WorldWideScience

Sample records for metal ion toxicity

  1. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  2. Neutralization by metal ions of the toxicity of sodium selenide.

    Directory of Open Access Journals (Sweden)

    Marc Dauplais

    Full Text Available Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺, (ii metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co²⁺ and Ni²⁺ and, finally, (iii metal ions which do not afford protection and do not interact (Ca²⁺, Mg²⁺, Mn²⁺ or weakly interact (Fe²⁺ with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB, the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds.

  3. Molten salt oxidation of ion-exchange resins doped with toxic metals and radioactive metal surrogates

    International Nuclear Information System (INIS)

    Yang, Hee-Chul; Cho, Yong-Jun; Yoo, Jae-Hyung; Kim, Joon-Hyung; Eun, Hee-Chul

    2005-01-01

    Ion-exchange resins doped with toxic metals and radioactive metal surrogates were test-burned in a bench-scale molten salt oxidation (MSO) reactor system. The purposes of this study are to confirm the destruction performance of the two-stage MSO reactor system for the organic ion-exchange resin and to obtain an understanding of the behavior of the fixed toxic metals and the sulfur in the cationic exchange resins. The destruction of the organics is very efficient in the primary reactor. The primarily destroyed products such as carbon monoxide are completely oxidized in the secondary MSO reactor. The overall collection of the sulfur and metals in the two-stage MSO reactor system appeared to be very efficient. Over 99.5% of all the fixed toxic metals (lead and cadmium) and radioactive metal surrogates (cesium, cobalt, strontium) remained in the MSO reactor bottom. Thermodynamic equilibrium calculations and the XRD patterns of the spent salt samples revealed that the collected metals existed in the form of each of their carbonates or oxides, which are non-volatile species at the MSO system operating conditions. (author)

  4. A novel approach for predicting the uptake and toxicity of metallic and metalloid ions

    Science.gov (United States)

    Wang, Peng

    2011-01-01

    Electrostatic nature of plant plasma membrane (PM) plays significant roles in the ion uptake and toxicity. Electrical potential at the PM exterior surface (ψ0o) influences ion distribution at the PM exterior surface, and the depolarization of ψ0o negativity increases the electrical driving force for cation transport, but decreases the driving force for anion transport across the PMs. Assessing environmental risks of toxic ions has been a difficult task because the ion concentration (activity) in medium is not directly corrected to its potential effects. Medium characteristics like the content of major cations have important influences on the bioavailability and toxicity of ions in natural waters and soils. Models such as the Free Ion Activity Model (FIAM) and the Biotic Ligand Model (BLM), as usually employed, neglect the ψ0o and hence often lead to false conclusions about interaction mechanisms between toxic ions and major cations for biology. The neglect of ψ0o is not inconsistent with its importance, and possibly reflects the difficulty in the measurement of ψ0o. Based on the dual effects of the ψ0o, electrostatic models were developed to better predict the uptake and toxicity of metallic and metalloid ions. These results suggest that the electrostatic models provides a more robust mechanistic framework to assess metal(loid) ecotoxicity and predict critical metal(loid) concentrations linked to a biological effect, indicating its potential utility in risk assessment of metal(loid)s in water and terrestrial ecosystems. PMID:21386661

  5. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    International Nuclear Information System (INIS)

    Fish, D.

    1996-01-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished

  6. Separation and Extraction of Some Heavy and Toxic Metal Ions from Their Wastes by Ionic Membranes

    International Nuclear Information System (INIS)

    El-Sayed Hegazy, A.; Kamal, H.; Mahmoud, Gh. A.; Khalifa, N.A.

    1999-01-01

    Preparation and characterisation of a series of ion-exchange membranes for the purpose of separation and extraction of some heavy and toxic metal ions from their wastes have been studied. Such ion exchange membranes prepared by γ-radiation grafting of acrylonitrile (AN) and vinyl acetate (VAc) in a binary monomers mixture onto low density polyethylene (LDPE) using direct technique of grafting. The reaction conditions at which grafting process proceeds successfully have been determined. Many modification treatments have been attempted for the prepared membranes to improve their ion-exchange properties. The possibility of their practical use in waste water treatment from some heavy and toxic metal ions such as Pb 2+ , Cd 2+ ,Cu 2+ ,Fe 3+ ,Sr 2+ and Li + have been investigated. These grafted membranes showed great promise for its use in the field of extraction and removal of some heavy and toxic metals from their wastes

  7. Separations chemistry of toxic metals

    International Nuclear Information System (INIS)

    Smith, P.; Barr, M.; Barrans, R.

    1996-01-01

    Sequestering and removing toxic metal ions from their surroundings is an increasingly active area of research and is gaining importance in light of current environmental contamination problems both within the DOE complex and externally. One method of separating metal ions is to complex them to a molecule (a ligand or chelator) which exhibits specific binding affinity for a toxic metal, even in the presence of other more benign metals. This approach makes use of the sometimes subtle differences between toxic and non-toxic metals resulting from variations in size, charge and shape. For example, toxic metals such as chromium, arsenic, and technetium exist in the environment as oxyanions, negatively charged species with a characteristic tetrahedral shape. Other toxic metals such as actinides and heavy metals are positively charged spheres with specific affinities for particular donor atoms such as oxygen (for actinides) and nitrogen (for heavy metals). In most cases the toxic metals are found in the presence of much larger quantities of less toxic metals such as sodium, calcium and iron. The selectivity of the chelators is critical to the goal of removing the toxic metals from their less toxic counterparts. The approach was to build a ligand framework that complements the unique characteristics of the toxic metal (size, charge and shape) while minimizing interactions with non-toxic metals. The authors have designed ligands exhibiting specificity for the target metals; they have synthesized, characterized and tested these ligands; and they have shown that they exhibit the proposed selectivity and cooperative binding effects

  8. Comparison of metal toxic impacts between aquatic and terrestrial organisms: is the free ion concentration a sufficient descriptor?

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Rosenbaum, Ralph K.; Larsen, Henrik Fred

    2011-01-01

    Characterization of metal toxic impacts in comparative risk assessment and life cycle impact assessment (LCIA) should take into account metal speciation and interactions with soil/water organic constituents, because these mechanisms control metal bioavailability and may influence their toxic...... that the free metal ion is an appropriate “general”descriptor of metal toxicity. Results for 128 laboratory tests on Daphnia magna exposed to copper ions (Cu2+) in water show that variation of several orders of magnitude are observed between the toxicity tests. These variations may be a result of the inability...... of magnitude difference occur for the extreme case of barley (Hordeum vulgare). Given the scarcity of terrestrial effect data compared to aquatic data, reliable and transparent, mechanistic-based predictions of terrestrial toxic impacts from aquatic effect data would be an important step ahead in the context...

  9. General aspects of metal toxicity.

    Science.gov (United States)

    Kozlowski, H; Kolkowska, P; Watly, J; Krzywoszynska, K; Potocki, S

    2014-01-01

    This review is focused on the general mechanisms of metal toxicity in humans. The possible and mainly confirmed mechanisms of their action are discussed. The metals are divided into four groups due to their toxic effects. First group comprises of metal ions acting as Fenton reaction catalyst mainly iron and copper. These types of metal ions participate in generation of the reactive oxygen species. Metals such as nickel, cadmium and chromium are considered as carcinogenic agents. Aluminum, lead and tin are involved in neurotoxicity. The representative of the last group is mercury, which may be considered as a generally toxic metal. Fenton reaction is a naturally occurring process producing most active oxygen species, hydroxyl radical: Fe(2+) + He2O2 ↔ Fe(3+) + OH(-) + OH(•) It is able to oxidize most of the biomolecules including DNA, proteins, lipids etc. The effect of toxicity depends on the damage of molecules i.e. production site of the hydroxyl radical. Chromium toxicity depends critically on its oxidation state. The most hazardous seems to be Cr(6+) (chromates) which are one of the strongest inorganic carcinogenic agents. Cr(6+) species act also as oxidative agents damaging among other nucleic acids. Redox inactive Al(3+), Cd(2+) or Hg(2+) may interfere with biology of other metal ions e.g. by occupying metal binding sites in biomolecules. All these aspects will be discussed in the review.

  10. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?

    Energy Technology Data Exchange (ETDEWEB)

    Alsop, Derek, E-mail: alsopde@mcmaster.ca; Wood, Chris M.

    2013-09-15

    Highlights: •Zebrafish larvae were used to test the acute toxicity of contaminant mixtures. •Interactions were observed between metals, ammonia and pharmaceuticals. •Larval Na{sup +} loss was observed with exposure to all acutely toxic contaminants tested. •Water quality criteria should recognize the toxic interactions between contaminants. -- Abstract: The acute toxicities and mechanisms of action of a variety of environmental contaminants were examined using zebrafish larvae (Danio rerio; 4–8 days post fertilization). Toxic interactions were observed between metals. For example, the addition of a sublethal level of nickel (15% of the LC{sub 50}, one third of the LC{sub 01}) to all copper treatments decreased the copper 96 h LC{sub 50} by 58%, while sublethal copper exposure (6% of the copper LC{sub 50}, 13% of the LC{sub 01}) decreased the cadmium 96 h LC{sub 50} by 47%. Two predictive models were assessed, the concentration addition (CA) model, which assumes similar mechanisms of action, and the independent action (IA) model, which assumes different mechanisms of action. Quantitative comparisons indicated the CA model performed better than the IA model; the latter tended to underestimate combined toxicity to a greater extent. The effects of mixtures with nickel or ammonia were typically additive, while mixtures with copper or cadmium were typically greater than additive. Larvae exposed to cadmium, copper or nickel experienced whole body ion loss. Decreases were greatest for Na{sup +} followed by K{sup +} (as high as 19% and 9%, respectively, in 24 h). Additive toxicity between copper and other pharmaceutical compounds such as fluoxetine (Prozac™), β-naphthoflavone, estrogen and 17α-ethinylestradiol were also observed. Similar to metals, acutely toxic concentrations of fluoxetine, β-naphthoflavone and ammonia all decreased whole body Na{sup +} and K{sup +}. Overall, whole body Na{sup +} loss showed the greatest correlation with mortality across a

  11. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?

    International Nuclear Information System (INIS)

    Alsop, Derek; Wood, Chris M.

    2013-01-01

    Highlights: •Zebrafish larvae were used to test the acute toxicity of contaminant mixtures. •Interactions were observed between metals, ammonia and pharmaceuticals. •Larval Na + loss was observed with exposure to all acutely toxic contaminants tested. •Water quality criteria should recognize the toxic interactions between contaminants. -- Abstract: The acute toxicities and mechanisms of action of a variety of environmental contaminants were examined using zebrafish larvae (Danio rerio; 4–8 days post fertilization). Toxic interactions were observed between metals. For example, the addition of a sublethal level of nickel (15% of the LC 50 , one third of the LC 01 ) to all copper treatments decreased the copper 96 h LC 50 by 58%, while sublethal copper exposure (6% of the copper LC 50 , 13% of the LC 01 ) decreased the cadmium 96 h LC 50 by 47%. Two predictive models were assessed, the concentration addition (CA) model, which assumes similar mechanisms of action, and the independent action (IA) model, which assumes different mechanisms of action. Quantitative comparisons indicated the CA model performed better than the IA model; the latter tended to underestimate combined toxicity to a greater extent. The effects of mixtures with nickel or ammonia were typically additive, while mixtures with copper or cadmium were typically greater than additive. Larvae exposed to cadmium, copper or nickel experienced whole body ion loss. Decreases were greatest for Na + followed by K + (as high as 19% and 9%, respectively, in 24 h). Additive toxicity between copper and other pharmaceutical compounds such as fluoxetine (Prozac™), β-naphthoflavone, estrogen and 17α-ethinylestradiol were also observed. Similar to metals, acutely toxic concentrations of fluoxetine, β-naphthoflavone and ammonia all decreased whole body Na + and K + . Overall, whole body Na + loss showed the greatest correlation with mortality across a variety of toxicants. We theorize that a disruption of

  12. Speciation in Metal Toxicity and Metal-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Douglas M. Templeton

    2015-04-01

    Full Text Available Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure.

  13. Biodegradation of metal citrate complexes and implications for toxic-metal mobility

    International Nuclear Information System (INIS)

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.

    1992-01-01

    The presence of synthetic and naturally occurring chelating agents in nuclear and toxic-metal wastes is a major concern because of their potential to enhance mobilization of metal ions away from the disposal sites. Of particular interest is citric acid, which is present in low-level and transuranic radioactive wastes and in domestic and industrial wastes (as washing fluids, for instance), as well as being found naturally. Citrate ions form multidentate, stable complexes with a variety of toxic metals and radionuclides; but biodegradation of these complexes, precipitating the metal ions as insoluble hydroxides, oxides or other salts, may retard migration. Here we report a study of the biodegradation of citrate complexes of Ca, Fe(II), Fe(III), Cd, Cu, Ni, Pb and U. Several of these complexes were not readily degraded by bacteria, and the biodegradability depended on the chemical nature of the complex, not on the toxicity of the metal to the bacteria. This resistance to biodegradation implies that citrate complexation may play an important part in migration of these hazardous wastes. (author)

  14. Architecture of optical sensor for recognition of multiple toxic metal ions from water.

    Science.gov (United States)

    Shenashen, M A; El-Safty, S A; Elshehy, E A

    2013-09-15

    Here, we designed novel optical sensor based on the wormhole hexagonal mesoporous core/multi-shell silica nanoparticles that enabled the selective recognition and removal of these extremely toxic metals from drinking water. The surface-coating process of a mesoporous core/double-shell silica platforms by several consequence decorations using a cationic surfactant with double alkyl tails (CS-DAT) and then a synthesized dicarboxylate 1,5-diphenyl-3-thiocarbazone (III) signaling probe enabled us to create a unique hierarchical multi-shell sensor. In this design, the high loading capacity and wrapping of the CS-DAT and III organic moieties could be achieved, leading to the formation of silica core with multi-shells that formed from double-silica, CS-DAT, and III dressing layers. In this sensing system, notable changes in color and reflectance intensity of the multi-shelled sensor for Cu(2+), Co(2+), Cd(2+), and Hg(2+) ions, were observed at pH 2, 8, 9.5 and 11.5, respectively. The multi-shelled sensor is added to enable accessibility for continuous monitoring of several different toxic metal ions and efficient multi-ion sensing and removal capabilities with respect to reversibility, selectivity, and signal stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Metal uptake and acute toxicity in zebrafish: Common mechanisms across multiple metals

    Energy Technology Data Exchange (ETDEWEB)

    Alsop, Derek, E-mail: alsopde@mcmaster.ca [Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1 (Canada); Wood, Chris M. [Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1 (Canada)

    2011-10-15

    All metals tested reduced calcium uptake in zebrafish larvae. However, it was whole body sodium loss that was functionally related to toxicity. The zebrafish larvae acute toxicity assay save time, space and resources. - Abstract: Zebrafish larvae (Danio rerio) were used to examine the mechanisms of action and acute toxicities of metals. Larvae had similar physiological responses and sensitivities to waterborne metals as adults. While cadmium and zinc have previously been shown to reduce Ca{sup 2+} uptake, copper and nickel also decreased Ca{sup 2+} uptake, suggesting that the epithelial transport of all these metals is through Ca{sup 2+} pathways. However, exposure to cadmium, copper or nickel for up to 48 h had little or no effect on total whole body Ca{sup 2+} levels, indicating that the reduction of Ca{sup 2+} uptake is not the acute toxic mechanism of these metals. Instead, mortalities were effectively related to whole body Na{sup +}, which decreased up to 39% after 48 h exposures to different metals around their respective 96 h LC50s. Decreases in whole body K{sup +} were also observed, although they were not as pronounced or frequent as Na{sup +} losses. None of the metals tested inhibited Na{sup +} uptake in zebrafish (Na{sup +} uptake was in fact increased with exposure) and the observed losses of Na{sup +}, K{sup +}, Ca{sup 2+} and Mg{sup 2+} were proportional to the ionic gradients between the plasma and water, indicating diffusive ion loss with metal exposure. This study has shown that there is a common pathway for metal uptake and a common mechanism of acute toxicity across groups of metals in zebrafish. The disruption of ion uptake accompanying metal exposure does not appear to be responsible for the acute toxicity of metals, as has been previously suggested, but rather the toxicity is instead due to total ion loss (predominantly Na{sup +}).

  16. Role of Bioadsorbents in Reducing Toxic Metals

    OpenAIRE

    Mathew, Blessy Baby; Jaishankar, Monisha; Biju, Vinai George; Krishnamurthy Nideghatta Beeregowda

    2016-01-01

    Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to st...

  17. Use of low cost dead biomasses in the removal of heavy metal toxic/radiotoxic ions from aqueous wastes- a radiotracer study

    International Nuclear Information System (INIS)

    Mishra, Shuddhodan P.

    2005-01-01

    In an environmental context, accelerating pollution by toxic metal ions, metalloids, radionuclides and organometal (loid)s has provided the impetus for the research to look into the biotechnological potential of utilizing several low cost dead biomasses/agricultural byproducts to replace existing expensive technologies. Unlike organic pollutants which are biodegradable, these metallic contaminants tend to persist rather indefinitely in the environment, and are eventually accumulated through the food chain thus posing a serious threat to plants, animal and man. The use of radiotracer technique by several workers and ourselves in the study of adsorption uptake or ions (cations and anions) from aqueous solutions by metals/metals oxide surfaces at micro down to tracer level concentrations had been quite rewarding. In continuation of this work the present studies were directed to assess the uptake behaviour of abundantly available low cost dead biomasses [e.g. Rice hulls (oryza sativa L),] Mango (mangifera indica) and Neem (azadirachta indica)barks] towards some heavy metal (Hg 2+ , Cd 2+ , Cr 2+ , Zn 2+ and Ce 3+ ) toxic and radiotoxic (Sr 2+ and Cs l+ )ions from aqueous solutions at low ionic concentrations (10 -2 -10 -8 mol dm -3 ). In all these studies the adsorptive solution was labeled by a suitable radiotracer of the metal ion and the uptake of ions by the three biosorbents was assessed through monitoring of the decrease in radioactivity of the bulk. A parametric study through change of temperature, pH and addition of other co-ions/complexing agents has helped in deducing the thermodynamic parameters and mechanism of the uptake of the ions. The extent of removal of metal ions by these dead biomasses is quite high in most cases and the nature of the uptake appears to be exchange type. These findings show that the agricultural byproducts (dead biomasses) can be utilized in the development of waste water treatment technology for removal of heavy metal toxic and

  18. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies

    Science.gov (United States)

    Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-01

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.

  19. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    Science.gov (United States)

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-05-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where

  20. Development of the removal technology for toxic heavy metal ions by surface-modified activated carbon

    International Nuclear Information System (INIS)

    Park, Geun Il; Song, Kee Chan; Kim, Kwang Wook; Kim, In Tae; Cho, Il Hoon; Kim, Joon Hyung

    2001-01-01

    Adsorption capacities of both radionuclides(uranium, cobalt) and toxic heavy metals (lead, cadmium and chromium) using double surface-modified activated carbon in wide pH ranges are extensively evaluated. Surface-modified activated carbons are classified as AC(as-received carbon), OAC(single surface-modified carbon with nitric acid solution) and OAC-Na(double surface-modified carbon with various alkali solutions). It is established that optimal condition for the second surface modification of OAC is to use the mixed solution of both NaOH and NaCl with total concentration of 0.1 N based on adsorption efficiencies of uranium and cobalt. Variations of adsorption efficiencies in pH ranges of 2∼10 and the adsorption capacities in batch adsorber and fixed bed for removal of both radionuclides and toxic heavy metals using OAC-Na were shown to be superior to that of the AC and OAC even in a low pH range. Capacity factors of OAC-Na for the removal of various metal ions are also excellent to that of AC or OAC. Quantitative analysis of capacity factors for each ions showed that adsorption capacity of OAC-Na increased by 30 times for uranium, 60 times for cobalt, 9 times for lead, 30 times for cadmium, 3 times for chromium compared to that of AC at pH 5, respectively. Adsorption capacity of OAC-Na is comparable to that of XAD-16-TAR used as commercial ion exchange resin

  1. Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory.

    Science.gov (United States)

    Sousa, Francisco W; Sousa, Marcelo James; Oliveira, Isadora R N; Oliveira, André G; Cavalcante, Rivelino M; Fechine, Pierre B A; Neto, Vicente O S; de Keukeleire, Denis; Nascimento, Ronaldo F

    2009-08-01

    In this study, sugar cane residue or bagasse was used for removal of toxic metal ions from wastewater of an electroplating factory located in northeast Brazil. Prior acid treatment increased the adsorption efficacies in batch wise experiments. The microstructure of the material before and after the treatment was investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Column operations showed that removals of Cu(2+), Ni(2+) and Zn(2+) from wastewater (in the absence of cyanide) were 95.5%, 96.3.0%, and 97.1%, respectively. Regeneration of the adsorbent obtained in acid indicated that the efficiencies decreased only after the fourth cycle of re-use. Acid-treated sugar cane bagasse can be considered a viable alternative to common methods to remove toxic metal ions from aqueous effluents of electroplating industries.

  2. Heavy metal ions are potent inhibitors of protein folding

    International Nuclear Information System (INIS)

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-01-01

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd 2+ , Hg 2+ and Pb 2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC 50 in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far

  3. Effect of Pre-Gamma Irradiation Induction of Metallothionein on potentially Radiation-Induced Toxic Heavy Metals Ions In Rats

    International Nuclear Information System (INIS)

    El-Shamy, El.

    2004-01-01

    Metallothionein, which is a cystein-rich metal binding protein, can act as free radical scavenger and involved in resistance to heavy metal toxicity. The induction of synthesis has been shown to protect organs from the toxic effect of radiation. This study aimed to stud the effects of pre-irradiation induction of by heavy metal (Zinc sulfate) on potentially gamma radiation-induced toxic heavy metals ions in rate liver and kidney tissues. Forty eight albino rats were included in this study. They were divided into eight groups each of six animals. Two control groups injected with saline. Two Zinc sulfate-treated groups injected with zinc sulfate, two Irradiated groups exposed to a single dose level (7 Gy) of whole body gamma irradiation and two combined zinc sulfate and irradiation groups injected with zinc sulfate and exposed to whole body gamma irradiation (at dose 7 Gy). Animals of all groups were sacrificed 24 and 48 hours after last either zinc sulfate dose or irradiation. Samples of liver and kidney's tissues were subjected to the following investigations: Estimation of tissue heavy Metals (Zinc, Iron and Copper), and tissue (MT). After irradiation, liver and kidney MT were increased approximately 10-fold and 2-fold respectively after irradiation. Accumulation of zinc and iron in both liver and kidney tissues were detected, while accumulation of copper only in the liver tissues. The pre-irradiation treatment with zinc sulfate (Zn SO4) resulted in highly significant decrease in zinc, iron, and copper levels in both liver and kidney tissues in comparison with irradiation groups. Conclusion, it can be supposed that pre-irradiation injection of ZnSO 4 exerted protective effect against the potentially radiation-induced toxic heavy metals ions through MT induction

  4. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    KAUST Repository

    Sabella, Stefania

    2014-04-09

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment-where particles are abundantly internalized-is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a "lysosome-enhanced Trojan horse effect" since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. The Royal Society of Chemistry 2014.

  5. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    KAUST Repository

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-01-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment-where particles are abundantly internalized-is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a "lysosome-enhanced Trojan horse effect" since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. The Royal Society of Chemistry 2014.

  6. Capture of toxic radioactive and heavy metal ions from water by using titanate nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jiasheng, E-mail: jiashengxu@bhu.edu.cn [Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry, Chemical Engineering and Food Safety, Center of Science and Technology Experiment, Bohai University, 19 Sci-tech Road, Jinzhou 121013 (China); Zhang, He; Zhang, Jie [Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry, Chemical Engineering and Food Safety, Center of Science and Technology Experiment, Bohai University, 19 Sci-tech Road, Jinzhou 121013 (China); Kim, Eui Jung [School of Chemical Engineering and Bioengineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2014-11-25

    Highlights: • Three types of titanate nanofibers were prepared via a hydrothermal porcess. • These nanofibers show availability for removal of the toxic ions from water. • The equilibrium data were fitted well with the Langmuir model. - Abstract: Three types of titanate nanofibers (sodium titanate nanofibers (TNF-A), potassium/sodium titanate nanofibers (TNF-B), potassium titanate nanofibers (TNF-C)) were prepared via a hydrothermal treatment of anatase powders in different alkali solutions at 170 °C for 96 h, respectively. The as-prepared nanofibers have large specific surface area and show availability for the removal of radioactive and heavy metal ions from water system, such as Ba{sup 2+} (as substitute of {sup 226}Ra{sup 2+}) and Pb{sup 2+} ions. The TNF-A shows a better capacity in the removal of Ba{sup 2+} and Pb{sup 2+} than TNF-B and TNF-C. Structural characterization of the materials was performed with powder X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) and with inductively coupled plasma optical emission spectrometry (ICP-OES). It is found that the equilibrium data fit well with the Langmuir model. This study highlights that nanoparticles of inorganic ion exchangers with layered structure are potential materials for efficient removal of the toxic ions from contaminated water.

  7. Analysis of metal ion release from biomedical implants

    Directory of Open Access Journals (Sweden)

    Ivana Dimić

    2013-06-01

    Full Text Available Metallic biomaterials are commonly used for fixation or replacement of damaged bones in the human body due to their good combination of mechanical properties. The disadvantage of metals as implant materials is their susceptibility to corrosion and metal ion release, which can cause serious health problems. In certain concentrations metals and metal ions are toxic and their presence can cause diverse inflammatory reactions, genetic mutations or even cancer. In this paper, different approaches to metal ion release examination, from biometallic materials sample preparation to research results interpretation, will be presented. An overview of the analytical techniques, used for determination of the type and concentration of released ions from implants in simulated biofluids, is also given in the paper.

  8. Role of Bioadsorbents in Reducing Toxic Metals

    Directory of Open Access Journals (Sweden)

    Blessy Baby Mathew

    2016-01-01

    Full Text Available Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to study and explore all possible sources of agrobased inexpensive adsorbents for their feasibility in the removal of heavy metals. The objective was to study inexpensive adsorbents like various agricultural wastes such as sugarcane bagasse, rice husk, oil palm shell, coconut shell, and coconut husk in eliminating heavy metals from waste water and their utilization possibilities based on our research and literature survey. It also shows the significance of developing and evaluating new potential biosorbents in the near future with higher adsorption capacity and greater reusable options.

  9. Role of Bioadsorbents in Reducing Toxic Metals.

    Science.gov (United States)

    Mathew, Blessy Baby; Jaishankar, Monisha; Biju, Vinai George; Krishnamurthy Nideghatta Beeregowda

    2016-01-01

    Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to study and explore all possible sources of agrobased inexpensive adsorbents for their feasibility in the removal of heavy metals. The objective was to study inexpensive adsorbents like various agricultural wastes such as sugarcane bagasse, rice husk, oil palm shell, coconut shell, and coconut husk in eliminating heavy metals from waste water and their utilization possibilities based on our research and literature survey. It also shows the significance of developing and evaluating new potential biosorbents in the near future with higher adsorption capacity and greater reusable options.

  10. Role of Bioadsorbents in Reducing Toxic Metals

    Science.gov (United States)

    Jaishankar, Monisha; Biju, Vinai George; Krishnamurthy Nideghatta Beeregowda

    2016-01-01

    Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to study and explore all possible sources of agrobased inexpensive adsorbents for their feasibility in the removal of heavy metals. The objective was to study inexpensive adsorbents like various agricultural wastes such as sugarcane bagasse, rice husk, oil palm shell, coconut shell, and coconut husk in eliminating heavy metals from waste water and their utilization possibilities based on our research and literature survey. It also shows the significance of developing and evaluating new potential biosorbents in the near future with higher adsorption capacity and greater reusable options. PMID:28090207

  11. Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Sinicropi, Maria Stefania; Caruso, Anna [University of Calabria, Department of Pharmaceutical Sciences, Rende (Italy); Amantea, Diana [University of Calabria, Department of Pharmacobiology, Rende (Italy); Saturnino, Carmela [University of Salerno, Department of Pharmaceutical Sciences, Fisciano (Italy)

    2010-07-15

    Exposure to toxic metals is a well-known problem in industrialized countries. Metals interfere with a number of physiological processes, including central nervous system (CNS), haematopoietic, hepatic and renal functions. In the evaluation of the toxicity of a particular metal it is crucial to consider many parameters: chemical forms (elemental, organic or inorganic), binding capability, presence of specific proteins that selectively bind metals, etc. Medical treatment of acute and chronic metal toxicity is provided by chelating agents, namely organic compounds capable of interacting with metal ions to form structures called chelates. The present review attempts to provide updated information about the mechanisms, the cellular targets and the effects of toxic metals. (orig.)

  12. Engineering of microorganisms towards recovery of rare metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Kouichi; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences

    2010-06-15

    The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/ peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved. (orig.)

  13. Transport of toxic metals through the major river systems of Bangladesh

    International Nuclear Information System (INIS)

    Alam, A.M.S.; Islam, M.A.; Rahman, M.A.; Ahmed, E.; Islam, S.; Sultana, K.S.; Siddique, M.N.A.

    2002-01-01

    Bangladesh having an area of about 144,000 sq. km with a population of more than 120 millions is situated in the north eastern part of the south Asia subcontinent and a vast area to the south in the Bay of Bengal. The largest delta in the world has a largest catchment area of about 1554,000 sq. km spread over five countries namely Bhutan, Nepal, China, India and Bangladesh. Environmental pollution usually refers to biological, chemical and physical materials introduced largely as a result of human activities. Water is one of the main source of the environmental pollution and the contamination of water by the metal ions at the trace level is generally occurred through natural process or anthropogenic sources. Buriganga, Sitalaksma, Karnafully, Bramhaputra and Jamuna were selected for the present study. The toxic metal ions concentration in water samples of various regions of different rivers were determined by ASS and GFAAS. Higher concentration of different toxic metal ions have been observed at different location of various rivers. This observation demand the need of regular monitoring of toxic metals ion concentration in different rivers especially Buriganga, Sitalaksma and Karnafully. The results of further study will reveal some important information that will certainly be useful for the GOB to instruct DOE and DPHE for the remedial measures. (author)

  14. Toxic and biochemical effects of divalent metal ions in Drosophila: correlation to effects in mice and to chemical softness parameters

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K B; Turner, J E; Christie, N T; Owenby, R K

    1983-01-01

    The mechanism of toxicity of 11 divalent cations was evaluated by determining the effects of dietary administration to Drosophila melanogaster and measurement of the frequency of lethality at 4 days, alterations in the developmental patterns of proteins, and changes in specific transfer RNAs. The relative effectiveness of divalent cations to kill Drosophila is significantly correlated to the relative values of the coordinate bond energy of the metal ions. The resistance of Drosophila to cadmium toxicity appears to be genetically determined since different inbred strains vary markedly. Also, the resistance is maximal in the young adult. Two different genetic strains seem to respond to different cations (Cd/sup 2 +/, Hg/sup 2 +/, Cu/sup 2 +/, Co/sup 2 +/, Ba/sup 2 +/, and Sr/sup 2 +/) in a similar manner. Basic mechanisms of toxicity may be studied in Drosophila as well as mice since the chemical properties of the metals reflect their toxic effects on the former as closely as the latter. 25 references, 5 figures, 1 table.

  15. A new biotechnology for recovering heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Darnall, D.W.; Gabel, A.

    1989-01-01

    This paper reports that bio-recovery systems has developed a new sorption process for removing toxic metal ions from water. This process is based upon the natural, very strong affinity for biological materials, such as the cell walls of plants and microorganisms, for heavy metal ions such as uranium, cadmium, cobalt, nickel, etc.. Biological materials, primarily algae, have been immobilized in a polymer to produce a biological ion exchange resin, AlgaSORB. The material has a remarkable affinity for heavy metal ions and is capable of concentrating these ions by a factor of may thousand-fold. Additionally, the bound metals can be stripped and recovered from the algal material in a manner similar to conventional resins

  16. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Mugwar, Ahmed J. [Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); College of Engineering, Al-Muthanna University, Samawah (Iraq); Harbottle, Michael J., E-mail: harbottlem@cardiff.ac.uk [Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom)

    2016-08-15

    Highlights: • Minimum inhibitory concentrations (MIC) are determined for S. pasteurii with a range of metals. • Zinc & cadmium bioprecipitation is strongly linked to microbial carbonate generation. • Lead & copper carbonate bioprecipitation is limited & abiotic processes may be significant. • Bioprecipitation allows survival at & remediation of higher metal concentrations than expected. - Abstract: Biological precipitation of metallic contaminants has been explored as a remedial technology for contaminated groundwater systems. However, metal toxicity and availability limit the activity and remedial potential of bacteria. We report the ability of a bacterium, Sporosarcina pasteurii, to remove metals in aerobic aqueous systems through carbonate formation. Its ability to survive and grow in increasingly concentrated aqueous solutions of zinc, cadmium, lead and copper is explored, with and without a metal precipitation mechanism. In the presence of metal ions alone, bacterial growth was inhibited at a range of concentrations depending on the metal. Microbial activity in a urea-amended medium caused carbonate ion generation and pH elevation, providing conditions suitable for calcium carbonate bioprecipitation, and consequent removal of metal ions. Elevation of pH and calcium precipitation are shown to be strongly linked to removal of zinc and cadmium, but only partially linked to removal of lead and copper. The dependence of these effects on interactions between the respective metal and precipitated calcium carbonate are discussed. Finally, it is shown that the bacterium operates at higher metal concentrations in the presence of the urea-amended medium, suggesting that the metal removal mechanism offers a defence against metal toxicity.

  17. Coping With Metal Toxicity – Cues From Halophytes

    Directory of Open Access Journals (Sweden)

    Ganesh C. Nikalje

    2018-06-01

    Full Text Available Being the native flora of saline soil, halophytes are well studied for their salt tolerance and adaptation mechanism at the physiological, biochemical, molecular and metabolomic levels. However, these saline habitats are getting contaminated due to various anthropogenic activities like urban waste, agricultural runoff, mining, industrial waste that are rich in toxic metals and metalloids. These toxic metals impose detrimental effects on growth and development of most plant species. Halophytes by virtue of their tolerance to salinity also show high tolerance to heavy metals which is attributed to the enhanced root to shoot metal translocation and bioavailability. Halophytes rapidly uptake toxic ions from the root and transport them toward aerial parts by using different transporters which are involved in metal tolerance and homeostasis. A number of defense related physiological and biochemical strategies are known to be crucial for metal detoxification in halophytes however; there is paucity of information on the molecular regulators. Understanding of the phenomenon of cross-tolerance of salinity with other abiotic stresses in halophytes could very well boost their potential use in phytoremediation. In this article, we present an overview of heavy metal tolerance in case of halophytes, associated mechanisms and cross-tolerance of salinity with other abiotic stresses.

  18. Selective chelation-supercritical fluid extraction of metal ions from waste materials

    International Nuclear Information System (INIS)

    Wai, C.N.; Laintz, K.E.; Yonker, C.R.

    1993-01-01

    The removal of toxic organics, metals, and radioisotopes from solids or liquids is a major concern in the treatment of industrial and nuclear wastes. For this reason, developing methods for selective separation of toxic metals and radioactive materials from solutions of complex matrix is an important problem in environmental research. Recent developments indicate supercritical fluids are good solvents for organic compounds. Many gases become supercritical fluids under moderate temperatures and pressures. For example, the critical temperature and pressure of carbon dioxide are 31 degrees C and 73 atm, respectively. The high diffusivity, low viscosity, and T-P dependence of solvent strength are some attractive properties of supercritical fluid extraction (SFE). Since CO 2 offers the additional benefits of stability and non-toxicity, the SFE technique avoids generation of organic liquid waste and exposure of personnel to toxic solvents. While direct extraction of metal ions by supercritical fluids is highly inefficient, these ions when complexed with organic ligands become quite soluble in supercritical fluids. Specific ligands can be used to achieve selective extraction of metal ions in this process. After SFE, the fluid phase can be depressurized for precipitation of the metal chelates and recycled. The ligand can also be regenerated for repeated use. The success of this selective chelation-supercritical fluid extraction (SC-SFE) process depends on a number of factors including the efficiencies of the selective chelating agents, solubilities of metal chelates in supercritical fluids, rate of extraction, ease of regeneration of the ligands, etc. In this report, the authors present recent results on the studies of the solubilities of metal chelates in supercritical CO 2 , experimental ions from aqueous solution, and the development of selective chelating agents (ionizable crown ethers) for the extraction of lanthanides and actinides

  19. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc and copper. Progress report, January 1, 1980-December 31, 1980

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1980-01-01

    Investigations were continued to elucidate the mode of transepithelial transport of toxic metal ions across the gastrointestinal tract, as well as their interactions with biological processes and other metal ions. All experimental details that are either published, submitted for publication or in press during this report period are included in the Appendix. Primary attention for this report has been given to the intestinal absorption of lead and its interaction with other biological moieties

  20. Metal ion reactive thin films using spray electrostatic LbL assembly.

    Science.gov (United States)

    Krogman, Kevin C; Lyon, Katharine F; Hammond, Paula T

    2008-11-20

    By using the spray-layer-by-layer (Spray-LbL) technique, the number of metal counterions trapped within LbL coatings is significantly increased by kinetically freezing the film short of equilibrium, potentially limiting interchain penetration and forcing chains to remain extrinsically compensated to a much greater degree than observed in the traditional dipped LbL technique. The basis for the enhanced entrapment of metal ions such as Cu2+, Fe2+, and Ag+ is addressed, including the equilibrium driving force for extrinsic compensation by soft versus hard metal ions and the impact of Spray-LbL on the kinetics of polymer-ion complexation. These polymer-bound metal-ion coatings are also demonstrated to be effective treatments for air filtration, functionalizing existing filters with the ability to strongly bind toxic industrial compounds such as ammonia or cyanide gases, as well as chemical warfare agent simulants such as chloroethyl ethyl sulfide. On the basis of results reported here, future work could extend this method to include other toxic soft-base ligands such as carbon monoxide, benzene, or organophosphate nerve agents.

  1. Evaluation of toxic metals in the industrial effluents and their segregation through peanut husk fence for pollution abatement

    International Nuclear Information System (INIS)

    Husaini, S.N.; Zaidi, J.H.; Matiullah; Akram, M.

    2011-01-01

    The industrial pollution is exponentially growing in the developing countries due to the discharge of untreated effluents from the industries in the open atmosphere. This may cause severe health hazards in the general public. To reduce this effect, it is essential to remove the toxic and heavy metals from the effluents before their disposal into the biosphere. In this context, samples of the effluents were collected from the textile/yarn, ceramics and pulp/paper industries and the concentrations of the toxic metal ions were determined using neutron activation analysis (NAA) technique. The observed concentration values of the As, Cr and Fe ions, in the unprocessed industrial effluents, were 4.91 ± 0.8, 9.67 ± 0.7 and 9.71 ± 0.8 mg/L, respectively which was well above the standard recommended limits (i.e. 1.0, 1.0 and 2.0 mg/L, respectively). In order to remove the toxic metal ions from the effluents, the samples were treated with pea nut husk fence. After this treatment, 91.5% arsenic, 81.9% chromium and 66.5% iron metal ions were successfully removed from the effluents. Then the treated effluents contained concerned toxic metal ions concentrations within the permissible limits as recommended by the national environmental quality standards (NEQS). (author)

  2. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  3. Ag(I), Pb(II) and Hg(II) binding to biomolecules studied by Perturbed Angular Correlation of $\\gamma$-rays (PAC) spectroscopy: Function and toxicity of metal ions in biological systems

    CERN Multimedia

    Metal ions display diverse functions in biological systems and are essential components in both protein structure and function, and in control of biochemical reaction paths and signaling. Similarly, metal ions may be used to control structure and function of synthetic biomolecules, and thus be a tool in the design of molecules with a desired function. In this project we address a variety of questions concerning both the function of metal ions in natural systems, in synthetic biomolecules, and the toxic effect of some metal ions. All projects involve other experimental techniques such as NMR, EXAFS, UV-Vis, fluorescence, and CD spectroscopies providing complementary data, as well as interpretation of the experimental data by quantum mechanical calculations of spectroscopic properties.

  4. A sensitive whole-cell biosensor for the simultaneous detection of a broad-spectrum of toxic heavy metal ions.

    Science.gov (United States)

    Cerminati, S; Soncini, F C; Checa, S K

    2015-04-07

    Bacterial biosensors are simple, cost-effective and efficient analytical tools for detecting bioavailable heavy metals in the environment. This work presents the design, construction and calibration of a novel whole-cell fluorescent biosensory device that, simultaneously and with high sensitivity, reports the presence of toxic mercury, lead, cadmium and/or gold ions in aqueous samples. This bio-reporter can be easily applied as an immediate alerting tool for detecting the presence of harmful pollutants in drinking water.

  5. Alzheimer’s disease: How metal ions define β-amyloid function

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    focuses on the essential coordination chemistry and biochemistry that relate transition metal ions iron, copper, and zinc to β-amyloid (Aβ) and most likely define the peptide's roles in neurons. The metal-Aβ interactions have elements of both gain of toxic function, as usually considered, but also loss......Alzheimer’s disease is increasingly recognized to be linked to the function and status of metal ions, and recently, the amyloid hypothesis has been strongly intertwined with the metal ion hypothesis; in fact, these two hypotheses fit well together and are not mutually contradictory. This review...... of natural functions, as emphasized in this review. Both these aspects and their relationships are discussed and their implications for future therapeutic strategies are outlined....

  6. Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.J. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Hughes, S. [Centre for Ecology and Hydrology (Bangor), Deiniol Road, Bangor, Gwynedd LL57 2UP (United Kingdom); Lawlor, A.J. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Lofts, S. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Simon, B.M. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Stevens, P.A. [Centre for Ecology and Hydrology (Bangor), Deiniol Road, Bangor, Gwynedd LL57 2UP (United Kingdom); Stidson, R.T. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Tipping, E. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom)]. E-mail: et@ceh.ac.uk; Vincent, C.D. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2005-07-15

    Four samples of ombrotrophic peat were collected from each of 10 upland locations in a transect from the southern Pennines to the Highland Boundary Fault, a total distance of ca. 400 km. Bulk compositions and other properties were determined. Total contents of Al and heavy metals (Ni, Cu, Zn, Cd, Pb) were determined following digestion with hydrofluoric acid, and concentrations of metals extractable with dilute nitric acid were also measured. Supernatants obtained from aqueous extractions of the peat samples were analysed for pH, major cations and anions, dissolved organic carbon and dissolved metals, and concentrations of free metal ions (Al{sup 3+}, Ni{sup 2+}, etc.) were estimated by applying a chemical speciation model. Both total and HNO{sub 3}-extractable metal concentrations varied along the transect, the highest values being found at locations close to industrial and former mining areas. The HNO{sub 3}-extractable soil metal contents of Ni, Cu and Cd were appreciably lower than lowest-observed-effect-concentrations (LOEC) for toxicity towards microorganisms in acid, organic rich soils. However, the contents of Zn at two locations, and of Pb at five locations exceeded LOECs, suggesting that they may be exerting toxic effects in the peats. Soil solution concentrations of free heavy metal ions (Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}, Pb{sup 2+}) were substantially lower than LOECs for toxicity towards vascular plants, whereas concentrations of Al{sup 3+} were near to toxic levels at two locations. - P eat metal contents depend upon proximity to industrial and mining areas; the metals may be exerting toxic effects in some places.

  7. Interaction of Cr (III), Ni (II), Pb (II) with DTPA complexes of essential metal ions

    International Nuclear Information System (INIS)

    Gulzar, S.; Zahida; Maqsood, T.; Naqvi, R.R.

    2002-01-01

    With the increase of anthropogenic activities in the environment, heavy metal toxicity (Chromium, Nickel and Lead) is more common now. DTPA (diethylene triamine pentaacetic acid) a polyamino carboxylic acid is widely used to form hydrophilic and stable complexes with most of the metal ions. In this spectrophotometric study, concentration of Cr(III), Ni(II) and Pb(II) (toxic metal ions) exchanged with Fe(III), Zn(II) and Ca(II) from their DTPA complexes were estimated at pH 4,7 and 9. Concentration of added metal was varied from 1-4 times to that of complexed metal. (author)

  8. Biosorption study of radiotoxic nuclide and toxic heavy metals using green adsorbent

    International Nuclear Information System (INIS)

    Bagla, Hemlata K.

    2014-01-01

    Our research scientifically illuminates the pioneering and successful application of the ancient Indian epitome of energy, Dry Cow Dung Powder, DCP, a combo humiresin, in its naive 'as it is form' for the bioremediation of toxic pollutants. The potential of DCP to sequester toxic heavy metal ions such as Cr(III), Cr(VI). Cd(II), Hg(II) and radionuclide 90 Sr(II) has been successfully demonstrated, employing tracer technique. The Batch equilibration method and all the important parameters such as pH, dose of sorbent, metal ion concentration, contact time, agitation speed, temperature and interference of different salts have been studied and optimized. The study on thermodynamic, kinetic and isotherm modeling of biosorption indicates that it is feasible, eco-friendly and efficient process to employ DCP for the removal of metal ions from aqueous medium. Spectroscopic analysis by FTIR and EDAX effectively explain the mechanism involved in the biosorption by DCP. The adsorption capacity and the pseudo-second order rate constant were also obtained by regression analysis. Thus DCP proves to be Eco-friendly resin for the removal of these toxic pollutants such as Cr(III), Cr(VI), Cd(II), Hg(II) and 90 Sr(II) from aqueous medium. (author)

  9. Natural and active chemical remediation of toxic metals and radionuclides in the aquatic environment

    International Nuclear Information System (INIS)

    McPherson, G.; Pintauro, P.; O'Connor, S.; Zhang, J.; Gonzales, R.; Flowers, G.

    1993-01-01

    The focus of this research is the non-biological, chemical remediation of toxic heavy metals and radionuclides in aquatic environments. This Tulane/Xavier group includes researchers from Chemistry, Chemical Engineering, and Geology. Active methods using novel zeolites and ion exchange membranes are currently being evaluated for use in removing heavy metals from natural waters. In addition, field and laboratory studies of metal ion exchange reactions and competitive, heavy metal adsorption on clay substrates are underway to determine sediment metal sequestering capacity. A summary of progress to date and future work is presented

  10. Ionic liquids used in extraction and separation of metal ions

    International Nuclear Information System (INIS)

    Shen Xinghai; Xu Chao; Liu Xinqi; Chu Taiwei

    2006-01-01

    Ionic liquids as green solvents now have become a research hotspot in the field of separation of metal ions by solvent extraction. Experimental results of extraction of various metal ions with ionic liquids as solvents, including that of alkali metals, alkaline earths, transition metals rare earths and actinides are introduced. The extraction of uranium, plutonium and fission products that are involved in spent nuclear fuel reprocessing is also reviewed. The possible extraction mechanisms are discussed. Finally, the prospect of replacement of volatile and/or toxic organic solvents with environmentally benign ionic liquids for solvent extraction and the potency of applications of ionic liquids in solvent extraction are also commented. (authors)

  11. Removal of heavy-metal ions from dilute waste streams using membrane-based hybrid systems

    International Nuclear Information System (INIS)

    Friesen, D.T.; Edlund, D.J.

    1993-01-01

    At Bend research, the authors have developed hybrid systems that couple a process that removes solvent (water) and a process that removes solute (metal ions) such that toxic heavy-metal ions can be efficiently and selectively removed to very low levels while simultaneously concentrating the heavy-metal ions in relatively pure form. Although this technology is broadly applicable, the authors are focusing on the development of a system to treat groundwater that is contaminated with heavy-metal ions. The process utilizes coupled transport and reverse osmosis to reduce chromium and uranium concentration down to parts-per-billion levels

  12. Molecular and ionic mimicry and the transport of toxic metals

    Science.gov (United States)

    Bridges, Christy C.; Zalups, Rudolfs K.

    2008-01-01

    Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport of selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues. PMID:15845419

  13. Molecular and ionic mimicry and the transport of toxic metals

    International Nuclear Information System (INIS)

    Bridges, Christy C.; Zalups, Rudolfs K.

    2005-01-01

    Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport of selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues

  14. Comparative metal oxide nanoparticle toxicity using embryonic zebrafish

    Directory of Open Access Journals (Sweden)

    Leah C. Wehmas

    2015-01-01

    Full Text Available Engineered metal oxide nanoparticles (MO NPs are finding increasing utility in the medical field as anticancer agents. Before validation of in vivo anticancer efficacy can occur, a better understanding of whole-animal toxicity is required. We compared the toxicity of seven widely used semiconductor MO NPs made from zinc oxide (ZnO, titanium dioxide, cerium dioxide and tin dioxide prepared in pure water and in synthetic seawater using a five-day embryonic zebrafish assay. We hypothesized that the toxicity of these engineered MO NPs would depend on physicochemical properties. Significant agglomeration of MO NPs in aqueous solutions is common making it challenging to associate NP characteristics such as size and charge with toxicity. However, data from our agglomerated MO NPs suggests that the elemental composition and dissolution potential are major drivers of toxicity. Only ZnO caused significant adverse effects of all MO particles tested, and only when prepared in pure water (point estimate median lethal concentration = 3.5–9.1 mg/L. This toxicity was life stage dependent. The 24 h toxicity increased greatly (∼22.7 fold when zebrafish exposures started at the larval life stage compared to the 24 h toxicity following embryonic exposure. Investigation into whether dissolution could account for ZnO toxicity revealed high levels of zinc ion (40–89% of total sample were generated. Exposure to zinc ion equivalents revealed dissolved Zn2+ may be a major contributor to ZnO toxicity.

  15. Relation between the electrolytic solution pressures of the metals and their toxicity to the stickleback (Gasterosteus acelueatus l. )

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J R.E.

    1939-01-01

    Lethal concentration limits have been determined for the hydrogen ion and the ions of eighteen metals. The three-spined stickleback (Gasterosteus aculeatus l.) has been employed as test animal. According to their lethal concentration limits on a mg./l. basis their order of increasing toxicity is: Sr, Ca, Na, Ba, Mg, K, Mn, Co, Cr, Ni, Au, Zn, Cd, Pb, Al, Cu, H, Hg, and Ag. On a molar concentration basis the order is as follows: Na, Ca, Sr, Mg, Ba, K, Mn, Co, Cr, Ni, H, Zn, Al, Au, Cd, Pb, Cu, Hg, Ag. All these ions, with the exception of the first six (the metals of the alkalis and alkaline earths), bring about the death of fish by precipitating the gill secretions, thus causing asphyxiation. The alkali and alkaline earth metals appear to enter the body and act as true internal poisons. The position of iron is uncertain. The toxicity of solutions of iron salts appears to be due, mainly if not entirely, to their acidity. On a mg./l. or molar concentration basis there is a marked relationship between the toxicity of the metals and their solution pressures. The metals of very low solution pressure (Ag, Cu, etc.), i.e. those whose ions are most ready to part with their charges and enter into combination with other ions or compounds, are the most toxic as they precipitate the gill secretions and bring about asphyxiation with extreme rapidity. Metals of somewhat higher solution pressure (Zn, Pb, Cd) act in the same way but more slowly. Manganese, which of all the heavy metals has the highest solution pressure, takes effect very slowly and the ions of the alkali and alkaline earth metals, which have a high affinity for their charges, do not precipitate the gill secretions at all. In the case of all ions other than those of the alkali and alkaline earth metals the reactions responsible for the death of the fish take place outside the body. Thus their speed of action does not depend on their penetrating power and the permeability factor does not enter.

  16. Nanotoxicity: the toxicity research progress of metal and metal-containing nanoparticles.

    Science.gov (United States)

    Ding, Lingling; Liu, Zhidong; Aggrey, Mike Okweesi; Li, Chunhua; Chen, Jing; Tong, Ling

    2015-01-01

    Along with the exuberant development of nanotechnology, a large number of nanoformulations or non materials are successfully applied in the clinics, biomedicine, cosmetics and industry. Despite some unique advantages of nanoformulations, there exist potentially worrying toxic effects, particularly those related to metal and metal-containing nanoparticles (NPs). Although various researches have been conducted to assess the metallic and metal-containing nanoparticles toxic effects, only little is known about the toxicity expressive types and evaluation, reasons and mechanisms, influencing factors and research methods of metal and metal-containing nanotoxicity. Therefore, it is of importance to acquire a better understanding of metal and metal-containing nanoparticles toxicity for medical application. This review presents a summary on the metal and metal-containing nanoparticles toxicity research progress consulting relevant literature.

  17. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report

  18. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  19. Fixation by ion exchange of toxic materials in a glass matrix

    International Nuclear Information System (INIS)

    Simmons, C.J.; Simmons, J.H.; Macedo, P.B.; Litovitz, T.A.

    1982-01-01

    A process is reported for reacting a porous silicate or borosilicate glass or silica gel with alkali metal cations, Group lb cations and/or ammonium cations bonded to the silicon through divalent oxygen linkages on the internal surfaces of the pores. Ion exchange of the cations with toxic or radioactive cations was possible resulting in a distribution of internal silicon-bonded toxic cation oxide groups within the pores of the glass or silica gel. The ion exchange reaction may be done successfully with acidic, neutral or alkaline pH solutions. The aim of the immobilization is for permanent storage of hazardous materials such as Hg 2+ , Hg + , Cd 2+ , Tl + , Pb 2+ and radioactive cations

  20. The Gellyfish: an in-situ equilibrium-based sampler for determining multiple free metal ion concentrations in marine ecosystems

    Science.gov (United States)

    Free metal ions are usually the most bioavailable and toxic metal species to aquatic organisms, but they are difficult to measure because of their extremely low concentrations in the marine environment. Many of the current methods for determining free metal ions are complicated a...

  1. Cardiac transplant due to metal toxicity associated with hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Sheldon Moniz, MBBS (UWA

    2017-09-01

    Full Text Available Concerns regarding metal-on-metal (MoM bearing couples in total hip arthroplasty are well documented in the literature with cobalt (Co and chromium (Cr toxicity causing a range of both local and systemic adverse reactions. We describe the case of a patient undergoing cardiac transplantation as a direct result of Co and Cr toxicity following a MoM hip replacement. Poor implant positioning led to catastrophic wear generating abundant wear particles leading to Co and Cr toxicity, metallosis, bony destruction, elevated metal ion levels, and adverse biological responses. Systemic symptoms continued for 3 years following cardiac transplantation with resolution only after revision hip arthroplasty. There was no realization in the initial cardiac assessment and subsequent transplant workup that the hip replacement was the likely cause of the cardiac failure, and the hip replacement was not recognized as the cause until years after the heart transplant. This case highlights the need for clinicians to be aware of systemic MoM complications as well as the importance of positioning when using these prostheses.

  2. Plant responses to metal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Briat, J.F. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie moleculaire des plantes, CNRS, URA 2133; Lebrun, M. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie vegetale appliquee

    1999-01-01

    Increased metal concentration in the soils, up to toxic levels, is becoming an important environmental problem. Safety rule evolution will require solutions in order to cope with food safety rules, and to freeze metal leakage from heavily metal-poisoned soils, such as those from industrial fallows. In this context, plants could serve to develop bio-assays in order to promote new standards, more realistic than the mass of a given metal per kg of soil, that does not consider the metal bio-disponibility. Plants could also be used for phyto-extraction and/or phyto-stabilization. To reach these objectives, a genetic approach could be useful to generate metal-tolerant plants with enough biomass. In this work is more particularly studied the plant responses to metal toxicity. Metal toxicity for living organisms involves oxidative and /or genotoxic mechanisms. Plant protection against metal toxicity occurs, at least in part, through control of root metal uptake and of long distance metal transport. Inside cells, proteins such as ferritins and metallothioneins, and glutathione-derived peptides named phyto-chelatins, participate in excess metal storage and detoxification. Low molecular weight organic molecules, mainly organic acids and amino acids and their derivatives, also play an important role in plant metal homeostasis. When these systems are overloaded, oxidative stress defense mechanisms are activated. Molecular and cellular knowledge of these processes will be necessary to improve plant metal resistance. Occurrence of naturally tolerant plants which hyper accumulate metals provides helpful tools for this research. (authors) 130 refs.

