fanconi syndromes were found among the residents of the Hosokoshi area, Kosaka-cho, Akita prefecture. The syndromes were attributed to cadmium and other heavy metal pollution of the environment through both water and air. The mine waste and dressing waste exposed in the mine area percolate into the water system, assisted by the rain runoff. Refinery stacks of the Kosaka mine have caused air pollution in the community for over 70 years. The smoke contains sulfur dioxide, copper, zinc, lead, cadmium, and arsenic, and pollutes the soil of irrigated fields and uncultivated land. Plotting of polluted areas on a map forms an ellipse around the stacks of the refinery. The plants grown in this soil are polluted by heavy metals. Itai-itai disease comes from an overdose of Cd which develops first into the urine capillary damages known as adult Fanconi syndrome, and progresses to osteomalacia (itai-itai). A high rate of kidney damage, high Cd content in the urine, and some Fanconi symptoms were found among the residents near the refinery, and between 1972 and 1973, some more protein urine and kidney disorders have been found among the residents of three more nearby communities. These heavy metal damages of the human body do not accompany subjective symptoms, and the damage is done when subjective symptoms begin to appear.

  3. Phytoremediation of the environment polluted by heavy metals: how metal-accumulating plants can help us?

    International Nuclear Information System (INIS)

    Jovanovic, Lj.; Markovic, M.; Cupac, M. S.; Janjic, V.; Santric, Lj.; Saric, M.; Cokesa, Dj.; Andric, V.

    2002-01-01

    The paper discusses a new method of cleaning up soils polluted by heavy metals and radio nuclides and other wastes using plants. The method, known as phytoremediation, has proved to be effective in many aspects in cleaning up heavy metals from soil. Besides, it is cost-effective and environmentally-friendly. Most wild plants that can be used for phytoremediation due to their high ability to absorb different pollutants have low total biomass calculated per hectare and year. However, crop plants, even those with lower ability to absorb pollutants, have high biomass per hectare and year and are therefore very promising candidates for future use as phytoremediators. To prove that, we present here the results of investigation of crops and wild plants done in Serbia's former uranium mine Kalna. In laboratory conditions, experiments on sunflower roots and whole plants showed a high potential of uranium absorption. (author)

  4. Heavy metal pollution in marine mollusks from the coastal waters of ...

    African Journals Online (AJOL)

    Studies of heavy metals in four marine mollusks, Thais haemastoma, T. nodosa, Nerita senegalensis and P. perna, have been conducted. This involved the assessment of levels of heavy metal pollution from point sources in the Korle lagoon and the determination of the extent to which these metals are transported by ...

  5. Trentepohlia algae biofilms as bioindicator of atmospheric metal pollution.

    Science.gov (United States)

    García-Florentino, Cristina; Maguregui, Maite; Morillas, Héctor; Marcaida, Iker; Salcedo, Isabel; Madariaga, Juan Manuel

    2018-06-01

    In this work, a reddish biocolonization composed mainly by Trentepohlia algae affecting a synthetic building material from a modern building from the 90s located in the Bizkaia Science and Technology Park (Zamudio, North of Spain) was characterized and its ability to accumulate metals coming from the surrounding atmosphere was evaluated. To asses if these biofilms can act as bioindicators of the surrounding metal pollution, a fast non-invasive in situ methodology based on the use of hand-held energy dispersive X-ray fluorescence (HH-ED-XRF) was used. In order to corroborate the in situ obtained conclusions, some fragments from the affected material were taken to analyze the metal distribution by means of micro-energy dispersive X-ray fluorescence spectroscopy (μ-ED-XRF) and to confirm the presence of metal particles deposited on it using Scanning Electron Microscopy coupled to an Energy Dispersive Spectrometer (SEM-EDS). In order to confirm if Trentepohlia algae biofilms growing on the surface of building materials could be a fast way to in situ provide information about the surrounding metal pollution, a second Trentepohlia algae biofilm growing on a different kind of material (sandstone) was analyzed from an older historical building, La Galea Fortress (Getxo, North of Spain). Copyright © 2018. Published by Elsevier B.V.

  6. Heavy metal pollution of agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S.C.

    1975-01-01

    Inputs of heavy metals to soils have increased recently and there is much concern that they may be toxic at various stages along the food chain and ultimately to man. Cobalt, copper, iron, manganese, molybdenum, zinc, chromium, nickel, cadmium and lead move from geochemical sources to plants and then to animals and man; they then are returned in various forms to soil to complete the cycle. The ways in which heavy metals may be added to soils are reviewed. They include: aerial inputs by air pollution, fertilizers, pesticides, farm slurries and sewage sludge. Possibly the source of contamination which is to have the most impact on soils used for the production of crops is sewage sludge. The fate of heavy metal added to soils is discussed in relation to form, mobility, uptake by plants, effect of soil conditions on availability to plants, and toxicity to animals. 56 references.

  7. Influence of metal nanoparticle decorated CNTs on polyurethane based electro active shape memory nanocomposite actuators

    International Nuclear Information System (INIS)

    Raja, Mohan; Shanmugharaj, A.M.; Ryu, Sung Hun; Subha, J.

    2011-01-01

    Highlights: → Polyurethane based on pristine and metal (Ag and Cu) nanoparticle decorated CNTs nanocomposites are prepared through melt blending process. → The electrical, mechanical, dynamic mechanical, thermal conductivity and electro active shape memory properties of the PU nanocomposites were investigated. → The influence of metal nanoparticle decorated CNTs showed significant improvement in their all properties to compare to pristine CNTs. → Electro active shape memory studies of the PU/M-CNTs nanocomposites reveal extraordinary recoverability of its shape at lower applied dc voltages. - Abstract: Polymer nanocomposites based on thermoplastic polyurethane (PU) elastomer and metal nanoparticle (Ag and Cu) decorated multiwall carbon nanotubes (M-CNTs) were prepared through melt mixing process and investigated for its mechanical, dynamic mechanical and electro active shape memory properties. Structural characterization and morphological characterization of the PU nanocomposites were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Morphological characterization revealed better dispersion of M-CNTs in the polyurethane, which is attributed to the improved interaction between the M-CNTs and polyurethane. Loading of the metal nanoparticle coated carbon nanotubes resulted in the significant improvement on the mechanical properties such as tensile strength of the PU composites in comparison to the pristine carbon nanotubes (P-CNTs). Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the polyurethane increases slightly with increasing loading of both pristine and metal nanoparticle functionalized carbon nanotubes. The metal nanoparticles decorated carbon nanotubes also showed significant improvement in the thermal and electrical conductivity of the PU/M-CNTs nanocomposites. Shape memory studies of the PU/M-CNTs nanocomposites exhibit remarkable recoverability of its shape at lower applied dc voltages.

  8. Influence of nanoparticle–graphene separation on the localized surface plasmon resonances of metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Masoudian Saadabad, Reza, E-mail: masoudian-reza@yahoo.com, E-mail: rms@mail.usb.ac.ir; Aporvari, Ahmad Shafiei [University of Sistan and Baluchestan, Department of Physics (Iran, Islamic Republic of); Shirdel-Havar, Amir Hushang [Golestan University, Department of Physics (Iran, Islamic Republic of); Havar, Majid Shirdel [University of Kashan, Department of Physics (Iran, Islamic Republic of)

    2016-01-15

    We develop a theory to model the interaction of graphene substrate with localized plasmon resonances in metallic nanoparticles. The influence of a graphene substrate on the surface plasmon resonances is described using an effective background permittivity that is derived from a pseudoparticle concept using the electrostatic method. For this purpose, the interaction of metal nanoparticle with graphene sheet is studied to obtain the optical spectrum of gold nanoparticles deposited on a graphene substrate. Then, we introduce a factor based on dipole approximation to predict the influence of the separation of nanoparticles and graphene on the spectral position of the localized plasmon resonance of the nanoparticles. We applied the theory for a 4-nm-radius gold nanosphere placed near 1.5 nm graphene layer. It is shown that a blue shift is emerged in the position of plasmon resonance when the nanoparticle moves away from graphene.

  9. Size-controlled synthesis of transition metal nanoparticles through chemical and photo-chemical routes

    Science.gov (United States)

    Tangeysh, Behzad

    The central objective of this work is developing convenient general procedures for controlling the formation and stabilization of nanoscale transition metal particles. Contemporary interest in developing alternative synthetic approaches for producing nanoparticles arises in large part from expanding applications of the nanomaterials in areas such as catalysis, electronics and medicine. This research focuses on advancing the existing nanoparticle synthetic routes by using a new class of polymer colloid materials as a chemical approach, and the laser irradiation of metal salt solution as a photo-chemical method to attain size and shape selectivity. Controlled synthesis of small metal nanoparticles with sizes ranging from 1 to 5nm is still a continuing challenge in nanomaterial synthesis. This research utilizes a new class of polymer colloid materials as nano-reactors and protective agents for controlling the formation of small transition metal nanoparticles. The polymer colloid particles were formed from cross-linking of dinegatively charged metal precursors with partially protonated poly dimethylaminoethylmethacrylate (PDMAEMA). Incorporation of [PtCl6]2- species into the colloidal particles prior to the chemical reduction was effectively employed as a new strategy for synthesis of unusually small platinum nanoparticles with narrow size distributions (1.12 +/-0.25nm). To explore the generality of this approach, in a series of proof-of-concept studies, this method was successfully employed for the synthesis of small palladium (1.4 +/-0.2nm) and copper nanoparticles (1.5 +/-0.6nm). The polymer colloid materials developed in this research are pH responsive, and are designed to self-assemble and/or disassemble by varying the levels of protonation of the polymer chains. This unique feature was used to tune the size of palladium nanoparticles in a small range from 1nm to 5nm. The procedure presented in this work is a new convenient room temperature route for synthesis of

  10. Estimation of metal pollutant loads from Nuclear and Energy Research Institute (Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Joyce R.; Monteiro, Lucilena R.; Soares, Sabrina M.V.; Stellato, Thamiris B.; Silva, Tatiane B.S.C.; Silva, Douglas B. da; Faustino, Mainara G.; Pires, Maria A.F.; Cotrim, Marycel E.B., E-mail: joyce.marques@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    According to National Environmental Council's (CONAMA) Resolution 357/05, pollutant load can be defined as the amount of a particular pollutant released in receiving water body; it is commonly expressed in a mass-time ratio. As specified in CONAMA's Resolution 430/11, the responsible for the pollutant source must present the Pollutant Load Declaration to environmental authorities. However, pollutant load knowledge is also important to the water quality maintenance and its environmental rating that must be kept to meet the requirements of the most restrictive use. In the control of metals releases is also important due public health matters, since they can cause harmful environmental contamination and major public health issues. Therefore this work aims to present the estimated metal pollutant load released by Nuclear and Energy Research Institute (IPEN/CNEN - Brazil), between 2013 and 2014. Results of cadmium, lead, copper, chromium, zinc, nickel, manganese, iron, barium, silver, boron and tin in composite samples (weekly) via Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and bromide (Br-) released as a tracer, to measure the wastewater flow were used to estimate IPEN's Metal Pollutant load. This study is part of the environmental assessment Program at IPEN, instituted since 2006 to the attendance of the current environmental legislation (CONAMA's Resolution 430/11, Article 19-A of State Decree 8.468/76 and State Decree 15.425/80). (author)

  11. Investigation of cadmium pollution in the spruce saplings near the metal production factory.

    Science.gov (United States)

    Hashemi, Seyed Armin; Farajpour, Ghasem

    2016-02-01

    Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots, and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stems, and roots of the trees planted inside the factory environment were estimated at 1.1, 1.5, and 2.5 mg/kg, respectively, and this indicated a significant difference with the observer region (p metal production factory was estimated at 6.8 mg/kg in the depth of 0-10 cm beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 and 14.5 cm in the observer region which had a significant difference with the observer region (p production processes in the factory. © The Author(s) 2013.

  12. Assessment of metals pollution in some herbs from Kano metropolis ...

    African Journals Online (AJOL)

    Assessment of metals pollution in some herbs from Kano metropolis. M.I. Mohammed, Y Inuwa. Abstract. No Abstract. Keywords: Herbs, metals, Kano, Nigeria. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE ...

  13. Metallic nickel nanoparticles and their effect on the embryonic development of the sea urchin Paracentrotus lividus

    International Nuclear Information System (INIS)

    Kanold, Julia Maxi; Wang, Jiabin; Brümmer, Franz; Šiller, Lidija

    2016-01-01

    The presence of nanoparticles in many industrial applications and daily products is making it nowadays crucial to assess their impact when exposed to the environment. Metallic nickel nanoparticles (Ni NPs) are of high industrial interest due to their ability to catalyze the reversible hydration of CO_2 to carbonic acid at ambient conditions. We characterized metallic Ni NPs by XRD, HRTEM and EDS and determined the solubility of free nickel ions from 3 mg/L metallic Ni NPs in seawater by ICP-MS over 96 h, which was below 3%. Further, embryonic development of the sea urchin Paracentrotus lividus was investigated for 48 h in the presence of metallic Ni NPs (0.03 mg/L to 3 mg/L), but no lethal effects were observed. However, 3 mg/L metallic Ni NPs caused a size reduction similar to 1.2 mg/L NiCl_2*6 H_2O. The obtained results contribute to current studies on metallic Ni NPs and point to their consequences for the marine ecosystem. - Highlights: • Low solubility of nickel ions from metallic nickel nanoparticles in seawater. • No lethality of sea urchin embryos up to 3 mg/L metallic nickel nanoparticles. • Considerable size reduction after 48 h was comparable to the reduction for 1.2 mg/L nickel salt. • Contributes to the overall understanding of metallic Ni NPs in the marine environment. - Metallic nickel nanoparticles display weak dissolution rates in seawater, but higher concentrations resulted in similar effects on sea urchin embryonic development as nickel salt.

  14. Therapeutic Potential of Biologically Reduced Silver Nanoparticles from Actinomycete Cultures

    International Nuclear Information System (INIS)

    Sukanya, M.K.; Saju, K.A.; Praseetha, P.K.; Sakthivel, G.

    2013-01-01

    Silver nanoparticles are applied in nanomedicine from time immemorial and are still used as powerful antibiotic and anti-inflammatory agents. Antibiotics produced by actinomycetes are popular in almost all the therapeutic measures, and this study has proven that these microbes are also helpful in the biosynthesis of silver nanoparticles with good surface and size characteristics. Silver can be synthesized by various chemical methodologies, and most of them have turned to be toxic. This study has been successful in isolating the microbes from polluted environment, and subjecting them to the reduction of silver nanoparticles, characterizing the nanoparticles by UV spectrophotometry and transmission electron microscopy. The nanoparticles produced were tested for their antimicrobial property, and the zone of inhibition was greater than those produced by their chemically synthesized counterparts. Actinomycetes, helpful in bioremediating heavy metals, are useful for the production of metallic nanoparticles. The biosynthesized silver nanoparticles loaded with antibiotics prove to be better in killing the pathogens and have opened up new areas for developing nanobiotechnological research based on microbial applications.

  15. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    Science.gov (United States)

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  16. Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles.

    Science.gov (United States)

    Mondin, Giovanni; Wisser, Florian M; Leifert, Annika; Mohamed-Noriega, Nasser; Grothe, Julia; Dörfler, Susanne; Kaskel, Stefan

    2013-12-01

    A novel approach for the fabrication of metal coated micro- and nanoparticles by functionalization with a thin polydopamine layer followed by electroless plating is reported. The particles are initially coated with polydopamine via self-polymerization. The resulting polydopamine coated particles have a surface rich in catechols and amino groups, resulting in a high affinity toward metal ions. Thus, they provide an effective platform for selective electroless metal deposition without further activation and sensitization steps. The combination of a polydopamine-based functionalization with electroless plating ensures a simple, scalable, and cost-effective metal coating strategy. Silver-plated tungsten carbide microparticles, copper-plated tungsten carbide microparticles, and copper-plated alumina nanoparticles were successfully fabricated, showing also the high versatility of the method, since the polymerization of dopamine leads to the formation of an adherent polydopamine layer on the surface of particles of any material and size. The metal coated particles produced with this process are particularly well suited for the production of metal matrix composites, since the metal coating increases the wettability of the particles by the metal, promoting their integration within the matrix. Such composite materials are used in a variety of applications including electrical contacts, components for the automotive industries, magnets, and electromagnetic interference shielding. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Heavy Metal Pollution Evolution in Sediments from Urdaibai Bay (Spain)

    International Nuclear Information System (INIS)

    Soto, J.; Soto, J.A.; Corral, D.; Gelen, A.; Diaz, O.; Navas, A.

    2003-01-01

    Full Text: The Urdaibai bay is a biosphere reservoir located in the north of Spain. The mayor components of bay sediments come from marls and clays eroded which are deposited together with metallic pollutants present in water, air and rain. For this reason it is possible to study the temporal evolution of the bay pollution by measuring the heavy metal concentrations in the sediments and considering the correspondence with its age. To this aim, sediments cores were taken in two different points of the Urdaibai bay. The cores were cut into 1 cm thick horizontal sections. Sediment dating was performed using a low background gamma spectrometry with GeHP to determine Cs-137, Ra-226 and Pb-210 activities and applying the CIC and CRS models. The heavy metal concentrations in sediments were determined by ICP-MS. The obtained results in one of the studied positions show an increment of the Pb, Zn, Ni, Cu and Cr concentrations in the first 10 cm of the sediment core. This fact can be related to an increase of the bay pollution in the last 100 years. In the second studied core the heavy metal concentrations are constant in depth or lower in the superficial layers. This could be due to an increment the deposition rate of eroded material

  18. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China.

    Science.gov (United States)

    Wu, Qihang; Tam, Nora F Y; Leung, Jonathan Y S; Zhou, Xizhen; Fu, Jie; Yao, Bo; Huang, Xuexia; Xia, Lihua

    2014-06-01

    Owing to the Industrial Revolution in the late 1970s, heavy metal pollution has been regarded as a serious threat to mangrove ecosystems in the region of the Pearl River Estuary, potentially affecting human health. The present study attempted to characterize the ecological risk of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in Nansha mangrove, South China, by estimating their concentrations in the surface sediment. In addition, the pollution history of heavy metals was examined by determining the concentrations of heavy metals along the depth gradient. The phytoremediation potential of heavy metals by the dominant plants in Nansha mangrove, namely Sonneratia apetala and Cyperus malaccensis, was also studied. Results found that the surface sediment was severely contaminated with heavy metals, probably due to the discharge of industrial sewage into the Pearl River Estuary. Spatial variation of heavy metals was generally unobvious. The ecological risk of heavy metals was very high, largely due to Cd contamination. All heavy metals, except Mn, decreased with depth, indicating that heavy metal pollution has been deteriorating since 1979. Worse still, the dominant plants in Nansha mangrove had limited capability to remove the heavy metals from sediment. Therefore, we propose that immediate actions, such as regulation of discharge standards of industrial sewage, should be taken by the authorities concerned to mitigate the ecological risk posed by heavy metals. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Heavy metal pollution and forest health in the Ukrainian Carpathians

    International Nuclear Information System (INIS)

    Shparyk, Y.S.; Parpan, V.I.

    2004-01-01

    The Ukrainian Carpathians are characterized by high air pollution caused by emissions from numerous industries. We have been monitoring the state of forests in this region since 1989. The highest levels of tree defoliation (>30%) are found close to industrial emission sources and in the upper mountain forests of the Ivano-Frankivsk and Chernivtsi regions. This is caused by a combination of strong anthropogenic influences (pollution, illegal uses, recreation) as well as poor site and climatic conditions. In the Ivano-Frankivsk region, Cd and Mo accumulate in forest soils; Cr, Mo and Zn soil concentrations are higher than their limit levels; and Pb concentrations exceed toxic levels close to industrial areas (10% of the region territory). Local background levels of heavy metals are greatly exceeded in snow close to industrial regions. Analysis of correlation matrices shows that the chemical elements Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn occur at pollution levels in natural ecosystems in the Ukrainian Carpathians. Maximum concentrations of toxic elements occur in the oak forest zone; the most industrially developed area of the region. Toxic heavy metals in the Ukrainian Carpathians forests enter with precipitation and dustfall, then become fixed in soil and accumulate in leaves, needles of vascular plants and mosses. Concentrations of these metals decrease with altitude: highest in the oak forests, less in beech, and lowest in the spruce forest zones. However, some chemical elements have the highest concentrations in spruce forests; V in needles, As in snow, and Ba and Al in soils. - Local industrial emissions of heavy metal pollution and the condition of Ukrainian Carpathians forests are examined

  20. Synthesis, structural and optical properties of PVP coated transition metal doped ZnS nanoparticles

    Science.gov (United States)

    Desai, N. V.; Shaikh, I. A.; Rawal, K. G.; Shah, D. V.

    2018-05-01

    The room temperature photoluminescence (PL) of transition metal doped ZnS nanoparticles is investigated in the present study. The PVP coated ZnS nanoparticles doped with transition metals are synthesized by facile wet chemical co-precipitation method with the concentration of impurity 1%. The UV-Vis absorbance spectra have a peak at 324nm which shifts slightly to 321nm upon introduction of the impurity. The incorporation of the transition metal as dopant is confirmed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The particle size and the morphology are characterized by scanning electron microscopy (SEM), XRD and UV-Vis spectroscopy. The average size of synthesized nanoparticles is about 2.6nm. The room temperature photoluminescence (PL) of undoped and doped ZnS nanoparticles show a strong and sharp peak at 782nm and 781.6nm respectively. The intensity of the PL changes with the type of doping having maximum for manganese (Mn).

  1. Biosynthesis of Metal Nanoparticles: Novel Efficient Heterogeneous Nanocatalysts

    Science.gov (United States)

    Palomo, Jose M.; Filice, Marco

    2016-01-01

    This review compiles the most recent advances described in literature on the preparation of noble metal nanoparticles induced by biological entities. The use of different free or substituted carbohydrates, peptides, proteins, microorganisms or plants have been successfully applied as a new green concept in the development of innovative strategies to prepare these nanoparticles as different nanostructures with different forms and sizes. As a second part of this review, the application of their synthetic ability as new heterogonous catalysts has been described in C–C bond-forming reactions (as Suzuki, Heck, cycloaddition or multicomponent), oxidations and dynamic kinetic resolutions. PMID:28335213

  2. Taiwan's industrial heavy metal pollution threatens terrestrial biota

    International Nuclear Information System (INIS)

    Hsu, M.J.; Selvaraj, K.; Agoramoorthy, G.

    2006-01-01

    The bioconcentration levels of essential (Cu, Fe, Mg, Mn, and Zn) and non-essential (As, Cd, Hg, Pb, and Sn) elements have been investigated in different terrestrial biota such as fungi, plant, earthworm, snail, crab, insect, amphibian, lizard, snake, and bat including the associated soil, to investigate the ecosystem health status in Kenting National Park, Taiwan. High bioconcentrations of Cd, Hg, and Sn in snail, earthworm, crab, lizard, snake, and bat indicated a contaminated terrestrial ecosystem. High concentrations of Cd, Hg, and Sn in plant species, effective bioaccumulation of Cd by earthworm, snail, crab and bat, as well as very high levels of Hg found in invertebrates, amphibians, and reptiles revealed a strong influence from industrial pollution on the biotic community. This study for the first time presents data on the impact of heavy metal pollution on various terrestrial organisms in Taiwan. - Metal effects occur at any terrestrial levels in Taiwan

  3. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    Science.gov (United States)

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  4. Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, Grazyna [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Babczynska, Agnieszka [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Augustyniak, Maria [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Migula, Pawel [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland)]. E-mail: migula@us.edu.pl

    2004-12-01

    We studied the relations between glutathione-dependent detoxifying enzymes and heavy metal burdens in the web-building spider Agelena labyrinthica (Agelenidae) and the wolf spider Pardosa lugubris (Lycosidae) from five meadow sites along a heavy metal pollution gradient. We assayed the activity of glutathione-S-transferase (GST) and glutathione peroxidases (GPOX, GSTPx), and glutathione (GSH) levels in both sexes. Except for GSH vs Pb content, we found significant correlations between GPOX and GSTPx activity and metal concentrations in females of A. labyrinthica. The highest activity of these enzymes measured in the web-building spiders was found in the individuals from the most polluted sites. In P. lugubris males significant correlations were found between GST and Pb and Zn concentrations, and between GPOX and GSTPx and the concentration of Cu. GST activity was higher in males collected from less polluted areas. Thus, detoxifying strategies against pollutants seemed to be sex-dependent. Actively hunting spiders had higher metal concentrations, maintaining lower activity of detoxifying enzymes and a lower glutathione level. - Capsule: Glutathione-linked enzyme activity in spiders from polluted areas depends on hunting strategy and sex.

  5. Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient

    International Nuclear Information System (INIS)

    Wilczek, Grazyna; Babczynska, Agnieszka; Augustyniak, Maria; Migula, Pawel

    2004-01-01

    We studied the relations between glutathione-dependent detoxifying enzymes and heavy metal burdens in the web-building spider Agelena labyrinthica (Agelenidae) and the wolf spider Pardosa lugubris (Lycosidae) from five meadow sites along a heavy metal pollution gradient. We assayed the activity of glutathione-S-transferase (GST) and glutathione peroxidases (GPOX, GSTPx), and glutathione (GSH) levels in both sexes. Except for GSH vs Pb content, we found significant correlations between GPOX and GSTPx activity and metal concentrations in females of A. labyrinthica. The highest activity of these enzymes measured in the web-building spiders was found in the individuals from the most polluted sites. In P. lugubris males significant correlations were found between GST and Pb and Zn concentrations, and between GPOX and GSTPx and the concentration of Cu. GST activity was higher in males collected from less polluted areas. Thus, detoxifying strategies against pollutants seemed to be sex-dependent. Actively hunting spiders had higher metal concentrations, maintaining lower activity of detoxifying enzymes and a lower glutathione level. - Capsule: Glutathione-linked enzyme activity in spiders from polluted areas depends on hunting strategy and sex

  6. Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization

    Directory of Open Access Journals (Sweden)

    Żelechowska Kamila

    2016-12-01

    Full Text Available Synthesis and characterization of the graphene hydrogels with three different metallic nanoparticles, that is Au, Ag and Cu, respectively is presented. Synthesized in a one-pot approach graphene hydrogels with embedded metallic nanoparticles were tested as heterogeneous catalysts in a model reaction of 4-nitrophenol reduction. The highest activity was obtained for graphene hydrogel with Cu nanoparticles and additional reaction of methylene blued degradation was evaluated using this system. The obtained outstanding catalytic activity arises from the synergistic effect of graphene and metallic nanoparticles. The hydrogel form of the catalyst benefits in the easiness in separation from the reaction mixture (for example using tweezers and reusability.

