WorldWideScience

Sample records for metal ion implantation

  1. Ion implantation in metals

    International Nuclear Information System (INIS)

    Vook, F.L.

    1977-02-01

    The application of ion beams to metals is rapidly emerging as a promising area of research and technology. This report briefly describes some of the recent advances in the modification and study of the basic properties of metals by ion implantation techniques. Most of the research discussed illustrates some of the new and exciting applications of ion beams to metals which are under active investigation at Sandia Laboratories, Albuquerque

  2. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  3. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  4. Plasma immersion ion implantation for reducing metal ion release

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  5. Adhesive, abrasive and oxidative wear in ion-implanted metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1985-01-01

    Ion implantation is increasingly being used to provide wear resistance in metals and cemented tungsten carbides. Field trials and laboratory tests indicate that the best performance is achieved in mild abrasive wear. This can be understood in terms of the classification of wear modes (adhesive, abrasive, oxidative etc.) introduced by Burwell. Surface hardening and work hardenability are the major properties to be enhanced by ion implantation. The implantation of nitrogen or dual implants of metallic and interstitial species are effective. Recently developed techniques of ion-beam-enhanced deposition of coatings can further improve wear resistance by lessening adhesion and oxidation. In order to support such hard coatings, ion implantation of nitrogen can be used as a preliminary treatment. There is thus emerging a versatile group of related hard vacuum treatments involving intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (Auth.)

  6. Wear properties of metal ion implanted 4140 steel

    International Nuclear Information System (INIS)

    Evans, P.J.; Paoloni, F.J.

    1994-01-01

    AISI type 4140 (high tensile) steel has been implanted with tungsten and titanium using a metal vapour vacuum arc ion source. Doses in the range (1-5)x10 16 ionscm -2 were implanted to a depth of approximately 30nm. The relative wear resistance between non-implanted and implanted specimens has been estimated using pin-on-disc and abrasive wear tests. Implantation of titanium decreased the area of wear tracks by a factor of 5 over unimplanted steel. In some cases the steel was also hardened by a liquid carburization treatment before implantation. Abrasion tests revealed a further improvement in wear resistance on this material following ion irradiation. ((orig.))

  7. Electrical properties of polymer modified by metal ion implantation

    International Nuclear Information System (INIS)

    Wu Yuguang; Zhang Tonghe; Zhang Huixing; Zhang Xiaoji; Deng Zhiwei; Zhou Gu

    2000-01-01

    Polyethylene terephthalate (PET) has been modified by Ag, Cr, Cu and Si ion implantation with a dose range from 1x10 16 to 2x10 17 ions cm -2 using a metal vapor vacuum arc (MEVVA) source. The electrical properties of PET have been changed after metal ion implantation. The resistivity of implanted PET decreased obviously with an increase of ion dose. When metal ion dose of 2x10 17 cm -2 was selected, the resistivity of PET could be less than 10 Ω cm, but when Si ions are implanted, the resistivity of PET would be up to several hundred Ω cm. The results show that the conductive behavior of a metal ion implanted sample is obviously different from Si implantation one. The changes of the structure and composition have been observed with transmission electron microscope (TEM) and X-ray diffraction (XRD). The surface structure is varying after ion implantation and it is believed that the change would cause the improvement of the conductive properties. The mechanism of electrical conduction will be discussed

  8. Modification of medical metals by ion implantation of copper

    Science.gov (United States)

    Wan, Y. Z.; Xiong, G. Y.; Liang, H.; Raman, S.; He, F.; Huang, Y.

    2007-10-01

    The effect of copper ion implantation on the antibacterial activity, wear performance and corrosion resistance of medical metals including 317 L of stainless steels, pure titanium, and Ti-Al-Nb alloy was studied in this work. The specimens were implanted with copper ions using a MEVVA source ion implanter with ion doses ranging from 0.5 × 10 17 to 4 × 10 17 ions/cm 2 at an energy of 80 keV. The antibacterial effect, wear rate, and inflexion potential were measured as a function of ion dose. The results obtained indicate that copper ion implantation improves the antibacterial effect and wear behaviour for all the three medical materials studied. However, corrosion resistance decreases after ion implantation of copper. Experimental results indicate that the antibacterial property and corrosion resistance should be balanced for medical titanium materials. The marked deteriorated corrosion resistance of 317 L suggests that copper implantation may not be an effective method of improving its antibacterial activity.

  9. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    Science.gov (United States)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  10. Adhesive and abrasive wear mechanisms in ion implanted metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1985-01-01

    The distinction between adhesive and abrasive wear processes was introduced originally by Burwell during the nineteen-fifties, though some authors prefer to classify wear according to whether it is mild or severe. It is argued here that, on the basis of the performance of a variety of ion implanted metal surfaces, exposed to different modes of wear, the Burwell distinction is a valid one which, moreover, enables us to predict under which circumstances a given treatment will perform well. It is shown that, because wear rates under abrasive conditions are very sensitive to the ratio of the hardness of the surface to that of the abrasive particles, large increases in working life are attainable as a result of ion implantation. Under adhesive wear conditions, the wear rate appears to fall inversely as the hardness increases, and it is advantageous to implant species which will create and retain a hard surface oxide or other continuous film in order to reduce metal-metal contact. By the appropriate combination of physico-chemical changes in an implanted layer it has been possible to reduce wear rates by up to three orders of magnitude. Such rates compensate for the shallow depths achievable by ion implantation. (orig.)

  11. Metallic ion release after knee prosthesis implantation: a prospective study.

    Science.gov (United States)

    Lons, Adrien; Putman, Sophie; Pasquier, Gilles; Migaud, Henri; Drumez, Elodie; Girard, Julien

    2017-12-01

    Metal-on-metal (MoM) hip replacement bearings produce metallic ions that can cause health complications. Metallic release also occurs with other materials, but data on metallic ion levels after knee arthroplasty are sparse. We postulate that knee replacement generates elevating metallic ions (chromium (Cr), cobalt (Co) and titanium (Ti)) during the first year after implantation. This ongoing prospective study included all patients who underwent the same type of knee arthroplasty between May and December 2013. Cr, Co and Ti levels were measured in whole blood at pre-operation and one-year follow-up (6 and 12 months). Clinical and radiographic data (range of motion, Oxford, International Knee Society (IKS) and satisfaction scores) were recorded. In 90 patients, preoperative Cr, Co and Ti metallic ion levels were respectively 0.45 μg/l, 0.22 μg/l, 2.94 μg/l and increased to 1.27 μg/l, 1.41 μg/l, 4.08 μg/l (p < 0.0001) at last one-year follow-up. Mean Oxford and IKS scores rose, respectively, from 45.9 (30-58) and 24.9 (12-52) to 88.3 (0-168) and 160.8 (93-200) (p < 0.001). After the implantation of knee arthroplasty, we found significant blood elevation of Cr, Co and Ti levels one year after implantation exceeding the normal values. This metallic ion release could lead to numerous effects: allergy, hypersensitivity, etc.

  12. Upgraded vacuum arc ion source for metal ion implantation

    International Nuclear Information System (INIS)

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-01-01

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  13. Broad-beam, high current, metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the 'seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs

  14. Very broad beam metal ion source for large area ion implantation application

    International Nuclear Information System (INIS)

    Brown, I.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Yao, X.

    1993-01-01

    The authors have made and operated a very broad beam version of vacuum arc ion source and used it to carry out high energy metal ion implantation of a particularly large substrate. A multiple-cathode vacuum arc plasma source was coupled to a 50 cm diameter beam extractor (multiple aperture, accel-decel configuration) operated at a net extraction voltage of up to 50 kV. The metal ion species chosen were Ni and Ta. The mean ion charge state for Ni and Ta vacuum arc plasmas is 1.8 and 2.9, respectively, and so the mean ion energies were up to about 90 and 145 keV, respectively. The ion source was operated in a repetitively pulsed mode with pulse length 250 μs and repetition rate several pulses per second. The extracted beam had a gaussian profile with FWHM about 35 cm, giving a nominal beam area of about 1,000 cm 2 . The current of Ni or Ta metal ions in the beam was up to several amperes. The targets for the ion implantation were a number of 24-inch long, highly polished Cu rails from an electromagnetic rail gun. The rails were located about 80 cm away from the ion source extractor grids, and were moved across a diameter of the vessel in such a way as to maximize the uniformity of the implant along the rail. The saturation retained dose for Ta was limited to about 4 x 10 16 cm -2 because of the rather severe sputtering, in accordance with the theoretical expectations for these implantation conditions. Here they describe the ion source, the implantation procedure, and the kinds of implants that can be produced in this way

  15. Characterization of surface enhancement of carbon ion-implanted TiN coatings by metal vapor vacuum arc ion implantation

    CERN Document Server

    Chang, C L

    2002-01-01

    The modification of the surfaces of energetic carbon-implanted TiN films using metal vapor vacuum arc (MEVVA) ion implantation was investigated, by varying ion energy and dose. The microhardness, microstructure and chemical states of carbon, implanted on the surface layer of TiN films, were examined, as functions of ion energy and dose, by nanoindenter, transmission electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Results revealed that the microhardness increased from 16.8 up to 25.3 GPa and the friction coefficient decreased to approximately 0.2, depending on the implanted ion energy and dose. The result is attributed to the new microcrystalline phases of TiCN and TiC formed, and carbon concentration saturation of the implanted matrix can enhance the partial mechanical property of TiN films after MEVVA treatment. The concentration distribution, implantation depth and chemical states of carbon-implanted TiN coatings depended strongly on the ion dose and...

  16. Metal ion implantation using a filtered cathodic vacuum arc

    Science.gov (United States)

    Bilek, M. M. M.; Evans, P.; Mckenzie, D. R.; McCulloch, D. G.; Zreiqat, H.; Howlett, C. R.

    2000-05-01

    When plasma immersion ion implantation is performed in the condensable plasma stream produced by a cathodic vacuum arc, deposition as well as implantation usually occurs. In this article we describe a method of achieving pure implantation by orienting the substrate so that it is shadowed from the plasma beam. Implantation depth profiles measured in glassy carbon and CR39 polymer using Rutherford backscattering are compared to illustrate the effectiveness of the technique for conducting and insulating substrates. Charging of the insulating substrate was found to cause a reduction in implantation depth compared to a conducting substrate. The depth profiles in glassy carbon were comparable to those achieved by conventional extracted ion beam implantation. Implantation of magnesium into hydroxyapatite and alumina was carried out to improve the bone cell adhesion onto these materials for prosthetic applications.

  17. Industrial applications of ion implantation into metal surfaces

    International Nuclear Information System (INIS)

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry

  18. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    International Nuclear Information System (INIS)

    Salvadori, M.C.; Teixeira, F.S.; Sgubin, L.G.; Cattani, M.; Brown, I.G.

    2014-01-01

    Highlights: • Metal nanoparticles can be produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. • The nanoparticles nucleate near the maximum of the implantation depth profile, that can be estimated by computer simulation using the TRIDYN. • Nanocomposites, obtained by this way, can be produced in different insulator materials. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. • The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted, reaching the percolation threshold. • Excellent agreement was found between the experimental results and the predictions of the theory. - Abstract: There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in

  19. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Evans, P.J.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J. [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1996-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  20. Characterization of low temperature metallic magnetic calorimeters having gold absorbers with implanted $^{163}$Ho ions

    CERN Document Server

    Gastaldo, L.; von Seggern, F.; Porst, J.-P.; Schäfer, S.; Pies, C.; Kempf, S.; Wolf, T.; Fleischmann, A.; Enss, C.; Herlert, A.; Johnston, K.

    2013-01-01

    For the first time we have investigated the behavior of fully micro-fabricated low temperature metallic magnetic calorimeters (MMCs) after undergoing an ion-implantation process. This experiment had the aim to show the possibility to perform a high precision calorimetric measurement of the energy spectrum following the electron capture of $^{163}$Ho using MMCs having the radioactive $^{163}$Ho ions implanted in the absorber. The implantation of $^{163}$Ho ions was performed at ISOLDE-CERN. The performance of a detector that underwent an ion-implantation process is compared to the one of a detector without implanted ions. The results show that the implantation dose of ions used in this experiment does not compromise the properties of the detector. In addition an optimized detector design for future $^{163}$Ho experiments is presented.

  1. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  2. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  3. The effects of ion implantation upon the mechanical properties of metals and cemented carbides

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1982-01-01

    Ion implantation has been successful in producing significant improvements in the wear resistance and fatigue endurance of metals such as steel, titanium, copper and electrodeposited chromium. Models to explain this behaviour in terms of the pinning of mobile dislocations are presented. Friction coefficients are also modified by ion implantation, and in the composite material cobalt-cemented tungsten carbide this effect is very strong, and is accompanied by a reduction in wear. Examples of the range of tools which have been improved by nitrogen ion implantation are given, and the review concludes with a description of the equipment developed for the industrial application of this process. (author)

  4. Dislocation structures and strengthening of ion-implanted metals and alloys

    Science.gov (United States)

    Sharkeev, Yu. P.; Didenko, A. N.; Kozlov, É. V.

    1994-05-01

    This article surveys the empirical data on the “long-range effect” (changes in defect structure and physicomechanical properties at distances considerably exceeding the mean free path of ions) seen in the ion implantation of metallic materials and semiconductors. Results are presented from electron-microscope studies of dislocation structures formed in ion-implanted metallic materials which are initially in different states. It is shown that the character of the dislocation structure and its quantitative characteristics in ion-implanted metals and alloys depend on the initial state of the target, the species and energy of the ions, and the radiation dose. Data obtained on the change in microstructure with depth is combined with data from other authors and correlated with the results of a study of macroscopic characteristics (wear resistance, microhardness). It is established that the “long-range effect” is seen in metallic materials which, in addition to having a low yield point or a high degree of plastic strain, also have a low dislocation density prior to ion implantation. Mechanisms by which the defect structure might be modified by ion implantation are explored.