  3. Toxicity of common ions to marine organisms

    International Nuclear Information System (INIS)

    Pillard, D.A.; DuFresne, D.L.; Evans, J.

    1995-01-01

    Produced waters from oil and gas drilling operations are typically very saline, and these may cause acute toxicity to marine organisms due to osmotic imbalances as well as to an excess or deficiency of specific common ions. In order to better understand the relationship between toxicity and ion concentration, laboratory toxicity tests were conducted using mysid shrimp (Mysidopsis bahia), sheepshead minnow (Cyprinodon variegatus), and inland silverside (Menidia beryllina). For each species the ionic concentration of standard laboratory water was proportionally increased or decreased to produce test solutions with a range of salinities. Organisms were exposed for 48 hours. Individual ions (sodium, potassium, calcium, magnetsium, strontium, chloride, bromide, sulfate, bicarbonate, and borate) were also manipulated to examine individual ion toxicity. The three test species differ in their tolerance of salinity. Mysid shrimp show a marked decrease in survival at salinities less than approximately 5 ppt. Both fish species tolerated low salinity water, however, silversides were less tolerant of saline waters (salinity greater than 40 ppt). There were also significant differences in the responses of the organisms to different ions. The results show that the salinity of the test solution may play an important role in the responses of the organisms to the produced water effluent. Predictable toxicity/ion relationships developed in this study can be used to estimate whether toxicity in a produced water is a result of common ions, salinity, or some other unknown toxicant

  4. Influence of glyphosate and its formulation (Roundup[reg]) on the toxicity and bioavailability of metals to Ceriodaphnia dubia

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Martin T.K. [Department of Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong (China); Wang Wenxiong [Department of Biology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong (China); Chu, L.M. [Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China)]. E-mail: leemanchu@cuhk.edu.hk

    2005-11-15

    This study examined the toxicological interaction between glyphosate (or its formulation, Roundup[reg]) and several heavy metals to a freshwater cladoceran, Ceriodaphnia dubia. We demonstrated that all binary combinations of Roundup[reg] and metals (Cd, Cu, Cr, Ni, Pb, Se and Zn) exhibited 'less than additive' mixture toxicity, with 48-h LC50 toxic unit>1. Addition of glyphosate alone could significantly reduce the acute toxicity of Ag, Cd, Cr, Cu, Ni, Pb and Zn (but not Hg and Se). The ratio between glyphosate and metal ions was important in determining the mitigation of metal toxicity by glyphosate. A bioaccumulation study showed that in the presence of glyphosate the uptake of some metals (e.g. Ag) was halted but that of others (e.g. Hg) was increased significantly. Therefore, our study strongly suggests that glyphosate and its commercial formulations can control the toxicity as well as the bioavailability of heavy metals in aquatic ecosystems where both groups of chemicals can co-occur. - Glyphosate can control the toxicity and bioavailability of many heavy metals in the aquatic environment.

  5. Influence of glyphosate and its formulation (Roundup[reg]) on the toxicity and bioavailability of metals to Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    Tsui, Martin T.K.; Wang Wenxiong; Chu, L.M.

    2005-01-01

    This study examined the toxicological interaction between glyphosate (or its formulation, Roundup[reg]) and several heavy metals to a freshwater cladoceran, Ceriodaphnia dubia. We demonstrated that all binary combinations of Roundup[reg] and metals (Cd, Cu, Cr, Ni, Pb, Se and Zn) exhibited 'less than additive' mixture toxicity, with 48-h LC50 toxic unit>1. Addition of glyphosate alone could significantly reduce the acute toxicity of Ag, Cd, Cr, Cu, Ni, Pb and Zn (but not Hg and Se). The ratio between glyphosate and metal ions was important in determining the mitigation of metal toxicity by glyphosate. A bioaccumulation study showed that in the presence of glyphosate the uptake of some metals (e.g. Ag) was halted but that of others (e.g. Hg) was increased significantly. Therefore, our study strongly suggests that glyphosate and its commercial formulations can control the toxicity as well as the bioavailability of heavy metals in aquatic ecosystems where both groups of chemicals can co-occur. - Glyphosate can control the toxicity and bioavailability of many heavy metals in the aquatic environment

  6. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Dimkpa, Christian O., E-mail: cdimkpa@usu.edu [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Calder, Alyssa; Britt, David W. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); McLean, Joan E. [Utah Water Research Laboratory, Utah State University, Logan, UT 84322 (United States); Anderson, Anne J. [Department of Biology, Utah State University, Logan, UT 84322 (United States)

    2011-07-15

    The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells' periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes. - Highlights: > Toxicity of metallic nanoparticles (NPs) was evaluated in a beneficial bacterium, Pseudomonas chlororaphis O6 (PcO6). > Aggregated commercial CuO and ZnO NPs released Cu and Zn ions and changed bacterial surface charge, depending on pH. > The NPs were toxic to PcO6 through NP-specific, but also ion release mechanisms. > Reactive oxygen species were produced by CuO NP and Cu ion at lethal concentrations, but bacterial EPS protected against Cu. > The periplasmic marker, alkaline phosphate, activity was increased by the NPs and ions. - Aggregated CuO and ZnO nanoparticles release ions and cause different toxicities in a beneficial soil bacterium.

  7. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions

    International Nuclear Information System (INIS)

    Dimkpa, Christian O.; Calder, Alyssa; Britt, David W.; McLean, Joan E.; Anderson, Anne J.

    2011-01-01

    The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells' periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes. - Highlights: → Toxicity of metallic nanoparticles (NPs) was evaluated in a beneficial bacterium, Pseudomonas chlororaphis O6 (PcO6). → Aggregated commercial CuO and ZnO NPs released Cu and Zn ions and changed bacterial surface charge, depending on pH. → The NPs were toxic to PcO6 through NP-specific, but also ion release mechanisms. → Reactive oxygen species were produced by CuO NP and Cu ion at lethal concentrations, but bacterial EPS protected against Cu. → The periplasmic marker, alkaline phosphate, activity was increased by the NPs and ions. - Aggregated CuO and ZnO nanoparticles release ions and cause different toxicities in a beneficial soil bacterium.

  8. Study on the Effect of Heavy metals toxicity according to changing Hardness concentration using D.magna

    Science.gov (United States)

    Chun Sang, H.

    2016-12-01

    n order to determine and prevent the number of ecological effects of heavy metals in the materials, we have to accurately measure the heavy metals present in the water-based protection ecosystems and may determine the effects to humans. Heavy metals occurred in the industrial effluent which is a state in which the monitor, based on the emission standards are made by the Ministry of Environment and managed and waste water contained Copper, Zinc, lead, etc. These heavy metals are able to express the toxic effects only when present in the free-ions in the aqueous condition, which appears differently affected by the degree to hardness change in accordance with the season, precipitation. Generally changing hardness concentration can not precisely evaluate toxic effects of heavy metals in the water system. Anderson announced a study on bioassay for heavy metals from industrial waste water using Daphnia magna(Anderson, 1944, 1948). Breukelman published study the resitivity difference for the mercury Chloride(HgCl2). Braudouin(1974) compared the zooplankton(Daphnia sp.) acute toxicity of the different heavy metals and confirmed the sensitivity. Shcherban(1979) presented for toxicity evaluation results for the heavy metal of the Daphnia magna according to different temperature conditions. In the United States Environmental Protection Agency(EPA) established a standard test method for water fleas, managed and supervised water ecosystems, and announced the adoption of a bioassay standard method. This study was performed to evaluate acute inhibition using the Daphnia magna for the biological effect of heavy metal ions in water-based toxicity in the hardness change. Evaluation methods were conducted in EPA Water Quality process test criteria. TU(Toxic Unit), NOEC (No Observable Effect Concentration), LOEC (Lowest Observable Effect Concentration), EC50 (Median Effective Concentration) was calculated by Toxcalc 5.0 Program. Keywords : D. magna, Hardness, Toxic Unit, Heavy metal

  9. Monitoring of heavy/toxic metals and halides in surface/ground water (abstract)

    International Nuclear Information System (INIS)

    Viqar-un-Nisa; Ahmed, R.; Husain, M.

    1999-01-01

    Water is essential for maintaining physical and social life. Human and animal consumption is perhaps the most evident essential use of water. Water quality and quantity have become critical issues, affecting all life. The importance of water in our lives, combined with the threats, make water resources use a global problem. Among the different pollutants toxic metals, metalloids and halides have special significance. Industrial effluents and municipal wastewater are normally drained into water streams, rivers and other reservoirs thus polluting these significantly. Quality of our water resources especially is an issue, which continues to arouse the attention of concerned scientists, legislators and the general public. Among various pollutant chemicals, the heavy metals and metalloids are present at trace levels in various compartments of the environment. Some metals become toxic even at trace levels because of the important features that distinguishes metals from other pollutants is that they are not biodegradable. The halides like Cl, Br, and I from different sources can enter easily into water systems and then they make their way directly into the human body. The intake of toxic as wells as essential elements through water and other food items like vegetables, milk wheat flour etc. is significant. The abundance or deficiency of these meals as well as halides results in abnormal metabolic functions. Due to excessive demand for trace analysis in water and other materials a variety of techniques and instrumentation has been developed. Determination of heavy metals ions is of the highest interest in environmental analysis. Among the food materials water is most important because of their large consumption by man. Also toxic metals in water may be in dissolved ionic form, which directly go into human metabolism and start their toxic action. Presence of even small amounts of toxic metals in drinking water can produce serious health hazards. (author)

  10. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.

    Science.gov (United States)

    Bansod, BabanKumar; Kumar, Tejinder; Thakur, Ritula; Rana, Shakshi; Singh, Inderbir

    2017-08-15

    Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Metal ion transporters and homeostasis.

    OpenAIRE

    Nelson, N

    1999-01-01

    Transition metals are essential for many metabolic processes and their homeostasis is crucial for life. Aberrations in the cellular metal ion concentrations may lead to cell death and severe diseases. Metal ion transporters play a major role in maintaining the correct concentrations of the various metal ions in the different cellular compartments. Recent studies of yeast mutants revealed key elements in metal ion homeostasis, including novel transport systems. Several of the proteins discover...

  12. Rational Synthesis of Imprinted Organofunctional Sol-Gel Materials for Toxic Metal Separation - Final Report - 09/15/1997 - 09/14/2001

    International Nuclear Information System (INIS)

    Xue, Ziling; Barnes, Craig E.; Dai, Shang

    2001-01-01

    Current cost estimates for the environmental remediation of contaminated installations under the auspices of the Department of Energy (DOE) are staggering. On this basis alone, there is a critical need to develop the scientific basis for new approaches to the treatment and disposal of toxic metal ions from wastes or contaminated areas at many DOE sites. The overall goal of this project is to rationally design and synthesize imprinted, hybrid inorganic-organic sol-gel materials containing metal binding sites through template approaches, and to develop a scientific basis for metal ion binding and recognition by such tailored hybrid inorganic-organic materials. After removal of the template M, functionalized cavities are created which contain both grafted binding sites and functionality inherent to the silica network (Si-OH, Si-O-Si). These cavities are expected to 'recognize' and bind the target metal ions through the high affinities between the binding sites and M, and their retained shapes. Our approaches utilize both the metal ion binding and the tailored impressions of the template metal ions in the imprinted cavities. Such imprinted organofunctional sol-gel networks are expected to exhibit both high selectivity and capacity for binding targeted ions in fluid waste streams. The principles of sol-gel chemistry and imprinting techniques will guide our approaches to optimize the chemical and physical properties of the imprinted organofunctional sol-gel materials. Cold isotopes or non-radioactive surrogate ions of similar size and charge will be used in imprinting investigations to minimize hazardous waste production. The design strategy we will follow is based on imprinted binding sites cross-linked by rigid, hydrophilic inorganic SiO2 or M'O2 networks. These hydrophilic metal oxide-based materials are expected to exhibit fast ion mass transfer and binding kinetics in comparison to functionalized hydrophobic organic polymers. Success in this research will lead to a

  13. Rational Synthesis of Imprinted Organofunctional Sol-Gel Materials for Toxic Metal Separation - Final Report - 09/15/1997 - 09/14/2001

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Ziling (Ben); Barnes, Craig E.; Dai, Shang

    2001-09-14

    Current cost estimates for the environmental remediation of contaminated installations under the auspices of the Department of Energy (DOE) are staggering. On this basis alone, there is a critical need to develop the scientific basis for new approaches to the treatment and disposal of toxic metal ions from wastes or contaminated areas at many DOE sites. The overall goal of this project is to rationally design and synthesize imprinted, hybrid inorganic-organic sol-gel materials containing metal binding sites through template approaches, and to develop a scientific basis for metal ion binding and recognition by such tailored hybrid inorganic-organic materials. After removal of the template M, functionalized cavities are created which contain both grafted binding sites and functionality inherent to the silica network (Si-OH, Si-O-Si). These cavities are expected to ''recognize'' and bind the target metal ions through the high affinities between the binding sites and M, and their retained shapes. Our approaches utilize both the metal ion binding and the tailored impressions of the template metal ions in the imprinted cavities. Such imprinted organofunctional sol-gel networks are expected to exhibit both high selectivity and capacity for binding targeted ions in fluid waste streams. The principles of sol-gel chemistry and imprinting techniques will guide our approaches to optimize the chemical and physical properties of the imprinted organofunctional sol-gel materials. Cold isotopes or non-radioactive surrogate ions of similar size and charge will be used in imprinting investigations to minimize hazardous waste production. The design strategy we will follow is based on imprinted binding sites cross-linked by rigid, hydrophilic inorganic SiO{sub 2} or MiO{sub 2} networks. These hydrophilic metal oxide-based materials are expected to exhibit fast ion mass transfer and binding kinetics in comparison to functionalized hydrophobic organic polymers

  14. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions.

    Science.gov (United States)

    Silver, Simon; Phung, Le T

    2005-12-01

    Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.

  15. Screen-printed electrodes for environmental monitoring of heavy metal ions: a review

    International Nuclear Information System (INIS)

    Barton, John; González García, María Begoña; Hernández Santos, David; Fanjul-Bolado, Pablo; Ribotti, Alberto; Magni, Paolo; McCaul, Margaret; Diamond, Dermot

    2016-01-01

    Heavy metals such as lead, mercury, cadmium, zinc and copper are among the most important pollutants because of their non-biodegradability and toxicity above certain thresholds. Here, we review methods for sensing heavy metal ions (HMI) in water samples using screen-printed electrodes (SPEs) as transducers. The review (with 107 refs.) starts with an introduction into the topic, and this is followed by sections on (a) mercury-coated SPEs, (b) bismuth-coated SPEs, (c) gold-coated SPEs (d) chemically modified and non-modified carbon SPEs, (e) enzyme inhibition-based SPEs, and (f) an overview of commercially available electrochemical portable heavy metal analyzers. The review reveals the significance of SPEs in terms of decentralized and of in situ analysis of heavy metal ions in environmental monitoring. (author)

  16. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  17. Characterizing toxicity of metal-contaminated sediments from mining areas

    International Nuclear Information System (INIS)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    Highlights: • We review methods for testing toxicity of sediments affected by metals. • Toxicity testing provides site-specific assessment of impacts on resident biota. • Goals are to document extent of toxicity and associations with metal exposure. • Need to characterize bioavailability of metals in sediment and pore water. • Toxicity data is basis for guidelines used to predict hazards of metal toxicity. - Abstract: This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate

  18. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  19. Ion implantation in metals

    International Nuclear Information System (INIS)

    Vook, F.L.

    1977-02-01

    The application of ion beams to metals is rapidly emerging as a promising area of research and technology. This report briefly describes some of the recent advances in the modification and study of the basic properties of metals by ion implantation techniques. Most of the research discussed illustrates some of the new and exciting applications of ion beams to metals which are under active investigation at Sandia Laboratories, Albuquerque

  20. Heavy metal toxicity and iron chlorosis

    Energy Technology Data Exchange (ETDEWEB)

    DeKock, P C

    1956-01-01

    The toxicity of copper, nickel, cobalt, zinc, chromium, and manganese to mustard was studied in water culture, utilizing either the ionic form or the EDTA chelate of the metal in the presence of either ferric chloride or ferric EDTA. In presence of ferric chloride the activity of the metals in producing chlorosis was as given above, i.e. in the order of stability of their chelates. In the presence of ferric versenate, toxicity of the ionic metal was much reduced. The metal chelates gave very little indication of toxicity with either form of iron. It was found that the ratio of total phosphorus to total iron was higher in chlorotic plants than in green plants, irrespective of which metal was causing the toxicity. Copper could be demonstrated in the phloem cells of the root using biscyclohexanone-oxalydihydrazone as histochemical reagent. It is postulated that transport of iron probably takes place in the phloem as an active process. It would appear that as a major part of the iron in plant cells is attached to nucleo- or phospho-proteins, the heavy metals must be similarly attached to phospho-proteins.

  1. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    Science.gov (United States)

    Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj

    2017-07-01

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4±0.05, 7±0.05 and 9±0.05) and three different temperatures (15±0.5°C, 30±0.5°C and 45±0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  2. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    KAUST Repository

    Kaur, Sukhmanpreet

    2017-07-04

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  3. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    KAUST Repository

    Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj

    2017-01-01

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  4. Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: An investigation with pigment analysis by HPLC

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Babu, P.V.R.; Acharyya, T.; Bandyopadhyay, D.

    for the destruction of H 2 O 2 , leading to the production of free radicals and oxidative destruction of membrane lipids (Sandmann & Boger 1980). This metal ion may react with sulphydryl groups to lower intracellular thiol concentration, or it may interfere... attempts are now being made to relate metal toxicity to speciation and the concentration of free metal ions. Most studies in which the toxicity of metals to microorganisms has been varied by addition of organic complexing agents suggest that not only...

  5. Colored cool colorants based on rare earth metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sreeram, Kalarical Janardhanan; Aby, Cheruvathoor Poulose; Nair, Balachandran Unni; Ramasami, Thirumalachari [Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020 (India)

    2008-11-15

    Colored pigments with high near infrared reflectance and not based on toxic metal ions like cadmium, lead and cobalt are being sought as cool colorants. Through appropriate doping two pigments Ce-Pr-Mo and Ce-Pr-Fe have been developed to offer a reddish brown and reddish orange color, respectively. These pigments have been characterized and found to be highly crystalline with an average size of 300 nm. A shift in band gap energy from 2.21 to 2.18 eV has been observed when Li{sub 2}CO{sub 3} was used as a mineralizer. Scanning electron microscope-energy dispersive X-ray analysis (SEM-EDAX) measurement indicate a uniform grind shape and distribution of metal ion, with over 65% reflectance in the NIR region, these pigments can well serve as cool colorants. (author)

  6. Toxicity of heavy metals in the environment

    National Research Council Canada - National Science Library

    Oehme, F.W

    1978-01-01

    ... as the fundamental mechanisms of toxicity resulting from heavy metal chemicals. The more common toxic heavy metals, along with their biochemistry and associated clinical syndromes, are then described...

  7. Validation of Transfer Functions Predicting Cd and Pb Free Metal Ion Activity in Soil Solution as a Function of Soil Characteristics and Reactive Metal Content

    NARCIS (Netherlands)

    Pampura, T.; Groenenberg, J.E.; Lofts, S.; Priputina, I.

    2007-01-01

    According to recent insight, the toxicity of metals in soils is better related to the free metal ion (FMI) activity in the soil solution than to the total metal concentration in soil. However, the determination of FMI activities in soil solution is a difficult and time-consuming task. An alternative

  8. In vitro and in vivo evidence of the cytotoxic and genotoxic effects of metal ions released by orthodontic appliances: A review.

    Science.gov (United States)

    Martín-Cameán, Ana; Jos, Ángeles; Mellado-García, Pilar; Iglesias-Linares, Alejandro; Solano, Enrique; Cameán, Ana M

    2015-07-01

    Intraoral fixed orthodontic appliances are frequently used in the clinical practice of dentistry. They are made from alloys containing different metals at various percentages. The use of these appliances leads to the long-term exposure of patients to these materials, and the potential toxic effects of this exposure raises concerns about patient safety. Thus, the biocompatibility (corrosion behaviour and toxicity) of these materials has to be evaluated prior to clinical use. In the present report, the most recent studies in the scientific literature examining metal ion release from orthodontic appliances and the toxic effects of these ions have been reviewed with a special focus on cytotoxicity and genotoxicity. Previous studies suggest that a case-by-case safety evaluation is required to take into account the increasing variability of materials, their composition and the manufacturing processes. Moreover, in vivo toxicity studies in regard to metal release, cytotoxicity and genotoxicity are still scarce. Therefore, in vitro and in vivo monitoring studies are needed to establish cause-effect relationships between metal ion release and biomarkers of cytotoxicity and genotoxicity. Further investigations could be performed to elucidate the toxic mechanisms involved in the observed effects with a special emphasis on oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Comparative toxicity of heavy metal ions for some microorganisms. [Rhodotorula; Hansenula anormala; T. utilis; Serratia; Azotobacter; Pseudomonas; Escherichia coli; yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, Z A

    1967-01-01

    Polarographic study of Pb/sup 2 +/, Cd/sup 2 +/, Co/sup 2 +/, and Ni/sup 2 +/ concentration in different media has shown that at pH 6.0, Pb/sup 2 +/ is always precipitated by phosphates and cannot be determined polarographically. Cd, Co and Ni content is somewhat lower than that found in water solutions. The effect of Ag, Hg, Co, Ni, Pb, and Cd ions on the growth of 3 strains of Rhodotorula, Hansenula anomala and T. utilis, 6 strains of Serratia, 6 strains of Azotobacter, 12 strains of Pseudomonas and 2 strains of E. coli was studied. According to their toxicity for the microoganisms tested, heavy metals should be arranged in the following order: Ag>Hg>Cogreater than or equal toNi>Cd. Yeasts are the least sensitive to the action of heavy metals, cf. come serratia, Pseudomonas, Azotobacter and E. coli.

  10. Acute toxicity of metals and reference toxicants to a freshwater ostracod, Cypris subglobosa Sowerby, 1840 and correlation to EC50 values of other test models

    International Nuclear Information System (INIS)

    Khangarot, B.S.; Das, Sangita

    2009-01-01

    The ostracod Cypris subglobosa Sowerby, 1840 static bioassay test on the basis of a 48 h of 50% of immobilization (EC 50 ) has been used to measure the toxicity of 36 metals and metalloids and 12 reference toxicants. Among the 36 metals and metalloids, osmium (Os) was found to be the most toxic in the test while boron (B), the least toxic. The EC 50 values of this study revealed positive linear relationship with the established test models of cladoceran (Daphnia magna), sludge worm (Tubifex tubifex), chironomid larvae (Chironomus tentans), protozoan (Tetrahymena pyriformis), fathead minnow (Pimephales promelas), bluegill sunfish (Lepomis macrochirus), and aquatic macrophyte duckweed (Lemna minor). Correlation coefficients (r 2 ) for 17 physicochemical properties of metals or metal ions and EC 50 s (as pM) were examined by linear regression analysis. The electronegativity, ionization potential, melting point, solubility product of metal sulfides (pK sp ), softness parameter and some other physicochemical characteristics were significantly correlated with EC 50 s of metals to C. subglobosa. The reproducibility of toxicity test was determined using 12 reference toxicants. The coefficient of variability of the EC 50 s ranged from 6.95% to 55.37% and variability was comparable to that noticed for D. magna and other aquatic test models. The study demonstrated the need to include crustacean ostracods in a battery of biotests to detect the presence of hazardous chemicals in soils, sewage sludges, sediments and aquatic systems.

  11. Characterizing toxicity of metal-contaminated sediments from mining areas

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  12. Major ion toxicity in effluents: A review with permitting recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Goodfellow, W.L.; Ausley, L.W.; Burton, D.T.; Denton, D.L.; Dorn, P.B.; Grothe, D.R.; Heber, M.A.; Norberg-King, T.J.; Rodgers, J.H. Jr.

    2000-01-01

    Effluent toxicity testing methods have been well defined, but for the most part, these methods do not attempt to segregate the effects of active ionic concentrations and ion imbalances upon test and species performances. The role of various total dissolved solids in effluents on regulatory compliance has emerged during the last few years and has caused confusion in technical assessment and in permitting and compliance issues. This paper assesses the issue of ionic strength and ion imbalance, provides a brief summary of applicable data, presents several case studies demonstrating successful tools to address toxicity resulting from salinity and ion imbalance, and provides recommendations for regulatory and compliance options to manage discharges with salinity/ion imbalance issues. Effluent toxicity resulting from inorganic ion imbalance and the ion concentration of the effluent is pervasive in permitted discharge from many industrial process and municipal discharges where process streams are concentrated, adjusted, or modified. This paper discusses procedures that use weight-of-evidence approaches to identify ion imbalance toxicity, including direct measurement, predictive toxicity models for freshwater, exchange resins, mock effluents, and ion imbalance toxicity with tolerant/susceptible test species. Cost-effective waste treatment control options for a facility whose effluent is toxic because of total dissolved solids (TDS) or because of specific ion(s) are scarce at best. Depending on the discharge situation, TDS toxicity may not be viewed with the same level of concern as other, more traditional, toxicants. These discharge situations often do not require the conservative safety factors required by other toxicants. Selection of the alternative regulatory solutions discussed in this paper may be beneficial, especially because they do not require potentially expensive or high-energy-using treatment options that may be ineffective control options. The information

  13. Pelletized ponderosa pine bark for adsorption of toxic heavy metals from water

    Directory of Open Access Journals (Sweden)

    Tshabalala, M. A.

    2007-02-01

    Full Text Available Bark flour from ponderosa pine (Pinus ponderosa was consolidated into pellets using citric acid as cross-linking agent. The pellets were evaluated for removal of toxic heavy metals from synthetic aqueous solutions. When soaked in water, pellets did not leach tannins, and they showed high adsorption capacity for Cu(II, Zn(II, Cd(II, and Ni(II under both equilibrium and dynamic adsorption conditions. The experimental data for Cd(II and Zn(II showed a better fit to the Langmuir than to the Freundlich isotherm. The Cu(II data best fit the Freundlich isotherm, and the Ni(II data fitted both Freundlich and Langmuir isotherms equally. According to the Freundlich constant KF, adsorption capacity of pelletized bark for the metal ions in aqueous solution, pH 5.1 ± 0.2, followed the order Cd(II > Cu(II > Zn(II >> Ni(II; according to the Langmuir constant b, adsorption affinity followed the order Cd(II >> Cu(II ≈ Zn(II >> Ni(II. Although data from dynamic column adsorption experiments did not show a good fit to the Thomas kinetic adsorption model, estimates of sorption affinity series of the metal ions on pelletized bark derived from this model were not consistent with the series derived from the Langmuir or Freundlich isotherms and followed the order Cu(II > Zn(II ≈ Cd(II > Ni(II. According to the Thomas kinetic model, the theoretical maximum amounts of metal that can be sorbed on the pelletized bark in a column at influent concentration of ≈10 mg/L and flow rate = 5 mL/min were estimated to be 57, 53, 50, and 27 mg/g for copper, zinc, cadmium, and nickel, respectively. This study demonstrated the potential for converting low-cost bark residues to value-added sorbents using starting materials and chemicals derived from renewable resources. These sorbents can be applied in the removal of toxic heavy metals from waste streams with heavy metal ion concentrations of up to 100 mg/L in the case of Cu(II.

  14. Metal ion complex formation in small lakes of the Western Siberian Arctic zone

    Science.gov (United States)

    Kremleva, Tatiana; Dinu, Marina

    2017-04-01

    The paper is based on joint investigation of the Tyumen State University (Russia, Tyumen) and the Geochemistry and Analytical Chemistry Vernadsky Institute of Russian Academy of Sciences (Moscow, Russia) during 2012-2014 period. It presents the results of research of chemical composition of about 70 small lakes located in the area of tundra and northern taiga of West Siberia (Russia, Yamal-Nenets and Khanty-Mansi Autonomous Districts of the Tyumen region). The investigation includes determination of different parameters of natural water samples: • content of trace elements (Al, Fe, Mn, Cr, Cu, Ni, Zn, Cd, Co, Pb, etc., total more than 60 elements) by emission method with an inductively coupled plasma (ICP-MS) using mass spektrometrometre Element 2 equipment; • content of inorganic and total carbon (TIC and TC) by elemental analysis and the difference between the total and inorganic carbon gives the organic carbon content (TOC); • pH value by potentiometric method; • content of basic ions (Na+, Ca2+, K+, Mg2+, NH4+, Cl-, SO42-, NO3-, PO43-) by ion chromatography. Determination of the chemical composition of samples was conducted in the accredited laboratory according to standard procedures with regular quality control of results. Heavy metals in natural waters can exist in various forms: free (hydrated) ions bound in complexes with organic or inorganic ligands, as well as in the form of suspensions. The form of metal existence has a significant influence on their availability to transport in aquatic organisms. Metal ions associated in stable complexes with organic substances are considered less toxic. From the previous investigations state that the most stable complexes are ligands with organic ions Fe3+, Al3+. The main conclusion of the present research states that if the total content of aluminum, iron and manganese ions (meq/dm3) is equal to or greater than the concentration of dissolved organic carbon (TOC, mg/dm3) in lakes water other heavy metals will

  15. Plant growth and development vs. high and low levels of plant-beneficial heavy metal ions

    Directory of Open Access Journals (Sweden)

    Namira Arif

    2016-11-01

    Full Text Available Heavy metals (HMs exists in the environment in both forms as essential and non-essential. These HM ions enter in soil biota from various sources like natural and anthropogenic. Essential HMs such as cobalt (Co, copper (Cu, iron (Fe, manganese (Mn, molybdenum (Mo, nickel (Ni, and zinc (Zn plays a beneficial role in plant growth and development. At optimum level these beneficial elements improves the plant’s nutritional level and also several mechanisms essential for the normal growth and better yield of plants. The range of their optimality for land plants is varied. Plant uptake heavy metals as a soluble component or solubilized them by root exudates. While their presence in excess become toxic for plants that switches the plant’s ability to uptake and accumulate other nonessential elements. The increased amount of HMs within the plant tissue displays direct and indirect toxic impacts. Such direct effects are the generation of oxidative stress which further aggravates inhibition of cytoplasmic enzymes and damage to cell structures. Although, indirect possession is the substitution of essential nutrients at plant’s cation exchange sites. These ions readily influence role of various enzymes and proteins, arrest metabolism, and reveal phytotoxicity. On account of recent advancements on beneficial HMs ions Co, Cu, Fe, Mn, Mo, Ni, and Zn in soil-plant system, the present paper: overview the sources of HMs in soils and their uptake and transportation mechanism, here we have discussed the role of metal transporters in transporting the essential metal ions from soil to plants. The role played by Co, Cu, Fe, Mn, Mo, Ni, and Zn at both low and high level on the plant growth and development and the mechanism to alleviate metal toxicity at high level have been also discussed. At the end, on concluding the article we have also discussed the future perspective in respect to beneficial HM ions interaction with plant at both levels.

  16. Acute toxicity of metals and reference toxicants to a freshwater ostracod, Cypris subglobosa Sowerby, 1840 and correlation to EC{sub 50} values of other test models

    Energy Technology Data Exchange (ETDEWEB)

    Khangarot, B.S., E-mail: bkhangarot@hotmail.com [Ecotoxicology Division, Indian Institute of Toxicology Research (Formerly: Industrial Toxicology Research Centre), Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India); Das, Sangita [Ecotoxicology Division, Indian Institute of Toxicology Research (Formerly: Industrial Toxicology Research Centre), Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India)

    2009-12-30

    The ostracod Cypris subglobosa Sowerby, 1840 static bioassay test on the basis of a 48 h of 50% of immobilization (EC{sub 50}) has been used to measure the toxicity of 36 metals and metalloids and 12 reference toxicants. Among the 36 metals and metalloids, osmium (Os) was found to be the most toxic in the test while boron (B), the least toxic. The EC{sub 50} values of this study revealed positive linear relationship with the established test models of cladoceran (Daphnia magna), sludge worm (Tubifex tubifex), chironomid larvae (Chironomus tentans), protozoan (Tetrahymena pyriformis), fathead minnow (Pimephales promelas), bluegill sunfish (Lepomis macrochirus), and aquatic macrophyte duckweed (Lemna minor). Correlation coefficients (r{sup 2}) for 17 physicochemical properties of metals or metal ions and EC{sub 50}s (as pM) were examined by linear regression analysis. The electronegativity, ionization potential, melting point, solubility product of metal sulfides (pK{sub sp}), softness parameter and some other physicochemical characteristics were significantly correlated with EC{sub 50}s of metals to C. subglobosa. The reproducibility of toxicity test was determined using 12 reference toxicants. The coefficient of variability of the EC{sub 50}s ranged from 6.95% to 55.37% and variability was comparable to that noticed for D. magna and other aquatic test models. The study demonstrated the need to include crustacean ostracods in a battery of biotests to detect the presence of hazardous chemicals in soils, sewage sludges, sediments and aquatic systems.

  17. Deposition of toxic metal particles on rough nanofiltration membranes

    International Nuclear Information System (INIS)

    Agboola, Oluranti; Maree, Jannie; Mbaya, Richard; Zvinowanda, Caliphs Musa; Molelekwa, Gomotsegang Fred; Jullok, Nora; Bruggen, Bart Van der; Volodine, Alexander; Haesendonck, Chris Van

    2014-01-01

    Two nanofiltration (NF90 and Nano-Pro-3012) membranes were investigated for their capacity to remove metal ions. This study presents the effect of membrane roughness on the removal of toxic metal ions during dead end membrane filtration. Atomic force microscopy, scanning electron microscopy, WSXM software and ImageJ were used to characterize the roughness of the membranes. Gradual decrease in filtration permeate flux was observed as foulants accumulated at the interface of the membranes; filtration permeate flux varied from 20 L/m 2 /h to 14 L/m 2 /h and 11 L/ m 2 /h to 6 L/m 2 /h for NF90 and Nano-Pro-3012, respectively. NF90 membrane was more prone to fouling than the Nano-Pro-3012 membrane: the percentage flux reduction was higher for NF90 (3.6%) than Nano-Pro-3012 (0.98%). The bearing ratio of the fouled NF90 exhibited a high peak of 7.09 nm than the fouled Nano-Pro-3012 with the peak of 6.8 nm

  18. Deposition of toxic metal particles on rough nanofiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Oluranti; Maree, Jannie; Mbaya, Richard; Zvinowanda, Caliphs Musa [Tshwane University of Technology, Pretoria (South Africa); Molelekwa, Gomotsegang Fred; Jullok, Nora; Bruggen, Bart Van der; Volodine, Alexander; Haesendonck, Chris Van [KU Leuven, Heverlee (Belgium)

    2014-08-15

    Two nanofiltration (NF90 and Nano-Pro-3012) membranes were investigated for their capacity to remove metal ions. This study presents the effect of membrane roughness on the removal of toxic metal ions during dead end membrane filtration. Atomic force microscopy, scanning electron microscopy, WSXM software and ImageJ were used to characterize the roughness of the membranes. Gradual decrease in filtration permeate flux was observed as foulants accumulated at the interface of the membranes; filtration permeate flux varied from 20 L/m{sup 2}/h to 14 L/m{sup 2}/h and 11 L/ m{sup 2}/h to 6 L/m{sup 2}/h for NF90 and Nano-Pro-3012, respectively. NF90 membrane was more prone to fouling than the Nano-Pro-3012 membrane: the percentage flux reduction was higher for NF90 (3.6%) than Nano-Pro-3012 (0.98%). The bearing ratio of the fouled NF90 exhibited a high peak of 7.09 nm than the fouled Nano-Pro-3012 with the peak of 6.8 nm.

  19. Remediation of toxic ad hazardous wastes: plants as biological agents to mitigate heavy metal pollution

    International Nuclear Information System (INIS)

    Cadiz, Nina M.; Principe, Eduardo B.

    2005-01-01

    This papers introduced the plants as biological agents to control heavy metal pollution and the process used the green plants to clean contaminated soils or to render the toxic ions harmless is a new technology called phytoremediation with two levels, the phytostabilization and phytoextraction

  20. Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution

    International Nuclear Information System (INIS)

    Sato, Sanae; Yoshihara, Kazuya; Moriyama, Koji; Machida, Motoi; Tatsumoto, Hideki

    2007-01-01

    Adsorption of toxic heavy metal ions and aromatic compounds onto activated carbons of various amount of surface C-O complexes were examined to study the optimum surface conditions for adsorption in aqueous phase. Cadmium(II) and zinc(II) were used as heavy metal ions, and phenol and nitrobenzene as aromatic compounds, respectively. Activated carbon was de-ashed followed by oxidation with nitric acid, and then it was stepwise out-gassed in helium flow up to 1273 K to gradually remove C-O complexes introduced by the oxidation. The oxidized activated carbon exhibited superior adsorption for heavy metal ions but poor performance for aromatic compounds. Both heavy metal ions and aromatics can be removed to much extent by the out-gassed activated carbon at 1273 K. Removing C-O complexes, the adsorption mechanisms would be switched from ion exchange to Cπ-cation interaction for the heavy metals adsorption, and from some kind of oxygen-aromatics interaction to π-π dispersion for the aromatics

  1. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes.

    Science.gov (United States)

    Iannazzo, Daniela; Pistone, Alessandro; Ziccarelli, Ida; Espro, Claudia; Galvagno, Signorino; Giofré, Salvatore V; Romeo, Roberto; Cicero, Nicola; Bua, Giuseppe D; Lanza, Giuseppe; Legnani, Laura; Chiacchio, Maria A

    2017-06-01

    Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb 2+ , Hg 2+ , and Ni 2+ and the harmless Ca 2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg 2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.

  2. Comparison of the toxicity of some metals and their tetracyanide complexes on the respiration of non acclimated activated sludges.

    Science.gov (United States)

    Morozzi, G; Cenci, G

    1978-12-01

    The toxic effect of the metal ions of cadmium, zinc, nickel and mercury and their tetracyanide salt complexes, on the activated sludge not previously acclimated, has been studied. The evaluation of the effect was carried out using both the Warburg and TTC-method. The results obtained have shown that the toxicity of the cadmium and zinc complexes is higher than that of the corresponding metals, while the toxicity of Ni(CN)4(2-) is lower than that of the corresponding metals. No differences have been found between the effect of mercury and the corresponding tetracyanide complex. From the data obtained it appears that it is not possible to generalize about the biological effect of complexation with the CN- group, but it should be stated that, generally, there are substantial differences between metals and their cyanide complexes as far as toxicity for activated sludge is concerned.

  3. Metal Ion Controlled Polymorphism of a Peptide

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Jancso, Attila; Szunyogh, Daniel

    2011-01-01

    ions on fully or partially unstructured proteins, or the effect of metal ions on protein aggregation. Metal ions may be employed to fold (or misfold) individual peptides in a controlled manner depending on the potential metal ion coordinating amino acid side chains (Cys, His, Asp, Glu......In this work a metal ion binding model dodecapeptide was investigated in terms of its capacity to adopt different structures depending on the metal ion to peptide stoichiometry. The dodecapeptide is much simpler than real proteins, yet displays sufficient complexity to model the effect of metal......, …) in the peptide, and the ligand and structural preferences of the metal ion (in our studies Zn2+, Cd2+, Hg2+, Cu+/2+). Simultaneously, new species such as metal ion bridged ternary complexes or even oligomers may be formed. In recent previous studies we have observed similar polymorphism of zinc finger model...

  4. Behavior as a sentry of metal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, B.

    1978-01-01

    Many of the toxic properties of metals are expressed as behavioral aberrations. Some of these arise from direct actions on the central nervous system. Others arise from primary events elsewhere, but still influence behavior. Toxicity may be expressed either as objectively measurable phenomena, such as ataxia, or as subjective complaints, such as depression. In neither instance is clinical medicine equipped to provide assessments of subtle, early indices of toxicity. Reviewers of visual disturbances, paresthesia, and mental retardation exemplify the potential contribution of psychology to the toxicology of metals. Behavior and nervous system functions act as sensitive mirrors of metal toxicity. Sensitivity is the prime aim in environmental health assessments. Early detection of adverse effects, before they progress to irreversibility, underlies the strategy for optimal health protection. Some of the toxic actions of metals originate in direct nervous system dysfunction. Others may reflect disturbances of systems less directly linked to behavior than the central nervous system. But behavior, because it expresses the integrated functioning of the organism, can indicate flaws in states and processes outside the nervous system.

  5. Metal ion implantation: Conventional versus immersion

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.

    1994-01-01

    Vacuum-arc-produced metal plasma can be used as the ion feedstock material in an ion source for doing conventional metal ion implantation, or as the immersing plasma for doing plasma immersion ion implantation. The basic plasma production method is the same in both cases; it is simple and efficient and can be used with a wide range of metals. Vacuum arc ion sources of different kinds have been developed by the authors and others and their suitability as a metal ion implantation tool has been well established. Metal plasma immersion surface processing is an emerging tool whose characteristics and applications are the subject of present research. There are a number of differences between the two techniques, both in the procedures used and in the modified surfaces created. For example, the condensibility of metal plasma results in thin film formation and subsequent energetic implantation is thus done through the deposited layer; in the usual scenario, this recoil implantation and the intermixing it produces is a feature of metal plasma immersion but not of conventional energetic ion implantation. Metal plasma immersion is more suited (but not limited) to higher doses (>10 17 cm -2 ) and lower energies (E i < tens of keV) than the usual ranges of conventional metal ion implantation. These and other differences provide these vacuum-arc-based surface modification tools with a versatility that enhances the overall technological attractiveness of both

  6. Selective Removal of Toxic Metals like Copper and Arsenic from Drinking Water Using Phenol-Formaldehyde Type Chelating Resins

    Directory of Open Access Journals (Sweden)

    Debasis Mohanty

    2009-01-01

    Full Text Available The concentration of different toxic metals has increased beyond environmentally and ecologically permissible levels due to the increase in industrial activity. More than 100 million people of Bangladesh and West Bengal in India are affected by drinking ground water contaminated with arsenic and some parts of India is also affected by poisoning effect of copper, cadmium and fluoride. Different methods have been evolved to reduce the arsenic concentration in drinking water to a maximum permissible level of 10 μg/L where as various methods are also available to separate copper from drinking water. Of the proven methods available today, removal of arsenic by polymeric ion exchangers has been most effective. While chelating ion exchange resins having specific chelating groups attached to a polymer have found extensive use in sorption and pre concentration of Cu2+ ions. Both the methods are coupled here to separate and preconcentrate toxic metal cation Cu2+ and metal anion arsenate(AsO4– at the same time. We have prepared a series of low-cost polymeric resins, which are very efficient in removing copper ion from drinking water and after coordinating with copper ion they act as polymeric ligand exchanger, which are efficiently removing arsenate from drinking water. For this purpose Schiff bases were prepared by condensing o-phenylenediamine with o-, m-, and p-hydroxybenzaldehydes. Condensing these phenolic Schiff bases with formaldehyde afforded the chelating resins in high yields. These resins are loaded with Cu2+, Ni2+ 2+, and Fe3+ ions. The resins and the polychelates are highly insoluble in water. In powdered form the metal ion-loaded resins are found to very efficiently remove arsenate ion from water at neutral pH. Resins loaded with optimum amount of Cu2+ ion is more effective in removing arsenate ions compared to those with Fe3+ ion, apparently because Cu2+ is a stronger Lewis acid than Fe3+. Various parameters influencing the removal of the

  7. Modulatory effects of Zn2+ ions on the toxicity of citrate- and PVP-capped gold nanoparticles towards freshwater algae, Scenedesmus obliquus.

    Science.gov (United States)

    Iswarya, V; Johnson, J B; Parashar, Abhinav; Pulimi, Mrudula; Chandrasekaran, N; Mukherjee, Amitava

    2017-02-01

    Gold nanoparticles (GNPs) are widely used for medical purposes, both in diagnostics as well as drug delivery, and hence are prone to release and distribution in the environment. Thus, we have explored the effects of GNPs with two distinct surface capping (citrate and PVP), and three different sizes (16, 27, and 37 nm) at 0.01-, 0.1-, and 1-mg L -1 concentrations on a predominant freshwater alga Scenedesmus obliquus in the sterile freshwater matrix. We have also investigated how an abundant metal ion from freshwater, i.e., Zn 2+ ions may modulate the effects of the selected GNPs (40 nm, citrate, and PVP capped). Preliminary toxicity results revealed that gold nanoparticles were highly toxic in comparison to zinc ions alone. A significant modulation in the toxicity of Zn ions was not noticed in the presence of GNPs. In contrast, zinc ions minimized the toxicity produced by GNPs (both CIT-37 and PVP-37), despite its individual toxicity. Approximately, about 42, 33, and 25% toxicity reduction was noted at 0.05-, 0.5-, and 5-mg L -1 Zn ions, respectively, for CIT-37 GNPs, while 31% (0.05 mg L -1 ), 24% (0.5 mg L -1 ), and 9% (5 mg L -1 ) of toxicity reduction were noted for PVP-37 GNPs. Maximum toxicity reduction was seen at 0.05 mg L -1 of Zn ions. Abbott modeling substantiated antagonistic effects offered by Zn 2+ ions on GNPs. Stability and sedimentation data revealed that the addition of zinc ions gradually induced the aggregation of NPs and in turn significantly reduced the toxicity of GNPs. Thus, the naturally existing ions like Zn 2+ have an ability to modulate the toxicity of GNPs in a real-world environment scenario.

  8. Interactions between humic acid and hematite and their effects on metal ion speciation

    NARCIS (Netherlands)

    Vermeer, A.W.P.

    1996-01-01


    The impact of toxic chemicals (like metal ions) on the environment is a phenomenon that has been recognised as a mayor problem over the last decades. The speciation of these chemicals determines whether or not a contaminated site has to be regarded as dangerous. The fate of the

  9. New developments in metal ion implantation by vacuum arc ion sources and metal plasma immersion

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.

    1996-01-01

    Ion implantation by intense beams of metal ions can be accomplished using the dense metal plasma formed in a vacuum arc discharge embodied either in a vacuum arc ion source or in a metal plasma immersion configuration. In the former case high energy metal ion beams are formed and implantation is done in a more-or-less conventional way, and in the latter case the substrate is immersed in the plasma and repetitively pulse-biased so as to accelerate the ions at the high voltage plasma sheath formed at the substrate. A number of advances have been made in the last few years, both in plasma technology and in the surface modification procedures, that enhance the effectiveness and versatility of the methods, including for example: controlled increase of the in charge states produced; operation in a dual metal-gaseous ion species mode; very large area beam formation; macroparticle filtering; and the development of processing regimes for optimizing adhesion, morphology and structure. These complementary ion processing techniques provide the plasma tools for doing ion surface modification over a very wide parameter regime, from pure ion implantation at energies approaching the MeV level, through ion mixing at energies in the ∼1 to ∼100 keV range, to IBAD-like processing at energies from a few tens of eV to a few keV. Here the authors review the methods, describe a number of recent developments, and outline some of the surface modification applications to which the methods have been put. 54 refs., 9 figs

  10. Ion implantation of metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1976-01-01

    In this part of the paper descriptions are given of the effects of ion implantation on (a) friction and wear in metals; and (b) corrosion of metals. In the study of corrosion, ion implantation can be used either to introduce a constituent that is known to convey corrosion resistance, or more generally to examine the parameters which control corrosion. (U.K.)

  11. Heavy metals, PAHs and toxicity in stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2011-01-01

    Concentrations of 6 different heavy metals and total Polycyclic Aromatic Hydrocarbons (PAH) were determined in stormwater runoff and in the pond water of two Danish wet detention ponds. The pond water samples were analyzed for toxic effects, using the algae Selenastrum capricornutum as a test...... organism. Stormwater and pond water from a catchment with light industry showed high levels of heavy metals, especially zinc and copper. The pond water showed high toxic effects and copper were found to be the main toxicant. Additionally, a large part of the copper was suspected to be complex bound......, reducing the potential toxicity of the metal. Another catchment (residential) produced stormwater and pond water with moderate concentration of heavy metals. The pond water occasionally showed toxic effects but no correlation between heavy metals and toxicity was identified. PAHs concentrations were...

  12. TOXIC METAL EMISSIONS FROM INCINERATION: MECHANISMS AND CONTROL

    Science.gov (United States)

    Toxic metals appear in the effluents of many combustion processes, and their release into the environment has come under regulatory scrutiny. This paper reviews the nature of the problems associated with toxic metals in combustion processes, and describes where these problems occ...

  13. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Cobbina, Samuel J.; Chen, Yao [School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Zhou, Zhaoxiang; Wu, Xueshan; Zhao, Ting [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 (China); Zhang, Zhen [School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Feng, Weiwei; Wang, Wei [School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Li, Qian [School of Pharmacy, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Wu, Xiangyang, E-mail: wuxy@ujs.edu.cn [School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Yang, Liuqing, E-mail: yangliuqing@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 (China)

    2015-08-30

    Highlights: • Low dose single and mixtures of toxic metals had adverse effect on mice. • Metal mixtures exhibited higher toxicities compared to individual metals. • Mixtures of low dose Pb + Hg + Cd induced neuronal degeneration in brain of mice. • Exposure to Pb + Hg + As + Cd showed renal tubular necrosis in kidney. - Abstract: Humans are exposed to a cocktail of heavy metal toxicants in the environment. Though heavy metals are deleterious, there is a paucity of information on toxicity of low dose mixtures. In this study, lead (Pb) (0.01 mg/L), mercury (Hg) (0.001 mg/L), cadmium (Cd) (0.005 mg/L) and arsenic (As) (0.01 mg/L) were administered individually and as mixtures to 10 groups of 40 three-week old mice (20 males and 20 females), for 120 days. The study established that low dose exposures induced toxicity to the brain, liver, and kidney of mice. Metal mixtures showed higher toxicities compared to individual metals, as exposure to low dose Pb + Hg + Cd reduced brain weight and induced structural lesions, such as neuronal degeneration in 30-days. Pb + Hg + Cd and Pb + Hg + As + Cd exposure induced hepatocellular injury to mice evidenced by decreased antioxidant activities with marginal increases in MDA. These were accentuated by increases in ALT, AST and ALP. Interactions in metal mixtures were basically synergistic in nature and exposure to Pb + Hg + As + Cd induced renal tubular necrosis in kidneys of mice. This study underlines the importance of elucidating the toxicity of low dose metal mixtures so as to protect public health.

  14. Predicting toxic heavy metal movements in upper Sanyati catchment ...

    African Journals Online (AJOL)

    Water samples from boreholes located in areas where mining, mineral processing and agricultural activities were dominant, yielded the highest values of toxic heavy metals. Dilution Attenuation Factor (DAF) for each toxic heavy metal was calculated to observe metal behaviour along the contaminant path for each season.

  15. Assessing toxicity of varying major ion concentrations to marine organisms

    International Nuclear Information System (INIS)

    Mount, D.R.; Quast, W.

    1993-01-01

    Recent regulatory developments have required that produced waters discharged in the Gulf of Mexico be monitored for toxicity to marine organisms. While produced water may contain a variety of indigenous and introduced chemicals, virtually all have moderate to high concentrations of major ions. Although seawater is also rich in these ions, excessive salinity can cause toxicity to marine organisms. Perhaps more importantly, toxicity to marine organisms can be caused by deviations from normal ion ratios even if the total salinity is within organism tolerances. To provide a better understanding of marine organism responses to variations in major ion concentrations, the authors conducted a series of laboratory experiments to quantify the responses of mysid shrimp (Mysidopsis bahia) and sheepshead minnows (Cyprinodon variegatus) to modifications of normal seawater chemistry. Acute testing included both increasing and decreasing the concentrations of individual ions relative to seawater, as well as altering total salinity. Results show these organisms can be adversely affected by this altered chemistry and their sensitivity is dependent upon the individual ions that are manipulated. Results from these studies are being incorporated into an overall strategy for evaluating the influence of major ion chemistry on produced water toxicity tests

  16. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay

    International Nuclear Information System (INIS)

    Pokhrel, Lok R.; Silva, Thilini; Dubey, Brajesh; El Badawy, Amro M.; Tolaymat, Thabet M.; Scheuerman, Phillip R.

    2012-01-01

    Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE™ test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on β-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO 2 and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO 2 was not toxic as high as 2.5 g L −1 to the MetPLATE™ bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl 2 > AgNO 3 > PVP-nAg > unclean Citrate-nAg > clean Citrate-nAg > ZnSO 4 > nZnO > CdSe QDs > nTiO 2 /TiO 2 . These results indicate that an evaluation of β-galactosidase inhibition in MetPLATE™ E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants. - Highlights: ► MetPLATE bioassay was evaluated as a rapid screening tool for nanotoxicity.

  17. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    Science.gov (United States)

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  18. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles.

    Science.gov (United States)

    Sarkar, Abhijit; Ghosh, Manoranjan; Sil, Parames Chandra

    2014-01-01

    Metal and metal oxide nanoparticles are often used as industrial catalysts or to improve product's functional properties. Recent advanced nanotechnology have been expected to be used in various fields, ranging from sensors, environmental remediation to biomedicine, medical biology and imaging, etc. However, the growing use of nanoparticles has led to their release into environment and increased levels of these particles at nearby sites or the surroundings of their manufacturing factories become obvious. The toxicity of metal and metal oxide nanoparticles on humans, animals, and certainly to the environment has become a major concern to our community. However, controversies still remain with respect to the toxic effects and the mechanisms of these nanoparticles. The scientific community now feels that an understanding of the toxic effects is necessary to handle these nanoparticles and their use. A new discipline, named nanotoxicology, has therefore been developed that basically refers to the study of the interactions of nanoparticles with biological systems and also measures the toxicity level related to human health. Nanoparticles usually generate reactive oxygen species to a greater extent than micro-sized particles resulting in increased pro-inflammatory reactions and oxidative stress via intracellular signaling pathways. In this review, we mainly focus on the routes of exposure of some metal and metal oxide nanoparticles and how these nanoparticles affect us or broadly the cells of our organs. We would also like to discuss the responsible mechanism(s) of the nanoparticle-induced reactive oxygen species mediated organ pathophysiology. A brief introduction of the characterization and application of these nanoparticles has also been included in the article.

  19. Fixation by ion exchange of toxic materials in a glass matrix

    International Nuclear Information System (INIS)

    Litovitz, T.A.; Simmons, C.J.; Simmons, J.H.; Macedo, P.B.

    1981-01-01

    A process for disposing of toxic materials such as radioactive waste comprises reacting a porous silicate glass or silica gel, having interconnected pores and alkali metal cations. Group 1b metal cations and/or ammonium cation bonded to silicon through divalent oxygen linkages on the internal surfaces of said pores, with a toxic material containing toxic cations as well as non-cationic portions. The toxic cations are capable of displacing the alkali metal cations, Group 1b metal cations and/or ammonium cations to provide a distribution of internal silicon-bonded toxic cation oxide groups within the pores of the glass or silica gel. (author)

  20. Release of metal ions from fixed orthodontic appliance: an in vitro study in continuous flow system.

    Science.gov (United States)

    Mikulewicz, Marcin; Chojnacka, Katarzyna; Wołowiec, Paulina

    2014-01-01

    To evaluate the release of metal ions from fixed orthodontic appliances. A new system for in vitro testing of dental materials was constructed and consisted of a thermostatic glass reactor that enabled immersion of the studied material. Experimental conditions reflected the human oral cavity, with a temperature of 37°C and a saliva flow rate of 0.5mL/min. The simulated fixed orthodontic appliance made of stainless steel was evaluated. Sampling was performed at several time points during the 28-day study, and the metal ion concentration was determined by inductively coupled plasma optical emission spectrometry. The total mass of released metal ions from the appliance during 4 weeks of the experiment was as follows nickel 18.7 μg, chromium 5.47 μg, copper 31.3 μg. The estimated doses of nickel, chromium, and copper determined by extrapolation of experimental data released during the treatment period were far below the toxic dose to humans. This shows that orthodontic treatment might not be a significant source of exposure to these metal ions.