  7. Biomonitoring potential of five sympatric Tillandsia species for evaluating urban metal pollution (Cd, Hg and Pb)

    Science.gov (United States)

    Sánchez-Chardi, Alejandro

    2016-04-01

    The present study quantifies non essential heavy metals highly toxic for biological systems (Pb, Hg and Cd) in five autochthonous epiphytic plants from Tillandsia genus (T. recurvata, T. meridionalis, T. duratii, T. tricholepis, T. loliacea) according to different traffic levels (reference, low, medium and high polluted sites) in Asunción (Paraguay). The three metals increased in polluted sites following Pb (till 62.99 ppm in T. tricholepis) > Cd (till 1.35 ppm in T. recurvata) > Hg (till 0.36 ppm in T. recurvata) and Pb and Cd levels were directly related to traffic flow. Although the species showed similar bioaccumulation pattern (namely, higher levels of metals in polluted sites), enrichment factors (maximum EF values 37.00, 18.16, and 11.90 for Pb, Hg, and Cd, respectively) reported T. tricholepis as the most relevant bioindicator due to its wide distribution and abundance in study sites, low metal content in control site and high metal contents in polluted sites, and significant correlations with traffic density of Pb and Cd. This study emphasizes the necessity of biomonitoring air pollution in areas out of air monitoring control such as Asunción, where the high levels of metal pollution especially Pb, may represent an increment of risk for the human population inhabiting this urban area.

  8. Effects of environmental regulations on heavy metal pollution decline in core sediments from Manila Bay

    International Nuclear Information System (INIS)

    Hosono, Takahiro; Su, Chih-Chieh; Siringan, Fernando; Amano, Atsuko; Onodera, Shin-ichi

    2010-01-01

    We investigated the high-resolution heavy metal pollution history of Manila Bay using heavy metal concentrations and Pb isotope ratios together with 210 Pb dating to find out the effects of environmental regulations after the 1990s. Our results suggested that the rate of decline in heavy metal pollution increased dramatically from the end of the 1990s due to stricter environmental regulations, Administrative Order No. 42, being enforced by the Philippines government. The presented data and methodology should form the basis for future monitoring, leading to pollution control, and to the generation of preventive measures at the pollution source for the maintenance of environmental quality in the coastal metropolitan city of Manila. Although this is the first report of a reduction in pollution in Asian developing country, our results suggest that we can expect to find similar signs of pollution decline in other parts of the world as well.

  9. Synthesis of metal nanoparticles using ionizing radiation and developing their applications

    International Nuclear Information System (INIS)

    Ramnani, S.P.; Sabharwal, S.

    2008-01-01

    Fine metal particles with nanometer scale dimensions are of current interest due to their unusual properties that are different from their corresponding bulk materials. They are being explored for potential applications in optics, electronics, magnetics, catalyst, chemical sensing and biomedicine. A variety of methods are available in the literature for the synthesis of metal nanoparticles. The soft solution method involving the reduction of metal ion in the solution using reducing agent such as sodium borohydride, formaldehyde, trisodium citrate etc, are the most widely used. The ability of ionizing radiation to bring about ionization and excitation in the medium through which they travel results in the formation of reactive species which can be utilized to reduce metal ions into metal atoms to generate metal nanoparticles. The difference between gamma radiation method and soft solution method is that in the former the reducing species are generated in-situ whereas in later the reducing agent are incorporated into the system from an external source. A particular advantage of radiolysis method is that the reduction rate can be controlled by the selected dose rate unlike chemical method where the local concentration of reducing species is very high and cannot be controlled

  10. Thermoplasmonics heating metal nanoparticles using light

    CERN Document Server

    Baffou, Guillaume

    2017-01-01

    Plasmonics is an important branch of optics concerned with the interaction of metals with light. Under appropriate illumination, metal nanoparticles can exhibit enhanced light absorption, becoming nanosources of heat that can be precisely controlled. This book provides an overview of the exciting new field of thermoplasmonics and a detailed discussion of its theoretical underpinning in nanophotonics. This topic has developed rapidly in the last decade, and is now a highly-active area of research due to countless applications in nanoengineering and nanomedicine. These important applications include photothermal cancer therapy, drug and gene delivery, nanochemistry and photothermal imaging. This timely and self-contained text is suited to all researchers and graduate students working in plasmonics, nano-optics and thermal-induced processes at the nanoscale.

  11. Electrochromic device containing metal oxide nanoparticles and ultraviolet blocking material

    Science.gov (United States)

    Garcia, Guillermo; Koo, Bonil; Gregoratto, Ivano; Basu, Sourav; Rosen, Evelyn; Holt, Jason; Thomsen, Scott

    2017-10-17

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant. The electrochromic device also includes nanoparticles containing one or more transparent conducting oxide (TCO), a solid state electrolyte, a counter electrode, and at least one protective layer to prevent degradation of the one or more nanostructured transition metal oxide bronze. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.

  12. MgO nanoparticles as antibacterial agent: preparation and activity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhen-Xing, E-mail: tangzhenxing@126.com [Department of Food Science, Anqing, Vocational and Technical College, Anqing, Anhui (China); Lv, Bin-Feng [Date Palm Research Center, King Faisal University, (Saudi Arabia)

    2014-07-15

    Bacterial pollution is a great risk for human health. Nanotechnology offers a way to develop new inorganic antibacterial agents. Nano-inorganic metal oxide has a potential to reduce bacterial contamination. MgO is an important inorganic oxide and has been widely used in many fields. Many studies have shown that MgO nanoparticles have good antibacterial activity. Therefore, in this paper, the main synthesis methods, antibacterial activity and antibacterial mechanisms of MgO nanoparticles are reviewed. (author)

  13. MgO nanoparticles as antibacterial agent: preparation and activity

    International Nuclear Information System (INIS)

    Tang, Zhen-Xing; Lv, Bin-Feng

    2014-01-01

    Bacterial pollution is a great risk for human health. Nanotechnology offers a way to develop new inorganic antibacterial agents. Nano-inorganic metal oxide has a potential to reduce bacterial contamination. MgO is an important inorganic oxide and has been widely used in many fields. Many studies have shown that MgO nanoparticles have good antibacterial activity. Therefore, in this paper, the main synthesis methods, antibacterial activity and antibacterial mechanisms of MgO nanoparticles are reviewed. (author)

  14. using agama lizard as a biomaker in heavy metal pollution monitoring

    African Journals Online (AJOL)

    Oyekunle

    Key words: Agama lizard, environmental pollution, soil, heavy metals, liver, kidney. ... Despite the considerable weight of evidence that exists in favour of the ..... bioaccumulation capacity of heavy metals by the kidney. (59.2 ± 15.3 µg/g) was ...

  15. Precursor directed synthesis - ``molecular'' mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures

    Science.gov (United States)

    Seisenbaeva, Gulaim A.; Kessler, Vadim G.

    2014-05-01

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials. To Professor David Avnir on his 65th birthday.

  16. Urban water pollution by heavy metals and health implication in ...

    African Journals Online (AJOL)

    Studies of common heavy metals were conducted at Onitsha, Anambra State, the most urbanized city in Southeastern Nigeria. It was discovered that both surface and subsurface water were heavily polluted. Seven (7) heavy metals namely: arsenic (As+2), cadmium (Cd+2), lead (Pb+2), mercury (Hg+2), zinc (Zn+2), copper ...

  17. Nanoparticles of noble metals in the supergene zone

    Science.gov (United States)

    Zhmodik, S. M.; Kalinin, Yu. A.; Roslyakov, N. A.; Mironov, A. G.; Mikhlin, Yu. L.; Belyanin, D. K.; Nemirovskaya, N. A.; Spiridonov, A. M.; Nesterenko, G. V.; Airiyants, E. V.; Moroz, T. N.; Bul'bak, T. A.

    2012-04-01

    Formation of noble metal nanoparticles is related to various geological processes in the supergene zone. Dispersed mineral phases appear during weathering of rocks with active participation of microorganisms, formation of soil, in aqueous medium and atmosphere. Invisible gold and other noble metals are incorporated into oxides, hydroxides, and sulfides, as well as in dispersed organic and inorganic carbonic matter. Sulfide minerals that occur in bedrocks and ores unaltered by exogenic processes and in cementation zone are among the main concentrators of noble metal nanoparticles. The ability of gold particles to disaggregate is well-known and creates problems in technological and analytical practice. When Au and PGE nanoparticles and clusters occur, these problems are augmented because of their unusual reactions and physicochemical properties. The studied gold, magnetite, titanomagnetite and pyrite microspherules from cementation zone and clay minerals of laterites in Republic of Guinea widen the knowledge of their abundance and inferred formation conditions, in particular, in the contemporary supergene zone. Morphology and composition of micrometer-sized Au mineral spherules were studied with SEM and laser microprobe. The newly formed segregations of secondary gold on the surface of its residual grains were also an object of investigation. The character of such overgrowths is the most indicative for nanoparticles. The newly formed Au particles provide evidence for redistribution of ultradispersed gold during weathering. There are serious prerequisites to state that microorganisms substantially control unusual nano-sized microspherical morphology of gold particles in the supergene zone. This is supported by experiments indicating active absorption of gold by microorganisms and direct evidence for participation of Ralstonia metallidurans bacteria in the formation of peculiar corroded bacteriomorphic surface of gold grains. In addition, the areas enriched in carbon

  18. A model for the latent heat of melting in free standing metal nanoparticles

    International Nuclear Information System (INIS)

    Shin, Jeong-Heon; Deinert, Mark R.

    2014-01-01

    Nanoparticles of many metals are known to exhibit scale dependent latent heats of melting. Analytical models for this phenomenon have so far failed to completely capture the observed phenomena. Here we present a thermodynamic analysis for the melting of metal nanoparticles in terms of their internal energy and a scale dependent surface tension proposed by Tolman. The resulting model predicts the scale dependence of the latent heat of melting and is confirmed using published data for tin and aluminum

  19. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.

    Science.gov (United States)

    Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel

    2013-01-30

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  20. Novel polymer-based nanocomposites for application in heavy metal pollution remediation

    CSIR Research Space (South Africa)

    Kotzé-Jacobs, L

    2012-10-10

    Full Text Available and kidney damage and also cancer ? Heavy metals can accumulate in food sources through heavy metal contamination of soil and plants ? CSIR 2012 Slide 3 Removal of heavy metals ? Small volume applications: ion exchange ? Larger volumes eg. acid mine... pollution, treatment shortfalls at municipalities and contaminated surface water discharges ? Accumulation of heavy metals and endocrine disrupters ? CSIR 2012 Slide 2 Introduction: Heavy metals ? Cr, Ni, Cu, Pb, As etc. ? Exposure can cause liver...

  1. Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, Glycine max, in southern China.

    Science.gov (United States)

    Zhao, Yunyun; Fang, Xiaolong; Mu, Yinghui; Cheng, Yanbo; Ma, Qibin; Nian, Hai; Yang, Cunyi

    2014-04-01

    Crops produced on metal-polluted agricultural soils may lead to chronic toxicity to humans via the food chain. To assess metal pollution in agricultural soils and soybean in southern China, 30 soybean grain samples and 17 soybean-field soil samples were collected from 17 sites in southern China, and metal concentrations of samples were analyzed by graphite furnace atomic absorption spectrophotometer. The integrated pollution index was used to evaluate if the samples were contaminated by Cd, Pb, Zn and As. Results showed that Cd concentration of 12 samples, Pb concentration of 2 samples, Zn concentration of 2 samples, and As concentrations of 2 samples were above the maximum permissible levels in soils. The integrated pollution index indicated that 11 of 17 soil samples were polluted by metals. Metal concentrations in soybean grain samples ranged from 0.11 to 0.91 mg kg(-1) for Cd; 0.34 to 2.83 mg kg(-1) for Pb; 42 to 88 mg kg(-1) for Zn; and 0.26 to 5.07 mg kg(-1) for As, which means all 30 soybean grain samples were polluted by Pb, Pb/Cd, Cd/Pb/As or Pb/As. Taken together, our study provides evidence that metal pollution is an important concern in agricultural soils and soybeans in southern China.

  2. Functional and compositional responses in soil microbial communities along two metal pollution gradients: does the level of historical pollution affect resistance against secondary stress?

    NARCIS (Netherlands)

    Azarbad, H.; Niklinska, M.; Nikiel, K.; van Straalen, N.M.; Röling, W.F.M.

    2015-01-01

    We examined how the exposure to secondary stressors affected the functional and compositional responses of microbial communities along two metal pollution gradients in Polish forests and whether responses were influenced by the level of metal pollution. Basal respiration rate and community

  3. Sources and levels of concentration of metal pollutants in Kubanni dam, Zaria, Nigeria

    Directory of Open Access Journals (Sweden)

    Butu, A.W.

    2013-06-01

    Full Text Available The paper looked at the sources and levels of concentration of metal pollutants in Kubanni dam, Zaria, Nigeria. The main sources of data for the study were sediment from four different sections of the long profile of the dam. The samples were prepared in the laboratory according to standard methods and the instrumental Neutron Activation Analysis (INAA technique was adopted in the analysis using Nigeria Research Reactor – 1 (NIRR – 1. The results of the analysis showed that 29 metal pollutants; Mg, Al, Ca, Ti, V, Mn, Dy, Na, K, As, La, Sm, Yb, U, Br, Sc, Cr, Fe, Co, Rb, Zn,Cs, Ba, Eu, Lu, Hf, Ta, Sb and Th currently exist in Kubanni dam in various levels of concentrations. The results showed that most of the metal pollutants in the dam are routed to anthropogenic activities within the dam catchment area while few are routed to geologic formation. The results further revealed that metal pollutants that their sources are traceable to refuse dumps, farmlands, public drains and effluents showed higher levels of concentration in the dam than the ones that are gradually released from the soil regolith system.

  4. Investigations for heavy metals pollution in the Nile water in Khartoum area using XRF

    International Nuclear Information System (INIS)

    Salih, Saadia Elsir

    1998-06-01

    The purpose of this study was to perform measurements for heavy metals pollution in the Nile water in Khartoum area. Ten locations were selected for the study on the white Nile, the Blue Nile and the Nile. Standard methods were used for samples collection and preparation for the measurements using XRF. Nine elements were observed and their concentrations determined in the various locations. These Ti, Cr, Fe, Cu, Zn, As, Pb, Zr, and Se. From the performed measurements for heavy metals pollution in the Nile water in Khartoum area using the XRF method the following conclusions can be made: There is no heavy metal pollution in the Nile water in Khartoum area resulting from industrial activities. However, there are indications for possible Pb pollution resulting from automobile emission. - The concentrations for the observed heavy metals, except Fe, were much below the maximum permissible international levels provided by the USA, EEC and WHO. - The origin for the observed concentrations of heavy metals, except for Pb, was considered to be soil and silt carried by river in it's journey from the Ethiopian Highlands and lake Victoria. (Author)

  5. Optical properties of metal nanoparticles embedded in amorphous silicon analysed using discrete dipole approximation

    Science.gov (United States)

    Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela; Oliveira-Silva, Rui P.; Prazeres, D. M. F.; Ribeiro, Ana P. C.; Alegria, Elisabete C. B. A.

    2018-02-01

    Localized surface plasmons (LSP) can be excited in metal nanoparticles (NP) by UV, visible or NIR light and are described as coherent oscillation of conduction electrons. Taking advantage of the tunable optical properties of NPs, we propose the realization of a plasmonic structure, based on the LSP interaction of NP with an embedding matrix of amorphous silicon. This study is directed to define the characteristics of NP and substrate necessary to the development of a LSP proteomics sensor that, once provided immobilized antibodies on its surface, will screen the concentration of selected antigens through the determination of LSPR spectra and peaks of light absorption. Metals of interest for NP composition are: Aluminium and Gold. Recent advances in nanoparticle production techniques allow almost full control over shapes and size, permitting full control over their optical and plasmonic properties and, above all, over their responsive spectra. Analytical solution is only possible for simple NP geometries, therefore our analysis, is realized recurring to computer simulation using the Discrete Dipole Approximation method (DDA). In this work we use the free software DDSCAT to study the optical properties of metal nanoparticles embedded in an amorphous silicon matrix, as a function of size, shape, aspect-ratio and metal type. Experimental measurements realized with arrays of metal nanoparticles are compared with the simulations.

  6. Nanoscale chirality in metal and semiconductor nanoparticles.

    Science.gov (United States)

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  7. Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique

    Science.gov (United States)

    Geremariam Welearegay, Tesfalem; Cindemir, Umut; Österlund, Lars; Ionescu, Radu

    2018-02-01

    Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of ∼10 nm (Au), ∼4 nm (Cu) and ∼3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of kΩ and tens of MΩ, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.

  8. Low-technology monitoring of atmospheric metal pollution in central Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Yule, F A; Lloyd, O L

    1984-01-01

    In epidemiological studies covering relationships of disease patterns and patterns of atmospheric pollution, conventional filtering equipment is normally used for monitoring the pollution. For various reasons, however, this type of approach often results in levels of pollution being obtained for only a few sites within an extensive fieldwork area. Hence, alternative monitoring techniques, which allow a high density of sampling sites in an area, have been of interest to an increasing number of investigators. The monitors used, known as low-technology monitors, fall into two main categories; indigenous; and transplants. In the authors surveys of atmospheric metal pollutants in industrial communities in Scotland, the indigenous sample materials have included: Hypnum cupressiforme, Lecanora conizaeoides, Agropyron repens and surface soils. In their transplant surveys a variety of different low-technology samplers have been deployed, the most frequently used being: spherical and flat moss bags, Hypogymnia physodes, Tak (synthetic fabric), and total deposition collectors. The data obtained from the various surveys have been plotted on a variety of types of computer map to minimize any systematic bias resulting from the use of a single technique. The pollution patterns found in one particular town were partly unexpected, in view of the dominant wind direction in the locality concerned. Hence it was decided to carry out a wind tunnel experiment to investigate the situation further. The wind tunnel experiment produced results which were consistent with the patterns of pollution derived from the metal surveys, and revealed that the meteorological dispersal of the pollution was unexpectedly influenced by local topography.

  9. Enrichment of marsh soils with heavy metals by effect of anthropic pollution

    International Nuclear Information System (INIS)

    Vega, Flora A.; Covelo, Emma F.; Cerqueira, Beatriz; Andrade, Maria Luisa

    2009-01-01

    The impact of waste disposal on marsh soils was assessed in topsoil samples collected at eight randomly selected points in the salt marsh in Ramallosa (Pontevedra, Spain) at 4-month intervals for 2 years. Polluted soil samples were characterized in physico-chemical terms and their heavy metal contents determined by comparison with control, unpolluted samples. The results revealed a marked effect of waste discharges on the soils in the area, which have low contents in heavy metals under normal environmental conditions. In fact, the studied soils were found to contain substantial amounts of total and DTPA-extractable Cd, Cu, Pb and Zn. Based on the relationship of the redox potential with the DTPA-extractable Cd, Cu, Pb, and Zn contents of the soils, strongly reductive conditions raised the total contents in these elements by effect of their remaining in the soils as precipitated sulphides. Such contents, however, decreased as oxidative conditions gradually prevailed. The contents in DTPA-extractable metals increased with increasing Eh through the release of the metals in ionic form to the soil solution under oxidative conditions. The contents in heavy metals concentrating in the polluted soils were several times higher than those in the control soils (viz. 2 vs. 6 for Cd, 4 vs. 6 for Cu, 4 vs. 20 for Pb, and 2 vs. 15 for Zn, all in mg kg -1 ). This can be expected to influence the amounts of available heavy metals present in the soils, and hence the environmental quality of the area, in the near future. Based on its geoaccumulation index (Class ≥3 for Cd and Cu, and 1-4 for Pb and Zn), the Ramallosa marsh is highly polluted with Cd and moderately to highly polluted with Cu, Pb and Zn. The enrichment factors obtained confirm that the salt marsh is highly polluted (especially with Cd) as the primary result of anthropic activity.

  10. Cytology of pollutant metals in marine invertebrates: A review of microanalytical applications

    International Nuclear Information System (INIS)

    Nott, J.A.

    1991-01-01

    x-ray microanalysis (XRMA) is customized for investigations of the metabolic and detoxification strategies of heavy metals taken by marine organisms from polluted environments. Sites of uptake, intracellular accumulation, transport and excretion are visualized, analysed and quantified. Cryopreparation techniques are required to prevent the translocation or loss from specimens of soluble metal species. In marine invertebrates, metals are detoxified by systems of chemical binding and intracellular compartmentalization. XRMA investigations have concentrated on marine molluscs and crustaceans and even within these restricted groups there are marked inter-species differences in the biochemical and cytological processes which reduce metal bioavailability. Some detoxification systems also protect the carnivores which ingest the metal-laden tissues of the prey. This results in the bioreduction of metals along a food chain. These processes are investigated by XRMA which can be tuned to observe the complex interactions which operate at all levels within and between the biota and polluted environments. 90 refs

  11. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication

    International Nuclear Information System (INIS)

    Ko, Seung Hwan; Nam, Koo Hyun; Chung, Jaewon; Hotz, Nico; Grigoropoulos, Costas P

    2010-01-01

    Inkjet printing of functional materials is a key technology toward ultra-low-cost, large-area electronics. We demonstrate low-temperature 3D micro metal structure fabrication by direct inkjet printing of metal nanoparticles (NPs) as a versatile, direct 3D metal structuring approach representing an alternative to conventional vacuum deposition and photolithographic methods. Metal NP ink was inkjet-printed to exploit the large melting temperature drop of the nanomaterial and the ease of the NP ink formulation. Parametric studies on the basic conditions for stable 3D inkjet printing of NP ink were carried out. Furthermore, diverse 3D metal microstructures, including micro metal pillar arrays, helices, zigzag and micro bridges were demonstrated and electrical characterization was performed. Since the process requires low temperature, it carries substantial potential for fabrication of electronics on a plastic substrate

  12. Diffuse urban pollution increases metal tolerance of natural heterotrophic biofilms

    International Nuclear Information System (INIS)

    Fechner, Lise C.; Gourlay-Francé, Catherine; Bourgeault, Adeline; Tusseau-Vuillemin, Marie-Hélène

    2012-01-01

    This study is a first attempt to investigate the impact of urban contamination on metal tolerance of heterotrophic river biofilms using a short-term test based on β-glucosidase activity. Tolerance levels to Cu, Cd, Zn, Ni and Pb were evaluated for biofilms collected at three sites along an urban gradient in the Seine river (France). Metallic pollution increased along the river, but concentrations remained low compared to environmental quality standards. Biofilm metal tolerance increased downstream from the urban area. Multivariate analysis confirmed the correlation between tolerance and contamination and between multi-metallic and physico-chemical gradients. Therefore, tolerance levels have to be interpreted in relation to the whole chemical and physical characteristics and not solely metal exposure. We conclude that community tolerance is a sensitive biological response to urban pressure and that mixtures of contaminants at levels lower than quality standards might have a significant impact on periphytic communities. - Highlights: ► A new short-term test based on β-glucosidase activity to assess biofilm metal tolerance. ► Cd, Cu, Ni, Pb and Zn tolerance of natural biofilms collected along an urban gradient. ► Metal tolerance levels increase upstream to downstream the river. ► Community tolerance increases at environmental quality standard exposure concentrations. ► Biofilm tolerance is a sensitive biological response to diffuse urban pollution. - Metal concentrations below environmental quality standards increase tolerance levels of natural, hetetrophic biofilms downstream from an urban area.

  13. Tree rings as monitors of heavy metal air pollution histories

    International Nuclear Information System (INIS)

    Kennedy, G.; Bergeron, S.

    1991-01-01

    The potential of five species of trees as historical monitors of heavy metal air pollution has been investigated. The study was carried out at a site 2 km from an industrial complex including several metal refineries. Using neutron activation, heavy metal concentrations were measured in the xylem as a function of the year of wood formation. The manganese concentrations were by far the highest. In maple trees the high natural level of this essential trace element masked any increases due to pollution. In ash and cedar increased Mn concentrations were found, relative to control trees, but there is evidence for radial translocation. In hemlock the time variations of the average Mn concentrations followed the production rates of the refineries but large variations among individual trees were observed. Hemlock was estimated to accumulate up to 0.3% of the atmospheric Mn input. (author) 13 refs.; 3 figs

  14. Heavy metal pollution in immobile and mobile components of lentic ecosystems-a review.

    Science.gov (United States)

    Meena, Ramakrishnan Anu Alias; Sathishkumar, Palanivel; Ameen, Fuad; Yusoff, Abdull Rahim Mohd; Gu, Feng Long

    2018-02-01

    With growing population and urbanization, there is an increasing exploitation of natural resources, and this often results to environmental pollution. In this review, the levels of heavy metal in lentic compartments (water, sediment, fishes, and aquatic plants) over the past two decades (1997-2017) have been summarized to evaluate the current pollution status of this ecosystem. In all the compartments, the heavy metals dominated are zinc followed by iron. The major reason could be area mineralogy and lithogenic sources. Enormous quantity of metals like iron in estuarine sediment is a very natural incident due to the permanently reducing condition of organic substances. Contamination of cadmium, lead, and chromium was closely associated with anthropogenic origin. In addition, surrounding land use and atmospheric deposition could have been responsible for substantial pollution. The accumulation of heavy metals in fishes and aquatic plants is the result of time-dependent deposition in lentic ecosystems. Moreover, various potential risk assessment methods for heavy metals were discussed. This review concludes that natural phenomena dominate the accumulation of essential heavy metals in lentic ecosystems compared to anthropogenic sources. Amongst other recent reviews on heavy metals from other parts of the world, the present review is executed in such a way that it explains the presence of heavy metals not only in water environment, but also in the whole of the lentic system comprising sediment, fishes, and aquatic plants.