  5. Study of highly functionalized metal surface treated by plasma ion implantation

    International Nuclear Information System (INIS)

    Ikeyama, Masami; Miyagawa, Soji; Miyagawa, Yoshiko; Nakao, Setsuo; Masuda, Haruho; Saito, Kazuo; Ono, Taizou; Hayashi, Eiji

    2004-01-01

    Technology for processing metal surfaces with hardness, low friction and free from foreign substances was developed with plasma ion implantation. Diamond-like carbon (DLC) coating is a most promising method for realization of hard and smooth metal surface. DLC coating was tested in a metal pipe with 10 mm diameter and 10 cm length by a newly developed plasma ion implantation instrument. The surface coated by DLC was proved to have characteristics equivalent to those prepared with other methods. A computer program simulating a formation process of DLC coating was developed. Experiments for fluorinating the DLC coating surface was performed. (Y. Kazumata)

  6. Analysis of Accumulating Ability of Heavy Metals in Lotus (Nelumbo nucifera) Improved by Ion Implantation

    International Nuclear Information System (INIS)

    Zhang Jianhua; Wang Naiyan; Zhang Fengshou

    2012-01-01

    Heavy metals have seriously contaminated soil and water, and done harm to public health. Academician WANG Naiyan proposed that ion-implantation technique should be exploited for environmental bioremediation by mutating and breeding plants or microbes. By implanting N + into Taikonglian No.1, we have selected and bred two lotus cultivars, Jingguang No.1 and Jingguang No.2. The present study aims at analyzing the feasibility that irradiation can be used for remediation of soil and water from heavy metals. Compared with parent Taikonglian No.1, the uptaking and accumulating ability of heavy metals in two mutated cultivars was obviously improved. So ion implantation technique can indeed be used in bioremediation of heavy metals in soil and water, but it is hard to select and breed a cultivar which can remedy the soil and water from all the heavy metals.

  7. Influence of implantation of three metallic ions on the mechanical properties of two polymers

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.V. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Perry, A.J. [Australian National Univ., Canberra, ACT (Australia); Treglio, J.R.

    1996-12-31

    Ion implantation of poly ethylene terephthalate (PET) and polystyrene (PS) with various high energy metallic ions at 70 kV to dose of 3 x 10{sup 16} ions/cm 2 have been made. Measurements of the mechanical properties of the polymers before and after implantation have been made with an ultra microindentation system using both pointed and a small (2 nm) radiused spherical tipped indenter. Significant differences have been observed between the Ti-B dual implanted surfaces and those of the Au and W implanted surfaces. For both the PET and PS the resistance to indenter penetration at very low loads was much greater for the Ti-B dual implanted surfaces. The estimated hardness and modulus versus depth of penetration for both indenters shows that the spherical indenter produces more consistent and less controversial values that are somewhat lower than the optimistic estimates from pointed indenters. 8 refs., 2 fig.

  8. Transition metal swift heavy ion implantation on 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. Ashraf; Kumar, J. [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Ramakrishnan, V. [Indian Institute of Science Education and Research, Thiruvanthapuram (India); Asokan, K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2016-03-01

    This work reports on the realization of Quantum Ring (QR) and Quantum Dot (QD) like structures on 4H-SiC through SHI implantation and on their Raman studies. 4H-SiC is SHI implanted with Transition Metal (TM) Ni ion at different fluences. It is observed that a vibrational mode emerges as the result of Ni ion implantation. The E{sub 2} (TO) and the A{sub 1} (LO) are suppressed as the fluence increases. In this paper Raman and AFM studies have been performed at room temperature and the queer anomalies are addressed so new devices can be fabricated.

  9. Transition metal swift heavy ion implantation on 4H-SiC

    Science.gov (United States)

    Ali, A. Ashraf; Kumar, J.; Ramakrishnan, V.; Asokan, K.

    2016-03-01

    This work reports on the realization of Quantum Ring (QR) and Quantum Dot (QD) like structures on 4H-SiC through SHI implantation and on their Raman studies. 4H-SiC is SHI implanted with Transition Metal (TM) Ni ion at different fluences. It is observed that a vibrational mode emerges as the result of Ni ion implantation. The E2 (TO) and the A1 (LO) are suppressed as the fluence increases. In this paper Raman and AFM studies have been performed at room temperature and the queer anomalies are addressed so new devices can be fabricated.

  10. Examining metallic glass formation in LaCe:Nb by ion implantation

    Directory of Open Access Journals (Sweden)

    Sisson Richard

    2017-01-01

    Full Text Available In order to combine niobium (Nb with lanthanum (La and cerium (Ce, Nb ions were deposited within a thin film of these two elements. According to the Hume-Rothery rules, these elements cannot be combined into a traditional crystalline metallic solid. The creation of an amorphous metallic glass consisting of Nb, La, and Ce is then investigated. Amorphous metallic glasses are traditionally made using fast cooling of a solution of molten metals. In this paper, we show the results of an experiment carried out to form a metallic glass by implanting 9 MeV Nb 3+ atoms into a thin film of La and Ce. Prior to implantation, the ion volume distribution is calculated by Monte Carlo simulation using the SRIM tool suite. Using multiple methods of electron microscopy and material characterization, small quantities of amorphous metallic glass are indeed identified.

  11. Comparison of metal ion concentrations and implant survival after total hip arthroplasty with metal-on-metal versus metal-on-polyethylene articulations

    OpenAIRE

    Dahlstrand, Henrik; Stark, André; Wick, Marius C; Anissian, Lucas; Hailer, Nils P; Weiss, Rüdiger J

    2017-01-01

    Background and purpose Large metal-on-metal (MoM) articulations are associated with metal wear and corrosion, leading to increased metal ion concentrations and unacceptable revision rates. There are few comparative studies of 28-mm MoM articulations with conventional metal-on-polyethylene (MoP) couplings. We present a long-term follow-up of a randomized controlled trial comparing MoM versus MoP 28-mm articulations, focused on metal ions and implant survival. Patients and methods 85 patients w...

  12. Quantitative ion implantation

    International Nuclear Information System (INIS)

    Gries, W.H.

    1976-06-01

    This is a report of the study of the implantation of heavy ions at medium keV-energies into electrically conducting mono-elemental solids, at ion doses too small to cause significant loss of the implanted ions by resputtering. The study has been undertaken to investigate the possibility of accurate portioning of matter in submicrogram quantities, with some specific applications in mind. The problem is extensively investigated both on a theoretical level and in practice. A mathematical model is developed for calculating the loss of implanted ions by resputtering as a function of the implanted ion dose and the sputtering yield. Numerical data are produced therefrom which permit a good order-of-magnitude estimate of the loss for any ion/solid combination in which the ions are heavier than the solid atoms, and for any ion energy from 10 to 300 keV. The implanted ion dose is measured by integration of the ion beam current, and equipment and techniques are described which make possible the accurate integration of an ion current in an electromagnetic isotope separator. The methods are applied to two sample cases, one being a stable isotope, the other a radioisotope. In both cases independent methods are used to show that the implantation is indeed quantitative, as predicted. At the same time the sample cases are used to demonstrate two possible applications for quantitative ion implantation, viz. firstly for the manufacture of calibration standards for instrumental micromethods of elemental trace analysis in metals, and secondly for the determination of the half-lives of long-lived radioisotopes by a specific activity method. It is concluded that the present study has advanced quantitative ion implantation to the state where it can be successfully applied to the solution of problems in other fields

  13. Ion implantation for materials processing

    International Nuclear Information System (INIS)

    Smidt, F.A.

    1983-01-01

    This book reviews current research on ion implantation for materials processing as a viable technique for improving surface properties of metals and alloys-wear, fatigue, and corrosion. An introductory section on new potential applications of ion beam technology is provided. Contents: New potential applications of ion beam technology; ion implantation science and technology; wear and fatigue; corrosion; other research areas

  14. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  15. High energy metal ion implantation using 'Magis', a novel, broad-beam, Marx-generator-based ion source

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.G.; Dickinson, M.R.; MacGill, R.A.

    1996-08-01

    Ion energy of the beam formed by an ion source is proportional to extractor voltage and ion charge state. Increasing the voltage is difficult and costly for extraction voltage over 100 kV. Here we explore the possibility of increasing the charge states of metal ions to facilitate high-energy, broad beam ion implantation at a moderate voltage level. Strategies to enhance the ion charge state include operating in the regimes of high-current vacuum sparks and short pulses. Using a time-of-flight technique we have measured charge states as high as 7+ (73 kA vacuum spark discharge) and 4+ (14 kA short pulse arc discharge), both for copper, with the mean ion charge states about 6.0 and 2.5, respectively. Pulsed discharges can conveniently be driven by a modified Marx generator, allowing operation of ''Magis'' with a single power supply (at ground potential) for both plasma production and ion extraction

  16. Metallic oxide nano-clusters synthesis by ion implantation in high purity Fe10Cr alloy

    International Nuclear Information System (INIS)

    Zheng, Ce

    2015-01-01

    ODS (Oxide Dispersed Strengthened) steels, which are reinforced with metal dispersions of nano-oxides (based on Y, Ti and O elements), are promising materials for future nuclear reactors. The detailed understanding of the mechanisms involved in the precipitation of these nano-oxides would improve manufacturing and mechanical properties of these ODS steels, with a strong economic impact for their industrialization. To experimentally study these mechanisms, an analytical approach by ion implantation is used, to control various parameters of synthesis of these precipitates as the temperature and concentration. This study demonstrated the feasibility of this method and concerned the behaviour of alloys models (based on aluminium oxide) under thermal annealing. High purity Fe-10Cr alloys were implanted with Al and O ions at room temperature. Transmission electron microscopy observations showed that the nano-oxides appear in the Fe-10Cr matrix upon ion implantation at room temperature without subsequent annealing. The mobility of implanted elements is caused by the defects created during ion implantation, allowing the nucleation of these nanoparticles, of a few nm in diameter. These nanoparticles are composed of aluminium and oxygen, and also chromium. The high-resolution experiments show that their crystallographic structure is that of a non-equilibrium compound of aluminium oxide (cubic γ-Al 2 O 3 type). The heat treatment performed after implantation induces the growth of the nano-sized oxides, and a phase change that tends to balance to the equilibrium structure (hexagonal α-Al 2 O 3 type). These results on model alloys are fully applicable to industrial materials: indeed ion implantation reproduces the conditions of milling and heat treatments are at equivalent temperatures to those of thermo-mechanical treatments. A mechanism involving the precipitation of nano-oxide dispersed in ODS alloys is proposed in this manuscript based on the obtained experimental results

  17. Outcome and serum ion determination up to 11 years after implantation of a cemented metal-on-metal hip prosthesis.

    Science.gov (United States)

    Lazennec, Jean-Yves; Boyer, Patrick; Poupon, Joel; Rousseau, Marc-Antoine; Roy, Carine; Ravaud, Philippe; Catonné, Yves

    2009-04-01

    Little is known about the long-term outcome of cemented metal-on-metal hip arthroplasties. We evaluated a consecutive series of metal-on-metal polyethylene-backed cemented hip arthroplasties implanted in patients under 60 years of age. 109 patients (134 joint replacements) were followed prospectively for mean 9 (7-11) years. The evaluation included clinical score, radiographic assessment, and blood sampling for ion level determination. At the final review, 12 hips had been revised, mainly because of aseptic loosening of the socket. Using revision for aseptic loosening as the endpoint, the survival rate at 9 years was 91% for the cup and 99% for the stem. In addition, 35 hips showed radiolucent lines at the bone-cement interface of the acetabulum and some were associated with osteolysis. The median serum cobalt and chromium levels were relatively constant over time, and were much higher than the detection level throughout the study period. The cobalt level was 1.5 microg/L 1 year after implantation, and 1.44 microg/L 9 years after implantation. Revisions for aseptic loosening and radiographic findings in the sockets led us to halt metal-on-metal-backed polyethylene cemented hip arthroplasty procedures. If the rigidity of the cemented socket is a reason for loosening, excessive release of metal ions and particles may be involved. Further investigations are required to confirm this hypothesis and to determine whether subluxation, microseparation, and hypersensitivity also play a role.

  18. The structural and optical properties of metal ion-implanted GaN

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Sofer, Z.; Šimek, P.; Sedmidubský, D.; Veselý, M.; Bottger, R.

    2016-01-01

    Roč. 371, MAR (2016), s. 254-257 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : RBS channelling * metal-implanted GaN * structural changes Subject RIV: BG - Nuclear, Atomic and Molecular Physics , Colliders Impact factor: 1.109, year: 2016

  19. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation

    International Nuclear Information System (INIS)

    Mrotchek, I.

    2007-01-01

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and ∼5.10 17 ions/cm 2 fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co 3 W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load

  20. Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation

    Science.gov (United States)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Delauche, L.; Arnal, B.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys.

  1. Ion implanting ferrous metals to improve corrosion resistance

    International Nuclear Information System (INIS)

    Dearnaley, G.; Goode, P.D.

    1981-01-01

    A process is described for the treatment of a surface of a ferrous article to improve its corrosion resistance, wherein the surface is subjected to ion bombardment at a temperature above one hundred degrees centigrade in an evacuated enclosure which contains a residual quantity of gaseous oxygen. (author)

  2. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing--systematic review of clinical and epidemiological studies.