  1. Hip implants - Paper VI - Ion concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Sargeant, A. [Department of Biological Sciences, Ohio Northern University, Ada, OH 45810 (United States); Goswami, T. [Department of Mechanical Engineering, Ohio Northern University, Ada, OH 45810 (United States)]. E-mail: t-goswami@onu.edu

    2007-07-01

    Total hip-joint arthroplasty is performed in increasing numbers where it translates to about 0.16-0.2% of population per year in industrial countries. In most cases, an implant is a metallic component articulating with a metal, ceramic or poly-ethylene liner as seen in the case of hip, knee and spine. The metal implants release ions in vivo. Therefore, there is a need to study metallic implants and ions released as a result. Toxic concentrations of ions can lead to many adverse physiological effects, including cytotoxicity, genotoxicity, carcinogenicity, and metal sensitivity. There is a need to map ion concentrations establishing boundaries between normal and toxic levels; which however, does not exist. Reference levels of ion concentrations in body fluids and tissues determined by many studies are compiled, reviewed, and presented in this paper. The concentrations of ions released from different alloys, including cobalt, chromium, nickel, molybdenum titanium, aluminum, and vanadium, are presented in this paper. This paper reviews the literature pertaining to clinical data on metal ion concentrations in patients with metal joint prostheses, and laboratory data on the physiological effects of the metals.

  2. Fatal Cobalt Toxicity after a Non-Metal-on-Metal Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Rinne M. Peters

    2017-01-01

    Full Text Available This case illustrates the potential for systemic cobalt toxicity in non-metal-on-metal bearings and its potentially devastating consequences. We present a 71-year-old male with grinding sensations in his right hip following ceramic-on-ceramic total hip arthroplasty (THA. After diagnosing a fractured ceramic liner, the hip prosthesis was revised into a metal-on-polyethylene bearing. At one year postoperatively, X-rays and MARS-MRI showed a fixed reversed hybrid THA, with periarticular densities, flattening of the femoral head component, and a pattern of periarticular metal wear debris and pseudotumor formation. Before revision could take place, the patient was admitted with the clinical picture of systemic cobalt toxicity, supported by excessively high serum cobalt and chromium levels, and ultimately died. At autopsy dilated cardiomyopathy as cause of death was hypothesized. A third body wear reaction between ceramic remnants and the metal femoral head very likely led to excessive metal wear, which contributed systemic cobalt toxicity leading to neurotoxicity and heart failure. This case emphasizes that fractured ceramic-on-ceramic bearings should be revised to ceramic-on-ceramic or ceramic-on-polyethylene bearings, but not to metal-on-polyethylene bearings. We aim to increase awareness among orthopedic surgeons for clinical clues for systemic cobalt intoxication, even when there is no metal-on-metal bearing surface.

  3. Versatile high current metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1992-01-01

    A metal ion implantation facility has been developed with which high current beams of practically all the solid metals of the periodic table can be produced. A multicathode, broad-beam, metal vapor vacuum arc ion source is used to produce repetitively pulsed metal ion beams at an extraction voltage of up to 100 kV, corresponding to an ion energy of up to several hundred kiloelectronvolts because of the ion charge state multiplicity, and with a beam current of up to several amps peak pulsed and several tens of milliamps time averaged delivered onto a downstream target. Implantation is done in a broad-beam mode, with a direct line of sight from ion source to target. Here we summarize some of the features of the ion source and the implantation facility that has been built up around it. (orig)

  4. Toxic metals in WEEE: Characterization and substance flow analysis in waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi; Terazono, Atsushi

    2013-10-01

    Waste electrical and electronic equipment (WEEE) has received extensive attention as a secondary source of metals. Because WEEE also contains toxic substances such as heavy metals, appropriate management of these substances is important in the recycling and treatment of WEEE. As a basis for discussion toward better management of WEEE, this study characterizes various types of WEEE in terms of toxic metal contents. The fate of various metals contained in WEEE, including toxic metals, was also investigated in actual waste treatment processes. Cathode-ray tube televisions showed the highest concentration and the largest total amount of toxic metals such as Ba, Pb, and Sb, so appropriate recycling and disposal of these televisions would greatly contribute to better management of toxic metals in WEEE. A future challenge is the management of toxic metals in mid-sized items such as audio/visual and ICT equipment because even though the concentrations were not high in these items, the total amount of toxic metals contained in them is not negligible. In the case of Japan, such mid-sized WEEE items as well as small electronic items are subject to municipal solid waste treatment. A case study showed that a landfill was the main destination of toxic metals contained in those items in the current treatment systems. The case study also showed that changes in the flows of toxic metals will occur when treatment processes are modified to emphasize resource recovery. Because the flow changes might lead to an increase in the amount of toxic metals released to the environment, the flows of toxic metals and the materials targeted for resource recovery should be considered simultaneously. - Highlights: ► Appropriate management of toxic metals contained in WEEE is important during recycling and treatment of WEEE. ► CRT TVs contain large amount of toxic metals with high concentration and thus appropriate management is highly important. ► Mid-sized equipment is a future target for

  5. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    Okumura, Minoru; Kitano, Yasushi

    1986-01-01

    The coprecipitation of alkali metal ions Li + , Na + , K + and Rb + with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na + which has approximately the same ionic radius as Ca 2+ . (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca 2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca 2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li + , Na + , K + and Rb + ) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li + , K + and Rb + ) into the aragonite. (author)

  6. Metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-06-01

    We have developed a family of metal vapor vacuum are (MEVVA) high current metal ion sources. The sources were initially developed for the production of high current beams of metal ions for heavy ion synchrotron injection for basic nuclear physics research; more recently they have also been used for metal ion implantation. A number of different embodiments of the source have been developed for these specific applications. Presently the sources operate in a pulsed mode, with pulse width of order 1 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, and since the ions produced in the vacuum arc plasma are in general multiply ionized the ion energy is up to several hundred keV. Beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Nearly all of the solid metals of the Periodic Table have been use to produce beam. A number of novel features have been incorporated into the sources, including multiple cathodes and the ability to switch between up to 18 separate cathode materials simply and quickly, and a broad beam source version as well as miniature versions. here we review the source designs and their performance. 45 refs., 7 figs

  7. How Saccharomyces cerevisiae copes with toxic metals and metalloids.

    Science.gov (United States)

    Wysocki, Robert; Tamás, Markus J

    2010-11-01

    Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.

  8. Novel metal ion surface modification technique

    International Nuclear Information System (INIS)

    Brown, I.G.; Godechot, X.; Yu, K.M.

    1990-10-01

    We describe a method for applying metal ions to the near-surface region of solid materials. The added species can be energetically implanted below the surface or built up as a surface film with an atomically mixed interface with the substrate; the metal ion species can be the same as the substrate species or different from it, and more than one kind of metal species can be applied, either simultaneously or sequentially. Surface structures can be fabricated, including coatings and thin films of single metals, tailored alloys, or metallic multilayers, and they can be implanted or added onto the surface and ion beam mixed. We report two simple demonstrations of the method: implantation of yttrium into a silicon substrate at a mean energy of 70 keV and a dose of 1 x 10 16 atoms/cm 2 , and the formation of a titanium-yttrium multilayer structure with ion beam mixing to the substrate. 17 refs., 3 figs

  9. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki [National Inst. of Radiological Sciences, Chiba (Japan); Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu [Accelerator Engineering Corporation, Chiba (Japan)

    2001-11-19

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  10. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    International Nuclear Information System (INIS)

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki; Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu

    2001-01-01

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  11. Microencapsulated Aliivibrio fischeri in Alginate Microspheres for Monitoring Heavy Metal Toxicity in Environmental Waters

    Directory of Open Access Journals (Sweden)

    Dedi Futra

    2014-12-01

    Full Text Available In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri encapsulated in alginate microspheres is described. Cu(II, Cd(II, Pb(II, Zn(II, Cr(VI, Co(II, Ni(II, Ag(I and Fe(II were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD range of 2.4–5.7% (n = 8. The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD for Cu(II (6.40 μg/L, Cd(II (1.56 μg/L, Pb(II (47 μg/L, Ag(I (18 μg/L than Zn(II (320 μg/L, Cr(VI (1,000 μg/L, Co(II (1700 μg/L, Ni(II (2800 μg/L, and Fe(III (3100 μg/L. Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.

  12. Ion-beam-mixing in metal-metal systems and metal-silicon systems

    International Nuclear Information System (INIS)

    Hung, L.

    1984-01-01

    The influence of energetic ion bombardment on the composition and structure of thin film materials and utilization of ion-beam-mixing techniques to modify interfacial reactions are reported in this thesis. The phase formation in metals by using ion mixing techniques has been studied. Upon ion irradiation of Al/Pt, Al/Pd and Al/Ni thin films, only the simplest intermetallic compounds of PdAl and NiAl were formed in crystalline structure, while the amorphous phase has been observed over a large range of composition. Ion mixing of Au/Cu bilayers resulted in the formation of substitutional solid solutions with no trace of ordered compounds. The formation of the ordered compound CuAu was achieved either by irradiation of bilayers with Ar ions at elevated substrate temperature or by irradiation of the mixed layers with He ions at relatively low temperature. In the Au/Al system several crystal compounds existed in the as-deposited samples. These phases remained crystalline or transformed into other equilibrium compounds upon ion irradiation. The results suggest that the phase formation by ion mixing is dependent on the high quench rate in the collision cascade region and the atomic mobility at the irradiation temperature. The argument can be applied to silicide forming systems. With near-noble metals, the mixed atoms are mobile and form metallurgically distinct phases. With refractory metals, amorphous phases are formed due to lack of atomic mobility

  13. High charge state metal ion production in vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.

    1994-01-01

    The vacuum arc is a rich source of highly ionized metal plasma that can be used to make a high current metal ion source. Vacuum arc ion sources have been developed for a range of applications including ion implantation for materials surface modification, particle accelerator injection for fundamental nuclear physics research, and other fundamental and applied purposes. Typically the source is repetitively pulsed with pulse length of order a millisecond and duty cycle or order 1% and operation of a dc embodiment has been demonstrated also. Beams have been produced from over 50 of the solid metals of the periodic table, with mean ion energy up to several hundred keV and with peak (pulsed) beam current up to several amperes. The ion charge state distribution has been extensively studied. Ion spectra have been measured for a wide range of metallic cathode materials, including Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb, Hf, Ta, W, Ir, Pt, Au, Pb, Bi, Th and U, as well as compound and alloy cathode materials such as TiC, SiC, UC, PbS, brass, and stainless steel. The ions generated are in general multiply-stripped with a mean charge state of from 1 to 3, depending on the particular metal species, and the charge state distribution can have components from Q = 1+ to 6+. Here the authors review the characteristics of vacuum arc ion sources from the perspective of their high charge state metal ion production

  14. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  15. Effects of multi-metal toxicity on the performance of sewage treatment system during the festival of colors (Holi) in India.

    Science.gov (United States)

    Tyagi, Vinay Kumar; Bhatia, Akanksha; Gaur, Rubia Zahid; Khan, Abid Ali; Ali, Muntajir; Khursheed, Anwar; Kazmi, Absar Ahmad

    2012-12-01

    The present study investigated the effects of heavy metals (Ni, Zn, Cd, Cu, and Pb) toxicity on the performance of 18 MLD activated sludge process-based sewage treatment plant (STP) during celebration of Holi (festival of colors in India). The composite sampling (n = 32) was carried out during the entire study period. The findings show a significant decrease in chemical oxygen demand removal efficiency (20%) of activated sludge system, after receiving the heavy metals laden wastewater. A significant reduction of 40% and 60% were observed in MLVSS/MLSS ratio and specific oxygen uptake rate, which eventually led to a substantial decrease in biomass growth yield (from 0.54 to 0.17). The toxic effect of metals ions was also observed on protozoan population. Out of the 12 mixed liquor species recorded, only two ciliates species of Vorticella and Epistylis exhibited the greater tolerance against heavy metals toxicity. Furthermore, activated sludge shows the highest metal adsorption affinity for Cu, followed by Zn, Pb, Ni, and Cd (Cu > Zn > Pb > Ni > Cd). Finally, this study proves the robustness of activated sludge system against the sudden increase in heavy metal toxicity since it recovered the earlier good quality performance within 5 days.

  16. Metal transformation as a strategy for bacterial detoxification of heavy metals.

    Science.gov (United States)

    Essa, Ashraf M M; Al Abboud, Mohamed A; Khatib, Sayeed I

    2018-01-01

    Microorganisms can modify the chemical and physical characters of metals leading to an alteration in their speciation, mobility, and toxicity. Aqueous heavy metals solutions (Hg, Cd, Pb, Ag, Cu, and Zn) were treated with the volatile metabolic products (VMPs) of Escherichia coli Z3 for 24 h using aerobic bioreactor. The effect of the metals treated with VMPs in comparison to the untreated metals on the growth of E. coli S1 and Staphylococcus aureus S2 (local isolates) was examined. Moreover, the toxic properties of the treated and untreated metals were monitored using minimum inhibitory concentration assay. A marked reduction of the treated metals toxicity was recorded in comparison to the untreated metals. Scanning electron microscopy and energy dispersive X-ray analysis revealed the formation of metal particles in the treated metal solutions. In addition to heavy metals at variable ratios, these particles consisted of carbon, oxygen, sulfur, nitrogen elements. The inhibition of metal toxicity was attributed to the existence of ammonia, hydrogen sulfide, and carbon dioxide in the VMPs of E. coli Z3 culture that might responsible for the transformation of soluble metal ions into metal complexes. This study clarified the capability of E. coli Z3 for indirect detoxification of heavy metals via the immobilization of metal ions into biologically unavailable species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fractionation and potential toxic risk of metals from superficial sediment in Itaipu Lake--boundary between Brazil and Paraguay.

    Science.gov (United States)

    Kalwa, Miguel; Quináia, Sueli Pércio; Pletsch, Adelmo L; Techy, Laura; Felsner, Maria Lurdes

    2013-01-01

    The objective of this study was to evaluate fractions of metals (labile and pseudo-total) extracted from sediment samples collected in Itaipu Lake (boundary between Brazil and Paraguay) and to assess the dynamics and mobility of these fractions by identifying the same bioavailability and ecological risk to metals in the aquatic environment. The concentrations of metal ions were determined by flame atomic absorption spectrometry. There was a correlation between the metal ions, both in the labile and the pseudo-total, with regard to particle size. To assess metals concentrations in sediment, numerical sediment-quality guidelines were applied. The concentrations of aluminum, cadmium, iron, manganese, lead, and zinc in all sediment samples are lower than the proposed probable effects level (PEL), thus possibly indicating that there are no harmful effects from these metals. In contrast, concentrations of copper, chromium, and nickel exceeded the PEL in some samples, thus indicating that these stations are at potential risk. The level of contamination in sediments of Itaipu Lake for all metals was evaluated using contamination factor, degree of contamination, and sum-of-metals toxic unit.

  18. Toxicity from Metals, Old Menaces and New Threats

    Directory of Open Access Journals (Sweden)

    Wayne Briner

    2010-12-01

    Full Text Available Metals make up the bulk of the periodic table and range from the very light (e.g., beryllium to the very heavy (e.g., the actinides. Metals are important constituents of life, drive economic activity and industry, but can also be a hazard to human health. The metals can be roughly divided into three groups. The first being those metals, such as iron and zinc, that are essential to human life and have a wide therapeutic dose range. The second group of metals, such as lead, mercury, and uranium, has no known biological role and are toxic even at low doses. The third group of metals, such as selenium and manganese, has a role in maintaining human health but has a very narrow dose range that, when exceeded, produces toxic effects. [...

  19. Predicting dietborne metal toxicity from metal influxes

    Science.gov (United States)

    Croteau, M.-N.; Luoma, S.N.

    2009-01-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (kuf) were, respectively, 3.3 and 2.3 times higher than that for Cu. Detoxification rate constants (k detox) were similar among metals and appeared 100 times higher than efflux rate constants (ke). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity; i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g-1 day-1. L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed.

  20. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  1. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  2. Remediation of groundwater containing radionuclides and heavy metals using ion exchange and the AlgaSORB reg-sign biosorbent system

    International Nuclear Information System (INIS)

    Feiler, H.D.; Darnall, D.W.

    1991-01-01

    Bio-Recovery Systems, Inc. (BRS) studied the application of an immobilized algal biomass, termed AlgaSORB reg-sign, which has high affinity for heavy metal ions to DOE-contaminated groundwaters. The material can be packed into columns similar to commercial ion exchange resins. Dilute solutions containing heavy metals are passed through columns where metals are absorbed by the AlgaSORB reg-sign resins. Once saturated, metal ions can be stripped from the resin biomass in a highly concentrated solution. Groundwaters contaminated with heavy metal ions from three different Department of Energy (DOE) sites: Savannah River, Hanford and the Oak Ridge Y-12 Plant were studied. The objective was to perform bench-scale treatability studies to establish treatment protocols and to optimize an AlgaSORB reg-sign/ion exchange technology system to remove and recover toxic metal ions from these contaminated groundwaters. The specialty ion exchange/AlgaSORB reg-sign resins tested in these studies show promise for selectively removing chromium, mercury and uranium from contaminated groundwater at DOE sites. The data show that effluents which satisfy the allowable metal ion limits are possible and most likely achievable. The use of these highly selective resins also offer advantages in terms of cost/benefit, risk and scheduling. Their high selectivity allows for high capacity and opportunities for recovery of removed constituents due to high pollutant concentration possible (3 to 4 orders of magnitude). Ion exchange is a proven technology which is easily automated and can be cost-effective, depending on the application

  3. Toxic metals (Ni2+, Pb2+, Hg2+) binding affinity of dissolved organic matter (DOM) derived from different ages municipal landfill leachate

    Science.gov (United States)

    Rikta, S. Y.; Tareq, Shafi M.; Uddin, M. Khabir

    2018-03-01

    Solid waste production is rapidly increasing in Bangladesh and landfill leachate is the consequence of the decomposition of this waste. These leachates contain heavy metals and significant amount of dissolved organic matter (DOM). DOM is known to have considerable role in heavy metals speciation. Hence, it is important to characterize DOM/leachate and evaluate toxic metals binding affinity of DOM. The objectives of this study were to characterize the DOM in landfill leachate through physico-chemical and optical analyses and to investigate the toxic metals (Ni2+, Pb2+ and Hg2+) binding affinity of three different ages (fresh sample L-1, young sample L-2 and mature sample L-3) DOM samples. Results suggested that leachate is a potential pollutant which contained very high organic pollutant load. Conditional stability constant (Log K) and percentages of fluorophores that correspond to metal binding (% f) values indicated that young DOM sample (L-2) had the highest binding affinity to all the three metals ions. In general, DOM samples showed the following order affinity to the metal ions; Ni2+ binding affinity: L-2 > L-3 > L-1, Pb2+ binding affinity: L-2 > L-3 > L-1 and Hg2+ binding affinity: L-2 > L-1 > L-3.

  4. Metallic ions in the upper atmosphere

    International Nuclear Information System (INIS)

    Kumar, S.

    1979-01-01

    During the past 20 years considerable progress has been made in establishing the presence of metallic ions in the sporadic E layers at mid latitudes and as discrete patches at high altitudes in the equatorial ionosphere. The E-region observations have been based on rocket flights, which represent local conditions faithfully. But the global distribution of metallic ions and variations relating to changes in season, local time, magnetic activity, etc., which require satellite data, have been largely unexamined. This work presents a few aspects of this missing global distribution over an altitude range of 100 to 1000 km, using the data from AE-C, AE-D, and OGO-6 satellites and the rocket flights 18.117 and 18.118 from Wallops Island on July 12 and 13, 1971. The rocket data provide a day-night pair of vertical profiles that include altitudes not covered by the satellites. Results are presented for Mg + , Al + , Si + and Fe + ions in terms of their detection probabilities, median concentrations and relative abundances with respect to Mg + ions as a function of significant geophysical parameters. Na + and K + ions have been excluded from this study because alkali metal ions driven off the spacecraft hamper the measurement of ambient Na + and K + ions. This study has indicated that in general different metallic ions appear together in comparable concentrations except for Al + , which is an order of magnitude smaller than the others

  5. Systemic levels of metallic ions released from orthodontic mini-implants.

    Science.gov (United States)

    de Morais, Liliane Siqueira; Serra, Glaucio Guimarães; Albuquerque Palermo, Elisabete Fernandes; Andrade, Leonardo Rodrigues; Müller, Carlos Alberto; Meyers, Marc André; Elias, Carlos Nelson

    2009-04-01

    Orthodontic mini-implants are a potential source of metallic ions to the human body because of the corrosion of titanium (Ti) alloy in body fluids. The purpose of this study was to gauge the concentration of Ti, aluminum (Al), and vanadium (V), as a function of time, in the kidneys, livers, and lungs of rabbits that had Ti-6Al-4V alloy orthodontic mini-implants placed in their tibia. Twenty-three New Zealand rabbits were randomly divided into 4 groups: control, 1 week, 4 weeks, and 12 weeks. Four orthodontic mini-implants were placed in the left proximal tibia of 18 rabbits. Five control rabbits had no orthodontic mini-implants. After 1, 4, and 12 weeks, the rabbits were killed, and the selected tissues were extracted and prepared for analysis by graphite furnace atomic absorption spectrophotometry. Low amounts of Ti, Al, and V were detectable in the 1-week, 4-weeks, and 12-weeks groups, confirming that release of these metals from the mini-implants occurs, with diffusion and accumulation in remote organs. Despite the tendency of ion release when using the Ti alloy as orthodontic mini-implants, the amounts of metals detected were significantly below the average intake of these elements through food and drink and did not reach toxic concentrations.

  6. Effects of a chelating resin on metal bioavailability and toxicity to estuarine invertebrates: Divergent results of field and laboratory tests

    International Nuclear Information System (INIS)

    Wilkie, Emma M.; Roach, Anthony C.; Micevska, Tina; Kelaher, Brendan P.; Bishop, Melanie J.

    2010-01-01

    Benthic invertebrates can uptake metals through diffusion of free ion solutes, or ingestion of sediment-bound forms. This study investigated the efficacy of the metal chelating resin SIR 300 TM in adsorbing porewater metals and isolating pathways of metal exposure. A field experiment (Botany Bay, Sydney, Australia) and a laboratory toxicity test each manipulated the availability of porewater metals within contaminated and uncontaminated sediments. It was predicted that within contaminated sediments, the resin would adsorb porewater metals and reduce toxicity to invertebrates, but in uncontaminated sediments, the resin would not significantly affect these variables. Whereas in the laboratory, the resin produced the predicted results, in the field the resin increased porewater metal concentrations of contaminated sediments for at least 34 days and decreased abundances of four macroinvertebrate groups, and richness in all sediments. These contrasting findings highlight the limits of extrapolating the results of laboratory experiments to the field environment. - Laboratory experiments do not predict the effects on porewater metals or macroinvertebrates of adding a chelating resin to metal-contaminated field sediments.

  7. Effects of a chelating resin on metal bioavailability and toxicity to estuarine invertebrates: Divergent results of field and laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Wilkie, Emma M., E-mail: ewilkie@bio.mq.edu.a [Department of Environmental Sciences, University of Technology Sydney, Broadway, NSW 2007 (Australia); Ecotoxicology and Environmental Contaminants Section, Department of Environment and Climate Change, Lidcombe, NSW 1825 (Australia); Roach, Anthony C. [Ecotoxicology and Environmental Contaminants Section, Department of Environment and Climate Change, Lidcombe, NSW 1825 (Australia); Micevska, Tina [Centre for Environmental Contaminants Research, CSIRO Land and Water, Menai, NSW 2234 (Australia); Kelaher, Brendan P.; Bishop, Melanie J. [Department of Environmental Sciences, University of Technology Sydney, Broadway, NSW 2007 (Australia)

    2010-05-15

    Benthic invertebrates can uptake metals through diffusion of free ion solutes, or ingestion of sediment-bound forms. This study investigated the efficacy of the metal chelating resin SIR 300{sup TM} in adsorbing porewater metals and isolating pathways of metal exposure. A field experiment (Botany Bay, Sydney, Australia) and a laboratory toxicity test each manipulated the availability of porewater metals within contaminated and uncontaminated sediments. It was predicted that within contaminated sediments, the resin would adsorb porewater metals and reduce toxicity to invertebrates, but in uncontaminated sediments, the resin would not significantly affect these variables. Whereas in the laboratory, the resin produced the predicted results, in the field the resin increased porewater metal concentrations of contaminated sediments for at least 34 days and decreased abundances of four macroinvertebrate groups, and richness in all sediments. These contrasting findings highlight the limits of extrapolating the results of laboratory experiments to the field environment. - Laboratory experiments do not predict the effects on porewater metals or macroinvertebrates of adding a chelating resin to metal-contaminated field sediments.

  8. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Palza, Humberto, E-mail: hpalza@ing.uchile.cl [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Escobar, Blanca; Bejarano, Julian [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Bravo, Denisse [Departamento de Patología, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Diaz-Dosque, Mario [Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Perez, Javier [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile)

    2013-10-15

    Bioactive glasses (SiO{sub 2}–P{sub 2}O{sub 5}–CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials.

  9. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    International Nuclear Information System (INIS)

    Palza, Humberto; Escobar, Blanca; Bejarano, Julian; Bravo, Denisse; Diaz-Dosque, Mario; Perez, Javier

    2013-01-01

    Bioactive glasses (SiO 2 –P 2 O 5 –CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials

  10. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  11. Pseudo ribbon metal ion beam source

    International Nuclear Information System (INIS)

    Stepanov, Igor B.; Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-01-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface

  12. Pseudo ribbon metal ion beam source.

    Science.gov (United States)

    Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A

    2014-02-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  13. Plasma immersion surface modification with metal ion plasma

    International Nuclear Information System (INIS)

    Brown, I.G.; Yu, K.M.; Godechot, X.

    1991-04-01

    We describe here a novel technique for surface modification in which metal plasma is employed and by which various blends of plasma deposition and ion implantation can be obtained. The new technique is a variation of the plasma immersion technique described by Conrad and co-workers. When a substrate is immersed in a metal plasma, the plasma that condenses on the substrate remains there as a film, and when the substrate is then implanted, qualitatively different processes can follow, including' conventional' high energy ion implantation, recoil implantation, ion beam mixing, ion beam assisted deposition, and metallic thin film and multilayer fabrication with or without species mixing. Multiple metal plasma guns can be used with different metal ion species, films can be bonded to the substrate through ion beam mixing at the interface, and multilayer structures can be tailored with graded or abrupt interfaces. We have fabricated several different kinds of modified surface layers in this way. 22 refs., 4 figs

  14. Fungitoxicity of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Somers, E

    1961-01-01

    The in vitro fungistatic activity of some twenty-four metal cations has been determine against Alternaria tenuis and Botrytis fabae. The metal salts, mainly nitrates, were tested in aqueous solution without added spore germination stimulant. The logarithm of the metal ion concentration at the ED 50 value has been found to conform to the exponenttial relationship with electronegativity proposed by Danielli and Davies (1951). These results are discussed in relation to the site of action of metal cations on the fungal cell.

  15. A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously.

    Science.gov (United States)

    Li, Daikun; Li, Qing; Mao, Daoyong; Bai, Ningning; Dong, Hongzhou

    2017-12-01

    Developing versatile materials for effective water purification is significant for environment and water source protection. Herein, a versatile bio-based material (CH-PAA-T) was reported by simple thermal cross-linking chitosan and polyacrylic acid which exhibits excellent performances for removing insoluble oil, soluble toxic dyes and heavy metal ions from water, simultaneously. The adsorption capacities are 990.1mgg -1 for methylene blue (MB) and 135.9mgg -1 for Cu 2+ , which are higher than most of present advanced absorbents. The adsorption towards organic dyes possesses high selectivity which makes CH-PAA-T be able to efficiently separate dye mixtures. The stable superoleophobicity under water endows CH-PAA-T good performance to separate toluene-in-water emulsion stabilized by Tween 80. Moreover, CH-PAA-T can be recycled for 10 times with negligible reduction of efficiency. Such versatile bio-based material is a potential candidate for water purification. Copyright © 2017. Published by Elsevier Ltd.

  16. Upgraded vacuum arc ion source for metal ion implantation

    International Nuclear Information System (INIS)

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-01-01

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  17. Synthesis of non-toxic As and Cr nanoparticles through redox activity of highly flexible layered coordination polymer of Ni(II)

    Science.gov (United States)

    Agarwal, Rashmi A.

    2018-03-01

    A simple method for the sequestration of As(III) and Cr(VI) from water has been demonstrated by utilizing a highly flexible porous coordination polymer (PCP) of Ni(II) in its as synthesized form or without solvent removal. This PCP reduces the high toxicity of As(III) and Cr(VI) ions into non-toxic As(0) and Cr/Cr2O3/CrO2 (zero, tri and tetravalent) nanoparticles (NPs) within its pores, and this is characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis. The high functionality of this polymer is due to the presence of monodentate carboxylate groups of a benzenetricarboxylate linker, which provide anchoring sites to the metal ions of the metal precursors. Due to the highly oxidising nature of these toxic ions, a redox reaction takes place between the framework metal ions and toxic metal ions, which is explained by an electron paramagnetic resonance study. This is the first report to synthesize non-toxic, as well as useful, NPs of As and Cr from their highly toxic ions within the cavities of a PCP for remediation of the toxic waste stream and contaminated waste water.

  18. Synthesis of non-toxic As and Cr nanoparticles through redox activity of highly flexible layered coordination polymer of Ni(II).

    Science.gov (United States)

    Agarwal, Rashmi A

    2018-03-09

    A simple method for the sequestration of As(III) and Cr(VI) from water has been demonstrated by utilizing a highly flexible porous coordination polymer (PCP) of Ni(II) in its as synthesized form or without solvent removal. This PCP reduces the high toxicity of As(III) and Cr(VI) ions into non-toxic As(0) and Cr/Cr 2 O 3 /CrO 2 (zero, tri and tetravalent) nanoparticles (NPs) within its pores, and this is characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis. The high functionality of this polymer is due to the presence of monodentate carboxylate groups of a benzenetricarboxylate linker, which provide anchoring sites to the metal ions of the metal precursors. Due to the highly oxidising nature of these toxic ions, a redox reaction takes place between the framework metal ions and toxic metal ions, which is explained by an electron paramagnetic resonance study. This is the first report to synthesize non-toxic, as well as useful, NPs of As and Cr from their highly toxic ions within the cavities of a PCP for remediation of the toxic waste stream and contaminated waste water.

  19. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  20. Yeast enolase: mechanism of activation by metal ions.

    Science.gov (United States)

    Brewer, J M

    1981-01-01

    Yeast enolase as prepared by current procedures is inherently chemically homogeneous, though deamidation and partial denaturation can produce electrophoretically distinct forms. A true isozyme of the enzyme exists but does not survive the purification procedure. The chemical sequence for both has been established. The enzyme behaves in solution like a compact, nearly spherical molecule of moderate hydration. Strong intramolecular forces maintain the structure of the individual subunits. The enzyme as isolated is dimeric. If dissociated in the presence of magnesium ions and substrate, then the subunits are active, but if the dissociation occurs in the absence of metal ions, they are inactive until they have reassociated and undergone a first order "annealing" process. Magnesium (II) enhances association. The interaction between the subunits is hydrophobic in character. The enzyme can bind up to 2 mol of most metal ions in "conformational" sites which then allows up to 2 mol of substrate or some substrate analogue to bind. This is not sufficient for catalysis, but conformational metal ions do more than just allow substrate binding. A change in the environment of the metal ions occurs on substrate or substrate analogue binding. There is an absolute correlation between the occurrence of a structural change undergone by the 3-amino analogue of phosphoenolpyruvate and whether the metal ions produce any level of enzymatic activity. For catalysis, two more moles of metal ions, called "catalytic", must bind. There is evidence that the enzymatic reaction involves a carbanion mechanism. It is likely that two more moles of metal ion can bind which inhibit the reaction. The requirement for 2 mol of metal ion per subunit which contribute in different ways to catalysis is exhibited by a number of other enzymes.

  1. Ionic Liquids as Extraction Media for Metal Ions

    Science.gov (United States)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  2. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    Science.gov (United States)

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  3. Effect of new soil metal immobilizing agents on metal toxicity to terrestrial invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Lock, K.; Janssen, C.R

    2003-01-01

    Organisms with different exposure routes should be used to simultaneously assess risks of metals in soils. - Application of 5% (w:w) novel metal immobilizing agent reduced the water soluble, the calcium chloride extracted as well as the pore water concentration of zinc in soils from Maatheide, a metal contaminated site in the northeast of Belgium. Addition of the metal immobilizing agents also eliminated acute toxicity to the potworm Enchytraeus albidus and the earthworm Eisenia fetida and chronic toxicity to the springtail Folsomia candida. Cocoon production by E. fetida, however, was still adversely affected. These differences may be explained by the species dependent routes of metal uptake: F. candida is probably mainly exposed via pore water while in E. fetida dietary exposure is probably also important. From these results it is clear that organisms with different exposure routes should be used simultaneously to assess the environmental risk of metal contaminated soils.

  4. Toxic fluoride gas emissions from lithium-ion battery fires.

    Science.gov (United States)

    Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Mellander, Bengt-Erik

    2017-08-30

    Lithium-ion battery fires generate intense heat and considerable amounts of gas and smoke. Although the emission of toxic gases can be a larger threat than the heat, the knowledge of such emissions is limited. This paper presents quantitative measurements of heat release and fluoride gas emissions during battery fires for seven different types of commercial lithium-ion batteries. The results have been validated using two independent measurement techniques and show that large amounts of hydrogen fluoride (HF) may be generated, ranging between 20 and 200 mg/Wh of nominal battery energy capacity. In addition, 15-22 mg/Wh of another potentially toxic gas, phosphoryl fluoride (POF 3 ), was measured in some of the fire tests. Gas emissions when using water mist as extinguishing agent were also investigated. Fluoride gas emission can pose a serious toxic threat and the results are crucial findings for risk assessment and management, especially for large Li-ion battery packs.

  5. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    Science.gov (United States)

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  6. Ion implantation and ion assisted coatings for wear resistance in metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The implantation of electrically accelerated ions of chosen elements into the surface of material provides a method for improving surface properties such as wear resistance. High concentrations of nitrogen implanted into metals create obstacles to dislocation movement, and certain combinations of metallic and non-metallic species will also strengthen the surface. The process is best applied to situations involving mild abrasive wear and operating temperatures that are not too high. Some dramatic increases in life have been reported under such favourable conditions. A more recent development has been the combination of a thin coating with reactive ion bombardment designed to enhance adhesion by ion mixing at the interface and so provide hardness by the formation of finely dispersed nitrides, including cubic boron nitride. These coatings often possess vivid and decorative colours as an added benefit. Developments in the equipment for industrial ion implantation now offer more attractive costs per unit area and a potentially greater throughput of work. A versatile group of related hard vacuum treatments is now emerging, involving the use of intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (author)

  7. A biosystem for removal of metal ions from water

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II.

    1990-01-01

    The presence of heavy metal ions in ground and surface waters constitutes a potential health risk and is an environmental concern. Moreover, processes for the recovery of valuable metal ions are of interest. Bioaccumulation or biosorption is not only a factor in assessing the environmental risk posed by metal ions; it can also be used as a means of decontamination. A biological system for the removal and recovery of metal ions from contaminated water is reported here. Exopolysaccharide-producing microorganisms, including a methanotrophic culture, are demonstrated to have superior metal binding ability, compared with other microbial cultures. This paper describes a biosorption process in which dried biomass obtained from exopolysaccharide-producing microorganisms is encapsulated in porous plastic beads and is used for metal ion binding and recovery. 22 refs., 13 figs.

  8. THE ROLE OF IONORGANIC ION IMBALANCE IN AQUATIC TOXICITY TESTING

    Science.gov (United States)

    This paper assessess the issue of ion imbalance, provides summary of applicable data, presents several successful technical tools to address toxicity resulting from salinity and ion imbalances, and discusses regulatory/compliance options to manage discharges with salinity/ion imb...

  9. Evaluation of levels of select toxic metals in commonly used herbal ...

    African Journals Online (AJOL)

    Even at low concentrations or levels of exposure, toxic metals have also been reported to pose health risks to man. Aim: To ... Materials/Methods :Herbal medicines (n=8) were purchased from on-the-street vendors and evaluated for levels of five toxic metals (Lead, Nickel, Mercury, Cadmium and Arsenic).Analysis of toxic ...

  10. Evaluation of Two Biosorbents in the Removal of Metal Ions in Aqueous Using a Pilot Scale Fixed-bed System

    Directory of Open Access Journals (Sweden)

    Andre Gadelha Oliveira

    2014-05-01

    Full Text Available The aim of the present work was to investigate the adsorption of toxic metal ions copper, nickel and zinc from aqueous solutions using low cost natural biomass (sugar cane bagasse and green coconut fiber in pilot scale fixed-bed system. The Hydraulic retention time (HRT was 229 minutes and the lowest adsorbent usage rate (AUR found was 0.10 g.L-1 for copper using green coconut fibers. The highest values of adsorption capacities founded were 1.417 and 2.772 mg.g-1 of Cu(II ions for sugarcane bagasse and green coconut fibers, respectively. The results showed that both sugarcane bagasse and green coconut fiber presented potential in the removal of metal ions copper, nickel and zinc ions from aqueous solution and the possible use in wastewater treatment station.

  11. Metal ion-dependent DNAzymes and their applications as biosensors.

    Science.gov (United States)

    Lan, Tian; Lu, Yi

    2012-01-01

    Long considered to serve solely as the genetic information carrier, DNA has been shown in 1994 to be able to act as DNA catalysts capable of catalyzing a trans-esterification reaction similar to the action of ribozymes and protein enzymes. Although not yet found in nature, numerous DNAzymes have been isolated through in vitro selection for catalyzing many different types of reactions in the presence of different metal ions and thus become a new class of metalloenzymes. What remains unclear is how DNA can carry out catalysis with simpler building blocks and fewer functional groups than ribozymes and protein enzymes and how DNA can bind metal ions specifically to perform these functions. In the past two decades, many biochemical and biophysical studies have been carried out on DNAzymes, especially RNA-cleaving DNAzymes. Important insights have been gained regarding their metal-dependent activity, global folding, metal binding sites, and catalytic mechanisms for these DNAzymes. Because of their high metal ion selectivity, one of the most important practical applications for DNAzymes is metal ion detection, resulting in highly sensitive and selective fluorescent, colorimetric, and electrochemical sensors for a wide range of metal ions such as Pb(2+), UO2 2 +,[Formula: see text] including paramagnetic metal ions such as Cu(2+). This chapter summarizes recent progresses in in vitro selection of metal ion-selective DNAzymes, their biochemical and biophysical studies and sensing applications.

  12. Select toxic metals status of pregnant women with history of ...

    African Journals Online (AJOL)

    Toxic metals are part of the most important groups of environmental pollutants that can bind to vital cellular components and interfere with their functions via inhalation, foods, water etc. The serum levels of toxic metals (lead, mercury, cadmium and arsenic) in pregnant women with history of pregnancy complications, ...

  13. State promotion and neutralization of ions near metal surface

    International Nuclear Information System (INIS)

    Zinoviev, A.N.

    2011-01-01

    Research highlights: → Multiply charged ion and the charge induced in the metal form a dipole. → Dipole states are promoted into continuum with decreasing ion-surface distance. → These states cross the states formed from metal atom. → Proposed model explains the dominant population of deep bound states. → Observed spectra of emitted Auger electrons prove this promotion model. -- Abstract: When a multiply charged ion with charge Z approaches the metal surface, a dipole is formed by the multiply charged ion and the charge induced in the metal. The states for such a dipole are promoted into continuum with decreasing ion-surface distance and cross the states formed from metal atom. The model proposed explains the dominant population of deep bound states in collisions considered.

  14. Decontamination of Metal Ions in Soil by Supercritical CO2 Extraction with Crown Ether

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihe; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-05-15

    Previous decontamination methods have shortcomings in that they produce additional waste due to the usage of solutions with chemical toxicity. Hence, demand is strong for new decontamination methods that can guarantee effective decontamination while decreasing the chemical solution. In particular, methods using supercritical CO2 as a means of decontamination are currently in progress. This study examines the method of decontaminating metallic ions inside soil using supercritical CO2. This paper examined the effects of extracting metallic ions inside soil using supercritical CO2 and crown ether as the ligand. It was confirmed that extraction effectiveness increases following greater usage of ligand and co-ligand, with a drastic increase in extraction effectiveness when using extracts over a certain dose. Moreover, it was shown that if the usage of ligand and additive decreases, the extraction ratio also decreases.

  15. Decontamination of Metal Ions in Soil by Supercritical CO2 Extraction with Crown Ether

    International Nuclear Information System (INIS)

    Park, Jihe; Park, Kwangheon

    2015-01-01

    Previous decontamination methods have shortcomings in that they produce additional waste due to the usage of solutions with chemical toxicity. Hence, demand is strong for new decontamination methods that can guarantee effective decontamination while decreasing the chemical solution. In particular, methods using supercritical CO2 as a means of decontamination are currently in progress. This study examines the method of decontaminating metallic ions inside soil using supercritical CO2. This paper examined the effects of extracting metallic ions inside soil using supercritical CO2 and crown ether as the ligand. It was confirmed that extraction effectiveness increases following greater usage of ligand and co-ligand, with a drastic increase in extraction effectiveness when using extracts over a certain dose. Moreover, it was shown that if the usage of ligand and additive decreases, the extraction ratio also decreases

  16. Toxicity of heavy metals to fish: an important consideration for sucessful aquaculture

    OpenAIRE

    Nnaji, J.C.; Okoye, F.C.

    2007-01-01

    Heavy metals are toxic to man, animals and plants once safe limits are exceeded. Then ability to bio accumulate in plant and animal tissues makes them particularly hazardous. Heavy metals are toxic to all aquatic biota and cause high mortality of fish larva, fry, fingerling and adult fish. They accumulate in the gills, heart, liver, kidneys, brain, bones and muscles of fish. The physico-chemical forms of heavy metals determine their mobility, availability and toxicity to fish. These metals en...

  17. Investigation of heavy metal removal from motorway stormwater using inorganic ion exchange

    International Nuclear Information System (INIS)

    Pitcher, Sarah

    2002-01-01

    Stormwater runoff from motorway surfaces contains toxic heavy metals that are not sufficiently removed by current treatment systems. This research has investigated the potential use of inorganic ion exchange materials to further reduce the levels of dissolved heavy metals. Candidate materials (synthetic/natural zeolites, clay/modified clay, hydrotalcite, lignite) were tested by a shaking procedure (mixed 5 mg dm -3 of each heavy metals, shaken for 10 min) and analysed by atomic absorption spectrometry. The synthetic zeolites MAP and Y showed 100% heavy metal removal and were investigated further by a series of batch experiments. The zeolites exhibited a selectivity sequence Pb > Cu > Cd ∼ Zn. Zeolite MAP has a high capacity for heavy metal uptake (4.5 meq g -1 ), but is not practical for use in a treatment facility owing to its low particle size (3 μm). However, large zeolite pellets (∼ 2 mm) were found to have a low heavy metal uptake (∼ 44 %) due to diffusion limitations. Selected materials (zeolites MAP, Y, mordenite, and carbon-based lignite) were tested in actual and spiked motorway stormwater. The synthetic zeolites effectively remove heavy metals (∼ 100 %) but change the environmental chemistry of the stormwater by releasing high concentrations of sodium, removing calcium ions and increasing the solution pH. The presence of other dissolved contaminants in motorway stormwater inhibited the uptake of heavy metals by the natural zeolite mordenite (34 % less removal). Alkali/alkaline-earth metals (Na, Ca) in solution compete for exchange sites in lignite and mordenite, reducing the heavy metal uptake. Chloride in solution forms complexes with cadmium, severely reducing its uptake by zeolite Y. The presence of dissolved road salt is a potentially serious concern as it causes previously exchanged heavy metals to be re-eluted, especially zinc and cadmium. Zeolite MAP as an exchanger is relatively unaffected by road salt. There is potential for the use of

  18. The changes of spectroscopic characteristics of sulfurreducing bacteria Desulfuromonas acetoxidans under the influence of different metal ions

    Science.gov (United States)

    Vasyliv, Oresta M.; Bilyy, Olexandr I.; Getman, Vasyl B.; Kushkevych, Ivan V.; Hnatush, Svitlana O.

    2011-10-01

    Desulfuromonas acetoxidans, which is regarded to the oldest microorganisms that exist in the Earth, are uncoloured gram-negative obligatory anaerobic bacteria that have an ability to reduce S0 to H2S. This process supports bacteria with sufficient amount of energy which they need for growth. At the same time high concentrations of hydrogen sulfide are very toxic towards all living organisms. Different metal ions that exist in surrounding environment in small concentrations are essential for microorganisms because they support normal functionality of them. But in high concentrations they have a detrimental influence on cell structure and it functions. Srains of D. acetoxidans bacteria that have high toxic metals resistance can neutralize the toxicity of hydrogen sulfide, which is the final product of dissimilative sulfurreduction, and these metals as the result of their particular binding and forming the insoluble precipitations. Light scattering changes and metals accumulation ability of D. acetoxidans bacterial cells under the influence of CuSO4, PbNO3, ZnSO4 and CdSO4 have been investigated. The changes of light scattering characteristics of bacterial D. acetoxidans cells on the base of their size distribution and relative content under the influence of investigated metal salts have been observed by the new method of measurement.

  19. Metal toxicity affects predatory stream invertebrates less than other functional feeding groups

    International Nuclear Information System (INIS)

    Liess, Matthias; Gerner, Nadine V.; Kefford, Ben J.

    2017-01-01

    Ecosystem effects of heavy metals need to be identified for a retrospective risk assessment, and potential impacts need to be predicted for a prospective risk assessment. In this study, we established a strong correlation between the toxic pressure of dissolved metals and invertebrate species. We compiled available data from a wide geographical range of Australian streams that were contaminated with heavy metals [mainly copper (Cu) and zinc (Zn)] and the corresponding invertebrate communities. Heavy metal toxicity is positively related to the proportion of predators within the invertebrate community, represented by the predator ratio , with an effect threshold range of 2.6 μg/L - 26 μg/L for Cu and 62 μg/L - 617 μg/L for Zn. These effect concentrations are in the ranges of the concentrations identified in model ecosystems and other field investigations and are just above the existing guideline limits. Heavy metals also affects the taxa richness negatively. Other community measures, such as the evenness, number of EPT (Ephemeroptera, Plecoptera, and Trichoptera) taxa, SPEcies At Risk (SPEAR) pesticides or SPEAR salinity were relatively poorly correlated with heavy metal toxicity in the streams. Therefore, we suggest applying the predator ratio within the community as a starting point for an indicator of the dissolved metal toxicity, the SPEAR metals . - Highlights: • Data on dissolved metals and invertebrates were compiled for a wide geographical range. • Heavy metal toxicity was strongly related to the predator ratio. • Ecologically relevant thresholds identified for Cu and Zn were above the guideline limits. - Increasing metal toxicity for Cu and Zn in streams could be related to an increasing predator ratio within the invertebrate community.

  20. Competition of dipositive metal ions for Fe (III) binding sites in chelation therapy of Iron Load

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.

    2005-01-01

    Iron overload is a condition in which excessive iron deposited in the liver, kidney and spleen of human beings in the patients of beta thalassemia and sickle cell anemia. Instead of its importance iron could be toxic when in excess, it damages the tissues. For the treatment of iron overload, a drug desferrioxamine mesylate has been used. It is linear trihydroxamic acid, a natural siderophore produced by streptomyces which removes the extra iron from body. Salicylhydroxamate type siderphore. In present research salicylhydroxamate was used for the complexation with dipositive metal ions which are available in biological environments such as Mn (II), Co (II), Ni (II) and Cu (II). The aim of our work was to study the competition reactions between Fe (III) and other dipositive ions; to calculate the thermodynamic data of chelation of these metal ions complexes with hydroxamate by computer program and comparison with hydroxamate complexes. (author)

  1. Metal and proton toxicity to lake zooplankton: A chemical speciation based modelling approach

    International Nuclear Information System (INIS)

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Fott, Jan; Garmo, Øyvind A.; Hruska, Jakub; Keller, Bill; Löfgren, Stefan; Maberly, Stephen C.; Majer, Vladimir; Nierzwicki-Bauer, Sandra A.; Persson, Gunnar; Schartau, Ann-Kristin; Thackeray, Stephen J.

    2014-01-01

    The WHAM-F TOX model quantifies the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (F TOX ), a linear combination of the products of organism-bound cation and a toxic potency coefficient for each cation. We describe the application of the model to predict an observable ecological field variable, species richness of pelagic lake crustacean zooplankton, studied with respect to either acidification or the impacts of metals from smelters. The fitted results give toxic potencies increasing in the order H + TOX to relate combined toxic effects of protons and metal cations towards lake crustacean zooplankton. • The fitted results give toxic potencies increasing in the order H + TOX model has been applied to field data for pelagic lake crustacean zooplankton. The fitted results give metal toxic potencies increasing in the order H + < Al < Cu < Zn < Ni

  2. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    International Nuclear Information System (INIS)

    Resta, V.; Quarta, G.; Farella, I.; Maruccio, L.; Cola, A.; Calcagnile, L.

    2014-01-01

    The implantation of 1 MeV metal ( 63 Cu + , 107 Ag + , 197 Au + ) and non-metal ( 4 He + , 12 C + ) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 10 13 ions cm −2 , the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated C=C bonds. For fluences around 1 × 10 17 ions cm −2 , the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C 0x clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C 0x cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼10 7 Ω/sq has been measured for implantation with metals at doses higher than 5 × 10 16 ions cm −2 , being 10 17 Ω/sq the corresponding sheet resistance for pristine PC

  3. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Resta, V., E-mail: vincenzo.resta@le.infn.it [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Quarta, G. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Farella, I. [Institute for Microelectronics and Microsystems – Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Maruccio, L. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Cola, A. [Institute for Microelectronics and Microsystems – Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Calcagnile, L. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy)

    2014-07-15

    The implantation of 1 MeV metal ({sup 63}Cu{sup +}, {sup 107}Ag{sup +}, {sup 197}Au{sup +}) and non-metal ({sup 4}He{sup +}, {sup 12}C{sup +}) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 10{sup 13} ions cm{sup −2}, the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated C=C bonds. For fluences around 1 × 10{sup 17} ions cm{sup −2}, the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C{sub 0x} clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C{sub 0x} cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼10{sup 7} Ω/sq has been measured for implantation with metals at doses higher than 5 × 10{sup 16} ions cm{sup −2}, being 10{sup 17} Ω/sq the corresponding sheet resistance for pristine PC.

  4. Prediction of toxic metals concentration using artificial intelligence techniques

    Science.gov (United States)

    Gholami, R.; Kamkar-Rouhani, A.; Doulati Ardejani, F.; Maleki, Sh.

    2011-12-01

    Groundwater and soil pollution are noted to be the worst environmental problem related to the mining industry because of the pyrite oxidation, and hence acid mine drainage generation, release and transport of the toxic metals. The aim of this paper is to predict the concentration of Ni and Fe using a robust algorithm named support vector machine (SVM). Comparison of the obtained results of SVM with those of the back-propagation neural network (BPNN) indicates that the SVM can be regarded as a proper algorithm for the prediction of toxic metals concentration due to its relative high correlation coefficient and the associated running time. As a matter of fact, the SVM method has provided a better prediction of the toxic metals Fe and Ni and resulted the running time faster compared with that of the BPNN.

  5. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor.

    Science.gov (United States)

    Yang, Shih-Hung; Cheng, Kuo-Chih; Liao, Vivian Hsiu-Chuan

    2017-11-01

    Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S 4 O 6 2- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Solution chemistry and separation of metal ions in leached solution

    International Nuclear Information System (INIS)

    Shibata, J.

    1991-01-01

    The method to presume a dissolved state of metal ions in an aqueous solution and the technology to separate and concentrate metal ions in a leached solution are described in this paper. It is very important for the separation of metal ions to know the dissolved state of metal ions. If we know the composition of an aqueous solution and the stability constants of metal-ligand complexes, we can calculate and estimate the concentration of each species in the solution. Then, we can decide the policy to separate and concentrate metal ions. There are several methods for separation and purification; hydroxide precipitation method, sulfide precipitation method, solvent extraction method and ion exchange resin method. Solvent extraction has been used in purification processes of copper refinery, uranium refinery, platinum metal refinery and rare earth metal refinery. Fundamental process of solvent extraction, a kind of commercial extractants, a way of determining a suitable extractant and an equipment are discussed. Finally, it will be emphasized how the separation of rare earths is improved in solvent extraction. (author) 21 figs., 8 tabs., 8 refs

  7. Environment-friendly approach for the removal of toxic metals

    International Nuclear Information System (INIS)

    Zahra, N.; Mehmood, F.; Sheikh, S.T.; Javed, K.; Amin, A.

    2006-01-01

    Water pollution is serious economical problem and the presence of toxic metals like lead causes contamination of plants and then through nutritional chain it affects the health of humans and animals. This research work describes the removal of lead from wastewater using natural bentonites taken from various areas of Pakistan. The batch adsorption process was applied to remove this toxic metal. The quantities of lead metal before and after the treatment of standard solutions with different samples of bentonite were determined by atomic absorption spectroscopic method. The studies were carried out at room temperature, pH 7 and -200 mesh particle size using 50 ml of metal solutions. The time taken to maintain equilibrium was one hour. Then percentage adsorption was estimated on bentonite samples. (author)

  8. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE Trade-Mark-Sign bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Lok R.; Silva, Thilini [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States); Dubey, Brajesh, E-mail: bdubey@uoguelph.ca [Environmental Engineering, School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario (Canada); El Badawy, Amro M. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Tolaymat, Thabet M. [USEPA, Office of Research and Development, National Risk Management Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45224 (United States); Scheuerman, Phillip R. [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States)

    2012-06-01

    Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE Trade-Mark-Sign test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on {beta}-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO{sub 2} and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO{sub 2} was not toxic as high as 2.5 g L{sup -1} to the MetPLATE Trade-Mark-Sign bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl{sub 2} > AgNO{sub 3} > PVP-nAg > unclean Citrate-nAg > clean Citrate-nAg > ZnSO{sub 4} > nZnO > CdSe QDs > nTiO{sub 2}/TiO{sub 2}. These results indicate that an evaluation of {beta}-galactosidase inhibition in MetPLATE Trade-Mark-Sign E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants. - Highlights

  9. Application of biotechnology in management of industrial wastes containing toxic metals

    Energy Technology Data Exchange (ETDEWEB)

    Barton, L L; Fekete, F A; Huybrechts, M M.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Biology; Sillerud, L O [Los Alamos National Lab., NM (United States); Blacke, II, R C [Meharry Medical Coll., Nashville, TN (United States); Pigg, C J [Sandia National Labs., Albuquerque, NM (United States)

    1994-01-01

    The role of microorganisms in transformation and absorption of metals in the environment is examined in this article. Understanding the metabolic processes by which microorganisms interact with toxic metals is paramount for any bioremediation process dealing with restoration of toxic waste site. Bacteria, fungi, and yeast that displayed resistance to lead, mercury, or chromium were isolated from the environment. Cotolerance studies revealed that many of these organisms could grow in high concentrations of several different toxic elements. Transformation of chromium, mercury, and lead was displayed by means of the isolated bacterial strains. Data regarding the activities of these organisms can provide a basis for use of metal/tolerant organisms in bioremediation of toxic wastes containing mercury, chromium, and lead. (author) 1 fig., 7 tabs., 28 refs.

  10. Development of a four-zone carousel process packed with metal ion-imprinted polymer for continuous separation of copper ions from manganese ions, cobalt ions, and the constituent metal ions of the buffer solution used as eluent.