  15. Slow and stopped light in active gain composite materials of metal nanoparticles. Ultralarge group index-bandwidth product predicted

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang-Hyon; Choe, Song-Hyok [Institute of Lasers, State Academy of Sciences, Unjong District, Pyongyang (Korea, Democratic People' s Republic of)

    2017-08-15

    Chip-compatible slow light devices with large group index-bandwidth products and low losses are of great interest in the community of modern photonics. In this work, active gain materials containing metal nanoparticles are proposed as the slow and stopped light materials. Gain-assisted high field enhancement in metal nanoparticles and the resultant strong dispersion lead to such phenomena. From the Maxwell-Garnett model, it is revealed that the metal nanocomposite exhibits the infinitely large group index when the gain of the host medium and the filling factor of metal nanoparticles satisfy a critical condition. For the gain of the host above the critical value, one can observe slowing down effect with amplification of light pulses. Significantly large group index-bandwidth products, which vary from a few to several thousand or even infinity depending on the gain value of the host medium, have been numerically predicted in active silica glasses containing spheroidal metal nanoparticles, as examples. The proposed scheme inherently provides the widely varying operating spectral range by changing the aspect ratio of metal nanoparticles and chip-compatibility with low cost. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Natural Radionuclides and Heavy Metals Pollution in Seawater at Kuala Langat Coastal Area

    International Nuclear Information System (INIS)

    Sabarina Md Yunus; Zaini Hamzah; Ab Khalik Hj Wood; Ahmad Saat

    2015-01-01

    Rapid industrial developments along the Langat river basin play an important role in contributing to the increases of pollution loading at Kuala Langat coastal area. The major pollutant sources in this area may be originating from human activities such as industrial discharge, domestic sewage, construction, agriculture and pig farming near the tributaries that affects the water quality. In addition, Langat and Semenyih rivers flow through the mining and ex-mining area, which is related to the source of natural radionuclides contamination. Heavy metals in the aquatic environment and more likely to enter the food chain. This study is focusing to the levels of radionuclides and heavy metals in seawater. The samples were collected using appropriate water sampler, which is then acidified until pH 2 and filtered using cellulose acetate 0.45 μm. The concentration of these radionuclides and heavy metals were determined using Inductive Coupled Plasma Mass Spectrometer (ICPMS) after dilution. In general, the radionuclides and heavy metals concentrations are lower than Malaysia Marine Water Quality Standard (MMWQS) except for few locations where the concentration levels above the standards. The higher concentration of pollutant in the seawater may have a toxic effect on sensitive plants and living organisms. The results of pollution levels of these radionuclides and heavy metals were also compared with other studies. (author)

  17. Metallic corrosion in the polluted urban atmosphere of Hong Kong.

    Science.gov (United States)

    Liu, Bo; Wang, Da-Wei; Guo, Hai; Ling, Zhen-Hao; Cheung, Kalam

    2015-01-01

    This study aimed to explore the relationship between air pollutants, particularly acidic particles, and metallic material corrosion. An atmospheric corrosion test was carried out in spring-summer 2012 at a polluted urban site, i.e., Tung Chung in western Hong Kong. Nine types of metallic materials, namely iron, Q235 steel, 20# steel, 16Mn steel, copper, bronze, brass, aluminum, and aluminum alloy, were selected as specimens for corrosion tests. Ten sets of the nine materials were all exposed to ambient air, and then each set was collected individually after exposure to ambient air for consecutive 6, 13, 20, 27, 35, 42, 49, 56, 63, and 70 days, respectively. After the removal of the corrosion products on the surface of the exposed specimens, the corrosion rate of each material was determined. The surface structure of materials was observed using scanning electron microscopy (SEM) before and after the corrosion tests. Environmental factors including temperature, relative humidity, concentrations of gaseous pollutants, i.e., sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), and particulate-phase pollutants, i.e., PM₂.₅ (FSP) and PM₁₀ (RSP), were monitored. Correlation analysis between environmental factors and corrosion rate of materials indicated that iron and carbon steel were damaged by both gaseous pollutants (SO₂ and NO₂) and particles. Copper and copper alloys were mainly corroded by gaseous pollutants (SO₂ and O₃), while corrosion of aluminum and aluminum alloy was mainly attributed to NO₂ and particles.

  18. A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag2O microparticles

    International Nuclear Information System (INIS)

    Hirose, Akio; Tatsumi, Hiroaki; Takeda, Naoya; Akada, Yusuke; Ogura, Tomo; Ide, Eiichi; Morita, Toshiaki

    2009-01-01

    The metal-to-metal bonding has been successfully achieved via the bonding process using Ag metallo-organic nanoparticles at a bonding temperature of around 300-, which can be alternative to the current microsoldering in electronics assembly using high-temperature solders. However, further reduction of bonding temperature and/or bonding pressure is needed. In the present research, a novel bonding process through in-situ formation of Ag nanoparticles instead of the filler material of the Ag metallo-organic nanoparticles has been developed. The Ag nanoparticles can form by the reduction of Ag 2 O particles. In this study, the Ag 2 O particles were mixed with triethylene glycol as a reducing agent to form a paste for bonding. The Au coated cylindrical specimens were bonded using the paste. The Ag nanoparticles formed at around 130 to 160 through the reduction process of Ag2O particles with triethylene glycol. The Ag nanoparticles were immediately sintered each other due to a great surface energy per volume. A transmission electron microscope observation revealed that the sintered Ag metallurgically bonded to the Au substrate at around 160 and a dense Ag layer formed after further heating. The tensile strength of the joint bonded at 250 under a bonding pressure of 5MPa was around 60MPa

  19. Thermoelectric Performance Enhancement by Surrounding Crystalline Semiconductors with Metallic Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung; King, Glen C.; Park, Yeonjoon; Lee, Kunik; Choi, Sang H.

    2011-01-01

    Direct conversion of thermal energy to electricity by thermoelectric (TE) devices may play a key role in future energy production and utilization. However, relatively poor performance of current TE materials has slowed development of new energy conversion applications. Recent reports have shown that the dimensionless Figure of Merit, ZT, for TE devices can be increased beyond the state-of-the-art level by nanoscale structuring of materials to reduce their thermal conductivity. New morphologically designed TE materials have been fabricated at the NASA Langley Research Center, and their characterization is underway. These newly designed materials are based on semiconductor crystal grains whose surfaces are surrounded by metallic nanoparticles. The nanoscale particles are used to tailor the thermal and electrical conduction properties for TE applications by altering the phonon and electron transport pathways. A sample of bismuth telluride decorated with metallic nanoparticles showed less thermal conductivity and twice the electrical conductivity at room temperature as compared to pure Bi2Te3. Apparently, electrons cross easily between semiconductor crystal grains via the intervening metallic nanoparticle bridges, but phonons are scattered at the interfacing gaps. Hence, if the interfacing gap is larger than the mean free path of the phonon, thermal energy transmission from one grain to others is reduced. Here we describe the design and analysis of these new materials that offer substantial improvements in thermoelectric performance.

  20. Pulse laser-induced generation of cluster codes from metal nanoparticles for immunoassay applications

    Directory of Open Access Journals (Sweden)

    Chia-Yin Chang

    2017-05-01

    Full Text Available In this work, we have developed an assay for the detection of proteins by functionalized nanomaterials coupled with laser-induced desorption/ionization mass spectrometry (LDI-MS by monitoring the generation of metal cluster ions. We achieved selective detection of three proteins [thrombin, vascular endothelial growth factor-A165 (VEGF-A165, and platelet-derived growth factor-BB (PDGF-BB] by modifying nanoparticles (NPs of three different metals (Au, Ag, and Pt with the corresponding aptamer or antibody in one assay. The Au, Ag, and Pt acted as metal bio-codes for the analysis of thrombin, VEGF-A165, and PDGF-BB, respectively, and a microporous cellulose acetate membrane (CAM served as a medium for an in situ separation of target protein-bound and -unbound NPs. The functionalized metal nanoparticles bound to their specific proteins were subjected to LDI-MS on the CAM. The functional nanoparticles/CAM system can function as a signal transducer and amplifier by transforming the protein concentration into an intense metal cluster ion signal during LDI-MS analysis. This system can selectively detect proteins at picomolar concentrations. Most importantly, the system has great potential for the detection of multiple proteins without any pre-concentration, separation, or purification process because LDI-MS coupled with CAM effectively removes all signals except for those from the metal cluster ions.

  1. Tunable Optical Properties of Metal Nanoparticle Sol-Gel Composites

    Science.gov (United States)

    Smith, David D.; Snow, Lanee A.; Sibille, Laurent; Ignont, Erica

    2001-01-01

    We demonstrate that the linear and non-linear optical properties of sol-gels containing metal nanoparticles are highly tunable with porosity. Moreover, we extend the technique of immersion spectroscopy to inhomogeneous hosts, such as aerogels, and determine rigorous bounds for the average fractional composition of each component, i.e., the porosity of the aerogel, or equivalently, for these materials, the catalytic dispersion. Sol-gels containing noble metal nanoparticles were fabricated and a significant blue-shift in the surface plasmon resonance (SPR) was observed upon formation of an aerogel, as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping and aggregation this blue-shift does not strictly obey standard effective medium theories. Mitigation of these complications is achieved by avoiding the use of alcohol and by annealing the samples in a reducing atmosphere.

  2. Assessment of heavy metal pollution of topsoils and plants in the City of Belgrade

    Directory of Open Access Journals (Sweden)

    Andrejić Gordana

    2016-01-01

    Full Text Available In order to assess heavy metal pollution in the city of Belgrade (Serbia concentrations of V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb were measured on 18 topsoil samples collected in the proximity to central urban boulevards and in urban parks. In addition, concentrations of specified elements were determined in leaves of three evergreen plant species Buxus sempervirens L., Mahonia aquifolium (Pursh Nutt. and Prunus laurocerasus L. so as to estimate their sensitivity to heavy metal pollution. Even though various types of soils from different quarts of Belgrade were sampled, their heavy metal contents were very similar, with somewhat higher concentrations of almost all elements detected in the proximity to high traffic roads. Generally, concentrations of heavy metals in leaves of investigated plant species paralleled the heavy metal concentrations found in their respective soils and were higher in plants sampled from boulevards then from urban parks. Since investigated plant show no visible injuries induced by detected heavy metal pollution these species are suitable for the successful urban landscaping. [Projekat Ministarstva nauke Republike Srbije, br. 173030

  3. Formation and properties of metallic nanoparticles in lithium and sodium fluorides with radiation-induced color centers

    Science.gov (United States)

    Bryukvina, L. I.; Martynovich, E. F.

    2012-12-01

    The specific features of light- and temperature-induced formation of metallic nanoparticles in γ-irradiated LiF and NaF crystals have been investigated. Atomic force microscope images of nanoparticles of different sizes and in different locations have been presented. The relation between the crystal processing regimes and properties of the nanoparticles formed has been revealed. The optical properties of the processed crystals have been analyzed. The thermo- and light-stimulated processes underlying the formation of metallic nanoparticles in aggregation of the color centers and their decay due to the recovery of the crystal lattice have been studied.

  4. Diet-mediated effects of heavy metal pollution on growth and immune response in the geometrid moth Epirrita autumnata

    International Nuclear Information System (INIS)

    Ooik, Tapio van; Rantala, Markus J.; Saloniemi, Irma

    2007-01-01

    The potential capacity of larval growth and immune response traits of the autumnal moth to adapt to heavy metal polluted environment was tested experimentally. Both the relative growth rate (RGR) and pupal weight were significantly higher in control trees than on polluted trees, indicating that metal pollution prevented the insect from achieving maximal growth on birch leaves. Larval growth rates of different broods differed significantly between metal contaminated and control birches. However, pupal weight of broods, which is considered more important for fitness than growth rate, in response to pollution did not differ. Immune response was significantly higher in moths exposed to pollution than in moths that were exposed to control environment suggesting that pollution enhances the immune defense of defoliators. Encapsulation rate tended to differ between broods indicating that the immune function has potential to respond to selection. - Immune function of an insect herbivore increased in heavy metal polluted environment and some insect traits showed potential to adapt to polluted environment

  5. Heavy metal pollution among autoworkers. II. Cadmium, chromium, copper, manganese, and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, J.; Rastogi, S.C.

    1977-08-01

    Garages and auto-repair workshops may be polluted with other heavy metals besides lead. Blood of autoworkers with high lead content was analyzed for cadmium, chromium, copper, manganese, nickel, ALAD activity and carboxyhaemoglobin level. Cadmium and copper levels in blood of autoworkers were comparable with those of the control subjects while chromium and nickel levels were significantly higher (P < 0.01 for both metals), and scattered raised values of manganese were found. There was no significant mutual correlation between levels of various heavy metals determined in whole blood. High copper levels were slightly related to decreasing ALAD activity (P < 0.1). Nineteen percent of autoworkers were found to have an abnormally high blood level of carboxyhemoglobin. The amount of particulate heavy metal in autoworkshop air was not related to biochemical abnormalities found in the autoworkers. Various sources of pollution of these heavy metals in autoworkshops are discussed.

  6. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients.

    NARCIS (Netherlands)

    Azarbad, H.; Niklinska, M.; Laskowski, R.; van Straalen, N.M.; van Gestel, C.A.M.; Zhou, J.; He, Z.; Wen, C.; Roling, W.F.M.

    2015-01-01

    Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional

  7. Metal pollution assessment in the surface sediment of Lake Nasser, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed E. Goher

    2014-01-01

    Full Text Available Eight heavy metals were measured seasonally in the sediment of Lake Nasser during 2013. 27 sites were chosen through 9 sectors across the main channel of the lake from Abu-Simbel to Aswan High Dam to assess the levels of the selected metals. The abundance of these metals was in the order of Fe > Mn > Zn > Cr > Ni > Cu > Pb > Cd, with mean concentrations of 12.41 mg/g, 279.56, 35.38, 30.79, 27.56, 21.78, 11.21 and 0.183 μg/g, respectively. Heavy metals are positively correlated with fine particles (mud fractions and organic matter accumulation. The results showed perspicuous spatial high significant differences (P < 0.01 for all the measured metals. Fe, Cr, Ni, Pb and Cd exhibited temporally high significant differences (P < 0.01 before and after the flood period. Four Pollution Indices were used for the environmental assessment of Lake Nasser sediment. The indices included three single indices, Enrichment Factor (EF, Index of Geo-accumulation (Igeo and Contamination Factor (CF. While the fourth, Pollution Load Index (PLI was an integrated index. The pollution indexes confirmed that the Lake Nasser sediment was not contaminated with these elements. Sediments of Lake Nasser may be represented as a reference for the pre-industrial background of River Nile Sediments downstream Aswan High Dam.

  8. Fabrication of novel cryomill for synthesis of high purity metallic nanoparticles

    Science.gov (United States)

    Kumar, Nirmal; Biswas, Krishanu

    2015-08-01

    The successful preparation of free standing metal nanoparticles with high purity in bulk quantity is the pre-requisite for any potential application. This is possible by using ball milling at cryogenic temperature. However, the most of ball mills available in the market do not allow preparing high purity metal nanoparticles by this route. In addition, it is not possible to carry out in situ measurements of process parameters as well as diagnostic of the process. In the present investigation, we present a detailed study on the fabrication of a cryomill, which is capable of avoiding contaminations in the product. It also provides in situ measurements and diagnostic of the low temperature milling process. Online monitoring of the milling temperature and observation of ball motion are the important aspects in the newly designed mill. The nanoparticles prepared using this fabricated mill have been found to be free standing and also free from contaminations.

  9. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    Science.gov (United States)

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio. Copyright © 2015

  10. Trophic transfer of metal-based nanoparticles in aquatic environments

    DEFF Research Database (Denmark)

    Tangaa, Stine Rosendal; Selck, Henriette; Winther-Nielsen, Margrethe

    2016-01-01

    Metal-containing engineered nanoparticles (Me-ENPs) are used in a wide range of products including inks, plastics, personal care products, clothing and electronic devices. The release of Me-ENPs has been demonstrated from some products, and thus, particles are likely to enter the aquatic environm......Metal-containing engineered nanoparticles (Me-ENPs) are used in a wide range of products including inks, plastics, personal care products, clothing and electronic devices. The release of Me-ENPs has been demonstrated from some products, and thus, particles are likely to enter the aquatic...... environment where they have been shown to be taken up by a variety of species. Therefore, there is a possibility that Me-ENPs will enter and pass through aquatic food webs, but research on this topic is limited. In this tutorial review, we discuss the factors contributing to trophic transfer of Me......-ENPs, and where this information is scarce, we utilize the existing literature on aqueous metal trophic transfer as a potential starting point for greater mechanistic insight and for setting directions for future studies. We identify four key factors affecting trophic transfer of Me-ENPs: (1) environmental...

  11. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review.

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-10-09

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  12. Heavy metal and antibiotic resistance of Acinetobacter spp. isolated from diesel fuel polluted

    Directory of Open Access Journals (Sweden)

    Kais Kassim Ghaima

    2018-04-01

    Full Text Available Heavy metals pollution of soil and wastewater is a global problem that threatens the environment as they are not degraded or removed and the potential threat to human health comes from the multiple resistances to heavy metals and antibiotics among bacterial populations. The present study was aimed to isolate and identify multiple metal/antibiotic resistant Acinetobacter spp. from diesel fuel polluted soil of Al-Dora, Baghdad, Iraq. Initially, a total of 24 bacterial cultures (coded KNZ–1 to KNZ–24 were isolated and identified up to genus level as Acinetobacter by morphological, physiological and biochemical characteristics. Screening of heavy metals resistant Acinetobacter were conducted by streaking the isolates on nutrient agar plates supplemented with different concentrations: 10, 25, 50 and 100mg/L of the three heavy metals; Hg2+, Cd2+ and Pb2+. Out of 24 isolates, 6 (25% isolates (KNZ–3, KNZ–5, KNZ–8, KNZ–12, KNZ–16 and KNZ–21 were selected as a multiple heavy metal resistant (MHMR Acinetobacter with maximum tolerable concentrations (MTCs; 100–200mg/L for Hg2+, 300-600mg/L for Cd2+ and 100–300mg/L for Pb2+. Antibiotic resistance pattern of the selected MHMR isolates was determined by Kirby-Bauer disc diffusion method against 12 different antibiotics belonging to 7 classes. Out of 6 isolates, 4 isolates were multidrug resistance (MDR with varying degrees. Among them isolate, KNZ–16 showed a wide range of resistance to all tested antibiotics except Levofloxacin and Imipenem. It was concluded that dual resistant Acinetobacter is useful in the bioremediation of environments polluted with heavy metals especially the biodegradation of organic pollutants.

  13. Optical and structural properties of noble-metal nanoparticles; Optische und strukturelle Eigenschaften von Edelmetallnanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Dahmen, C

    2006-06-23

    Noble-metal nanoparticles exhibit rich optical behavior, such as resonant light scattering and absorption and non-linear signal enhancement. This makes them attractive for a multitude of physical, chemical, and biophysical applications. For instance, recent biomedical experiments demonstrate the suitability of noble-metal nanoparticles for selective photothermal apoptosis by heat transport by laser irradiation. The applications of nanoparticles largely exploit that plasmons, i. e. collective oscillations of the conduction electrons, can be optically excited in these nanoparticles. In optical spectroscopy, these are seen as pronounced resonances. In the first part of this work, model calculations are employed to elucidate how radiation damping in noble-metal nanoparticles, i. e. the transformation of plasmons into photons, depends on particle size, particle shape, and on electromagnetic coupling between individual particles. Exact electrodynamic calculations are carried out for individual spheroidal particles and for pairs of spherical particles. These calculations for spheroidal particles demonstrate for the first time that radiative plasmon decay is determined by both the particle volume and the particle shape. Model calculations for pairs of large spherical particles reveal that the electromagnetic fields radiated by the particles mediate electromagnetic coupling at interparticle distances in the micrometer range. This coupling can lead to immense modulations of the plasmonic linewidth. The question whether this coupling is sufficiently strong to mediate extended, propagating, plasmon modes in nanoparticle arrays is addressed next. Detailed analysis reveals that this is not the case; instead, for the particle spacings regarded here, a non-resonant, purely diffractive coupling is observed, which is identified by steplike signatures in reflection spectra of the particle arrays. In the second part of this work, structural and optical properties of noble-metal

  14. Metal pollution investigation of Goldman Park, Middletown Ohio: Evidence for steel and coal pollution in a high child use setting.

    Science.gov (United States)

    Dietrich, Matthew; Huling, Justin; Krekeler, Mark P S

    2018-03-15

    A geochemical investigation of both ballfield sediment and street sediment in a park adjacent to a major steel manufacturing site in Middletown, Ohio revealed Pb, Cu, Cr and Zn exceeded background levels, but in heterogeneous ways and in varying levels of health concern. Pb, Sn, and Zn had geoaccumulation values>2 (moderate to heavy pollutants) in street sediment samples. Cr had a geoaccumulation value>1, while Ni, W, Fe and Mn had geoaccumulation values between 1 and 0 in street sediment. Street sediment contamination factors for respective elements are Zn (10.41), Sn (5.45), Pb (4.70), Sb (3.45), Cr (3.19), W (2.59), and Mn (2.43). The notable elements with the highest factors for ball fields are Zn (1.72), Pb (1.36), Cr (0.99), V (0.95), and Mn (1.00). High correlation coefficients of known constituents of steel, such as Fe and Mo, Ni and Cr, W and Co, W and V, as well as particulate steel and coal spherule fragments found by SEM suggest probable sourcing of some of the metals from the AK Steel facility directly adjacent to the park. However, overall extensive heterogeneity of metal pollutants in the area points to the difficulties in sourcing pollutant metals, with many outside sources likely contributing as well. This study demonstrates that different sediment media can be impacted by significantly different metal pollutants even when in very close proximity to a single source and points to unrecognized complexity in urban pollution processes in the region. This study pertains to large-scale regional importance, as Middletown, Ohio is indicative of a typical post-industrial Midwestern U.S. city where limited investigation has been conducted regarding urban pollution and sourcing of materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging

    Science.gov (United States)

    Haseeb, A. S. M. A.; Arafat, M. M.; Tay, S. L.; Leong, Y. M.

    2017-10-01

    Tin (Sn)-based solders have established themselves as the main alternative to the traditional lead (Pb)-based solders in many applications. However, the reliability of the Sn-based solders continues to be a concern. In order to make Sn-based solders microstructurally more stable and hence more reliable, researchers are showing great interest in investigating the effects of the incorporation of different nanoparticles into them. This paper gives an overview of the influence of metallic nanoparticles on the characteristics of interfacial intermetallic compounds (IMCs) in Sn-based solder joints on copper substrates during reflow and thermal aging. Nanocomposite solders were prepared by mechanically blending nanoparticles of nickel (Ni), cobalt (Co), zinc (Zn), molybdenum (Mo), manganese (Mn) and titanium (Ti) with Sn-3.8Ag-0.7Cu and Sn-3.5Ag solder pastes. The composite solders were then reflowed and their wetting characteristics and interfacial microstructural evolution were investigated. Through the paste mixing route, Ni, Co, Zn and Mo nanoparticles alter the morphology and thickness of the IMCs in beneficial ways for the performance of solder joints. The thickness of Cu3Sn IMC is decreased with the addition of Ni, Co and Zn nanoparticles. The thickness of total IMC layer is decreased with the addition of Zn and Mo nanoparticles in the solder. The metallic nanoparticles can be divided into two groups. Ni, Co, and Zn nanoparticles undergo reactive dissolution during solder reflow, causing in situ alloying and therefore offering an alternative route of alloy additions to solders. Mo nanoparticles remain intact during reflow and impart their influence as discrete particles. Mechanisms of interactions between different types of metallic nanoparticles and solder are discussed.

  16. Heavy Metal Pollution and Ecological Assessment around the Jinsha Coal-Fired Power Plant (China).

    Science.gov (United States)

    Huang, Xianfei; Hu, Jiwei; Qin, Fanxin; Quan, Wenxuan; Cao, Rensheng; Fan, Mingyi; Wu, Xianliang

    2017-12-18

    Heavy metal pollution is a serious problem worldwide. In this study, 41 soil samples and 32 cabbage samples were collected from the area surrounding the Jinsha coal-fired power plant (JCFP Plant) in Guizhou Province, southwest China. Pb, Cd, Hg, As, Cu and Cr concentrations in soil samples and cabbage samples were analysed to study the pollution sources and risks of heavy metals around the power plant. The results indicate that the JCFP Plant contributes to the Pb, Cd, As, Hg, Cu, and Cr pollution in nearby soils, particularly Hg pollution. Cu and Cr in soils from both croplands and forestlands in the study area derive mainly from crustal materials or natural processes. Pb, Cd and As in soils from croplands arise partly through anthropogenic activities, but these elements in soils from forestlands originate mainly from crustal materials or natural processes. Hg pollution in soils from both croplands and forestlands is caused mainly by fly ash from the JCFP Plant. The cabbages grown in the study area were severely contaminated with heavy metals, and more than 90% of the cabbages had Pb concentrations exceeding the permissible level established by the Ministry of Health and the Standardization Administration of the People's Republic of China. Additionally, 30% of the cabbages had As concentrations exceeding the permissible level. Because forests can protect soils from heavy metal pollution caused by atmospheric deposition, close attention should be given to the Hg pollution in soils and to the concentrations of Pb, As, Hg and Cr in vegetables from the study area.

  17. Heavy metal pollution in sediment from Sisimiut, Greenland. Adsorption to organic matter and fine particles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Villumsen, Arne

    2006-01-01

    . The pollution could be linked to human activities in Sisimiut, a link that have not been investigated previously in Greenland. Except from the most polluted samples there was good correlation between heavy metal concentration and organic matter. Also some relation between fine fraction and heavy metal...