    Directory of Open Access Journals (Sweden)

    Albrecht Hartmann

    Full Text Available INTRODUCTION: The use of metal-on-metal (MoM total hip arthroplasty (THA increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. OBJECTIVE: To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. METHODS: Systematic review of clinical trials (RCTs and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor, patient characteristics as well as study quality characteristics (secondary explanatory factors. RESULTS: Overall, 104 studies (11 RCTs, 93 epidemiological studies totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L. Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. DISCUSSION: Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed "time out" for stemmed large-head MoM-THA and recommend a restricted

  3. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    Science.gov (United States)

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip

  4. Prediction of the threshold voltage of GaAs ion-implanted metal-semiconductor field-effect transistors

    Directory of Open Access Journals (Sweden)

    Gorev N. B.

    2007-12-01

    Full Text Available It is shown that the threshold voltage of a GaAs ion-implanted metal-semiconductor field-effect transistor corresponds with a good accuracy to the voltage at which an inflection point appears in the capacitance-voltage characteristic. A method for predicting the threshold voltage of ion-implanted field-effect transistors using capacitance-voltage measurements prior to contact formation is proposed.

  5. Studies on the surface modification of TiN coatings using MEVVA ion implantation with selected metallic species

    International Nuclear Information System (INIS)

    Ward, L.P.; Purushotham, K.P.; Manory, R.R.

    2016-01-01

    Highlights: • Reduced surface roughness was observed after ion implantation. • W implantation increased residual stress. • Reduced friction and wear accompanied Mo implantation. • Mo implanted layer was more resistant to breakdown during wear testing. • Ion implantation effects can be complex on various implanting species properties. - Abstract: Improvement in the performance of TiN coatings can be achieved using surface modification techniques such as ion implantation. In the present study, physical vapor deposited (PVD) TiN coatings were implanted with Cr, Zr, Nb, Mo and W using the metal evaporation vacuum arc (MEVVA) technique at a constant nominal dose of 4 × 10 16 ions cm −2 for all species. The samples were characterized before and after implantation, using Rutherford backscattering (RBS), glancing incident angle X-ray diffraction (GIXRD), atomic force microscopy (AFM) and optical microscopy. Friction and wear studies were performed under dry sliding conditions using a pin-on-disc CSEM Tribometer at 1 N load and 450 m sliding distance. A reduction in the grain size and surface roughness was observed after implantation with all five species. Little variation was observed in the residual stress values for all implanted TiN coatings, except for W implanted TiN which showed a pronounced increase in compressive residual stress. Mo-implanted samples showed a lower coefficient of friction and higher resistance to breakdown during the initial stages of testing than as-received samples. Significant reduction in wear rate was observed after implanting with Zr and Mo ions compared with unimplanted TiN. The presence of the Ti 2 N phase was observed with Cr implantation.

  6. The effect of metal ion implantation on the surface mechanical properties of Mylar (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Yao, X.; Brown, I.G. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

    1993-12-31

    Ion implantation of polymers leads to the formation of new carbonaceous materials, the revolution during implantation of various species consists of (1) ion beam induced damage: chain scission, crosslinking, molecular emission of volatile elements and compounds, stoichiometric change in the surface layer of pristine polymers; and (2) chemical effect between ion and target materials: microalloying and precipitation. Literature regarding ion implanted polymers shows that the reorganisation of the carbon network after implantation can dramatically modify several properties of pristine polymers solubility, molecular weight, and electrical, optical and mechanical properties. However, ion implantation of polymers is actually a very complex interaction which depends on not only ion species, implantation condition, but also polymer type and specific structure. In this paper the effect of Ag or Ti ions implantation on surface mechanical properties of PET (polyethylenne terephthalate) polymer is reported. There was a clear deterioration in wear resistance after implantation of both Ag and Ti ions. It is suggested that the increment of wear after implantation may result from not only ion damage but also chemical effect between ion and target material. 3 refs., 1 tab., 2 figs.

  7. The influence of ion implantation on the surface properties of metals and alloys

    International Nuclear Information System (INIS)

    Grant, W.A.; Carter, G.

    1975-10-01

    The report falls into three sections: (1) annealing behaviour of high dose rare gas (Ne, Ar, Kr, Xe) implantations into silicon; (2) measurement of projected and lateral range parameters for low energy heavy ions (Ar, Cu, Kr, Cd, Xe, Cs, Dy, W, Au, Pb, Bi) in silicon by Rutherford backscattering; (3) surface chemistry of ion implanted solids (e.g. corrosion, catalysis, oxidation, synthesis of compounds in ion implanted layers). (U.K.)

  8. Study of the effect of reactive-element addition by implanting metal ions in a preformed oxide layer

    International Nuclear Information System (INIS)

    Hou, P.Y.; Brown, I.G.; Stringer, J.

    1991-01-01

    The influence of ion-implanted Y, Hf, Zr and Cr on the oxidation behavior of a Ni-25 wt.% Cr alloy at 1000degC has been investigated. The implantation dose was 5x10 16 ions/cm 2 . Two methods of implantation have been used. One was to implant ions directly into a clean alloy surface; the other was to implant into an approximately 0.6 μm thick Cr 2 O 3 layer formed at 1000degC on the alloy. In neither case did the Cr implantation show any beneficial effects. Implantations of Y, Hf and Zr produced all the reactive element effects, i.e. reduction in oxidation rate, elimination of base-metal oxide formation and improvement in scale adhesion, only if the ions were initially implanted in the alloy. When the ions were implanted into a preformed oxide, the subsequent oxidation process was altered to the same degree as before, but the scale adhesion was not affected. Implications of these results to the mechanism of the reactive-element effect are discussed. (orig.)

  9. Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF, 07738 (Mexico); Tamayo-Rivera, L; Silva-Pereyra, H G; Reyes-Esqueda, J A; Rodriguez-Fernandez, L; Crespo-Sosa, A; Cheang-Wong, J C; Oliver, A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510, Mexico, DF (Mexico); Rangel-Rojo, R [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada Apartado Postal 360, Ensenada, BC, 22860 (Mexico); Torres-Martinez, R, E-mail: crstorres@yahoo.com.mx [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada Unidad Queretaro, Instituto Politecnico Nacional, Santiago de Queretaro, Queretaro, 76090 (Mexico)

    2011-09-02

    The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.

  10. Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica

    International Nuclear Information System (INIS)

    Torres-Torres, C; Tamayo-Rivera, L; Silva-Pereyra, H G; Reyes-Esqueda, J A; Rodriguez-Fernandez, L; Crespo-Sosa, A; Cheang-Wong, J C; Oliver, A; Rangel-Rojo, R; Torres-Martinez, R

    2011-01-01

    The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.

  11. Effect of carbon ion implantation on the tribology of metal-on-metal bearings for artificial joints

    Directory of Open Access Journals (Sweden)

    Koseki H

    2017-05-01

    Full Text Available Hironobu Koseki,1 Masato Tomita,2 Akihiko Yonekura,2 Takashi Higuchi,1 Sinya Sunagawa,2 Koumei Baba,3,4 Makoto Osaki2 1Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, 2Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan; 3Industrial Technology Center of Nagasaki, Ikeda, Omura, Nagasaki, Japan; 4Affiliated Division, Nagasaki University School of Engineering, Bunkyo, Nagasaki, Japan Abstract: Metal-on-metal (MoM bearings have become popular due to a major advantage over metal-on-polymer bearings for total hip arthroplasty in that the larger femoral head and hydrodynamic lubrication of the former reduce the rate of wear. However, concerns remain regarding adverse reactions to metal debris including metallosis caused by metal wear generated at the taper-head interface and another modular junction. Our group has hypothesized that carbon ion implantation (CII may improve metal wear properties. The purpose of this study was to investigate the wear properties and friction coefficients of CII surfaces with an aim to ultimately apply these surfaces to MoM bearings in artificial joints. CII was applied to cobalt-chromium-molybdenum (Co-Cr-Mo alloy substrates by plasma source ion implantation. The substrates were characterized using scanning electron microscopy and a 3D measuring laser microscope. Sliding contact tests were performed with a simple geometry pin-on-plate wear tester at a load of 2.5 N, a calculated contact pressure of 38.5 MPa (max: 57.8 MPa, a reciprocating velocity of 30 mm/s, a stroke length of 60 mm, and a reciprocating cycle count of 172,800 cycles. The surfaces of the CII substrates were generally featureless with a smooth surface topography at the same level as untreated Co-Cr-Mo alloy. Compared to the untreated Co-Cr-Mo alloy, the CII-treated bearings had lower friction coefficients, higher resistance to catastrophic damage, and

  12. Helium embrittlement of CTR materials simulated by ions implantation and hot isostatic pressing of metal powders

    International Nuclear Information System (INIS)

    Fleischer, L.R.; Spitznagel, J.A.; Choyke, W.J.

    1976-01-01

    Helium embrittlement is currently considered a limitation on the lifetimes of CTR structures exposed to high energy neutrons. The phenomenon has been observed in fast fission reactor irradiated materials and has been studied in helium ion bombarded foil samples. In this study, helium ions were implanted in stainless steel and refractory metal alloy powder particles. The 150 keV ion energies used require particle size distributions with mean particle diameters of about 3 μm to get a suitably homogeneous initial distribution of helium atoms. The helium implanted powders were consolidated by hot isostatic pressing; the helium remained in solid solution. Subsequent thermomechanical processing permitted the preparation of tensile specimens with controlled helium bubble distributions. In general, grain boundary migration concentrated helium bubbles on the boundaries, while conditions favoring stationary boundaries allowed intragranular bubble nucleation on dislocations. It remains to be seen whether the distributions available through these processes are representative of those that will be generated in situ by (n,α) reactions in CTR neutron spectra. Specimens for bulk properties measurements prepared in this way are most suitable for study of helium embrittlement as an isolated effect. Many of the constraints encountered in other sample preparation methods are mitigated

  13. Comparison of metal ion concentrations and implant survival after total hip arthroplasty with metal-on-metal versus metal-on-polyethylene articulations.

    Science.gov (United States)

    Dahlstrand, Henrik; Stark, André; Wick, Marius C; Anissian, Lucas; Hailer, Nils P; Weiss, Rüdiger J

    2017-10-01

    Background and purpose - Large metal-on-metal (MoM) articulations are associated with metal wear and corrosion, leading to increased metal ion concentrations and unacceptable revision rates. There are few comparative studies of 28-mm MoM articulations with conventional metal-on-polyethylene (MoP) couplings. We present a long-term follow-up of a randomized controlled trial comparing MoM versus MoP 28-mm articulations, focused on metal ions and implant survival. Patients and methods - 85 patients with a mean age of 65 years at surgery were randomized to a MoM (Metasul) or a MoP (Protasul) bearing. After 16 years, 38 patients had died and 4 had undergone revision surgery. 13 patients were unavailable for clinical follow-up, leaving 30 patients (n = 14 MoM and n = 16 MoP) for analysis of metal ion concentrations and clinical outcome. Results - 15-year implant survival was similar in both groups (MoM 96% [95% CI 88-100] versus MoP 97% [95% CI 91-100]). The mean serum cobalt concentration was 4-fold higher in the MoM (1.5 μg/L) compared with the MoP cohort (0.4 μg/L, p concentration was double in the MoM (2.2 μg/L) compared with the MoP cohort (1.0 μg/L, p = 0.05). Mean creatinine levels were similar in both groups (MoM 93 μmol/L versus MoP 92 μmol/L). Harris hip scores differed only marginally between the MoM and MoP cohorts. Interpretation - This is the longest follow-up of a randomized trial on 28-mm MoM articulations, and although implant survival in the 2 groups was similar, metal ion concentrations remained elevated in the MoM cohort even in the long term.

  14. Enhancing Hydrogen Diffusion in Silica Matrix by Using Metal Ion Implantation to Improve the Emission Properties of Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    J. Bornacelli

    2014-01-01

    Full Text Available Efficient silicon-based light emitters continue to be a challenge. A great effort has been made in photonics to modify silicon in order to enhance its light emission properties. In this aspect silicon nanocrystals (Si-NCs have become the main building block of silicon photonic (modulators, waveguide, source, and detectors. In this work, we present an approach based on implantation of Ag (or Au ions and a proper thermal annealing in order to improve the photoluminescence (PL emission of Si-NCs embedded in SiO2. The Si-NCs are obtained by ion implantation at MeV energy and nucleated at high depth into the silica matrix (1-2 μm under surface. Once Si-NCs are formed inside the SiO2 we implant metal ions at energies that do not damage the Si-NCs. We have observed by, PL and time-resolved PL, that ion metal implantation and a subsequent thermal annealing in a hydrogen-containing atmosphere could significantly increase the emission properties of Si-NCs. Elastic Recoil Detection measurements show that the samples with an enhanced luminescence emission present a higher hydrogen concentration. This suggests that ion metal implantation enhances the hydrogen diffusion into silica matrix allowing a better passivation of surface defects on Si NCs.

  15. MOM Failure Modes: An In-Depth Look at Metal Ions and Implant Wear

    Directory of Open Access Journals (Sweden)

    Tom Donaldson, MD

    2014-03-01

    Full Text Available Contemporary MOM bearings (large-diameter heads offered the perceived benefits of much greater range of motion and greater stability with reduced risk of impingement and dislocation. A variety of design and Both positive [1-3] and negative reports [4-8] have now emerged with regard to total hip arthroplasty (THA and resurfacing arthroplasty. As a result, there has been an avalanche of studies focused on critical issues such as: surgical positioning, shallow cups (face angles 144-170° [9-11] and “edge loading”. [5,7,12-17] However, there are several, possibly synergistic, risk scenarios that could trigger adverse MOM wear and very little progress has been made in understanding such interacting parameters. In an effort to understand the role of metal ion analysis and how it relates to revision surgery and implant wear, selected MOM revised cases were reviewed [28]. Retrieval data was included in conjunction with metal ion analyses and intraoperative observations to determine various failure modes.  We suggest MOM devices that are well fixed but fail after 2 years can be classified into one of six modes: (i normal, (ii allergic reaction, (iii 3rd body wear, (iv repetitive subluxation with metal impingement, (v multi-directional subluxation with soft tissue impingement, and (vi repetitive subluxation with soft tissue impingement.