    Science.gov (United States)

    Jo, Se-Hee; Park, Chanhun; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2011-08-19

    A three-zone carousel process, in which Cu(II)-imprinted polymer (Cu-MIP) and a buffer solution were employed as adsorbent and eluent respectively, has been developed previously for continuous separation of Cu²⁺ (product) from Mn²⁺ and Co²⁺ (impurities). Although this process was reported to be successful in the aforementioned separation task, the way of using a buffer solution as eluent made it inevitable that the product stream included the buffer-related metal ions (i.e., the constituent metal ions of the buffer solution) as well as copper ions. For a more perfect recovery of copper ions, it would be necessary to improve the previous carousel process such that it can remove the buffer-related metal ions from copper ions while maintaining the previous function of separating copper ions from the other 2 impure heavy-metal ions. This improvement was made in this study by proposing a four-zone carousel process based on the following strategy: (1) the addition of one more zone for performing the two-step re-equilibration tasks and (2) the use of water as the eluent of the washing step in the separation zone. The operating conditions of such a proposed process were determined on the basis of the data from a series of single-column experiments. Under the determined operating conditions, 3 runs of carousel experiments were carried out. The results of these experiments revealed that the feed-loading time was a key parameter affecting the performance of the proposed process. Consequently, the continuous separation of copper ions from both the impure heavy-metal ions and the buffer-related metal ions could be achieved with a purity of 91.9% and a yield of 92.8% by using the proposed carousel process based on a properly chosen feed-loading time. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  12. Breast milk metal ion levels in a young and active patient with a metal-on-metal hip prosthesis.

    Science.gov (United States)

    Nelis, Raymond; de Waal Malefijt, Jan; Gosens, Taco

    2013-01-01

    Metal-on-metal resurfacing arthroplasty of the hip has been used increasingly over the last 10 years in younger active patients. The dissolution of the metal wear particles results in measurable increases in cobalt and chromium ions in the serum and urine of patients with a metal-on-metal bearing. We measured the cobalt, chromium, and molybdenum ion levels in urine; serum; and breast milk in a young and active patient with a metal-on-metal hip prosthesis after a pathologic fracture of the femoral neck. Metal-on-metal hip prosthesis leads to increasing levels of molybdenum in breast milk in the short-term follow-up. There are no increasing levels of chromium and cobalt ions in breast milk. Besides the already known elevated concentrations in serum of chromium and cobalt after implantation of a metal-on-metal hip prosthesis, we found no increasing levels of chromium and cobalt in urine. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  14. Dietary compounds as modulators of metals and metalloids toxicity.

    Science.gov (United States)

    Jadán-Piedra, Carlos; Chiocchetti, Gabriela Matuoka; Clemente, María Jesús; Vélez, Dinoraz; Devesa, Vicenta

    2017-07-07

    A large part of the population is exposed to metals and metalloids through the diet. Most of the in vivo studies on its toxicokinetics and toxicity are conducted by means of exposure through drinking water or by intragastric or intraperitoneal administration of aqueous standards, and therefore they do not consider the effect of the food matrix on the exposure. Numerous studies show that some components of the diet can modulate the toxicity of these food contaminants, reducing their effect on a systemic level. Part of this protective role may be due to a reduction of intestinal absorption and subsequent tissue accumulation of the toxic element, although it may also be a consequence of their ability to counteract the toxicity directly by their antioxidant and/or anti-inflammatory activity, among other factors. The present review provides a compilation of existing information about the effect that certain components of the diet have on the toxicokinetics and toxicity of the metals and metalloids of greatest toxicological importance that are present in food (arsenic, cadmium, lead, and mercury), and of their most toxic chemical species.

  15. Treatment of heterogeneous mixed wastes: Enzyme degradation of cellulosic materials contaminated with hazardous organics and toxic and radioactive metals

    International Nuclear Information System (INIS)

    Vanderberg, L.A.; Foreman, T.M.; Attrep, M. Jr.; Brainard, J.R.; Sauer, N.

    1999-01-01

    The redirection and downsizing of the US Department of Energy's nuclear weapons complex requires that many facilities be decontaminated and decommissioned (D and D). At Los Alamos National Laboratory, much of the low-level radioactive, mixed, and hazardous/chemical waste volume handled by waste management operations was produced by D and D and environmental restoration activities. A combination of technologies--air stripping and biodegradation of volatile organics, enzymatic digestion of cellulosics, and metal ion extraction--was effective in treating a radiologically contaminated heterogeneous paint-stripping waste. Treatment of VOCs using a modified bioreactor avoided radioactive contamination of byproduct biomass and inhibition of biodegradation by toxic metal ions in the waste. Cellulase digestion of bulk cellulose minimized the final solid waste volume by 80%. Moreover, the residue passed TCLP for RCRA metals. Hazardous metals and radioactivity in byproduct sugar solutions were removed using polymer filtration, which employs a combination of water-soluble chelating polymers and ultrafiltration to separate and concentrate metal contaminants. Polymer filtration was used to concentrate RCRA metals and radioactivity into <5% of the original wastewater volume. Permeate solutions had no detectable radioactivity and were below RCRA-allowable discharge limits for Pb and Cr

  16. THE IMPACT OF TOXIC HEAVY METALS ON THE HEMATOLOGICAL PARAMETERS IN COMMON CARP (CYPRINUS CARPIO L.

    Directory of Open Access Journals (Sweden)

    R. Vinodhini ، M. Narayanan

    2009-01-01

    Full Text Available The aim of the present investigation was to determine the effect of heavy metal pollutants such as cadmium, chromium, nickel and lead in aquatic system on common carp (Cyprinus carpio L. by using a set of biochemical parameters. The experimental group of fish was exposed to a sublethal concentration of 5 mg/L of combined (Cd+Pb+Cr+Ni metal solution containing 1.25 mg/L of each metal ion (1/10th of LC 50/48 h for a period of 32 days. The results indicated that the values of the hemoglobin were in the range of 55.30±1.20 g/L to 74.55±1.33 g/L (p<0.001 and the packed cell volume was in the range of 26.72±0.26% to 30.68±0.43% (p<0.01. Concentrations of red blood cells, blood glucose and total cholesterol were significantly elevated. The level of serum iron and copper was increased. The results showed the decreased activity of vitamin C during chronic exposure to toxic heavy metals, which indicates the presence of reactive oxygen species–induced peroxidation. The study suggested that the presence of toxic heavy metals in aquatic environment has strong influence on the hematological parameters in the fresh water fish common carp (Cyprinus carpio L..

  17. Electrical properties of polymer modified by metal ion implantation

    International Nuclear Information System (INIS)

    Wu Yuguang; Zhang Tonghe; Zhang Huixing; Zhang Xiaoji; Deng Zhiwei; Zhou Gu

    2000-01-01

    Polyethylene terephthalate (PET) has been modified by Ag, Cr, Cu and Si ion implantation with a dose range from 1x10 16 to 2x10 17 ions cm -2 using a metal vapor vacuum arc (MEVVA) source. The electrical properties of PET have been changed after metal ion implantation. The resistivity of implanted PET decreased obviously with an increase of ion dose. When metal ion dose of 2x10 17 cm -2 was selected, the resistivity of PET could be less than 10 Ω cm, but when Si ions are implanted, the resistivity of PET would be up to several hundred Ω cm. The results show that the conductive behavior of a metal ion implanted sample is obviously different from Si implantation one. The changes of the structure and composition have been observed with transmission electron microscope (TEM) and X-ray diffraction (XRD). The surface structure is varying after ion implantation and it is believed that the change would cause the improvement of the conductive properties. The mechanism of electrical conduction will be discussed

  18. Sequestering Potential of Peach Nut Shells as an Efficient Sorbent for Sequestering Some Toxic Metal Ions from Aqueous Waste: A Kinetic and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Muhammad Ashraf Shaheen

    2016-06-01

    Full Text Available The peach nut shells potential as a low cost biosorbent for separation of certain metal ions from aqueous media was investigated. The effects of different parameters such as pH, shaking speed, initial metal ions concentration and their contact time with adsorbent on sorption efficiency of biosorbent was investigated to optimize the parameters for maximum sorption. The FT–IR spectroscopy and TGA were used to characterize the biosorbent. A significant increase in sorption was noted with rise in pH of metal ions solution and maximum sorption was observed at pH 6. The isothermal data was fitted to Langmuir, Dubinin–Radushkevich (D–R, Freundlich isotherms and equilibrium process was best fitted to Langmuir isotherm. The removal efficiency of chemically activated samples was found to be ~35 to 45% greater than raw sample. The results showed that peach nut shell was an effective biosorbent for the remediation of the contaminated water with lead (II, Nickle (II and Chromium (III ions. Being low cost material, PNS has a potential to be exploited in waste water treatment technologies. This study shows that activated PNS exhibited appreciable sorption for Pb, Cr and Ni metals ions (97%, 95% and 94% respectively from aqueous solution even at very low concentration of sorbent. The chemical and thermal activation of peach nut shells enhances the removal efficiency for all the metal ions and from the reported data; it was found that the adsorption ability of Pb ions was greater than nickel and chromium.

  19. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  20. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  1. Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions.

    Science.gov (United States)

    Mrvčić, Jasna; Butorac, Ana; Solić, Ema; Stanzer, Damir; Bačun-Družina, Višnja; Cindrić, Mario; Stehlik-Tomas, Vesna

    2013-01-01

    Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.

  2. Effective charge of energetic ions in metals

    International Nuclear Information System (INIS)

    Kitagawa, M.; Brandt, W.

    1983-01-01

    The effective charge of energetic ion, as derived from stopping power of metals, is calculated by use of a dielectronic-response function method. The electronic distribution in the ion is described through the variational principle in a statistical approximation. The dependences of effective charge on the ion velocity, atomic number and r/sub s/-value of metal are derived at the low-velocity region. The effective charge becomes larger than the real charge of ion due to the close collisions. We obtain the quasi-universal equation of the fractional effective electron number of ion as a function of the ratio between the ionic size and the minimum distance approach. The comparsion between theoretical and experimental results of the effective charge is performed for the cases of N ion into Au, C and Al. We also discuss the equipartition rule of partially ionized ion at the high-velocity region

  3. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals

    Science.gov (United States)

    Henry, Raymond P.; Lucu, Čedomil; Onken, Horst; Weihrauch, Dirk

    2012-01-01

    The crustacean gill is a multi-functional organ, and it is the site of a number of physiological processes, including ion transport, which is the basis for hemolymph osmoregulation; acid-base balance; and ammonia excretion. The gill is also the site by which many toxic metals are taken up by aquatic crustaceans, and thus it plays an important role in the toxicology of these species. This review provides a comprehensive overview of the ecology, physiology, biochemistry, and molecular biology of the mechanisms of osmotic and ionic regulation performed by the gill. The current concepts of the mechanisms of ion transport, the structural, biochemical, and molecular bases of systemic physiology, and the history of their development are discussed. The relationship between branchial ion transport and hemolymph acid-base regulation is also treated. In addition, the mechanisms of ammonia transport and excretion across the gill are discussed. And finally, the toxicology of heavy metal accumulation via the gill is reviewed in detail. PMID:23162474

  4. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  5. Designer ligands: The search for metal ion selectivity

    Directory of Open Access Journals (Sweden)

    Perry T. Kaye

    2011-03-01

    Full Text Available The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-selective molecular imprinted polymers.

  6. Removal of soluble toxic metals from water

    International Nuclear Information System (INIS)

    Buckley, L.P.; Vijayan, S.; McConeghy, G.J.; Maves, S.R.; Martin, J.F.

    1990-05-01

    The removal of selected, soluble toxic metals from aqueous solutions has been accomplished using a combination of chemical treatment and ultrafiltration. The process has been evaluated at the bench-scale and is undergoing pilot-scale testing. Removal efficiencies in excess of 95-99% have been realized. The test program at the bench-scale investigated the limitations and established the optimum range of operating parameters for the process, while the tests conducted with the pilot-scale process equipment are providing information on longer-term process efficiencies, effective processing rates, and fouling potential of the membranes. With the typically found average concentrations of the toxic metals in groundwaters at Superfund sites used as the feed solution, the process has decreased levels up to 100-fold or more. Experiments were also conducted with concentrated solutions to determine their release from silica-based matrices. The solidified wastes were subjected to EP Toxicity test procedures and met the criteria successfully. The final phase of the program involving a field demonstration at a uranium tailings site will be outlined

  7. Ion microprobe analysis of metallic pigments

    International Nuclear Information System (INIS)

    Pelicon, P.; Simcic, J.; Budnar, M.; Klanjsek-Gunde, M.; Kunavaer, M.

    2001-01-01

    Full text: Metallic paints consist of metallic flakes dispersed m a resinous binder, i.e. a light-element polymer matrix. The spatial distribution and orientation of metallic flakes inside the matrix determines the covering efficiency of the paint, glossiness, and its angular-dependent properties such as lightness flop or color flop (two-tone). Such coatings are extensively used for a functional (i.e. security) as well as decorative purpose. The ion microbeam analysis of two types of silver paint with imbedded metallic flake has been performed to test the ability of the ion microbeam spectroscopic methods on this type of samples. The average sizes of the aluminium flakes were 23 (size distribution 10-37) and 49 (size distribution 34-75) micrometers, respectively. The proton beam with the size of 2x2 micrometers at Ljubljana ion microprobe has been used to scan the surface of the pigments. PIXE mapping of Al Kα map shows lateral distribution of the aluminum flakes, whereas the RBS slicing method reveals tomographic image of the flakes in uppermost 5 micrometers of the pigment layer. The flake distribution in the larger layer depths has been accessed by RBS analysis in a point mode. (author)

  8. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties

    DEFF Research Database (Denmark)

    Jantzen, Christopher; Jørgensen, Henrik L; Duus, Benn R

    2013-01-01

    Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties.......Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties....

  9. Validation of ion chromatography for the determination of transition metal ions along with alkali, alkaline earth metal elements for uranium oxide fuel

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Prakash, Amrit; Afzal, Mohd.; Panakkal, J.P.

    2009-02-01

    The present report describes the use of Ion chromatography (IC) methods with spectrophotometric and direct conductivity detection for the determination of transition metal elements and alkali alkaline earth metal ions in UO 2 pellets. Transmet analytical column and Metrosep- cation 1-2 column were used for the separation of transition metal elements and alkali and alkaline earth metal elements respectively. Oxalic acid and mixture of pyridine 2,6-dicarboxylic acid (PDCA), Na 2 SO 4 and NaCl were used as mobile phase for the separation of transition metal ions and monitored after post - column reaction with 4,2-pyridylazo resorcinol (PAR) at 520nm spectrophotometrically. In the determination of alkali and alkaline earth metal ions the interference of transition metals are removed by complexing them with PDCA. Mixture of tartaric acid and PDCA employed in the separation of alkali and alkaline earth metal ions and monitored on direct conductivity detector. Mobile phase composition was optimised for the base line separation. Calibration plots of Fe 3+ , Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Mn 2+ , Li + , Na + , K + , Mg 2+ , Ca 2+ and Sr 2+ were linear over a wide dynamic range with regression coefficient better than 0.999. Detection limit of above ions were between 5-30ppb. To prevent the overloading of the cation exchange column, uranium matrix was removed from UO 2 sample by solvent extraction with 30% TBP - TOPO/CCl 4 . Ten sintered UO2 pellets of same lot were analysed and R.S.D. ±10% was obtained. These methods were validated by analysis of ILCE standards of UO 2 . (author)

  10. Toxic metal removal from aqueous solution by advanced Carbon allotropes: a case study from the Sungun Copper Mine

    Directory of Open Access Journals (Sweden)

    Esmaeil Rahimi

    2017-04-01

    Full Text Available The sorption efficiencies of graphene oxide (GO and functionalized multi-walled carbon nanotubes (f-MWCNTs were investigated and elucidated to study their potential in treating acid mine drainage (AMD containing Cu2+, Mn2+, Zn2+, Pb2+, Fe3+ and Cd2+ metal ions. Several layered GO nanosheets and f-MWCNTs were formed via the modified Hummers’ method and the acid treatment of the MWCNTs, respectively. The prepared nanoadsorbents were characterized by field emission scanning electron microscopy (FE-SEM, Fourier transformed infrared (FTIR spectroscopy, and BET surface area analysis. The batch method was utilized to evaluate the pH effect, sorption kinetics and isotherms. The results demonstrated that the sorption capacities of the MWCNTs increased greatly after oxidation and those of the GO decreased after reduction. Hence, the sorption mechanisms seemed principally assignable to the chemical interactions between the metal ions and the surface functional groups of the adsorbents. Additionally, the adsorption isotherm results clearly depicted that the adsorption of the Cu2+ ion onto the GO adsorbent surface was well fitted and found to be in good agreement with the Langmuir isotherm model as the obtained regression constant value (R2 was found to be 0.9981. All results indicated that GO was a promising material for the removal of toxic metal ions from aqueous solutions in actual pollution management.

  11. Efficient synthesis of metallated thioporphyrazines in task specific ...

    Indian Academy of Sciences (India)

    These metal ions are toxic in nature and deserve serious attention in the area of design of effective ... porphyrazines plays an important role in affecting the solid state ... under milder conditions for selective binding with tran- sition metal ions ...

  12. Tunicate-Inspired Gallic Acid/Metal Ion Complex for Instant and Efficient Treatment of Dentin Hypersensitivity.

    Science.gov (United States)

    Prajatelistia, Ekavianty; Ju, Sung-Won; Sanandiya, Naresh D; Jun, Sang Ho; Ahn, Jin-Soo; Hwang, Dong Soo

    2016-04-20

    Dentin hypersensitivity is sharp and unpleasant pains caused by exposed dentinal tubules when enamel outside of the tooth wears away. The occlusion of dentinal tubules via in situ remineralization of hydroxyapatite is the best method to alleviate the symptoms caused by dentin hypersensitivity. Commercially available dental desensitizers are generally effective only on a specific area and are relatively toxic, and their performance usually depends on the skill of the clinician. Here, a facile and efficient dentin hypersensitivity treatment with remarkable aesthetic improvement inspired by the tunicate-self-healing process is reported. As pyrogallol groups in tunicate proteins conjugate with metal ions to heal the torn body armor of a tunicate, the ingenious mechanism by introducing gallic acid (GA) as a cheap, abundant, and edible alternative to the pyrogallol groups of the tunicate combined with a varied daily intake of metal ion sources is mimicked. In particular, the GA/Fe(3+) complex exhibits the most promising results, to the instant ≈52% blockage in tubules within 4 min and ≈87% after 7 d of immersion in artificial saliva. Overall, the GA/metal ion complex-mediated coating is facile, instant, and effective, and is suggested as an aesthetic solution for treating dentin hypersensitivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Metal ion separations with proton-ionizable Lariat Ethers and their polymers

    International Nuclear Information System (INIS)

    Bartsch, R.A.

    1993-01-01

    The preparation of novel and specific organic complexing agents may lead to the development of new separation systems for aqueous metal ions. Thus the introduction of highly lipophilic oximes led to the current utilization of these compounds as commercial extractants for the hydrometallurgy of nonferrous metals. Crown ethers (macrocyclic polyethers) have been employed in the laboratory-scale solvent extraction of alkali-metal, alkaline-earth, and other metal cations into organic phases. Attachment of side arms to crown ethers gives lariat ethers. The presence of one or more potential coordination sites in the side arm of the lariat ether may produce substantial changes in the selectivity and efficiency of metal ion complexation. It has been demonstrated that concomitant transfer of an aqueous phase anion into the organic medium is not required for metal ion extraction. This factor is of immense importance to potential practical applications of these proton-ionizable crown ethers in which the common, hard, aqueous phase anions would be involved. Another advantage of proton-ionizable lariat ethers is the ease with which extracted metal ions may be stripped from the organic phase by shaking with aqueous mineral acid. Thus both metal ion extraction and stripping are facilitated by pendent proton-ionizable groups. Most of the hazardous metal ion species in the Hanford Site tank wastes are members of the alkali-metal, alkaline-earth, lanthanide, and actinide families. These hard metal ion species prefer association with hard donor atoms, such as oxygens. Therefore, crown and lariat ethers are well-suited for complexation with such metal ion species

  14. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    Science.gov (United States)

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  15. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Neculita, C.M.; Vigneaul, B.; Zagury, G.J. [Ecole Polytechnic, Montreal, PQ (Canada)

    2008-08-15

    Sulfate-reducing passive bioreactors treat acid mine drainage (AMD) by increasing its pH and alkalinity and by removing metals as metal sulfide precipitates. In addition to discharge limits based on physicochemical parameters, however, treated effluent is required to be nontoxic. Acute and sublethal toxicity was assessed for effluent from 3.5-L column bioreactors filled with mixtures of natural organic carbon sources and operated at different hydraulic retention times (HRTs) for the treatment of a highly contaminated AMD. Effluent was first tested for acute (Daphnia magna and Oncorhynchus mykiss) and sublethal (Pseudokirchneriella subcapitata, Ceriodaphnia dabia, and Lemna minor) toxicity. Acute toxicity was observed for D. magna, and a toxicity identification evaluation (TIE) procedure was then performed to identify potential toxicants. Finally, metal speciation in the effluent was determined using ultrafiltration and geochemical modeling for the interpretation of the toxicity results. The 10-d HRT effluent was nonacutely lethal for 0. mykiss but acutely lethal for D. magna. The toxicity to D. magna, however, was removed by 2 h of aeration, and the TIE procedure suggested iron as a cause of toxicity. Sublethal toxicity of the 10-d HRT effluent was observed for all test species, but it was reduced compared to the raw AMD and to a 7.3-d HRT effluent. Data regarding metal speciation indicated instability of both effluents during aeration and were consistent with the toxicity being caused by iron. Column bioreactors in operation for more than nine months efficiently improved the physicochemical quality of highly contaminated AMD at different HRTs.

  16. Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) model.

    Science.gov (United States)

    Mu, Yunsong; Wu, Fengchang; Chen, Cheng; Liu, Yuedan; Zhao, Xiaoli; Haiqing Liao; Giesy, John P

    2014-05-01

    Criteria continuous concentrations (CCCs) are useful for describing chronic exposure to pollutants and setting water quality standards to protect aquatic life. However, because of financial, practical, or ethical restrictions on toxicity testing, few data are available to derive CCCs. In this study, CCCs for 34 metals or metalloids were derived using quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) and the final acute-chronic ratio (FACR) method. The results showed that chronic toxic potencies were correlated with several physico-chemical properties among eight species chosen, where the softness index was the most predictive characteristic. Predicted CCCs for most of the metals, except for Lead and Iron, were within a range of 10-fold of values recommended by the U.S. EPA. The QICAR-SSD model was superior to the FACR method for prediction of data-poor metals. This would have significance for predicting toxic potencies and criteria thresholds of more metals or metalloids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Complexation-induced supramolecular assembly drives metal-ion extraction.

    Science.gov (United States)

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metal ion sequestration: An exciting dimension for molecularly ...

    African Journals Online (AJOL)

    The use of a tight binding macrocyclic ligand to complex a metal ion so that this serves as receptee on the Molecularly Imprinted Polymer (MIP) receptor as described here affords a sequestration route for a targeted metal ion, with potential for environmental remediation and restoration applications. Ethylene glycol ...

  19. Layered Double Hydroxides as Effective Adsorbents for U(VI and Toxic Heavy Metals Removal from Aqueous Media

    Directory of Open Access Journals (Sweden)

    G. N. Pshinko

    2013-01-01

    Full Text Available Capacities of different synthesized Zn,Al-hydrotalcite-like adsorbents, including the initial carbonate [Zn4Al2(OH12]·CO3·8H2O and its forms intercalated with chelating agents (ethylenediaminetetraacetic acid (EDTA, diethylenetriaminepentaacetic acid (DTPA, and hexamethylenediaminetetraacetic acid (HMDTA and heat-treated form Zn4Al2O7, to adsorb uranium(VI and ions of toxic heavy metals have been compared. Metal sorption capacities of hydrotalcite-like adsorbents have been shown to correlate with the stability of their complexes with the mentioned chelating agents in a solution. The synthesized layered double hydroxides (LDHs containing chelating agents in the interlayer space are rather efficient for sorption purification of aqueous media free from U(VI irrespective of its forms of natural abundance (including water-soluble bi- and tricarbonate forms and from heavy metal ions. [Zn4Al2(OH12]·EDTA·nH2O is recommended for practical application as one of the most efficient and inexpensive synthetic adsorbents designed for recovery of both cationic and particularly important anionic forms of U(VI and other heavy metals from aqueous media. Carbonate forms of LDHs turned out to be most efficient for recovery of Cu(II from aqueous media with pH0≥7 owing to precipitation of Cu(II basic carbonates and Cu(II hydroxides. Chromate ions are efficiently adsorbed from water only by calcinated forms of LDHs.

  20. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.

    Science.gov (United States)

    Guo, Jing; Kang, Yong; Feng, Ying

    2017-12-01

    A simple and valid toxicity evaluation of Zn 2+ , Mn 2+ and Cr 6+ on sulfate-reducing bacteria (SRB) and heavy metal removal were investigated using the SRB system and SRB+Fe 0 system. The heavy metal toxicity coefficient (β) and the heavy metal concentration resulting in 50% inhibition of sulfate reduction (I) from a modeling process were proposed to evaluate the heavy metal toxicity and nonlinear regression was applied to search for evaluation indices β and I. The heavy metal toxicity order was Cr 6+  > Mn 2+  > Zn 2+ . Compared with the SRB system, the SRB+Fe 0 system exhibited a better capability for sulfate reduction and heavy metal removal. The heavy metal removal was above 99% in the SRB+Fe 0 system, except for Mn 2+ . The energy-dispersive spectroscopy (EDS) analysis showed that the precipitates were removed primarily as sulfide for Zn 2+ and hydroxide for Mn 2+ and Cr 6+ .The method of evaluating the heavy metal toxicity on SRB was of great significance to understand the fundamentals of the heavy metal toxicity and inhibition effects on the microorganism and regulate the process of microbial sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake

    Directory of Open Access Journals (Sweden)

    Yi-Min Wang

    2014-12-01

    Full Text Available Many crop plants are exposed to heavy metals and other metals that may intoxicate the crop plants themselves or consumers of the plants. The rhizotoxicity of heavy metals is influenced strongly by the root cell plasma membrane (PM surface’s electrical potential (ψ0. The usually negative ψ0 is created by negatively charged constituents of the PM. Cations in the rooting medium are attracted to the PM surface and anions are repelled. Addition of ameliorating cations (e.g., Ca2+ and Mg2+ to the rooting medium reduces the effectiveness of cationic toxicants (e.g., Cu2+ and Pb2+ and increases the effectiveness of anionic toxicants (e.g., SeO42− and H2AsO4−. Root growth responses to ions are better correlated with ion activities at PM surfaces ({IZ}0 than with activities in the bulk-phase medium ({IZ}b (IZ denotes an ion with charge Z. Therefore, electrostatic effects play a role in heavy metal toxicity that may exceed the role of site-specific competition between toxicants and ameliorants. Furthermore, ψ0 controls the transport of ions across the PM by influencing both {IZ}0 and the electrical potential difference across the PM from the outer surface to the inner surface (Em,surf. Em,surf is a component of the driving force for ion fluxes across the PM and controls ion-channel voltage gating. Incorporation of {IZ}0 and Em,surf into quantitative models for root metal toxicity and uptake improves risk assessments of toxic metals in the environment. These risk assessments will improve further with future research on the application of electrostatic theory to heavy metal phytotoxicity in natural soils and aquatic environments.

  2. Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity

    Science.gov (United States)

    Fornaroli, Riccardo; Ippolito, Alessio; Tolkkinen, Mari J.; Mykrä, Heikki; Muotka, Timo; Balistrieri, Laurie S.; Schmidt, Travis S.

    2018-01-01

    One of the primary goals of biological assessment of streams is to identify which of a suite of chemical stressors is limiting their ecological potential. Elevated metal concentrations in streams are often associated with low pH, yet the effects of these two potentially limiting factors of freshwater biodiversity are rarely considered to interact beyond the effects of pH on metal speciation. Using a dataset from two continents, a biogeochemical model of the toxicity of metal mixtures (Al, Cd, Cu, Pb, Zn) and quantile regression, we addressed the relative importance of both pH and metals as limiting factors for macroinvertebrate communities. Current environmental quality standards for metals proved to be protective of stream macroinvertebrate communities and were used as a starting point to assess metal mixture toxicity. A model of metal mixture toxicity accounting for metal interactions was a better predictor of macroinvertebrate responses than a model considering individual metal toxicity. We showed that the direct limiting effect of pH on richness was of the same magnitude as that of chronic metal toxicity, independent of its influence on the availability and toxicity of metals. By accounting for the direct effect of pH on macroinvertebrate communities, we were able to determine that acidic streams supported less diverse communities than neutral streams even when metals were below no-effect thresholds. Through a multivariate quantile model, we untangled the limiting effect of both pH and metals and predicted the maximum diversity that could be expected at other sites as a function of these variables. This model can be used to identify which of the two stressors is more limiting to the ecological potential of running waters.

  3. Complexation ion-exchange chromatography of some metal ions on papers impregnated with Ti(IV)-based inorganic ion exchangers.

    Science.gov (United States)

    Sharma, S D; Gupta, R

    2000-02-01

    The chromatographic behavior of 40 metal ions is studied on titanium (IV) arsenate, titanium (IV) phosphate-, titanium (IV) molybdate-, titanium(IV) tungstate-, and titanium(IV) selenite-impregnated papers in 0.1M oxalic, citric, and tartaric acid as mobile phases. Similar studies are carried out on Whatman No. 1 papers for comparison. The ion-exchange capacity of these papers is determined, and their selectivity for different cations is discussed. The mechanism of migration is explained in terms of ion-exchange, precipitation, and adsorption. The prediction of elution sequence from RF values is also checked. The average Ri is found to be almost linearly dependent on the charge of the metal ions. The effect of the pKa of complexing acids on average RF values of 3d series metal ions is explained. A number of binary and ternary separations are achieved.

  4. Sorption of toxic metal ions in aqueous environment using ...

    African Journals Online (AJOL)

    carbodithioate and imidazole-1-carbodithioate were employed as sorbents for heavy metals from aqueous environments. The equilibrating time, initial metal concentrations and sorbent mass for optimal adsorption were 40 min, 5 mg/ℓ and 8 mg, ...

  5. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    Science.gov (United States)

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence.

  6. Metal ion removal from aqueous solution using physic seed hull.

    Science.gov (United States)

    Mohammad, Masita; Maitra, Saikat; Ahmad, Naveed; Bustam, Azmi; Sen, T K; Dutta, Binay K

    2010-07-15

    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium. 2010 Elsevier B.V. All rights reserved.

  7. Oral bioaccessibility of toxic metals in contaminated oysters and relationships with metal internal sequestration.

    Science.gov (United States)

    Gao, Shi; Wang, Wen-Xiong

    2014-12-01

    The Hong Kong oysters Crassostrea hongkongensis are widely farmed in the estuarine waters of Southern China, but they accumulate Cu and Zn to alarmingly high concentrations in the soft tissues. Health risks of seafood consumption are related to contaminants such as toxic metals which are bioaccessible to humans. In the present study, we investigated the oral bioaccessibility of five toxic metals (Ag, Pb, Cd, Cu and Zn) in contaminated oysters collected from different locations of a large estuary in southern China. In all oysters, total Zn concentration was the highest whereas total Pb concentration was the lowest. Among the five metals, Ag had the lowest oral bioaccessibility (38.9-60.8%), whereas Cu and Zn had the highest bioaccessibility (72.3-93.1%). Significant negative correlation was observed between metal bioaccessibility and metal concentration in the oysters for Ag, Cd, and Cu. We found that the oral bioaccessibility of the five metals was positively correlated with their trophically available metal fraction (TAM) in the oyster tissues, and negatively correlated with metal distribution in the cellular debris. Thus, metal partitioning in the TAM and cellular debris controlled the oral bioaccessibility to humans. Given the dependence of oral bioaccessibility on tissue metal contamination, bioaccessibility needs to be incorporated in the risk assessments of contaminated shellfish. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Cardiac Light Chain Amyloidosis: The Role of Metal Ions in Oxidative Stress and Mitochondrial Damage.

    Science.gov (United States)

    Diomede, Luisa; Romeo, Margherita; Rognoni, Paola; Beeg, Marten; Foray, Claudia; Ghibaudi, Elena; Palladini, Giovanni; Cherny, Robert A; Verga, Laura; Capello, Gian Luca; Perfetti, Vittorio; Fiordaliso, Fabio; Merlini, Giampaolo; Salmona, Mario

    2017-09-20

    The knowledge of the mechanism underlying the cardiac damage in immunoglobulin light chain (LC) amyloidosis (AL) is essential to develop novel therapies and improve patients' outcome. Although an active role of reactive oxygen species (ROS) in LC-induced cardiotoxicity has already been envisaged, the actual mechanisms behind their generation remain elusive. This study was aimed at further dissecting the action of ROS generated by cardiotoxic LC in vivo and investigating whether transition metal ions are involved in this process. In the absence of reliable vertebrate model of AL, we used the nematode Caenorhabditis elegans, whose pharynx is an "ancestral heart." LC purified from patients with severe cardiac involvement intrinsically generated high levels of ROS and when administered to C. elegans induced ROS production, activation of the DAF-16/forkhead transcription factor (FOXO) pathway, and expression of proteins involved in stress resistance and survival. Profound functional and structural ROS-mediated mitochondrial damage, similar to that observed in amyloid-affected hearts from AL patients, was observed. All these effects were entirely dependent on the presence of metal ions since addition of metal chelator or metal-binding 8-hydroxyquinoline compounds (chelex, PBT2, and clioquinol) permanently blocked the ROS production and prevented the cardiotoxic effects of amyloid LC. Innovation and Conclusion: Our findings identify the key role of metal ions in driving the ROS-mediated toxic effects of LC. This is a novel conceptual advance that paves the way for new pharmacological strategies aimed at not only counteracting but also totally inhibiting the vicious cycle of redox damage. Antioxid. Redox Signal. 27, 567-582.

  9. Bioavailability of Metal Ions and Evolutionary Adaptation

    Directory of Open Access Journals (Sweden)

    Rolando P. Hong Enriquez

    2012-10-01

    Full Text Available The evolution of life on earth has been a long process that began nearly 3,5 x 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches.

  10. Toxic metals in the atmosphere

    International Nuclear Information System (INIS)

    Munoz-Ribadeneira, F.J.; Mo, T.; Canoy, M.J.

    1975-05-01

    Methods used in Puerto Rico for monitoring toxic metals in the atmosphere are described. Air sampling machines are placed at heights from 15 to 25 ft above the surface and the tapes are subjected to neutron activation and γ spectroscopy. The concentrations of up to 33 elements can be determined with precision and sensitivity without destroying the tapes, which can then be used for analysis by other methods. (U.S.)

  11. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    Science.gov (United States)

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  12. Chromatography Of Metal Ions On Wood Cellulose Impregnated ...

    African Journals Online (AJOL)

    Adsorption chromatography of some heavy metal ions on wood cellulose of saw dust (wood waste dust) modified with hydrochloric acid, urea and thiourea was studied. Atomic absorption spectrophotometry (AAS) was used to determine the initial concentration of solutions of Zn2+, Cu2+, Ni2+, Pb2+, and Fe3+ metal ions.

  13. Metal hydride compositions and lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Nei, Jean

    2018-04-24

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  14. Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity.

    Science.gov (United States)

    Fornaroli, Riccardo; Ippolito, Alessio; Tolkkinen, Mari J; Mykrä, Heikki; Muotka, Timo; Balistrieri, Laurie S; Schmidt, Travis S

    2018-04-01

    One of the primary goals of biological assessment of streams is to identify which of a suite of chemical stressors is limiting their ecological potential. Elevated metal concentrations in streams are often associated with low pH, yet the effects of these two potentially limiting factors of freshwater biodiversity are rarely considered to interact beyond the effects of pH on metal speciation. Using a dataset from two continents, a biogeochemical model of the toxicity of metal mixtures (Al, Cd, Cu, Pb, Zn) and quantile regression, we addressed the relative importance of both pH and metals as limiting factors for macroinvertebrate communities. Current environmental quality standards for metals proved to be protective of stream macroinvertebrate communities and were used as a starting point to assess metal mixture toxicity. A model of metal mixture toxicity accounting for metal interactions was a better predictor of macroinvertebrate responses than a model considering individual metal toxicity. We showed that the direct limiting effect of pH on richness was of the same magnitude as that of chronic metal toxicity, independent of its influence on the availability and toxicity of metals. By accounting for the direct effect of pH on macroinvertebrate communities, we were able to determine that acidic streams supported less diverse communities than neutral streams even when metals were below no-effect thresholds. Through a multivariate quantile model, we untangled the limiting effect of both pH and metals and predicted the maximum diversity that could be expected at other sites as a function of these variables. This model can be used to identify which of the two stressors is more limiting to the ecological potential of running waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Application of ion implantation in metals and alloys

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1981-01-01

    Ion implantation first became established as a precise method of introducing dopant elements into semiconductors. It is now appreciated that there may be equally important applications in metallic tools or components with the purpose of improving their resistance to wear, fatigue or corrosion. Nitrogen ions implanted into steels pin dislocations and thereby harden the metal. Some metallic ions such as yttrium reduce the tendency for oxidative wear. There is a fairly good understanding of how both treatments can provide a long-lasting protection that extends to many times the original depth of implantation. Nitrogen implantation also improves the wear resistance of Co-cemented tungsten carbide and of hard chromium electroplated coatings. These treatments have wide application in press tools, molds, dies and other metal-forming tools as well as in a more limited variety of cutting tools. Some striking improvements can be achieved in the corrosion field, but there are economic and technical reasons for concluding that practical applications of ion implantation will be more restricted and specialized in this area. The most promising area is that in which mechanical stress and oxidation coexist. When a metallic species has to be introduced, a promising new development is to bombard a thin coating of the metal at an elevated temperature. Several powerful mechanisms of radiation-enhanced diffusion can bring about a complete intermixing. Examples of how this has been used to produce wear resistant surfaces in titanium are given. Finally, the equipment developed for the large scale application of the ion implantation process in the engineering field is described

  16. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  17. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P J; Chu, J W; Johnson, E P; Noorman, J T [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  18. Ion beam analysis of metal ion implanted surfaces

    International Nuclear Information System (INIS)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T.; Sood, D.K.

    1993-01-01

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs

  19. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    Science.gov (United States)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  20. Essential and toxic metals in rice and fishes

    International Nuclear Information System (INIS)

    Chowdhury, M.Z.A.; Monir uddin, M.; Alam, F.; Reaz uddin, M.; Hossain, M.J.; Alam, M.S.

    2003-01-01

    The amount of essential metals such as Na, K, Ca, Mg, Fe, Zn, Cu and Mn in some selected rice and fishes consumed largely by the general people of Chittagong are determined by using the flame photometric and atomic absorption spectrophotometric methods, and are found to be in the range of human necessity. The amounts of some metals such as Pb, Cd, As and Cr in the same samples of rice and fishes are also determined with the help of AAS. The concentration of these toxic metals are actually higher than the tolerance limit of human body. Particularly, the samples produced in the land and hinterland of Chittagong are found to contain considerably higher concentration of lead and chromium than the samples collected from the sea. This indicates that the soil, water and air of land are more contaminated by these metals than the sea-water. The possible sources of lead and chromium are pointed out and the possible ways for remaining away from their contaminations are indicated. The information obtained from these studies are expected to be useful to the general people of this region to select any food for their daily diet on the basis of the abundances of the essential metals or to avoid any food by considering the concentration of the toxic metals. (author)

  1. Progress in metal ion separation and preconcentration: an overview

    International Nuclear Information System (INIS)

    Bond, A. H.

    1998-01-01

    A brief historical perspective covering the most mature chemically-based metal ion separation methods is presented, as is a summary of the recommendations made in the 1987 National Research Council (NRC) report entitled ''Separation and Purification: Critical Needs and Opportunities''. A review of Progress in Metal Ion Separation and Preconcentration shows that advances are occurring in each area of need cited by the NRC. Following an explanation of the objectives and general organization of this book, the contents of each chapter are briefly summarized and some future research opportunities in metal ion separations are presented

  2. Ion beam induced nanosized Ag metal clusters in glass

    International Nuclear Information System (INIS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-01-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam

  3. Fluorescence signalling of the transition metal ions: Design strategy ...

    Indian Academy of Sciences (India)

    Unknown

    strategy based on the choice of the fluorophore component. N B SANKARAN, S ... skill for the development of fluorosensors of this kind. Further, the ... salts of the transition metal ions have been used for studying the influence of the metal ions.

  4. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing--systematic review of clinical and epidemiological studies.

    Directory of Open Access Journals (Sweden)

    Albrecht Hartmann

    Full Text Available INTRODUCTION: The use of metal-on-metal (MoM total hip arthroplasty (THA increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. OBJECTIVE: To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. METHODS: Systematic review of clinical trials (RCTs and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor, patient characteristics as well as study quality characteristics (secondary explanatory factors. RESULTS: Overall, 104 studies (11 RCTs, 93 epidemiological studies totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L. Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. DISCUSSION: Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed "time out" for stemmed large-head MoM-THA and recommend a restricted

  5. Studies on indigenous ion exchange resins: alkali metal ions-hydrogen ion exchange equilibria

    International Nuclear Information System (INIS)

    Shankar, S.; Kumar, Surender; Venkataramani, B.

    2001-01-01

    With a view to select a suitable ion exchange resin for the removal of radionuclides (such as cesium, strontium etc.) from low level radioactive effluents, alkali metal ion -H' exchanges on nine indigenous gel- and macroporous-type and nuclear grade resins have been studied at a total ionic strength of 0.1 mol dm .3 (in the case ofCs' -H' exchange it was 0.05 mol dm .3 ). The expected theoretical capacities were not attained by all the resins for the alkali metal ions. The water content (moles/equiv.) of the fully swollen resins for different alkali metal ionic forms do not follow the usual sequence of greater the tendency of the cation to hydrate the higher the water uptake, but a reverse trend. The ion exchange isotherms (plots of equivalent fractions of the ion in resin phase, N M1 to that in solution, N M ) were not satisfactory and sorption of cations, for most of the resins, was possible only when the acidity of the solution was lowered. The variations of the selectivity coefficient, K, with N M show that the resins are highly cross linked and the selectivity sequence: Cs + >K + >Na + >Li + , obtained for all the resins indicate that hydrated ions were involved in the exchange process. However, the increase in the selectivity was not accompanied by the release of water, but unusual uptake of water, during the exchange process. The characteristics of macroporous resins were not significantly different from those of the gel-type resins. The results are discussed in terms of heterogeneity in the polymer net work, improper sulphonation process resulting in the formation of functional groups at inaccessible sites with weak acidic character and the overall lack of control in the preparation of different resins. (author)

  6. Toxic aluminium and heavy metals in groundwater of middle Russia: health risk assessment.

    Science.gov (United States)

    Momot, Olga; Synzynys, Boris

    2005-08-01

    Two approaches are distinguished in modern ecological monitoring. The first one is physicochemical analysis of environmental objects with respect to maximum allowable concentrations (MACs) of chemical substances, which is performed by standards methods in accordance with state regulations. The second approach (biological monitoring) is based on the methodology of biotesting and bio indication. The task of this work is to create biotests for estimation of Al and other metals toxicity in ground water and to compare these results with physicochemical analysis dates. Risk assessment for heavy metals contaminated groundwater was also performed. Risk assessment was performed accordingly EPA US recommendation and gave results about 90 per 100000 citizens for Al and 402 per 100000 for mixture of different heavy metals. For comparison: risk for earth background radiation for Middle Russia is (Individual dose 1 millisivert per year) consist 5 per 100000 people. It was shown that groundwater consist HCO3- ions (360 mg/l), sometimes Al compounds 0.21-0.65 mg/l (MAC for Al is 0.5 mg/l for Russia). Other groundwater contain Hg - 0.004 mg/l (MAC - 0.0005 mg/l); Cr - 0.072 mg/l (MAC - 0.05 mg/l); As - less than 0.03 mg/l (MAC - 0.05 mg/l). We developed plant biotest for estimation of groundwater quality with barley roots, tradescatia and others. Some biotests parameters correlate with HCO3-, Cl-, SO(4)2- and metal ions content positively, for another biotest this correlation is strongly negative. The quality of groundwater near Obninsk and in Kaluga Region is very different but hasnit been changed since the year 1998.

  7. Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) model

    International Nuclear Information System (INIS)

    Mu, Yunsong; Wu, Fengchang; Chen, Cheng; Liu, Yuedan; Zhao, Xiaoli; Haiqing Liao; Giesy, John P.

    2014-01-01

    Criteria continuous concentrations (CCCs) are useful for describing chronic exposure to pollutants and setting water quality standards to protect aquatic life. However, because of financial, practical, or ethical restrictions on toxicity testing, few data are available to derive CCCs. In this study, CCCs for 34 metals or metalloids were derived using quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) and the final acute-chronic ratio (FACR) method. The results showed that chronic toxic potencies were correlated with several physico-chemical properties among eight species chosen, where the softness index was the most predictive characteristic. Predicted CCCs for most of the metals, except for Lead and Iron, were within a range of 10-fold of values recommended by the U.S. EPA. The QICAR–SSD model was superior to the FACR method for prediction of data-poor metals. This would have significance for predicting toxic potencies and criteria thresholds of more metals or metalloids. - Highlights: • We investigate relationships between σp and log-NOEC in eight species. • The QICAR–SSD model, FACR, and CMC/CCC were used to predict CCCs. • They are as a supplement to screening for toxicities, criteria and standards. - CCCs for 34 metals/metalloids were predicted by use of QICAR–SSD model and FACR method

  8. Modification of metallic corrosion by ion implantation

    International Nuclear Information System (INIS)

    Clayton, C.R.

    1981-01-01

    This review will consider some of the properties of surface alloys, formed by ion implantation, which are effective in modifying corrosion behaviour. Examples will be given of the modification of the corrosion behaviour of pure metals, steels and other engineering alloys, resulting from implantation with metals and metalloids. Emphasis will be given to the modification of anodic processes produced by ion implantation since a review will be given elsewhere in the proceedings concerning the modification of cathodic processes. (orig.)

  9. Adsorption preference for divalent metal ions by Lactobacillus casei JCM1134.

    Science.gov (United States)

    Endo, Rin; Aoyagi, Hideki

    2018-05-09

    The removal of harmful metals from the intestinal environment can be inhibited by various ions which can interfere with the adsorption of target metal ions. Therefore, it is important to understand the ion selectivity and adsorption mechanism of the adsorbent. In this study, we estimated the adsorption properties of Lactobacillus casei JCM1134 by analyzing the correlation between its maximum adsorption level (q max ) for seven metals and their ion characteristics. Some metal ions showed altered adsorption levels by L. casei JCM1134 as culture growth time increased. Although it was impossible to identify specific adsorption components, adsorption of Sr and Ba may depend on capsular polysaccharide levels. The maximum adsorption of L. casei JCM1134 (9 h of growth in culture) for divalent metal ions was in the following order: Cu 2+  > Ba 2+  > Sr 2+  > Cd 2+  > Co 2+  > Mg 2+  > Ni 2+ . The q max showed a high positive correlation with the ionic radius. Because this tendency is similar to adsorption occurring through an ion exchange mechanism, it was inferred that an ion exchange mechanism contributed greatly to adsorption by L. casei JCM1134. Because the decrease in the amount of adsorption due to prolonged culture time was remarkable for metals with a large ion radius, it is likely that the adsorption components involved in the ion exchange mechanism decomposed over time. These results and analytical concept may be helpful for designing means to remove harmful metals from the intestinal tract.

  10. Surface modification of metals by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1988-01-01

    Ion implantation in metals has attracted the attention as a useful technology for the formation of new metastable alloys and compounds in metal surface layers without thermal equilibrium. Current studies of metal surface modification by ion implantation with high fluences have expanded from basic research areas and to industrial applications for the improvement of life time of tools. Many results suggest that the high fluence implantation produces the new surface layers with un-expected microscopic characteristics and macroscopic properties due to implant particles, radiation damage, sputtering, and knock-on doping. In this report, the composition, structure and chemical bonding state in surface layers of iron, iron-based alloy and aluminum sheets implanted with high fluences have been investigated by means of secondary ion mass spectroscopy (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Tribological properties such as hardness, friction and wear are introduced. (author)

  11. Very broad beam metal ion source for large area ion implantation application

    International Nuclear Information System (INIS)

    Brown, I.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Yao, X.

    1993-01-01

    The authors have made and operated a very broad beam version of vacuum arc ion source and used it to carry out high energy metal ion implantation of a particularly large substrate. A multiple-cathode vacuum arc plasma source was coupled to a 50 cm diameter beam extractor (multiple aperture, accel-decel configuration) operated at a net extraction voltage of up to 50 kV. The metal ion species chosen were Ni and Ta. The mean ion charge state for Ni and Ta vacuum arc plasmas is 1.8 and 2.9, respectively, and so the mean ion energies were up to about 90 and 145 keV, respectively. The ion source was operated in a repetitively pulsed mode with pulse length 250 μs and repetition rate several pulses per second. The extracted beam had a gaussian profile with FWHM about 35 cm, giving a nominal beam area of about 1,000 cm 2 . The current of Ni or Ta metal ions in the beam was up to several amperes. The targets for the ion implantation were a number of 24-inch long, highly polished Cu rails from an electromagnetic rail gun. The rails were located about 80 cm away from the ion source extractor grids, and were moved across a diameter of the vessel in such a way as to maximize the uniformity of the implant along the rail. The saturation retained dose for Ta was limited to about 4 x 10 16 cm -2 because of the rather severe sputtering, in accordance with the theoretical expectations for these implantation conditions. Here they describe the ion source, the implantation procedure, and the kinds of implants that can be produced in this way

  12. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeon Ho; Kim, Younghun [Kwangwoon University, Seoul (Korea, Republic of)

    2015-04-15

    Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multicolorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type.

  13. High adsorptive γ-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water.

    Science.gov (United States)

    Wei, Yan; Yang, Ran; Zhang, Yong-Xing; Wang, Lun; Liu, Jin-Huai; Huang, Xing-Jiu

    2011-10-21

    γ-AlOOH(boehmite)@SiO(2)/Fe(3)O(4) porous magnetic microspheres with high adsorption capacity toward heavy metal ions were found to be useful for the simultaneous and selective electrochemical detection of five metal ions, such as ultratrace zinc(II), cadmium(II), lead(II), copper(II), and mercury(II), in drinking water.

  14. Accumulation of metal ions by pectinates

    Science.gov (United States)

    Deiana, S.; Deiana, L.; Palma, A.; Premoli, A.; Senette, C.

    2009-04-01

    The knowledge of the mechanisms which regulate the interactions of metal ions with partially methyl esterified linear polymers of α-1,4 linked D-galacturonic acid units (pectinates), well represented in the root inner and outer apoplasm, is of great relevance to understand the processes which control their accumulation at the soil-root interface as well as their mobilization by plant metabolites. Accumulation of a metal by pectinates can be affected by the presence of other metals so that competition or distribution could be expected depending on the similar or different affinity of the metal ions towards the binding sites, mainly represented by the carboxylate groups. In order to better understand the mechanism of accumulation in the apoplasm of several metal ions, the sorption of Cd(II), Zn(II), Cu(II), Pb(II) and Cr(III) by a Ca-polygalacturonate gel, used as model of the soil-root interface, with a degree of esterification of 18% (PGAE1) and 65% (PGAE2) was studied at pH 3.0, 4.0, 5.0 and 6.0 in the presence of CaCl2 2.5 mM.. The results show that sorption increases with increasing both the initial metal concentration and pH. A similar sorption trend was evidenced for Cu(II) and Pb(II) and for Zn(II) and Cd(II), indicating that the mechanism of sorption for these two ionic couples is quite different. As an example, at pH 6.0 and an initial metal concentration equal to 2.0 mM, the amount of Cu(II) and Pb(II) sorbed was about 1.98 mg-1 of PGAE1 while that of Cd(II) and Zn(II) was about 1.2 mg-1. Cr(III) showed a rather different sorption trend and a much higher amount (2.8 mg-1of PGAE1 at pH 6.0) was recorded. The higher affinity of Cr(III) for the polysaccharidic matrix is attributable to the formation of Cr(III) polynuclear species in solution, as shown by the distribution diagrams obtained through the MEDUSA software. On the basis of these findings, the following affinity towards the PGAE1 can be assessed: Cr(III) > Cu(II) ? Pb(II) > Zn (II) ? Cd

  15. Broad-beam, high current, metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the 'seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs

  16. Predicting Metal Speciation & Bioavailability via Estimation of Metal-Organic Thermodynamic Properties

    Science.gov (United States)

    Prasad, A.; Howells, A. E.; Shock, E.

    2017-12-01

    The biological fate of any metal depends on its chemical form in the environment. Arsenic for example, is extremely toxic in the form of inorganic As+3 but completely benign in the organic form of arsenobetaine. Thus, given an exhaustive set of reactions and their equilibrium constants (logK), the bioavailability of any metal can be obtained for blood plasma, hydrothermal fluids or any system of interest. While many data exist for metal-inorganic ligands, logK data covering the temperature range of life for metal-organic complexes are sparse. Hence, we decided to estimate metal-organic logK values from correlations with the commonly available values of ligand pKa. Metal ion specific correlations were made with ligands classified according to their electron donor atoms, denticity and other chemical factors. While this approach has been employed before (Carbonaro et al. 2007, GCA 71, 3958-3968), new correlations were developed that provide estimates even when no metal-organic logK is available. In addition, we have used the same methods to make estimates of metal-organic entropy of association (ΔaS), which can provide logK for any temperature of biological relevance. Our current correlations employ logK and ΔaS data from 30 metal ions (like the biologically relevant Fe+3 & Zn+2) and 74 ligands (like formate and ethylenediamine), which can be expanded to estimate the metal-ligand reaction properties for these 30 metal ions with a possibly limitless number of ligands that may belong to our categories of ligands. With the help of such data, copper speciation was obtained for a defined growth medium for methanotrophs employed by Morton et al. (2000, AEM 66, 1730-1733) that agrees with experimental measurements showing that the free metal ion may not be the bioavailable form in all conditions. These results encourage us to keep filling the gaps in metal-organic logK data and continue finding relationships between biological responses (like metal-accumulation ratios

  17. Progress in metal ion separation and preconcentration : an overview.

    Energy Technology Data Exchange (ETDEWEB)

    Bond, A. H.

    1998-05-19

    A brief historical perspective covering the most mature chemically-based metal ion separation methods is presented, as is a summary of the recommendations made in the 1987 National Research Council (NRC) report entitled ''Separation and Purification: Critical Needs and Opportunities''. A review of Progress in Metal Ion Separation and Preconcentration shows that advances are occurring in each area of need cited by the NRC. Following an explanation of the objectives and general organization of this book, the contents of each chapter are briefly summarized and some future research opportunities in metal ion separations are presented.

  18. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  19. Fluorescent bioassays for toxic metals in milk and yoghurt

    Science.gov (United States)

    2012-01-01

    Background From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP)-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. Results ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow’s milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III) or Cd (II) whereas smaller responses to externally added Pb (II) and Zn (II) were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II) concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. Conclusions GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products. PMID:23098077

  20. Fluorescent bioassays for toxic metals in milk and yoghurt

    Directory of Open Access Journals (Sweden)

    Siddiki Mohammad Shohel

    2012-10-01

    Full Text Available Abstract Background From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. Results ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow’s milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III or Cd (II whereas smaller responses to externally added Pb (II and Zn (II were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. Conclusions GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products.

  1. Sulfur polymer cement encapsulation of RCRA toxic metals and metal oxides

    International Nuclear Information System (INIS)

    Calhoun, C.L. Jr.; Nulf, L.E.; Gorin, A.H.

    1995-06-01

    A study was conducted to determine the suitability of Sulfur Polymer Cement (SPC) encapsulation technology for the stabilization of RCRA toxic metal and metal oxide wastes. In a series of bench-scale experiments, the effects of sodium sulfide additions to the waste mixture, residence time, and temperature profile were evaluated. In addition, an effort was made to ascertain the degree to which SPC affords chemical stabilization as opposed to physical encapsulation. Experimental results have demonstrated that at the 25 wt % loading level, SPC can effectively immobilize Cr, Cr 2 O 3 , Hg, Pb, and Se to levels below regulatory limits. SPC encapsulation also has been shown to significantly reduce the leachability of other toxic compounds including PbO, PbO 2 , As 2 O 3 , BaO, and CdO. In addition, data has confirmed sulfide conversion of Hg, Pb, PbO, PbO 2 , and BaO as the product of their reaction with SPC

  2. Peroxotitanates for Biodelivery of Metals

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.