  18. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China

    International Nuclear Information System (INIS)

    Liu, Enfeng; Yan, Ting; Birch, Gavin; Zhu, Yuxin

    2014-01-01

    Spatial variations in concentrations of a suite of potentially toxic metals (Ba, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and Ca in road dusts (n = 99) from urban trunk roads (TR) in Nanjing, a mega-city in China, were established. Metal pollution levels, sources and human health risk (non-carcinogenic) were studied. In contrast to previous studies, we labeled the indicative metals relating to non-exhaust traffic emissions by comparing metal pollution between crossroad and park road dusts, and then anthropogenic sources of metals in TR dusts were assessed combining their spatial pollution patterns, principal component analysis and Pb isotopic compositions. Results showed that the metals were enriched in TR dusts compared to background soil concentrations with mean enrichment factors (EFs) of 2.2–23, indicating considerable anthropogenic influence. The degrees of metal pollution ranged from minimal to extremely high and ranked by Ca > Cu > Pb ≈ Zn > Cr ≈ Fe > Ni ≈ Ba > Mn on average. Pollution of Cr, Cu, Fe, Mn, Ni, Pb and Zn in TR dusts resulted primarily from industrial emissions (e.g., coal combustion and smelting) and high pollution levels were found close to suburb industrial complexes, whereas pollution of Ba and Ca was mainly related to construction/demolition sources and was generally distributed homogeneously. The relatively minor contribution of non-exhaust traffic emissions to metal pollution in TR dusts was considered to be due to overwhelming industrial and construction/demolition contributions, as well as to the dilution effect of natural soil particles. Ingestion appears to be the major route of exposure for road dust for both adults and children, followed by dermal contact. The non-carcinogenic health risk resulting from exposure to the potentially toxic metals in TR dusts was within the safe level based on the Hazard Index (HI), except in pollution hotspots where exposure to Pb, Cr, and Cu may be hazardous to children. - Highlights: • Pollution and

  19. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Enfeng, E-mail: efliu@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Yan, Ting [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Birch, Gavin [School of Geosciences, University of Sydney, Sydney, NSW 2006 (Australia); Zhu, Yuxin [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-04-01

    Spatial variations in concentrations of a suite of potentially toxic metals (Ba, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and Ca in road dusts (n = 99) from urban trunk roads (TR) in Nanjing, a mega-city in China, were established. Metal pollution levels, sources and human health risk (non-carcinogenic) were studied. In contrast to previous studies, we labeled the indicative metals relating to non-exhaust traffic emissions by comparing metal pollution between crossroad and park road dusts, and then anthropogenic sources of metals in TR dusts were assessed combining their spatial pollution patterns, principal component analysis and Pb isotopic compositions. Results showed that the metals were enriched in TR dusts compared to background soil concentrations with mean enrichment factors (EFs) of 2.2–23, indicating considerable anthropogenic influence. The degrees of metal pollution ranged from minimal to extremely high and ranked by Ca > Cu > Pb ≈ Zn > Cr ≈ Fe > Ni ≈ Ba > Mn on average. Pollution of Cr, Cu, Fe, Mn, Ni, Pb and Zn in TR dusts resulted primarily from industrial emissions (e.g., coal combustion and smelting) and high pollution levels were found close to suburb industrial complexes, whereas pollution of Ba and Ca was mainly related to construction/demolition sources and was generally distributed homogeneously. The relatively minor contribution of non-exhaust traffic emissions to metal pollution in TR dusts was considered to be due to overwhelming industrial and construction/demolition contributions, as well as to the dilution effect of natural soil particles. Ingestion appears to be the major route of exposure for road dust for both adults and children, followed by dermal contact. The non-carcinogenic health risk resulting from exposure to the potentially toxic metals in TR dusts was within the safe level based on the Hazard Index (HI), except in pollution hotspots where exposure to Pb, Cr, and Cu may be hazardous to children. - Highlights: • Pollution and

  20. Baseline metals pollution profile of tropical estuaries and coastal waters of the Straits of Malacca

    International Nuclear Information System (INIS)

    Looi, Ley Juen; Aris, Ahmad Zaharin; Wan Johari, Wan Lutfi; Yusoff, Fatimah Md.; Hashim, Zailina

    2013-01-01

    Highlights: • Order of metals distribution were as follow: Fe > Al > Se > Cu > As > Zn > Mn > Ni > Ba > Pb > Cd > Cr > Co. • As and Cu levels have exceeded Malaysia Marine Water Quality Criteria and Standard. • Seven principal components of PCA were extracted from estuaries and coastal waters. • Mineral-related parameters are main pollution sources in the waters. -- Abstract: The status report on metal pollution in tropical estuaries and coastal waters is important to understand potential environmental health hazards. Detailed baseline measurements were made on physicochemical parameters (pH, temperature, redox potential, electrical conductivity, salinity, dissolved oxygen, total dissolved solid), major ions (Na, Ca, Mg, K, HCO 3 , Cl, SO 4 and NO 3 ) and metals concentrations ( 27 Al, 75 As, 138 Ba, 9 Be, 111 Cd, 59 Co, 63 Cu, 52 Cr, 57 Fe, 55 Mn, 60 Ni, 208 Pb, 80 Se, 66 Zn) at estuaries and coastal waters along the Straits of Malacca. Principal component analysis (PCA) was employed to reveal potential pollution sources. Seven principal components were extracted with relation to pollution contribution from minerals-related parameters, natural and anthropogenic sources. The output from this study will generate a profound understanding on the metal pollution status and pollution risk of the estuaries and coastal system

  1. Assessment of Metal Pollution in Soils from urban area: a preliminary study

    International Nuclear Information System (INIS)

    Alfonso Garcia, S.; Gelen, A.; Diaz Rizo, O.; D'Alessandro, K.; Saborit Sanchez, I.

    2015-01-01

    Concentration of heavy metals (Co, Ni, Cu, Zn and Pb) were determined by X-ray fluorescence in the top-soils (0-10 cm) from backyard of housing near to factory. In this housing lives a person that suffers of health problems which can be related with intoxication by heavy metals. The mean Co, Ni, Cu, Zn and Pb contents in the topsoil samples (4.3 ± 2.6; 32.2 ± 5.2; 86.3 ± 50; 451 ± 102; 162 ± 60 mg/kg -1 , respectively) were compared with mean concentrations for other cities around the world. The comparison with Dutch soil quality guidelines showed a median pollution with Co, Zn and Pb; however, other index: Integrated pollution index, Enrichment index and Enrichment factor showed soils are severely enriched with Pb and two stations are highly polluted and the enrichment index values shows that metal concentrations on the studied locations are above the permissible levels for urban agriculture. It is corroborated that the intoxication for heavy metals is one of the possible causes of the illness. It is recommended to make a deeper study of the soils around the factory. (Author)

  2. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  3. Nutrient and metal pollution of the eastern Gulf of Finland coastline: Sediments, macroalgae, microbiota

    International Nuclear Information System (INIS)

    Gubelit, Yulia; Polyak, Yulia; Dembska, Grazyna; Pazikowska-Sapota, Grazyna; Zegarowski, Lukasz; Kochura, Dmitry; Krivorotov, Denis; Podgornaya, Elena; Burova, Olga; Maazouzi, Chafik

    2016-01-01

    The anthropogenic pollution along the coastline of the eastern Gulf of Finland was studied through a range of methods, including analyses of metal contamination in water, surface sediments, accumulated algal biomass and its correlation with resistant microbiota. According to concentrations, the main pollutants in water were copper and manganese. Influence of Nuclear Power Plant was remarkable in adjacent areas and was expressed in high concentrations of molybdenum, nickel, copper and other elements in the water. Relatively high concentrations of copper, lead and zinc were found in sediments. Microbial tolerance appeared to be correlated with the concentration of the metals in sediments. Higher tolerance levels were found in sediment samples from more polluted stations. Macroalgae, which were massively developed in the coastal zone, had shown high level of metal bioaccumulation. Analyses of carbon, nitrogen and phosphorus content of algal tissues allowed the estimation of additional nutrient loading from accumulated decaying algal biomass on the coastal zone of the eastern Gulf of Finland. Mass development of algae in coastal area may contribute to accumulation of organic matter and associated metals. In our study the highest metal concentrations in sediments were found at the sites with dense and continuous layer of fresh and decaying macroalgal biomass, accompanied by hypoxic conditions. Also our study has shown that accumulated biomass may be a significant source of nutrients in the coastal ecosystem. - Highlights: • We studied heavy metal pollution in the coastline of the eastern Gulf of Finland. • Sediments, water, mass macroalgae and microbiota were included into analyses. • Eutrophication and nutrient loading remain the main problem of the studied area. • Macroalgae contribute to accumulation of organic matter, nutrient, and heavy metal. • Pollution in the studied area is caused by a combination of different factors.

  4. Nutrient and metal pollution of the eastern Gulf of Finland coastline: Sediments, macroalgae, microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Gubelit, Yulia, E-mail: Gubelit@list.ru [Zoological Institute of the Russian Academy of Sciences, St. Petersburg (Russian Federation); Polyak, Yulia [Scientific Research Center for Ecological Safety of the Russian Academy of Sciences, St. Petersburg (Russian Federation); Dembska, Grazyna; Pazikowska-Sapota, Grazyna; Zegarowski, Lukasz [Maritime Institute in Gdansk, Department of Environmental Protection, Gdansk (Poland); Kochura, Dmitry; Krivorotov, Denis; Podgornaya, Elena; Burova, Olga [Research Institute of Hygiene, Occupational Pathology and Human Ecology (RIHOPHE), Federal Medical Biological Agency, St. Petersburg (Russian Federation); Maazouzi, Chafik [Université Claude Bernard Lyon 1, Laboratoire d' Écologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Lyon (France)

    2016-04-15

    The anthropogenic pollution along the coastline of the eastern Gulf of Finland was studied through a range of methods, including analyses of metal contamination in water, surface sediments, accumulated algal biomass and its correlation with resistant microbiota. According to concentrations, the main pollutants in water were copper and manganese. Influence of Nuclear Power Plant was remarkable in adjacent areas and was expressed in high concentrations of molybdenum, nickel, copper and other elements in the water. Relatively high concentrations of copper, lead and zinc were found in sediments. Microbial tolerance appeared to be correlated with the concentration of the metals in sediments. Higher tolerance levels were found in sediment samples from more polluted stations. Macroalgae, which were massively developed in the coastal zone, had shown high level of metal bioaccumulation. Analyses of carbon, nitrogen and phosphorus content of algal tissues allowed the estimation of additional nutrient loading from accumulated decaying algal biomass on the coastal zone of the eastern Gulf of Finland. Mass development of algae in coastal area may contribute to accumulation of organic matter and associated metals. In our study the highest metal concentrations in sediments were found at the sites with dense and continuous layer of fresh and decaying macroalgal biomass, accompanied by hypoxic conditions. Also our study has shown that accumulated biomass may be a significant source of nutrients in the coastal ecosystem. - Highlights: • We studied heavy metal pollution in the coastline of the eastern Gulf of Finland. • Sediments, water, mass macroalgae and microbiota were included into analyses. • Eutrophication and nutrient loading remain the main problem of the studied area. • Macroalgae contribute to accumulation of organic matter, nutrient, and heavy metal. • Pollution in the studied area is caused by a combination of different factors.

  5. Temporal trends in metal pollution: using bird excrement as indicator.

    Directory of Open Access Journals (Sweden)

    Åsa M M Berglund

    Full Text Available Past mining and smelting activities have resulted in metal polluted environments all over the world, but long-term monitoring data is often scarce, especially in higher trophic levels. In this study we used bird (Parus major and Ficedula hypoleuca excrement to monitor metal pollution in the terrestrial environment following 16 years of continuously reduced emissions from a copper/nickel smelter in Finland. In the early 1990s, lead and cadmium concentrations dropped significantly in excrement, but the reduction did not directly reflect the changes in atmospheric emission from the smelter. This is likely due to a continuous contribution of metals also from the soil pool. We conclude that bird excrement can be used to assess changes in the environment as a whole but not specifically changes in atmospheric emission. Inter-annual variation in excrement concentration of especially copper and nickel demonstrates the importance of long-term monitoring to discern significant trends.

  6. Growth of Ag micro/nanoparticles using stress migration from multilayered metallic structure

    International Nuclear Information System (INIS)

    Lu, Yebo; Li, Yuan; Saka, Masumi

    2015-01-01

    Highlights: • A multilayered metallic structure was proposed to fabricate Ag micro/nanoparticles via stress migration. • Both ductile Pt and brittle TiN films can be used as the passivation layer by providing pathways for atomic migration. • The diameter of the formed Ag particle can be controlled using different material for passivation layer and changing the heating temperature. - Abstract: A multilayered metallic structure, consisting of Cu foil and subsequently deposited Ag thin film covered with a passivation layer, was proposed to fabricate Ag micro/nanoparticles by stress migration. With employing a ductile Pt or brittle TiN thin film as passivation, Ag micro/nanoparticles were successfully fabricated by annealing the corresponding multilayered structure. The relationship between characteristics (average diameter, number and volume) of the formed Ag micro/nanoparticles and the annealing temperature was discussed. On this basis, the growth mechanism was developed, which indicates that the dimension of Ag particles was mainly dominated by the different pathways for the migration of diffused Ag atoms in the passivation layers of Pt and TiN and the annealing temperature

  7. Analysis and Pollution Assessment of Heavy Metal in Soil, Perlis

    International Nuclear Information System (INIS)

    Siti Norbaya Mat Ripin; Siti Norbaya Mat Ripin; Sharizal Hasan; Mohd Lias Kamal; NorShahrizan Mohd Hashim

    2014-01-01

    Concentration of 5 heavy metals (Cu, Cr, Ni, Cd, Pb) were studied in the soils around Perlis, to assess heavy metals contamination distribution due to industrialization, urbanization and agricultural activities. Soil samples were collected at depth of 0-15 cm in eighteen station around Perlis. The soil samples (2 mm) were obtained duplicates and subjected to hot block digestion and the concentration of total metal was determined via ICP-MS. Overall concentrations of Cu, Cr, Ni, Cd and Pb in the soil samples ranged from 0.38-240.59, 0.642-3.921, 0.689-2.398, 0-0.63 and 0.39-27.47 mg/ kg respectively. The concentration of heavy metals in the soil display the following decreasing trend: Cu> Pb> Cr> Ni> Cd. From this result, found that level of heavy metal in soil near centralized Chuping industrial areas give maximum value compared with other location in Perlis. The Pollution index revealed that only 11 % of Cu and 6 % of Cd were classes as heavily contaminated. Meanwhile, Cu and Pb showed 6 % from all samples result a moderately contaminated and the others element give low contamination. Results of combined heavy metal concentration and heavy metal assessment indicate that industrial activities and traffic emission represent most important sources for Cu, Cd and Pb whereas Cr, Ni mainly from natural sources. Increasing anthropogenic influences on the environment, especially pollution loadings, have caused negative changes in natural ecosystems and decreased biodiversity. (author)

  8. Heavy metal pollution in benthic fishes from Kiri Dam in Guyuk local ...

    African Journals Online (AJOL)

    LUCKY

    catfish (Clarotes laticeps) in Kiri Dam in the Guyuk local government area, Adamawa State, Nigeria were studied. ... Key words: Heavy metals, pollution, fishes, Kiri Dam, Nigeria. ..... fish so as to reduce the risk of heavy metals consumption.

  9. [Environmental geochemical baseline of heavy metals in soils of the Ili river basin and pollution evaluation].

    Science.gov (United States)

    Zhao, Xin-Ru; Nasier, Telajin; Cheng, Yong-Yi; Zhan, Jiang-Yu; Yang, Jian-Hong

    2014-06-01

    Environmental geochemical baseline models of Cu, Zn, Pb, As, Hg were established by standardized method in the ehernozem, chestnut soil, sierozem and saline soil from the Ili river valley region. The theoretical baseline values were calculated. Baseline factor pollution index evaluation method, environmental background value evaluation method and heavy metal cleanliness evaluation method were used to compare soil pollution degrees. The baseline factor pollution index evaluation showed that As pollution was the most prominent among the four typical types of soils within the river basin, with 7.14%, 9.76%, 7.50% of sampling points in chernozem, chestnut soil and sierozem reached the heavy pollution, respectively. 7.32% of sampling points of chestnut soil reached the permitted heavy metal Pb pollution index in the chestnut soil. The variation extent of As and Pb was the largest, indicating large human disturbance. Environmental background value evaluation showed that As was the main pollution element, followed by Cu, Zn and Pb. Heavy metal cleanliness evaluation showed that Cu, Zn and Pb were better than cleanliness level 2 and Hg was the of cleanliness level 1 in all four types of soils. As showed moderate pollution in sierozem, and it was of cleanliness level 2 or better in chernozem, chestnut soil and saline-alkali soil. Comparing the three evaluation systems, the baseline factor pollution index evaluation more comprehensively reflected the geochemical migration characteristics of elements and the soil formation processes, and the pollution assessment could be specific to the sampling points. The environmental background value evaluation neglected the natural migration of heavy metals and the deposition process in the soil since it was established on the regional background values. The main purpose of the heavy metal cleanliness evaluation was to evaluate the safety degree of soil environment.

  10. Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview.

    Science.gov (United States)

    Lofrano, Giusy; Carotenuto, Maurizio; Libralato, Giovanni; Domingos, Rute F; Markus, Arjen; Dini, Luciana; Gautam, Ravindra Kumar; Baldantoni, Daniela; Rossi, Marco; Sharma, Sanjay K; Chattopadhyaya, Mahesh Chandra; Giugni, Maurizio; Meric, Sureyya

    2016-04-01

    Pollution by metal and metalloid ions is one of the most widespread environmental concerns. They are non-biodegradable, and, generally, present high water solubility facilitating their environmental mobilisation interacting with abiotic and biotic components such as adsorption onto natural colloids or even accumulation by living organisms, thus, threatening human health and ecosystems. Therefore, there is a high demand for effective removal treatments of heavy metals, making the application of adsorption materials such as polymer-functionalized nanocomposites (PFNCs), increasingly attractive. PFNCs retain the inherent remarkable surface properties of nanoparticles, while the polymeric support materials provide high stability and processability. These nanoparticle-matrix materials are of great interest for metals and metalloids removal thanks to the functional groups of the polymeric matrixes that provide specific bindings to target pollutants. This review discusses PFNCs synthesis, characterization and performance in adsorption processes as well as the potential environmental risks and perspectives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Indoor metallic pollution related to mining activity in the Bolivian Altiplano

    International Nuclear Information System (INIS)

    Fonturbel, Francisco E.; Barbieri, Enio; Herbas, Cristian; Barbieri, Flavia L.; Gardon, Jacques

    2011-01-01

    The environmental pollution associated with mining and metallurgical activities reaches its greatest extent in several Andean cities and villages. Many locations in this area have accumulated through centuries a large amount of mining wastes, often disregarding the magnitude of this situation. However, in these naturally mineralized regions, there is little information available stating the exact role of mining and metallurgical industries in urban pollution. In this study, we demonstrated that the various metallic elements present in indoor dust (As, Cd, Cu, Pb, Sb, Sn, Zn) had a common origin and this contamination was increased by the proximity to the mines. Lead dust concentration was found at concerning levels for public health. In addition, wrong behaviors such as carrying mining workwear home contributed to this indoor dust pollution. Consequently, the constant exposure of the population could represent a potential health hazard for vulnerable groups, especially children. - Highlights: → We measured polymetallic pollution in household indoor dust from a mining town. → Toxic elements (Pb, As, Cd, Sb) in dust are correlated, suggesting a common origin. → The most polluted houses are within a 1 km radius around the mining center. → Carrying mining workwear home increases indoor pollution. → Lead concentrations in dust represent a serious concern for Public Health (600 μg/g). - In a typical Andean mining city, the urban indoor pollution with toxic metallic elements is directly related to the closeness of the mining activities.

  12. Indoor metallic pollution related to mining activity in the Bolivian Altiplano

    Energy Technology Data Exchange (ETDEWEB)

    Fonturbel, Francisco E., E-mail: fonturbel@ug.uchile.cl [Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Barbieri, Enio [IRD-HSM (Institut de Recherche pour le Developpement), La Paz (Bolivia, Plurinational State of); Herbas, Cristian [Universidad Mayor de San Andres, IGEMA Institute (Instituto de Investigaciones Geologicas y del Medio Ambiente), La Paz (Bolivia, Plurinational State of); Barbieri, Flavia L.; Gardon, Jacques [IRD-HSM (Institut de Recherche pour le Developpement), La Paz (Bolivia, Plurinational State of); Universidad Mayor de San Andres, SELADIS Institute (Instituto de Servicios de Laboratorio para el Diagnostico e Investigacion en Salud), La Paz (Bolivia, Plurinational State of)

    2011-10-15

    The environmental pollution associated with mining and metallurgical activities reaches its greatest extent in several Andean cities and villages. Many locations in this area have accumulated through centuries a large amount of mining wastes, often disregarding the magnitude of this situation. However, in these naturally mineralized regions, there is little information available stating the exact role of mining and metallurgical industries in urban pollution. In this study, we demonstrated that the various metallic elements present in indoor dust (As, Cd, Cu, Pb, Sb, Sn, Zn) had a common origin and this contamination was increased by the proximity to the mines. Lead dust concentration was found at concerning levels for public health. In addition, wrong behaviors such as carrying mining workwear home contributed to this indoor dust pollution. Consequently, the constant exposure of the population could represent a potential health hazard for vulnerable groups, especially children. - Highlights: > We measured polymetallic pollution in household indoor dust from a mining town. > Toxic elements (Pb, As, Cd, Sb) in dust are correlated, suggesting a common origin. > The most polluted houses are within a 1 km radius around the mining center. > Carrying mining workwear home increases indoor pollution. > Lead concentrations in dust represent a serious concern for Public Health (600 {mu}g/g). - In a typical Andean mining city, the urban indoor pollution with toxic metallic elements is directly related to the closeness of the mining activities.

  13. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City].

    Science.gov (United States)

    Liu, Shuo; Wu, Quan-yuan; Cao, Xue-jiang; Wang, Ji-ning; Zhang, Long-long; Cai, Dong-quan; Zhou, Li-yuan; Liu, Na

    2016-01-15

    The present paper takes the coal mining area of Longkou City as the research area. Thirty-six topsoil (0-20 cm) samples were collected and the contents of 5 kinds of heavy metals were determined, including Cd, As, Ni, Ph, Cr. Geo-statistics analysis was used to analyze the spatial distribution of heavy metals. Principal component analysis (PCA) was used to explore the pollution sources of heavy metals and the degree of heavy metals pollution was evaluated by weighted average comprehensive pollution evaluation method. The results showed that enrichment phenomenon was significant for the 5 kinds of heavy metals. Taking secondary standard of National Environment Quality Standard for Soil as the background value, their exceed standard rates were 72.22%, 100%, 100%, 91.67%, 100%, respectively. Average contents of heavy metals in the soil samples were all over the national standard level two and were 1.53, 11.86, 2.40, 1.31, 4.09 times of the background value. In addition, the average contents were much higher than the background value of the topsoil in the eastern part of Shandong Province and were 9.85, 39.98, 8.85, 4.29, 12.71 times of the background value. According to the semivariogram model, we obtained the nugget-effects of 5 kinds of heavy metals and their values were in the order of As (0.644) > Cd (0.627) > Cr (0.538) > Ni (0.411) > Pb (0.294), all belonging to moderate spatial correlation. On the whole, the central part of the Sangyuan Coal Mine and its surrounding areas were the most seriously polluted, while the pollution of heavy metals in the east and west of the study area was relatively light. Principal component analysis suggested that the enrichment of Cd, As, Ni, Cr was due to irrigation of wastewater, the discharge of industry and enterprise, and the industrial activity. Automobile exhaust and coal combustion were the main pollution sources of Pb. The single-factor assessment of heavy metals pollution showed that the degree of different heavy metals

  14. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review

    International Nuclear Information System (INIS)

    Joo, Sung Hee; Zhao, Dongye

    2017-01-01

    Highlights: • Influence of contaminants on the mobility of metal oxide nanoparticles (MNPs). • Synergistic effects of MNPs in the presence of contaminants. • Effect of environmental factors on the transformed MNPs. • Research direction on the toxicity modeling assessment of heterogeneous systems. - Abstract: Metal oxide nanoparticles (MNPs) have been used for many purposes including water treatment, health, cosmetics, electronics, food packaging, and even food products. As their applications continue to expand, concerns have been mounting about the environmental fate and potential health risks of the nanoparticles in the environment. Based on the latest information, this review provides an overview of the factors that affect the fate, transformation and toxicity of MNPs. Emphasis is placed on the effects of various aquatic contaminants under various environmental conditions on the transformation of metal oxides and their transport kinetics – both in homogeneous and heterogeneous systems – and the effects of contaminants on the toxicity of MNPs. The presence of existing contaminants decreases bioavailability through hetero-aggregation, sorption, and/or complexation upon an interaction with MNPs. Contaminants also influence the fate and transport of MNPs and exhibit their synergistic toxic effects that contribute to the extent of the toxicity. This review will help regulators, engineers, and scientists in this field to understand the latest development on MNPs, their interactions with aquatic contaminants as well as the environmental dynamics of their fate and transformation. The knowledge gap and future research needs are also identified, and the challenges in assessing the environmental fate and transport of nanoparticles in heterogeneous systems are discussed.

  15. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Sung Hee, E-mail: s.joo1@miami.edu [Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146-0630 (United States); Zhao, Dongye [Department of Civil and Environmental Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL 36849 (United States)

    2017-01-15

    Highlights: • Influence of contaminants on the mobility of metal oxide nanoparticles (MNPs). • Synergistic effects of MNPs in the presence of contaminants. • Effect of environmental factors on the transformed MNPs. • Research direction on the toxicity modeling assessment of heterogeneous systems. - Abstract: Metal oxide nanoparticles (MNPs) have been used for many purposes including water treatment, health, cosmetics, electronics, food packaging, and even food products. As their applications continue to expand, concerns have been mounting about the environmental fate and potential health risks of the nanoparticles in the environment. Based on the latest information, this review provides an overview of the factors that affect the fate, transformation and toxicity of MNPs. Emphasis is placed on the effects of various aquatic contaminants under various environmental conditions on the transformation of metal oxides and their transport kinetics – both in homogeneous and heterogeneous systems – and the effects of contaminants on the toxicity of MNPs. The presence of existing contaminants decreases bioavailability through hetero-aggregation, sorption, and/or complexation upon an interaction with MNPs. Contaminants also influence the fate and transport of MNPs and exhibit their synergistic toxic effects that contribute to the extent of the toxicity. This review will help regulators, engineers, and scientists in this field to understand the latest development on MNPs, their interactions with aquatic contaminants as well as the environmental dynamics of their fate and transformation. The knowledge gap and future research needs are also identified, and the challenges in assessing the environmental fate and transport of nanoparticles in heterogeneous systems are discussed.

  16. Real-time cellular and molecular dynamics of bi-metallic self-therapeutic nanoparticle in cancer cells

    Science.gov (United States)

    Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Paspala, Syed Ameer Basha; Habeeb, Md. Aejaz; Khan, Aleem Ahmed

    2018-02-01

    Since last decades various kinds of nanoparticles have been functionalized to improve their biomedical applications. However, the biological effect of un-modified/non-functionalized bi-metallic magnetic nanoparticles remains under investigated. Herein we demonstrate a multifaceted non-functionalized bi-metallic inorganic Gd-SPIO nanoparticle which passes dual high MRI contrast and can kill the cancer cells through several mechanisms. The results of the present study demonstrate that Gd-SPIO nanoparticles have potential to induce cancer cell death by production of reactive oxygen species and apoptotic events. Furthermore, Gd-SPIO nanoparticles also enhance the expression levels of miRNA-199a and miRNA-181a-7p which results in decreased levels of cancer markers such as C-met, TGF-β and hURP. One very interesting finding of this study reveals side scatter-based real-time analysis of nanoparticle uptake in cancer cells using flow cytometry analysis. In conclusion, this study paves a way for future investigation of un-modified inorganic nanoparticles to purport enhanced therapeutic effect in combination with potential anti-tumor drugs/molecules in cancer cells.