  16. Thermal annealing behavior of nano-size metal-oxide particles synthesized by ion implantation in Fe-Cr alloy

    Science.gov (United States)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Descoins, M.; Mangelinck, D.; Dalle, F.; Arnal, B.; Delauche, L.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are promising structural materials for the next generation nuclear reactors, as well as fusion facilities. The detailed understanding of the mechanisms involved in the precipitation of nano-oxides during ODS steel production would strongly contribute to the improvement of the mechanical properties and the optimization of manufacturing of ODS steels, with a potentially strong economic impact for their industrialization. A useful tool for the experimental study of nano-oxide precipitation is ion implantation, a technique that is widely used to synthesize precipitate nanostructures in well-controlled conditions. Earlier, we have demonstrated the feasibility of synthesizing aluminum-oxide particles in the high purity Fe-10Cr alloy by consecutive implantation with Al and O ions at room temperature. This paper describes the effects of high-temperature annealing after the ion implantation stage on the development of the aluminum based oxide nanoparticle system. Using transmission electron microscopy and atom probe tomography experiments, we demonstrate that post-implantation heat treatment induces the growth of the nano-sized oxides in the implanted region and nucleation of new oxide precipitates behind the implantation zone as a result of the diffusion driven broadening of implant profiles. A tentative scenario for the development of metal-oxide nano-particles at both ion implantation and heat treatment stages is suggested based on the experimental observations.

  17. Plasma immersion ion implantation (and deposition) inside metallic tubes of different dimensions and configurations

    Science.gov (United States)

    Ueda, M.; Silva, C.; Santos, N. M.; Souza, G. B.

    2017-10-01

    There is a strong need for developing methods to coat or implant ions inside metallic tubes for many practical contemporary applications, both for industry and science. Therefore, stainless steel tubes with practical diameters of 4, 11 and 16 cm, but short lengths of 20 cm, were internally treated by nitrogen plasma immersion ion implantation (PIII). Different configurations as tube with lid in one of the ends or both sides open were tested for better PIII performance, in the case of smallest diameter tube. Among these PIII tests in tubes, using the 4 cm diameter one with a lid, it was possible to achieve tube temperatures of more than 700 °C in 15 min and maintain it during the whole treatment time (typically 2 h). Samples made of different materials were placed at the interior of the tube, as the monitors for posterior analysis, and the tube was solely pulsed by high voltage pulser producing high voltage glow discharge and hollow cathode discharge both driven by a moderate power source. In this experiment, samples of SS 304, pure Ti, Ti6Al4V and Si were used for the tests of the above methods. Results on the analysis of the surface of these nitrogen PIII treated materials, as well as on their processing methods, are presented and discussed in the paper.

  18. Transition Metal Ion Implantation into Diamond-Like Carbon Coatings: Development of a Base Material for Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Andreas Markwitz

    2015-01-01

    Full Text Available Micrometre thick diamond-like carbon (DLC coatings produced by direct ion deposition were implanted with 30 keV Ar+ and transition metal ions in the lower percentage (<10 at.% range. Theoretical calculations showed that the ions are implanted just beneath the surface, which was confirmed with RBS measurements. Atomic force microscope scans revealed that the surface roughness increases when implanted with Ar+ and Cu+ ions, whereas a smoothing of the surface from 5.2 to 2.7 nm and a grain size reduction from 175 to 93 nm are measured for Ag+ implanted coatings with a fluence of 1.24×1016 at. cm−2. Calculated hydrogen and carbon depth profiles showed surprisingly significant changes in concentrations in the near-surface region of the DLC coatings, particularly when implanted with Ag+ ions. Hydrogen accumulates up to 32 at.% and the minimum of the carbon distribution is shifted towards the surface which may be the cause of the surface smoothing effect. The ion implantations caused an increase in electrical conductivity of the DLC coatings, which is important for the development of solid-state gas sensors based on DLC coatings.

  19. The Effects of Ion Implantation on Friction and Wear of Metals.

    Science.gov (United States)

    1981-05-01

    34The Effect of Ion Implatation on the Corrosion Behavior of Fe," Proc. of the International Conf. on Ion Implantation in Semiconductors and Other...al., "The Effects of Yttrium Ion -146- Implatation Upon the Oxidation Behavior of an Austenitic Stainless Steel," Proc. of the International Conf. on

  20. Implantation of titanium, chromium, yttrium, molybdenum, silver, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum ion source into 440C stainless steel

    International Nuclear Information System (INIS)

    Sasaki, Jun; Hayashi, Kazunori; Sugiyama, Kenji; Ichiko, Osami; Hashiguchi, Yoshihiro

    1992-01-01

    Titanium, yttrium, molybdenum, silver, chromium, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum arc (MEVVA) ion source were implanted into 440C stainless steel in the dose region 10 17 ions cm -2 with extraction voltages of up to 70 kV. Glow discharge spectroscopy (GDS), friction coefficient, and Vickers microhardness of the specimens were studied. Grooves made by friction tests were investigated by electron probe microanalysis (EPMA). GDS showed incorporation of carbon in the yttrium, hafnium, tantalum, tungsten and platinum implanted specimens, as well as titanium implanted samples. A large amount of oxygen was observed in the yttrium implanted specimen. The friction coefficient was measured by reciprocating sliding of an unimplanted 440C ball without lubricant at a load of 0.245 N. The friction decreased and achieved a stable state after implantation of titanium, hafnium and tantalum. The friction coefficient of the platinum implanted specimen showed a gradual decrease after several cycles of sliding at high friction coefficient. The yttrium implanted sample exhibited a decreased but slightly unstable friction coefficient. Results from EPMA showed that the implanted elements, which gave decreased friction, remained even after sliding of 200 cycles. Implantation of chromium, molybdenum, silver and tungsten did not provide a decrease in friction and the implants were gone from the wear grooves after the sliding tests. (orig.)

  1. Ion implantation in semiconductor bodies

    International Nuclear Information System (INIS)

    Badawi, M.H.

    1984-01-01

    Ions are selectively implanted into layers of a semiconductor substrate of, for example, semi-insulating gallium arsenide via a photoresist implantation mask and a metallic layer of, for example, titanium disposed between the substrate surface and the photoresist mask. After implantation the mask and metallic layer are removed and the substrate heat treated for annealing purposes. The metallic layer acts as a buffer layer and prevents possible contamination of the substrate surface, by photoresist residues, at the annealing stage. Such contamination would adversely affect the electrical properties of the substrate surface, particularly gallium arsenide substrates. (author)

  2. Supersaturating silicon with transition metals by ion implantation and pulsed laser melting

    International Nuclear Information System (INIS)

    Recht, Daniel; Aziz, Michael J.; Smith, Matthew J.; Gradečak, Silvija; Charnvanichborikarn, Supakit; Williams, James S.; Sullivan, Joseph T.; Winkler, Mark T.; Buonassisi, Tonio; Mathews, Jay; Warrender, Jeffrey M.

    2013-01-01

    We investigate the possibility of creating an intermediate band semiconductor by supersaturating Si with a range of transition metals (Au, Co, Cr, Cu, Fe, Pd, Pt, W, and Zn) using ion implantation followed by pulsed laser melting (PLM). Structural characterization shows evidence of either surface segregation or cellular breakdown in all transition metals investigated, preventing the formation of high supersaturations. However, concentration-depth profiling reveals that regions of Si supersaturated with Au and Zn are formed below the regions of cellular breakdown. Fits to the concentration-depth profile are used to estimate the diffusive speeds, v D, of Au and Zn, and put lower bounds on v D of the other metals ranging from 10 2 to 10 4 m/s. Knowledge of v D is used to tailor the irradiation conditions and synthesize single-crystal Si supersaturated with 10 19 Au/cm 3 without cellular breakdown. Values of v D are compared to those for other elements in Si. Two independent thermophysical properties, the solute diffusivity at the melting temperature, D s (T m ), and the equilibrium partition coefficient, k e , are shown to simultaneously affect v D . We demonstrate a correlation between v D and the ratio D s (T m )/k e 0.67 , which is exhibited for Group III, IV, and V solutes but not for the transition metals investigated. Nevertheless, comparison with experimental results suggests that D s (T m )/k e 0.67 might serve as a metric for evaluating the potential to supersaturate Si with transition metals by PLM

  3. Supersaturating silicon with transition metals by ion implantation and pulsed laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Recht, Daniel; Aziz, Michael J. [Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138 (United States); Smith, Matthew J.; Gradečak, Silvija [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Charnvanichborikarn, Supakit; Williams, James S. [Research School of Physics and Engineering, The Australian National University, Canberra, ACT (Australia); Sullivan, Joseph T.; Winkler, Mark T.; Buonassisi, Tonio [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge Massachusetts 02139 (United States); Mathews, Jay; Warrender, Jeffrey M. [Benet Laboratories, U.S. Army ARDEC, Watervliet, New York 12189 (United States)

    2013-09-28

    We investigate the possibility of creating an intermediate band semiconductor by supersaturating Si with a range of transition metals (Au, Co, Cr, Cu, Fe, Pd, Pt, W, and Zn) using ion implantation followed by pulsed laser melting (PLM). Structural characterization shows evidence of either surface segregation or cellular breakdown in all transition metals investigated, preventing the formation of high supersaturations. However, concentration-depth profiling reveals that regions of Si supersaturated with Au and Zn are formed below the regions of cellular breakdown. Fits to the concentration-depth profile are used to estimate the diffusive speeds, v{sub D,} of Au and Zn, and put lower bounds on v{sub D} of the other metals ranging from 10{sup 2} to 10{sup 4} m/s. Knowledge of v{sub D} is used to tailor the irradiation conditions and synthesize single-crystal Si supersaturated with 10{sup 19} Au/cm{sup 3} without cellular breakdown. Values of v{sub D} are compared to those for other elements in Si. Two independent thermophysical properties, the solute diffusivity at the melting temperature, D{sub s}(T{sub m}), and the equilibrium partition coefficient, k{sub e}, are shown to simultaneously affect v{sub D}. We demonstrate a correlation between v{sub D} and the ratio D{sub s}(T{sub m})/k{sub e}{sup 0.67}, which is exhibited for Group III, IV, and V solutes but not for the transition metals investigated. Nevertheless, comparison with experimental results suggests that D{sub s}(T{sub m})/k{sub e}{sup 0.67} might serve as a metric for evaluating the potential to supersaturate Si with transition metals by PLM.

  4. Energetic metallic ion implantation in polymers via cost-effective laser-driven ion source

    Science.gov (United States)

    Tahir, Muhammad Bilal; Rafique, M. Shahid; Ahmed, Rabia; Rafique, M.; Iqbal, Tahir; Hasan, Ali

    2017-07-01

    This research work reports the ions emission from the plasma generated by Nd:YAG laser having wavelength 1.064 μm, power 1.1 MW, pulse energy 10 mJ and intensity 1011 W/cm2 irradiated at 70° with respect to the target normal to the ions. These ions were accelerated through a home-made extraction assembly by means of a high voltage DC power supply. The energy of these ions were measured using Thomson parabola technique which utilizes Solid State Nuclear Track Detector (CR-39) and confirmed by Faraday cup as well that exploits a well-known technique known as time of flight. Interestingly, a significant increase in energy (from 490 to 730 keV) was observed with a discrete increase in acceleration potential from 0 to 18 kV. Polyethylene terephthalate (PET) and polypropylene were exposed to this recently developed ion source facility, to authenticate the reliability of this facility. The surface of the polymer is affected when energy of the irradiated ion is increased, which is evident from the optical micrographs. An increase in electrical conductivity was also observed with the increase in ion energy.

  5. Dynamic ion implantation

    International Nuclear Information System (INIS)

    Oppenheim, I.F.C.

    1988-01-01

    The Dynamic Ion Implantation Technique consists of ion implantation of a film during the film-deposition process. This technique was investigated theoretically and experimentally with ions whose incident energy is of the order of a few times 100 keV. It was found to be a viable alternative low-temperature method for the preparation of thick zirconium nitride films (∼1 μm) with good mechanical properties. Theoretical modeling of the processes involved during dynamic ion implantation lead to analytical expressions for the ions' depth-profile distributions. Numerical evaluations of these equations indicated that the depth distributions of dynamically implanted ions are in general more uniform than those predicted by the model for ions implanted by more conventional techniques. Mechanical properties of stoichiometric RF sputter-deposited zirconium nitride films post implanted with krypton and rubidium ions were investigated. Scratch-adhesion critical load and Vickers microhardness of samples implanted with doses varying from 1 x 10 15 to 5 x 10 16 ions/cm 2 and energies ranging from 300 to 500 keV were studied. In general, best mechanical properties were observed for 300- keV krypton implantations

  6. The Effectiveness of Blood Metal Ions in Identifying Patients with Unilateral Birmingham Hip Resurfacing and Corail-Pinnacle Metal-on-Metal Hip Implants at Risk of Adverse Reactions to Metal Debris.