  3. Highly sensitive colour change system within slight differences in metal ion concentrations based on homo-binuclear complex formation equilibrium for visual threshold detection of trace metal ions

    International Nuclear Information System (INIS)

    Mizuguchi, Hitoshi; Atsumi, Hiroshi; Hashimoto, Keigo; Shimada, Yasuhiro; Kudo, Yuki; Endo, Masatoshi; Yokota, Fumihiko; Shida, Junichi; Yotsuyanagi, Takao

    2004-01-01

    A new technique of expressing slight differences in metal ion concentrations by clear difference in colour was established for visual threshold detection of trace metal ions. The proposed method is based on rapid change of the mole fraction of the homo-binuclear complex (M 2 L) about a ligand in a narrow range of the total metal ion concentration (M T ) in a small excess, in case the second metal ion is bound to the reagent molecule which can bind two metal ions. Theoretical simulations showed that the highly sensitive colour change within slight differences in metal ion concentrations would be realized under the following conditions: (i) both of the stepwise formation constants of complex species are sufficiently large; (ii) the stepwise formation constant of the 1:1 complex (ML) is larger than that of M 2 L; and (iii) the absorption spectrum of M 2 L is far apart from the other species in the visible region. Furthermore, the boundary of the colour region in M T would be readily controlled by the total ligand concentration (L T ). Based on this theory, the proposed model was verified with the 3,3'-bis[bis(carboxymethyl)amino]methyl derivatives of sulphonephthalein dyes such as xylenol orange (XO), methylthymol blue (MTB), and methylxylenol blue (MXB), which can bind two metal ions at both ends of a π-electron conjugated system. The above-mentioned model was proved with the iron(III)-XO system at pH 2. In addition, MTB and MXB were suitable reagents for the visual threshold detection of trivalent metal ions such as iron(III), aluminium(III), gallium(III) and indium(III) ion in slightly acidic media. The proposed method has been applied successfully as a screening test for aluminium(III) ion in river water sampled at the downstream area of an old mine

  4. Metal ion transport quantified by ICP-MS in intact cells

    Science.gov (United States)

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  5. Metal resistance sequences and transgenic plants

    Science.gov (United States)

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  6. Use of heavy ions to model radiation damage of metals

    International Nuclear Information System (INIS)

    Shirokov, S.V.; Vyshemirskij, M.P.

    2011-01-01

    The methods for modeling radiation damage of metals using heavy ions are reviewed and the results obtained are analyzed. It is shown that irradiation of metals with heavy ion can simulate neutron exposure with the equivalent dose with adequate accuracy and permits a detailed analysis of radiation damage of metals

  7. Ion beam assisted deposition of metal-coatings on beryllium

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Tul'ev, V.V.

    2015-01-01

    Thin films were applied on beryllium substrates on the basis of metals (Cr, Ti, Cu and W) with method of the ion-assisted deposition in vacuum. Me/Be structures were prepared using 20 kV ions irradiation during deposition on beryllium neutral fraction generated from vacuum arc plasma. Rutherford back scattering and computer simulation RUMP code were applied to investigate the composition of the modified beryllium surface. Researches showed that the superficial structure is formed on beryllium by thickness ~ 50-60 nm. The covering composition includes atoms of the deposited metal (0.5-3.3 at. %), atoms of technological impurity carbon (0.8-1.8 at. %) and oxygen (6.3-9.9 at. %), atoms of beryllium from the substrate. Ion assisted deposition of metals on beryllium substrate is accompanied by radiation enhanced diffusion of metals, oxygen atoms in the substrate, out diffusion of beryllium, carbon atoms in the deposited coating and sputtering film-forming ions assists. (authors)

  8. Hydrolysis of metal ions. Vol. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Paul L. [Geochem Australia, Kiama, NSW (Australia); Ekberg, Christian [Chalmers Univ. of Technology, Goeteborg (Sweden). Nuclear Chemistry/Industrial Materials Recycling

    2016-07-01

    Filling the need for a comprehensive treatment that covers the theory, methods and the different types of metal ion complexes with water (hydrolysis), this handbook and ready reference is authored by a nuclear chemist from academia and an industrial geochemist. The book includes both cation and anion complexes, and approaches the topic of metal ion hydrolysis by first covering the background, before proceeding with an overview of the dissociation of water and then all different metal-water hydrolysis complexes and compounds. A must-have for scientists in academia and industry working on this interdisciplinary topic.

  9. Charge state of ions scattered by metal surface

    International Nuclear Information System (INIS)

    Kishinevsky, L.M.; Parilis, E.S.; Verleger, V.K.

    1976-01-01

    A model for description of charge distributions for scattering of heavy ions in the keV region, on metal surfaces developing and improving the method of Van der Weg and Bierman, and taking into account the connection between the ion charge state and scattering kinematics, is proposed. It is shown that multiple charged particles come from ions with a vacancy in the inner shell while the outer shell vacancies give only single charged ions and neutrals. The approximately linear increase of degree of ionization with normal velocity, and the non-monotonic charge dependence of the energy spectrum established by Chicherov and Buck et al is explained by considering irreversible neutralization in the depth of the metal, taking into account the connection of the charge state with the shape of trajectory and its location relative to the metal surface. The dependence of charge state on surface structure is discussed. Some new experiments are proposed. (author)

  10. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils

    International Nuclear Information System (INIS)

    Keller, Catherine; Hammer, Daniel

    2004-01-01

    Metal phytoextraction with hyperaccumulating plants could be a useful method to decontaminate soils, but it is not fully validated yet. In order to quantify the efficiency of Cd and Zn extraction from a calcareous soil with and without Fe amendment and an acidic soil, we performed a pot experiment with three successive croppings of Thlaspi caerulescens followed by 3 months without plant and 7 weeks with lettuce. We used a combined approach to assess total extraction efficiency (2 M HNO 3 -extractable metals), changes in metal bio/availability (0.1 M NaNO 3 -extractable metals and lettuce uptake) and toxicity (lettuce biomass and the BIOMETreg] biosensor). The soil solution was monitored over the whole experiment. In the calcareous soil large Cu concentrations were probably responsible for chlorosis symptoms observed on T. caerulescens. When this soil was treated with Fe, the amount of extracted metal by T. caerulescens increased and metal availability and soil toxicity decreased when compared to the untreated soil. In the acidic soil, T. caerulescens was most efficient: Cd and Zn concentrations in plants were in the range of hyperaccumulation and HNO 3 -extractable Cd and Zn, metal bio/availability, soil toxicity, and Cd and Zn concentrations in the soil solution decreased significantly. However, a reduced Cd concentration measured in the third T. caerulescens cropping indicated a decrease in metal availability below a critical threshold, whereas the increase of dissolved Cd and Zn concentrations after the third cropping may be the early sign of soil re-equilibration. This indicates that phytoextraction efficiency must be assessed by different approaches in order not to overlook any potential hazard and that an efficient phytoextraction scheme will have to take into account the different dynamics of the soil-plant system

  11. Adhesive, abrasive and oxidative wear in ion-implanted metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1985-01-01

    Ion implantation is increasingly being used to provide wear resistance in metals and cemented tungsten carbides. Field trials and laboratory tests indicate that the best performance is achieved in mild abrasive wear. This can be understood in terms of the classification of wear modes (adhesive, abrasive, oxidative etc.) introduced by Burwell. Surface hardening and work hardenability are the major properties to be enhanced by ion implantation. The implantation of nitrogen or dual implants of metallic and interstitial species are effective. Recently developed techniques of ion-beam-enhanced deposition of coatings can further improve wear resistance by lessening adhesion and oxidation. In order to support such hard coatings, ion implantation of nitrogen can be used as a preliminary treatment. There is thus emerging a versatile group of related hard vacuum treatments involving intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (Auth.)

  12. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    Science.gov (United States)

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip

  13. Solution thermodynamics of rare-earth metal ions - physicochemical study-

    Energy Technology Data Exchange (ETDEWEB)

    Amerkhanova, Sh K; Shlyapov, R M; Uali, A S [Buketov Karaganda state university, University str., 28, Karaganda, 100028 (Kazakhstan)], E-mail: amerkhanova_sh@mail.ru

    2009-02-01

    The results of the studying of interactions in multicomponent systems 'polyvinyl alcohol (PVA) - rare-earth element ion - nitrate of sodium - water' are represented. It is established that for rubidium (I) ions temperature and ionic strength is render destroying action, and for yttrium (III) ions the influence of these factors has return character which is connected with features of an electronic structure of metal ion. It is revealed that a dominating role of non-electrostatic formation composed, hence, the formation of donor-acceptor connection of 'metal - ligand' occurs through atom of oxygen.

  14. Accumulation of some metal ions on Bacillus licheniformis

    International Nuclear Information System (INIS)

    Hafez, M.B.; El-Desouky, W.; Fouad, A.

    2001-01-01

    Pure species of Bacillus licheniformis was used to remove ions from aqueous and simulated waste solutions. Metal ion accumulation on B. licheniformis was fast. Maximum uptake occurred at pH 4± 0.5 and at 25 ± 3 deg C. One gram of dry B. licheniformis was found to accumulate 115 mg cerium, 34 mg copper and 11 mg cobalt from aqueous solutions. The presence of certain foreign ions such as calcium, sodium and potassium decreased the uptake of ions by B. licheniformis, while citrate and EDTA prevent the uptake. Electron microscopic investigations showed that cerium (III), copper (II) and cobalt (II) accumulated extracellulary around the surface wall of B. licheniformis cells. A bio-adsorption mechanism between the metal ions and B. licheniformis cell wall was proposed. (author)

  15. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  16. Applications of ion plating in metals fabrication

    International Nuclear Information System (INIS)

    Bell, R.T.; Thompson, J.C.

    1974-01-01

    Use of ion plating at the Oak Ridge Y-12 Plant to solve problems encountered in metals fabrication and processing are discussed. Three typical areas are covered. The first is the use of strike coats on various substrates for subsequent electrodeposition. The second area in which ion plating is shown to contribute to a process is in cold welding or room temperature bonding of metals. The third application involves plating U to promote safe handling, fission-product retention, and corrosion protection in nuclear reactors

  17. Cooperative adsorption of critical metal ions using archaeal poly-γ-glutamate.

    Science.gov (United States)

    Hakumai, Yuichi; Oike, Shota; Shibata, Yuka; Ashiuchi, Makoto

    2016-06-01

    Antimony, beryllium, chromium, cobalt (Co), gallium (Ga), germanium, indium (In), lithium, niobium, tantalum, the platinoids, the rare-earth elements (including dysprosium, Dy), and tungsten are generally regarded to be critical (rare) metals, and the ions of some of these metals are stabilized in acidic solutions. We examined the adsorption capacities of three water-soluble functional polymers, namely archaeal poly-γ-glutamate (L-PGA), polyacrylate (PAC), and polyvinyl alcohol (PVA), for six valuable metal ions (Co(2+), Ni(2+), Mn(2+), Ga(3+), In(3+), and Dy(3+)). All three polymers showed apparently little or no capacity for divalent cations, whereas L-PGA and PAC showed the potential to adsorb trivalent cations, implying the beneficial valence-dependent selectivity of anionic polyelectrolytes with multiple carboxylates for metal ions. PVA did not adsorb metal ions, indicating that the crucial role played by carboxyl groups in the adsorption of crucial metal ions cannot be replaced by hydroxyl groups under the conditions. In addition, equilibrium studies using the non-ideal competitive adsorption model indicated that the potential for L-PGA to be used for the removal (or collection) of water-soluble critical metal ions (e.g., Ga(3+), In(3+), and Dy(3+)) was far superior to that of any other industrially-versatile PAC materials.

  18. Reactions of metal ions and their clusters in the gas phase using laser ionization: ion cyclotron resonance spectroscopy

    International Nuclear Information System (INIS)

    Freiser, B.S.

    1981-04-01

    Two subjects are discussed in this report: advances in proposed studies on metal ion chemistry and expansion of laboratory facilities. The development of a combined pulsed laser source-ion cyclotron resonance spectrometer has proven to be a convenient and powerful method for generating metal ions and for studying their subsequent chemistry in the gas phase. The main emphasis of this research has been on the application of metal ions as a selective chemical ionization reagents and progress in this area are discussed. The goal is to identify trends in reactivity i.e. mechanisms useful in interpreting the chemical ionization spectra of unknown compounds and to test for the functional group selectivity of the various metal ions. The feasibility of these goals have been demonstrated in extensive studies on Cu + with esters and ketones, on Fe + with ethers, ketones, and hydrocarbons, and on Ti + with hydrocarbons. In addition, preliminary results on sulfur containing compounds and on a variety of other metallic ions have been obtained. Laboratory facilities were expanded from one ion cyclotron resonance (ICR) spectrometer to two, plus a third instrument the Fourier Transform Ion Cyclotron Resonance (FTICR) spectrometer

  19. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.

    Science.gov (United States)

    Lyu, Jie; Park, Jihae; Kumar Pandey, Lalit; Choi, Soyeon; Lee, Hojun; De Saeger, Jonas; Depuydt, Stephen; Han, Taejun

    2018-03-01

    Phytotoxicity tests using higher plants are among the most simple, sensitive, and cost-effective of the methods available for ecotoxicity testing. In the present study, a hydroponic-based phytotoxicity test using seeds of Lactuca sativa was used to evaluate the water quality of receiving waters and effluents near two industrial sites (Soyo and Daejon) in Korea with respect to the toxicity of 10 metals (As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Zn) and phenol, and of the receiving waters and effluents themselves. First, the L. sativa hydroponic bioassay was used to determine whether the receiving water or effluents were toxic; then, the responsible toxicant was identified. The results obtained with the L. sativa bioassay ranked the EC 50 toxicities of the investigated metal ions and phenol as: Cd > Ni > Cu > Zn > Hg > phenol > As > Mn > Cr > Pb > Fe. We found that Zn was the toxicant principally responsible for toxicity in Daejeon effluents. The Daejeon field effluent had a higher Zn concentration than permitted by the effluent discharge criteria of the Ministry of Environment of Korea. Our conclusion on the importance of Zn toxicity was supported by the results of the L. sativa hydroponic assay, which showed that the concentration of Zn required to inhibit root elongation in L. sativa by 50% (EC 50 ) was higher in the Daejeon field effluent than that of pure Zn. More importantly, we proved that the L. sativa hydroponic test method can be applied not only as an alternative tool for determining whether a given waste is acceptable for discharge into public water bodies, but also as an alternative method for measuring the safety of aquatic environments using EC 20 values, with respect to the water pollutants investigated (i.e., Cd, Cr, Cu, Pb, Mn, Hg, Ni, Zn, and phenol). Copyright © 2017. Published by Elsevier Inc.

  20. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    Duesterhoeft, H.; Pippig, R.

    1986-01-01

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  1. The Severity of Autism Is Associated with Toxic Metal Body Burden and Red Blood Cell Glutathione Levels

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J B; Mitchell, I J [Division of Basic Medical Sciences, Southwest College of Naturopathic Medicine, Tempe, AZ 85282 (United States); Baral, M; Bradstreet, J [Department of Pediatric Medicine, Southwest College of Naturopathic Medicine, Tempe, AZ 85282 (United States); Geis, E; Ingram, J; Hensley, A; Zappia, I; Gehn, E; Mitchell, K [Autism Research Institute, San Diego, CA 92116-2599 (United States); Newmark, S [Center for Integrative Pediatric Medicine, Tucson, AZ 85711 (United States); Rubin, R A [Department of Mathematics, Whittier College, Whittier, CA 90601-4413 (United States); Bradstreet, J [International Child Development Resource Center, Phoenix, AZ (United States); El-Dahrn, J M [Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112 (United States)

    2009-07-01

    This study investigated the relationship of children's autism symptoms with their toxic metal body burden and red blood cell (RBC) glutathione levels. In children ages 38 years, the severity of autism was assessed using four tools: ADOS, PDD-BI, ATEC, and SAS. Toxic metal body burden was assessed by measuring urinary excretion of toxic metals, both before and after oral dimercaptosuccinic acid (DMSA). Multiple positive correlations were found between the severity of autism and the urinary excretion of toxic metals. Variations in the severity of autism measurements could be explained, in part, by regression analyses of urinary excretion of toxic metals before and after DMSA and the level of RBC glutathione (adjusted R2 of 0.220.45, P<.005 in all cases). This study demonstrates a significant positive association between the severity of autism and the relative body burden of toxic metals.

  2. The Severity of Autism Is Associated with Toxic Metal Body Burden and Red Blood Cell Glutathione Levels

    International Nuclear Information System (INIS)

    Adams, J.B.; Mitchell, I.J.; Baral, M.; Bradstreet, J.; Geis, E.; Ingram, J.; Hensley, A.; Zappia, I.; Gehn, E.; Mitchell, K.; Newmark, S.; Rubin, R.A.; Bradstreet, J.; El-Dahrn, J.M.

    2009-01-01

    This study investigated the relationship of children's autism symptoms with their toxic metal body burden and red blood cell (RBC) glutathione levels. In children ages 38 years, the severity of autism was assessed using four tools: ADOS, PDD-BI, ATEC, and SAS. Toxic metal body burden was assessed by measuring urinary excretion of toxic metals, both before and after oral dimercaptosuccinic acid (DMSA). Multiple positive correlations were found between the severity of autism and the urinary excretion of toxic metals. Variations in the severity of autism measurements could be explained, in part, by regression analyses of urinary excretion of toxic metals before and after DMSA and the level of RBC glutathione (adjusted R2 of 0.220.45, P<.005 in all cases). This study demonstrates a significant positive association between the severity of autism and the relative body burden of toxic metals.

  3. Biosorption of heavy metal ions from aqueous solution by red macroalgae.

    Science.gov (United States)

    Ibrahim, Wael M

    2011-09-15

    Biosorption is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high biosorption capacities for a number of heavy metal ions. In this study, four species of red seaweeds Corallina mediterranea, Galaxaura oblongata, Jania rubens and Pterocladia capillacea were examined to remove Co(II), Cd(II), Cr(III) and Pb(II) ions from aqueous solution. The experimental parameters that affect the biosorption process such as pH, contact time and biomass dosage were studied. The maximum biosorption capacity of metal ions was 105.2mg/g at biomass dosage 10 g/L, pH 5 and contact time 60 min. The biosorption efficiency of algal biomass for the removal of heavy metal ions from industrial wastewater was evaluated for two successive cycles. Galaxaura oblongata biomass was relatively more efficient to remove metal ions with mean biosorption efficiency of 84%. This study demonstrated that these seaweeds constitute a promising, efficient, cheap and biodegradable sorbent biomaterial for lowering the heavy metal pollution in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Microstructured liquid metal electron and ion sources (MILMES/MILMIS)

    Energy Technology Data Exchange (ETDEWEB)

    Mitterauer, J [Technische Universitaet Wien (Austria). Institut fuer Allgemeine Elektrotechnik und Elektronik

    1997-12-31

    Ion or electron beams can be emitted from liquid metal wetted needles, or from capillaries or slits into which the liquid metal is allowed to flow. Large-area liquid metal field emission sources have been proposed recently, using either two-dimensional, regular arrays of cones or capillaries, or even a substrate with an intrinsically microstructured surface covered by a liquid metal film. This latter concept has been realized in a pilot experiment by in situ wicking and wetting of a porous sintered metal disc. Microstructured liquid metal ion or electron sources are capable of operating in a pulsed mode at a current level which is orders of magnitude above that for steady-state operation. (author). 3 figs., 10 refs.

  5. Antibacterial properties and toxicity from metallic nanomaterials

    Directory of Open Access Journals (Sweden)

    Vimbela GV

    2017-05-01

    Full Text Available Gina V Vimbela,1,* Sang M Ngo,2,* Carolyn Fraze,3 Lei Yang,4,5 David A Stout5–7 1Department of Chemical Engineering, 2Department of Electrical Engineering, California State University, Long Beach, CA, 3Brigham Young University Idaho, Rexburg, ID, USA; 4Department of Orthopaedics, Orthopaedic Institute, The First Affiliated Hospital, 5International Research Center for Translational Orthopaedics (IRCTO, Soochow University, Suzhou, Jiangsu, People’s Republic of China; 6Department of Mechanical and Aerospace Engineering, 7Department of Biomedical Engineering, California State University, Long Beach, CA, USA *These authors contributed equally to this work Abstract: The era of antibiotic resistance is a cause of increasing concern as bacteria continue to develop adaptive countermeasures against current antibiotics at an alarming rate. In recent years, studies have reported nanoparticles as a promising alternative to antibacterial reagents because of their exhibited antibacterial activity in several biomedical applications, including drug and gene delivery, tissue engineering, and imaging. Moreover, nanomaterial research has led to reports of a possible relationship between the morphological characteristics of a nanomaterial and the magnitude of its delivered toxicity. However, conventional synthesis of nanoparticles requires harsh chemicals and costly energy consumption. Additionally, the exact relationship between toxicity and morphology of nanomaterials has not been well established. Here, we review the recent advancements in synthesis techniques for silver, gold, copper, titanium, zinc oxide, and magnesium oxide nanomaterials and composites, with a focus on the toxicity exhibited by nanomaterials of multidimensions. This article highlights the benefits of selecting each material or metal-based composite for certain applications while also addressing possible setbacks and the toxic effects of the nanomaterials on the environment. Keywords

  6. Acute toxicity of heavy metals towards freshwater ciliated protists

    International Nuclear Information System (INIS)

    Madoni, Paolo; Romeo, Maria Giuseppa

    2006-01-01

    The acute toxicity of five heavy metals to four species of freshwater ciliates (Colpidium colpoda, Dexiotricha granulosa, Euplotes aediculatus, and Halteria grandinella) was examined in laboratory tests. After exposing the ciliates to soluble compound of cadmium, copper, chromium, lead, and nickel at several selected concentrations, the mortality rate was registered and the LC 5 values (with 95% confidence intervals) were calculated. Large differences appeared in sensitivities of the four species to the metals. H. grandinella showed the highest sensitivity for cadmium (0.07 mg l -1 , LC 5 ) and lead (0.12 mg l -1 , LC 5 ), whilst E. aediculatus showed the highest sensitivity for nickel (0.03 mg l -1 , LC 5 ). The comparison with data obtained with other species indicate that Halteria grandinella and Euplotes aediculatus are excellent and convenient bioindicator for evaluating the toxicity of waters and wastewaters polluted by heavy metals. The short time (24 h) and simplicity of the test procedure enable this test to be used in laboratory studies. - Ciliated protozoa are suitable bioindicators of heavy metal pollution in freshwater environments

  7. Ultraviolet spectroscopy and metal ions detection

    International Nuclear Information System (INIS)

    Chaudry, M.A.

    1995-01-01

    The spectrochemical analysis is based on the interaction of radiation with the chemical species and depends on their nature, having pi, sigma or electrons, or d and f electrons, UV. Visible spectrophotometry has been used extensively in the detection and determination of both organics and inorganics. In UV detection the sensitivity is proportional to the bath length and the excitation coefficient of the given sample. It may be insensitive to many species unless these are converted to UV, absorbing derivatives. The technique has been applied for the monitoring of the effluents from HPLC, as chlorides or other complexes of various elements in this article the utility of HCl as reagent for the spectrophotometric determination of the metal ions like Al(III), As(III,IV), Ba(II), Cd(II), Ca(II) Ce(III), Cs(i), Cr(III,VI), Co(II), Cu(II), Dy(III), Eu(III), Gd(III), Au(III), Hf(IV), Ho(III), In(III), Fe(III), La(III), Pb(II), Lu (III), Mg(II), Mn(II), Hg(II), Mo(VI), Ni(II), Pd(II), Pt(IV), K(I), Pr(III), Re(VII), Ru(IV), Sm(III), Sc(III), Ag(I), Sr(II) Te(III), Th(IV), Sn(II,IV), Ti(III,IV), W(VI), U(VI), V(IV,V), Yb(III), Zn(II) AND Zr(IV) Ions i.e. for meta ions from d of the most of these metal ions has been found sufficient permit their detection in HPLC. Their molar absorptive have also been reported. Reference has also been provided to post column derivatization of some metal ions from d and f block elements for their detection in HPLC. (author) 12 figs.; 6 tabs.; 27 refs

  8. Fe3O4/Reduced Graphene Oxide Nanocomposite: Synthesis and Its Application for Toxic Metal Ion Removal

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Vuong Hoan

    2016-01-01

    Full Text Available The synthesis of reduced graphene oxide modified by magnetic iron oxide (Fe3O4/rGO and its application for heavy metals removal were demonstrated. The obtained samples were characterized by X-ray diffraction (XRD, nitrogen adsorption/desorption isotherms, X-ray photoelectron spectroscopy (XPS, Fourier transform infrared spectroscopy (FT-IR, and magnetic measurement. The results showed that the obtained graphene oxide (GO contains a small part of initial graphite as well as reduced oxide graphene. GO exhibits very high surface area in comparison with initial graphite. The morphology of Fe3O4/rGO consists of very fine spherical iron nanooxide particles in nanoscale. The formal kinetics and adsorption isotherms of As(V, Ni(II, and Pb(II over obtained Fe3O4/rGO have been investigated. Fe3O4/rGO exhibits excellent heavy metal ions adsorption indicating that it is a potential adsorbent for water sources contaminated by heavy metals.

  9. Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal.

    Science.gov (United States)

    Song, Jooyoung; Oh, Hyuntaek; Kong, Hyeyoung; Jang, Jyongsik

    2011-03-15

    Polyrhodanine was immobilized onto the inner surface of anodic aluminum oxide (AAO) membrane via vapor deposition polymerization method. The polyrhodanine modified membrane was applied to remove heavy metal ions from aqueous solution because polyrhodanine could be coordinated with specific metal ions. Several parameters such as initial metal concentration, contact time and metal species were evaluated systematically for uptake efficiencies of the fabricated membrane under continuous flow condition. Adsorption isotherms of Hg(II) ion on the AAO-polyrhodanine membrane were analyzed with Langmuir and Freundlich isotherm models. The adsorption rate of Hg(II) ion on the membrane was obeyed by a pseudo-second order equation, indicating the chemical adsorption. The maximum removal capacity of Hg(II) ion onto the fabricated membrane was measured to be 4.2 mmol/g polymer. The AAO-polyrhodanine membrane had also remarkable uptake performance toward Ag(I) and Pb(II) ions. Furthermore, the polyrhodanine modified membrane could be recycled after recovery process. These results demonstrated that the polyrhodanine modified AAO membrane provided potential applications for removing the hazardous heavy metal ions from wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The Acute Toxicity of Major Ion Salts to Ceriodaphnia dubia. III. Mathematical models for mixture toxicity

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset concerns the development of models for describing the acute toxicity of major ions to Ceriodaphnia dubia using data from single salt tests and binary...

  11. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay

    Energy Technology Data Exchange (ETDEWEB)

    Singh, I.B. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India)]. E-mail: ibsingh58@yahoo.com; Chaturvedi, K. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India); Morchhale, R.K. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India); Yegneswaran, A.H. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India)

    2007-03-06

    Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 deg. C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 deg. C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 deg. C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.

  12. Toxic metals in the atmosphere in Lahore, Pakistan

    International Nuclear Information System (INIS)

    Schneidemesser, Erika von; Stone, Elizabeth A.; Quraishi, Tauseef A.; Shafer, Martin M.; Schauer, James J.

    2010-01-01

    Aerosol mass (PM 10 and PM 2.5 ) and detailed elemental composition were measured in monthly composites during the calendar year of 2007 at a site in Lahore, Pakistan. Elemental analysis revealed extremely high concentrations of Pb (4.4 μg m -3 ), Zn (12 μg m -3 ), Cd (0.077 μg m -3 ), and several other toxic metals. A significant fraction of the concentration of Pb (84%), Zn (98%), and Cd (90%) was contained in the fine particulate fraction (PM 2.5 and smaller); in addition, Zn and Cd were largely (≥ 60%) water soluble. The 2007 annual average PM 10 mass concentration was 340 μg m -3 , which is well above the WHO guideline of 20 μg m -3 . Dust sources were found to contribute on average (maximum) 41% (70%) of PM 10 mass and 14% (29%) of PM 2.5 mass on a monthly basis. Seasonally, concentrations were found to be lowest during the monsoon season (July-September). Principle component analysis identified seven factors, which combined explained 91% of the variance of the measured components of PM 10 . These factors included three industrial sources, re-suspended soil, mobile sources, and two regional secondary aerosol sources likely from coal and/or biomass burning. The majority of the Pb was found to be associated with one industrial source, along with a number of other toxic metals including As and Cr. Cadmium, another toxic metal, was found at concentrations 16 times higher than the maximum exposure level recommended by the World Health Organization, and was concentrated in one industrial source that was also associated with Zn. These results highlight the importance of focusing control strategies not only on reducing PM mass concentration, but also on the reduction of toxic components of the PM as well, to most effectively protect human health and the environment.

  13. Chelation in Metal Intoxication

    Directory of Open Access Journals (Sweden)

    Swaran J.S. Flora

    2010-06-01

    Full Text Available Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

  14. Interaction of Hydroxyproline with Bivalent Metal Ions in Chemical ...

    African Journals Online (AJOL)

    NICO

    The stability constants of the ML and ML2 complex species of some metal ions, namely beryllium(II) and cobalt(II), with hydroxyproline were ... metal ions have several significant applications in biological systems.3–20 Beryllium is one ... 1 filter paper for chromatography was used for the purpose of electrophoresis. An Elico ...

  15. Chronic Toxic Metal Exposure and Cardiovascular Disease: Mechanisms of Risk and Emerging Role of Chelation Therapy.

    Science.gov (United States)

    Aneni, Ehimen C; Escolar, Esteban; Lamas, Gervasio A

    2016-12-01

    Over the last few decades, there has been a growing body of epidemiologic evidence linking chronic toxic metal exposure to cardiovascular disease-related morbidity and mortality. The recent and unexpectedly positive findings from a randomized, double-blind, multicenter trial of metal chelation for the secondary prevention of atherosclerotic cardiovascular disease (Trial to Assess Chelation Therapy (TACT)) have focused the discussion on the role of chronic exposure to toxic metals in the development and propagation of cardiovascular disease and the role of toxic metal chelation therapy in the secondary prevention of cardiovascular disease. This review summarizes the most recent evidence linking chronic toxic metal exposure to cardiovascular disease and examines the findings of TACT.

  16. Emission of positive oxygen ions from ion bombardment of adsorbate-covered metal surfaces

    International Nuclear Information System (INIS)

    Kaurin, M.G.

    1989-01-01

    During ion bombardment of metal surfaces, collision cascades can result in the emission of sputtered secondary ions. Recent experiments, however, have suggested that the emission of positive ions of electronegative adsorbates can result from electronic processes rather than from processes involving elastic collisions. This dissertation presents the results of experiments studying the emission of positive oxygen ions from oxygen- and carbon-monoxide-covered transition metal surfaces during bombardment by 25-250 keV ions of neon, argon, and krypton. The systems studied may be grouped into four categories. For a nickel substrate with adsorbed oxygen, the emission of positive oxygen ions proceeds through collision cascades. For titanium and niobium with adsorbed oxygen, the emission of positive oxygen ions is proportional to the primary ion velocity, consistent with emission from electronic processes; for a given primary ion velocity, the oxygen ion yield is independent of primary ion species. For substrates of molybdenum and tungsten, the oxygen yield is proportional to primary ion velocity, but the yield also depends on the primary ion species for a given primary ion velocity in a manner that is consistent with emission resulting from electronic processes. For these two groups, except for titanium, the yields during neon ion bombardment do not extrapolate (assuming linearity with primary ion velocity) to a nonzero value at zero beam velocity. The magnitude of the oxygen ion yields from these targets is not consistent with that expected if the emission were induced by secondary electrons emitted during the ion bombardment

  17. Investigation of metal toxicity to tropical biota. Recommendations for revision of Australian water quality guidelines

    International Nuclear Information System (INIS)

    Marchich, S.

    1997-01-01

    The specific objectives of this study were to: review available data on the toxicity of metals to aquatic biota in tropical Australia; identify metals considered to be priority toxicants to aquatic biota in tropical Australia; and employ previously developed toxicity testing protocols for two tropical freshwater species to obtain preliminary toxicity data for two priority metals. From the literature review, it was concluded that insufficient metal toxicity data exist for Australian tropical species. Data were absent for a range of metals (eg Ag, As, Al, Cr, Hg, Ni, Sb and Se) listed in the current Australian water quality guidelines. Aluminium, Cd, Co, Cu, Ni, Mn, Pb, U, V and Zn were identified as priority metals of potential ecotoxicological concern in aquatic ecosystems of tropical Australia, largely as a consequence of mining activities, but also from urban impacts. Instead of testing the toxicity of the priority metals for which data do not currently exist (ie Al, Co, Ni and V), it was deemed more important to conduct further experimental work on Cu and U, in the context of elucidating the relatively high variability in the toxic response of these two metals. As a result, Cu and U were selected and toxicity tests conducted using two tropical freshwater species (green hydra (Hydra viridissima) and gudgeon fish (Mogurnda mogurnda)) from the Australian wet/dry tropics using test protocols designed to maximise the greatest sensitivity of metal response in the shortest period of time. Hydra viridissima was about eight times more sensitive to Cu than U, whereas M. mogurnda was about twenty times more sensitive. Once differences between the sublethal and lethal endpoints of the two organisms were corrected by statistical extrapolation, H. viridissima was approximately seven times more sensitive than M. mogurnda to U, but only about three times more sensitive to Cu. Both species were more sensitive to Cu than U. These results are generally consistent with those from

  18. Effects of toxic metals and chemicals on biofilm and biocorrosion.

    Science.gov (United States)

    Fang, Herbert H P; Xu, Li-Chong; Chan, Kwong-Yu

    2002-11-01

    Microbes in marine biofilms aggregated into clusters and increased the production of extracellular polymeric substances (EPS), by over 100% in some cases, when the seawater media containing toxic metals and chemicals, such as Cd(II), Cu(II), Pb(II), Zn(II), AI(III), Cr(III), glutaraldehyde, and phenol. The formation of microbial cluster and the increased production of EPS, which contained 84-92% proteins and 8-16% polysaccharides, accelerated the corrosion of the mild steel. However, there was no quantitative relationship between the degree of increased corrosion and the toxicity of metals/chemicals towards sulfate-reducing bacteria, or the increased EPS production.

  19. Carbon ion therapy for advanced sinonasal malignancies: feasibility and acute toxicity

    International Nuclear Information System (INIS)

    Jensen, Alexandra D; Nikoghosyan, Anna V; Ecker, Swantje; Ellerbrock, Malte; Debus, Jürgen; Münter, Marc W

    2011-01-01

    To evaluate feasibility and toxicity of carbon ion therapy for treatment of sinonasal malignancies. First site of treatment failure in malignant tumours of the paranasal sinuses and nasal cavity is mostly in-field, local control hence calls for dose escalation which has so far been hampered by accompanying acute and late toxicity. Raster-scanned carbon ion therapy offers the advantage of sharp dose gradients promising increased dose application without increase of side-effects. Twenty-nine patients with various sinonasal malignancies were treated from 11/2009 to 08/2010. Accompanying toxicity was evaluated according to CTCAE v.4.0. Tumor response was assessed according to RECIST. Seventeen patients received treatment as definitive RT, 9 for local relapse, 2 for re-irradiation. All patients had T4 tumours (median CTV1 129.5 cc, CTV2 395.8 cc), mostly originating from the maxillary sinus. Median dose was 73 GyE mostly in mixed beam technique as IMRT plus carbon ion boost. Median follow- up was 5.1 months [range: 2.4 - 10.1 months]. There were 7 cases with grade 3 toxicity (mucositis, dysphagia) but no other higher grade acute reactions; 6 patients developed grade 2 conjunctivits, no case of early visual impairment. Apart from alterations of taste, all symptoms had resolved at 8 weeks post RT. Overall radiological response rate was 50% (CR and PR). Carbon ion therapy is feasible; despite high doses, acute reactions were not increased and generally resolved within 8 weeks post radiotherapy. Treatment response is encouraging though follow-up is too short to estimate control rates or evaluate potential late effects. Controlled trials are warranted

  20. High-current pulsed ion source for metallic ions

    International Nuclear Information System (INIS)

    Gavin, B.; Abbott, S.; MacGill, R.; Sorensen, R.; Staples, J.; Thatcher, R.

    1981-03-01

    A new sputter-ion PIG source and magnet system, optimized for intermediate charge states, q/A of 0.02 to 0.03, is described. This source will be used with the new Wideroe-based injector for the SuperHILAC. Pulsed electrical currents of several emA of heavy metal ions have been produced in a normalized emittance area of .05π cm-mr. The source system is comprised of two electrically separate anode chambers, one in operation and one spare, which can be selected by remote control. The entire source head is small and quickly removable

  1. Adsorption of heavy metal ions by sawdust of deciduous trees

    International Nuclear Information System (INIS)

    Bozic, D.; Stankovic, V.; Gorgievski, M.; Bogdanovic, G.; Kovacevic, R.

    2009-01-01

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g -1 of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu 2+ ions but it is very low for Fe 2+ ions, not exceeding 10%.

  2. Effect of keratin on heavy metal chelation and toxicity to aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Coello, W.F.; Khan, M.A.Q. [Univ. of Illinois, Chicago, IL (United States). Dept. of Biological Sciences

    1998-12-31

    The presence of fresh scales and human hair in water can reduce the toxicity of lead nitrate at and above 6 ppb to fish. This ability is lost on drying and storage, but can be restored if dried hair or scales are treated with a solution of amino acids. The chelation ability of keratin in amino acid-treated scales or hair is retained for months on dry storage. Addition of these hair and/or scales to solutions of lead nitrate, mercuric chloride and a mixture of both, and cupric sulfate reduced the toxicity of these solutions to Daphnia magna and Dreissena polymorpha (zebra mussels). Toxicity of 10 ppm solutions of salts of 27 different metals to daphnids was similarly reduced after filtration through scales or hair. A mixture of a 2 ppb concentration of each of these 27 metals also became nonlethal to daphnids in the presence of, or filtration through, treated scales or hair. 0.25 g of treated hair or scale can be used indefinitely, again and again, to remove the mixture of these 27 metals from their fresh solution in 1 L water if the keratin is frequently rinsed with 0.1% nitric acid to remove the bound metals. The keratin in scales, this, may be the most important ectodermal secretion in absorbing metals from polluted environments and in providing protection against their toxic levels.

  3. Toxicity assessment and selective leaching characteristics of Cu-Al-Ni shape memory alloys in biomaterials applications.

    Science.gov (United States)

    Chang, Shih-Hang; Chen, Bor-Yann; Lin, Jin-Xiang

    2016-04-06

    Cu-Al-Ni shape memory alloys (SMAs) possess two-way shape memory effects, superelasticity, and damping capacity. Nonetheless, Cu-Al-Ni SMAs remain promising candidates for use in biomedical applications, as they are more economical and machinable than other SMAs. Ensuring the biocompatibility of Cu-Al-Ni SMAs is crucial to their development for biomedical applications. Therefore, this study aimed to assess the toxicity of Cu-Al-Ni SMAs using a Probit dose-response model and augmented simplex design. In this study, the effects of Cu2+, Al3+ and Ni2+ metal ions on bacteria (Escherichia coli DH5α) using Probit dose-response analysis and augmented simplex design to assess the actual toxicity of the Cu-Al-Ni SMAs. Extraction and repetition of Escherichia coli DH5α solutions with high Cu2+ ion concentrations and 30-hour incubation demonstrated that Escherichia coli DH5α was able to alter its growth mechanisms in response to toxins. Metal ions leached from Cu-Al-Ni SMAs appeared in a multitude of compositions with varying degrees of toxicity, and those appearing close to a saddle region identified in the contour plot of the augmented simplex model were identified as candidates for elevated toxicity levels. When the Cu-13.5Al-4Ni SMA plate was immersed in Ringer's solution, the selective leaching rate of Ni2+ ions far exceeded that of Cu2+ and Al3+. The number of Cu2+, Al3+ and Ni2+ ions leached from Cu-Al-Ni SMAs increased with immersion time; however, at higher ratios, toxicity interactions among the metal ions had the effect of gradually reducing overall toxicity levels with regard to Escherichia coli DH5α. The quantities of Cu2+, Al3+ and Ni2+ ions leached from the Cu-13.5Al-4Ni SMA plate increased with immersion time, the toxicity interactions associated with these compositions reduced the actual toxicity to Escherichia coli DH5α.

  4. Studies on the biofilm produced by Pseudomonas aeruginosa grown in different metal fatty acid salt media and its application in biodegradation of fatty acids and bioremediation of heavy metal ions.

    Science.gov (United States)

    Abinaya Sindu, P; Gautam, Pennathur

    2017-01-01

    Metal fatty acid salts (MFAS) in untreated industrial effluents cause environmental pollution. The use of biocompatible agents for remediation may help in reducing the harm caused to the ambient aquatic organism. Pseudomonas aeruginosa is a ubiquitous organism that thrives under harsh conditions and is resistant to toxic metal ions. The present study shows a proof-of-concept of using this organism in the biodegradation of MFAS. MFAS were prepared and we studied their effect on the growth of the planktonic form and the formation of biofilm by P. aeruginosa. We observed biofilm formation in the presence of all the MFAS when used as the sole carbon source, albeit the quantity of biofilm formed in the presence of cadmium and copper was less. There was no effect on the planktonic form of the organism but the formation of biofilm increased in the presence of magnesium palmitate. This study shows that metal ions play a pivotal role in the formation of biofilm. HPLC (high-performance liquid chromatography) analysis of the biofilm polysaccharide showed that hexose sugar was a major component when compared with pentose sugar. The structure of biofilm polysaccharide and the coordination of the metal ion with the biofilm polysaccharide were confirmed by FTIR (Fourier transform infrared spectroscopy) and Raman spectroscopy.

  5. A DFT based analysis of adsorption of Hg2+ ion on chitosan monomer and its citralidene and salicylidene derivatives: Prior to the removal of Hg toxicity.

    Science.gov (United States)

    Hassan, Basila; Rajan, Vijisha K; Mujeeb, V M Abdul; K, Muraleedharan

    2017-06-01

    A Density functional theory based study of adsorption of the toxic metal Hg (II) ion by chitosan monomer and two of its derivatives; citralidene and salicylidene chitosan, has been performed. The effect of structural features on the stability of studied complexes has been analyzed by using Gaussian03 software package. All the possible conformations of these adsorbents were studied using the global minimum geometries. All the adsorbing sites were studied by placing the metal ion on the centroid of the atoms and the stable conformer of the adsorbent-metal ion complex was identified. Interaction between Hg (II) and the adsorbents is found to be electrostatic. Metal ion binding with nitrogen atom is stronger than that with oxygen atoms in all the cases as the charge density of nitrogen is enhanced on Schiff base formation. The advantage of derivatives over chitosan monomer is their stability in acidic media. ΔE value of the complexes are in the order SC-Hg (II)>chitosan-Hg (II)>CC-Hg (II) which indicates that the stability of complexes increases with increase in energy gap. The study reveals that aromatic Schiff base derivatives of chitosan is better for Hg(II) intake than aliphatic derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  7. Metal-ion interactions and the structural organization of Sepia eumelanin.

    Science.gov (United States)

    Liu, Yan; Simon, John D

    2005-02-01

    The structural organization of melanin granules isolated from ink sacs of Sepia officinalis was examined as a function of metal ion content by scanning electron microscopy and atomic force microscopy. Exposing Sepia melanin granules to ethelenediaminetetraacetic acid (EDTA) solution or to metal salt solutions changed the metal content in the melanin, but did not alter granular morphology. Thus ionic forces between the organic components and metal ions in melanin are not required to sustain the natural morphology once the granule is assembled. However, when aqueous suspensions of Sepia melanin granules of varying metal content are ultra-sonicated, EDTA-washed and Fe-saturated melanin samples lose material to the solution more readily than the corresponding Ca(II) and Mg(II)-loaded samples. The solubilized components are found to be 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-rich constituents. Associated with different metal ions, Na(I), Ca(II) and Mg(II) or Fe(III), these DHICA-rich entities form distinct two-dimensional aggregation structures when dried on the flat surface of mica. The data suggest multiply-charged ions play an important role in assisting or templating the assembly of the metal-free organic components to form the three-dimensional substructure distributed along the protein scaffold within the granule.

  8. Principles for prevention of toxic effects from metals

    DEFF Research Database (Denmark)

    Landrigan, Philip J.; Kotelchuk, David; Grandjean, Philippe

    2007-01-01

    of the Toxic Effects of Metals Aluminum Antimony Arsenic Barium Beryllium Bismuth Cadmium Chromium Cobalt Copper Gallium and Semiconductor Compounds Germanium Indium Iron Lead Manganese Mercury Molybdenum Nickel Palladium Platinum Selenium Silver Tellurium Thallium Tin Titanium Tungsten Uranium Vanadium Zinc...

  9. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity.

    Science.gov (United States)

    Calap-Quintana, Pablo; González-Fernández, Javier; Sebastiá-Ortega, Noelia; Llorens, José Vicente; Moltó, María Dolores

    2017-07-06

    Iron, copper and zinc are transition metals essential for life because they are required in a multitude of biological processes. Organisms have evolved to acquire metals from nutrition and to maintain adequate levels of each metal to avoid damaging effects associated with its deficiency, excess or misplacement. Interestingly, the main components of metal homeostatic pathways are conserved, with many orthologues of the human metal-related genes having been identified and characterized in Drosophila melanogaster . Drosophila has gained appreciation as a useful model for studying human diseases, including those caused by mutations in pathways controlling cellular metal homeostasis. Flies have many advantages in the laboratory, such as a short life cycle, easy handling and inexpensive maintenance. Furthermore, they can be raised in a large number. In addition, flies are greatly appreciated because they offer a considerable number of genetic tools to address some of the unresolved questions concerning disease pathology, which in turn could contribute to our understanding of the metal metabolism and homeostasis. This review recapitulates the metabolism of the principal transition metals, namely iron, zinc and copper, in Drosophila and the utility of this organism as an experimental model to explore the role of metal dyshomeostasis in different human diseases. Finally, a summary of the contribution of Drosophila as a model for testing metal toxicity is provided.

  10. Toxicity of Transition Metal Oxide Nanoparticles: Recent Insights from in vitro Studies

    Directory of Open Access Journals (Sweden)

    Robert S. Aronstam

    2010-10-01

    Full Text Available Nanotechnology has evolved to play a prominent role in our economy. Increased use of nanomaterials poses potential human health risk. It is therefore critical to understand the nature and origin of the toxicity imposed by nanomaterials (nanotoxicity. In this article we review the toxicity of the transition metal oxides in the 4th period that are widely used in industry and biotechnology. Nanoparticle toxicity is compellingly related to oxidative stress and alteration of calcium homeostasis, gene expression, pro-inflammatory responses, and cellular signaling events. The precise physicochemical properties that dictate the toxicity of nanoparticles have yet to be defined, but may include element-specific surface catalytic activity (e.g., metallic, semiconducting properties, nanoparticle uptake, or nanoparticle dissolution. These in vitro studies substantially advance our understanding in mechanisms of toxicity, which may lead to safer design of nanomaterials.

  11. Defect-impurity interactions in ion-implanted metals

    International Nuclear Information System (INIS)

    Turos, A.

    1986-01-01

    An overview of defect-impurity interactions in metals is presented. When point defects become mobile they migrate towards the sinks and on the way can be captured by impurity atoms forming stable associations so-called complexes. In some metallic systems complexes can also be formed athermally during ion implantation by trapping point defects already in the collision cascade. An association of a point defect with an impurity atom leads to its displacement from the lattice site. The structure and stability of complexes are strongly temperature dependent. With increasing temperature they dissociate or grow by multiple defect trapping. The appearance of freely migrating point defects at elevated temperatures, due to ion bombardment or thermal annealing, causes via coupling with defect fluxes, important impurity redistribution. Because of the sensitivity of many metal-in-metal implanted systems to radiation damage the understanding of this processes is essential for a proper interpretation of the lattice occupancy measurements and the optimization of implantation conditions. (author)

  12. Metal ion interaction of an oligopeptide fragment representing the regulatory metal binding site of a CueR protein

    DEFF Research Database (Denmark)

    Jancsó, Attila; Szokolai, Hajnalka; Roszahegyi, Livia

    2013-01-01

    Metalloregulatory proteins of the MerR family are transcriptional activators that sense/control the concentration of various metal ions inside bacteria.1 The Cu+ efflux regulator CueR, similarly to other MerR proteins, possesses a short multiple Cys-containing metal binding loop close to the C...... of cognate metal ions.2 Nevertheless, it is an interesting question whether the same sequence, when removed from the protein, shows a flexibility to adopt different coordination environments and may efficiently bind metal ions having preferences for larger coordination numbers....

  13. Potential risks of metal toxicity in contaminated sediments of Deule river in Northern France

    International Nuclear Information System (INIS)

    Lourino-Cabana, Beatriz; Lesven, Ludovic; Charriau, Adeline; Billon, Gabriel; Ouddane, Baghdad; Boughriet, Abdel

    2011-01-01

    Research highlights: → A historical environmental pollution is evidenced with reference to background levels. → Sedimentary trace metals partitioning is examined under undisturbed conditions. → Anoxia and diagenetic processes induce geochemical and mineralogical variabilities. → Do metals present in particles and pore waters exhibit a potential toxicity risk? → Behaviour of binding fractions contributes to trace metals scavenging. - Abstract: The aim of this paper was to evaluate the potential sediment cumulative damage and toxicity due to metal contamination in a polluted zone of Deule river (in northern France) from nearby two smelters. Metal-enrichment factors and geoaccumulation indices measured with sediment depth revealed that - compared to background levels either in local reference soils or in world rivers sediments/suspended particulate matter - Cd contributed to the highest pollution levels, followed by Zn, Pb and to a much lesser extent Cu and Ni. A comparison of the vertical distribution of AVS (acid volatile sulfides), SEM (simultaneously extracted metals), TMC (total metal concentrations), TOC (total organic carbon) and interstitial water-metal concentrations in the sediment allowed us to highlight the extent of toxicity caused by Cd, Pb, Zn, Ni and Cu and to raise the possibility of their association with certain geochemical phases. To assess the actual environmental impacts of these metals in Deule river, numerical sediment quality guidelines were further used in the present work. Sedimentary Pb, Zn, and Cd contents largely exceeded PEC (probable effect concentration) values reported as consensus-based sediment quality guidelines for freshwater ecosystems. As for risks of toxicity from pore waters, metal concentrations reached their maxima at the surficial layers of the sediment (1-3 cm) and IWCTU (Interstitial Water Criteria Toxicity Unit) observed for Pb and to a lesser extent Cd, violated the corresponding water quality data recommended

  14. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    concentration on the uptake of metal ions have been studied. The uptake ... employed for the removal of heavy metal pollutants from industrial waste water. ... nitrate, mercuric chloride, cadmium nitrate and potassium dichromate salts. ... polymer resin was determined by reacting 50, 100, 150, 200, 250 and 300 ppm of metal.

  15. Selective removal of dissolved toxic metals from groundwater by ultrafiltration in combination with chemical treatment

    International Nuclear Information System (INIS)

    Buckley, L.P.; Le, V.T.; McConeghy, G.J.; Martin, J.F.

    1989-09-01

    An alternative in-place process for the removal of toxic heavy metals based on aqueous solution chemistry and treatment is being evaluated under the auspices of the Emerging Technologies Program funded through the USEPA's Superfund Innovative Technology Evaluation Program. The technique involves the contacting of aqueous solutions containing the heavy metal contaminants with low concentrations of polyelectrolytes, and then removing the polyelectrolytes from solution with ultrafiltration membranes. The first phase of the program is considered complete. Success has been achieved for the separation of soluble, heavy metal ions: cadmium, lead, and mercury even in the presence of an organic compound, toluene. Removal was successful at alkaline conditions, using any combination of membrane material or polyelectrolyte. Arsenic was removed, but not effectively, using the current polyelectrolytes, simply because arsenic is present as an anionic species rather than as a cationic species. Optimization of the process variables is nearing completion and pilot and field testing will take place in the second year of the program to verify the process under realistic conditions and to establish process economics

  16. From basic physics to mechanisms of toxicity: the ``liquid drop'' approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles

    Science.gov (United States)

    Sizochenko, Natalia; Rasulev, Bakhtiyor; Gajewicz, Agnieszka; Kuz'min, Victor; Puzyn, Tomasz; Leszczynski, Jerzy

    2014-10-01

    Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, when discharged to the environment. To understand the mechanism of metal oxide nanoparticles' toxicity and reduce the number of experiments, the development of predictive toxicity models is important. In this study, performed on a series of nanoparticles, the comparative quantitative-structure activity relationship (nano-QSAR) analyses of their toxicity towards E. coli and HaCaT cells were established. A new approach for representation of nanoparticles' structure is presented. For description of the supramolecular structure of nanoparticles the ``liquid drop'' model was applied. It is expected that a novel, proposed approach could be of general use for predictions related to nanomaterials. In addition, in our study fragmental simplex descriptors and several ligand-metal binding characteristics were calculated. The developed nano-QSAR models were validated and reliably predict the toxicity of all studied metal oxide nanoparticles. Based on the comparative analysis of contributed properties in both models the LDM-based descriptors were revealed to have an almost similar level of contribution to toxicity in both cases, while other parameters (van der Waals interactions, electronegativity and metal-ligand binding characteristics) have unequal contribution levels. In addition, the models developed here suggest different mechanisms of nanotoxicity for these two types of cells.Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, when discharged to the environment. To understand the mechanism of metal oxide nanoparticles' toxicity and reduce the number of experiments, the development of predictive toxicity models is important. In this study, performed on a series of nanoparticles, the comparative quantitative-structure activity relationship (nano-QSAR) analyses of their toxicity towards E. coli and HaCaT cells were

  17. Investigation of metal ions in fusion plasmas using emission spectroscopy

    International Nuclear Information System (INIS)

    Tale, I.

    2005-01-01

    Full text: The Latvian and Portugal Associations are performing development of advanced plasma - facing system using the liquid metal limiter. The objectives of this project require study of the influence of the liquid metal limiter on the main plasma parameters, including concentration of evaporated metal atoms in plasma. The fusion plasmas are related to the dense hot plasmas. The required average ion temperature according to the ITER project (International Thermonuclear Experimental Reactor) is 8,0 keV (9,3 x 10 7 0 K), the average electron temperature - 8,9 keV (1,04 x 10 8 0 K). Plasma temperature operated in the research tokamak ISSTOK, involved in testing of liquid metal limiter concept is considerably less, being of order of 10 50 K. The ionization degree of metal atoms considerably depends on the plasma ion temperature. Density of metal vapours in plasma can be estimated using the following two spectroscopic methods: The fluorescence of the multiple ionised metal ions in steady state concentration; The charge exchange emission during ionisation of evaporated metal ions. In the first step of development of testing system of metal vapours the equipment and instrumentation for charge exchange spectroscopy of Ga and In has been elaborated taking into account the following features of plasma emission. The Ga emission lines occur on the background high temperature plasma black body emission and stray light. Radial distribution of Ga in plasma in the facing plane of Ga flux is desirable

  18. Application of monocarboxylic acids for the extraction of metal ions-literature survey

    International Nuclear Information System (INIS)

    Brzozka, Z.; Rozycki, C.

    1980-01-01

    In the paper there is presented a literature review concerning the application of monocarboxylic acids for extraction of metal ions. The following problems are discussed: characteristic of monocarboxylic acids and their mixtures, the equilibria between the acid solution in organic solvent and aqueous phase, the mechanism of acid partition, complexes of carboxylic acids and metal ions in aqueous phase, mechanism of extraction by means of carboxylic acids as well as the problems concerning the extraction of individual metal ions. Data about the extraction of metal ions are presented in table. The 138 references are given. (author)

  19. Uptake of metal ions by a silica-based tetraphenylporphyrin sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Pyrzynska, K.; Sadowska, M.; Trojanowicz, M.