  17. Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films

    Science.gov (United States)

    Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    2000-01-01

    A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.

  18. [Distribution characteristic and assessment of soil heavy metal pollution in the iron mining of Baotou in Inner Mongolia].

    Science.gov (United States)

    Guo, Wei; Zhao, Ren-Xin; Zhang, Jun; Bao, Yu-Ying; Wang, Hong; Yang, Ming; Sun, Xiao-Li; Jin, Fan

    2011-10-01

    The pollution status and total concentration of soil heavy metals were analyzed around tailing reservoir of Baotou and iron mining of Bayan Obo located in Inner Mongolia grassland ecosystem. Aim of the study is to control soil heavy metal pollution of grassland mining area and provide the basic information. The results indicated that the soils from different directions of the tailing reservoir were contaminated by Pb, Cu, Zn and Mn. According to the single factor pollution index, the pollution degree was Mn > Zn > Pb > Cu. According to Nemerow integrated pollution index, the indexes of the northeast, southeast, southwest, and northwest of the tailing reservoir, were 2.43, 10.2, 1.88, 1.64. Soils from the southeast had the most serious heavy metal contamination because of the dominant wind of northwest. Within 50 m from the edge of tailing reservoir, heavy metal contamination was most serious except Cu. With regard to Bayan Obo iron mining, the single factor pollution index indicated that the soils from the six surveyed regions were contaminated by Pb, Cu, Zn and Mn. The integrated pollution index indicated that the indexes of the six regions, such as the mining area, the dump, outside the dump, outside the urban area, east region of the railway, and west region of the railway, were 14.3, 4.30, 2.69, 3.41, 2.88, and 2.20, respectively. The soil pollution degree of the mining area was the highest. Additionally, the transport of ore resulted in soil heavy metal pollution along railway. In general, soils of the two studied areas had the similar pollution characteristic, and the elements of heavy metal contamination were corresponding with the concentrations of tailings. The health and stabilization of grassland ecosystem are being threatened by soil heavy metals.

  19. X-ray fluorescence spectrometry analysis of soil heavy metals in a populous place and evaluation on its heavy metals pollution

    International Nuclear Information System (INIS)

    Li Dan; Wang Guangxi; Luo Yaoyao; Qiu Luyang

    2012-01-01

    Abstract The contents of As, Cr, Pb, Cu, Zn and Ni in soil of the populous place, were determined by X-ray fluorescence spectrometry. The heavy metals pollution of soil was evaluated by using single pollute index, synthesis pollute index, geoaccumulation index and potential ecological risk index, and the results showed that the populous place was in the state of slight pollution and ecological risk. (authors)

  20. Examining changes in cellular communication in neuroendocrine cells after noble metal nanoparticle exposure.

    Science.gov (United States)

    Love, Sara A; Liu, Zhen; Haynes, Christy L

    2012-07-07

    As nanoparticles enjoy increasingly widespread use in commercial applications, the potential for unintentional exposure has become much more likely during any given day. Researchers in the field of nanotoxicity are working to determine the physicochemical nanoparticle properties that lead to toxicity in an effort to establish safe design rules. This work explores the effects of noble metal nanoparticle exposure in murine chromaffin cells, focusing on examining the effects of size and surface functionality (coating) in silver and gold, respectively. Carbon-fibre microelectrode amperometry was utilized to examine the effect of exposure on exocytosis function, at the single cell level, and provided new insights into the compromised functions of cells. Silver nanoparticles of varied size, between 15 and 60 nm diameter, were exposed to cells and found to alter the release kinetics of exocytosis for those cells exposed to the smallest examined size. Effects of gold were examined after modification with two commonly used 'bio-friendly' polymers, either heparin or poly (ethylene glycol), and gold nanoparticles were found to induce altered cellular adhesion or the number of chemical messenger molecules released, respectively. These results support the body of work suggesting that noble metal nanoparticles perturb exocytosis, typically altering the number of molecules and kinetics of release, and supports a direct disruption of the vesicle matrix by the nanoparticle. Overall, it is clear that various nanoparticle physicochemical properties, including size and surface coating, do modulate changes in cellular communication via exocytosis.

  1. Partitioning and Dissolution Behavior of Metal-based Engineered Nanoparticles in Sediment and Soil Suspensions

    Directory of Open Access Journals (Sweden)

    Koetsem F. Van

    2013-04-01

    Full Text Available Nowadays engineered nanoparticles are being used in a whole range of commercial applications and are therefore expected to inevitably find their way into the environment where their fate and behavior are still largely unknown. The objective of this study was to investigate the behavior and fate of a number of engineered nanoparticles (CeO2, SnO2, Ag in sediment and soil suspensions. In particular, the association of nanoparticles with solid phases, the kinetics of these interactions, and the solubility of the nanoparticulate matter in sediment and soil suspensions were studied. Four different sediments and three different soils were sampled at various locations in Flanders (Belgium, dried, grinded and characterized. Sediment and soil suspensions were prepared with Milli-Q water (1/10 S/L, spiked with the different metallic nanoparticles or corresponding ions, and continuously shaken for 24 hours. At regular time intervals, samples of the suspensions were collected and centrifuged at 500 or 2000 rpm, or left for gravitational settling. The supernatant was analyzed for total metal contents after aqua regia digestion and for dissolved metal ions after centrifugal ultrafiltration. In a second experiment, the impact of centrifugation speed on the amount of suspended matter in the supernatant was also studied. Relations between soil or sediment properties, suspended matter and metals in the supernatant were investigated. First data already point towards a strong association of nanoparticles with suspended material. The remaining data are still being collected and will be presented at the conference.

  2. DNA nanostructure-directed assembly of metal nanoparticle superlattices

    Science.gov (United States)

    Julin, Sofia; Nummelin, Sami; Kostiainen, Mauri A.; Linko, Veikko

    2018-05-01

    Structural DNA nanotechnology provides unique, well-controlled, versatile, and highly addressable motifs and templates for assembling materials at the nanoscale. These methods to build from the bottom-up using DNA as a construction material are based on programmable and fully predictable Watson-Crick base pairing. Researchers have adopted these techniques to an increasing extent for creating numerous DNA nanostructures for a variety of uses ranging from nanoelectronics to drug-delivery applications. Recently, an increasing effort has been put into attaching nanoparticles (the size range of 1-20 nm) to the accurate DNA motifs and into creating metallic nanostructures (typically 20-100 nm) using designer DNA nanoshapes as molds or stencils. By combining nanoparticles with the superior addressability of DNA-based scaffolds, it is possible to form well-ordered materials with intriguing and completely new optical, plasmonic, electronic, and magnetic properties. This focused review discusses the DNA structure-directed nanoparticle assemblies covering the wide range of different one-, two-, and three-dimensional systems.

  3. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru.

    Science.gov (United States)

    Cooke, Colin A; Abbott, Mark B

    2008-04-15

    To date, few studies have investigated the environmental legacy associated with industrialization in the South American Andes. Here, we present an environmental archive of industrial pollution from (210)Pb-dated lake cores recovered from Laguna Chipian, located near the Cerro de Pasco metallurgical region and Laguna Pirhuacocha, located near the Morococha mining region and the La Oroya smelting complex. At Laguna Chipian, trace metal concentrations increase beginning ~1900 AD, coincident with the construction of the central Peruvian railway, and the rapid industrial development of the Cerro de Pasco region. Trace metal concentrations and fluxes peak during the 1950s before subsequently declining up-core (though remaining well above background levels). While Colonial mining and smelting operations are known to have occurred at Cerro de Pasco since at least 1630 AD, our sediment record preserves no associated metal deposition. Based on our (14)C and (210)Pb data, we suggest that this is due to a depositional hiatus, rather than a lack of regional Colonial pollution. At Laguna Pirhuacocha, industrial trace metal deposition first begins ~1925 AD, rapidly increasing after ~1950 AD and peaking during either the 1970s or 1990s. Trace metal concentrations from these lakes are comparable to some of the most polluted lakes in North America and Europe. There appears to be little diagenetic alteration of the trace metal record at either lake, the exception being arsenic (As) accumulation at Laguna Pirhuacocha. There, a correlation between As and the redox-sensitive element manganese (Mn) suggests that the sedimentary As burden is undergoing diagenetic migration towards the sediment-water interface. This mobility has contributed to surface sediment As concentrations in excess of 1100 microg g(-1). The results presented here chronicle a rapidly changing Andean environment, and highlight a need for future research in the rate and magnitude of atmospheric metal pollution.

  4. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru

    International Nuclear Information System (INIS)

    Cooke, Colin A.; Abbott, Mark B.

    2008-01-01

    To date, few studies have investigated the environmental legacy associated with industrialization in the South American Andes. Here, we present an environmental archive of industrial pollution from 210 Pb-dated lake cores recovered from Laguna Chipian, located near the Cerro de Pasco metallurgical region and Laguna Pirhuacocha, located near the Morococha mining region and the La Oroya smelting complex. At Laguna Chipian, trace metal concentrations increase beginning ∼ 1900 AD, coincident with the construction of the central Peruvian railway, and the rapid industrial development of the Cerro de Pasco region. Trace metal concentrations and fluxes peak during the 1950s before subsequently declining up-core (though remaining well above background levels). While Colonial mining and smelting operations are known to have occurred at Cerro de Pasco since at least 1630 AD, our sediment record preserves no associated metal deposition. Based on our 14 C and 210 Pb data, we suggest that this is due to a depositional hiatus, rather than a lack of regional Colonial pollution. At Laguna Pirhuacocha, industrial trace metal deposition first begins ∼ 1925 AD, rapidly increasing after ∼ 1950 AD and peaking during either the 1970s or 1990s. Trace metal concentrations from these lakes are comparable to some of the most polluted lakes in North America and Europe. There appears to be little diagenetic alteration of the trace metal record at either lake, the exception being arsenic (As) accumulation at Laguna Pirhuacocha. There, a correlation between As and the redox-sensitive element manganese (Mn) suggests that the sedimentary As burden is undergoing diagenetic migration towards the sediment-water interface. This mobility has contributed to surface sediment As concentrations in excess of 1100 μg g -1 . The results presented here chronicle a rapidly changing Andean environment, and highlight a need for future research in the rate and magnitude of atmospheric metal pollution

  5. Analysis of physical composition and heavy metals pollution of municipal solid waste (MSW) in Beijing

    Science.gov (United States)

    Zhang, H. B.; Zhang, H. Y.; Wang, G. Q.; Bai, X. J.

    2018-03-01

    By using on-site sampling and physical-chemical analysis, the physical composition and the contents of heavy metals in Beijing MSW were researched. The result showed that the main components of MSW in Beijing are mainly kitchen waste, the average content of kitchen waste are more than 60% and 50% in summer and in winter, respectively. The pollution of Cu, Hg and Cr are all more serious for MSW in Haidian and Dongcheng district. The heavy metal pollution of MSW in summer is higher than that in winter in Beijing. Seasonal impacts should be taken into consideration when dealing with MSW. The content of heavy metals in MSW exceeded the background value of soil in Haidian and Dongcheng districts. In order to reduce heavy metal pollution, the MSW should be separated collection and treated.

  6. Investigation and Evaluation of Heavy Metals Pollution of Agricultural Soils Near a Steel Plant

    Directory of Open Access Journals (Sweden)

    XIE Tuan-hui

    2018-02-01

    Full Text Available The pollution of heavy metals in farmland around a steel plant in the west of Fujian Province was investigated. The pollution index method, principal component analysis and factor analysis on the pollution of Cr, Pb, Cd, Ni, Cu, Zn and As in the soils were carried out to clarify the pollution status, the main source, the degree, and the distribution of the heavy metals pollution in the soil. The secondary standards for acidic agricultural soils of "soil environmental quality standard"(GB 15618-1995were used as the evaluation criterion. The single factor evaluation results showed that the pollution of soil by Cd and Zn in the investigated area was widespread and serious and the points over standard rate was 100% and 95.5% respectively, while the pollution by Pb, Cu and As was slight and the points over standard rate was 29.6%,15.9% and 6.8% respectively. The soils were not polluted by Cr and Ni. The principal component analysis and factor analysis showed that the correlation between Pb, Cd, Cu, Zn and As was significant and homologous. Therefore, the pollution of Pb, Cd, Cu, Zn and As of the soils should be mainly attributed to the pollutants emitted from the steel plant. The correlation between Cr and Ni was also significant and homologous. It was deduced that Cr and Ni in the soils were largely originated from the soils themselves. The comprehensive pollution degree of the heavy metals in the soils decreased as the distance between the steel plant and farmland increasing. The soils of the fields near the entrance of irrigation water from the waste water of the steel plant were more seriously polluted.

  7. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  8. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2015-10-01

    Full Text Available Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  9. Controlling measures of micro-plastic and nano pollutants: A short review of disposing waste toners.

    Science.gov (United States)

    Ruan, Jujun; Qin, Baojia; Huang, Jiaxin

    2018-05-31

    Micro-plastic and nano-particle have been the focal pollutants in environmental science. The printer toner is omitted micro-plastic and nano pollutant. It is comprised of micro polyacrylate styrene and nano-Fe 3 O 4 particles. Polyacrylate styrene and nano-metal were proved to be irreversibly toxic to biological cells. Therefore, toners have the potential environmental risk and healthy harm due to include micro plastics and nano-metal. To our knowledge, few studies provided the specific collection and treatment of micro-plastic pollutant. This paper has chosen a kind of micro-plastic and nano pollutant toxic toner and provided technical guidance and inspiration for controlling the micro-plastic and nano pollutants. The method of vacuum-gasification-condensation was adopted for controlling the micro-plastic and nano pollutant toner. We believe this review will open up a potential avenue for controlling micro-plastic and nano pollutants for environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Problem of landfilling environments pollution by heavy metals

    Science.gov (United States)

    Zilenina, V. G.; Ulanova, O. V.; Begunova, L. A.

    2017-10-01

    The article discusses the problems of snow and soil pollution by heavy metals. The results of physical and chemical special features of the deposit environment are given. Also, the results of snow mantle research in Irkutsk are described. The problem of manganese degradation from electrochemical cells disposed in the SMW areas is being discussed.

  11. Effects of interband transitions on Faraday rotation in metallic nanoparticles.

    Science.gov (United States)

    Wysin, G M; Chikan, Viktor; Young, Nathan; Dani, Raj Kumar

    2013-08-14

    The Faraday rotation in metallic nanoparticles is considered based on a quantum model for the dielectric function ϵ(ω) in the presence of a DC magnetic field B. We focus on effects in ϵ(ω) due to interband transitions (IBTs), which are important in the blue and ultraviolet for noble metals used in plasmonics. The dielectric function is found using the perturbation of the electron density matrix due to the optical field of the incident electromagnetic radiation. The calculation is applied to transitions between two bands (d and p, for example) separated by a gap, as one finds in gold at the L-point of the Fermi surface. The result of the DC magnetic field is a shift in the effective optical frequency causing IBTs by ±μBB/ħ, where opposite signs are associated with left/right circular polarizations. The Faraday rotation for a dilute solution of 17 nm diameter gold nanoparticles is measured and compared with both the IBT theory and a simpler Drude model for the bound electron response. Effects of the plasmon resonance mode on Faraday rotation in nanoparticles are also discussed.

  12. Graphene layer encapsulated metal nanoparticles as a new type of non-precious metal catalysts for oxygen reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhong, Lijie; Jensen, Jens Oluf

    2016-01-01

    Cheap and efficient non-precious metal catalysts for oxygen reduction have been a focus of research in the field of low-temperature fuel cells. This review is devoted to a brief summary of the recent work on a new type of catalysts, i.e., the graphene layer encapsulated metal nanoparticles....... The discussion is focused on the synthesis, structure, mechanism, performance, and further research....

  13. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    Science.gov (United States)

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  14. Pollution load index for heavy metals in Mian-Ab plain soil, Khuzestan, Iran

    OpenAIRE

    Jorfi, Sahand; Maleki, Rohangiz; Jaafarzadeh, Neemat; Ahmadi, Mehdi

    2017-01-01

    Soil pollution by heavy metals is a major concern in agricultural area. Potential impact of heavy metals in agricultural soil on human health by accumulating in food chain demonstrated elsewhere.In this regard Mian-Ab plain as a major agricultural site of Khuzestan province considered for Arsenic, cadmium and lead concentration as the main potential toxic pollutants in soil. 50 topsoil samples were collected and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Also Contamina...

  15. The potential of willow for remediation of heavy metal polluted calcareous urban soils

    International Nuclear Information System (INIS)

    Jensen, Julie K.; Holm, Peter E.; Nejrup, Jens; Larsen, Morten B.; Borggaard, Ole K.

    2009-01-01

    Growth performance and heavy metal uptake by willow (Salix viminalis) from strongly and moderately polluted calcareous soils were investigated in field and growth chamber trials to assess the suitability of willow for phytoremediation. Field uptakes were 2-10 times higher than growth chamber uptakes. Despite high concentrations of cadmium (≥80 mg/kg) and zinc (≥3000 mg/kg) in leaves of willow grown on strongly polluted soil with up to 18 mg Cd/kg, 1400 mg Cu/kg, 500 mg Pb/kg and 3300 mg Zn/kg, it is unsuited on strongly polluted soils because of poor growth. However, willow proved promising on moderately polluted soils (2.5 mg Cd/kg and 400 mg Zn/kg), where it extracted 0.13% of total Cd and 0.29% of the total Zn per year probably representing the most mobile fraction. Cu and Pb are strongly fixed in calcareous soils. - Willow is suited for remediation of moderately heavy metal polluted calcareous soils

  16. Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder

    International Nuclear Information System (INIS)

    Montes, Milka O.; Hanna, Shannon K.; Lenihan, Hunter S.; Keller, Arturo A.

    2012-01-01

    Highlights: ► Suspension-feeding by mussels can greatly alter mobility and fate of metal oxide nanoparticles. ► Bioprocessing of metal oxide nanoparticles by mussels removes large fraction from water column. ► Mussels repackage metal oxide nanoparticles in highly concentrated pseudofeces. ► Novel biological pathway between major compartments in marine systems. ► Very different outcome for ZnO and CeO 2 nanoparticles based on their solubility. - Abstract: A growing body of evidence indicates that some engineered nanoparticles (ENPs) are toxic to organisms that perform important ecosystem services in terrestrial and aquatic ecosystems. However, toxicity can be influenced by the biotransformation of contaminants, including ENPs, as it may alter the fate and transport of these substances. In turn, fate and transport can influence their bioavailability. To understand how biotransformation influences the fate and transport of ENPs in marine ecosystems, we exposed suspension-feeding mussels, Mytilus galloprovincialis, to two common nano-metal oxides, CeO 2 and ZnO, over a range of concentrations from 1 mg L −1 to 10 mg L −1 , in a laboratory experiment. Mussels exposed to 10 mg L −1 accumulated 62 μg g −1 of Ce and 880 μg g −1 of Zn on a dry tissue basis but rejected 21,000 μg g −1 for Ce and 63,000 μg g −1 for Zn in pseudofeces. Scanning electron microscope evidence indicates CeO 2 remained as ENPs but ZnO did not after being rejected by the mussels. Mussels filtered most of the CeO 2 from the aqueous media, while a significant fraction of Zn remained in solution. Differences in ENP solubility affect ENP uptake, excretion, and accumulation in mussels. Our study highlights the potential role of marine suspension feeders in biotransformation of ENPs.

  17. [Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an].

    Science.gov (United States)

    Fang, Xiao-bo; Shi, Han; Liao, Xin-feng; Lou, Zhong; Zhou, Lyu-yan; Yu, Hai-xia; Yao, Lin; Sun, Li-ping

    2015-06-01

    An investigation was carried out in an attempt to reveal the characteristics of heavy metals contamination in the soils of Phyllostachys praecox forest in Lin' an. Based on the concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in 160 topsoil samples, the pollution status and ecological risks of heavy metals in the soils were assessed by single factor pollution index, Nemerow integrated pollution index and Hankanson potential ecological risk index. The spatial variability of heavy metal concentrations in the soils closely related to the distribution of traffic, industrial and livestock pollution sources. The average concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in the soils were 0.16, 7.41, 34.36, 87.98, 103.98, 0.26, 59.12, 29.56, 11.44 and 350.26 mg · kg(-1), respectively. Pb, Cd, Zn and Cu concentrations were as 2.89, 1.70, 1.12 and 1.12 times as the background values of soil in Zhejiang Province, respectively. But their concentrations were all lower than the threshold values of the National Environmental Quality Standard for Soil (GB 15618-1995). The average single factor pollution index revealed that the level of heavy metal pollution in the soils was in order of Pb>Cd>Cu= Zn>Hg>As>Ni>Co>Cr>Mn. Pb pollution was of moderate level while Cd, Cu and Zn pollutions were slight. There was no soil pollution caused by the other heavy metals. However, the Nemerow integrated pollution index showed that all the 160 soil samples were contaminated by heavy metals to a certain extent. Among total 160 soil samples, slight pollution level, moderate pollution level and heavy pollution level accounted for 55.6%, 29.4% and 15.0%, respectively. The average single factor potential ecological risk index (Er(i)) implied that the potential ecological risk related to Cd reached moderate level, while the others were of slight level. Furthermore, Cd and Hg showed higher potential ecological risk indices which reached up to 256.82 and 187.33 respectively

  18. Response of magnetic properties to heavy metal pollution in dust from three industrial cities in China

    International Nuclear Information System (INIS)

    Zhu, Zongmin; Li, Zhonggen; Bi, Xiangyang; Han, Zhixuan; Yu, Genhua

    2013-01-01

    Highlights: ► Elevated magnetic particles and heavy metals coexist in dust. ► Morphology and mineralogy of magnetic particles were studied by SEM-EDX and XRD. ► Magnetic minerals in the dust consist of magnetite, hematite, and metallic iron. ► Impact of metallic iron particles and multi-sources of metal pollutants was notable. -- Abstract: Magnetic method is a reliable and powerful technique for identification of the relative contribution of industrial pollutants. However, it has not been fully applied in urban area impacted by non-ferrous metal (NFM) smelting/processing activities. The aim of this study is to explore the applicability of magnetic methods for detecting heavy metal contamination in dust from three NFM smelting/processing industrial cities (Ezhou, Zhuzhou, and Hezhang) in China. The enhancements of magnetic susceptibility (MS) and saturation isothermal remanent magnetization (SIRM) together with heavy metals were significant in the studied areas in comparison with the background values. Scanning electron microscope (SEM) analysis revealed that magnetic particles in dust from Ezhou were dominated by spherules, while those from Zhuzhou and Hezhang were mainly consisted of irregular-shaped particles. κ–T curves and X-ray diffraction (XRD) analyses indicated that the magnetic particles from Ezhou were dominated by magnetite and metallic iron, whereas those from Zhuzhou and Hezhang were consisted of magnetite and hematite. Our study indicates that magnetic properties of the dust are sensitive to the NFM smelting/processing related heavy metal pollutants. However, the relationship between magnetic parameters and heavy metals was influenced by the presence of metallic iron particles and multi-sources of metal pollutants

  19. Experiences of the Use of Bio monitors for Heavy Metal Pollution Control in Almendares River

    International Nuclear Information System (INIS)

    Olivares- Rieumont, S.; Lima, L.; De la Rosa, D.; Martinez, F.; Borroto, J.; Columbie, I.; Sanchez, M.J.

    2003-01-01

    Full Text: This work is the first approach to establish a monitoring system for heavy metals in the Almendares Vento Basin. This basin is the most important watershed of Havana City, which main river is the Almendares River, that with 42 km of length goes through 5 municipalities, where live more than 500,000 inhabitants. The river receives a large pollution loads from more than 50 pollution sources of Havana City. Inputs of toxic substances like heavy metals come from the industries located along the river and tributaries, the urban discharges and from important speedways in both shores of the river. In the work, concentrations of Cd, Pb, Zn, Cu, Ni, Co and Cr in sediments, water, gastropod species Tarebia granifera Lamarck, macrophyte Eichhornia Crassipes and fish from the specie Gambusia were evaluated at 14 stations during the dry season of 2003. Concentrations of copper and lead in water samples exceeded applicable guidelines for many of the sites monitored in the river basin. Heavy metals in sediments were analysed using three-stage sequential extraction procedure. In sediments high contents of studied metals were found in the bioavailable fraction. Some stations were highly polluted with all elements. Two main sources of pollution with heavy metals could be identified in the basin due to the higher concentration of most of the studied metals in the analized sampling stations. Pb concentrations were high in almost all the stations. Similar behaviour was found for the metal concentration in Eichhornia Crassipes roots, that appear to have an interesting potential as bio monitor of the pollution with heavy metals. Tarebia granifera Lamarck only could be found in 5 of the 14 stations monitored, and it presence is related with the quality of the river water. The magnitude of contamination was estimated by the comparison between local backgrounds and concentration of metals measured. Only high concentration of Zn were found in the Gambusia tissue, and no

  20. Heavy Metal Pollution in Soils on Railroad Side of Zhengzhou-Putian Section of Longxi-Haizhou Railroad, China

    Institute of Scientific and Technical Information of China (English)

    MA Jian-Hua; CHU Chun-Jie; LI Jian; SONG Bo

    2009-01-01

    The pollution status and horizontal distribution of heavy metals (Ni, Pb, Cr, Zn, Cu, and Cd) in the soil on railroad side along the Zhengzhou-Putian section of Longxi-Haizhou Railroad were studied by collecting soil samples along a sampling section perpendicular to the railroad at the distances of 0, 10, 20, 30, 50, 100, 200, 300, and 500 m from the railroad edge. The concentrations of heavy metals in the sampling soils were higher than those of the control site. The concentrations of Pb, Zn, and Cd were found to be the highest in the soils at the railroad edge, and then decreased with increasing distance from the railroad. The highest concentrations of Ni, Cr, and Cu in soils were located at about 10-30 m from the railroad. Compared with the single factor pollution index (SFPI) of heavy metals calculated for the control site, the average SFPI from the sampling sites decreased in the order of Cr > Cd > Pb > Zn > Ni > Cu. There were notable negative correlations between the integral pollution index (IPI) of soil heavy metals at all sampling sites and the distances from the railroad. According to three IPIs calculated from the background values of heavy metals in och-aquic Cambisols, the heavy metal concentrations in the control soil, and the 2nd levels for soil heavy metals in GB15618-1995, the study area could be divided, based on the distances from the railroad, into four pollution zones: heavy pollution zone (0-10 m), medium pollution zone (10-50 m), slight pollution zone (50-100 m), and warning zone (100-500 m), respectively.