    Science.gov (United States)

    Matharu, Gulraj S; Berryman, Fiona; Brash, Lesley; Pynsent, Paul B; Treacy, Ronan B C; Dunlop, David J

    2016-04-20

    We investigated whether blood metal ions could effectively identify patients with metal-on-metal hip implants with two common designs (Birmingham Hip Resurfacing [BHR] and Corail-Pinnacle) who were at risk of adverse reactions to metal debris. This single-center, prospective study involved 598 patients with unilateral hip implants (309 patients with the BHR implant and 289 patients with the Corail-Pinnacle implant) undergoing whole blood metal ion sampling at a mean time of 6.9 years. Patients were classified into two groups, one that had adverse reactions to metal debris (those who had to undergo revision for adverse reactions to metal debris or those with adverse reactions to metal debris on imaging; n = 46) and one that did not (n = 552). Three metal ion parameters (cobalt, chromium, and cobalt-chromium ratio) were compared between groups. Optimal metal ion thresholds for identifying patients with adverse reactions to metal debris were determined using receiver operating characteristic analysis. All ion parameters were significantly higher (p adverse reactions to metal debris compared with those who did not. Cobalt maximized the area under the curve for patients with the BHR implant (90.5%) and those with the Corail-Pinnacle implant (79.6%). For patients with the BHR implant, the area under the curve for cobalt was significantly greater than that for the cobalt-chromium ratio (p = 0.0005), but it was not significantly greater than that for chromium (p = 0.8483). For the patients with the Corail-Pinnacle implant, the area under the curve for cobalt was significantly greater than that for chromium (p = 0.0004), but it was similar to that for the cobalt-chromium ratio (p = 0.8139). Optimal blood metal ion thresholds for identifying adverse reactions to metal debris varied between the two different implants. When using cobalt, the optimal threshold for identifying adverse reactions to metal debris was 2.15 μg/L for the BHR group and 3.57 μg/L for the Corail

  7. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  8. Modifications of the hydriding kinetics of a metallic surface, using ion implantation

    International Nuclear Information System (INIS)

    Crusset, D.

    1992-10-01

    Uranium reacts with hydrogen to form an hydride: this reaction leads to the total destruction of the material. To modify the reactivity of an uranium surface towards hydrogen, ion implantation was selected, among surface treatments techniques. Four elements (carbon, nitrogen, oxygen, sulfur) were implanted to different doses. The results show a modification of the hydriding mechanism and a significant increase in the reaction induction times, notably at high implantation doses. Several techniques (SIMS, X-rays phases analysis and residual stresses determination) were used to characterize the samples and understand the different mechanisms involved

  9. An apparatus for combined vapor deposition and ion implantation to modify the surface properties of metals

    Science.gov (United States)

    Margesin, B.; Giacomozzi, F.; Guzman, L.; Lazzari, G.; Zanini, V.

    A low energy ion implanter has been adequately modified in order to perform reactive ion beam enhanced deposition (RIBED) and dynamic recoil ion mixing experiments under controlled conditions in a high vacuum environment. The machine consists of a Duoplasmatron ion source, a mass analyzer, a target chamber adaptable for use with various samples, and an electron gun evaporator equipped with a film thickness monitor. For a high degree of process automation the implantation chamber and the evaporator are controlled by a system based on two microprocessors in a master/slave configuration. The microprocessors are programmed in FORTH and communicate with each other in the same language. In this apparatus, independently controlled atom and ion beams of different species able to form the required compounds, impinge sequentially (or simultaneously) on a 4 × 8 cm 2 area with a good uniformity (10%). Ion mixing prevails in the first steps of the treatment, resulting in a good relative adhesion between substrate and film; then the RIBED film is grown up to typically 0.5 μm, this thickness being equivalent to a total implanted dose of 5.0 × 10 18 ions/cm 2 with an excellent depth homogeneity and without sputtering limitations.

  10. Negative differential resistance effect induced by metal ion implantation in SiO2 film for multilevel RRAM application

    Science.gov (United States)

    Wu, Facai; Si, Shuyao; Shi, Tuo; Zhao, Xiaolong; Liu, Qi; Liao, Lei; Lv, Hangbing; Long, Shibing; Liu, Ming

    2018-02-01

    Pt/SiO2:metal nanoparticles/Pt sandwich structure is fabricated with the method of metal ion (Ag) implantation. The device exhibits multilevel storage with appropriate R off/R on ratio, good endurance and retention properties. Based on transmission electron microscopy and energy dispersive spectrometer analysis, we confirm that Pt nanoparticles are spurted into SiO2 film from Pt bottom electrode by Ag implantation; during electroforming, the local electric field can be enhanced by these Pt nanoparticles, meanwhile the Ag nanoparticles constantly migrate toward the Pt nanoparticles. The implantation induced nanoparticles act as trap sites in the resistive switching layer and play critical roles in the multilevel storage, which is evidenced by the negative differential resistance effect in the current–voltage (I–V) measurements.

  11. The formation of silver metal nanoparticles by ion implantation in silicate glasses

    Czech Academy of Sciences Publication Activity Database

    Vytykačová, S.; Švecová, B.; Nekvindová, P.; Špirková, J.; Macková, Anna; Mikšová, Romana; Bottger, R.

    2016-01-01

    Roč. 371, MAR (2016), s. 245-255 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : silicate glass es * silver nanoparticles * ion implantation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  12. Surface engineering by ion implantation

    International Nuclear Information System (INIS)

    Nielsen, Bjarne Roger

    1995-01-01

    Awidespread commercial applica tion iof particle accelerators is for ion implantation. Accelerator beams are used for ion implantation into metals, alloying a thin surface layer with foreign atoms to concentrations impossible to achieve by thermal processes, making for dramatic improvements in hardness and in resistance to wear and corrosion. Traditional hardening processes require high temperatures causing deformation; ion implantation on the other hand is a ''cold process'', treating the finished product. The ionimplanted layer is integrated in the substrate, avoiding the risk of cracking and delamination from normal coating processes. Surface properties may be ''engineered'' independently of those of the bulk material; the process does not use environmentally hazardous materials such as chromium in the surface coating. The typical implantation dose required for the optimum surface properties of metals is around 2 x 10 17 ion/cm 2 , a hundred times the typical doses for semiconductor processing. When surface areas of more than a few square centimetres have to be treated, the implanter must therefore be able to produce high beam currents (5 to 10 mA) to obtain an acceptable treatment time. Ion species used include nitrogen, boron, carbon, titanium, chromium and tantalum, and beam energies range from 50 to 200 keV. Since most components are three dimensional, it must be possible to rotate and tilt them in the beam, and control beam position over a large area. Examples of industrial applications are: - surface treatment of prostheses (hip and knee joints) to reduce wear of the moving parts, using biocompatible materials; - ion implantation into high speed ball bearings to protect against the aqueous corrosion in jet engines (important for service helicopters on oil rigs); - hardening of metal forming and cutting tools; - reduction of corrosive wear of plastic moulding tools, which are expensive to produce

  13. Effect of double ion implantation and irradiation by Ar and He ions on nano-indentation hardness of metallic alloys

    Science.gov (United States)

    Dayal, P.; Bhattacharyya, D.; Mook, W. M.; Fu, E. G.; Wang, Y.-Q.; Carr, D. G.; Anderoglu, O.; Mara, N. A.; Misra, A.; Harrison, R. P.; Edwards, L.

    2013-07-01

    In this study, the authors have investigated the combined effect of a double layer of implantation on four different metallic alloys, ODS steel MA957, Zircaloy-4, Ti-6Al-4V titanium alloy and stainless steel 316, by ions of two different species - He and Ar - on the hardening of the surface as measured by nano-indentation. The data was collected for a large number of indentations using the Continuous Stiffness Method or "CSM" mode, applying the indents on the implanted surface. Careful analysis of the data in the present investigations show that the relative hardening due to individual implantation layers can be used to obtain an estimate of the relative hardening effect of a combination of two separate implanted layers of two different species. This combined hardness was found to lie between the square root of the sum of the squares of individual hardening effects, (ΔHA2 + ΔHB2)0.5 as the lower limit and the sum of the individual hardening effects, (ΔHA + ΔHB) as the upper limit, within errors, for all depths measured. The hardening due to irradiation by different species of ions was calculated by subtracting the average hardness vs. depth curve of the un-irradiated or "virgin" material from that of the irradiated material. The combined hardening of the irradiated samples due to Ar and He irradiation was found to be described well by an approximate upper bound given by the simple linear sum of the individual hardening (L) and a lower bound given by the square root of the sum of the squares (R) of the individual hardening effects due to Ar and He irradiation along the full depth of the indentation. The peak of the combined hardness of Ar and He irradiated material appears at the depth predicted by both the R and the L curves, in all samples. The combined hardness increase due to Ar and He irradiation lies near the upper limit (L curve) for the ODS steel MA957, somewhere in between L and R curves for Zircaloy-4, and near the R curve for the stainless steel 316

  14. Plasma source ion implantation

    International Nuclear Information System (INIS)

    Conrad, J.R.; Forest, C.

    1986-01-01

    The authors' technique allows the ion implantation to be performed directly within the ion source at higher currents without ion beam extraction and transport. The potential benefits include greatly increased production rates (factors of 10-1000) and the ability to implant non-planar targets without rastering or shadowing. The technique eliminates the ion extractor grid set, beam raster equipment, drift space and target manipulator equipment. The target to be implanted is placed directly within the plasma source and is biased to a large negative potential so that plasma ions gain energy as they accelerate through the potential drop across the sheath that forms at the plasma boundary. Because the sheath surrounds the target on all sides, all surfaces of the target are implanted without the necessity to raster the beam or to rotate the target. The authors have succeeded in implanting nitrogen ions in a silicon target to the depths and concentrations required for surface treatment of materials like stainless steel and titanium alloys. They have performed ESCA measurements of the penetration depth profile of a silicon target that was biased to 30 kV in a nitrogen discharge plasma. Nitrogen ions were implanted to a depth of 700A at a peak concentration of 30% atomic. The measured profile is quite similar to a previously obtained profile in titanium targets with conventional techniques

  15. Ion implantation effects on surface-mechanical properties of metals and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.R.

    1993-04-01

    Fatigue of 8 complex alloys based on Fe-13Cr-15Ni-2Mo-2Mn-0.2Ti-0.8Si- 0.06C, and single-crystal Fe-15Cr-15Ni, implanted with 400-keV B[sup +] and 550-keV N[sup +] (total dose 2.3[times]10[sup 16] ions/cm[sup 2]) was examined. 600 C creep was also examined. The dual implantation increased hardness but decreased fatigue life of the 8 complex alloys. An optimum strengthening level and a shift to grain boundary cracking were determined. The single crystals also showed reduced fatigue life after implantation. High temperature creep of E1 and B1 alloys were improved by the dual implantation. Four polymers (PE, polypropylene, polystyrene, polyethersulfone) were implanted with 200keV B[sup +] to 3 different doses. PS was also implanted with both B[sup +] and Ar[sup +]. Near-surface hardness and tribological properties were measured. The hardness increased with dose and energy; wear also improved, with an optimum dose. (DLC)

  16. Ion implantation effects on surface-mechanical properties of metals and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.R.

    1993-04-01

    Fatigue of 8 complex alloys based on Fe-13Cr-15Ni-2Mo-2Mn-0.2Ti-0.8Si- 0.06C, and single-crystal Fe-15Cr-15Ni, implanted with 400-keV B{sup +} and 550-keV N{sup +} (total dose 2.3{times}10{sup 16} ions/cm{sup 2}) was examined. 600 C creep was also examined. The dual implantation increased hardness but decreased fatigue life of the 8 complex alloys. An optimum strengthening level and a shift to grain boundary cracking were determined. The single crystals also showed reduced fatigue life after implantation. High temperature creep of E1 and B1 alloys were improved by the dual implantation. Four polymers (PE, polypropylene, polystyrene, polyethersulfone) were implanted with 200keV B{sup +} to 3 different doses. PS was also implanted with both B{sup +} and Ar{sup +}. Near-surface hardness and tribological properties were measured. The hardness increased with dose and energy; wear also improved, with an optimum dose. (DLC)

  17. Metallic and/or oxygen ion implantation into AlN ceramics as a method of preparation for its direct bonding with copper

    International Nuclear Information System (INIS)

    Barlak, M.; Borkowska, K.; Olesinska, W.; Kalinski, D.; Piekoszewski, J.; Werner, Z.; Jagielski, J.; Sartowska, B.

    2006-01-01

    Direct bonding (DB) process is recently getting an increasing interest as a method for producing high quality joints between aluminum nitride (AlN) ceramics and copper. The metallic ions were implanted using an MEVVA type TITAN implanter with unseparated beam. Oxygen ions were implanted using a semi-industrial ion implanter without mass separation equipped with a gaseous ion source. The substrate temperature did not exceed 200 o C. Ions were implanted at two acceleration voltages, i.e. 15 and 70 kV. The fluence range was between 1·E16 and 1·E18 cm -2 . After implantation, some of the samples were characterized by the Rutherford backscattering (RBS) method. In conclusion: (a) The investigations performed in the present work confirm an assumption that ion implantation is a very promising technique as a pretreatment of AlN ceramics for the formation of the joints with copper in direct bonding process. (b) It has been shown that titanium implantation gives the best results in comparison to other metals examined (Fe, Cr, Cu) but also in comparison to double Ti+O and O+Ti implantations

  18. Evaluation of an expence of materials during ion implantation

    International Nuclear Information System (INIS)

    Bannikov, M.G.; Zlobin, N.; Zotov, A.V.; Vasilev, V.I.; Vasilev, I.P.