    1999-09-01

    The [5-p-carboxyphenyl-10,15,20-triphenyl]porphyrin (TPP) covalently attached to aminopropyl silica gel was examined with respect to the sorption of transition metal ions. The distribution coefficients (K{sub d}) are reported for some metal ions with this new sorbent as a function of pH. It was found that in optimum pH conditions the sorption of Cu(II) and Fe(III) is much faster than that of Co(II) and Cr(III). The binding of metal ions is strongly affected by the presence of various species accelerating the complex formation. The application of porphyrin ligands for preconcentration and metal-matrix separation was also examined using complex formation in solution coupled with an anion exchange resin and column chelation procedure, e.g. sorption of metal on an anion exchanger previously loaded with tetra(4-carboxyphenyl)porphyrin.

  20. Metal toxicity in a sediment-dwelling polychaete: Threshold body concentrations or overwhelming accumulation rates?

    International Nuclear Information System (INIS)

    Carmen Casado-Martinez, M.; Smith, Brian D.; Luoma, Samuel N.; Rainbow, Philip S.

    2010-01-01

    We followed the net accumulation of As, Cu and Zn in the deposit-feeding polychaete Arenicola marina exposed in the laboratory to natural metal-contaminated sediments, one exposure leading to mass mortality between day 10 and 20, and the other not causing lethality over a period of 60 days of exposure. The worms showed lower total accumulated metal concentrations just before mortality occurred (<20 days) at the lethal exposure, than after 30 days of exposure to sediments not causing mortality. Moreover rates of accumulation of As, Cu and Zn were significantly higher in the lethal exposure than in the sublethal exposure. Our results show that it is not possible to link mortality to a critical total body concentration, and we add to a growing body of literature indicating that metal toxicity occurs when organisms cannot cope with overwhelming influx and subsequent accumulation rates. - Laboratory exposures with the deposit-feeding polychaete Arenicola marina suggest that toxicity is not caused by the accumulated concentration of toxic metals in the body of the animal, but by the rate at which the toxic metal is accumulated.

  1. Acute toxicity of heavy metals towards freshwater ciliated protists

    Energy Technology Data Exchange (ETDEWEB)

    Madoni, Paolo [Dipartimento di Scienze Ambientali, Universita degli Studi di Parma, Parco Area delle Scienze 11/A, 43100 Parma (Italy)]. E-mail: paolo.madoni@unipr.it; Romeo, Maria Giuseppa [Dipartimento di Scienze Ambientali, Universita degli Studi di Parma, Parco Area delle Scienze 11/A, 43100 Parma (Italy)

    2006-05-15

    The acute toxicity of five heavy metals to four species of freshwater ciliates (Colpidium colpoda, Dexiotricha granulosa, Euplotes aediculatus, and Halteria grandinella) was examined in laboratory tests. After exposing the ciliates to soluble compound of cadmium, copper, chromium, lead, and nickel at several selected concentrations, the mortality rate was registered and the LC{sub 5} values (with 95% confidence intervals) were calculated. Large differences appeared in sensitivities of the four species to the metals. H. grandinella showed the highest sensitivity for cadmium (0.07 mg l{sup -1}, LC{sub 5}) and lead (0.12 mg l{sup -1}, LC{sub 5}), whilst E. aediculatus showed the highest sensitivity for nickel (0.03 mg l{sup -1}, LC{sub 5}). The comparison with data obtained with other species indicate that Halteria grandinella and Euplotes aediculatus are excellent and convenient bioindicator for evaluating the toxicity of waters and wastewaters polluted by heavy metals. The short time (24 h) and simplicity of the test procedure enable this test to be used in laboratory studies. - Ciliated protozoa are suitable bioindicators of heavy metal pollution in freshwater environments.

  2. Toxic effect of metal cation binary mixtures to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Mendes, Luiz Fernando; Stevani, Cassius Vinicius; Zambotti-Villela, Leonardo; Yokoya, Nair Sumie; Colepicolo, Pio

    2014-01-01

    The macroalga Gracilaria domingensis is an important resource for the food, pharmaceutical, cosmetic, and biotechnology industries. G. domingensis is at a part of the food web foundation, providing nutrients and microelements to upper levels. As seaweed storage metals in the vacuoles, they are considered the main vectors to magnify these toxic elements. This work describes the evaluation of the toxicity of binary mixtures of available metal cations based on the growth rates of G. domingensis over a 48-h exposure. The interactive effects of each binary mixture were determined using a toxic unit (TU) concept that was the sum of the relative contribution of each toxicant and calculated using the ratio between the toxicant concentration and its endpoint. Mixtures of Cd(II)/Cu(II) and Zn(II)/Ca(II) demonstrated to be additive; Cu(II)/Zn(II), Cu(II)/Mg(II), Cu(II)/Ca(II), Zn(II)/Mg(II), and Ca(II)/Mg(II) mixtures were synergistic, and all interactions studied with Cd(II) were antagonistic. Hypotheses that explain the toxicity of binary mixtures at the molecular level are also suggested. These results represent the first effort to characterize the combined effect of available metal cations, based on the TU concept on seaweed in a total controlled medium. The results presented here are invaluable to the understanding of seaweed metal cation toxicity in the marine environment, the mechanism of toxicity action and how the tolerance of the organism.

  3. Coordination of cassava starch to metal ions and thermolysis of ...

    African Journals Online (AJOL)

    Cassava starch formed Werner-type complexes with ions of metals from the transition groups. This was proven by conductivity and electron paramagnetic resonance measurements. The coordination of starch to central metal ions influenced the thermal decomposition of starch. As a rule complexes started to decompose at ...

  4. Determination of Levels of Essential and Toxic Heavy Metals in ...

    African Journals Online (AJOL)

    The concentrations of trace essential metals (Co, Cu, Fe, Mn, Ni and Zn) and toxic heavy metals (Cd and Pb) in lentil samples collected from Dejen (East Gojjam), Boset (East Shewa) and Molale (North Shewa), Ethiopia, were determined by flame atomic absorption spectrometry. A wet digestion procedure, using mixtures of ...

  5. Metal Oxide Nanomaterial QNAR Models: Available Structural Descriptors and Understanding of Toxicity Mechanisms

    Directory of Open Access Journals (Sweden)

    Jiali Ying

    2015-10-01

    Full Text Available Metal oxide nanomaterials are widely used in various areas; however, the divergent published toxicology data makes it difficult to determine whether there is a risk associated with exposure to metal oxide nanomaterials. The application of quantitative structure activity relationship (QSAR modeling in metal oxide nanomaterials toxicity studies can reduce the need for time-consuming and resource-intensive nanotoxicity tests. The nanostructure and inorganic composition of metal oxide nanomaterials makes this approach different from classical QSAR study; this review lists and classifies some structural descriptors, such as size, cation charge, and band gap energy, in recent metal oxide nanomaterials quantitative nanostructure activity relationship (QNAR studies and discusses the mechanism of metal oxide nanomaterials toxicity based on these descriptors and traditional nanotoxicity tests.

  6. Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening--current concepts.

    Science.gov (United States)

    Cadosch, Dieter; Chan, Erwin; Gautschi, Oliver P; Filgueira, Luis

    2009-12-15

    Metal implants are essential therapeutic tools for the treatment of bone fractures and joint replacements. The metals and metal alloys used in contemporary orthopedic and trauma surgery are well tolerated by the majority of patients. However, complications resulting from inflammatory and immune reactions to metal implants have been well documented. This review briefly discusses the different mechanisms of metal implant corrosion in the human body, which lead to the release of significant levels of metal ions into the peri-implant tissues and the systemic blood circulation. Additionally, this article reviews the effects of the released ions on bone metabolism and the immune system and discusses their involvement in the pathophysiological mechanisms of aseptic loosening and metal hypersensitivity in patients with metal implants.

  7. Real-time detection of metal ions using conjugated polymer composite papers.

    Science.gov (United States)

    Lee, Ji Eun; Shim, Hyeon Woo; Kwon, Oh Seok; Huh, Yang-Il; Yoon, Hyeonseok

    2014-09-21

    Cellulose, a natural polymeric material, has widespread technical applications because of its inherent structural rigidity and high surface area. As a conjugated polymer, polypyrrole shows practical potential for a diverse and promising range of future technologies. Here, we demonstrate a strategy for the real-time detection and removal of metal ions with polypyrrole/cellulose (PPCL) composite papers in solution. Simply, the conjugated polymer papers had different chemical/physical properties by applying different potentials to them, which resulted in differentiable response patterns and adsorption efficiencies for individual metal ions. First, large-area PPCL papers with a diameter of 5 cm were readily obtained via vapor deposition polymerization. The papers exhibited both mechanical flexibility and robustness, in which polypyrrole retained its redox property perfectly. The ability of the PPCL papers to recognize metal ions was examined in static and flow cells, in which real-time current change was monitored at five different applied potentials (+1, +0.5, 0, -0.5, and -1 V vs. Ag/AgCl). Distinguishable signals in the PPCL paper responses were observed for individual metal ions through principal component analysis. Particularly, the PPCL papers yielded unique signatures for three metal ions, Hg(ii), Ag(i), and Cr(iii), even in a real sample, groundwater. The sorption of metal ions by PPCL papers was examined in the flow system. The PPCL papers had a greatly superior adsorption efficiency for Hg(ii) compared to that of the other metal ions. With the strong demand for the development of inexpensive, flexible, light-weight, and environmentally friendly devices, the fascinating characteristics of these PPCL papers are likely to provide good opportunities for low-cost paper-based flexible or wearable devices.

  8. Separation of strontium ions from other alkaline earth metal ions using masking reagent

    International Nuclear Information System (INIS)

    Komatsu, Y.

    1996-01-01

    Cs + and Sr 2+ have been well known as serious elements in high level radioactive waste. Separation of Cs + has already been successful when using an ion-exchange method from solution in the presence of other alkali metal ions. The separation of Sr 2+ is, however, not so easy by any known separation method such as solvent-extraction and ion-exchange methods. This is because Sr 2+ is in the middle of the selectivity series, which is Mg 2+ > Ca 2+ > Sr 2+ > Ba 2+ for the solvent-extraction method and Ba 2+ > Sr 2+ > Ca 2+ > Mg 2+ for the ion- exchange method. In the present study, separation of strontium from other alkaline earth metal ions was studied by a combined use of three types of separation methods at 298 K: the solvent-extraction method was applied for the first separation, in which thenoyltrifluoroacetone (TTA, extractant) and trioctylphosphine oxide ( TOPO, adduct forming ligand) were used for the organic phase of the system. The separation factors for each combination of four alkaline earth metal ions were determined by the values of the distribution ratio. The Mg 2+ was well separated from Sr 2+ by the TTA-TOPO system. However, the separation of the combinations of Ca 2+ -Sr 2+ and Sr 2+ -Ba 2+ was not complete by the above solvent-extraction system. The second separation method, an ion-exchange method was applied using dihydrogen tetratitanate hydrate fibers (H 2 Ti 4 O 9 nH 2 O) as an ion exchanger to separate Sr 2+ and Ba 2+ . The separation factors for each combination of four alkaline earth metal ions were calculated by the values of the distribution coefficients. Ba 2+ was well separated from Sr 2+ by the ion-exchange method. To separate Ca 2+ and Sr 2+ , however, a modified solvent-extraction method was finally used in which H 2 Ti 4 O 9 nH 2 O was used as a masking reagent of Sr 2+ . After the dihydrogen tetratitanate hydrate fibers were contacted with the aqueous solution containing Ca 2+ and Sr 2+ , the organic solution containing TTA and TOPO

  9. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture

    International Nuclear Information System (INIS)

    Zhang Yu; Cai Xiyun; Lang Xianming; Qiao Xianliang; Li Xuehua; Chen Jingwen

    2012-01-01

    Co-contamination of ligand-like antibiotics (e.g., tetracyclines and quinolones) and heavy metals prevails in the environment, and thus the complexation between them is involved in environmental risks of antibiotics. To understand toxicological significance of the complex, effects of metal coordination on antibiotics' toxicity were investigated. The complexation of two antibiotics, oxytetracycline and ciprofloxacin, with three heavy metals, copper, zinc, and cadmium, was verified by spectroscopic techniques. The antibiotics bound metals via multiple coordination sites and rendered a mixture of various complexation speciations. Toxicity analysis indicated that metal coordination did modify the toxicity of the antibiotics and that antibiotic, metal, and their complex acted primarily as concentration addition. Comparison of EC 50 values revealed that the complex commonly was highest toxic and predominately correlated in toxicity to the mixture. Finally, environmental scenario analysis demonstrated that ignoring complexation would improperly classify environmental risks of the antibiotics. - Highlights: ► The complex of antibiotic with metal is a mixture of various complexation modes. ► Antibiotic and metal act as various combined interactions when their complexation is ignored. ► Antibiotic, metal, and their complex act as concentration addition interaction. ► Complex commonly is the highest toxicant. ► Neglecting complexation renders improper classification of risks for antibiotics. - Antibiotic, heavy metal and their complex act primarily as concentration addition interaction and the complex commonly is highest toxic.

  10. Development of a method employing chitosan to remove metallic ions from wastewater

    International Nuclear Information System (INIS)

    Janegitz, Bruno Campos; Lourencao, Bruna Claudia; Lupetti, Karina Omuro; Fatibello-Filho, Orlando

    2007-01-01

    In this work a method was developed for removing metallic ions from wastewaters by co-precipitation of Cu 2+ , Pb 2+ , Cd 2+ , Cr 3+ and Hg 2+ with chitosan and sodium hydroxide solution. Solutions of these metallic ions in the range from 0.55 to 2160 mg L -1 were added to chitosan dissolved in 0.05 mol L -1 HCl. For the co-precipitation of metal-chitosan-hydroxide a 0.17 mol L -1 NaOH solution was added until pH 8.5-9.5. A parallel study was carried out applying a 0.17 mol L -1 NaOH solution to precipitate those metallic ions. Also, a chitosan solid phase column was used for removing those metallic ions from wastewaters. (author)

  11. Distribution, relationship, and risk assessment of toxic heavy metals in walnuts and growth soil.

    Science.gov (United States)

    Han, Yongxiang; Ni, Zhanglin; Li, Shiliang; Qu, Minghua; Tang, Fubin; Mo, Runhong; Ye, Caifen; Liu, Yihua

    2018-04-14

    Walnut is one of the most popular nuts worldwide and contains various mineral nutrients. Little is known, however, about the relationship between toxic heavy metals in walnuts and growth soil. In this study, we investigated the distribution, relationship, and risk assessment of five toxic heavy metals-lead (Pb), arsenic (As), chromium (Cr), cadmium (Cd), and mercury (Hg)-in walnuts and growth soil in the main production areas of China. The results showed that the main heavy metal pollution in walnut and soil was Pb and Cd. Regionally, positive relationships existed between heavy metals and the pH and organic matter of soil. In addition, we observed a notable uptake effect between walnut and growth soil. In this study, we found a significant correlation (r = 0.786, P toxic heavy metal pollution in walnuts and growth soil could be helpful to screen suitable planting sites to prevent and control heavy metal pollution and improve the quality and safety of walnut.

  12. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    Science.gov (United States)

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  13. Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed

    Directory of Open Access Journals (Sweden)

    T.M. Zewail

    2015-03-01

    Full Text Available Spouted bed contactor is a hybrid of fixed and fluidized bed contactors, which retains the advantages of each with good hydrodynamic conditions. The aim of the present study is to investigate the performance of a batch conical air spouted vessel for heavy metal removal by strong cation exchange resins (AMBERJET 1200 Na. The effect of various parameters such as type of heavy metal ions (Ni+2 and Pb+2, contact time, superficial air velocity and initial heavy metal ion concentration on % heavy metal ion removal has been investigated. It has been found that under optimum conditions 98% and 99% removal of Ni+2 and Pb+2 were achieved respectively. Several kinetic models were used to test the experimental data and to examine the controlling mechanism of the sorption process. The present results of Ni+2 and Pb+2 well fit pseudo second order kinetic model with a high correlation coefficient. Both film diffusion and intra-particle diffusion contribute to the ion exchange process. The present study revealed that spouted bed vessel may provide an effective alternative for conducting ion exchange reactions.

  14. BioMetals: a historical and personal perspective.

    Science.gov (United States)

    Silver, Simon

    2011-06-01

    Understanding of BioMetals developed basically from a starting point about 60 years ago to current mechanistic understanding of the biological behavior of many metal ions from protein structural and functional studies. Figure 1 shows a Biochemical Periodic Table, element by element, with requirements, roles and biochemistry of the specific ions indicated. With few exceptions, the biology is of the ions formed and not of the elemental state of each. Early BioMetals efforts defined nutritional growth needs for animals, plants and microbes for inorganic "macro-nutrients" such as magnesium, calcium, potassium, sodium, and phosphate and of "micronutrients" such as copper, iron, manganese and zinc. Surprises came early with regard to microbes, for example the finding that Escherichia coli (then and now the standard microbial model) grows happily in the apparent total absence of calcium, sodium, and chloride, which are certainly major animal nutrients. Some elements such as mercury and arsenic are never required by living cells, but are always toxic, often at very low levels. Therefore, the division into nutrient elements and toxic elements came soon. For most inorganic nutrients, excessive amounts can be toxic as well, for example for copper and iron.

  15. MCTBI: a web server for predicting metal ion effects in RNA structures.

    Science.gov (United States)

    Sun, Li-Zhen; Zhang, Jing-Xiang; Chen, Shi-Jie

    2017-08-01

    Metal ions play critical roles in RNA structure and function. However, web servers and software packages for predicting ion effects in RNA structures are notably scarce. Furthermore, the existing web servers and software packages mainly neglect ion correlation and fluctuation effects, which are potentially important for RNAs. We here report a new web server, the MCTBI server (http://rna.physics.missouri.edu/MCTBI), for the prediction of ion effects for RNA structures. This server is based on the recently developed MCTBI, a model that can account for ion correlation and fluctuation effects for nucleic acid structures and can provide improved predictions for the effects of metal ions, especially for multivalent ions such as Mg 2+ effects, as shown by extensive theory-experiment test results. The MCTBI web server predicts metal ion binding fractions, the most probable bound ion distribution, the electrostatic free energy of the system, and the free energy components. The results provide mechanistic insights into the role of metal ions in RNA structure formation and folding stability, which is important for understanding RNA functions and the rational design of RNA structures. © 2017 Sun et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. The ion implantation of metals and engineering materials

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1978-01-01

    An entirely new method of metal finishing, by the process of ion implantation, is described. Introduced at first for semiconductor device applications, this method has now been demonstrated to produce major and long-lasting improvements in the durability of material surfaces, as regards both wear and corrosion. The process is distinct from that of ion plating, and it is not a coating technique. After a general description of ion implantation examples are given of its effects on wear behaviour (mostly in steels and cemented carbides) and on corrosion, in a variety of metals and alloys. Its potential for producing decorative finishes is mentioned briefly. The equipment necessary for carrying out ion implantation for engineering applications has now reached the prototype stage, and manufacture of plant for treating a variety of tools and components is about to commence. These developments are outlined. (author)

  17. Metal ion binding with dehydroannulenes – Plausible two ...

    Indian Academy of Sciences (India)

    WINTEC

    Theoretical investigations have been carried out at B3LYP/6-311++G** level of theory to study the binding ... Alkali metals; dehydroannulenes; binding energy; penetration barrier. 1. .... can be discriminated from larger metal ions by running.

  18. Dietary toxicity of field-contaminated invertebrates to marine fish: effects of metal doses and subcellular metal distribution.

    Science.gov (United States)

    Dang, Fei; Rainbow, Philip S; Wang, Wen-Xiong

    2012-09-15

    There is growing awareness of the toxicological effects of metal-contaminated invertebrate diets on the health of fish populations in metal-contaminated habitats, yet the mechanisms underlying metal bioaccumulation and toxicity are complex. In the present study, marine fish Terapon jurbua terepon were fed a commercial diet supplemented with specimens of the polychaete Nereis diversicolor or the clam Scrobicularia plana, collected from four metal-impacted estuaries (Tavy, Restronguet Creek, West Looe, Gannel) in southwest England, as environmentally realistic metal sources. A comparative toxicological evaluation of both invertebrates showed that fish fed S. plana for 21 d exhibited evident mortality compared to those fed N. diversicolor. Furthermore, a spatial effect on mortality was observed. Differences in metal doses rather than subcellular metal distributions between N. diversicolor and S. plana appeared to be the cause of such different mortalities. Partial least squares regression was used to evaluate the statistical relationship between multiple-metal doses and fish mortality, revealing that Pb, Fe, Cd and Zn in field-collected invertebrates co-varied most strongly with the observed mortality. This study provides a step toward exploring the underlying mechanism of dietary toxicity and identifying the potential causality in complex metal mixture exposures in the field. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Metal negative ion beam extraction from a radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  20. Ion-induced effects on metallic nanoparticles

    International Nuclear Information System (INIS)

    Klimmer, Andreas

    2010-01-01

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L1 0 phase. (orig.)

  1. Adaptation of metal arc plasma source to plasma source ion implantation

    International Nuclear Information System (INIS)

    Shamim, M.M.; Fetherston, R.P.; Conrad, J.R.

    1995-01-01

    In Plasma Source Ion Implantation (PSII) a target is immersed in a plasma and a train of high negative voltage pulses is applied to accelerate ions into the target and to modify the properties in the near surface region. In PSII, until now the authors have been using gaseous species to generate plasmas. However metal ion plasma may be used to modify the surface properties of material for industrial applications. Conventionally the ion implantation of metal ions is performed using beam line accelerators which have complex engineering and high cost. The employment of a metal arc source to PSII has tremendous potential due to its ability to process the conformal surfaces, simple engineering and cost effectiveness. They have installed metal arc source for generation of titanium plasma. Currently, they are investigating the properties of titanium plasma and material behavior of titanium implanted aluminum and 52100 steel. The recent results of this investigation are presented

  2. Adsorption of heavy metal ions by activated charcoal

    International Nuclear Information System (INIS)

    Fujikawa, Mitsuo

    1978-01-01

    The adsorption effect was measured for several kinds of heavy metal ions, Pb 2+ , Cd 2+ , Cu 2+ and Zn 2+ by passing them through activated charcoal beds and changing the pH values of solutions. The test procedure is to keep the pH value of solution more than 10 at first, filter heavy metal hydroxide deposit, measure the remaining ion concentration in filtrate, and also test the influence of the addition of alkali to each kind of ions. The individual test procedure for each kind of ions is explained. As for the Cd ions, after the detailed experimental procedure is explained, the adsorption characteristic line is shown as the relation between the adsorption quantity and the equilibrium concentration of Cd 2+ . The similar test procedure and the adsorption characteristic lines are shown and evaluated about Pb 2+ , Cu 2+ and Zn 2+ . These lines are all linear, but have different adsorption quantity and inclination in relation to heavy metal ion concentration. Concerning the influence of pH to adsorption, the characteristics of pH increase are presented, when alkali is added by various quantities to Zn 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The pH of Pb 2+ increased to about 10 by adding 0.4 cc alkali and saturates, but the pH of the other ions did not saturate by adding less than 1.5 cc alkali. When the water containing heavy metals are treated, Cd 2+ , Pb 2+ , Cu 2+ and Zn 2+ are removed almost satisfactorily by passing them through active charcoal filters and keeping pH at 10. The experimental concentrations are 0.05 ppm at pH 10 in Cd, 0.86 ppm at 10.3 in Pb, 0 ppm at pH 9.6 in Cu, 0.06 ppm at pH 8.8 and 12.4 ppm at pH 9.8 in Zn. (Nakai, Y.)

  3. Toxic effect of heavy metals on aquatic environment | Baby ...

    African Journals Online (AJOL)

    Toxic effect of heavy metals on aquatic environment. ... International Journal of Biological and Chemical Sciences ... The indiscriminate discharge of industrial effluents, raw sewage wastes and other waste pollute most of the environments and ...

  4. [Toxic nephropathy secondary to occupational exposure to metallic mercury].

    Science.gov (United States)

    Voitzuk, Ana; Greco, Vanina; Caputo, Daniel; Alvarez, Estela

    2014-01-01

    Toxic nephrophaties secondary to occupational exposure to metals have been widely studied, including membranous nephropathy by mercury, which is rare. Occupational poisoning by mercury is frequent, neurological symptoms are the main form of clinical presentation. Secondary renal involvement in chronic exposure to metallic mercury can cause glomerular disease by deposit of immune-complexes. Membranous glomerulopathy and minimal change disease are the most frequently reported forms. Here we describe the case of a patient with occupational exposure to metallic mercury, where nephrotic syndrome due to membranous glomerulonephritis responded favorably to both chelation and immunosuppressive therapy.

  5. Metallo-Graphene Nanocomposite Electrocatalytic Platform for the Determination of Toxic Metal Ions

    Directory of Open Access Journals (Sweden)

    Emmanuel I. Iwuoha

    2011-04-01

    Full Text Available A Nafion-Graphene (Nafion-G nanocomposite solution in combination with an in situ plated mercury film electrode was used as a highly sensitive electrochemical platform for the determination of Zn2+, Cd2+, Pb2+ and Cu2+ in 0.1 M acetate buffer (pH 4.6 by square-wave anodic stripping voltammetry (SWASV. Various operational parameters such as deposition potential, deposition time and electrode rotation speed were optimized. The Nafion-G nanocomposite sensing platform exhibited improved sensitivity for metal ion detection, in addition to well defined, reproducible and sharp stripping signals. The linear calibration curves ranged from 1 µg L−1 to 7 µg L−1 for individual analysis. The detection limits (3σ blank/slope obtained were 0.07 µg L−1 for Pb2+, Zn2+ and Cu2+ and 0.08 µg L−1 for Cd2+ at a deposition time of 120 s. For practical applications recovery studies was done by spiking test samples with known concentrations and comparing the results with inductively coupled plasma mass spectrometry (ICP-MS analyses. This was followed by real sample analysis.

  6. Fatigue and wear of metalloid-ion-implanted metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Richter, E.; Rauschenbach, B.; Blochwitz, C.

    1985-01-01

    The effect of metalloid ion implantation on the fatigue behaviour and wear of nickel and two steels has been investigated. These metals were implanted with boron, carbon and nitrogen ions at energies from 30 to 60 keV and with doses from 1 X 10 16 to 1 X 10 18 ions cm -2 at room temperature. The mechanical behaviour of fatigued nickel was studied in push-pull tests at room temperature. Wear measurements were made using a pin-and-disc technique. The surface structure, dislocation arrangement and modification of the implantation profile resulting from mechanical tests on metals which had been implanted with metalloid ions were examined using high voltage electron microscopy, transmission high energy electron diffraction, scanning electron microscopy and Auger electron spectroscopy. It is reported that nitrogen and boron ion implantation improves the fatigue lifetime, changes the number and density of the slip bands and modifies the dislocation arrangements in nickel. The cyclic deformation leads to recrystallization of the boron-ion-induced amorphous structure of nickel and to diffusion of the boron and nitrogen in the direction of the surface. The wear behaviour of steels was improved by implantation of mass-separated ions and by implantation of ions without mass separation. (Auth.)

  7. Metal ion binding to iron oxides

    Science.gov (United States)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  8. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment.

    Science.gov (United States)

    Wu, Xiangyang; Cobbina, Samuel J; Mao, Guanghua; Xu, Hai; Zhang, Zhen; Yang, Liuqing

    2016-05-01

    The rational for the study was to review the literature on the toxicity and corresponding mechanisms associated with lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), individually and as mixtures, in the environment. Heavy metals are ubiquitous and generally persist in the environment, enabling them to biomagnify in the food chain. Living systems most often interact with a cocktail of heavy metals in the environment. Heavy metal exposure to biological systems may lead to oxidation stress which may induce DNA damage, protein modification, lipid peroxidation, and others. In this review, the major mechanism associated with toxicities of individual metals was the generation of reactive oxygen species (ROS). Additionally, toxicities were expressed through depletion of glutathione and bonding to sulfhydryl groups of proteins. Interestingly, a metal like Pb becomes toxic to organisms through the depletion of antioxidants while Cd indirectly generates ROS by its ability to replace iron and copper. ROS generated through exposure to arsenic were associated with many modes of action, and heavy metal mixtures were found to have varied effects on organisms. Many models based on concentration addition (CA) and independent action (IA) have been introduced to help predict toxicities and mechanisms associated with metal mixtures. An integrated model which combines CA and IA was further proposed for evaluating toxicities of non-interactive mixtures. In cases where there are molecular interactions, the toxicogenomic approach was used to predict toxicities. The high-throughput toxicogenomics combines studies in genetics, genome-scale expression, cell and tissue expression, metabolite profiling, and bioinformatics.

  9. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes.

    Science.gov (United States)

    DeMuth, J Corinne; McLuckey, Scott A

    2015-01-20

    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  10. Synergistic influence of phosphorylation and metal ions on tau oligomer formation and coaggregation with α-synuclein at the single molecule level

    Directory of Open Access Journals (Sweden)

    Nübling Georg

    2012-07-01

    Full Text Available Abstract Background Fibrillar amyloid-like deposits and co-deposits of tau and α-synuclein are found in several common neurodegenerative diseases. Recent evidence indicates that small oligomers are the most relevant toxic aggregate species. While tau fibril formation is well-characterized, factors influencing tau oligomerization and molecular interactions of tau and α-synuclein are not well understood. Results We used a novel approach applying confocal single-particle fluorescence to investigate the influence of tau phosphorylation and metal ions on tau oligomer formation and its coaggregation with α-synuclein at the level of individual oligomers. We show that Al3+ at physiologically relevant concentrations and tau phosphorylation by GSK-3β exert synergistic effects on the formation of a distinct SDS-resistant tau oligomer species even at nanomolar protein concentration. Moreover, tau phosphorylation and Al3+ as well as Fe3+ enhanced both formation of mixed oligomers and recruitment of α-synuclein in pre-formed tau oligomers. Conclusions Our findings provide a new perspective on interactions of tau phosphorylation, metal ions, and the formation of potentially toxic oligomer species, and elucidate molecular crosstalks between different aggregation pathways involved in neurodegeneration.

  11. Effects of metal-ion replacement on pyrazinamidase activity: A quantum mechanical study.

    Science.gov (United States)

    Khadem-Maaref, Mahmoud; Mehrnejad, Faramarz; Phirouznia, Arash

    2017-05-01

    Pyrazinamidase (PZase), a metalloenzyme, is responsible for acidic modification of pyrazinamide (PZA), a drug used in tuberculosis treatment. The metal coordination site of the enzyme is able to coordinate various divalent metal cofactors. Previous experimental studies have demonstrated that metal ions, such as Co 2+ , Mn 2+ , and Zn 2+ , are able to reactivate metal-depleted PZase, while others including Cu 2+ , Fe 2+ , and Mg 2+ , cannot restore activity. In this study, we investigated binding of various metal ions to the metal coordination site (MCS) of the enzyme using quantum mechanical calculations. We calculated the metal-ligand (residue) binding energy and the atomic partial charges in the presence of various ions. The results indicated that the tendency of alkaline earth metals to bind to PZase MCS is very low and not suitable for enzyme structural and catalytic function. In contrast, Co 2+ and Ni 2+ ions have very high binding affinity and are favorable to the structural and functional properties of the enzyme. Furthermore, we observed that the rate at which Ni 2+ , Co 2+ and Fe 2+ ions in PZase MCS polarize the OH bond of coordinated water molecules is much higher than the polarization rate created by other ions. This finding suggests that the coordination of Ni 2+ , Co 2+ , or Fe 2+ to PZase facilitates the deprotonation of coordinated water molecules to generate a nucleophile that catalyzes the enzymatic reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhang [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Cai Xiyun, E-mail: xiyuncai@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Xianming, Lang [Liaoning Academy of Environmental Sciences, Shenyang 110031 (China); Xianliang, Qiao; Xuehua, Li; Jingwen, Chen [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-07-15

    Co-contamination of ligand-like antibiotics (e.g., tetracyclines and quinolones) and heavy metals prevails in the environment, and thus the complexation between them is involved in environmental risks of antibiotics. To understand toxicological significance of the complex, effects of metal coordination on antibiotics' toxicity were investigated. The complexation of two antibiotics, oxytetracycline and ciprofloxacin, with three heavy metals, copper, zinc, and cadmium, was verified by spectroscopic techniques. The antibiotics bound metals via multiple coordination sites and rendered a mixture of various complexation speciations. Toxicity analysis indicated that metal coordination did modify the toxicity of the antibiotics and that antibiotic, metal, and their complex acted primarily as concentration addition. Comparison of EC{sub 50} values revealed that the complex commonly was highest toxic and predominately correlated in toxicity to the mixture. Finally, environmental scenario analysis demonstrated that ignoring complexation would improperly classify environmental risks of the antibiotics. - Highlights: Black-Right-Pointing-Pointer The complex of antibiotic with metal is a mixture of various complexation modes. Black-Right-Pointing-Pointer Antibiotic and metal act as various combined interactions when their complexation is ignored. Black-Right-Pointing-Pointer Antibiotic, metal, and their complex act as concentration addition interaction. Black-Right-Pointing-Pointer Complex commonly is the highest toxicant. Black-Right-Pointing-Pointer Neglecting complexation renders improper classification of risks for antibiotics. - Antibiotic, heavy metal and their complex act primarily as concentration addition interaction and the complex commonly is highest toxic.

  13. Long range implantation by MEVVA metal ion source

    International Nuclear Information System (INIS)

    Zhang Tonghe; Wu Yuguang; Ma Furong; Liang Hong

    2001-01-01

    Metal vapor vacuum arc (MEVVA) source ion implantation is a new technology used for achieving long range ion implantation. It is very important for research and application of the ion beam modification of materials. The results show that the implanted atom diffusion coefficient increases in Mo implanted Al with high ion flux and high dose. The implanted depth is 311.6 times greater than that of the corresponding ion range. The ion species, doses and ion fluxes play an important part in the long-range implantation. Especially, thermal atom chemistry have specific effect on the long-range implantation during high ion flux implantation at transient high target temperature

  14. Isotherms of ion exchange on titanates of alkaline metals

    International Nuclear Information System (INIS)

    Fillina, L.P.; Belinskaya, F.A.

    1986-01-01

    Present article is devoted to isotherms of ion exchange on titanates of alkaline metals. Therefore, finely dispersed hydrated titanates of alkaline metals (lithium, sodium, potassium) with ion exchange properties are obtained by means of alkaline hydrolysis of titanium chloride at high ph rates. Sorption of cations from salts solution of Li 2 SO 4 , NaNO 3 , Ca(NO 3 ) 2 , AgNO 3 by titanates is studied.

  15. Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium.

    Science.gov (United States)

    Li, Kungang; Chen, Ying; Zhang, Wen; Pu, Zhichao; Jiang, Lin; Chen, Yongsheng

    2012-08-20

    To better understand the potential impacts of engineered metal oxide nanoparticles (NPs) in the ecosystem, we investigated the acute toxicity of seven different types of engineered metal oxide NPs against Paramecium multimicronucleatum, a ciliated protozoan, using the 48 h LC(50) (lethal concentration, 50%) test. Our results showed that the 48 h LC(50) values of these NPs to Paramecium ranged from 0.81 (Fe(2)O(3) NPs) to 9269 mg/L (Al(2)O(3) NPs); their toxicity to Paramecium increased as follows: Al(2)O(3) Paramecium; this implies that metal oxide NPs with strong association with the cell surface might induce more severe cytotoxicity in unicellular organisms.

  16. The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on the alterations caused by lead(II) ions in the organization of model lipid membranes.

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Sroka, Aleksandra; Jabłońska, Klaudia

    2016-07-01

    Auxins are successfully used to improve phytoextraction efficiency of metal ions from the contaminated environment, however, the mechanism of their activity in this field is not explained. Auxins are known to exert various biochemical alterations in the plant membranes and cells, but their activity involves also direct interactions with lipids leading to changes in membrane organization. Following the suggestion that the auxins-induced modifications in membrane properties alleviate toxic effect of metal ions in this paper we have undertaken the comparative studies on the effect of metal ions and metal ions/auxins mixtures on model membrane systems. The experiments were done on lipid monolayers differing in their composition spread on water subphase and on Pb(2+), Indole-3-acetic acid (IAA), 1-Naphthaleneacetic acid (NAA) and Pb(2+)/IAA and Pb(2+)/NAA water solutions. The analysis of the collected data suggests that metal ions and auxins can change fluidity of the lipid systems and weaken the interactions between monolayer components. This manifested in the increase of the mean area per molecule and the excess area per molecule values for the films on Pb(2+), auxins as well as Pb(2+)/auxin solutions as compared to the values on pure water subphase. However, the presence of auxin in the mixture with lead(II) ions makes the alterations induced by sole metal ions weaker. This effect was more pronounced for the membranes of a higher packing. Thus it was proposed that auxins may enhance phytoextraction of metal ions by weakening their destabilizing effect on membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Heavy and toxic metal uptake by mesoporous hypercrosslinked SMA beads: Isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Renuka Gonte

    2016-09-01

    Full Text Available Hypercrosslinked styrene-maleic acid copolymer beads were used for the removal of metal ions from mimicked industrial effluents. The polymer was characterized by SEM which revealed the presence of a porous network. Carboxyl acid groups of the polymer were identified as active sites for metal uptake. Highly porous surface enhanced metal ion uptake was achieved through a physicochemical process. Equilibrium sorption of metal ions was best described by the Freundlich and Temkin model with R2 > 0.99. Adsorption followed pseudo first and pseudo second order reaction kinetics. Intraparticle diffusion model suggested a three step equilibrium. Desorption was a fast process with ∼90% in 60 min.

  18. Ion irradiation effect on metallic condensate adhesion to glass

    International Nuclear Information System (INIS)

    Kovalenko, V.V.; Upit, G.P.

    1984-01-01

    The ion irradiation effect on metallic condensate adhesion to glass is investigated. It has been found that in case of indium ion deposition the condensate adhesion to glass cleavages being in contact with atmosphere grows up to the level corresponding to a juvenile surface while in case of argon ion irradiation - exceeds it. It is shown that the observed adhesion growth is determined mainly by the surfwce modification comparising charge accumulation on surface, destruction of a subsurface layer and an interlayer formation in the condensate-substrate interface. The role of these factors in the course of various metals deposition is considered

  19. About neutralization of the toxic waste of galvanic production

    International Nuclear Information System (INIS)

    Akhmetzhanova, Z.Kh.; Samatov, I.B.

    1996-01-01

    The nature of heavy metals ions migration to environment from the galvanic production is considered in the article. The method of toxic precipitations transformation to non-toxic ones is proposed. The essence of stabilization method of heavy metals hydroxides precipitations consists in transformation of galvanic precipitations mixture to same metals ferrites mixture. The reaction has followed in oxygen medium under heating of galvanic precipitations from 70 up 90 deg C. Before heating the precipitation have acid medium, after temperature treatment the medium turn to the neutral one. These compounds are presented as ferrite class and can be serve as base for various pigments. (author)

  20. Biological treatment of inorganic ion contamination including radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, R S [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1997-12-01

    Microorganisms and plants are capable of a broad range of activities useful in treating inorganic contaminants in soil, groundwater, and surface runoff water Among the advantages of biological processes for this purpose are relatively low costs (related to their mild conditions) and the practicality of letting them run unattended. This talk will review both kinds of treatment chemistry that can be done biologically as well as present data from INEEL projects on bioremediation of specific elements. Biological processes can either solubilize or immobilize metals and other ions depending on the need. Uranium ions are solubilized from soil by the local bioproduction of organic acids as chelating agents, allowing removal of this ion as part of an ex-situ treatment process. Further, the microbial production of sulfuric acid can be used to solubilize Cs contamination in concrete surfaces. More usual though is the need to control metal movement in soil or water. Various metals such as Se and Cd are taken up from soil by hyper-accumulating plants, where they can be harvested in concentrated form in the leaves and stems. Excess acidity and a broad variety of toxic metals in acid rock drainage, such as Hg, Cd, Zn and others, can be removed by the production of sulfide ion in an easily fielded biological reactor which may be useful on phosphate processing runoff water contaminated with naturally occuring radioactive materials. Soluble Co, Cu, and Cd can be treated by sorption onto immobilized algae. Inorganic ions can also be directly reduced by bacteria as part of treatment, for example the conversion of soluble selenate ion to insoluble elemental selenium and the conversion of highly toxic CR(VI) to the far less soluble and less toxic Cr(III).

  1. Biological treatment of inorganic ion contamination including radionuclides

    International Nuclear Information System (INIS)

    Cherry, R.S.

    1997-01-01

    Microorganisms and plants are capable of a broad range of activities useful in treating inorganic contaminants in soil, groundwater, and surface runoff water Among the advantages of biological processes for this purpose are relatively low costs (related to their mild conditions) and the practicality of letting them run unattended. This talk will review both kinds of treatment chemistry that can be done biologically as well as present data from INEEL projects on bioremediation of specific elements. Biological processes can either solubilize or immobilize metals and other ions depending on the need. Uranium ions are solubilized from soil by the local bioproduction of organic acids as chelating agents, allowing removal of this ion as part of an ex-situ treatment process. Further, the microbial production of sulfuric acid can be used to solubilize Cs contamination in concrete surfaces. More usual though is the need to control metal movement in soil or water. Various metals such as Se and Cd are taken up from soil by hyper-accumulating plants, where they can be harvested in concentrated form in the leaves and stems. Excess acidity and a broad variety of toxic metals in acid rock drainage, such as Hg, Cd, Zn and others, can be removed by the production of sulfide ion in an easily fielded biological reactor which may be useful on phosphate processing runoff water contaminated with naturally occuring radioactive materials. Soluble Co, Cu, and Cd can be treated by sorption onto immobilized algae. Inorganic ions can also be directly reduced by bacteria as part of treatment, for example the conversion of soluble selenate ion to insoluble elemental selenium and the conversion of highly toxic CR(VI) to the far less soluble and less toxic Cr(III)

  2. A computational study of adsorption of divalent metal ions on graphene oxide

    Directory of Open Access Journals (Sweden)

    Somphob Thompho

    2017-12-01

    Full Text Available Adsorption of divalent metal ions (Pb2+,Cd2+, Zn2+,Cu2+ on graphene oxide (GO was studied using density functional theory (DFT. Adsorption geometries and energies, as well as the nature of the binding energy, were calculated for the interaction of divalent metal ions with oxygen-containing groups on the surface of GO. The configurations of the complexes were modeled by placing the divalent metal ions above the center and perpendicular to the surface. Binding of Cu2+ to the GO sheet was predicted to be much stronger than that for other divalent metal ions. Calculated results show good agreement with experimental observations and provide useful information for environmental pollution cleanup.

  3. Hazard and risk assessment of human exposure to toxic metals using in vitro digestion assay

    Directory of Open Access Journals (Sweden)

    Hani A. Alhadrami

    2016-10-01

    Full Text Available Clean-up targets for toxic metals require that the site be “fit for purpose”. This means that targets are set with respect to defined receptors that reflect intended land-use. In this study, the likely threat of human exposure to toxic metals has been evaluated by simulating the human digestion process in vitro. The effects of key attributes (i.e. sample fraction size, pH, Kd and total metal concentrations on the bioavailability of Cu and Ni were also investigated. Total metal concentration was the key explanatory factor for Cu and Ni bioavailability. A comparative ranking of metal concentrations in the context of tolerable daily intakes for Cu and Ni confirmed that the pH has the greatest impact on metals bioavailability. Rapid screening of key attributes and total toxic metal doses can reveal the relative hazard imposed on human, and this approach should be considered when defining threshold values for human protection.

  4. In Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation

    Science.gov (United States)

    Cherrak, Sabri Ahmed; Mokhtari-Soulimane, Nassima; Berroukeche, Farid; Bensenane, Bachir; Cherbonnel, Angéline; Merzouk, Hafida; Elhabiri, Mourad

    2016-01-01

    Natural flavonoids such as quercetin, (+)catechin and rutin as well as four methoxylated derivatives of quercetin used as models were investigated to elucidate their impact on the oxidant and antioxidant status of human red blood cells (RBCs). The impact of these compounds against metal toxicity was studied as well as their antiradical activities with DPPH assay. Antihemolytic experiments were conducted on quercetin, (+)catechin and rutin with excess of Fe, Cu and Zn (400 μM), and the oxidant (malondialdehyde, carbonyl proteins) and antioxidant (reduced glutathione, catalase activity) markers were evaluated. The results showed that Fe and Zn have the highest prooxidant effect (37 and 33% of hemolysis, respectively). Quercetin, rutin and (+)catechin exhibited strong antioxidant properties toward Fe, but this effect was decreased with respect to Zn ions. However, the Cu showed a weak antioxidant effect at the highest flavonoid concentration (200 μM), while a prooxidant effect was observed at the lowest flavonoid concentration (100 μM). These results are in agreement with the physico-chemical and antiradical data which demonstrated that binding of the metal ions (for FeNTA: (+)Catechin, KLFeNTA = 1.6(1) × 106 M-1 > Rutin, KLFeNTA = 2.0(9) × 105 M-1 > Quercetin, KLFeNTA = 1.0(7) × 105 M-1 > Q35OH, KLFeNTA = 6.3(8.7) × 104 M-1 > Quercetin3’4’OH and Quercetin 3OH, KLFeNTA ~ 2 × 104 M-1) reflects the (anti)oxidant status of the RBCs. This study reveals that flavonoids have both prooxidant and antioxidant activity depending on the nature and concentration of the flavonoids and metal ions. PMID:27788249

  5. Facile synthesis of Fe3O4@PDA core-shell microspheres functionalized with various metal ions: A systematic comparison of commonly-used metal ions for IMAC enrichment.

    Science.gov (United States)

    Jiang, Jiebing; Sun, Xueni; Li, Yan; Deng, Chunhui; Duan, Gengli

    2018-02-01

    Metal ions differed greatly in affinity towards phosphopeptides, and thus it is essential to systematically compare the phosphopeptides enrichment ability of different metal ions usually used in the IMAC techniques. In this work, for the first time, eight metal ions, including Nb 5+ , Ti 4+ , Zr 4+ , Ga 3+ , Y 3+ , In 3+ , Ce 4+ , Fe 3+ , were immobilized on the polydopamine (PDA)-coated Fe 3 O 4 (denoted as Fe 3 O 4 @PDA-M n+ ), and systematically compared by the real biosamples, in addition to standard phosphopeptides. Fe 3 O 4 microspheres were synthesized via the solvothermal reaction, followed by self-polymerization of dopamine on the surface. Then through taking advantage of the hydroxyl and amino group of PDA, the eight metal ions were easily adhered to the surface of Fe 3 O 4 @PDA. After characterization, the resultant Fe 3 O 4 @PDA-M n+ microspheres were applied to phosphopeptides enrichment based on the binding affinity between metal ions and phosphopeptides. According to the results, different metal ions presented diverse phosphopeptides enrichment efficiency in terms of selectivity, sensitivity and the enrichment ability from real complex samples, and Fe 3 O 4 @PDA-Nb 5+ and Fe 3 O 4 @PDA-Ti 4+ showed obvious advantages of the phosphopeptides enrichment effect after the comparison. This systematic comparison may provide certain reference for the use and development of IMAC materials in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples

    International Nuclear Information System (INIS)

    Rajabi, Maryam; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-01-01

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2–70, 6–360, 7–725, 7–370, and 8–450 ng mL −1 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ and Ni 2+ ions, respectively, with the correlation of determinations (R 2 s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid and tap water samples. - Highlights: • A novel centrifugeless dispersive

  7. Investigation of metal ions sorption of brown peat moss powder

    Science.gov (United States)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  8. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Science.gov (United States)

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  9. Safety Evaluation of Potential Toxic Metals Exposure from Street Foods Consumed in Mid-West Nigeria

    Directory of Open Access Journals (Sweden)

    O. C. Ekhator

    2017-01-01

    Full Text Available Objective. Street-vended foods offer numerous advantages to food security; nevertheless, the safety of street food should be considered. This study has investigated the level of potential toxic metal (Pb, Cd, Hg, Sb, Mn, and Al contamination among street-vended foods in Benin City and Umunede. Methods. Twenty street food samples were purchased from vendors at bus stops. Metals were analyzed with atomic absorption spectrophotometry. The methods developed by the US EPA were employed to evaluate the potential health risk of toxic metals. Results. The concentrations of the toxic metals in mg/kg were in the range of Pb (0.014–1.37, Cd (0.00–0.00017, Hg (0.00–0.00014, Sb (0.00–0.021, Mn (0.00–0.012, and Al (0.00–0.22. All the toxic metals except Pb were below permissible limit set by WHO, EU, and USEPA. The daily intake, hazard quotient, and hazard index of all toxic metals except for Pb in some street foods were below the tolerable daily intake and threshold value of 1, indicating an insignificant health risk. Total cancer risk was within the priority risk level of 1.0E-04 but higher than the acceptable risk level of 1E-06. Conclusion. Consumption of some of these street foods is of public health concern.

  10. Pure high dose metal ion implantation using the plasma immersion technique

    International Nuclear Information System (INIS)

    Zhang, T.; Tang, B.Y.; Zeng, Z.M.; Kwok, T.K.; Chu, P.K.; Monteiro, O.R.; Brown, I.G.

    1999-01-01

    High energy implantation of metal ions can be carried out using conventional ion implantation with a mass-selected ion beam in scanned-spot mode by employing a broad-beam approach such as with a vacuum arc ion source, or by utilizing plasma immersion ion implantation with a metal plasma. For many high dose applications, the use of plasma immersion techniques offers a high-rate process, but the formation of a surface film along with the subsurface implanted layer is sometimes a severe or even fatal detriment. We describe here an operating mode of the metal plasma immersion approach by which pure implantation can be obtained. We have demonstrated the technique by carrying out Ti and Ta implantations at energies of about 80 and 120 keV for Ti and Ta, respectively, and doses on the order of 1x10 17 ions/cm 2 . Our experiments show that virtually pure implantation without simultaneous surface deposition can be accomplished. Using proper synchronization of the metal arc and sample voltage pulse, the applied dose that deposits as a film versus the part that is energetically implanted (the deposition-to-implantation ratio) can be precisely controlled.copyright 1999 American Institute of Physics

  11. Acetabular bone density and metal ions after metal-on-metal versus metal-on-polyethylene total hip arthroplasty; short-term results

    NARCIS (Netherlands)

    Zijlstra, Wierd P.; van der Veen, Hugo C.; van den Akker-Scheek, Inge; Zee, Mark J. M.; Bulstra, Sjoerd K.; van Raay, Jos J. A. M.

    Information on periprosthetic acetabular bone density is lacking for metal-on-metal total hip arthroplasties. These bearings use cobalt-chromium instead of titanium acetabular components, which could lead to stress shielding and hence periprosthetic bone loss. Cobalt and chromium ions have

  12. Selective transport and incorporation of highly charged metal and metal complex ions in self-assembled polyelectrolyte multilayer membranes

    International Nuclear Information System (INIS)

    Toutianoush, Ali; Tieke, Bernd

    2002-01-01

    The transport of aqueous salts containing mono-, di- and trivalent metal and tetravalent metal complex ions across ultrathin polyvinylammonium/polyvinylsulphate (PVA/PVS) membranes is described. The membranes were prepared by electrostatic layer-by-layer (LBL) assembly of the two polyelectrolytes. Using spectroscopic measurements and permeability studies, it is demonstrated that the transport of copper(II) chloride, lanthanum(III) chloride, barium chloride and potassium hexacyanoferrate(II) is accompanied by the permanent incorporation of the metal and metal complex ions in the membrane. Upon the uptake of copper, lanthanum and hexacyanoferrate ions, the membranes become cross-linked so that the permeation rates of other salts not taken up by the membrane, e.g. sodium chloride, potassium chloride and magnesium chloride, are decreased. The uptake of barium ions leads to a decrease of the cross-linking density of the membrane so that the permeation rate of NaCl is increased. Possible mechanisms for the ion uptake are discussed

  13. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

    Science.gov (United States)

    Dokmanić, Ivan; Sikić, Mile; Tomić, Sanja

    2008-03-01

    Metal ions are constituents of many metalloproteins, in which they have either catalytic (metalloenzymes) or structural functions. In this work, the characteristics of various metals were studied (Cu, Zn, Mg, Mn, Fe, Co, Ni, Cd and Ca in proteins with known crystal structure) as well as the specificity of their environments. The analysis was performed on two data sets: the set of protein structures in the Protein Data Bank (PDB) determined with resolution metal ion and its electron donors and the latter was used to assess the preferred coordination numbers and common combinations of amino-acid residues in the neighbourhood of each metal. Although the metal ions considered predominantly had a valence of two, their preferred coordination number and the type of amino-acid residues that participate in the coordination differed significantly from one metal ion to the next. This study concentrates on finding the specificities of a metal-ion environment, namely the distribution of coordination numbers and the amino-acid residue types that frequently take part in coordination. Furthermore, the correlation between the coordination number and the occurrence of certain amino-acid residues (quartets and triplets) in a metal-ion coordination sphere was analysed. The results obtained are of particular value for the identification and modelling of metal-binding sites in protein structures derived by homology modelling. Knowledge of the geometry and characteristics of the metal-binding sites in metalloproteins of known function can help to more closely determine the biological activity of proteins of unknown function and to aid in design of proteins with specific affinity for certain metals.

  14. Accelerated electron exchange between U4+ and UO22+ by foreign metal ions

    International Nuclear Information System (INIS)

    Obanawa, Heiichiro; Onitsuka, Hatsuki; Takeda, Kunihiko

    1990-01-01

    The rate constant of U 4+ -UO 2 2+ electron exchange (k et ) was increased by more than 100 times in the presence of various metal ions. The larger rate constant was observed for the smaller difference of the standard reduction potential strength between metal ion and UO 2 2+ ion (Δμ θ e ). Detailed investigation of the electron exchange reaction in the presence of Mo 5+ suggested that the mechanism of the electron transfer reaction catalyzed by metal ions is the outer-sphere type independent of U-Clcomplex ions. (author)

  15. Atmospheric toxic metals emission inventory and spatial characteristics from anthropogenic sources of Guangdong province, China

    Science.gov (United States)

    Cher, S.; Menghua, L.; Xiao, X.; Yuqi, W.; Zhuangmin, Z.; Zhijiong, H.; Cheng, L.; Guanglin, J.; Zibing, Y.; Junyu, Z.

    2017-12-01

    Atmospheric toxic metals (TMs) are part of particulate matters, and may create adverse effects on the environment and human health depending upon their bioavailability and toxicity. Localized emission inventory is fundamental for parsing of toxic metals to identify key sources in order to formulate efficient toxic metals control strategies. With the use of the latest municipal level environment statistical data, this study developed a bottom-up emission inventory of five toxic metals (Hg, As, Pb, Cd, Cr) from anthropogenic activities in Guangdong province for the year of 2014. Major atmospheric toxic metals sources including combustion sources (coal, oil, biomass, municipal solid waste) and industrial process sources (cement production, nonferrous metal smelting, iron and steel industry, battery and fluorescent lamp production) were investigated. Results showed that: (1) The total emissions of Hg, As, Pb, Cd, Cr in Guangdong province were 18.14, 32.59, 411.34, 13.13, 84.16 t, respectively. (2) Different pollutants have obvious characteristics of emission sources. For total Hg emission, 46% comes from combustion sources, of which 32% from coal combustion and 8% from MSW combustion. Other 54% comes from industrial processes, which dominated by the cement (19%), fluorescent lamp (18%) and battery production (13%). Of the total Hg emission, 69% is released as Hg0 , 29% as Hg2+ , and only 2% as Hgp due to strict particulate matters controls policies. For As emissions, coal combustion, nonferrous metal smelting and iron and steel industry contributed approximate 48%, 25% and 24%, respectively. Pb emissions primarily come from battery production (42%), iron and steel industry (21%) and on-road mobile gasoline combustion (17%). Cd and Cr emissions were dominated by nonferrous metal smelting (71%) and iron and steel industry (82%), respectively. (3) In term of the spatial distribution, emissions of atmospheric toxic metals are mainly concentrated in the central region of

  16. Some aspects of metallic ion chemistry and dynamics in the mesosphere and thermosphere

    Science.gov (United States)

    Mathews, J. D.