  1. Assessment of metals pollution in sediment cores from the Sabah-Sarawak coastal waters

    International Nuclear Information System (INIS)

    Zal Uyun Wan Mahmood; Zaharudin Ahmad; Che Abdul Rahim Mohamed; Abdul Kadir Ishak; Norfaizal Mohammed

    2011-01-01

    The distribution, enrichment and pollution status of metals in sediment cores from the Sabah-Sarawak coastal waters were studied. Seven sediment cores were taken in July 2004 using a gravity box corer. The metals of Cu, Zn and Pb were analyzed by ICP-MS to assess the pollution status of the sediments. The sediment fine fraction and organic carbon content was also analyzed. Enrichment Factor (EF), Geo accumulation Index (Igeo) and Pollution Load Index (PLI) was calculated as criteria of possible contamination. The results showed that collected sediments were composed with clay, silt and sand as 12 - 74 %, 27 - 72 % and 0 - 20 %, respectively. Meanwhile, organic carbon contents were relatively low and constant over time, based on sediment depth profiles, and it did not exceed 5 % at any sampling station. The average metal concentrations in sediment cores at all sampling station were distributed in the ranges of 1.66 ± 1.36 - 6.61 ± 0.12 μgg -1 for Cu, 26.55 ± 1.04 - 57.94 ± 1.58 μgg -1 for Zn and 3.99 ± 0.10 - 14.48 ± 0.32 μgg -1 for Pb. According to calculations of EF, I geo and PLI, it can be concluded that concentrations of Cu, Zn and Pb were not significantly affected by pollution from anthropogenic sources at the seven sampling locations. Thus, the metal content of Cu, Zn and Pb in sediment should not cause pollution problem to the marine environment of Sabah-Sarawak coastal waters and further response measures are not needed. (author)

  2. Metal-based nanoparticle interactions with the nervous system: the challenge of brain entry and the risk of retention in the organism.

    Science.gov (United States)

    Yokel, Robert; Grulke, Eric; MacPhail, Robert

    2013-01-01

    This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical-chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in vivo methods, and very few human studies. The routes of uptake into the nervous system and mechanisms of nanoparticle uptake by cells are presented with examples. Brain nanoparticle uptake inversely correlates with size. The influence of shape has not been reported. Surface charge has not been clearly shown to affect flux across the blood-brain barrier. There is very little evidence for metal-based nanoparticle distribution into brain parenchyma. Metal-based nanoparticle disruption of the blood-brain barrier and adverse brain changes have been shown, and are more pronounced for spheres than rods. Study concentrations need to be put in exposure contexts. Work with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based nanoparticles to produce toxicity. Interpretation of these results must consider the ability of nanoparticles to distribute across the barriers protecting the nervous system. Effects of the persistence of poorly soluble metal-based nanoparticles are of particular concern. Copyright © 2013 Wiley Periodicals, Inc.

  3. Synthesis metal nanoparticle

    Science.gov (United States)

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  4. Remobilization of metals from slag and polluted sediments (Case Study: The canal of the Deule River, northern France)

    International Nuclear Information System (INIS)

    Vdovic, Neda; Billon, Gabriel; Gabelle, Cedric; Potdevin, Jean-Luc

    2006-01-01

    The anthropogenic impact on the environment in the last century has proven to be very negative due to the fast development of industry. A typical example is the Deule River in northern France, one of the most polluted sites in this region. The concentrations of Pb, Cd, Zn and Cu in river sediments are 300, 800, 50 and 15 times higher, respectively, than the background values. The present study was undertaken to evaluate the capacity of already polluted sediments to capture metals released from industrial wastes (slag). As it were, in spite of the high metal pollution level, sediments have still shown the ability to adsorb metals released from slag under the conditions provided. Their efficiency in 'cleaning up' some of the metals (e.g. Pb) seems to be additionally enhanced in anoxic conditions. This study provided some additional information on the importance of sediments as a pollutant sink. - Heavily polluted sediments of the Deule River are still able to adsorb heavy metals released from toxic wastes

  5. Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment.

    Science.gov (United States)

    Foucault, Y; Lévêque, T; Xiong, T; Schreck, E; Austruy, A; Shahid, M; Dumat, C

    2013-10-01

    Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics. Copyright © 2013. Published by Elsevier Ltd.

  6. Seasonal study on Bothriocephalus as indicator of metal pollution in ...

    African Journals Online (AJOL)

    Seasonal study on Bothriocephalus as indicator of metal pollution in yellowfish, ... Water and sediment, as well as liver, muscle and tapeworm samples were ... iron, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, tin, ...

  7. Assessment of heavy metal pollution in drinking water due to mining ...

    African Journals Online (AJOL)

    Mining and smelting activities are the main causes for the increasing pollution of heavy metals from water sources. The toxicity of these heavy metals from the mining, milling and smelting companies can cause harmful and even lethal effects on the human health. The objective of this study was to investigate the level of As, ...

  8. Understanding the mobilisation of metal pollution associated with historical mining in a carboniferous upland catchment.

    Science.gov (United States)

    Valencia-Avellan, Magaly; Slack, Rebecca; Stockdale, Anthony; Mortimer, Robert John George

    2017-08-16

    Point and diffuse pollution from metal mining has led to severe environmental damage worldwide. Mine drainage is a significant problem for riverine ecosystems, it is commonly acidic (AMD), but neutral mine drainage (NMD) can also occur. A representative environment for studying metal pollution from NMD is provided by carboniferous catchments characterised by a circumneutral pH and high concentrations of carbonates, supporting the formation of secondary metal-minerals as potential sinks of metals. The present study focuses on understanding the mobility of metal pollution associated with historical mining in a carboniferous upland catchment. In the uplands of the UK, river water, sediments and spoil wastes were collected over a period of fourteen months, samples were chemically analysed to identify the main metal sources and their relationships with geological and hydrological factors. Correlation tests and principal component analysis suggest that the underlying limestone bedrock controls pH and weathering reactions. Significant metal concentrations from mining activities were measured for zinc (4.3 mg l -1 ), and lead (0.3 mg l -1 ), attributed to processes such as oxidation of mined ores (e.g. sphalerite, galena) or dissolution of precipitated secondary metal-minerals (e.g. cerussite, smithsonite). Zinc and lead mobility indicated strong dependence on biogeochemistry and hydrological conditions (e.g. pH and flow) at specific locations in the catchment. Annual loads of zinc and lead (2.9 and 0.2 tonnes per year) demonstrate a significant source of both metals to downstream river reaches. Metal pollution results in a large area of catchment having a depleted chemical status with likely effects on the aquatic ecology. This study provides an improved understanding of geological and hydrological processes controlling water chemistry, which is critical to assessing metal sources and mobilization, especially in neutral mine drainage areas.

  9. Decontamination of Heavy Metals in Polluted Soil by Phytoremediation Using Bryophyllum Pinnatum

    Directory of Open Access Journals (Sweden)

    Ekwumemgbo P. A.

    2013-04-01

    Full Text Available Phytoremediation is the use of specially selected or engineered living green plants for in situ risk reduction and/or removal of pollutants from contaminated media. This process is one of the most rapidly developing components of environmentally friendly (green and cost-effective technology to abate environmental pollution. The risk reduction could be through the process of removal, degradation, containment of a contaminant or a combination of any of these factors. Bryophyllum pinnatum a herbally-accepted plant in some parts of the world was cultivated in ten different plastic buckets containing heavy metal polluted soil and nurtured for 20 months. The plants were left in ambient conditions and watered periodically. After the first 2 weeks, the plant and soil samples were collected and analysed for total concentration of Cd, Cr, Cu, Ni, Pb V and Zn. Subsequently, the plant and soil samples were collected monthly and analysed for the total concentrations of these heavy metals, using Atomic Absorption Spectrophotometry. Maximum extracted heavy metals from soil by plant were Cd (3.12±1.03 mg/kg, Cr (32.48±3.21 mg/kg, Cu (81.01±2.3 mg/kg Ni (11.91±2.32 mg/kg, Pb (399.90 ±4.32 mg/kg V (5.81±0.08 mg/kg and Zn (150.51± 0.33 and this occurred in the 4th month of study. This study confirms B. pinnatum as one of the plants that could be employed in phytoremediation of soil polluted by heavy metals.

  10. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis.

    Science.gov (United States)

    Sun, Zhenkun; Sun, Bo; Qiao, Minghua; Wei, Jing; Yue, Qin; Wang, Chun; Deng, Yonghui; Kaliaguine, Serge; Zhao, Dongyuan

    2012-10-24

    The organization of different nano objects with tunable sizes, morphologies, and functions into integrated nanostructures is critical to the development of novel nanosystems that display high performances in sensing, catalysis, and so on. Herein, using acetylacetone as a chelating agent, phenolic resol as a carbon source, metal nitrates as metal sources, and amphiphilic copolymers as a template, we demonstrate a chelate-assisted multicomponent coassembly method to synthesize ordered mesoporous carbon with uniform metal-containing nanoparticles. The obtained nanocomposites have a 2-D hexagonally arranged pore structure, uniform pore size (~4.0 nm), high surface area (~500 m(2)/g), moderate pore volume (~0.30 cm(3)/g), uniform and highly dispersed Fe(2)O(3) nanoparticles, and constant Fe(2)O(3) contents around 10 wt %. By adjusting acetylacetone amount, the size of Fe(2)O(3) nanoparticles is readily tunable from 8.3 to 22.1 nm. More importantly, it is found that the metal-containing nanoparticles are partially embedded in the carbon framework with the remaining part exposed in the mesopore channels. This unique semiexposure structure not only provides an excellent confinement effect and exposed surface for catalysis but also helps to tightly trap the nanoparticles and prevent aggregating during catalysis. Fischer-Tropsch synthesis results show that as the size of iron nanoparticles decreases, the mesoporous Fe-carbon nanocomposites exhibit significantly improved catalytic performances with C(5+) selectivity up to 68%, much better than any reported promoter-free Fe-based catalysts due to the unique semiexposure morphology of metal-containing nanoparticles confined in the mesoporous carbon matrix.

  11. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump

    Science.gov (United States)

    Jiang, X.; Lu, W. X.; Zhao, H. Q.; Yang, Q. C.; Yang, Z. P.

    2014-06-01

    The aim of the present study is to evaluate the potential ecological risk and trend of soil heavy-metal pollution around a coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy-metal pollution. The potential ecological risk in the order of ER(Cd) > ER(Pb) > ER(Cu) > ER(Cr) > ER(Zn) have been obtained, which showed that Cd was the most important factor leading to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, then the fixed number of years exceeding the standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metals and the relationship between sampling points and variables. These findings provided some useful insights for making appropriate management strategies to prevent or decrease heavy-metal pollution around a coal gangue dump in the Yangcaogou coal mine and other similar areas elsewhere.

  12. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution.

    Science.gov (United States)

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution.

  13. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution

    Science.gov (United States)

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution. PMID:28234944

  14. Applications of UV/Vis Spectroscopy in Characterization and Catalytic Activity of Noble Metal Nanoparticles Fabricated in Responsive Polymer Microgels: A Review.

    Science.gov (United States)

    Begum, Robina; Farooqi, Zahoor H; Naseem, Khalida; Ali, Faisal; Batool, Madeeha; Xiao, Jianliang; Irfan, Ahmad

    2018-11-02

    Noble metal nanoparticles loaded smart polymer microgels have gained much attention due to fascinating combination of their properties in a single system. These hybrid systems have been extensively used in biomedicines, photonics, and catalysis. Hybrid microgels are characterized by using various techniques but UV/Vis spectroscopy is an easily available technique for characterization of noble metal nanoparticles loaded microgels. This technique is widely used for determination of size and shape of metal nanoparticles. The tuning of optical properties of noble metal nanoparticles under various stimuli can be studied using UV/Vis spectroscopic method. Time course UV/Vis spectroscopy can also be used to monitor the kinetics of swelling and deswelling of microgels and hybrid microgels. Growth of metal nanoparticles in polymeric network or growth of polymeric network around metal nanoparticle core can be studied by using UV/Vis spectroscopy. This technique can also be used for investigation of various applications of hybrid materials in catalysis, photonics, and sensing. This tutorial review describes the uses of UV/Vis spectroscopy in characterization and catalytic applications of responsive hybrid microgels with respect to recent research progress in this area.

  15. Natural reducing agents for electroless nanoparticle deposition: Mild synthesis of metal/carbon nanostructured microspheres

    International Nuclear Information System (INIS)

    Duffy, Paul; Reynolds, Lyndsey A.; Sanders, Stephanie E.; Metz, Kevin M.; Colavita, Paula E.

    2013-01-01

    Composite materials are of interest because they can potentially combine the properties of their respective components in a manner that is useful for specific applications. Here, we report on the use of coffee as a low-cost, green reductant for the room temperature formation of catalytically active, supported metal nanoparticles. Specifically, we have leveraged the reduction potential of coffee in order to grow Pd and Ag nanoparticles at the surface of porous carbon microspheres synthesized via ultraspray pyrolysis. The metal nanoparticle-on-carbon microsphere composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). To demonstrate the catalytic activity of Pd/C and Ag/C materials, Suzuki coupling reactions and nitroaromatic reduction reactions were employed, respectively. - Highlights: • Natural reductants were used as green electroless deposition reagents. • Room temperature synthesis of supported Ag and Pd nanoparticles was achieved. • Carbon porous microspheres were used as supports. • Synthesis via natural reductants yielded catalytically active nanoparticles.

  16. Plasmon polaritons in cubic lattices of spherical metallic nanoparticles

    Science.gov (United States)

    Lamowski, Simon; Mann, Charlie-Ray; Hellbach, Felicitas; Mariani, Eros; Weick, Guillaume; Pauly, Fabian

    2018-03-01

    We theoretically investigate plasmon polaritons in cubic lattices of spherical metallic nanoparticles. The nanoparticles, each supporting triply-degenerate localized surface plasmons, couple through the Coulomb dipole-dipole interaction, giving rise to collective plasmons that extend over the whole metamaterial. The latter hybridize with photons forming plasmon polaritons, which are the hybrid light-matter eigenmodes of the system. We derive general analytical expressions to evaluate both plasmon and plasmon-polariton dispersions and the corresponding eigenstates. These are obtained within a Hamiltonian formalism, which takes into account retardation effects in the dipolar interaction between the nanoparticles and considers the dielectric properties of the nanoparticles as well as their surrounding. Within this model we predict polaritonic splittings in the near-infrared to the visible range of the electromagnetic spectrum that depend on polarization, lattice symmetry, and wave-vector direction. Finally, we show that the predictions of our model are in excellent quantitative agreement with conventional finite-difference frequency-domain simulations, but with the advantages of analytical insight and significantly reduced computational cost.

  17. The Assessment of Sediment Heavy Metal Pollution in Begej Canal (Serbia)

    Science.gov (United States)

    Krčmar, Dejan; Trickovic, Jelena; Grba, Nenad; Becelic Tomin, Milena; Pesic, Vesna; Varga, Natasa; Dalmacija, Bozo

    2016-04-01

    Accumulation of heavy metals in aquatic systems has received huge concern due to their toxicity, persistence and subsequent accumulation in aquatic sediments. One of the most crucial properties of the metals, which differentiate them from organic pollutants, is that they are not biodegradable in the environment. Metals are part of biogeochemical cycles with aquatic sediments acting as their ultimate sinks for longer periods of time. However, when environmental conditions change (pH, redox potential, etc.) sediments act as secondary sources of metal pollution. The toxicity and mobility of metals depend strongly on the way they are associated with sediments. Therefore, information on the total concentrations of metals in sediment alone should not be used to assess the environmental impact of polluted sediments. The Begej Canal is navigation canal between Romania and Serbia and it is a part of Danube-Tisa-Danube hydrosystem in Vojvodina (Northern Province of Serbia). Approximately, 500,000 m3 of sediment is accumulated in Begej canal which currently prevents canal's primary function - navigability. The objective of the present study was to assess the chemical quality of Begej canal sediments regarding heavy metals content. The concentrations of heavy metals were as follows: Cd - 2.4-4.9 mg/kg, Cr - 125-349 mg/kg, Cu - 65-124 mg/kg, Pb - 47-113 mg/kg, Ni - 45-88 mg/kg and Zn - 362-602 mg/kg. According to Serbian legislation (Official gazette, no. 50/12), sediment of Begej canal is the third class sediment which means that special measures should be taken in case of its removal from watercourse and final disposal in order to prevent contamination of other environmental compartments (soil, ground waters, surface waters, wildlife). Therefore, determination of third class has important economic and social implications. Additional tests to assess sediment quality included determination of contamination factor (CF), pollution load index (PLI) and enrichment factor (EF). In

  18. Decontamination of soils polluted with heavy metals using plants as determined by nuclear technique

    International Nuclear Information System (INIS)

    Lotfy, S.M

    2010-01-01

    The objectives of this work were three folds. First, to study the mobility and fate of heavy metals in two polluted sites (Mostorud soil, irrigated with contaminated water for more than 30 years and El-Gabal EL-Asfar soil, subjected to sewage effluent irrigation for more than 50 years) utilizing a modified tessier's sequential extraction procedure to evaluate the effect of total metal concentrations on metal partitioning into different fractions. Second, to evaluate the efficiency of some plant species (sunflower, cotton, penakium, Napier grass, and Squash) to extract heavy metals out of polluted soils. Third, to enhance the phyto-extraction of heavy metals by sunflower plant using some chemical chelators (citric acids, EDTA, and Ammonium nitrate) in order to improve the remediation of pollutants as well as to protect soil quality.It was observed that the distribution of heavy metals in various chemical fractions depends on the total heavy metals content. The distribution of heavy metals forms in the studied soils was in the following decreasing order: residual > Fe-Mn oxides > carbonates > organic > exchangeable > water soluble.Either higher metal accumulation in shoots or enhanced metal accumulation in roots was mainly due to improved phyto-extraction or rhizo-filtration efficiency, respectively. Heavy metals accumulation in shoots and roots of the investigated plant species was as follow: sunflower > cotton > penakium > Napier grass > Squash with a lower order of magnitude. Sunflower showed superiority for heavy metals extraction.Application of chemical chelators (soil amendments) enhanced the phyto-extraction efficiency of heavy metals by sunflower in both Mostorud and El-Gabal El-Asfar soils. Citric acid enhanced metals accumulation in shoots and roots more than EDTA and ammonium nitrate. Citric acid with rate of 20 m mole/kg soil was the best chelators to enhance phyto- extraction of heavy metals by sunflower.

  19. Synthesis of Fe-Al nanoparticles by hydrogen plasma-metal reaction

    CERN Document Server

    Liu Tong; Li Xing Guo

    2003-01-01

    Fe-Al nanoparticles of eight kinds have been prepared by hydrogen plasma-metal reaction. The morphology, crystal structure, and chemical composition of the nanoparticles obtained were investigated by transmission electron microscopy (TEM), x-ray diffractometry (XRD), and induction-coupled plasma spectroscopy. The particle size was determined by TEM and Brunaumer-Emmet-Teller gas adsorption. It was found that all the nanoparticles have spherical shapes, with average particle size in the range of 29-46 nm. The oxide layer in nanoparticles containing Al after passivation is not observable by XRD and TEM. The Al contents in Fe-Al ultrafine particles are about 1.2-1.5 times those in the master alloys. The evaporation speeds of Al and Fe in Fe-Al alloys are mutually accelerated at a certain composition. The crystal structures of the Fe-Al nanoparticles vary with the composition of the master alloys. Pure Fe sub 3 Al (D0 sub 3) and FeAl (B2) structures are successfully produced with 15 and 25 at.% Al in bulks, respe...

  20. Synthesis and characterization of fluorescence-labelled silica core-shell and noble metal-decorated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Rudolf Herrmann

    2014-12-01

    Full Text Available The present review article covers work done in the cluster NPBIOMEM in the DFG priority programme SPP 1313 and focuses on synthesis and characterization of fluorescent silica and ceria nanoparticles. Synthetic methods for labelling of silica and polyorganosiloxane/silica core–shell nanoparticles with perylenediimide derivatives are described, as well as the modification of the shell with thiol groups. Photometric methods for the determination of the number of thiol groups and an estimate for the number of fluorescent molecules per nanoparticles, including a scattering correction, have been developed. Ceria nanoparticles decorated with noble metals (Pt, Pd, Rh are models for the decomposition products of automobile catalytic converters which appear in the exhaust gases and finally interact with biological systems including humans. The control of the degree of agglomeration of small ceria nanoparticles is the basis for their synthesis. Almost monodisperse agglomerates (40 ± 4–260 ± 40 nm diameter can be prepared and decorated with noble metal nanoparticles (2–5 nm diameter. Fluorescence labelling with ATTO 647N gave the model particles which are now under biophysical investigation.

  1. Differences in metal sequestration between zebra mussels from clean and polluted field locations.

    Science.gov (United States)

    Voets, Judith; Redeker, Erik Steen; Blust, Ronny; Bervoets, Lieven

    2009-06-04

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  2. Differences in metal sequestration between zebra mussels from clean and polluted field locations

    International Nuclear Information System (INIS)

    Voets, Judith; Redeker, Erik Steen; Blust, Ronny; Bervoets, Lieven

    2009-01-01

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  3. Differences in metal sequestration between zebra mussels from clean and polluted field locations

    Energy Technology Data Exchange (ETDEWEB)

    Voets, Judith [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Redeker, Erik Steen [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Institute for Materials Research, Chemistry Division, Hasselt University, Agoralaan Building D G1-36, B 3590 Diepenbeek (Belgium); Blust, Ronny [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Bervoets, Lieven, E-mail: Lieven.bervoets@ua.ac.be [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2009-06-04

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  4. Rapid laser sintering of metal nano-particles inks.

    Science.gov (United States)

    Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-23

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  5. Abundance, composition and activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from South China.

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    Full Text Available While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg-1. Copy numbers of amoA (AOA and AOB genes were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.

  6. [Accumulation, distribution and pollution assessment of heavy metals in surface sediment of Caohai plateau wetland, Guizhou province].

    Science.gov (United States)

    Zhang, Qing-Hai; Lin, Chang-Hu; Tan, Hong; Lin, Shao-Xia; Yang, Hong-Bo

    2013-03-01

    The objective of this paper is to investigate the concentrations and distribution characteristics of heavy metals in surface sediments of different areas in the Caohai plateau wetland. 16 samples of surface sediments were collected and 7 heavy metals were analyzed. Heavy metal pollution in surface sediments of different areas in the Caohai plateau wetland was estimated by the Tomlinson Pollution Load Index (PLI) method. The analyzed results indicated that the average contents of Cd, Hg, As, Pb, Cr, Cu, Zn were 0.985, 0.345, 15.8, 38.9, 38.6, 22.8 and 384 mg x kg(-1), respectively. The heavy metal distributions varied with regional environment changes, the order of average contents of Cd and Hg in different regions was E (the eastern region) > S (the southern region) > N (the northern region), the order of the average content of Pb was N > E > S, and that of Zn was S > E > N. The results also suggested a medium heavy metal pollution level in the surface sediment of the Caohai plateau wetland with the PLI(zone) reaching 1.17. The order of pollution level in surface sediments of different regions was E > S > N. The results showed medium pollution levels in E and Hg which reached the extreme intensity pollution level were also the major polluted elements in surface sediments of the Caohai plateau wetland. And also, results showed medium pollution levels of Cd and Pb in surface sediments of Caohai plateau wetland. Cluster analysis results showed similar pollution sources of Cd, Zn, Pb and Hg, which should be attached great importance in terms of the prevention of the Caohai plateau wetland.

  7. Metal and alloy nanoparticles by amine-borane reduction of metal salts by solid-phase synthesis: atom economy and green process.

    Science.gov (United States)

    Sanyal, Udishnu; Jagirdar, Balaji R

    2012-12-03

    A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

  8. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo; Coluccio, Maria Laura; Alabastri, Alessandro; Barberio, Marianna; Causa, Filippo; Netti, Paolo Antonio; Di Fabrizio, Enzo M.; Gentile, Francesco

    2016-01-01

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  9. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo

    2016-12-15

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  10. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale

    International Nuclear Information System (INIS)

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-01-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. - Highlights: • Ensemble models including stochastic gradient boosting and random forest are used. • The models were verified by cross-validation and SGB performed better than RF. • Heavy metal pollution sources on a local scale are identified and apportioned. • Models illustrate good suitability in assessing sources in local-scale agricultural soils. • Anthropogenic sources contributed most to soil Pb and Cd pollution in our case. - Multi-source and multi-phase pollution by heavy metals in agricultural soils on a local scale were identified and apportioned.

  11. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts.