    2003-01-01

    Ion implantation is used for a surface modification. The implantation dose must be sufficient to obtain the required properties of a processed surface, but should not be exceeded to prevent over-expenditure of implanted materials. The latter is especially important when noble metals are used as an implanted material. The ion implanter includes a vacuum chamber, source of metal ions (target) and a vacuum pumping-out system. Ions of a plasma-forming gas sputter the target and ions of metal are then accelerated and implanted into surface treated. Ion implantation dose can be calculated from operation parameters such as ion beam current density and duration of implanting. The presence of the plasma-forming gas in the ion flow makes it difficult to determine the expenditure of an implanted metal itself. The objective of this paper is the more accurate definition of an expense of an implanted metal. Mass- spectrometric analysis of an ion beam together with the weighing of the target was used to determine the expense of an implanted metal. It was found that, depending on the implantation parameters, on average around 50% of a total ion flow are metal ions. Results obtained allow more precise definition of an implantation dose. Thus, over- expenditure of implanted metals can be eliminated. (author)

  19. Ion implantation into diamond

    International Nuclear Information System (INIS)

    Sato, Susumu

    1994-01-01

    The graphitization and the change to amorphous state of diamond surface layer by ion implantation and its characteristics are reported. In the diamond surface, into which more than 10 16 ions/cm 2 was implanted, the diamond crystals are broken, and the structure changes to other carbon structure such as amorphous state or graphite. Accompanying this change of structure, the electric conductivity of the implanted layer shows two discontinuous values due to high resistance and low resistance. This control of structure can be done by the temperature of the base during the ion implantation into diamond. Also it is referred to that by the base temperature during implantation, the mutual change of the structure between amorphous state and graphite can be controlled. The change of the electric resistance and the optical characteristics by the ion implantation into diamond surface, the structural analysis by Raman spectroscopy, and the control of the structure of the implanted layer by the base temperature during implantation are reported. (K.I.)

  20. Ion implantation - an introduction

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1986-01-01

    Ion implantation is a widely used technique with a literature that covers semiconductor production, surface treatments of steels, corrosion resistance, catalysis and integrated optics. This brief introduction outlines advantages of the technique, some aspects of the underlying physics and examples of current applications. Ion implantation is already an essential part of semiconductor technology while in many other areas it is still in an early stage of development. The future scope of the subject is discussed. (author)

  1. Development of industrial ion implantation technology

    International Nuclear Information System (INIS)

    Choi, Byung Ho; Hwang, Churl Kew; Kim, Wan; Jin, Jung Tai; Jung, Ki Sok; Yoon, Su Ho; Shin, Won Churl; Kim, Jong Gook; Han, Jeon Geon; Chung, Ki Hyung

    1994-01-01

    On a cooperation between KAERI, Kurchatov Institute (Russia), and Mirae Co., development of a metal ion implanter and ion implantation technology is performed on a basic idea of popularization and refinement of ion implantation technology applied to the industrial components. The developed implanter is a two beam type: the mass separation line produces several mA of metal ion beams and the non-separation line produces several tens of mA gas ion beams, thus making the synergistic effect possible by the irradiation of beams from both lines. The target is made of a rotating plate of 60cm in radius and can treat various types of industrial components or parts. About 60 kinds of specimens were treated for the development of implantation technology. Two or five times lengthening of longevities were achieved on the PCB drills, razor blades, cutters, and precision dies. (Author)

  2. Experimental study of precipitation in an ion-implanted metal: Sb in Al

    International Nuclear Information System (INIS)

    Kant, R.A.; Myers, S.M.; Picraux, S.T.

    1979-01-01

    The formation and evolution of AlSb precipitates in Sb-implanted Al has been investigated as a function of temperature, flux, and fluence. Implant temperatures of 23--300 0 C, fluxes of 6 x 10 11 to 1.3 x 10 13 Sb cm -2 sec -1 , and fluences of 5 x 10 15 to 2 x 10 17 Sb cm -2 were investigated, and transmission electron microscopy was used to detect the precipitates and to determine their size distributions. The AlSb precipitate mean size becomes larger and the number density decreases with increasing Sb implantation temperature, with increasing fluence, and with decreasing flux. The temperature and flux dependences of the evolution are large for 5 x 10 15 Sb cm -2 added to initially pure Al, and are much weaker at higher fluences where 1.5 x 10 15 Sb cm -2 has been added to a preexisting precipitate distribution. This indicates that flux and temperature affect the size distribution most strongly during nucleation and/or early growth. Ion damage has been demonstrated to be a significant factor in the precipitate evolution through Ar and Al bombardment of preexisting precipitates. At 300 0 C self-ion bombardment leads to ripening, whereas the precipitate size distribution is stable in the absence of implantation. At room temperature, Ar irradiation causes the AlSb diffraction pattern to disappear at approx.1 displacement per atom (dpa) independent of precipitate size, suggesting that here destruction of precipitates occurs due to disordering of the AlSb lattice. The results are discussed in terms of thermal and irradiation-induced processes

  3. Production of amorphous metal layers using ion implantation and investigation of the related modification of some surface properties

    International Nuclear Information System (INIS)

    Hoang Dac Luc; Vu Hoang Lam.

    1993-01-01

    Amorphous layers were produced by implanting B + ions into Al at 50 keV. The modification of the electrochemical corrosion resistance and the mechanical strength of implanted specimen was investigated. (author). 2 refs, 1 tab, 2 figs

  4. Ion implantation in ices

    International Nuclear Information System (INIS)

    Strazzulla, G.; Baratta, G.A.; Palumbo, M.E.; Satorre, M.A.

    2000-01-01

    We have studied, by in situ infrared spectroscopy, some effects due to ion implantation in frozen ices. In particular mixtures containing C, N and O atoms (e.g., N 2 :H 2 O:CH 4 ) have been irradiated with unreactive (noble gases) ions: the resulting alteration of the frozen sample induces the formation of other molecules (e.g., CO 2 , R- - -OCN, CO and HCN) and of a refractory organic residue. Similar products are formed when mixtures containing only C and O atoms (e.g., H 2 O:CH 4 ) are irradiated with N ions, i.e. molecular species that include the projectile are formed. These results are important, in particular for their applications to planetary physics. In planetary environments ice thickness is usually much larger than the penetration depth of the relevant ion populations (solar wind ions, magnetospheric particles, etc.) and ion implantation phenomena are expected. Our results indicate that some molecular species observed on icy planetary surfaces could not be native of that object but formed by ion irradiation and/or by implantation of reactive ions

  5. Study rationale and protocol: prospective randomized comparison of metal ion concentrations in the patient's plasma after implantation of coated and uncoated total knee prostheses.

    Science.gov (United States)

    Lützner, Jörg; Dinnebier, Gerd; Hartmann, Albrecht; Günther, Klaus-Peter; Kirschner, Stephan

    2009-10-14

    Any metal placed in a biological environment undergoes corrosion. Thus, with their large metallic surfaces, TKA implants are particularly prone to corrosion with subsequent release of metal ions into the human body which may cause local and systemic toxic effects and hypersensitivity reactions, and increase cancer risk. To address this problem, a new 7-layer zirconium coating developed especially for cobalt-chrome orthopaedic implants was tested biomechanically and found to lower metal ion release. The purpose of the proposed clinical trial is to compare the metal ion concentration in patients' plasma before and after implantation of a coated or uncoated TKA implant. In this randomised controlled trial, 120 patients undergoing primary TKA will be recruited at the Department of Orthopaedic Surgery of the University Hospital in Dresden, Germany, and randomised to either the coated or uncoated prosthesis. Outcome assessments will be conducted preoperatively and at 3 months, 12 months and 5 years postoperatively. The primary clinical endpoint will be the chromium ion concentration in the patient's plasma after 1 and 5 years. Secondary outcomes include cobalt, molybdenum and nickel ion concentrations after 1 and 5 years, allergy testing for hypersensitivity against one of these metals, the Knee Society Score to assess clinical and physical function of the knee joint, the self-assessment Oxford Score and the Short Form 36 quality of live questionnaire. The metal ion concentration in the patient's plasma has been shown to increase after TKA, its eventual adverse effects being widely debated. In the light of this discussion, ways to reduce metal ion release from orthopaedic implants should be studied in detail. The results of this investigation may lead to a new method to achieve this goal. TRIALS REGISTER: Clinicaltrials registry NCT00862511.

  6. Study rationale and protocol: prospective randomized comparison of metal ion concentrations in the patient's plasma after implantation of coated and uncoated total knee prostheses

    Directory of Open Access Journals (Sweden)

    Günther Klaus-Peter

    2009-10-01

    Full Text Available Abstract Background Any metal placed in a biological environment undergoes corrosion. Thus, with their large metallic surfaces, TKA implants are particularly prone to corrosion with subsequent release of metal ions into the human body which may cause local and systemic toxic effects and hypersensitivity reactions, and increase cancer risk. To address this problem, a new 7-layer zirconium coating developed especially for cobalt-chrome orthopaedic implants was tested biomechanically and found to lower metal ion release. The purpose of the proposed clinical trial is to compare the metal ion concentration in patients' plasma before and after implantation of a coated or uncoated TKA implant. Methods/Design In this randomised controlled trial, 120 patients undergoing primary TKA will be recruited at the Department of Orthopaedic Surgery of the University Hospital in Dresden, Germany, and randomised to either the coated or uncoated prosthesis. Outcome assessments will be conducted preoperatively and at 3 months, 12 months and 5 years postoperatively. The primary clinical endpoint will be the chromium ion concentration in the patient's plasma after 1 and 5 years. Secondary outcomes include cobalt, molybdenum and nickel ion concentrations after 1 and 5 years, allergy testing for hypersensitivity against one of these metals, the Knee Society Score to assess clinical and physical function of the knee joint, the self-assessment Oxford Score and the Short Form 36 quality of live questionnaire. Discussion The metal ion concentration in the patient's plasma has been shown to increase after TKA, its eventual adverse effects being widely debated. In the light of this discussion, ways to reduce metal ion release from orthopaedic implants should be studied in detail. The results of this investigation may lead to a new method to achieve this goal. Trials register Clinicaltrials registry NCT00862511

  7. Ion implantation for semiconductors

    International Nuclear Information System (INIS)

    Grey-Morgan, T.

    1995-01-01

    Full text: Over the past two decades, thousands of particle accelerators have been used to implant foreign atoms like boron, phosphorus and arsenic into silicon crystal wafers to produce special embedded layers for manufacturing semiconductor devices. Depending on the device required, the atomic species, the depth of implant and doping levels are the main parameters for the implantation process; the selection and parameter control is totally automated. The depth of the implant, usually less than 1 micron, is determined by the ion energy, which can be varied between 2 and 600 keV. The ion beam is extracted from a Freeman or Bernas type ion source and accelerated to 60 keV before mass analysis. For higher beam energies postacceleration is applied up to 200 keV and even higher energies can be achieved by mass selecting multiplycharged ions, but with a corresponding reduction in beam output. Depending on the device to be manufactured, doping levels can range from 10 10 to 10 15 atoms/cm 2 and are controlled by implanter beam currents in the range up to 30mA; continuous process monitoring ensures uniformity across the wafer of better than 1 % . As semiconductor devices get smaller, additional sophistication is required in the design of the implanter. The silicon wafers charge electrically during implantation and this charge must be dissipated continuously to reduce the electrical stress in the device and avoid destructive electrical breakdown. Electron flood guns produce low energy electrons (below 10 electronvolts) to neutralize positive charge buildup and implanter design must ensure minimum contamination by other isotopic species and ensure low internal sputter rates. The pace of technology in the semiconductor industry is such that implanters are being built now for 256 Megabit circuits but which are only likely to be widely available five years from now. Several specialist companies manufacture implanter systems, each costing around US$5 million, depending on the

  8. A high voltage pulse power supply for metal plasma immersion ion implantation and deposition.

    Science.gov (United States)

    Salvadori, M C; Teixeira, F S; Araújo, W W R; Sgubin, L G; Sochugov, N S; Spirin, R E; Brown, I G

    2010-12-01

    We describe the design and implementation of a high voltage pulse power supply (pulser) that supports the operation of a repetitively pulsed filtered vacuum arc plasma deposition facility in plasma immersion ion implantation and deposition (Mepiiid) mode. Negative pulses (micropulses) of up to 20 kV in magnitude and 20 A peak current are provided in gated pulse packets (macropulses) over a broad range of possible pulse width and duty cycle. Application of the system consisting of filtered vacuum arc and high voltage pulser is demonstrated by forming diamond-like carbon (DLC) thin films with and without substrate bias provided by the pulser. Significantly enhanced film∕substrate adhesion is observed when the pulser is used to induce interface mixing between the DLC film and the underlying Si substrate.

  9. The effect of metal ions released from different dental implant-abutment couples on osteoblast function and secretion of bone resorbing mediators.

    Science.gov (United States)

    Alrabeah, Ghada O; Brett, Peter; Knowles, Jonathan C; Petridis, Haralampos

    2017-11-01

    The etiology of the reduced marginal bone loss observed around platform-switched implant-abutment connections is not clear but could be related to the release of variable amounts of corrosion products. The present study evaluated the effect of different concentrations of metal ions released from different implant abutment couples on osteoblastic cell viability, apoptosis and expression of genes related to bone resorption. Osteoblastic cells were exposed to five conditions of culture media prepared containing metal ions (titanium, aluminum, vanadium, cobalt, chromium and molybdenum) in different concentrations representing the amounts released from platform-matched and platform-switched implant-abutment couples as a result of an earlier accelerated corrosion experiment. Cell viability was evaluated over 21days using the Alamar Blue assay. Induction of apoptosis was measured after 24h of exposure using flow cytometry. Expression of interleukin-6, interleukin-8, cyclooxygenase-2, caspase-8, osteoprotegerin and receptor activator of nuclear factor kappa-B ligand (RANKL) by osteoblastic cells were analysed after exposure for 1, 3 and 21days using real-time quantitative polymerase chain reaction assay RESULTS: Metal ions in concentrations representing the platform-matched groups led to a reduction in cell viability (PMetal ions up-regulated the expression of interleukin-6, interleukin-8, cyclooxygenase-2 and RANKL in a dose dependent manner after 1day of exposure (Pmetal ions. The change in cytokine levels expressed was directly proportional to the metal ion concentration. The observed biological responses to decreased amounts of metal ions released from platform-switched implant-abutment couples compared to platform-matched couples may partly explain the positive radiographic findings in respect to crestal bone level when utilising the "platform-switching" concept, which highlights the possible role of corrosion products in the mediation of crestal bone loss around

  10. Ion implantation: an annotated bibliography

    International Nuclear Information System (INIS)

    Ting, R.N.; Subramanyam, K.