    1987-01-01

    The relationship between the formation of sporadic layers of metallic ion and the dumping of these ions into the upper mesosphere is discussed in terms of the tidal wind, classical (i.e., windshear) and other more complex, perhaps highly nonlinear layer formation mechanisms, and a possible circulation mechanism for these ions. Optical, incoherent scatter radar, rocket, and satellite derived evidence for various layer formation mechanisms and for the metallic ion circulation system is reviewed. The results of simple one dimensional numerical model calculations of sporadic E and intermediate layer formation are presented along with suggestions for more advanced models of intense or blanketing sporadic E. The flux of metallic ions dumped by the tidal wind system into the mesosphere is estimated and compared with estimates of total particle flux of meteoric origin. Possible effects of the metallic ion flux and of meteoric dust on D region ion chemistry are discussed.

  17. Ranges of ions in metals for use in particle treatment planning

    International Nuclear Information System (INIS)

    Jaekel, Oliver

    2006-01-01

    In proton and ion radiotherapy, the range of particles is calculated from x-ray computed tomography (CT) numbers. Due to the strong absorption of x-rays in a metal and a cut-off for large Hounsfield units (HU) in the software of most CT-scanners, a range calculation in metals cannot be based on the measured HU. This is of special importance when metal implants such as gold fillings or hip prostheses are close to the treatment volume. In order to overcome this problem in treatment planning for heavy charged particles, the correct ranges of ions in the metal relative to water have to be assigned in the CT data. Measurements and calculations of carbon ion ranges in various metals are presented that can be used in treatment planning to allow for a more accurate range calculation of carbon ion beams in titanium, steel, tungsten and gold. The suggested values for the relative water-equivalent range and their uncertainties are 3.13 (±3%) for titanium, 5.59 (±3%) for stainless steel and 10.25 (±4%) for gold. (note)

  18. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence

    Science.gov (United States)

    Bayram, Serene S.; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-01

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd2+, Pb2+, Zn2+ and Ni2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions.

  19. Smart responsive microcapsules capable of recognizing heavy metal ions.

    Science.gov (United States)

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Toxic Heavy Metals: Materials Cycle Optimization

    Science.gov (United States)

    Ayres, Robert U.

    1992-02-01

    Long-term ecological sustainability is incompatible with an open materials cycle. The toxic heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, silver, uranium/plutonium, zinc) exemplify the problem. These metals are being mobilized and dispersed into the environment by industrial activity at a rate far higher than by natural processes. Apart from losses to the environment resulting from mine wastes and primary processing, many of these metals are utilized in products that are inherently dissipative. Examples of such uses include fuels, lubricants, solvents, fire retardants, stabilizers, flocculants, pigments, biocides, and preservatives. To close the materials cycle, it will be necessary to accomplish two things. The first is to ban or otherwise discourage (e.g., by means of high severance taxes on virgin materials) dissipative uses of the above type. The second is to increase the efficiency of recycling of those materials that are not replaceable in principle. Here, also, economic instruments (such as returnable deposits) can be effective in some cases. A systems view of the problem is essential to assess the cost and effectiveness of alternative strategies.

  1. Hair Toxic Metal Concentrations and Autism Spectrum Disorder Severity in Young Children

    Directory of Open Access Journals (Sweden)

    Lisa K. Sykes

    2012-12-01

    Full Text Available Previous studies have found a higher body-burden of toxic metals, particularly mercury (Hg, among subjects diagnosed with an autism spectrum disorder (ASD in comparison to neurotypical controls. Moreover, Hg body-burden was associated with ASD severity. This cross-sectional study examined the potential correlation between hair toxic metal concentrations and ASD severity in a prospective cohort of participants diagnosed with moderate to severe ASD. The Institutional Review Board at the University of Texas Southwestern Medical Center at Dallas (Dallas, TX approved the present study. Qualifying study participants (n = 18 were evaluated for ASD severity using the Childhood Autism Rating Scale (CARS and quantitatively for arsenic, Hg, cadmium, lead, chromium, cobalt, nickel, aluminum, tin, uranium, and manganese using hair toxic element testing by Doctor’s Data (a CLIA-approved laboratory. CARS scoring and hair toxic element testing were blinded to one another. Increasing hair Hg concentrations significantly correlated with increased ASD severity. In contrast, no significant correlations were observed between any other of the hair toxic metals examined and ASD severity. This study helps to provide additional mechanistic support for Hg in the etiology of ASD severity, and is supported by an increasing number of recent critical reviews that provide biological plausibility for the role of Hg exposure in the pathogenesis of ASDs.

  2. Toxic Aluminium and Heavy Metals in Groundwater of Middle Russia: Health Risk Assessment

    Directory of Open Access Journals (Sweden)

    Boris Synzynys

    2005-08-01

    Full Text Available Two approaches are distinguished in modern ecological monitoring. The first one is physicochemical analysis of environmental objects with respect to maximum allowable concentrations (MACs of chemical substances, which is performed by standards methods in accordance with state regulations. The second approach (biological monitoring is based on the methodology of biotesting and bio indication. The task of this work is to create biotests for estimation of Al and other metals toxicity in ground water and to compare these results with physicochemical analysis dates. Risk assessment for heavy metals contaminated groundwater was also performed. Risk assessment was performed accordingly EPA US recommendation and gave results about 90 per 100000 citizens for Al and 402 per 100000 for mixture of different heavy metals. For comparison: risk for earth background radiation for Middle Russia is (Individual dose 1 millisivert per year consist 5 per 100000 people. It was shown that groundwater consist HCO3- ions (360 mg/l, sometimes Al compounds 0.21-0.65 mg/l (MAC for Al is 0.5 mg/l for Russia. Other groundwater contain Hg – 0.004 mg/l (MAC – 0.0005 mg/l; Cr – 0.072 mg/l (MAC – 0.05 mg/l; As – less than 0.03 mg/l (MAC – 0.05 mg/l. We developed plant biotest for estimation of groundwater quality with barley roots, tradescatia and others. Some biotests parameters correlate with HCO3-, Cl-, SO42- and metal ions content positively, for another biotest this correlation is strongly negative. The quality of groundwater near Obninsk and in Kaluga Region is very different but hasn’t been changed since the year 1998.

  3. Metal mixture toxicity to aquatic biota in laboratory experiments: Application of the WHAM-F{sub TOX} model

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E., E-mail: et@ceh.ac.uk; Lofts, S.

    2013-10-15

    Highlights: •Metal accumulation by living organisms is successfully simulated with WHAM. •Modelled organism-bound metal provides a measure of toxic exposure. •The toxic potency of individual bound metals is quantified by fitting toxicity data. •Eleven laboratory mixture toxicity data sets were parameterised. •Relatively little variability amongst individual test organisms is indicated. -- Abstract: The WHAM-F{sub TOX} model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (F{sub TOX}), a linear combination of the products of organism-bound cation and a toxic potency coefficient (α{sub i}) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r{sup 2} = 0.89, root mean squared deviation = 0.44), supporting the use of HA binding as a proxy. Calculated loadings of H{sup +}, Al, Cu, Zn, Cd, Pb and UO{sub 2} were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-F{sub TOX} gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of α{sub i}, the toxicity of bound cations can tentatively be ranked in the order: H < Al < (Zn–Cu–Pb–UO{sub 2}) < Cd. The WHAM-F{sub TOX} analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to

  4. Evaluation of metals, metalloids, and ash mixture toxicity using sediment toxicity testing.

    Science.gov (United States)

    Stojak, Amber; Bonnevie, Nancy L; Jones, Daniel S

    2015-01-01

    In December 2008, a release of 4.1 million m(3) of coal ash from the Tennessee Valley Authority Kingston Fossil Plant occurred. Ash washed into the Emory River and migrated downstream into the Clinch and Tennessee Rivers. A Baseline Ecological Risk Assessment evaluated risks to ecological receptors from ash in the river system post-dredging. This article describes the approach used and results from sediment toxicity tests, discussing any causal relationships between ash, metals, and toxicity. Literature is limited in the realm of aquatic coal combustion residue (CCR) exposures and the potential magnitude of effects on benthic invertebrates. Sediment samples along a spectrum of ash content were used in a tiered toxicity testing approach and included a combination of 10 day sediment toxicity acute tests and longer-term, partial life cycle "definitive" tests with 2 species (Hyalella azteca and Chironomus dilutus). Arsenic, and to a lesser extent Se, in the ash was the most likely toxicant causing observed effects in the laboratory toxicity tests. Sites in the Emory River with the greatest statistical and biologically significant effects had As concentrations in sediments twice the probable effects concentration of 33 mg/kg. These sites contained greater than 50% ash. Sites with less than approximately 50% ash in sediments exhibited fewer significant toxic responses relative to the reference sediment in the laboratory. The results discussed here present useful evidence of only limited effects occurring from a worst-case exposure pathway. These results provided a valuable line of evidence for the overall assessment of risks to benthic invertebrates and to other ecological receptors, and were crucial to risk management and development of project remediation goals. © 2014 SETAC.

  5. The impact of metal transport processes on bioavailability of free and complex metal ions in methanogenic granular sludge

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Vergeldt, F.; Gerkema, E.; Maca, J.; As, van H.; Lens, P.N.L.

    2012-01-01

    Bioavailability of metals in anaerobic granular sludge has been extensively studied, because it can have a major effect on metal limitation and metal toxicity to microorganisms present in the sludge. Bioavailability of metals can be manipulated by bonding to complexing molecules such as

  6. Determination of Toxic Metals in Indian Smokeless Tobacco Products

    Directory of Open Access Journals (Sweden)

    Dhanashri Dhaware

    2009-01-01

    Full Text Available This study targets the lesser-known ingredients of smokeless tobacco products, i.e., the toxic metals, in Indian brands. The metals selected in the study included lead (Pb, cadmium (Cd, arsenic (As, copper (Cu, mercury (Hg, and selenium (Se. The differential pulse anodic stripping voltammetry (DPASV technique was used for estimating the metals Pb, Cd, and Cu; square wave voltammetry for As; and the cold vapor atomic absorption technique for Hg. The resulting levels of the metals were compared to the daily consumption of the smokeless tobacco products. It was observed that almost 30% of gutkha brand samples exceeded the permissible levels of metals Pb and Cu, when compared to the provisional tolerable intake limits determined by the FAO/WHO. The reliability of data was assured by analyzing standard reference materials.

  7. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice

    Institute of Scientific and Technical Information of China (English)

    Qixiao Zhai; Tianqi Li; Leilei Yu; Yue Xiao; Saisai Feng; Jiangping Wu; Jianxin Zhao; Hao Zhang; Wei Chen

    2017-01-01

    Oral exposure to toxic metals such as cadmium (Cd),lead (Pb),copper (Cu) and aluminum (Al) can induce various adverse health effects in humans and animals.However,the effects of these metals on the gut microbiota have received limited attention.The present study demonstrated that long-term toxic metal exposure altered the intestinal microbiota of mice in a metal-specific and time-dependent manner.Subchronic oral Cu exposure for eight weeks caused a profound decline in gut microbial diversity in mice,whereas no significant changes were observed in groups treated with other metals.Cd exposure significantly increased the relative abundances of organisms from the genera Alistipes and Odoribacter and caused marked decreases in Mollicutes and unclassified Ruminococcaceae.Pb exposure significantly decreased the abundances of eight genera:unclassified and uncultured Ruminococcaceae,unclassified Lachnospiraceae,Ruminiclostridium_9,Rikenellaceae_RC9_gut_group,Oscillibacter,Anaerotruncus and Lachnoclostridium.Cu exposure affected abundances of the genera Alistipes,Bacteroides,Ruminococcaceae_UCG-014,Allobaculum,Mollicutes_RFg_norank,Rikenellaceae_RC9_gut_group,Ruminococcaceae_unclassified and Turicibacter.Al exposure increased the abundance of Odoribacter and decreased that of Anaerotruncus.Exposure to any metal for eight weeks significantly decreased the abundance of Akkermansia.These results provide a new understanding regarding the role of toxic metals in the pathogenesis of intestinal and systemic disorders in the host within the gut microbiota framework.

  8. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    Directory of Open Access Journals (Sweden)

    Anastasios Economou

    2018-03-01

    Full Text Available This work reviews the field of screen-printed electrodes (SPEs modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  9. Do soft drinks affect metal ions release from orthodontic appliances?

    Science.gov (United States)

    Mikulewicz, Marcin; Wołowiec, Paulina; Loster, Bartłomiej W; Chojnacka, Katarzyna

    2015-01-01

    The effect of orange juice and Coca Cola(®) on the release of metal ions from fixed orthodontic appliances. A continuous flow system designed for in vitro testing of orthodontic appliances was used. Orange juice/Coca Cola(®) was flowing through the system alternately with artificial saliva for 5.5 and 18.5h, respectively. The collected samples underwent a multielemental ICP-OES analysis in order to determine the metal ions release pattern in time. The total mass of ions released from the appliance into orange juice and Coca Cola(®) (respectively) during the experiment was calculated (μg): Ni (15.33; 37.75), Cr (3.604; 1.052), Fe (48.42; ≥ 156.1), Cu (57.87, 32.91), Mn (9.164; 41.16), Mo (9.999; 30.12), and Cd (0.5967; 2.173). It was found that orange juice did not intensify the release of metal ions from orthodontic appliances, whereas Coca Cola(®) caused increased release of Ni ions. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Metallization of ion beam synthesized Si/3C-SiC/Si layer systems by high-dose implantation of transition metal ions

    International Nuclear Information System (INIS)

    Lindner, J.K.N.; Wenzel, S.; Stritzker, B.

    2001-01-01

    The formation of metal silicide layers contacting an ion beam synthesized buried 3C-SiC layer in silicon by means of high-dose titanium and molybdenum implantations is reported. Two different strategies to form such contact layers are explored. The titanium implantation aims to convert the Si top layer of an epitaxial Si/SiC/Si layer sequence into TiSi 2 , while Mo implantations were performed directly into the SiC layer after selectively etching off all capping layers. Textured and high-temperature stable C54-TiSi 2 layers with small additions of more metal-rich silicides are obtained in the case of the Ti implantations. Mo implantations result in the formation of the high-temperature phase β-MoSi 2 , which also grows textured on the substrate. The formation of cavities in the silicon substrate at the lower SiC/Si interface due to the Si consumption by the growing silicide phase is observed in both cases. It probably constitutes a problem, occurring whenever thin SiC films on silicon have to be contacted by silicide forming metals independent of the deposition technique used. It is shown that this problem can be solved with ion beam synthesized contact layers by proper adjustment of the metal ion dose

  11. Effects of metal ions on the catalytic degradation of dicofol by cellulase.

    Science.gov (United States)

    Zhai, Zihan; Yang, Ting; Zhang, Boya; Zhang, Jianbo

    2015-07-01

    A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km=8.18 mg/L, and Vmax=0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+ promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment. Copyright © 2015. Published by Elsevier B.V.

  12. Performance of Raphidocelis subcapitata exposed to heavy metal mixtures.

    Science.gov (United States)

    Expósito, Nora; Kumar, Vikas; Sierra, Jordi; Schuhmacher, Marta; Giménez Papiol, Gemma

    2017-12-01

    Microalgae growth inhibition assays are candidates for referent ecotoxicological assays, and are a fundamental part in the strategy to reduce the use of fish and other animal models in aquatic toxicology. In the present work, the performance of Raphidocelis subcapitata exposed to heavy metals following standardized growth inhibition assays has been assessed in three different scenarios: 1) dilutions of single heavy metals, 2) artificial mixture of heavy metals at similar levels than those found in natural rivers and, 3) natural samples containing known mixtures of contaminants (heavy metals). Chemical speciation of heavy metals has been estimated with Eh-pH diagram and Visual MINTEQ software; heavy metal and free heavy metal ion concentrations were used as input data, together with microalgae growth inhibition, for Dr. Fit software. The final goal was to assess the suitability of the ecotoxicological test based on the growth inhibition of microalgae cultures, and the mathematic models based on these results, for regulatory and decision-making purposes. The toxicity of a given heavy metal is not only determined by its chemical speciation; other chemical and biological interaction play an important role in the final toxicity. Raphidocelis subcapitata 48h-h-EC50 for tested heavy metals (especially Cu and Zn) were in agreement with previous studies, when ion metal bioavailability was assumed to be 100%. Nevertheless, the calculated growth inhibition was not in agreement with the obtained inhibition when exposed to the artificial mixture of heavy metals or the natural sample. Interactions between heavy metal ions and the compounds of the culture media and/or the natural sample determine heavy metal bioavailability, and eventually their toxicity. More research is needed for facing the challenge posed by pollutant mixtures as they are present in natural environments, and make microalgae-based assays suitable for pollution management and regulatory purposes. Copyright

  13. Heavy metals in soils: a possible rule of Fungi

    International Nuclear Information System (INIS)

    Bedini, S.; Argese, E.; Giovannetti, M.; Gobbo, L.; Pietrangeli, B.

    2009-01-01

    The development of effective bio technologies is a mail goal in reclaiming polluted soils. Plants may represent a very useful tool, since they are able to reduce pollution by means of the synergic action of rhizospheric microorganisms. Arbuscular mycorrhizal (A M) fungi, root symbionts of most land plants, produce a proteinaceous substance named glomalin-related soil protein (GRSP) that has been demonstrated to interact with metallic ions. In this study we investigated the role of GRSP in the immobilization of potentially toxic heavy metals both in an agricultural and in a highly polluted soil. The results show that in heavy metal contaminated soils, GRSP can ease soil pollution by sequestering toxic metallic ions. On the other hand, in agricultural soils, where metallic elements are present in low concentrations, GRSP may be important also as a nutrient slow-releasing fraction of the soil organic matter.

  14. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff.

    Science.gov (United States)

    Vijayaraghavan, K; Teo, Ting Ting; Balasubramanian, R; Joshi, Umid Man

    2009-05-30

    The ability of Sargassum sp. to biosorb four metal ions, namely lead, copper, zinc, and manganese from a synthetic multi-solute system and real storm water runoff has been investigated for the first time. Experiments on synthetic multi-solute systems revealed that Sargassum performed well in the biosorption of all four metal ions, with preference towards Pb, followed by Cu, Zn, and Mn. The solution pH strongly affected the metal biosorption, with pH 6 being identified as the optimal condition for achieving maximum biosorption. Experiments at different biosorbent dosages revealed that good biosorption capacity as well as high metal removal efficiency was observed at 3g/L. The biosorption kinetics was found to be fast with equilibrium being attained within 50 min. According to the Langmuir isotherm model, Sargassum exhibited maximum uptakes of 214, 67.5, 24.2 and 20.2mg/g for lead, copper, zinc, and manganese, respectively in single-solute systems. In multi-metal systems, strong competition between four metal ions in terms of occupancy binding sites was observed, and Sargassum showed preference in the order of Pb>Cu>Zn>Mn. The application of Sargassum to remove four heavy metal ions in real storm water runoff revealed that the biomass was capable of removing the heavy metal ions. However, the biosorption performance was slightly lower compared to that of synthetic metal solutions. Several factors were responsible for this difference, and the most important factor is the presence of other contaminants such as anions, organics, and other trace metals in the runoff.

  15. The Acute Toxicity of Major Ion Salts to Ceriodaphnia Dubia. Ii. Empirical Relationships in Binary Salt Mixtures

    Science.gov (United States)

    Many human activities increase concentrations of major geochemical ions (Na+, K+, Ca+2, Mg+2, Cl, SO42, and HCO3/CO32) in fresh water systems, and can thereby adversely affect aquatic life. Such effects involve several toxicants, multiple mechanisms of toxicity, various ion inte...

  16. Ion-induced electron emission from clean metals

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Alonso, E.V.; Ferron, J.; Oliva-Florio, A.; Universidad Nacional de Cuyo, San Carlos de Bariloche

    1979-01-01

    We report recent experimental work on electron emission from clean polycrystalline metal surfaces under ion bombardment. We critically discuss existing theories and point out the presently unsolved problems. (orig.)

  17. Study of the migration of toxic metals in steelmaking waste using radioactive tracing

    International Nuclear Information System (INIS)

    Andre, C.; Jauzein, M.; Charentus, T.; Margrita, R.; Dechelette, O.

    1991-01-01

    The danger presented by toxic metals contained in steelmaking wastes put into slag piles may be neutralized by suitably chosen alternation of these wastes when they are deposited. Presentation of a study method using radioactive tracing of the migration of toxic metal (cadmium, zinc, chromium) in steelmaking wastes (slag, blast furnace sludge). This non destructive method was used in columns in the laboratory, but may be used in on-site slag piles [fr

  18. Cleavage reactions of the complex ions derived from self-complementary deoxydinucleotides and alkali-metal ions using positive ion electrospray ionization with tandem mass spectrometry.

    Science.gov (United States)

    Xiang, Yun; Abliz, Zeper; Takayama, Mitsuo

    2004-05-01

    The dissociation reactions of the adduct ions derived from the four self-complementary deoxydinucleotides, d(ApT), d(TpA), d(CpG), d(GpC), and alkali-metal ions were studied in detail by positive ion electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)). For the [M + H](+) ions of the four deoxydinucleotides, elimination of 5'-terminus base or loss of both of 5'-terminus base and a deoxyribose were the major dissociation pathway. The ESI-MS(n) spectra showed that Li(+), Na(+), and Cs(+) bind to deoxydinucleotides mainly by substituting the H(+) of phosphate group, and these alkali-metal ions preferred to bind to pyrimidine bases rather than purine bases. For a given deoxydinucleotide, the dissociation pathway of [M + K](+) ions differed clearly from that of [M + Li](+), [M + Na](+), and [M + Cs](+) ions. Some interesting and characteristic cleavage reactions were observed in the product-ion spectra of [M + K](+) ions, including direct elimination of deoxyribose and HPO(3) from molecular ions. The fragmentation behavior of the [M + K](+) and [M + W](+) (W = Li, Na, Cs) adduct ions depend upon the sequence of bases, the interaction between alkali-metal ions and nucleobases, and the steric hindrance caused by bases.

  19. Damage induced by helium ion irradiation in Fe-based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaonan; Mei, Xianxiu, E-mail: xxmei@dlut.edu.cn; Zhang, Qi; Li, Xiaona; Qiang, Jianbing; Wang, Younian

    2017-07-15

    The changes in structure and surface morphology of metallic glasses Fe{sub 80}Si{sub 7.43}B{sub 12.57} and Fe{sub 68}Zr{sub 7}B{sub 25} before and after the irradiation of He ions with the energy of 300 keV were investigated, and were compared with that of the tungsten. The results show that after the He{sup 2+} irradiation, metallic glass Fe{sub 68}Zr{sub 7}B{sub 25} still maintained amorphous. While a small amount of metastable β-Mn type phase nanocrystals formed in metallic glass Fe{sub 80}Si{sub 7.43}B{sub 12.57} at the fluence of 4.0 × 10{sup 17}ions/cm{sup 2} (19dpa). The nanocrystals transformed into α-Fe phase and tetragonal Fe{sub 2}B phase as the fluence increased to 1.0 × 10{sup 18}ions/cm{sup 2} (47dpa). Then the new orthogonal Fe{sub 3}B phase and β-Mn type phase nanocrystals appeared when the fluence increased further, and the quantities of nanocrystals increased. Blisters and cracks appeared on the surface of tungsten under the irradiation fluence of 1.0 × 10{sup 18}ions/cm{sup 2}, however only when the fluence was up to 1.6 × 10{sup 18}ions/cm{sup 2}, could cracks and spalling appear on the surfaces of metallic glasses. - Highlights: •Metallic glass Fe{sub 68}Zr{sub 7}B{sub 25} could maintain amorphous state after the irradiation. •A series of crystallization behaviors occurred in metallic glass Fe{sub 80}Si{sub 7.43}B{sub 12.57}. •The surface of tungsten appeared blisters at the fluence of 1.0 × 10{sup 18} ions/cm{sup 2}. •Surfaces of Fe-based metallic glasses cracked at the fluence of 1.6 × 10{sup 18}ions/cm{sup 2}.

  20. THE ROLE OF INORGANIC ION IMBALANCE IN AQUATIC TOXICITY TESTING

    Science.gov (United States)

    Effluent toxicity testing methods have been well defined, but to a large part have not attempted to segregate the effects of active ionic concentrations and ion imbalances upon test and species performances. The role that various total dissolved solids in effluents have on regula...

  1. The fabrication of metal silicide nanodot arrays using localized ion implantation

    International Nuclear Information System (INIS)

    Han, Jin; Kim, Tae-Gon; Min, Byung-Kwon; Lee, Sang Jo

    2010-01-01

    We propose a process for fabricating nanodot arrays with a pitch size of less than 25 nm. The process consists of localized ion implantation in a metal thin film on a Si wafer using a focused ion beam (FIB), followed by chemical etching. This process utilizes the etching resistivity changes of the ion beam irradiated region that result from metal silicide formation by ion implantation. To control the nanodot diameter, a threshold ion dose model is proposed using the Gaussian distribution of the ion beam intensities. The process is verified by fabricating nanodots with various diameters. The mechanism of etching resistivity is investigated via x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES).

  2. A high current metal vapour vacuum arc ion source for ion implantation studies

    International Nuclear Information System (INIS)

    Evans, P.J.; Noorman, J.T.; Watt, G.C.; Cohen, D.D.; Bailey, G.M.

    1989-01-01

    The main features of the metal vapour vacuum arc(MEVA) as an ion source are presented. The technology utilizes the plasma production capabilities of a vacuum arc cathode. Some of the ions produced in this discharge flow through the anode and the 3 extraction grids to form an extracted ion beam. The high beam current and the potential for generating broad beams, make this technology suitable for implantation of large surface areas. The composition of the vacuum arc cathode determines the particular ions obtained from the MEVA source. 3 refs., 1 tab., 2 figs

  3. Acute toxicity of selected heavy metals to Oreochromis ...

    African Journals Online (AJOL)

    Copper was more toxic than lead and iron to both life stages. The species sensitivity distributions of O. mossambicus, as well as those of freshwater fish species from the ECOTOX database and literature, were closely predicted by the models for all three metals. The sensitivity of O. mossambicus to copper, iron and lead ...

  4. The sorption of metal ions on nanoscale zero-valent iron

    Directory of Open Access Journals (Sweden)

    Suponik Tomasz

    2017-01-01

    Full Text Available The injection of the colloidal suspensions of nano-iron (nZVI into an aquifer is a novel method of removing metal ions from acidic water. In the batch tests, the equilibrium study of the sorption of metal ions, Cu(II and Zn(II, on Green Tea nanoscale Zero-Valent Ion (GT-nZVI was carried out. The sorption of metal ions on this reactive material was described using the Langmuir, Freundlich and Sips models. This last model described in a better way the sorption equilibrium in the tested range of concentrations and temperature. The value of determination coefficient (R2 for the Sips model, for copper and zinc, was 0.9735 to 0.9995, respectively. GT-nZVI has very good properties in removing Cu(II and Zn(II from acidic water. The high values of qmaxS, the maximum adsorption capacity in the Sips model, amounting to 348.0 and 267.3 mg/g for Cu(II and Zn(II, indicate the high adsorption capacity of GT-nZVI. The analyzed metals have good or very good affinity with GT-nZVI.

  5. Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities

    Science.gov (United States)

    Rousk, Johannes; Ackermann, Kathrin; Curling, Simon F.; Jones, Davey L.

    2012-01-01

    The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity. PMID:22479561

  6. Polymer-supported reagents with enhanced metal ion recognition: Application to separations science

    International Nuclear Information System (INIS)

    Alexandratos, S.D.

    1993-01-01

    The design and development of polymer-supported reagents with ever-increasing specificities for targeted metal ions remains an important areas of research. The need for efficient separation schemes for both ions and molecules has been outlined in a report by the National Research Council (King) and will gain increased emphasis as environmental restoration is pursued. Polymer-supported reagents are unique in their ability to be applied in an environmentally benign manner to a host of challenges. Such reagents, in the form of beads, can be applied to continuous separation processes ranging from the removal of metal ions in water to the recovery of medicinal drugs produced through biotechnological means. The application of polymer-supported reagents to metal ion separations still requires developing a fundamental understanding of ligand-metal interactions, the role of the polymer in those interactions, and the methods of synthesizing such polymeric reagents in a readily applicable form. Ion exchange resins with sulfonic acid ligands are the prototypical polymer-supported reagents, and their properties have been exhaustively studied (Helfferich). The high acidity of the sulfonic acid group, however, precludes much selectivity, and it displays a very limited range of reaction free energy values with different metal ions (Boyd et al.). The carboxylic acid ligand, present in the acrylate resins, is more selective, though its weak acidity requires relatively high pH solutions for it to be effective. Research has thus been focused on the preparation of polymer-supported reagents with high levels of specificity for targeted metal ions

  7. Assessment of toxic metals in waste personal computers

    International Nuclear Information System (INIS)

    Kolias, Konstantinos; Hahladakis, John N.; Gidarakos, Evangelos

    2014-01-01

    Highlights: • Waste personal computers were collected and dismantled in their main parts. • Motherboards, monitors and plastic housing were examined in their metal content. • Concentrations measured were compared to the RoHS Directive, 2002/95/EC. • Pb in motherboards and funnel glass of devices released <2006 was above the limit. • Waste personal computers need to be recycled and environmentally sound managed. - Abstract: Considering the enormous production of waste personal computers nowadays, it is obvious that the study of their composition is necessary in order to regulate their management and prevent any environmental contamination caused by their inappropriate disposal. This study aimed at determining the toxic metals content of motherboards (printed circuit boards), monitor glass and monitor plastic housing of two Cathode Ray Tube (CRT) monitors, three Liquid Crystal Display (LCD) monitors, one LCD touch screen monitor and six motherboards, all of which were discarded. In addition, concentrations of chromium (Cr), cadmium (Cd), lead (Pb) and mercury (Hg) were compared with the respective limits set by the RoHS 2002/95/EC Directive, that was recently renewed by the 2012/19/EU recast, in order to verify manufacturers’ compliance with the regulation. The research included disassembly, pulverization, digestion and chemical analyses of all the aforementioned devices. The toxic metals content of all samples was determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The results demonstrated that concentrations of Pb in motherboards and funnel glass of devices with release dates before 2006, that is when the RoHS Directive came into force, exceeded the permissible limit. In general, except from Pb, higher metal concentrations were detected in motherboards in comparison with plastic housing and glass samples. Finally, the results of this work were encouraging, since concentrations of metals referred in the RoHS Directive were found in

  8. Assessment of toxic metals in waste personal computers

    Energy Technology Data Exchange (ETDEWEB)

    Kolias, Konstantinos; Hahladakis, John N., E-mail: john_chach@yahoo.gr; Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.gr

    2014-08-15

    Highlights: • Waste personal computers were collected and dismantled in their main parts. • Motherboards, monitors and plastic housing were examined in their metal content. • Concentrations measured were compared to the RoHS Directive, 2002/95/EC. • Pb in motherboards and funnel glass of devices released <2006 was above the limit. • Waste personal computers need to be recycled and environmentally sound managed. - Abstract: Considering the enormous production of waste personal computers nowadays, it is obvious that the study of their composition is necessary in order to regulate their management and prevent any environmental contamination caused by their inappropriate disposal. This study aimed at determining the toxic metals content of motherboards (printed circuit boards), monitor glass and monitor plastic housing of two Cathode Ray Tube (CRT) monitors, three Liquid Crystal Display (LCD) monitors, one LCD touch screen monitor and six motherboards, all of which were discarded. In addition, concentrations of chromium (Cr), cadmium (Cd), lead (Pb) and mercury (Hg) were compared with the respective limits set by the RoHS 2002/95/EC Directive, that was recently renewed by the 2012/19/EU recast, in order to verify manufacturers’ compliance with the regulation. The research included disassembly, pulverization, digestion and chemical analyses of all the aforementioned devices. The toxic metals content of all samples was determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The results demonstrated that concentrations of Pb in motherboards and funnel glass of devices with release dates before 2006, that is when the RoHS Directive came into force, exceeded the permissible limit. In general, except from Pb, higher metal concentrations were detected in motherboards in comparison with plastic housing and glass samples. Finally, the results of this work were encouraging, since concentrations of metals referred in the RoHS Directive were found in

  9. Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity.

    Science.gov (United States)

    Zhu, Ying; Zhang, Yu; Shi, Guosheng; Yang, Jinrong; Zhang, Jichao; Li, Wenxin; Li, Aiguo; Tai, Renzhong; Fang, Haiping; Fan, Chunhai; Huang, Qing

    2015-02-05

    Nanomaterials hold great promise for applications in the delivery of various molecules with poor cell penetration, yet its potential for delivery of metal ions is rarely considered. Particularly, there is limited insight about the cytotoxicity triggered by nanoparticle-ion interactions. Oxidative stress is one of the major toxicological mechanisms for nanomaterials, and we propose that it may also contribute to nanoparticle-ion complexes induced cytotoxicity. To explore the potential of nanodiamonds (NDs) as vehicles for metal ion delivery, we used a broad range of experimental techniques that aimed at getting a comprehensive assessment of cell responses after exposure of NDs, metal ions, or ND-ion mixture: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Trypan blue exclusion text, optical microscope observation, synchrotron-based scanning transmission X-ray microscopy (STXM) and micro X-ray fluorescence (μXRF) microscopy, inductively coupled plasma-mass spectrometry (ICP-MS), reactive oxygen species (ROS) assay and transmission electron microscopy (TEM) observation. In addition, theoretical calculation and molecular dynamics (MD) computation were used to illustrate the adsorption properties of different metal ion on NDs as well as release profile of ion from ND-ion complexes at different pH values. The adsorption capacity of NDs for different metal ions was different, and the adsorption for Cu2+ was the most strong among divalent metal ions. These different ND-ion complexes then had different cytotoxicity by influencing the subsequent cellular responses. Detailed investigation of ND-Cu2+ interaction showed that the amount of released Cu2+ from ND-Cu2+ complexes at acidic lysosomal conditions was much higher than that at neutral conditions, leading to the elevation of intracellular ROS level, which triggered cytotoxicity. By theoretical approaches, we demonstrated that the functional carbon surface and cluster structures of NDs made them

  10. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  11. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya, E-mail: divya@chem.unipune.ac.in

    2015-05-15

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu{sup 2+}, Fe{sup 2+}, Ni{sup 2+} and Zn{sup 2+} in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu{sup 2+}, Fe{sup 2+} and Ni{sup 2+} caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe{sup 2+}, Cu{sup 2+}, Ni{sup 2+} and Zn{sup 2+}. • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions.

  12. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya

    2015-01-01

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu 2+ , Fe 2+ , Ni 2+ and Zn 2+ in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu 2+ , Fe 2+ and Ni 2+ caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe 2+ , Cu 2+ , Ni 2+ and Zn 2+ . • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions

  13. Removal of Cu (II) ions from aqueous solutions by turmeric powder

    International Nuclear Information System (INIS)

    Qayoom, A.; Kazmi, S.A.; Rafiq, N.

    2009-01-01

    Copper is an essential nutrient, but it is toxic at high intake levels. The presence of copper(II) ions causes serious toxicological concerns, it is usually known to deposit in brain, skin, liver, pancreas and myocardium. In this work the ability of turmeric to remove copper (II) ions from aqueous solution was studied. Adsorption of metals ions by turmeric powder may be used as a natural remedy for sequestration of toxic metals which are ingested through daily food intake It was found that adsorption increased with increasing contact time, pH, temperature, adsorbent dose. The equilibrium data were satisfactorily described by Freundlich isotherm model. Adsorption of Cu (II) by turmeric powder was followed by pseudo 2/sub nd/ order kinetics. (author)

  14. Effect of metal ions on the growth and metabolites production of ...

    African Journals Online (AJOL)

    Effect of metal ions on the growth and metabolites production of Ganoderma lucidum in submerged culture. YH Cui, KC Zhang. Abstract. The effects of several metal ions on the cell growth, production of polysaccharides by Ganoderma lucidum in submerged fermentation were studied. The results showed that 50 ppm Se2+ ...

  15. Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water

    International Nuclear Information System (INIS)

    Ahmed, M.A.; Ali, S.M.; El-Dek, S.I.; Galal, A.

    2013-01-01

    Graphical abstract: The negatively charged cubic magnetite nanoparticles, prepared by the coprecipitation method in N 2 atmosphere, can adsorb up to 99% of the positively charged toxic heavy metal ions at a proper pH value. -- Highlights: • Mixed magnetite–hematite nanoparticles were synthesized via different routes. • Prepared samples were characterized by XRD, HRTEM, BET and magnetic hysteresis. • The material was employed as a sorbent for removal of some heavy metal ions from water. • The effects of pH and the contact time on the adsorption process were studied and optimized. -- Abstract: Mixed magnetite–hematite nanoparticles were synthesized via different routes such as, coprecipitation in air and N 2 atmosphere, citrate–nitrate, glycine–nitrate and microwave-assisted citrate methods. The prepared samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), BET measurements and magnetic hysteresis. XRD data showed the formation of magnetite–hematite mixture with different compositions according to the synthesis method. The particle size was in the range of 4–52 nm for all the prepared samples. From HRTEM micrographs, it was found that, the synthesis method affects the moropholgy of the prepared samples in terms of crystallinity and porosity. The magnetite–hematite mixture was employed as a sorbent material for removal of some heavy metal ions from water such as lead(II), cadmium(II) and chromium(III). The effects of pH value and the contact time on the adsorption process were studied and optimized in order to obtain the highest possible adsorption efficiency of the magnetite–hematite mixture. The effect of the synthesis method of the magnetite–hematite mixture on the adsorption process was also investigated. It was found that samples prepared by the coprecipitation method had better adsorption efficiency than those prepared by other combustion methods

  16. Preparation and adsorption behavior for metal ions and humic acid of chitosan derivatives crosslinked by irradiation

    International Nuclear Information System (INIS)

    Zhao Long; Mitomo, H.; Yoshii, F.

    2006-01-01

    Introduction: Removing metal ions and humic acid from water in water treatment has attracted much environment and health interests. Adsorbents, derived from a nature polymer, are desired in the viewpoints of environment-conscious technologies. Recently, some nature materials such as chitin, chitosan and their derivatives have been identified as an attractive option due to their distinctive properties. For an insoluble adsorbent based on these polymers to be obtained over a broad pH range, modification through crosslinking is required. Crosslinking agents such as glutaric dialdehyde and ethylene glycol diglycidyl ether are frequently used for modification. However, these crosslinking agents are not preferred because of their physiological toxicity. Radiation-crosslinking without any additive in the fabrication process results in a high-purity product. In a previous work, we applied ionizing radiation to induce the crosslinking of carboxymethylchitosan under highly concentrated paste-like conditions. The aim of this study is to investigate the adsorption behavior of metal ions, humic acid on irradiation-crosslinked carboxymethylchitosan. Experimental: Irradiation of chitosan samples at paste-like state was done with an electron beam. The solubility test of these crosslinked materials were investigated in acidic, alkaline media, and some organic solvents. Swelling and charged characteristic analyses demonstrated typically pH-sensitive properties of these crosslinked materials. Scanning electron microscopic images showed that the crosslinked samples possessed porous morphological structure. The adsorption studies were carried out by the batch method at room temperature. Adsorption of heavy metal ions (such as Cu 2+ , Cd 2+ ) and humic acid onto crosslinked samples was found to be strongly pH-dependent. Adsorption kinetic studies indicated the rapid removal of metal ions, and humic acid from the aqueous solutions. Also, isothermal adsorption data revealed that Cu 2

  17. Poisoning of liquid membrane carriers in extraction of metal ions

    International Nuclear Information System (INIS)

    Wang, Yuchun; Wang, Dexian

    1992-01-01

    As means of effective separation and preconcentration, emulsion liquid membranes (ELMs) have found application in many fields including biochemical separation, wastewater treatment, hydrometallurgy, and preconcentration in analytical chemistry. In the extraction of desired metal (scandium, mixed rare earths) ions using chelating extractants (TTA, HDEHP) as liquid membrane carriers, the carriers will become poisoned owing to the presence of even minute quantity of certain high ionic potential ions in the feed solution. The reason for the poisoning of carriers is that those ions have so much greater affinity than the desired ions for the membrane carrier that the ion-carrier coordination compound cannot be stripped at the interior interface of the membrane and gradually no more free carrier transports any metal ions across the membrane. The calculated results are in agreement with the experiments, and methods to avoid the poisoning are given in the paper

  18. Decontamination of Metal Ions in Soil by Supercritical CO{sub 2} Extraction with Catecholamine Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Kim, Hakwon; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The role of fuel cladding and reactor vessels is to help prevent the leakage of radioactive materials, including the fission products. However, if these shielding materials are damaged by a severe disaster such as the Fukushima Accident, radioactive materials could leak outside of a power plant site. Indeed, after the Fukushima Accident, radioactive materials have been detected in air and water samples. The air and water pollution lead to soil pollution, which is particularly difficult to decontaminate, as soil pollution has several types that vary according to the characteristics of a pollutant or its area. The existing decontamination methods generate a secondary waste owing to use of chemical toxicity solvents. It is also disadvantageous due to the additional cost of handling them. Therefore, new effective decontamination methods that reduce the use of toxicity solvents are necessary. For example, using supercritical CO{sub 2} has been studied as a new decontamination method. This study examines the method of decontaminating metallic ions inside of the soil using supercritical CO{sub 2} and a catecholamine compound. This study examined the effects of extracting metallic ions inside the soil using supercritical CO{sub 2} and catecholamine as the ligand. Based on these results, it is evident that when only the extraction agent was used, there was no extraction effect and that only when the ligand, co-ligand, and additive were used together was there an extraction effect. Following this, the optimal extraction-agent ratio was confirmed using varying amounts of extraction agents. The most effective extraction ratio of ligand to co-ligand was 1:2 in E-9 when 0.3 ml of H{sub 2}O were added.

  19. Monitoring of essential and toxic metals in imported herbal teas ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... Teas are the most consumed beverage worldwide after water, and its consumption ... Key words: Herbal teas, food safety, health risk assessment, THQ, EDI, HI, toxic metals ...

  20. Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts

    International Nuclear Information System (INIS)

    Lim, Steven S.; Haller, Gary L.

    2013-01-01

    Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion-typically V 5+ , Co 2+ , and Ni 2+ -incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated

  1. Potentiometric titration of metal ions in ethanol.

    Science.gov (United States)

    Gibson, Graham T T; Mohamed, Mark F; Neverov, Alexei A; Brown, R S

    2006-09-18

    The potentiometric titrations of Zn2+, Cu2+ and 12 Ln3+ metal ions were obtained in ethanol to determine the titration constants (defined as the at which the [-OEt]/[Mx+]t ratios are 0.5, 1.5, and 2.5) and in two cases (La3+ and Zn2+) a complete speciation diagram. Several simple monobasic acids and aminium ions were also titrated to test the validity of experimental titration measurements and to establish new constants in this medium that will be useful for the preparation of buffers and standard solutions. The dependence of the titration constants on the concentration and type of metal ion and specific counterion effects is discussed. In selected cases, the titration profiles were analyzed using a commercially available fitting program to obtain information about the species present in solution, including La3+ for which a dimer model is proposed. The fitting provides the microscopic values for deprotonation of one to four metal-bound ethanol molecules. Kinetics for the La3+-catalyzed ethanolysis of paraoxon as a function of are presented and analyzed in terms of La3+ speciation as determined by the analysis of potentiometric titration curves. The stability constants for the formation of Zn2+ and Cu2+ complexes with 1,5,9-triazacyclododecane as determined by potentiometric titration are presented.

  2. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats

    Directory of Open Access Journals (Sweden)

    Lee IC

    2016-06-01

    Full Text Available In-Chul Lee,1 Je-Won Ko,1 Sung-Hyeuk Park,1 Je-Oh Lim,1 In-Sik Shin,1 Changjong Moon,1 Sung-Hwan Kim,2 Jeong-Doo Heo,3 Jong-Choon Kim1 1College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 2Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, 3Gyeongnam Department of Environment and Toxicology, Korea Institute of Toxicology, Gyeongnam, Republic of Korea Abstract: Despite widespread use and prospective biomedical applications of copper nanoparticles (Cu NPs, their biosafety issues and kinetics remain unclear. Thus, the aim of this study was to compare the detailed in vivo toxicity of Cu NPs and cupric ions (CuCl2; Cu ions after a single oral dose. We determined the physicochemical characteristics of Cu NPs, including morphology, hydrodynamic size, zeta potential, and dissolution in gastric (pH 1.5, vehicle (pH 6.5, and intestinal (pH 7.8 conditions. We also evaluated the kinetics of Cu following a single equivalent dose (500 mg/kg of Cu NPs and Cu ions. Cu NPs had highest dissolution (84.5% only in gastric conditions when compared with complete dissolution of Cu ions under various physiological milieus. Kinetic analysis revealed that highest Cu levels in blood and tested organs of Cu NP-treated rats were 15%–25% lower than that of Cu ions. Similar to the case of Cu ions, Cu levels in the tested organs (especially liver, kidney, and spleen of Cu NP-treated rats increased significantly when compared with the vehicle control. However, delay in reaching the highest level and biopersistence of Cu were observed in the blood and tested organs of Cu NP-treated rats compared with Cu ions. Extremely high levels of Cu in feces indicated that unabsorbed Cu NPs or absorbed Cu ions were predominantly eliminated through liver/feces. Cu NPs exerted apparent toxicological effects at higher dose levels compared with Cu ions and showed sex-dependent differences in mortality, biochemistry, and

  3. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines.

    Science.gov (United States)

    Zhang, Yanfeng; Han, Yuwei; Yang, Jinxi; Zhu, Lingyan; Zhong, Wenjue

    2017-12-01

    The occurrence, toxicities, and ecological risks of five heavy metals (Pb, Cu, Cd, Zn and Ni) in the sediment of Taihu Lake were investigated in this study. To evaluate the toxicities caused by the heavy metals, the toxicities induced by organic contaminants and ammonia in the sediments were screened out with activated carbon and zeolite. The toxicities of heavy metals in sediments were tested with benthic invertebrates (tubificid and chironomid). The correlations between toxicity of sediment and the sediment quality guidelines (SQGs) derived previously were evaluated. There were significant correlations (pheavy metals based on SQGs, indicating that threshold effect level (TEL) and probable effect level (PEL) were reliable to predict the toxicities of heavy metals in the sediments of Taihu Lake. By contrast, the method based on acid volatile sulfides (AVS) and simultaneously extracted metals (SEM), such as ∑SEM/AVS and ∑SEM-AVS, did not show correlations with the toxicities. Moreover, the predictive ability of SQGs was confirmed by a total predicting accuracy of 77%. Ecological risk assessment based on TELs and PELs showed that the contaminations of Pb, Cu, Cd and Zn in the sediments of Taihu Lake were at relatively low or medium levels. The risks caused by heavy metals in the sediments of northern bay of the lake, which received more wastewater discharge from upper stream, were higher than other area of the lake. Copyright © 2017. Published by Elsevier B.V.

  4. Multiheteromacrocycles that complex metal ions. Third progress report, 1 May 1976--30 April 1977

    International Nuclear Information System (INIS)

    Cram, D.J.

    1977-01-01

    The overall objective of this research is to design, synthesize and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes and clusters. Host organic compounds consist of strategically placed solvating, coordinating and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The specific compounds synthesized and their complexing and lipophilizing properties are summarized

  5. Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles

    International Nuclear Information System (INIS)

    Tan, Cheng; Wang, Wen-Xiong

    2014-01-01

    Titanium dioxide (TiO 2 ) nanoparticles are widely used in water treatments, yet their influences on other contaminants in the water are not well studied. In this study, the aqueous uptake, assimilation efficiency, and toxicity of two ionic metals (cadmium-Cd, and zinc-Zn) in a freshwater zooplankton, Daphnia magna, were investigated following 2 days pre-exposure to nano-TiO 2 . Pre-exposure to 1 mg/L nano-TiO 2 resulted in a significant increase in Cd and Zn uptake from the dissolved phase. After the nano-TiO 2 in the guts were cleared, the uptake rates immediately recovered to the normal levels. Concurrent measurements of reactive oxygen species (ROS) and metallothioneins (MTs) suggested that the increased metal uptake was mainly due to the increased number of binding sites provided by nano-TiO 2 presented in the guts. Consistently, pre-exposure to nano-TiO 2 increased the toxicity of aqueous Cd and Zn due to enhanced uptake. Our study provides the evidence that nano-TiO 2 in the guts of animals could increase the uptake and toxicity of other contaminants. -- Highlights: • Dissolved Cd and Zn uptake in daphnids increased significantly after nano-TiO 2 pre-exposure. • Aqueous toxicity of Cd and Zn also increased after nano-TiO 2 pre-exposure. • Dietary assimilation of Cd and Zn was not affected after nano-TiO 2 pre-exposure. • Metal uptake recovered to normal levels after nano-TiO 2 in the guts were removed. • Nano-TiO 2 in the guts of animals could increase the uptake and toxicity of other contaminants. -- Nano-TiO 2 accumulation in Daphnia magna facilitated the uptake and toxicity of metal contaminants

  6. Removal and recovery of metal ions from process and waste streams using polymer filtration

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-01-01

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described

  7. Depth Profiling (ICP-MS Study of Toxic Metal Buildup in Concrete Matrices: Potential Environmental Impact

    Directory of Open Access Journals (Sweden)

    Ghada Bassioni

    2010-10-01

    Full Text Available This paper explores the potential of concrete material to accumulate toxic trace elements using ablative laser technology (ICP-MS. Concrete existing in offshore structures submerged in seawater acts as a sink for hazardous metals, which could be gradually released into the ocean creating pollution and anoxic conditions for marine life. Ablative laser technology is a valuable tool for depth profiling concrete to evaluate the distribution of toxic metals and locate internal areas where such metals accumulate. Upon rapid degradation of concrete these “hotspots” could be suddenly released, thus posing a distinct threat to aquatic life. Our work simulated offshore drilling conditions by immersing concrete blocks in seawater and investigating accumulated toxic trace metals (As, Be, Cd, Hg, Os, Pb in cored samples by laser ablation. The experimental results showed distinct inhomogeneity in metal distribution. The data suggest that conditions within the concrete structure are favorable for random metal accumulation at certain points. The exact mechanism for this behavior is not clear at this stage and has considerable scope for extended research including modeling and remedial studies.

  8. Comparison of Dissolved Nickel and Nickel Nanoparticles Toxicity in Larval Zebrafish in Terms of Gene Expression and DNA Damage.

    Science.gov (United States)

    Boran, Halis; Şaffak, Savaş

    2018-01-01

    With the use of nanoparticles (NPs) in many industrial activities and consumer products, it is important to evaluate the effects of their release into the environment. Metal NPs (e.g., Ni-NPs or Cu-NPs) can release metal ions that are toxic to aquatic organisms; however, whether the toxicity is from metal ions rather than unique "nano-scale" effects of the NPs is unresolved. This research investigated Ni-NP toxicity in zebrafish Danio rerio larvae to clarify whether toxic effects are attributable to release of Ni ions. First, the acute (96-h lethal) toxicity of Ni-NPs was determined in comparison to aqueous Ni in fish exposed to Ni(II) by water-soluble NiCl 2 . Subsequently, sublethal experiments with Ni-NPs and Ni(II) were conducted to assess changes in expression of stress-related genes (mt2, rad51, and p53) by quantitative PCR. Acute toxicity of Ni in fish exposed to Ni(II) was higher (96-h LC 50  = 32.6 mg/L) than for fish exposed to Ni-NPs (96-h LC 50  = 122.2 mg/L). Also, DNA strand breaks were higher in Ni(II)- than Ni-NPs-exposed larvae. Induction of stress-related genes in larvae was complex and was not directly related to Ni-NPs and Ni(II) concentration, although there was a significant induction in the mt2 and p53 gene of the larvae exposed to Ni-NPs and Ni(II) relative to controls. Results indicated that while Ni-NPs induced gene expression (presumably by the release of Ni ions), the differences in concentration relationships of gene expression between Ni-NPs and Ni(II) suggest that factors in addition to the release of Ni ions from Ni-NPs influence acute toxicity of Ni-NPs.

  9. Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites

    Science.gov (United States)

    Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.

    2018-03-01

    Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.

  10. Toxic metals contained in cosmetics: a status report.

    Science.gov (United States)

    Bocca, Beatrice; Pino, Anna; Alimonti, Alessandro; Forte, Giovanni

    2014-04-01

    The persistence of metals in the environment and their natural occurrence in rocks, soil and water cause them to be present in the manufacture of pigments and other raw materials used in the cosmetic industry. Thus, people can be exposed to metals as trace contaminants in cosmetic products they daily use. Cosmetics may have multiple forms, uses and exposure scenarios, and metals contained in them can cause skin local problems but also systemic effects after their absorption via the skin or ingestion. Even this, cosmetics companies are not obliged to report on this kind of impurities and so consumers have no way of knowing about their own risk. This paper reviewed both the concentration of metals in different types of cosmetics manufactured and sold worldwide and the data on metals' dermal penetration and systemic toxicology. The eight metals of concern for this review were antimony (Sb), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), mercury (Hg), nickel (Ni) and lead (Pb). This was because they are banned as intentional ingredients in cosmetics, have draft limits as potential impurities in cosmetics and are known as toxic. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Polyurethane and alginate immobilized algal biomass for the removal of aqueous toxic metals

    International Nuclear Information System (INIS)

    Fry, I.V.; Mehlhorn, R.J.

    1992-12-01

    We describe the development of immobilized, processed algal biomass for use as an adsorptive filter in the removal of toxic metals from waste water. To fabricate an adsorptive filter from precessed biomass several crucial criteria must be met, including: (1) high metal binding capacity, (2) long term stability (both mechanical and chemical), (3) selectivity for metals of concern (with regard to ionic competition), (4) acceptable flow capacity (to handle large volumes in short time frames), (5) stripping/regeneration (to recycle the adsorptive filter and concentrate the toxic metals to manageable volumes). This report documents experiments with processed algal biomass (Spirulina platensis and Spirulina maxima) immobilized in either alginate gel or preformed polyurethane foam. The adsorptive characteristics of these filters were assessed with regard to the criteria listed above

  12. Glutathione and its dependent enzymes' modulatory responses to toxic metals and metalloids in fish--a review.

    Science.gov (United States)

    Srikanth, K; Pereira, E; Duarte, A C; Ahmad, I

    2013-04-01

    Toxic metals and metalloid are being rapidly added from multiple pathways to aquatic ecosystem and causing severe threats to inhabiting fauna including fish. Being common in all the type of aquatic ecosystems such as freshwater, marine and brackish water fish are the first to get prone to toxic metals and metalloids. In addition to a number of physiological/biochemical alterations, toxic metals and metalloids cause enhanced generation of varied reactive oxygen species (ROS) ultimately leading to a situation called oxidative stress. However, as an important component of antioxidant defence system in fish, the tripeptide glutathione (GSH) directly or indirectly regulates the scavenging of ROS and their reaction products. Additionally, several other GSH-associated enzymes such as GSH reductase (GR, EC 1.6.4.2), GSH peroxidase (EC 1.11.1.9), and GSH sulfotransferase (glutathione-S-transferase (GST), EC 2.5.1.18) cumulatively protect fish against ROS and their reaction products accrued anomalies under toxic metals and metalloids stress conditions. The current review highlights recent research findings on the modulation of GSH, its redox couple (reduced glutathione/oxidised glutathione), and other GSH-related enzymes (GR, glutathione peroxidase, GST) involved in the detoxification of harmful ROS and their reaction products in toxic metals and metalloids-exposed fish.

  13. No association between pseudotumors, high serum metal-ion levels and metal hypersensitivity in large-head metal-on-metal total hip arthroplasty at 5-7-year follow-up

    DEFF Research Database (Denmark)

    Hjorth, Mette Holm; Stilling, Maiken; Soballe, Kjeld

    2015-01-01

    -ion concentrations were measured, metal allergy and atopic dermatitis were evaluated, and the questionnaires of the Oxford Hip Score (OHS), Harris Hip Score (HHS) and the Short-Form Health Survey (SF-36) were completed. RESULTS: Pseudotumors were found in eight patients, but they were asymptomatic and their serum...... pseudotumor formation, serum metal-ion levels, metal patch test reactivity, and atopic dermatitis. However, clinicians should be aware of asymptomatic pseudotumors, and we advise further exploration into the mechanisms involved in the pathogenesis of pseudotumors.......OBJECTIVE: The relationship between metal wear debris, pseudotumor formation and metal hypersensitivity is complex and not completely understood. The purpose of this study was to assess the prevalence of pseudotumor formation in a consecutive series of metal-on-metal (MoM) total hip arthroplasty...