    Science.gov (United States)

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-04-15

    Using artificial mussels (AMs), this study reports and compares time-integrated level of eleven trace metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, U, Zn) in Karnafuli River estuary and coastal area of the Bay of Bengal, Bangladesh. Through this study, "hot spots" of metal pollution were identified. The results may demonstrate that the Karnafuli Estuary, and adjacent coastal area of Chittagong, Bangladesh are highly polluted by high risk metals (cadmium, chromium, copper, mercury, nickel, lead, uranium). Agricultural, domestic and industrial wastes directly discharged into the waterways have been identified as the main causes of metal pollution in Chittagong, Bangladesh. The high level of metal pollution identified may impact on local water quality, and seafood catch, livelihoods of people and public health resulting from seafood consumption. There is a need for regular monitoring to ascertain that local water quality with respect to metal levels are within acceptable levels to safeguards both environmental health and public health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Characterization of metallic nanoparticles by high-resolution X-ray absorption and X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Timna-Josua

    2012-03-15

    In almost all areas of technology, metallic nanoparticles are of interest due to their special thermal, electronic, magnetic and optical properties. Their special properties are mainly due to their small size which implies the relevance of quantum effects as well as the significance of the surface: For 2 nm nanoparticles, the surface-to-volume ratio is already 1:1. However, the identification of surface-to-volume interactions - that are responsible for the new properties - is a difficult task due to the small size that inhibits a lot of 'standard' techniques to be applicable. Here X-ray absorption/emission spectroscopy (XAS/XES) is a favorable tool for the characterization of nanoparticles, independent on size, degree of crystallinity and shape/condition of the surface. Using XAS, a tempered nanosized Co{sub 3}Pt/C catalyst have been investigated. Its outstanding oxygen-reduction reaction (ORR) properties in a fuel cell could be related to a lowered Pt 5d-band center connected to a tightened Pt-Pt bonding distance, leading to a weakening of the oxygen adsorption strength so that the ORR may proceed faster. One drawback remains, however, as the properties found by (standard) XAS are summed up for different chemical environments of the chosen element. Thus, no distinction can be made between, e.g., the pure metal in a nanoparticles' interior and the ligated metal in the outer shells or surface. Here, high-resolution fluorescence-detected XAS (HRFD-XAS) provides additional opportunities as, due to its chemical sensitivity, it leads to site-selective XAS. For a system of 6 nm sized Co nanoparticles, build up of a metallic core surrounded by a protecting shell, that resulted from the 'smooth oxidation' process, this technique of site-selective XAS was proven to be applicable. For the first time, the interior and outer shell of a metallic nanoparticle could be characterized separately. In particular, the Co-hcp phase could be determined for the

  13. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review.

    Science.gov (United States)

    Naser, Humood A

    2013-07-15

    The Arabian Gulf is considered among the highest anthropogenically impacted regions in the world. Heavy metals contamination in coastal and marine environments is becoming an increasingly serious threat to both the naturally stressed marine ecosystems and humans that rely on marine resources for food, industry and recreation. Heavy metals are introduced to coastal and marine environments through a variety of sources and activities including sewage and industrial effluents, brine discharges, coastal modifications and oil pollution. The present paper reviews heavy metal contamination in a variety of marine organisms, and sediments, and suggests measures for environmental management of heavy metal pollution in the Arabian Gulf. Most of the reviewed literature confirmed that heavy metal concentrations in marine organisms were generally within allowable concentrations and pose no threat to public health. Likewise, studies suggested that levels of heavy metals in marine sediments are similar or lower compared to other regions. However, localized hotspots of chronic metal pollution in areas influenced by industrial facilities, desalination plants, and oil refineries have been reported. Holistic spatial and temporal monitoring and comprehensive national and regional strategies are critical to combat and manage heavy metal pollution in the Arabian Gulf. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Cd isotopes as a potential source tracer of metal pollution in river sediments

    International Nuclear Information System (INIS)

    Gao, Bo; Zhou, Haidong; Liang, Xirong; Tu, Xianglin

    2013-01-01

    Tracing the sources of heavy metals in water environment is key important for our understanding of their pollution behavior. In this present study, Cd concentrations and Cd isotopic compositions in sediments were determined to effectively identify possible Cd sources. Results showed that elevated concentrations and high enrichment factor for Cd were found in all sediments, suggesting anthropogenic Cd origin. Cd isotopic compositions in sediments yielded relative variations ranged from −0.35‰ to 0.07‰ in term of δ 114/110 Cd (the mean: −0.08‰). Large fractionated Cd was found in sediments collected from a smelter and an E-waste town. Cd isotopic compositions and Cd concentrations measured in sediments allowed the identification of three main origins (dust from metal refining (δ 114/110 Cd 114/110 Cd > 0), and those δ 114/110 Cd = 0, such as background and mining activity). According to the actual precision obtained, Cd isotopes could be a potential tool for tracing metal pollution sources in water environment. -- The information and application of Cd isotopic compositions will provide a new direction in tracing metal pollution in water environment

  15. Evaluation of pollution status of heavy metals in the groundwater ...

    African Journals Online (AJOL)

    Evaluation of pollution status of heavy metals in the groundwater system around ... cadmium (Cd), mercury (Hg), manganese (Mn), lead (pb) and arsenic (As) as ... Water samples (from bore holes, hand-dug wells, ponds and streams) were ...

  16. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  17. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    Science.gov (United States)

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy.

  18. Solvent and stabilizer free growth of Ag and Pd nanoparticles using metallic salts/cyclotriphosphazenes mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Díaz Valenzuela, C. [Departamento de Química, Facultad de Química, Universidad de Chile, La Palmeras 3425, Nuñoa, Casilla 653, Santiago de Chile (Chile); Valenzuela, M.L., E-mail: mlvalenzuela@unab.cl [Universidad Andres Bello, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Av. Republica 275, Santiago (Chile); Caceres, S.; Diaz, R. [Departamento de Química, Facultad de Química, Universidad de Chile, La Palmeras 3425, Nuñoa, Casilla 653, Santiago de Chile (Chile); O' Dwyer, C. [Applied Nanoscience Group, Department of Chemistry, University College Cork, Cork (Ireland); Micro and Nanoelectronics Centre, Tyndall National Institute, Lee Maltings, Cork (Ireland)

    2013-12-16

    Cyclotriphosphazene is used as a sacrificial solid-state template to synthesize a range of Ag and Pd nanoparticles with diverse geometries by thermal treatment using MLn/N{sub 3}P{sub 3}(O{sub 2}C{sub 12}H{sub 8}){sub 3} mixtures. The Pd and Ag nanoparticles are synthesized by solid-state pyrolysis of AgPPh{sub 3}[CF{sub 3}SO{sub 3}]/N{sub 3}P{sub 3}(O{sub 2}C{sub 12}H{sub 8}){sub 3} and PdCl{sub 2}/N{sub 3}P{sub 3}(O{sub 2}C{sub 12}H{sub 8}){sub 3} mixtures with molar relationships of 1:1, 1:5 and 1:10 respectively, in air and at 800 °C. The morphology of the as-prepared nanoparticles is found to depend on the molar ratio of the precursor mixture, the preparation method and of the nature of the metal. Ag and Pd, microcrystals were thermally grown on Si from the respective 1:1 precursors while that metal foams were grown from 1:5 ratios precursors on SiO{sub 2} wafers. High resolution transmission electron microscopy investigations reveal in most cases small crystals of Pd. HRSTEM measurements indicate that the formation of the Pd and Ag nanoparticles occurs through a phase demixing and dewetting mechanism. This approach has potential to be a useful and facile method to prepare metallic nanoparticles without requiring solutions or surfactants for application in electronic, catalytic and sensor materials and devices. - Highlights: • Pyrolysis MLn/N{sub 3}P{sub 3}(O{sub 2}C{sub 12}H{sub 8}){sub 3} mixtures under air, give Pd and Ag nanoparticles. • AgPPh{sub 3}[CF{sub 3}SO{sub 3}] and PdCl{sub 2} in molar ratios 1:1 and 1:5 were used. • Metal foams were obtained from 1:5 ratios when deposited on SiO{sub 2.} • Using crucible supporting in 1:1 metal/trimer <2 nm Pd nanoparticles were obtained. • The probable mechanism involves a dewetting, nucleation and ripening crystallization.

  19. Interference between nanoparticles and metal homeostasis

    International Nuclear Information System (INIS)

    Petit, A N; Catty, P; Charbonnier, P; Cuillel, M; Mintz, E; Moulis, J M; Niviere, V; Choudens, S Ollagnier de; Garcia, C Aude; Candeias, S; Chevallet, M; Collin-Faure, V; Lelong, C; Luche, S; Rabilloud, T; Casanova, A; Herlin-Boime, N; Douki, T; Ravanat, J L; Sauvaigo, S

    2011-01-01

    The TiO 2 nanoparticles (NPs) are now produced abundantly and widely used in a variety of consumer products. Due to the important increase in the production of TiO 2 -NPs, potential widespread exposure of humans and environment may occur during both the manufacturing process and final use. Therefore, the potential toxicity of TiO 2 -NPs on human health and environment has attracted particular attention. Unfortunately, the results of the large number of studies on the toxicity of TiO 2 -NPs differ significantly, mainly due to an incomplete characterization of the used nanomaterials in terms of size, shape and crystalline structure and to their unknown state of agglomeration/aggregation. The purpose of our project entitled NanoBioMet is to investigate if interferences between nanoparticles and metal homeostasis could be observed and to study the toxicity mechanisms of TiO 2 -NPs with well-characterized physicochemical parameters, using proteomic and molecular approaches. A perturbation of metal homeostasis will be evaluated upon TiO 2 -NPs exposure which could generate reactive oxygen species (ROS) production. Moreover, oxidative stress consequences such as DNA damage and lipid peroxidation will be studied. The toxicity of TiO 2 -NPs of different sizes and crystalline structures will be evaluated both in prokaryotic (E. coli) and eukaryotic cells (A549 human pneumocytes, macrophages, and hepatocytes). First results of the project will be presented concerning the dispersion of TiO 2 -NPs in bacterial medium, proteomic studies on total extracts of macrophages and genotoxicity on pneumocytes.

  20. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    Science.gov (United States)

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Preparation of transition metal sulfide nanoparticles via hydrothermal route

    International Nuclear Information System (INIS)

    Fei-Ling, P.; Chin-Hua, C.; Sarani Zakaria; Tze-Khong, L.; Mohd Ambar Yarmo; Nay-Ming, H.

    2010-01-01

    Nano sized copper sulfide, iron sulfide and molybdenum sulfide were successfully synthesised via a simple hydrothermal method. Sodium thiosulfate pentahydrate (Na 2 S 2 O 3 ·5H 2 O) and hydroxylamine sulfate ((H 3 NO) 2 ·H 2 SO 4 ) were used as the starting materials and reacted with the transition metal source at 200 degree Celsius for 90 min. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR). Spherical shape CuS and FeS 2 nanoparticles with high crystallinity were successfully produced. The transmission electron micrographs revealed the well-dispersibility of the produced nanoparticles. Scanning electron micrograph showed the MoS 2 nanoparticles possessed a spherical shape with sheet-like structure covering on the outer surface of the particles. (author)

  2. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder.

    Science.gov (United States)

    Bjørklund, Geir; Skalny, Anatoly V; Rahman, Md Mostafizur; Dadar, Maryam; Yassa, Heba A; Aaseth, Jan; Chirumbolo, Salvatore; Skalnaya, Margarita G; Tinkov, Alexey A

    2018-06-11

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Adsorption of silver nanoparticles from aqueous solution on copper-based metal organic frameworks (HKUST-1).

    Science.gov (United States)

    Conde-González, J E; Peña-Méndez, E M; Rybáková, S; Pasán, J; Ruiz-Pérez, C; Havel, J

    2016-05-01

    Silver nanoparticles (AgNP) are emerging pollutants. The use of novel materials such as Cu-(benzene 1,3,5-tricarboxylate, BTC) Metal-Organic Framework (MOFs), for AgNP adsorption and their removal from aqueous solutions has been studied. The effect of different parameters was followed and isotherm model was suggested. MOFs adsorbed fast and efficiently AgNP in the range C0 < 10 mg L(-1), being Freundlich isotherm (R = 0.993) these data fitted to. Among studied parameters a remarkable effect of chloride on sorption was found, thus their possible interactions were considered. The high adsorption efficiency of AgNP was achieved and it was found to be very fast. The feasibility of adsorption on Cu-(BTC) was proved in spiked waters. The results showed the potential interest of new material as adsorbent for removing AgNP from environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter.

    Science.gov (United States)

    Chen, Bing; Stein, Ariel F; Castell, Nuria; Gonzalez-Castanedo, Yolanda; Sanchez de la Campa, A M; de la Rosa, J D

    2016-01-01

    Metal smelting and processing are highly polluting activities that have a strong influence on the levels of heavy metals in air, soil, and crops. We employ an atmospheric transport and dispersion model to predict the pollution levels originated from the second largest Cu-smelter in Europe. The model predicts that the concentrations of copper (Cu), zinc (Zn), and arsenic (As) in an urban area close to the Cu-smelter can reach 170, 70, and 30 ng m−3, respectively. The model captures all the observed urban pollution events, but the magnitude of the elemental concentrations is predicted to be lower than that of the observed values; ~300, ~500, and ~100 ng m−3 for Cu, Zn, and As, respectively. The comparison between model and observations showed an average correlation coefficient of 0.62 ± 0.13. The simulation shows that the transport of heavy metals reaches a peak in the afternoon over the urban area. The under-prediction in the peak is explained by the simulated stronger winds compared with monitoring data. The stronger simulated winds enhance the transport and dispersion of heavy metals to the regional area, diminishing the impact of pollution events in the urban area. This model, driven by high resolution meteorology (2 km in horizontal), predicts the hourly-interval evolutions of atmospheric heavy metal pollutions in the close by urban area of industrial hotspot.

  5. Leaf biochemical responses and fruit oil quality parameters in olive plants subjected to airborne metal pollution.

    Science.gov (United States)

    Fourati, Radhia; Scopa, Antonio; Ben Ahmed, Chedlia; Ben Abdallah, Ferjani; Terzano, Roberto; Gattullo, Concetta Eliana; Allegretta, Ignazio; Galgano, Fernanda; Caruso, Marisa Carmela; Sofo, Adriano

    2017-02-01

    This study was carried out in two olive orchards (Olea europaea L., cv. Chemlali) located in a polluted area near a fertilizers factory and in a control unpolluted site, managed with similar cultivation techniques. The aim was to investigate the physiological and biochemical responses of polluted plants (PP), exposed to atmospheric metal contamination (Cd, Cu, Fe, Mn, Ni and Pb) as compared to control plants (CP). Leaves, roots and fruits of PP showed a depression of their non-enzymatic and enzymatic antioxidant defences and a disruption of their hormonal homeostasis. The anomalous physiological status of PP was also demonstrated by the lower values of pigments in leaves and fruits, as compared to CP. Atmospheric metals negatively affected olive oil chemical and sensory quality. However, despite metal deposition on fruit surfaces, the accumulation of potentially toxic metals in olive oil was negligible. Considering that olive oil is an important food product worldwide and that many productive olive orchards are exposed to several sources of pollution, this work could contribute to clarify the effects of atmospheric metal pollution on olive oil quality and its potential toxicity for humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Colin A. [Department of Geology, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3 (Canada)], E-mail: cacooke@ualberta.ca; Abbott, Mark B. [Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3 (Canada); Section of Anthropology, Carnegie Museum of Natural History, Pittsburgh, PA 15206 (United States)

    2008-04-15

    To date, few studies have investigated the environmental legacy associated with industrialization in the South American Andes. Here, we present an environmental archive of industrial pollution from {sup 210}Pb-dated lake cores recovered from Laguna Chipian, located near the Cerro de Pasco metallurgical region and Laguna Pirhuacocha, located near the Morococha mining region and the La Oroya smelting complex. At Laguna Chipian, trace metal concentrations increase beginning {approx} 1900 AD, coincident with the construction of the central Peruvian railway, and the rapid industrial development of the Cerro de Pasco region. Trace metal concentrations and fluxes peak during the 1950s before subsequently declining up-core (though remaining well above background levels). While Colonial mining and smelting operations are known to have occurred at Cerro de Pasco since at least 1630 AD, our sediment record preserves no associated metal deposition. Based on our {sup 14}C and {sup 210}Pb data, we suggest that this is due to a depositional hiatus, rather than a lack of regional Colonial pollution. At Laguna Pirhuacocha, industrial trace metal deposition first begins {approx} 1925 AD, rapidly increasing after {approx} 1950 AD and peaking during either the 1970s or 1990s. Trace metal concentrations from these lakes are comparable to some of the most polluted lakes in North America and Europe. There appears to be little diagenetic alteration of the trace metal record at either lake, the exception being arsenic (As) accumulation at Laguna Pirhuacocha. There, a correlation between As and the redox-sensitive element manganese (Mn) suggests that the sedimentary As burden is undergoing diagenetic migration towards the sediment-water interface. This mobility has contributed to surface sediment As concentrations in excess of 1100 {mu}g g{sup -1}. The results presented here chronicle a rapidly changing Andean environment, and highlight a need for future research in the rate and magnitude

  7. Earthworm nano‐ecotoxicology: Towards an integrated approach in toxicity testing of metal nanoparticles

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Pedersen, Henrik; Wang, Jing

    Manufactured nanoparticles (NPs) belong to an emerging class of potential environmental pollutants. Of particular interest are the characteristics of NP toxicity under different exposure conditions e.g. cell culture, aquatic or soil media. NPs are thought to behave differently depending on the me...

  8. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system.

    Science.gov (United States)

    Xia, Fang; Qu, Liyin; Wang, Ting; Luo, Lili; Chen, Han; Dahlgren, Randy A; Zhang, Minghua; Mei, Kun; Huang, Hong

    2018-09-01

    Heavy metal pollution of aquatic environments in rapidly developing industrial regions is of considerable global concern due to its potential to cause serious harm to aquatic ecosystems and human health. This study assessed heavy metal contamination of sediments in a highly industrialized urban watershed of eastern China containing several historically unregulated manufacturing enterprises. Total concentrations and solid-phase fractionation of Cu, Zn, Pb, Cr and Cd were investigated for 39 river sediments using multivariate statistical analysis and geographically weighted regression (GWR) methods to quantitatively examine the relationship between land use and heavy metal pollution at the watershed scale. Results showed distinct spatial patterns of heavy metal contamination within the watershed, such as higher concentrations of Zn, Pb and Cd in the southwest and higher Cu concentration in the east, indicating links to specific pollution sources within the watershed. Correlation and PCA analyses revealed that Zn, Pb and Cd were dominantly contributed by anthropogenic activities; Cu originated from both industrial and agricultural sources; and Cr has been altered by recent pollution control strategies. The GWR model indicated that several heavy metal fractions were strongly correlated with industrial land proportion and this correlation varied with the level of industrialization as demonstrated by variations in local GWR R 2 values. This study provides important information for assessing heavy metal contaminated areas, identifying heavy metal pollutant sources, and developing regional-scale remediation strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Experimental Challenges in Studying Hydrogen Absorption in Ultrasmall Metal Nanoparticles

    International Nuclear Information System (INIS)

    Zlotea, Claudia; Oumellal, Yassine; Provost, Karine; Ghimbeu, Camelia Matei

    2016-01-01

    Recent advances on synthesis, characterization, and hydrogen absorption properties of ultrasmall metal nanoparticles (defined here as objects with average size ≤3 nm) are briefly reviewed in the first part of this work. The experimental challenges encountered in performing accurate measurements of hydrogen absorption in Mg- and noble metal-based ultrasmall nanoparticles are addressed. The second part of this work reports original results obtained for ultrasmall bulk-immiscible Pd–Rh nanoparticles. Carbon-supported Pd–Rh nanoalloys in the whole binary chemical composition range have been successfully prepared by liquid impregnation method followed by reduction at 300°C. EXAFS investigations suggested that the local structure of these nanoalloys is partially segregated into Rh-rich core and Pd-rich surface coexisting within the same nanoparticles. Downsizing to ultrasmall dimensions completely suppresses the hydride formation in Pd-rich nanoalloys at ambient conditions, contrary to bulk and larger nanosized (5–6 nm) counterparts. The ultrasmall Pd 90 Rh 10 nanoalloy can absorb hydrogen-forming solid solutions under these conditions, as suggested by in situ X-ray diffraction (XRD). Apart from this composition, common laboratory techniques, such as in situ XRD, DSC, and PCI, failed to clarify the hydrogen interaction mechanism: either adsorption on developed surfaces or both adsorption and absorption with formation of solid solutions. Concluding insights were brought by in situ EXAFS experiments at synchrotron: ultrasmall Pd 75 Rh 25 and Pd 50 Rh 50 nanoalloys absorb hydrogen-forming solid solutions at ambient conditions. Moreover, the hydrogen solubility in these solid solutions is higher with increasing Pd content, and this trend can be understood in terms of hydrogen preferential occupation in the Pd-rich regions, as suggested by in situ EXAFS. The Rh-rich nanoalloys (Pd 25 Rh 75 and Pd 10 Rh 90 ) only adsorb hydrogen on the developed surface of ultrasmall

  10. Assessment of Heavy Metal Pollution in Sediment and Polychaete ...

    African Journals Online (AJOL)

    Metal pollution in the Mzinga creek mangrove stand was assessed and compared with a relatively pristine mangrove forest at Ras Dege in Dar es Salaam. The concentrations of cadmium, chromium, copper, lead and zinc in sediment and polychaete worms (Capitella sp.) were analyzed by ICP-AES and mercury was ...

  11. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations.

    Science.gov (United States)

    Zheng, Xiaoxia; Zhao, Wenji; Yan, Xing; Shu, Tongtong; Xiong, Qiulin; Chen, Fantao

    2015-08-17

    Airborne dust, which contains high levels of toxic metals, is recognized as one of the most harmful environment component. The purpose of this study was to evaluate heavy metals pollution in dustfall from bus stations in Beijing, and to perform a risk assessment analysis for adult passengers. The concentrations of Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The spatial distribution, pollution level and potential health risk of heavy metals were analyzed by Geographic Information System (GIS) mapping technology, geo-accumulation index and health risk assessment model, respectively. The results indicate that dust samples have elevated metal concentrations, especially for Cd, Cu, Pb and Zn. The nine metals can be divided into two categories in terms of spatial distribution and pollution level. Cd, Cr, Cu, Mo, Pb and Zn reach contaminated level and have similar spatial patterns with hotspots distributed within the Fifth Ring Road. While the hot spot areas of Co and V are always out of the Fifth Ring Road. Health risk assessment shows that both carcinogenic and non-carcinogenic risks of selected metals were within the safe range.

  12. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations

    Directory of Open Access Journals (Sweden)

    Xiaoxia Zheng

    2015-08-01

    Full Text Available Airborne dust, which contains high levels of toxic metals, is recognized as one of the most harmful environment component. The purpose of this study was to evaluate heavy metals pollution in dustfall from bus stations in Beijing, and to perform a risk assessment analysis for adult passengers. The concentrations of Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS. The spatial distribution, pollution level and potential health risk of heavy metals were analyzed by Geographic Information System (GIS mapping technology, geo-accumulation index and health risk assessment model, respectively. The results indicate that dust samples have elevated metal concentrations, especially for Cd, Cu, Pb and Zn. The nine metals can be divided into two categories in terms of spatial distribution and pollution level. Cd, Cr, Cu, Mo, Pb and Zn reach contaminated level and have similar spatial patterns with hotspots distributed within the Fifth Ring Road. While the hot spot areas of Co and V are always out of the Fifth Ring Road. Health risk assessment shows that both carcinogenic and non-carcinogenic risks of selected metals were within the safe range.

  13. Increased mobility of metal oxide nanoparticles due to photo and thermal induced disagglomeration.

    Directory of Open Access Journals (Sweden)

    Dongxu Zhou

    Full Text Available Significant advances have been made on our understanding of the fate and transport of engineered nanomaterials. One unexplored aspect of nanoparticle aggregation is how environmental stimuli such as light exposure and temperature variations affect the mobility of engineered nanoparticles. In this study, TiO(2, ZnO, and CeO(2 were chosen as model materials for investigating the mobility of nanoparticles under three external stimuli: heat, light and sonication. Sunlight and high power sonication were able to partially disagglomerate metal oxide clusters, but primary particles bonded by solid state necks were left intact. A cycle of temperature increase from 25°C to 65°C and then decrease back was found to disagglomerate the compact clusters in the heating phase and reagglomerate them as more open fractal structures during the cooling phase. A fractal model summing the pair-wise DLVO interactions between primary particles within two fractal agglomerates predicts weak attractions on the order of a few kT. Our study shows that common environmental stimuli such as light exposure or temperature variation can disagglomerate nanoparticle clusters and enhance their mobility in open waters. This phenomenon warrants attention since it is likely that metal oxide nanoparticles will experience these natural stimuli during their transport in the environment.

  14. Energy Dispersive X-Ray Fluorescent Analysis of Soil in the Vicinity of Industrial Areas and Heavy Metal Pollution Assessment

    Science.gov (United States)

    Singh, V.; Joshi, G. C.; Bisht, D.

    2017-05-01

    The soil of two agricultural sites near an industrial area was investigated for heavy metal pollution using energy dispersive X-ray fluorescence (EDXRF). The concentration values for 17 elements were determined in the soil samples including eight heavy metal elements, i.e., Fe, Ni, As, Pb, Mn, Cr, Cu, and Zn. The soil near a pulp and paper mill was found to be highly polluted by the heavy metals. The concentration data obtained by EDXRF were further examined by calculating the pollution index and Nemerow integrated pollution index.

  15. NON-POLLUTING METAL SURFACE FINISHING PRETREATMENT AND PRETREATMENT/CONVERSION COATING

    Science.gov (United States)

    Picklex, a proprietary formulation, is an alterantive to conventional metal surface pretreatments and is claimed not to produce waste or lower production or lower performance. A laboratory program was designed to evaluate Picklex in common, large scale, polluting surface finishin...

  16. Metal-based nanoparticle interactions with the nervous system: The challenge of brain entry and the risk of retention in the organism

    Science.gov (United States)

    This review of metal and metal-oxide based nanoparticles focuses on factors that influence their distribution into the nervous system, evidence that they enter brain parenchyma, and nervous system responses. Emphasis is placed on gold as a model metal-based nanoparticle and for r...

  17. Airway irritation, inflammation, and toxicity in mice following inhalation of metal oxide nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Søren T; Jackson, Petra; Poulsen, Steen S

    2016-01-01

    Metal oxide nanoparticles are used in a broad range of industrial processes and workers may be exposed to aerosols of the particles both during production and handling. Despite the widespread use of these particles, relatively few studies have been performed to investigate the toxicological effects...... in the airways following inhalation. In the present study, the acute (24 h) and persistent (13 weeks) effects in the airways after a single exposure to metal oxide nanoparticles were studied using a murine inhalation model. Mice were exposed 60 min to aerosols of either ZnO, TiO2, Al2O3 or CeO2 and the deposited...

  18. Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils.