    1975-10-01

    Ion implantation is a technique for introducing controlled amounts of dopants into target substrates, and has been successfully used for the manufacture of silicon semiconductor devices. Ion implantation is superior to other methods of doping such as thermal diffusion and epitaxy, in view of its advantages such as high degree of control, flexibility, and amenability to automation. This annotated bibliography of 416 references consists of journal articles, books, and conference papers in English and foreign languages published during 1973-74, on all aspects of ion implantation including range distribution and concentration profile, channeling, radiation damage and annealing, compound semiconductors, structural and electrical characterization, applications, equipment and ion sources. Earlier bibliographies on ion implantation, and national and international conferences in which papers on ion implantation were presented have also been listed separately

  11. Depth profiles, projected ranges, and secondary ion mass spectrometry relative sensitivity factors for more than 50 elements from hydrogen to uranium implanted into metals

    International Nuclear Information System (INIS)

    Wilson, R.G.; Stevie, F.A.; Lux, G.E.; Kirschbaum, C.L.; Frank, S.; Pallix, J.

    1992-01-01

    More than 50 elements from hydrogen to uranium were implanted into beryllium, aluminum, titanium, nickel, tungsten and gold at energies up to 0.6 MeV and at fluences from 3x10 13 to 5x10 15 cm -2 to create standards appropriate for depth profiling using secondary ion mass spectrometry (SIMS). SIMS depth profiling was performed for these combinations using both oxygen and cesium primary ions and positive and negative secondary ions respectively. SIMS relative sensitivity factors (RSFs) were determined from these data to allow quantification of impurity densities and depth profiles in these metals and possibly other metals through the use of systematics. Implantation ranges were determined from the experimental profiles, and are compared with the corresponding results of TRIM89/91 and Implant Sciences Profile Code calculations. The agreement between the two calculations and between both calculations and most of the experimental results is within 15%-20%. The experimental error is about 15%. This work establishes a quantified SIMS methodology for measuring impurity densities and implantation depth profiles in metals. (orig.)

  12. Ohmic contact on n- and p-type ion-implanted 4H-SiC with low-temperature metallization process for SiC MOSFETs

    Science.gov (United States)

    Shimizu, Haruka; Shima, Akio; Shimamoto, Yasuhiro; Iwamuro, Noriyuki

    2017-04-01

    The ohmic contact on n- and p-type SiC regions with the same contact metal is a key process in regard to creating high-performance MOSFETs and insulated gate bipolar transistors (IGBTs). The dependence of the contact resistance on n- and p-type SiC regions on ion species, dose, and implantation temperature was investigated. The results of such an investigation revealed that the amorphization of the SiC surface and the generation of 3C-SiC produce a low contact resistance without the need for a high-temperature metallization process. The contact resistances of 2.1 × 10-6 Ω cm2 on the n-type SiC region and 1.3 × 10-3 Ω cm2 on the p-type SiC region were obtained with high-dose ion implantation at room temperature on the n-type SiC region, high-dose ion implantation at high temperature on the p-type SiC region, and a titanium-based contact electrode. A SiC MOSFET was fabricated with the low-temperature ohmic contact process. The positive-bias gate leakage current markedly increased. It can be deduced that high-dose ion implantation at room temperature on the n-type SiC region degrades surface roughness on the N+ source region.

  13. Ion implantation in Thailand (I) - development of ion implantation facilities

    International Nuclear Information System (INIS)

    Vilaithong, T.; Suwannakachorn, D.; Yotsombat, B.; Boonyawan, D.; Charoennugul, R.; Vichaisirimongkol, P.; Aumkaew, S.; A-No, V.

    1997-01-01

    Ion implantation with its many advantages has been widely and rapidly developed in the world to be a novel material treatment technique, which holds significance in both academic research and technical application. In order to develop and apply the ion implantation technique in the country, Thailand has launched a program to establish an ion beam center at Chiang Mai University. By efforts made during the past six years, the University has completed construction and installation of a 150-kV, research-purpose ion implantation facility, which consists of two beam lines - a 00 non-analyzed line and a 450 analyzed line, and which is being put into regular operation, and a 20-kV, high-current ion implanter based on a duoplasmatron ion source for non-analyzed N-ion beam implantation, and a high-intensity, multi cusp ion source for special implantation purposes. The facilities have formed powerful tools for research, teaching and engineering application, and have played an indispensable role in promoting development of novel techniques in the country

  14. Choice of materials for the immobilization of 85-krypton in a metallic matrix by combined ion implantation and sputtering

    International Nuclear Information System (INIS)

    Whitmell, D.S.

    1985-01-01

    Immobilization in a metal matrix by combined ion implantation and sputtering promises to offer an ideal method for the containment of krypton-85 arising from the reprocessing of nuclear fuel. A 50 kW inactive pilot plant has been built and operated to prepare a copper deposit 22 mm thick weighing 23 kg and containing over 30 liters of inactive gas. The gas incorporation rate exceeded the design figure of 0.3 liters/hour and the vessel was operated at powers up to 30 kW, which corresponds to that envisaged for the industrial vessel. The power consumption was less than 100 kWh/liter. A full-scale vessel (1 m long, 0.26 m diameter) has also been tested at low power. Samples of alternative candidate materials: stainless steel, incoloy, nickel and nickel-lanthanum have been prepared and tested. Nickel appears to be the most promising since it incorporates gas with an efficiency 70% greater than copper and also retains the gas to a temperature at least 100 0 C higher than copper. Tests are being carried out with 100 Curies of radioactive krypton in order to demonstrate that the process will operate satisfactorily at the high internal β irradiation levels that will exist in an active plant and to prepare samples containing krypton-85 for long term leakage measurements and for assessment of any effects caused by the build-up of the decay product rubidium

  15. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation; Oberflaechenmodifikation des Hartmetalls Wolframkarbid-Kobalt durch Bor-Ionenimplantation

    Energy Technology Data Exchange (ETDEWEB)

    Mrotchek, I.

    2007-09-07

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and {approx}5.10{sup 17} ions/cm{sup 2} fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co{sub 3}W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load.

  16. Tungsten contamination in ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Polignano, M.L., E-mail: maria.polignano@st.com; Barbarossa, F.; Galbiati, A.; Magni, D.; Mica, I.

    2016-06-15

    In this paper the tungsten contamination in ion implantation processes is studied by DLTS analysis both in typical operating conditions and after contamination of the implanter by implantation of wafers with an exposed tungsten layer. Of course the contaminant concentration is orders of magnitude higher after contamination of the implanter, but in addition our data show that different mechanisms are active in a not contaminated and in a contaminated implanter. A moderate tungsten contamination is observed also in a not contaminated implanter, however in that case contamination is completely not energetic and can be effectively screened by a very thin oxide. On the contrary, the contamination due to an implantation in a previously contaminated implanter is reduced but not suppressed even by a relatively thick screen oxide. The comparison with SRIM calculations confirms that the observed deep penetration of the contaminant cannot be explained by a plain sputtering mechanism.

  17. Preparation of Metal-Containing Diamond-Like Carbon Films by Magnetron Sputtering and Plasma Source Ion Implantation and Their Properties

    Directory of Open Access Journals (Sweden)

    Stefan Flege

    2017-01-01

    Full Text Available Metal-containing diamond-like carbon (Me-DLC films were prepared by a combination of plasma source ion implantation (PSII and reactive magnetron sputtering. Two metals were used that differ in their tendency to form carbide and possess a different sputter yield, that is, Cu with a relatively high sputter yield and Ti with a comparatively low one. The DLC film preparation was based on the hydrocarbon gas ethylene (C2H4. The preparation technique is described and the parameters influencing the metal content within the film are discussed. Film properties that are changed by the metal addition, such as structure, electrical resistivity, and friction coefficient, were evaluated and compared with those of pure DLC films as well as with literature values for Me-DLC films prepared with a different hydrocarbon gas or containing other metals.

  18. Surface microhardening by ion implantation

    International Nuclear Information System (INIS)

    Singh, Amarjit

    1986-01-01

    The paper discusses the process and the underlying mechanism of surface microhardening by implanting suitable energetic ions in materials like 4145 steel, 304 stainless steel, aluminium and its 2024-T351 alloy. It has been observed that boron and nitrogen implantation in materials like 4145 steel and 304 stainless steel can produce a significant increase in surface hardness. Moreover the increase can be further enhanced with suitable overlay coatings such as aluminium (Al), Titanium (Ti) and carbon (C). The surface hardening due to implantation is attributed to precipitation hardening or the formation of stable/metastable phase or both. The effect of lithium implantation in aluminium and its alloy on microhardness with increasing ion dose and ion beam energy is also discussed. (author)

  19. Studies of ion implanted thermally oxidised chromium

    International Nuclear Information System (INIS)

    Muhl, S.

    1977-01-01

    The thermal oxidation of 99.99% pure chromium containing precise amounts of foreign elements has been studied and compared to the oxidation of pure chromium. Thirty-three foreign elements including all of the naturally occurring rare earth metals were ion implanted into chromium samples prior to oxidation at 750 0 C in oxygen. The role of radiation induced damage, inherent in this doping technique, has been studied by chromium implantations at various energies and doses. The repair of the damage has been studied by vacuum annealing at temperatures up to 800 0 C prior to oxidation. Many of the implants caused an inhibition of oxidation, the greatest being a 93% reduction for 2 x 10 16 ions/cm 2 of praseodymium. The distribution of the implant was investigated by the use of 2 MeV alpha backscattering and ion microprobe analysis. Differences in the topography and structure of the chromic oxide on and off the implanted area were studied using scanning electron and optical microscopy. X-ray diffraction analysis was used to investigate if a rare earth-chromium compound of a perovskite-type structure had been formed. Lastly, the electrical conductivity of chromic oxide on and off the implanted region was examined at low voltages. (author)

  20. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation

    International Nuclear Information System (INIS)

    Sun, Shichuang; Fu, Kai; Yu, Guohao; Zhang, Zhili; Song, Liang; Deng, Xuguang; Li, Shuiming; Sun, Qian; Cai, Yong; Zhang, Baoshun; Qi, Zhiqiang; Dai, Jiangnan; Chen, Changqing

    2016-01-01

    This letter has studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors on silicon substrate with GaN buffer treated by aluminum ion implantation for insulating followed by a channel regrown by metal–organic chemical vapor deposition. For samples with Al ion implantation of multiple energies of 140 keV (dose: 1.4 × 10 14 cm −2 ) and 90 keV (dose: 1 × 10 14  cm −2 ), the OFF-state leakage current is decreased by more than 3 orders and the breakdown voltage is enhanced by nearly 6 times compared to the samples without Al ion implantation. Besides, little degradation of electrical properties of the 2D electron gas channel is observed where the maximum drain current I DSmax at a gate voltage of 3 V was 701 mA/mm and the maximum transconductance g mmax was 83 mS/mm

  1. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shichuang [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Fu, Kai, E-mail: kfu2009@sinano.ac.cn, E-mail: cqchen@mail.hust.edu.cn; Yu, Guohao; Zhang, Zhili; Song, Liang; Deng, Xuguang; Li, Shuiming; Sun, Qian; Cai, Yong; Zhang, Baoshun [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Qi, Zhiqiang; Dai, Jiangnan; Chen, Changqing, E-mail: kfu2009@sinano.ac.cn, E-mail: cqchen@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-01-04

    This letter has studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors on silicon substrate with GaN buffer treated by aluminum ion implantation for insulating followed by a channel regrown by metal–organic chemical vapor deposition. For samples with Al ion implantation of multiple energies of 140 keV (dose: 1.4 × 10{sup 14} cm{sup −2}) and 90 keV (dose: 1 × 10{sup 14} cm{sup −2}), the OFF-state leakage current is decreased by more than 3 orders and the breakdown voltage is enhanced by nearly 6 times compared to the samples without Al ion implantation. Besides, little degradation of electrical properties of the 2D electron gas channel is observed where the maximum drain current I{sub DSmax} at a gate voltage of 3 V was 701 mA/mm and the maximum transconductance g{sub mmax} was 83 mS/mm.

  2. Fingerprinting diamonds using ion implantation

    International Nuclear Information System (INIS)

    DeVries, R.C.; Reihl, R.F.; Tuft, R.E.

    1989-01-01

    It is possible to ion implant patterns in diamond crystals at fluences below that which would impart visible damage and then to reveal those patterns by electrostatic charging and dusting. The charge distribution - and therefore the dust attachment - is related to the difference in electrical conductivity between the implanted region and the rest of the crystal. The technique may have applicability for ''fingerprinting'' or personalizing diamond gemstones. (author)

  3. A new adsorbent of a Ce ion-implanted metal-organic framework (MIL-96) with high-efficiency Ce utilization for removing fluoride from water.