  14. Slag-based materials for toxic metal and radioactive waste stabilization

    International Nuclear Information System (INIS)

    Langton, C.A.

    1989-01-01

    This paper discusses a salt solution that is a hazardous waste and has both corrosive and metal toxicity characteristics. Objectives of a wasteform designed to stabilize this solution are presented. Disposal site characterization studies are examined

  15. Monitoring of essential and toxic metals in imported herbal teas ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: Teas are the most consumed beverage worldwide after water, and its consumption among. Nigerians has ... toxic metals in food and beverages with regards to the permissible ...... Risk assessment and risk management, in: D.R. ...

  16. Metal-ion catalyzed polymerization in the eutectic phase in water-ice

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain; Szostak, Jack W.

    2008-01-01

    The emergence of an RNA world requires among other processes the non-enzymatic, template-directed replication of genetic polymers such as RNA or related nucleic acids, possibly catalyzed by metal ions. The absence of uridilate derivative polymerization on adenine containing templates has been...... the main issue preventing an efficient template-directed RNA polymerization. We report here the investigation of template-directed RNA polymerization in the eutectic phase in water-ice. In particular, it was found that activated Uridilate monomers in the presence of metal-ion catalysts could efficiently......-pairing opportunities. These results suggest that a template-directed RNA polymerization catalyzed by metal-ions could be carried out under eutectic phase in water-ice conditions....

  17. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Maryam, E-mail: mrajabi@semnan.ac.ir; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-03-08

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}, and Ni{sup 2+} prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2–70, 6–360, 7–725, 7–370, and 8–450 ng mL{sup −1} for the Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}and Ni{sup 2+} ions, respectively, with the correlation of determinations (R{sup 2}s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}, and Ni{sup 2+} ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid

  18. Assessment of sediment metal contamination in the Mar Menor coastal lagoon (SE Spain: Metal distribution, toxicity, bioaccumulation and benthic community structure

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available The Mar Menor coastal lagoon is one of the largest of the Mediterranean Sea. Ancient mining activities in the mountains near its southern basin have resulted in metal contamination in the sediment. The metal bioavailability of these sediments was determined through laboratory toxicity bioassays using three Mediterranean sea urchin species and two amphipod species, and by means of field bioaccumulation measurements involving the seagrass Cymodocea nodosa. The effect of sediment metal contamination on benthic communities was assessed through benthic infaunal analyses, applying classical descriptive parameters and multivariate techniques. The sediments affected by the mining activities presented high levels of toxicity and metals were also accumulated in the seagrass tissues, pointing to metal bioavailability. Although the classical benthic indices were not clear indicators of disturbance, the multivariate techniques applied provided more consistent conclusions.

  19. Analysis of metallic pigments by ion microbeam

    International Nuclear Information System (INIS)

    Pelicon, P.; Klanjsek-Gunde, M.; Kunaver, M.; Simcic, J.; Budnar, M.

    2002-01-01

    Metallic paints consist of metallic flakes dispersed in a resinous binder, i.e. a light-element polymer matrix. The spatial distribution and orientation of metallic flakes inside the matrix determines the covering efficiency of the paint, glossiness, and its angular-dependent properties such as lightness flop or color flop (two-tone). Such coatings are extensively used for a functional (i.e. security) as well as decorative purpose. The ion microbeam analysis of two types of silver paint with imbedded metallic flakes has been performed to determine the spatial distribution of the aluminum flakes in paint layer. The average sizes of the aluminum flakes were 23 μm (size distribution 10-37) and 49 μm (size distribution 34-75), respectively. The proton beam with the size of 2x2 μm 2 at Ljubljana ion microprobe has been used to scan the surface of the pigments. PIXE mapping of Al Kα map shows lateral distribution of the aluminum flakes, whereas the RBS slicing method reveals tomograms of the flakes in uppermost 7 μm of the pigment layer. The series of point analysis aligned over the single flake reveal the flake angle in respect to the polymer matrix surface. The angular sensitivity is well below 1 angular degree

  20. NOTE: Ranges of ions in metals for use in particle treatment planning

    Science.gov (United States)

    Jäkel, Oliver

    2006-05-01

    In proton and ion radiotherapy, the range of particles is calculated from x-ray computed tomography (CT) numbers. Due to the strong absorption of x-rays in a metal and a cut-off for large Hounsfield units (HU) in the software of most CT-scanners, a range calculation in metals cannot be based on the measured HU. This is of special importance when metal implants such as gold fillings or hip prostheses are close to the treatment volume. In order to overcome this problem in treatment planning for heavy charged particles, the correct ranges of ions in the metal relative to water have to be assigned in the CT data. Measurements and calculations of carbon ion ranges in various metals are presented that can be used in treatment planning to allow for a more accurate range calculation of carbon ion beams in titanium, steel, tungsten and gold. The suggested values for the relative water-equivalent range and their uncertainties are 3.13 (±3%) for titanium, 5.59 (±3%) for stainless steel and 10.25 (±4%) for gold.

  1. Impact of acute metal stress in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Dagmar Hosiner

    Full Text Available Although considered as essential cofactors for a variety of enzymatic reactions and for important structural and functional roles in cell metabolism, metals at high concentrations are potent toxic pollutants and pose complex biochemical problems for cells. We report results of single dose acute toxicity testing in the model organism S. cerevisiae. The effects of moderate toxic concentrations of 10 different human health relevant metals, Ag(+, Al(3+, As(3+, Cd(2+, Co(2+, Hg(2+, Mn(2+, Ni(2+, V(3+, and Zn(2+, following short-term exposure were analyzed by transcription profiling to provide the identification of early-on target genes or pathways. In contrast to common acute toxicity tests where defined endpoints are monitored we focused on the entire genomic response. We provide evidence that the induction of central elements of the oxidative stress response by the majority of investigated metals is the basic detoxification process against short-term metal exposure. General detoxification mechanisms also comprised the induction of genes coding for chaperones and those for chelation of metal ions via siderophores and amino acids. Hierarchical clustering, transcription factor analyses, and gene ontology data further revealed activation of genes involved in metal-specific protein catabolism along with repression of growth-related processes such as protein synthesis. Metal ion group specific differences in the expression responses with shared transcriptional regulators for both, up-regulation and repression were also observed. Additionally, some processes unique for individual metals were evident as well. In view of current concerns regarding environmental pollution our results may support ongoing attempts to develop methods to monitor potentially hazardous areas or liquids and to establish standardized tests using suitable eukaryotic a model organism.

  2. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.

    Science.gov (United States)

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike

    2010-06-15

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Analysis of toxic and heavy metals in cataract extraction from human eyes

    International Nuclear Information System (INIS)

    Tanvir, R.; Qureshi, S.A.; Ahmed, R.

    1999-01-01

    Surma and many other substances are frequently used for the treatment of eyes and for cosmetic purposes, which may contain large quantities of toxic and heavy metals particularly lead. Toxic metals may also enter into the body through different food chain system and also due to heavy traffic and contaminated dusts in the air of the overcrowded cities. Eyes being exposed part of human body has maximum chances to get in contact with polluted atmosphere. This study has been undertaken to find the role of toxic elements in the formation of cataract in eyes. Samples of eye lenses were collected and carefully digested in 3 ml of conc. HClO/sub 4/ and 1 ml of conc. HNO/sub 3/. Then analysis of Zn, Cd, Pb, Cu, was carried out in 0.02 m HClO/sub 4/ using differential pulse anodic stripping voltametry. Levels of Zn, Cd, Pb and Cu in eye lenses are from 324 - 5746 mug/g, 3 - 240 mug/g, 3 - 240 mug/g, 25 - 120 mug /g and 23 - 485 mug/g, respectively. Chemical composition of ocular fluid indicates that Pb, Cd, Cu, Zn are not present in it normally. In addition to other factors , role of heavy and toxic metals in the formation of cataract cannot be overlooked. Therefore, use of surma and other cosmetics should be discouraged. (author)

  4. Polymer Catalysts Imprinted with Metal Ions as Biomimics of Metalloenzymes

    Directory of Open Access Journals (Sweden)

    Joanna Czulak

    2013-01-01

    Full Text Available This work presents the preparation and properties of molecularly imprinted polymers (MIPs with catalytic centers that mimic the active sites of metalloenzymes. The MIP synthesis was based on suspension polymerization of functional monomers (4-vinylpyridine and acrylonitrile with trimethylolpropane trimethacrylate as a crosslinker in the presence of transition metal ions and 4-methoxybenzyl alcohol as a template. Four metal ions have been chosen for imprinting from among the microelements that are the most essential in the native enzymes: Cu2+, Co2+, Mn2+, and Zn2+. To prepare catalysts, the required loading of metal ions was obtained during sorption process. The catalysts imprinted with Cu2+, Co2+, and Zn2+ were successfully used for hydroquinone oxidation in the presence of hydrogen peroxide. The Mn2+-imprinted catalyst showed no activity due to the insufficient metal loading. Cu2+ MIP showed the highest efficiency. In case of Cu- and Co-MIP catalysts, their activity was additionally increased by the use of surface imprinting technique.

  5. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    Science.gov (United States)

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  6. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    Science.gov (United States)

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  7. Toxic metals in tissues of fishes from the Black Sea and associated human health risk exposure.

    Science.gov (United States)

    Plavan, Gabriel; Jitar, Oana; Teodosiu, Carmen; Nicoara, Mircea; Micu, Dragos; Strungaru, Stefan-Adrian

    2017-03-01

    The anthropogenic activities in the Black Sea area are responsible for toxic metal contamination of sea food products. In this study, several toxic metals: cadmium, lead, nickel, chromium, and copper were quantified in different tissues (digestive tract, muscle, skeleton, skin) of nine fish species (Neogobius melanostomus, Belone belone, Solea solea, Trachurus mediterraneus ponticus, Sardina pilchardus, Engraulis encrasicolus, Pomatomus saltatrix, Sprattus sprattus, Scorpaena porcus) by using atomic absorption spectrometer with a high-resolution continuum source and graphite furnace technique (HR-CS GF-AAS), and the risk of fish meat consumption by the young human population was evaluated. These metals are used in high amounts in industries located near the coastline such as shipyard construction and industrial plants. Toxic metal accumulation depends on fish feeding behavior, abiotic conditions, metal chemistry, and animal physiology. For instance, cadmium was measured in the muscle of the investigated species and average values of 0.0008-0.0338 mg kg -1 were obtained. The lowest average value of this metal was measured at benthic species N. melanostomus and the highest at the pelagic predator T. mediterraneus ponticus. Generally, the highest metal concentration was measured in the digestive tract that has the role of biofilter for these contaminants. The risk of contamination is significantly reduced by avoiding the consumption of certain fish tissues (digestive tract and skin for copper and skeleton for nickel). An estimation of the dietary metal intake to young consumers was realized for each of the studied species of fish from Romanian, Bulgarian, and Turkish waters, during the period 2001-2014 in order to evaluate the risks of chronic exposure in time due to metal toxicity. This estimation is important for the prevention of chronic exposure due to metal toxicity. Food exposure to studied metals showed a negative trend for Romania, Turkey, and Bulgaria based

  8. Metal ion release from metallothioneins: proteolysis as an alternative to oxidation.

    Science.gov (United States)

    Peroza, Estevão A; dos Santos Cabral, Augusto; Wan, Xiaoqiong; Freisinger, Eva

    2013-09-01

    Metallothioneins (MTs) are among others involved in the cellular regulation of essential Zn(II) and Cu(I) ions. However, the high binding affinity of these proteins requires additional factors to promote metal ion release under physiological conditions. The mechanisms and efficiencies of these processes leave many open questions. We report here a comprehensive analysis of the Zn(II)-release properties of various MTs with special focus on members of the four main subfamilies of plant MTs. Zn(II) competition experiments with the metal ion chelator 4-(2-pyridylazo)resorcinol (PAR) in the presence of the cellular redox pair glutathione (GSH)/glutathione disulfide (GSSG) show that plant MTs from the subfamilies MT1, MT2, and MT3 are remarkably more affected by oxidative stress than those from the Ec subfamily and the well-characterized human MT2 form. In addition, we evaluated proteolytic digestion with trypsin and proteinase K as an alternative mechanism for selective promotion of metal ion release from MTs. Also here the observed percentage of liberated metal ions depends strongly on the MT form evaluated. Closer evaluation of the data additionally allowed deducing the thermodynamic and kinetic properties of the Zn(II) release processes. The Cu(I)-form of chickpea MT2 was used to exemplify that both oxidation and proteolysis are also effective ways to increase the transfer of copper ions to other molecules. Zn(II) release experiments with the individual metal-binding domains of Ec-1 from wheat grain reveal distinct differences from the full-length protein. This triggers the question about the roles of the long cysteine-free peptide stretches typical for plant MTs.

  9. Effect of toxic metals on indigenous soil ß-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria

    NARCIS (Netherlands)

    Stephen, J.R.; Chang, Y.J.; MacNaughton, S.J.; Kowalchuk, G.A.; Leung, K.T.; Flemming, C.A.; White, D.C.

    1999-01-01

    Contamination of soils with toxic metals is a major problem on military, industrial, and mining sites worldwide. Of particular interest to the field of bioremediation is the selection of biological markers for the end point of remediation, In this microcosm study, we focus on the effect of addition

  10. Electrochemical membrane reactor: In situ separation and recovery of chromic acid and metal ions

    International Nuclear Information System (INIS)

    Khan, Jeeshan; Tripathi, Bijay P.; Saxena, Arunima; Shahi, Vinod K.

    2007-01-01

    An electrochemical membrane reactor with three compartments (anolyte, catholyte and central compartment) based on in-house-prepared cation- and anion-exchange membrane was developed to achieve in situ separation and recovery of chromic acid and metal ions. The physicochemical and electrochemical properties of the ion-exchange membrane under standard operating conditions reveal its suitability for the proposed reactor. Experiments using synthetic solutions of chromate and dichromate of different concentrations were carried out to study the feasibility of the process. Electrochemical reactions occurring at the cathode and anode under operating conditions are proposed. It was observed that metal ion migrated through the cation-exchange membrane from central compartment to catholyte and OH - formation at the cathode leads to the formation of metal hydroxide. Simultaneously, chromate ion migrated through the anion-exchange membrane from central compartment to the anolyte and formed chromic acid by combining H + produced their by oxidative water splitting. Thus a continuous decay in the concentration of chromate and metal ion was observed in the central compartment, which was recovered separately in the anolyte and catholyte, respectively, from their mixed solution. This process was completely optimized in terms of operating conditions such as initial concentration of chromate and metal ions in the central compartment, the applied cell voltage, chromate and metal ion flux, recovery percentage, energy consumption, and current efficiency. It was concluded that chromic acid and metal ions can be recovered efficiently from their mixed solution leaving behind the uncharged organics and can be reused as their corresponding acid and base apart from the purifying water for further applications

  11. Copper, but not cadmium, is acutely toxic for trout hepatocytes: short-term effects on energetics and ion homeostasis

    International Nuclear Information System (INIS)

    Manzl, Claudia; Ebner, Hannes; Koeck, Guenter; Dallinger, Reinhard; Krumschnabel, Gerhard

    2003-01-01

    The toxic effects of cadmium (Cd) and copper (Cu) on cellular energy metabolism and ion homeostasis were investigated in hepatocytes from the rainbow trout, Oncorhynchus mykiss. The metal content of cells did not increase during incubation with Cu, whereas a dose-dependent increase was seen with Cd. Cell viability was unaffected in the presence of 100 μM Cd and 10 μM Cu but was significantly reduced after 30 min of exposure to 100 μM Cu, both in the presence and absence of extracellular calcium. Oxygen consumption (VO 2 ) was not affected by 100 μM Cd or 10 μM Cu, whereas 100 μM Cu caused a significant and calcium-dependent increase of VO 2 . Lactate production and basal glucose release were not altered by either of the metals. However, the epinephrine-stimulated rate of glucose release was significantly reduced after 2 h of incubation with 100 μM Cu. Hepatocytes exposed to Cd showed only a marginal increase of intracellular free calcium (Ca i 2+ ), whereas with Cu a pronounced and dose-dependent increase of Ca i 2+ was induced after a delay of 10 to 15 min, the calcium being of extracellular origin. Intracellular pH was not altered by Cd but decreased significantly in the presence of Cu. Overall our data demonstrate that Cu, but not Cd, is acutely toxic for trout hepatocytes. Since Cu does not enter the cells in the short term it appears to exert its acutely toxic effects at the cell membrane. Although Cu toxicity is associated with an uptake of calcium from extracellular space, leading to an elevation of cellular respiration, cytotoxicity does not appear to be dependent on the presence of extracellular calcium

  12. CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells

    Energy Technology Data Exchange (ETDEWEB)

    Posada, Olga M., E-mail: O.M.PosadaEstefan@leeds.ac.uk [Biomedical Engineering Department, University of Strathclyde, Wolfson Centre, Glasgow G4 0NW (United Kingdom); Gilmour, Denise [Pure and Applied Chemistry Department, University of Strathclyde, Thomas Graham Building, Glasgow G1 1XL (United Kingdom); Tate, Rothwelle J., E-mail: r.j.tate@strath.ac.uk [Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE (United Kingdom); Grant, M. Helen [Biomedical Engineering Department, University of Strathclyde, Wolfson Centre, Glasgow G4 0NW (United Kingdom)

    2014-11-15

    Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with both FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p < 0.05) amounts of Co and Cr ions into the culture medium, and significant (p < 0.05) cellular uptake of both ions. There was also an increase (p < 0.05) in apoptosis after a 48 h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p < 0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions + debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one. - Highlights: • Effects of CoCr nanoparticles and Co ions on U937 cells were investigated. • Ions released from wear debris play an important role in cellular response, • Toxicity of Co ions could be related to NO metabolic processes and apoptosis. • CoCr particles were a more effective inducer of apoptosis after cell

  13. Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes

    International Nuclear Information System (INIS)

    Jin-Gang Yu; Central South University, Changsha, Hunan; Ministry of Education; Xiu-Hui Zhao; Lin-Yan Yu; Fei-Peng Jiao; Xiao-Qing Chen; Ministry of Education; Jian-Hui Jiang

    2014-01-01

    Environmental pollution caused by toxic metals (heavy metals, radioactive metals, etc.) is one of the major global issues, thus removal of toxic metals from contaminated water seems to be particularly important. On the other hand, the recovery and enrichment of metals, especially noble metals, from waste water is also crucial. To address these issues, nanotechnology plays an essential role in environmental monitoring and pollution control. To remove metals from contaminated water, or enrich metals from waste water, carbon nanotubes (CNTs) and their composites have attracted great attention due to their excellent adsorption performance. The removal efficiency for metal ions by CNTs was observed around 10-80 %, which could be improved to approach 100 % by selectively functionalizing CNTs with organic ligands. Herein, we review the applications of CNTs in treatment of toxic metal-containing wastewater for environmental monitoring and metals recovery. Due to their higher sensitivity and selectivity towards the enrichment of metals or detection of toxic metal pollution of the environment, and the latest research progress of using CNT composites for metal treatment is also discussed. (author)

  14. Metals and cocoa products: a study on characterization of toxic and essential metals in chocolates

    International Nuclear Information System (INIS)

    Rahman, S.; Husnain, S.M.

    2012-01-01

    Metals (Pb, Cd, Ni, Fe, Cu, Zn and Mn) were assessed in 32 commonly consumed cocoa products (chocolates) prepared by different national and multinational companies. Significant differences were observed between the micro element contents of these varieties (P < 0.01). Frequent consumption of chocolates can enhance the intake of toxic metals in children. The concentration of Pb and Cd in cocoa powder is found to be highest 492 and 197 mu g/L followed by cocoa based chocolates 306 and 46.8 mu g/L, sugar based chocolates 209.8 and 40.3 mu g/L whereas it is least in milk based chocolates samples 88.3 and 33 mu g/L respectively. Weekly intake of toxic metals Pb, Cd and Ni was also calculated. Mean concentration of Pb and Cd was found below the provisional tolerable weekly intake defined by FAO/WHO. All essential elements were assessed for their weekly intake with the dietary reference intakes (DRI). Results were validated through the analysis of certified reference materials and determined metals concentrations were quite in good agreement with certified levels. Data was interpreted through cluster analysis and pattern recognition as depicted. The concentrations of Pb, Cd, Ni and Fe were found to be highest in the cocoa-based followed by milk-based and sugar-based chocolates. The daily intake of cocoa-based chocolates must be reduced as lead and cadmium intake can otherwise cross the limits set by Codex Alimentarius (FAO/WHO 2006). Raw materials should be checked before use for metal contents in order to decrease the concentrations of these metals in final chocolate products. (Orig./A.B.)

  15. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    International Nuclear Information System (INIS)

    Shi Guitao; Chen Zhenlou; Xu Shiyuan; Zhang Ju; Wang Li; Bi Chunjuan; Teng Jiyan

    2008-01-01

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai

  16. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Shi Guitao [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Chen Zhenlou [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China)], E-mail: gt_shi@163.com; Xu Shiyuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Zhang Ju [School of Environment and Planning, Liaocheng University, Liaocheng 252059 (China); Wang Li; Bi Chunjuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Teng Jiyan [Shanghai Chongming Dongtan National Nature Reserve, Shanghai 202183 (China)

    2008-11-15

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai.

  17. Bioremediation of Toxic Heavy Metals: A Patent Review.

    Science.gov (United States)

    Verma, Neelam; Sharma, Rajni

    2017-01-01

    The global industrialization is fulfilling the demands of modern population at the cost of environmental exposure to various contaminants including heavy metals. These heavy metals affect water and soil quality. Moreover, these enter into the food chain and exhibit their lethal effects on the human health even when present at slightly higher concentration than required for normal metabolism. To the worst of their part, the heavy metals may become carcinogenic. Henceforth, the efficient removal of heavy metals is the demand of sustainable development. Remedy: Bioremediation is the 'green' imperative technique for the heavy metal removal without creating secondary metabolites in the ecosystem. The metabolic potential of several bacterial, algal, fungal as well as plant species has the efficiency to exterminate the heavy metals from the contaminated sites. Different strategies like bioaccumulation, biosorption, biotransformation, rhizofilteration, bioextraction and volatilization are employed for removal of heavy metals by the biological species. Bioremediation approach is presenting a splendid alternate for conventional expensive and inefficient methods for the heavy metal removal. The patents granted on the bioremediation of toxic heavy metals are summarized in the present manuscript which supported the applicability of bioremediation technique at commercial scale. However, the implementation of the present information and advanced research are mandatory to further explore the concealed potential of biological species to resume the originality of the environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    Science.gov (United States)

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    the effect of co-doping with smaller transition metal ions such as Ti-, Fe- and Mn-ions. Many of the ionic radii of the transition metal ions are too small compared to the host lattice ionic radius of zirconium. Here we explore the effect of a) the small ionic radii compared to the large ionic radii...

  20. Spectrophotometric determination of some metal ions using hydrazones

    International Nuclear Information System (INIS)

    Mohammed, M. S.

    2000-05-01

    In this research many starting materials were prepared, like methyl salicylate and salicylic acid hydrazide from which different derivatives of hydrazones were synthesized by coupling with carbonyl compounds like benzil monoxime and benzil mono hydrazone which are prepared and others like salicylaldehyde and benzoin. The hydrazones that were synthesized are salicylaldehyde salicylic acid hydrazone, benzoin salicylic acid hydrazone, benzil mono hydrazone salicylic acid hydrazone and benzil monoxime salicylic acid hydrazone. These reagents were determined by different methods, IR spectrophotometric determination, the nitrogen content method and melting point determination. These hydrazones act as ligands for determination of some metal ions by making different coloured complexes that were prepared for eight hydrazones with eight metal ions U (VI), Fe (II), Fe (III), Co (II), V (II), Mo (VI), Ni (II) and Cu (II). These complexes were determined by ultraviolet and visible spectrophotometer (UV/VIS) to detect their absorbance and wavelengths (λ max). The two hydrazones salicylaldehyde salicylic acid-hydrazone and benzoin salicylic acid hydrazone, were selected for determination of five metal ions (Fe (II), Fe (III), U (VI), Ni (II) and Cu (II)), using two micelles sodium n-dodecyl sulphate and pyridinium hexa decyl bromide mono hydrate. Their absorbance and wavelengths were detected using UV/VIS spectrophotometer. (Author)

  1. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    International Nuclear Information System (INIS)

    Zhang, Yuxiao; Zhang, Jianming; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2012-01-01

    Highlights: ► Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. ► MPCS was covalently modified by cysteine (MPCS–CO–Cys). ► MPCS–CO–Cys was first time used in electrochemical detection of heavy metal ions. ► Heavy metal ions such as Pb 2+ and Cd 2+ can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  2. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries.

    Science.gov (United States)

    Ying, Hangjun; Han, Wei-Qiang

    2017-11-01

    With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g -1 ) and sodium-ion batteries (847 mA h g -1 ). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.

  3. Ion implantation enhanced metal-Si-metal photodetectors

    Science.gov (United States)

    Sharma, A. K.; Scott, K. A. M.; Brueck, S. R. J.; Zolper, J. C.; Myers, D. R.

    1994-05-01

    The quantum efficiency and frequency response of simple Ni-Si-Ni metal-semiconductor-metal (MSM) photodetectors at long wavelengths are significantly enhanced with a simple, ion-implantation step to create a highly absorbing region approx. 1 micron below the Si surface. The internal quantum efficiency is improved by a factor of approx. 3 at 860 nm (to 64%) and a full factor of ten at 1.06 microns (to 23%) as compared with otherwise identical unimplanted devices. Dark currents are only slightly affected by the implantation process and are as low as 630 pA for a 4.5-micron gap device at 10-V bias. Dramatic improvement in the impulse response is observed, 100 ps vs. 600 ps, also at 10-V bias and 4.5-micron gap, due to the elimination of carrier diffusion tails in the implanted devices. Due to its planar structure, this device is fully VLSI compatible. Potential applications include optical interconnections for local area networks and multi-chip modules.

  4. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?

    Science.gov (United States)

    Lutts, Stanley; Lefèvre, Isabelle

    2015-01-01

    Background Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. Scope Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. Conclusions Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments. PMID:25672360

  5. The Effects of Temperature and Hydrostatic Pressure on Metal Toxicity: Insights into Toxicity in the Deep Sea.

    Science.gov (United States)

    Brown, Alastair; Thatje, Sven; Hauton, Chris

    2017-09-05

    Mineral prospecting in the deep sea is increasing, promoting concern regarding potential ecotoxicological impacts on deep-sea fauna. Technological difficulties in assessing toxicity in deep-sea species has promoted interest in developing shallow-water ecotoxicological proxy species. However, it is unclear how the low temperature and high hydrostatic pressure prevalent in the deep sea affect toxicity, and whether adaptation to deep-sea environmental conditions moderates any effects of these factors. To address these uncertainties we assessed the effects of temperature and hydrostatic pressure on lethal and sublethal (respiration rate, antioxidant enzyme activity) toxicity in acute (96 h) copper and cadmium exposures, using the shallow-water ecophysiological model organism Palaemon varians. Low temperature reduced toxicity in both metals, but reduced cadmium toxicity significantly more. In contrast, elevated hydrostatic pressure increased copper toxicity, but did not affect cadmium toxicity. The synergistic interaction between copper and cadmium was not affected by low temperature, but high hydrostatic pressure significantly enhanced the synergism. Differential environmental effects on toxicity suggest different mechanisms of action for copper and cadmium, and highlight that mechanistic understanding of toxicity is fundamental to predicting environmental effects on toxicity. Although results infer that sensitivity to toxicants differs across biogeographic ranges, shallow-water species may be suitable ecotoxicological proxies for deep-sea species, dependent on adaptation to habitats with similar environmental variability.

  6. Hydrometallurgical recovery of metal values by the use of ion exchange

    International Nuclear Information System (INIS)

    Higgins, I.R.

    1982-01-01

    This paper presented what had been accomplished to date using Packed Bed Continuous Countercurrent Ion Exchange (CCIX) and proposed plans for more comprehensive systems that include many soluble metals of value. Frontiers of hydrometallurgy cannot be breached until advantage is taken of a multitude of metal ions in solution. The future utilization of hydrometallurgical methodology depends on the success of extraction and separation unit operations and being accepted by mining companies. Examples are presented of CCIX projects in operation and pilot plants tested as proof of the special attractive features of the Chem-Seps CCIX system. An overall plan was presented for processing of sulfide type mineralization, with emphasis on making an effort to get ''complete'' dissolution of all metals of value. Continuous Countercurrent Ion Exchange plays a vital role in hydrometallurical processing because of the need to handle prodigious volumes of solution, tremendous tonnages of salts, and to compensate for poor ion exchange equilibrium. 11 figures. (DP)

  7. 1/f Fluctuations in ion implanted metal semiconductor contacts

    International Nuclear Information System (INIS)

    Stojanovic, M.; Marjanovic, N.; Radojevic, B.

    1998-01-01

    Ion implanted Metal-Semiconductor contacts is the most widely used structures in electrical devices. Weather complete devices or some parts are of interest, properties of metal-semiconductor junction strongly influence the quality and external characteristic of electronic devices. That is the reason why special attention is paid to the investigation of factor (noise for example) that could influence given junction. Low frequency 1/f fluctuations (noise) are constantly present in metal-semiconductor junction, so measurement of their level as well as the dependence on factors such as temperature must be taken into account in detailed analysis of electrical characteristics of devices such as contact, nuclear detector with surface barrier etc. In this paper we present the results of low frequency noise level measurements on TiN-Ti-Si structures produced by As + ion implantation. (author)

  8. Importance of dose metrics for lethal and sublethal sediment metal toxicity in the oligochaete worm Lumbriculus variegatus

    Energy Technology Data Exchange (ETDEWEB)

    Penttinen, O.P.; Kilpi-Koski, J.; Toivainen, K. [Helsinki Univ., Lahti (Finland). Dept. of Ecology end Environmental Sciences; Jokela, M. [Mikkeli Univ. of Applied Sciences, Mikkeli (Finland); Vaeisaenen, A. [Jyvaeskylae Univ. (Finland). Dept. of Chemistry

    2008-02-15

    Background, aims, and scope. There is an increasing demand for controlled toxicity tests to predict biological effects related to sediment metal contamination. In this context, questions of metal-specific factors, sensitivity of toxicity endpoints, and variability in exposure duration arise. In addition, the choice of the dose metrics for responses is equally important and is related to the applicability of the concept of critical body residue (CBR) in exposure assessments, as well as being the main focus of this study. Methods. Experiments were conducted to assess toxicity of Cd, Cr, Cu and Pb to the oligochaete worm Lumbriculus variegatus with the aim of determining CBRs for two response metrics. Mortality and feeding activity of worms exposed to sediment-spiked metals were used as end-points in connection with residue analyses from both the organisms and the surrounding media. Results. LC50 values were 0.3, 1.4, 5.2, and 6.7 mg/L (from 4.7 {mu}mol/L to 128.0 {mu}mol/L), and the order of toxicity, from most toxic to least toxic, was Cu > Cd > Pb>Cr. By relating toxicity to body residue, variability in toxicity among the metals decreased and the order of toxicity was altered. The highest lethal residue value was obtained for Cu (10.8 mmol/kg) and the lowest was obtained for Cd (2.3 mmol/kg). In the 10-d sublethal test, both time and metal exposure were an important source of variation in the feeding activity of worms. The significant treatment effects were observed from worms exposed to Cd or Pb, with the controls yielding the highest feeding rate. However, quantitative changes in the measured end-point did not correlate with the exposure concentrations or body residues, which remained an order of magnitude lower than in the acute exposures. (orig.)

  9. Determination of toxic heavy metals in indigenous medicinal plants used in Rawalpindi and Islamabad cities, Pakistan.

    Science.gov (United States)

    Mahmood, Adeel; Rashid, Sadia; Malik, Riffat Naseem

    2013-06-21

    History of medicinal plants used in local healthcare systems dates back centuries as the user considers them safe from toxic effects. Present study was aimed to document the commonly used indigenous medicinal plants and to investigate the metal toxicity and impact of pollution load in most frequently used medicinal plants from study area. Semi-structured interviews and rapid appraisal approach were employed to record the ethnomedicinal information and toxic metals were analyzed through flame atomic absorption spectrophotometer. A total of 21 wild medicinal plants was reported, and 7 were screened for toxic metal analysis. Oral mode of application (93%) was the chief route of herbal remedy administration, and leaves were found to be used as major plant part against different diseases. Main sources of remedies were wild herb (68%) followed by wild trees (18%), wild spiny shrubs (09%) and wild shrubs (5%). Trend of metal concentration was found as Fe>Ni>Cr>Pb>Cu>Zn>Mn>Cd. Indigenous medicinal plants of both cities posed the toxicity risk for Ni, Cu, Fe and crossed the safety limits set by WHO. Medicinal plants of Rawalpindi were more toxic compared to the medicinal plants of Islamabad. Prolonged intake or over dose of these medicinal plants may lead to chronic accumulation of various elements that may cause severe hazardous effect upon human health. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Migration of metallic ions from screwposts into dentin and surrounding tissues

    International Nuclear Information System (INIS)

    Arvidson, K.; Wroblewski, R.

    1978-01-01

    Previous investigations have shown that corrosion and other electrochemical processes occur when different alloys or metals are found together in the same mouth. In the present report, when teeth were restored using non-noble metallic posts, the metals diffused out to surrounding hard and soft connective tissues. The material consisted of extracted teeth with screwposts and surrounding discolored connective tissues. The screwposts had been cemented to the teeth 3-10 years earlier. The distribution of metal ion was determined by means of energy-dispersive X-ray microanalysis. Copper and zinc were found in both hard and soft tissues. Relatively high concentrations of copper ions were identified in areas of the teeth with blue-green discolorations. Zinc ions were detected in the dentin; they most probably originated from the screwposts and the cement, but zinc is also found in normal human dentin. Copper, zinc, silver and iron were found in the dark discolorations of the gingiva adjacent to the extracted teeth. (author)

  11. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls.

    Science.gov (United States)

    Rao, M Madhava; Ramana, D K; Seshaiah, K; Wang, M C; Chien, S W Chang

    2009-07-30

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g(-1) for Pb(II), 21.2 mg g(-1) for Zn(II), 19.5 mg g(-1) for Cu(II), and 15.7 mg g(-1) for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  12. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls

    International Nuclear Information System (INIS)

    Rao, M. Madhava; Ramana, D.K.; Seshaiah, K.; Wang, M.C.; Chien, S.W. Chang

    2009-01-01

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g -1 for Pb(II), 21.2 mg g -1 for Zn(II), 19.5 mg g -1 for Cu(II), and 15.7 mg g -1 for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  13. assessment of concentrations of trace and toxic heavy metals in soil

    African Journals Online (AJOL)

    Windows User

    pump. The concentrations of heavy metals in soil and edible vegetables samples were analyzed using Energy ... Keywords: Soil, Vegetables, Manyoni Uranium Deposit, Toxic Elements, EDXRF. ... fine radioactive particles prone to wind and.

  14. Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius.

    Science.gov (United States)

    Huang, Yuting; Dodds, Eric D

    2013-10-15

    Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.

  15. Metal ion levels and lymphocyte counts

    DEFF Research Database (Denmark)

    Penny, Jeannette Ø; Varmarken, Jens-Erik; Ovesen, Ole

    2013-01-01

    BACKGROUND AND PURPOSE: Wear particles from metal-on-metal arthroplasties are under suspicion for adverse effects both locally and systemically, and the DePuy ASR Hip Resurfacing System (RHA) has above-average failure rates. We compared lymphocyte counts in RHA and total hip arthroplasty (THA) an....../ppb. INTERPRETATION: Circulating T-lymphocyte levels may decline after surgery, regardless of implant type. Metal ions-particularly cobalt-may have a general depressive effect on T- and B-lymphocyte levels. Registered with ClinicalTrials.gov under # NCT01113762.......BACKGROUND AND PURPOSE: Wear particles from metal-on-metal arthroplasties are under suspicion for adverse effects both locally and systemically, and the DePuy ASR Hip Resurfacing System (RHA) has above-average failure rates. We compared lymphocyte counts in RHA and total hip arthroplasty (THA....... RESULTS: The T-lymphocyte counts for both implant types declined over the 2-year period. This decline was statistically significant for CD3(+)CD8(+) in the THA group, with a regression coefficient of -0.04 × 10(9)cells/year (95% CI: -0.08 to -0.01). Regression analysis indicated a depressive effect...

  16. Metal binding proteins, recombinant host cells and methods

    Science.gov (United States)

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  17. Variation in shoot tolerance mechanisms not related to ion toxicity in barley

    KAUST Repository

    Tilbrook, Joanne

    2017-09-27

    Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250mMNaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, withsome lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+: Na+ ratios).

  18. Variation in shoot tolerance mechanisms not related to ion toxicity in barley

    KAUST Repository

    Tilbrook, Joanne; Schilling, Rhiannon K.; Berger, Bettina; Garcia, Alexandre F.; Trittermann, Christine; Coventry, Stewart; Rabie, Huwaida; Brien, Chris; Nguyen, Martin; Tester, Mark A.; Roy, Stuart J.

    2017-01-01

    Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250mMNaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, withsome lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+: Na+ ratios).

  19. Piezoelectric sensor for sensitive determination of metal ions based on the phosphate-modified dendrimer

    Science.gov (United States)

    Wang, S. H.; Shen, C. Y.; Lin, Y. M.; Du, J. C.

    2016-08-01

    Heavy metal ions arising from human activities are retained strongly in water; therefore public water supplies must be monitored regularly to ensure the timely detection of potential problems. A phosphate-modified dendrimer film was investigated on a quartz crystal microbalance (QCM) for sensing metal ions in water at room temperature in this study. The chemical structures and sensing properties were characterized by Fourier transform infrared spectroscopy and QCM measurement, respectively. This phosphate-modified dendrimer sensor can directly detect metal ions in aqueous solutions. This novel sensor was evaluated for its capacity to sense various metal ions. The sensor exhibited a higher sensitivity level and shorter response time to copper(II) ions than other sensors. The linear detection range of the prepared QCM based on the phosphate-modified dendrimer was 0.0001 ∼ 1 μM Cu(II) ions (R2 = 0.98). The detection properties, including sensitivity, response time, selectivity, reusability, maximum adsorption capacity, and adsorption equilibrium constants, were also investigated.

  20. Influence of the amount of collector on ion flotation of niobium

    International Nuclear Information System (INIS)

    Ushakova, L.I.; Berezyuk, V.G.; Kasimov, A.M.

    1983-01-01

    Flotation methods based on chemical interaction of the metal ion to be extracted (colligend) with an oppositely charged surfactant ion (collector) are now attracting attention increasingly in purification of wastewaters. Extraction of small amounts of metals by flotation from industrial wastes provides solutions of problems associated with prevention of pollution of natural water supplies by toxic pollutants, and also with concentration of valuable elements for subsequent utilization. Niobium is one such metal, extraction of which from aqueous solutions is of considerable interest. The results of an experimental study of the influence of the amount of flotation reagent on ion flotation of niobates are discussed in this paper

  1. Separation of some metal ions using coupled transport supported liquid membranes

    International Nuclear Information System (INIS)

    Chaudhary, M.A.

    1993-01-01

    Liquid membrane extraction processes has become very popular due to their superiority in many ways over other separation techniques. In coupled transport membranes the metal ions can be transported across the membrane against their concentration gradient under the influence of chemical potential difference. Liquid membranes consisting of a carrier-cum-diluent, supported in microporous polymeric hydrophobic films have been studied for transport of metal ions like U(VI), Cr(VI), Be(II), V(V), Ti(IV), Zn(II), Cd(II), Hf(IV), W(VI), and Co(II). The present paper presents basic data with respect to flux and permeabilities of these metal ions across membranes based on experimental results and theoretical equations, using different carriers and diluents and provides a brief reference to possibility of such membranes for large scale applications. (author)

  2. Linen Fire as Biosorbent to Remove Heavy Metal Ions From Wastewater Modeling

    OpenAIRE

    Ildar G. Shaikhiev

    2014-01-01

    The possibility of using linen fires – lnopererabotk i waste as a sorption material for the extraction of heavy metal ions from wastewater modeling. It is shown that treatment with acid solutions linen fires a low concentration increases the surface area of linen fires and thus sorption capacity for heavy metal ions. The values of the maximum sorption capacity ions Fe (III), Co (II), Ni (II) and Zn (II) under static and dynamic conditions. IR spectroscopy...

  3. High intensity metallic ion beams from an ecr ion source at GANIL

    International Nuclear Information System (INIS)

    Leherissier, P.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lemagnen, F.; Leroy, R.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Jaffres, P.A.

    2001-01-01

    In the recent years, progress concerning the production of high intensity of metallic ions beams ( 58 Ni, 48 Ca, 76 Ge) at Ganil have been performed. The MIV0C method has been successfully used to produce a high intensity nickel beam with the ECR4 ion source: 20 eμA of 58 Ni 11+ at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 pμA on target. This high intensity, required for experiment, led to the discovery of the doubly magic 48 Ni isotope. The oven method has been first tested with natural metallic calcium on the ECR4 ion source, then used to produce a high power beam (740 W on target i.e. 0.13 pμA accelerated up to 60 MeV/u) of 48 Ca still keeping a low consumption (0.09 mg/h). A germanium beam is now under development, using the oven method with germanium oxide. The ionization efficiencies have been measured and compared. (authors)

  4. Purification of PON1 from human serum and assessment of enzyme kinetics against metal toxicity.

    Science.gov (United States)

    Ekinci, Deniz; Beydemir, Sükrü

    2010-06-01

    Paraoxonase-1 (PON1) is an organophosphate hydrolyser enzyme which has also antioxidant properties in metabolism. Due to its crucial functions, inhibition of the enzyme is undesirable and very dangerous. PON1 enzyme activity should not be altered in any case. Inhibitory investigations of this enzyme are therefore important and useful. Metal toxicology of enzymes has become popular in the recent years. Here, we report the in vitro inhibitory effects of some metal ions, including Pb(+2), Cr(+2), Fe(+2), and Zn(+2), on the activity of human serum PON1 (hPON1; EC 3.1.8.1.). For this purpose, we purified the enzyme from human serum and analyzed the alterations in the enzyme activity in the presence of metal ions. The results show that metal ions exhibit inhibitory effects on hPON1 at low concentrations with IC (50) values ranging from 0.838 to 7.410 mM. Metal ions showed different inhibition mechanisms: lead and iron were competitive, chrome was noncompetitive, and zinc was uncompetitive. Lead was determined to be the most effective inhibitor.

  5. Effect of stress at dosing on organophosphate and heavy metal toxicity

    International Nuclear Information System (INIS)

    Jortner, Bernard S.

    2008-01-01

    This paper reviews recent studies assessing the effect of well-defined, severe, transient stress at dosing on two classical models of toxicity. These are the acute (anticholinesterase) toxicity seen following exposure to the organophosphate insecticide chlorpyrifos, and the nephrotoxicity elicited by the heavy metal depleted uranium, in rats. Stress was induced by periods of restraint and forced swimming in days to weeks preceding toxicant exposure. Forced swimming was far more stressful, as measured by marked, if transient, elevation of plasma corticosterone. This form of stress was administered immediately prior to administration of chlorpyrifos or depleted uranium. Chlorpyrifos (single 60 mg/kg subcutaneously) elicited marked inhibition of brain acetylcholinesterase 4-day post-dosing. Depleted uranium (single intramuscular doses of 0.1, 0.3 or 1.0 mg/kg uranium) elicited dose-dependent increase in kidney concentration of the metal, with associated injury to proximal tubular epithelium and increases in serum blood urea nitrogen and creatinine during the 30-day post-dosing period. Stress at dosing had no effect on these toxicologic endpoints

  6. Observation of self-sputtering in energetic condensation of metal ions

    International Nuclear Information System (INIS)

    Anders, Andre

    2004-01-01

    The condensation of energetic metal ions on a surface may cause self-sputtering even in the absence of substrate bias. Charge-state-averaged self-sputtering yields were determined for both zirconium and gold ions generated by a cathodic vacuum arc. Films were deposited on differently biased substrates exposed to streaming Zr and Au vacuum arc plasma. The self-sputtering yields for both metals were estimated to be about 0.05 in the absence of bias, and exceeding 0.5 when bias reached-50 V. These surprisingly high values can be reconciled with binary collision theory and molecular dynamics calculations taking high the kinetic and potential energy of vacuum arc ions into account

  7. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-06

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Natural inorganic nanoparticles--formation, fate, and toxicity in the environment.

    Science.gov (United States)

    Sharma, Virender K; Filip, Jan; Zboril, Radek; Varma, Rajender S

    2015-12-07

    The synthesis, stability, and toxicity of engineered metal nanoparticles (ENPs) have been extensively studied during the past two decades. In contrast, research on the formation, fate, and ecological effects of naturally-occurring nanoparticles (NNPs) has become a focus of attention only recently. The natural existence of metal nanoparticles and their oxides/sulfides in waters, wastewaters, ore deposits, mining regions, and hydrothermal vents, as exemplified by the formation of nanoparticles containing silver and gold (AgNPs and AuNPs), Fe, Mn, pyrite (FeS2), Ag2S, CuS, CdS, and ZnS, is dictated largely by environmental conditions (temperature, pH, oxic/anoxic, light, and concentration and characteristics of natural organic matter (NOM)). Examples include the formation of nanoparticles containing pyrite, Cu and Zn-containing pyrite, and iron in hydrothermal vent black smoker emissions. Metal sulfide nanoparticles can be formed directly from their precursor ions or indirectly by sulfide ion-assisted transformation of the corresponding metal oxides under anaerobic conditions. This tutorial focuses on the formation mechanisms, fate, and toxicity of natural metal nanoparticles. Natural waters containing Ag(I) and Au(III) ions in the presence of NOM generate AgNPs and AuNPs under thermal, non-thermal, and photochemical conditions. These processes are significantly accelerated by existing redox species of iron (Fe(II)/Fe(III)). NOM, metal-NOM complexes, and reactive oxygen species (ROS) such as O2˙(-), ˙OH, and H2O2 are largely responsible for the natural occurrence of nanoparticles. AgNPs and AuNPs emanating from Ag(I)/Au(III)-NOM reactions are stable for several months, thus indicating their potential to be transported over long distances from their point of origin. However, endogenous cations present in natural waters can destabilize the nanoparticles, with divalent cations (e.g., Ca(2+), Mg(2+)) being more influential than their monovalent equivalents (e.g., Na

  9. Divalent metal ion removal from aqueous solution by acid-treated ...

    African Journals Online (AJOL)

    ions determined from the Langmuir isotherm showed that C. indica had the largest sorption capacity for Pb2+ ions and the least sorption for Ni2+. The results also showed that garlic-treatment of C. indica biomass enhanced its sorption capacity for the divalent metal ions, with the enhancement factor varying from 1.22 to 1.44 ...

  10. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments.

    Science.gov (United States)

    Zimmermann, Sonja; Wolff, Carolina; Sures, Bernd

    2017-05-01

    Mainly due to automobile traffic, but also due to other sources, the platinum group elements (PGE) platinum (Pt), palladium (Pd) and rhodium (Rh) are introduced into aquatic biotopes where they accumulate in sediments of lakes and rivers. However, the toxicity of these noble metals to aquatic organisms is not well understood and especially toxicity studies under standardized condition are lacking. Thus, the toxicity of Pt, Pd and Rh to Daphnia magna was tested in single metal exposure experiments according to OECD guideline 202. Immobility and lethality was recorded after 24 h and 48 h of exposure and EC 50 and LC 50 , respectively, were determined. As the nominal exposure concentration of Pd differed significantly from the quantified concentration, the control of the real exposure concentration by chemical analysis is mandatory, especially for Pd. The toxicity decreased in the order Pd > Pt ≫ Rh with e.g. LC 50 (48 h) values of 14 μg/L for Pd, 157 μg/L for Pt and 56,800 μg/L for Rh. The exposure period had a clear effect on the toxicity of Pt, Pd and Rh. For Pt and Rh the endpoint immobility was more sensitive than the endpoint lethality whereas Pd toxicity was similar for both endpoints. The Hill slopes, which are a measure for the steepness of the concentration-response curves, showed no significant discrepancies between the different metals. The binary metal exposure to Pt and Pd revealed a more-than-additive, i.e. a synergistic toxicity using the toxic unit approach. The present study is a start to understand the toxicity of interacting PGE. The modes of action behind the synergistic effect are unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sensitivity to Heavy-Metal Ions of Unfolded Fullerene Quantum Dots

    Directory of Open Access Journals (Sweden)

    Erica Ciotta

    2017-11-01

    Full Text Available A novel type of graphene-like quantum dots, synthesized by oxidation and cage-opening of C60 buckminsterfullerene, has been studied as a fluorescent and absorptive probe for heavy-metal ions. The lattice structure of such unfolded fullerene quantum dots (UFQDs is distinct from that of graphene since it includes both carbon hexagons and pentagons. The basic optical properties, however, are similar to those of regular graphene oxide quantum dots. On the other hand, UFQDs behave quite differently in the presence of heavy-metal ions, in that multiple sensitivity to Cu2+, Pb2+ and As(III was observed through comparable quenching of the fluorescent emission and different variations of the transmittance spectrum. By dynamic light scattering measurements and transmission electron microscope (TEM images we confirmed, for the first time in metal sensing, that this response is due to multiple complexation and subsequent aggregation of UFQDs. Nonetheless, the explanation of the distinct behaviour of transmittance in the presence of As(III and the formation of precipitate with Pb2+ require further studies. These differences, however, also make it possible to discriminate between the three metal ions in view of the implementation of a selective multiple sensor.

  12. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary.

    Science.gov (United States)

    Rosado, Daniel; Usero, José; Morillo, José

    2016-06-01

    Relationship between toxicity and bioavailable metals in sediments from the Huelva estuary and its littoral of influence was analyzed. Toxicity was assessed with Microtox® bioassay using a marine luminescent bacterium: Vibrio fischeri. Bioavailable metals were considered as both, acid extractable fraction of BCR procedure and the sum of exchangeable and bound to carbonates fractions of Tessier sequential extraction. A bioavailable metals index was calculated to integrate results in a single figure. Toxicity and bioavailable metals showed a similar pattern. Higher levels were found in the estuary than in the littoral (140 TU/g). In Huelva estuary, highest levels were found in the Tinto estuary (5725 TU/g), followed by the Odiel estuary (5100 TU/g) and the Padre Santo Canal (2500 TU/g). Results in this area were well over than those in nearby estuaries. Furthermore, they are similar to or even higher than those in other polluted sediments around the world. Bioavailable metal index showed a stronger correlation with acid extractable fraction of BCR (R(2) = 0.704) than that for the sum of exchangeable and bound to carbonates fractions of Tessier (R(2) = 0.661). These results suggest that bioavailable metals are an important source of sediment toxicity in the Huelva estuary and its littoral of influence, an area with one of the highest mortality risks of Spain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Extraction of toxic and valuable metals from foundry sands

    International Nuclear Information System (INIS)

    Vite T, J.

    1996-01-01

    There were extracted valuable metals from foundry sands such as: gold, platinum, silver, cobalt, germanium, nickel and zinc among others, as well as highly toxic metals such as chromium, lead, vanadium and arsenic. The extraction efficiency was up to 100% in some cases. For this reason there were obtained two patents at the United States, patent number 5,356,601, in October 1994, given for the developed process and patent number 5,376,000, in December 1994, obtained for the equipment employed. Therefore, the preliminary parameters for the installation of a pilot plant have also been developed. (Author)

  14. Effect Of Metal Ions On Triphenylmethane Dye Decolorization By Laccase From Trametes Versicolor

    Directory of Open Access Journals (Sweden)

    Chmelová Daniela

    2015-12-01

    Full Text Available The aim of this study was investigate the influence of different metal ions on laccase activity and triphenylmethane dye decolorization by laccase from white-rot fungus Trametes versicolor. Laccase activity was inhibited by monovalent ions (Li+, Na+, K+ and Ag+ but the presence of divalent ions increased laccase activity at the concentration of 10 mmol/l. The effect of metal ions on decolorization of triphenylmethane dyes with different structures namely Bromochlorophenol Blue, Bromophenol Blue, Bromocresol Blue and Phenol Red was tested. The presence of metal ions (Na+, K+, Mg2+, Ca2+, Ba2+, Mn2+, Zn2+ slightly decreased triphenylmethane dye decolorization by laccase from T. versicolor except Na+ and Mg2+, which caused the increase of decolorization for all tested dyes. Decolorization of selected dyes showed that the presence of low-molecular-weight compounds is necessary for effective decolorization. Hydroxybenzotriazole (HBT is the most frequently used. Although HBT belongs to most frequently used redox mediator and generally increase decolorization efficiency, so its presence decreased decolorization percentage of Bromophenol Blue and Bromochlorophenol Blue, the influence of metal ions to dye decolorization by laccase has the similar course with or without presence of redox mediator HBT.

  15. Adsorption of heavy metal ions on molybdenum and molybdenum trioxide from dilute aqueous solution

    International Nuclear Information System (INIS)

    Utsunomiya, Taizo; Hoshino, Yoshio; Sakabe, Ken-ichi

    1984-01-01

    The adsorption of heavy metal ions such as Co(II), Cu(II) and Pb(II) on molybdenum powder has been investigated by the batch technique as a function of soaking time, concentration of heavy metal ions and coexisting salts, pH etc. Molybdenum trioxide was also used as an adsorbent for a comparison to discuss the adsorption mechanism. The amount of these heavy metal ions adsorbed was highly pH and coexisting salts dependent. These adsorbents have features of selective adsorption for Pb(II) and large adsorption rate. The adsorption of heavy metal ions on these adsorbents proceeds independently or concurrently by following complex mechanism; (1) cation exchange reaction by hydroxyl radical on the surface of Mo and MoO 3 is predominant for most of heavy metal ions except Pb(II) [Co(II), Mn(II), Fe(III), Ni(II), Zn(II), Cd(II) and Sr(II)], (2) reduction (electron exchange reaction) to low ionic or metallic state after cation exchange reaction [Cu(II) and Ag(I) on Mo] and (3) formation of a compound [Pb(II) on both Mo and MoO 3 ]. (author)

  16. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes.

    Science.gov (United States)

    Tejirian, Ani; Xu, Feng

    2010-12-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.

  17. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxiao; Zhang, Jianming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  18. Equilibrium and kinetics studies of metal ion adsorption on dyed ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... Initial concentration of Cu(II) ions = 20 mg/l, adsorbent dose = 1.0 g. Table 2 Experiment Data of ... diffusivity of the metal ion would be independent of the extent of sorption .... exchange and adsorption. Equilibrium parameter.

  19. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  20. Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk.

    Science.gov (United States)

    Deng, Rui; Lin, Daohui; Zhu, Lizhong; Majumdar, Sanghamitra; White, Jason C; Gardea-Torresdey, Jorge L; Xing, Baoshan

    2017-06-01

    With their growing production and application, engineered nanoparticles (NPs) are increasingly discharged into the environment. The released NPs can potentially interact with pre-existing contaminants, leading to biological effects (bioaccumulation and/or toxicity) that are poorly understood. Most studies on NPs focus on single analyte exposure; the existing literature on joint toxicity of NPs and co-existing contaminants is rather limited but beginning to develop rapidly. This is the first review paper evaluating the current state of knowledge regarding the joint effects of NPs and co-contaminants. Here, we review: (1) methods for investigating and evaluating joint effects of NPs and co-contaminants; (2) simultaneous toxicities from NPs co-exposed with organic contaminants, metal/metalloid ions, dissolved organic matter (DOM), inorganic ligands and additional NPs; and (3) the influence of NPs co-exposure on the bioaccumulation of organic contaminants and heavy metal ions, as well as the influence of contaminants on NPs bioaccumulation. In addition, future research needs are discussed so as to better understand risk associated with NPs-contaminant co-exposure.