    Science.gov (United States)

    Tepanosyan, Gevorg; Maghakyan, Nairuhi; Sahakyan, Lilit; Saghatelyan, Armen

    2017-08-01

    Children, the most vulnerable urban population group, are exceptionally sensitive to polluted environments, particularly urban soils, which can lead to adverse health effects upon exposure. In this study, the total concentrations of Ag, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Ti, V, and Zn were determined in 111 topsoil samples collected from kindergartens in Yerevan. The objectives of this study were to evaluate heavy metal pollution levels of kindergarten's soils in Yerevan, compare with national legal and international requirements on heavy metal contents in kindergarten soil, and assess related child health risk. Multivariate geostatistical analyses suggested that the concentrations of Ag, As, Ba, Cd, Cu, Hg, Mo, Pb, and Zn observed in the kindergarten's topsoil may have originated from anthropogenic sources, while Co, Cr, Fe, Mn, Ni, Ti, and V mostly come from natural sources. According to the Summary pollution index (Zc), 102 kindergartens belong to the low pollution level, 7 to the moderate and only 2 to the high level of pollution. Summary concentration index (SCI) showed that 109 kindergartens were in the allowable level, while 2 featured in the low level of pollution. The health risk assessment showed that in all kindergartens except for seven, non-carcinogenic risk for children was detected (HI>1), while carcinogenic risk from arsenic belongs to the very low (allowable) level. Cr and multi-element carcinogenic risk (RI) exceeded the safety level (1.0E- 06) in all kindergartens and showed that the potential of developing cancer, albeit small, does exist. Therefore, city's kindergartens require necessary remedial actions to eliminate or reduce soil pollution and heavy metal-induced health risks. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of metal pollution on earthworm communities in a contaminated floodplain area: Linking biomarker, community and functional responses

    International Nuclear Information System (INIS)

    Gestel, Cornelis A.M. van; Koolhaas, Josee E.; Hamers, Timo; Hoppe, Maarten van; Roovert, Martijn van; Korsman, Cora; Reinecke, Sophie A.

    2009-01-01

    Effects on earthworms in the contaminated floodplain area the Biesbosch, the Netherlands, were determined at different levels of organization using a combination of field and laboratory tests. The species Lumbricus rubellus, collected from different polluted sites in the Biesbosch, showed reduced values for the biomarker neutral red retention time (NRRT), mainly explained by high metal concentrations in the soil and the resulting high internal copper concentrations in the earthworms. Organic pollutant levels in earthworms were low and did not explain reduced NRRTs. Earthworm abundance and biomass were not correlated with pollutant levels in the soil. Litterbag decomposition and bait-lamina feeding activity, measures of the functional role of earthworms, were not affected by metal pollution and did not show any correlation with metal concentrations in soil or earthworms nor with NRRT. Effects at the biochemical level therefore did not result in a reduced functioning of earthworm communities. - Metal pollution in floodplain soils does affect earthworm biomarker response but not their activity in decomposition processes

  20. Effects of metal pollution on earthworm communities in a contaminated floodplain area: Linking biomarker, community and functional responses

    Energy Technology Data Exchange (ETDEWEB)

    Gestel, Cornelis A.M. van [Institute of Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)], E-mail: kees.van.gestel@falw.vu.nl; Koolhaas, Josee E. [Institute of Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Hamers, Timo [Institute of Environmental Studies, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Hoppe, Maarten van; Roovert, Martijn van; Korsman, Cora [Institute of Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Reinecke, Sophie A. [Department of Botany and Zoology, University of Stellenbosch, Private bag X1, Matieland 7602 (South Africa)

    2009-03-15

    Effects on earthworms in the contaminated floodplain area the Biesbosch, the Netherlands, were determined at different levels of organization using a combination of field and laboratory tests. The species Lumbricus rubellus, collected from different polluted sites in the Biesbosch, showed reduced values for the biomarker neutral red retention time (NRRT), mainly explained by high metal concentrations in the soil and the resulting high internal copper concentrations in the earthworms. Organic pollutant levels in earthworms were low and did not explain reduced NRRTs. Earthworm abundance and biomass were not correlated with pollutant levels in the soil. Litterbag decomposition and bait-lamina feeding activity, measures of the functional role of earthworms, were not affected by metal pollution and did not show any correlation with metal concentrations in soil or earthworms nor with NRRT. Effects at the biochemical level therefore did not result in a reduced functioning of earthworm communities. - Metal pollution in floodplain soils does affect earthworm biomarker response but not their activity in decomposition processes.

  1. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    Science.gov (United States)

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-04-01

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  2. Geochemical and mineralogical study of a site severely polluted with heavy metals (Maatheide, Lommel, Belgium)

    Science.gov (United States)

    Horckmans, L.; Swennen, R.; Deckers, J.

    2006-07-01

    The former zinc smelter site ‘de Maatheide’ in Lommel (Belgium) was severely polluted with heavy metals and the pollution spread into the surroundings by rain water leaching and wind transportation. This study focuses on the processes of immobilization and natural attenuation that took place on the site. Three important factors were found. Firstly, the high pH values (pH 7-8) in the topsoil influence the mobility of heavy metals. Secondly, the spodic horizons below the polluted top layer seem to accumulate heavy metals, thereby slowing down their release into the environment. Finally, the glassy phases and iron oxi/hydroxides that are present can encapsulate heavy metals during their formation/recrystallization, thereby immobilizing them. An additional shielding effect results from the reaction rims of goethite around the contaminant phases, which partially inhibit the weathering process and release of contaminants. This shielding effect is an important factor to take into account when modelling contaminant release.

  3. Estimation of Heavy Metal Contamination in Groundwater and Development of a Heavy Metal Pollution Index by Using GIS Technique.

    Science.gov (United States)

    Tiwari, Ashwani Kumar; Singh, Prasoon Kumar; Singh, Abhay Kumar; De Maio, Marina

    2016-04-01

    Heavy metal (Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se and Zn) concentration in sixty-six groundwater samples of the West Bokaro coalfield were analyzed using inductively coupled plasma-mass spectroscopy for determination of seasonal fluctuation, source apportionment and heavy metal pollution index (HPI). Metal concentrations were found higher in the pre-monsoon season as compared to the post-monsoon season. Geographic information system (GIS) tool was attributed to study the metals risk in groundwater of the West Bokaro coalfield. The results show that 94 % of water samples were found as low class and 6 % of water samples were in medium class in the post-monsoon season. However, 79 % of water samples were found in low class, 18 % in medium class and 3 % in high class in the pre-monsoon season. The HPI values were below the critical pollution index value of 100. The concentrations of Al, Fe, Mn, and Ni are exceeding the desirable limits in many groundwater samples in both seasons.

  4. Health and ecological risk assessment of heavy metals pollution in an antimony mining region: a case study from South China.

    Science.gov (United States)

    Fei, Jiang-Chi; Min, Xiao-Bo; Wang, Zhen-Xing; Pang, Zhi-Hua; Liang, Yan-Jie; Ke, Yong

    2017-12-01

    In recent years, international research on the toxicity of the heavy metal, antimony, has gradually changed focus from early medical and pharmacological toxicology to environmental toxicology and ecotoxicology. However, little research has been conducted for sources identification and risk management of heavy metals pollution by long-term antimony mining activities. In this study, a large number of investigations were conducted on the temporal and spatial distribution of antimony and related heavy metal contaminants (lead, zinc, and arsenic), as well as on the exposure risks for the population for the Yuxi river basin in the Hunan province, China. The scope of the investigations included mine water, waste rock, tailings, agricultural soil, surface water, river sediments, and groundwater sources of drinking water. Health and ecological risks from exposure to heavy metal pollution were evaluated. The main pollution sources of heavy metals in the Yuxi River basin were analyzed. Remediation programs and risk management strategies for heavy metal pollution were consequently proposed. This article provides a scientific basis for the risk assessment and management of heavy metal pollution caused by antimony basin ore mining.

  5. Surface plasmons in metallic nanoparticles: fundamentals and applications

    International Nuclear Information System (INIS)

    Garcia, M A

    2011-01-01

    The excitation of surface plasmons (SPs) in metallic nanoparticles (NPs) induces optical properties hardly achievable in other optical materials, yielding a wide range of applications in many fields. This review presents an overview of SPs in metallic NPs. The concept of SPs in NPs is qualitatively described using a comparison with simple linear oscillators. The mathematical models to carry on calculations on SPs are presented as well as the most common approximations. The different parameters governing the features of SPs and their effect on the optical properties of the materials are reviewed. Finally, applications of SPs in different fields such as biomedicine, energy, environment protection and information technology are revised. (topical review)

  6. Surface plasmons in metallic nanoparticles: fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M A, E-mail: magarcia@icv.csic.es [Department of Electroceramics, Institute for Ceramic and Glass, CSIC, C/Kelsen 5, 28049 Madrid (Spain) and IMDEA Nanociencia, Madrid 28049 (Spain)

    2011-07-20

    The excitation of surface plasmons (SPs) in metallic nanoparticles (NPs) induces optical properties hardly achievable in other optical materials, yielding a wide range of applications in many fields. This review presents an overview of SPs in metallic NPs. The concept of SPs in NPs is qualitatively described using a comparison with simple linear oscillators. The mathematical models to carry on calculations on SPs are presented as well as the most common approximations. The different parameters governing the features of SPs and their effect on the optical properties of the materials are reviewed. Finally, applications of SPs in different fields such as biomedicine, energy, environment protection and information technology are revised. (topical review)

  7. Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Milka O. [University of California Center for Environmental Implications of Nanotechnology, Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 (United States); University of Texas of the Permian Basin, 4901 E. University, Odessa, TX 79762 (United States); Hanna, Shannon K.; Lenihan, Hunter S. [University of California Center for Environmental Implications of Nanotechnology, Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 (United States); Keller, Arturo A., E-mail: keller@bren.ucsb.edu [University of California Center for Environmental Implications of Nanotechnology, Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 (United States)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer Suspension-feeding by mussels can greatly alter mobility and fate of metal oxide nanoparticles. Black-Right-Pointing-Pointer Bioprocessing of metal oxide nanoparticles by mussels removes large fraction from water column. Black-Right-Pointing-Pointer Mussels repackage metal oxide nanoparticles in highly concentrated pseudofeces. Black-Right-Pointing-Pointer Novel biological pathway between major compartments in marine systems. Black-Right-Pointing-Pointer Very different outcome for ZnO and CeO{sub 2} nanoparticles based on their solubility. - Abstract: A growing body of evidence indicates that some engineered nanoparticles (ENPs) are toxic to organisms that perform important ecosystem services in terrestrial and aquatic ecosystems. However, toxicity can be influenced by the biotransformation of contaminants, including ENPs, as it may alter the fate and transport of these substances. In turn, fate and transport can influence their bioavailability. To understand how biotransformation influences the fate and transport of ENPs in marine ecosystems, we exposed suspension-feeding mussels, Mytilus galloprovincialis, to two common nano-metal oxides, CeO{sub 2} and ZnO, over a range of concentrations from 1 mg L{sup -1} to 10 mg L{sup -1}, in a laboratory experiment. Mussels exposed to 10 mg L{sup -1} accumulated 62 {mu}g g{sup -1} of Ce and 880 {mu}g g{sup -1} of Zn on a dry tissue basis but rejected 21,000 {mu}g g{sup -1} for Ce and 63,000 {mu}g g{sup -1} for Zn in pseudofeces. Scanning electron microscope evidence indicates CeO{sub 2} remained as ENPs but ZnO did not after being rejected by the mussels. Mussels filtered most of the CeO{sub 2} from the aqueous media, while a significant fraction of Zn remained in solution. Differences in ENP solubility affect ENP uptake, excretion, and accumulation in mussels. Our study highlights the potential role of marine suspension feeders in biotransformation of ENPs.

  8. FDTD/TDSE study of surface-enhanced infrared absorption by metal nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-H.; Schatz, G. C.; Gray, S. K.; Chemistry; Northwestern Univ.; National Cheng-Kung Univ.

    2006-01-01

    We study surface-enhanced infrared absorption, including multiphoton processes, due to the excitation of surface plasmons on metal nanoparticles. The time-dependent Schroedinger equation and finite-difference time-domain method are self-consistently coupled to treat the problem.

  9. Precursor directed synthesis--"molecular" mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures.

    Science.gov (United States)

    Seisenbaeva, Gulaim A; Kessler, Vadim G

    2014-06-21

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.

  10. A facile route for the synthesis of Co, Ni and Cu metallic nanoparticles with potential antimicrobial activity using novel metallosurfactants

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gurpreet; Singh, Prabjot; Mehta, S.K. [Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014 (India); Kumar, Sandeep; Dilbaghi, Neeraj [Department of Bio and Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar 125 001, Haryana (India); Chaudhary, Ganga Ram, E-mail: grc22@pu.ac.in [Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014 (India)

    2017-05-15

    Graphical abstract: In this work diamine dicholoro metal surfactants have been synthesized for cobalt, nickel and copper. The prepared complexes have been characterized by FTIR, NMR and TGA and were used as templates in form of vesicular aggregates to fabricate respective nanoparticles using redox two phase methods. The size of core of bilayer is playing a crucial role in controlling the size of metallic nanoparticle. - Highlights: • Diamine-dichloro complexes of Co, Ni and Cu have been synthesized and characterized using FTIR, NMR, MASS, CHN and TGA. • Self aggregation properties of prepared complexes were analysed in different alcohols • Solutions of the metallic aggregates of complexes were used as templates to synthesize metallic nanoparticles. • BSA binding studies were performed with metallic nano-structures • Antimicrobial studies of prepared complexes and metallic nanoparticles were evaluated against bacterial and fungal strains. - Abstract: The work deals with optimizing a methodology for fabrication of monodisperse metallic nanoparticles (active against microbes) using micellar core of amine based metallosurfactant. Novel double chained amine metallosurfactants of the type [M(C{sub 12}H{sub 25}NH{sub 2}){sub 2}] (where M is copper, nickel and cobalt) have been synthesized and characterized with elemental analysis, Fourier Transform Infrared spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR) and thermogravimetric analysis (TGA). Further, study of theaggregated structures (i.e. bilayer) of these lipophilic metallosurfactants in various alcohols has been carried out. Thermodynamics parameters of reverse micellization have also been estimated. The process of micellization is spontaneous and entropy driven. Prepared metallosurfactants have been utilized as precursors for the fabrication of metallic nanoparticles (NPs) of Co, Ni and Cu. The method is validated for all the three studied transition metals for the preparation of metallic nanoparticles

  11. Geochemical assessment of heavy metals pollution in surface sediments of Vellar and Coleroon estuaries, southeast coast of India.

    Science.gov (United States)

    Nethaji, S; Kalaivanan, R; Arya Viswam; Jayaprakash, M

    2017-02-15

    Surface sediments were collected from Vellar and Coleroon estuaries for determine sediment texture, calcium carbonate, organic matter and heavy metals. Pollution indices such as pollution load index (PLI), contamination factor (CF), enrichment factor (EF) and geo-accumulation index (I geo ) were done for this study to know the level of heavy metals pollution in the estuarine ecosystem. Pearson correlation matrix and factor were used to assess the relationship and source of heavy metals in the estuarine sediments. The results of PLI values reveal that the study area was polluted by all the heavy metals. The calculated values of CF and I geo followed the decreasing order Cu>Ni>Pb>Co>Cr>Zn>Mn>Fe and illustrate that Cu, Ni and Pb are contaminated due to anthropogenic sources in both estuaries. Correlation and factor analysis suggest that FeMn oxyhydroxides, organic matter and fine particles are responsible for high concentration of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications

    International Nuclear Information System (INIS)

    Wang Shuangyin; Jiang San Ping; Wang Xin

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Microwave polyol method is efficient to deposit nanoparticles on graphene. → SnO 2 /graphene is more efficient than graphene for supercapacitor. → PtRu/graphene is more active than commercial PtRu/C for methanol oxidation. - Abstract: An effective synthesis strategy of hybrid metal (PtRu)/metal oxide (SnO 2 ) nanoparticles on graphene nanocomposites is developed using a microwave-assisted one-pot reaction process. The mixture of ethylene glycol (EG) and water is used as both solvent and reactant. In the reaction system for the synthesis of SnO 2 /graphene nanocomposite, EG not only reduces graphene oxide (GO) to graphene, but also results in the formation of SnO 2 facilitated by the presence of a small amount of water. On the other hand, in the reaction system for preparation of PtRu/graphene nanocomposites, EG acts as solvent and reducing agent for reduction of PtRu nanoparticles from their precursors and reduction of graphene from graphene oxide. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) characterizations confirm the feasibility of the microwave-assisted reaction system to simultaneously reduce graphene oxide and to form SnO 2 or PtRu nanoparticles. The as-synthesized SnO 2 /graphene hybrid composites show a much higher supercapacitance than the pure graphene, and the as-prepared PtRu/graphene show much better electrocatalytic activity for methanol oxidation compared to the commercial E-TEK PtRu/C electrocatalysts.

  13. Electrodialytic Remediation of Heavy Metal Polluted Soil. An Innovative Technique

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik; Karlsmose, Bodil

    1997-01-01

    Electrodialytic remediationof heavy metal polluted soil is a newly developed method which combines the electrokinetic movement of ions in soil with the principle of electrodialysis. The method has prowen to work in laboratorscale and at presnet two types of pilot plants are build....

  14. Interactions of noble metal nanoparticles with their environment; Wechselwirkungen von Edelmetallnanopartikeln mit ihrer Umgebung

    Energy Technology Data Exchange (ETDEWEB)

    Reismann, Maximilian

    2009-12-08

    Upon irradiating noble metal nanoparticles with light, unique optical phenomena can occur, such as resonantly enhanced light-scattering and light-absorption, or a tremendous enhancement of the exciting optical field close to the surface of the nanoparticles. These phenomena rely on the excitations of collective oscillations of the conduction electrons within a nanoparticle. The optical properties of a nanoparticle are determined by the resonance frequency of these so-called plasmon oscillations. This resonance frequency and the light-scattering spectrum of a nanoparticle depend (among other effects) on the dielectric environment of the particle. Due to this effect, noble metal nanoparticles can be applied for local optical sensing of chemical substances. The large light-absorption properties of a nanoparticle also enable the usage of light-irradiation to deposit heat in the nanoparticle in a selective and highly localized manner. Therefore, a local temperature increase can be induced in the nanoparticle and its immediate environment. This temperature increase could be used to trigger chemical or biological reactions, or it could be used for a selective hyperthermia of biological material. These and further possible applications rely on the detection or the systematic excitation of interactions between the noble metal nanoparticle and its environment. These interactions are the central subject of this thesis. Particular attention is paid to photothermal interactions. An interesting question is to what extend a nanoparticle-supported, photothermally-induced temperature rise can be applied to trigger a biomolecular reaction in a spatially confined volume. By carefully adjusting the photothermal treatment, one aims at affecting the molecules without damaging their chemical functionality. The photothermal interaction is addressed in two projects: First, networks built up by gold nanoparticles are investigated. In these networks, double-stranded DNA-molecules are used to

  15. Pollution characteristics and ecological risk of heavy metals in ballast tank sediment.

    Science.gov (United States)

    Feng, Daolun; Chen, Xiaofei; Tian, Wen; Qian, Qun; Shen, Hao; Liao, Dexiang; Lv, Baoyi

    2017-02-01

    This study was conducted to illustrate the contents and potential ecological risk of heavy metals in ballast tank sediment. Ballast sediment samples were collected from six ships during their stay in shipyard, and the heavy metals were determined by inductive coupled plasma emission spectrometer. Results showed that high concentrations of heavy metals were detected in all six sediment samples following the order: Zn > Cu > Pb > Cr > As > Cd > Hg. The geoaccumulation index explained the average pollution degree of heavy metals decreased as the following: Zn > Pb > Cu > As > Cr > Hg, and the environmental risk indices suggested that concentration found of Zn, Pb, and Cu might be highly toxic to aquatic organisms. Principal component and correlation analysis indicated the metal pollution in ballast tank sediment was affected by complex and different contamination mechanisms, and the corrosion of ballast tank played an important role in this process. In conclusion, this study is very useful for comprehensive consideration and efficient management of ballast tank sediment in order to protect the marine environment.

  16. Evaluating the potential use of Tamarix gallica L. for phytoremediation practices in heavy-metal polluted soils

    Science.gov (United States)

    Abou Jaoudé, R.; Pricop, A.; Laffont-Schwob, I.; Prudent, P.; Rabier, J.; Masotti, V.; de Dato, G.; De Angelis, P.

    2012-04-01

    The rapid growth of population, the increased urbanisation and the expansion of industrial activities have provoked an augmented occurrence of soil contamination by heavy-metals. Important sources of contamination are industrial, mining and military infrastructures, which are often abandoned without performing the appropriate reclamation work. In the Mediterranean Basin, where coastal areas are largely affected by human overexploitation, the use of species able to tolerate heavy-metals and other abiotic stresses may represent a low-cost solution for phytoremediation in these harsh environments. Tamarix gallica L. is a widespread species in coastal Mediterranean areas, showing a high adaptability to different environments and a high tolerance of adversity. With the objective of testing local species as candidates for phytoremediation practices in heavy-metal contaminated coastal soils, cuttings of T. gallica from a wild population around Marseille (France) were planted in pots containing: 1) control soil (loamy soil and sand (2/1)), 2) half-polluted soil (loamy soil, sand and heavy-metal polluted soil (1/1/1)), and 3) polluted soil (sand and heavy-metal polluted soil (1/2)). The contaminated soils were collected in the surrounding of a former lead industry of Marseille littoral and characterised by the presence of Fe, Pb, Zn, As and Al. After three months from planting, leaf functionality was evaluated by measuring leaf gas exchanges, leaf chlorophyll fluorescence and, chlorophyll, phenols, flavonoids and anthocyanins contents. SEM observations coupled to EDXS analysis were used to determine elements (Pb, As and Al) presence and location on the leaf surface and in leaf and root tissues. T. gallica was moderately affected by the presence of heavy-metals in the soil treatments. In fact, a reduction in stomatal conductance was only observed in plants grown in the polluted soil. This reduction did not cause a significant decrease in CO2 assimilation rates. Moreover, the

  17. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks.

    Science.gov (United States)

    Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, María

    2017-06-01

    Nanotechnology has provided new tools for addressing unmet clinical situations, especially in the oncology field. The development of smart nanocarriers able to deliver chemotherapeutic agents specifically to the diseased cells and to release them in a controlled way has offered a paramount advantage over conventional therapy. Areas covered: Among the different types of nanoparticle that can be employed for this purpose, inorganic porous materials have received significant attention in the last decade due to their unique properties such as high loading capacity, chemical and physical robustness, low toxicity and easy and cheap production in the laboratory. This review discuss the recent advances performed in the application of porous inorganic and metal-organic materials for antitumoral therapy, paying special attention to the application of mesoporous silica, porous silicon and metal-organic nanoparticles. Expert opinion: The use of porous inorganic nanoparticles as drug carriers for cancer therapy has the potential to improve the life expectancy of the patients affected by this disease. However, much work is needed to overcome their drawbacks, which are aggravated by their hard nature, exploiting the advantages offered by highly the ordered pore network of these materials.

  18. A novel approach for soil contamination assessment from heavy metal pollution: a linkage between discharge and adsorption.

    Science.gov (United States)

    Dong, Xiaoqing; Li, Chaolin; Li, Ji; Wang, Jiaxin; Liu, Suting; Ye, Bin

    2010-03-15

    Soil protection from heavy metal contamination requires scientific assessment on the linkage between site-specific pollutant discharge and environmental effects. However, this kind of linkage is usually disregarded due to the lack of assessment tools in environmental policies, e.g., some developed coastal cities in China have forced their highly polluting industries out to less developed interior areas without consideration of the impacts from pollution transfer. This paper developed a soil adsorption fraction (SAF) model to characterize the emissions-to-adsorption relationship between heavy metal emission and the adsorption by soil. Case studies were carried out for two adjacent southern cities in China, i.e., Guangzhou and Shaoguan. The results indicated that the average SAF of cadmium was 5.38 x 10(-3) for Shaoguan and 1.28 x 10(-3) for Guangzhou, i.e., cadmium released from Shaoguan threatened the soil environment 4.2 times of that from Guangzhou. Further analysis showed the polluting pathway and abundance of water resources were the main influencing factors on SAF. Soil contamination will be exaggerated by relocating heavy metal polluting industries from coastal areas to interior areas. The results should be useful to prompt site-specific policies on heavy metal pollution control. (c) 2009 Elsevier B.V. All rights reserved.

  19. A novel approach for soil contamination assessment from heavy metal pollution: A linkage between discharge and adsorption

    International Nuclear Information System (INIS)

    Dong Xiaoqing; Li Chaolin; Li Ji; Wang Jiaxin; Liu Suting; Ye Bin

    2010-01-01

    Soil protection from heavy metal contamination requires scientific assessment on the linkage between site-specific pollutant discharge and environmental effects. However, this kind of linkage is usually disregarded due to the lack of assessment tools in environmental policies, e.g., some developed coastal cities in China have forced their highly polluting industries out to less developed interior areas without consideration of the impacts from pollution transfer. This paper developed a soil adsorption fraction (SAF) model to characterize the emissions-to-adsorption relationship between heavy metal emission and the adsorption by soil. Case studies were carried out for two adjacent southern cities in China, i.e., Guangzhou and Shaoguan. The results indicated that the average SAF of cadmium was 5.38 x 10 -3 for Shaoguan and 1.28 x 10 -3 for Guangzhou, i.e., cadmium released from Shaoguan threatened the soil environment 4.2 times of that from Guangzhou. Further analysis showed the polluting pathway and abundance of water resources were the main influencing factors on SAF. Soil contamination will be exaggerated by relocating heavy metal polluting industries from coastal areas to interior areas. The results should be useful to prompt site-specific policies on heavy metal pollution control.

  20. Taiwan's industrial heavy metal pollution threatens terrestrial biota

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, M.J. [Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Selvaraj, K. [Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Agoramoorthy, G. [Department of Pharmacy, Tajen University, Yanpu, Pingtung 907, Taiwan (China)]. E-mail: agoram@mail.tajen.edu.tw

    2006-09-15

    The bioconcentration levels of essential (Cu, Fe, Mg, Mn, and Zn) and non-essential (As, Cd, Hg, Pb, and Sn) elements have been investigated in different terrestrial biota such as fungi, plant, earthworm, snail, crab, insect, amphibian, lizard, snake, and bat including the associated soil, to investigate the ecosystem health status in Kenting National Park, Taiwan. High bioconcentrations of Cd, Hg, and Sn in snail, earthworm, crab, lizard, snake, and bat indicated a contaminated terrestrial ecosystem. High concentrations of Cd, Hg, and Sn in plant species, effective bioaccumulation of Cd by earthworm, snail, crab and bat, as well as very high levels of Hg found in invertebrates, amphibians, and reptiles revealed a strong influence from industrial pollution on the biotic community. This study for the first time presents data on the impact of heavy metal pollution on various terrestrial organisms in Taiwan. - Metal effects occur at any terrestrial levels in Taiwan.