    Science.gov (United States)

    Yang, Xuan; Deng, Shuangshuang; Peng, Fumin; Luo, Tao

    2017-02-14

    A novel Ce(iii) ion-implanted aluminum-trimesic metal-organic framework (Ce-MIL-96) was synthesized for the first time via alcohol-solvent incipient wetness impregnation. Compared to previously reported Ce-contained adsorbents, the fluoride adsorption performance of the new ion-implanted metal-organic framework demonstrated much higher adsorption capacity and more efficient regeneration of Ce. In a wide pH range of 3 to 10, Ce-MIL-96 maintained constant adsorption performance for fluoride, and the residual Ce and Al in the treated solution were below the safe limits in drinking water. The maximum adsorption capacity of Ce-MIL-96 was 38.65 mg g -1 at 298 K. Excluding the contribution of MIL-96, the maximum adsorption capacity of Ce ions was 269.75 mg g -1 , which demonstrated that the service efficiency of cerium in Ce-MIL-96 is about 6 times that in Ce 2 O 3 , nearly 10 times that in Ce-mZrp, and double that in Mn-Ce oxides. There was no significant influence on fluoride removal by Ce-MIL-96 due to the presence of chloride, nitrate, sulfate, bicarbonate or phosphate. Moreover, the adsorption capacity of Ce-MIL-96 remained at more than 70% after nine cycles of adsorption-desorption. Due to this excellent adsorption performance and its regeneration properties, Ce-MIL-96 is a promising adsorbent for the removal of fluoride from groundwater.

  4. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  5. Nanostructures from hydrogen implantation of metals.

    Energy Technology Data Exchange (ETDEWEB)

    McWatters, Bruce Ray (Sandia National Laboratories, Albuquerque, NM); Causey, Rion A.; DePuit, Ryan J.; Yang, Nancy Y. C.; Ong, Markus D.

    2009-09-01

    This study investigates a pathway to nanoporous structures created by hydrogen implantation in aluminum. Previous experiments for fusion applications have indicated that hydrogen and helium ion implantations are capable of producing bicontinuous nanoporous structures in a variety of metals. This study focuses specifically on hydrogen and helium implantations of aluminum, including complementary experimental results and computational modeling of this system. Experimental results show the evolution of the surface morphology as the hydrogen ion fluence increases from 10{sup 17} cm{sup -2} to 10{sup 18} cm{sup -2}. Implantations of helium at a fluence of 10{sup 18} cm{sup -2} produce porosity on the order of 10 nm. Computational modeling demonstrates the formation of alanes, their desorption, and the resulting etching of aluminum surfaces that likely drives the nanostructures that form in the presence of hydrogen.

  6. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  7. Metal ions as inflammatory initiators of osteolysis.

    Science.gov (United States)

    Magone, Kevin; Luckenbill, Daniel; Goswami, Tarun

    2015-05-01

    Osteolysis and aseptic loosening currently contribute 75 % of implant failures. Furthermore, with over four million joint replacements projected to be performed in the United States annually, osteolysis and aseptic loosening may continue to pose a significant morbidity. This paper reviews the osteolysis cascade leading to osteoclast activation and bone resorption at the biochemical level. Additionally, the metal ion release mechanism from metallic implants is elucidated. Even though metal ions are not the predominating initiator of osteolysis, they do increase the concentration of key inflammatory cytokines that stimulate osteoclasts and prove to be a contributor to osteolysis and aseptic loosening. Osteolysis is a competitive mechanism among a number of biological reactions, which includes debris release, macrophage and osteoclast activation, an inflammatory response as well as metal ion release. Pharmacological therapy for component loosening has also been reviewed. A non-surgical treatment of osteolysis has not been found in the literature and thus may become an area of future research. Even though this research is warranted, comprehensively understanding the immune response to orthopedic implants and their metallic ions, and thus, creating improved prostheses appears to be the most cost-effective approach to decrease the morbidity related to osteolysis and to design implants with greater longevity. The ionic forms, cytokines, toxicity, gene expression, biological effects, and hypersensitivity responses of metallic elements from metal implants are summarized as well.

  8. Prospects of ion implantation and ion beam mixing for corrosion protection

    International Nuclear Information System (INIS)

    Wolf, G.K.; Munn, P.; Ensinger, W.

    1985-01-01

    Ion implantation is very useful new low temperature treatment for improving the mechanical surface properties of materials without any dimensional changes. In addition also the corrosion properties of metals can be modified considerably by this technique. The long term corrosion behaviour of implanted metals, however, has been studied only for a very limited number of cases. In this contribution a survey of attempts to do this will be presented. As examples of promising systems for corrosion protection by ion beams iron, steel and titanium were examined with and without pretreatment by ion implantation and ion beam mixing. The corrosion rates of the systems have been obtained by neutron activation analysis and by electrochemical methods. Experimental results are presented on: Palladium implanted in titanium - crevice corrosion in salt solution; Palladium implanted in and deposited on titanium -corrosion in sulfuric acid; Platinum implanted in stainless steel -corrosion in sulfuric acid. (author)

  9. Achievement report for fiscal 1998. Research and development of super-functional environment-resistant materials by controlling trace metal ion implantation; 1998 nendo seika hokokusho. Gokubiryo kinzoku ion chunyu seigyo ni yoru chokino taikankyo zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The aim was to develop reliable materials high in resistance to hostile environments, greatly improved in their resistance to oxidation, abrasion, and corrosion at high temperatures. To achieve the goal, trace quantities of high melting point metals were implanted into the compound formed on the substrate surface or deep into the substrate material. This year's research and development is outlined below. Important technologies in the ion process involved materials which at high temperatures were very resistant to oxidation, abrasion, and corrosion. The high-temperature oxidation resistant material was studied for use with the automobile supercharger rotor. The study on the high-temperature abrasion resistant material involved Ti-N thin coatings: the optimization of coating conditions, slidability at room temperature, and slidability in a high-temperature atmosphere. As for the high-temperature corrosion resistant material, studies were made to use it for refuse-fueled power generation. The TiAl material was also studied: the effect of ion implantation on the improvement of its high-temperature oxidation resisting capability, analysis into oxidized alloy surface properties, ion implantation into complicatedly shaped items and the optimum material for them, and the surface treatment by ion beams for improving resistance to high-temperature corrosion. (NEDO)

  10. The effect of lattice and grain boundary diffusion on the redistribution of Xe in metallic nuclear fuels: Implications for the use of ion implantation to study fission-gas-bubble nucleation mechanisms

    International Nuclear Information System (INIS)

    King, Wayne E.; Tumey, Scott J.; Rest, Jeffrey; Gilmer, George H.

    2011-01-01

    A multi-atom gas bubble-nucleation mechanism has been proposed as part of a predictive fission-gas release model for metallic nuclear fuels. Validation of this mechanism requires experimental measurement of fission-gas bubble-size distributions at well-controlled gas concentrations and temperatures. There are advantages to carrying out such a study using ion implantation as the source of gas atoms compared with neutron irradiations. In spite of previous successes using ion implantation to study fission-gas behavior in oxide fuels, there is significant uncertainty about the efficacy of using ion beams for metallic fuel studies. To address the question of the applicability of ion beams in experiments designed to study fission-gas behavior in metallic fuels, we developed and applied an exact model for the redistribution of implanted ions under annealing conditions. The conclusion is that, given the assumptions, the results from implantations at 1 MeV or less may be overwhelmed by the surface effects at all relevant temperatures. Implanting at 10 or 80 MeV can significantly diminish the influence of the surfaces and the steep concentration gradients. At 80 MeV, the location of the peak concentration profile remains stable with annealing time. Thus, it appears that ion implantation can be an appropriate tool to study the size distribution of Xe bubbles in metallic fuels. Of the conditions investigated, the best for the study are to implant at 80 MeV and carry out anneals at 773 K, 873 K, and 973 K for times less than 10,000 s.

  11. Plasma-implantation-based surface modification of metals with single-implantation mode

    Science.gov (United States)

    Tian, X. B.; Cui, J. T.; Yang, S. Q.; Fu, Ricky K. Y.; Chu, Paul K.

    2004-12-01

    Plasma ion implantation has proven to be an effective surface modification technique. Its biggest advantage is the capability to treat the objects with irregular shapes without complex manipulation of target holder. Many metal materials such as aluminum, stainless steel, tool steel, titanium, magnesium etc, has been treated using this technique to improve their wear-resistance, corrosion-resistance, fatigue-resistance, oxidation-resistance, bio-compatiblity etc. However in order to achieve thicker modified layers, hybrid processes combining plasma ion implantation with other techniques have been frequently employed. In this paper plasma implantation based surface modification of metals using single-implantation mode is reviewed.

  12. Properties and applications of ion-implanted alloys

    International Nuclear Information System (INIS)

    Myers, S.M.

    1979-01-01

    Ion implantation is a controlled and versatile means for near-surface alloying of metals. Supersaturated solutions, metastable compounds, amorphous phases, and equilibrium alloys have been produced. Uses include the investigation of new metastable phases, characterization of alloying reactions occurring in conventional materials, and improvement of surface properties such as hardness, wear, and corrosion. A brief review is given of the physical processes occurring during ion implantation, the types of alloys which result, and representative applications

  13. Cutaneous and systemic hypersensitivity reactions to metallic implants

    DEFF Research Database (Denmark)

    Basko-Plluska, Juliana L; Thyssen, Jacob P; Schalock, Peter C

    2011-01-01

    . However, other metal ions as well as bone cement components can cause such hypersensitivity reactions. To complicate things, patients may also develop delayed-type hypersensitivity reactions to metals (ie, in-stent restenosis, prosthesis loosening, inflammation, pain, or allergic contact dermatitis......) following the insertion of intravascular stents, dental implants, cardiac pacemakers, or implanted gynecologic devices. Despite repeated attempts by researchers and clinicians to further understand this difficult area of medicine, the association between metal sensitivity and cutaneous allergic reactions...

  14. Development of industrial ion implantation and ion assisted coating processes: A perspective

    International Nuclear Information System (INIS)

    Legg, K.O.; Solnick-Legg, H.

    1989-01-01

    Ion beam processes have gone through a series of developmental stages, from being the mainstay of the semiconductor industry for production of integrated circuits, to new commercial processes for biomedical, aerospace and other industries. Although research is still continuing on surface modification using ion beam methods, ion implantation and ion assisted coatings for treatment of metals, ceramics, polymers and composites must now be considered viable industrial processes of benefit in a wide variety of applications. However, ion implantation methods face various barriers to acceptability, in terms not only of other surface treatment processes, but for implantation itself. This paper will discuss some of the challenges faced by a small company whose primary business is development and marketing of ion implantation and ion-assisted coating processes. (orig.)

  15. Cluster Ion Implantation in Graphite and Diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite...... and diamond samples implanted by keV-energy size-selected cobalt and argon clusters. One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the development of scaling law for cluster...

  16. Physico-chemical behaviour of a metal/polymer contact subject to a low amplitude friction in a chlorinated medium. Effect of ionitriding and ion implantation surface treatment

    International Nuclear Information System (INIS)

    Rabbe, L.M.

    1993-10-01

    The fretting-corrosion behaviour of two tribological couples (TA6V/PMMA and 316L/PMMA) had been studied in order to better understand the degradation mechanisms observed on pivot prosthesis sealed in bones. Pressure appears to have a major role; at high contact pressure, the PMMA wear is the main degradation mechanism with PMMA debris acting as a metal surface protecting agent; at low contact pressure, both material deterioration is involved, and titanium has a corrosion-dominated degradation. An optimal resistance to fretting is achieved when TA6V is coated with Ti N (ion implantation) and Ti N, Ti 2 N (ionitriding). When nitriding, processing temperature appears as a critical factor to ensure thickness and homogeneity of the nitride coatings. 181 p., 106 figs., 110 refs

  17. Behavior of PET implanted by Ti, Ag, Si and C ion using MEVVA implantation

    International Nuclear Information System (INIS)

    Wu Yuguang; Zhang Tonghe; Zhang Yanwen; Zhang Huixing; Zhang Xiaoji; Zhou Gu

    2001-01-01

    Polyethylene terephthalane (PET) has been modified with Ti, Ag, Si and C ions from a metal vapor arc source (MEVVA). Ti, Ag, Si and C ions were implanted with acceleration voltage 40 kV to fluences ranging from 1x10 16 to 2x10 17 cm -2 . The surface of implanted PET darkened with increasing ion dose, when the metal ion dose was greater than 1x10 17 cm -2 the color changed to metallic bright. The surface resistance decreases by 5-6 orders of magnitude with increasing dose. The resistivity is stable after long-term storage. The depth of Ti- and Ag-implanted layer is approximately 150 and 80 nm measured by Rutherford backscattering (RBS), respectively. TEM photos revealed the presence of Ti and Ag nano-meter particles on the surface resulting from the high-dose implantation. Ti and Ag ion implantations improved conductivity and wear resistance significantly. The phase and structural changes were obtained by X-ray diffraction (XRD). It can be seen that nano-meter particles of Ti precipitation, TiO 2 and Ti-carbides have been formed in implanted layer. Nano-hardness of implanted PET has been measured by a nano-indenter. The results show that the surface hardness, modulus and wear resistance could be increased

  18. Development of vertical compact ion implanter for gemstones applications

    International Nuclear Information System (INIS)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L.D.; Singkarat, S.

    2014-01-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented

  19. Development of vertical compact ion implanter for gemstones applications

    Energy Technology Data Exchange (ETDEWEB)

    Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Wijaikhum, A. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Bootkul, D., E-mail: mo_duangkhae@hotmail.com [Department of General Science (Gems and Jewelry), Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D.; Tippawan, U.; Yu, L.D.; Singkarat, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-08-15

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  20. Development of vertical compact ion implanter for gemstones applications

    Science.gov (United States)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.; Singkarat, S.

    2014-08-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  1. Mutagenic effects of ion implanted rice seed

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Chen Qiufang

    1996-04-01

    Dry seeds of rice were implanted with 15∼30 keV N + , H + , Ar + ion beam of various doses. The biological effects in M 1 and mutation in M 2 were studied. The results showed that ion beam could induce the variation on the chromosome structure and inhibit mitosis in root tip cell. The chromosomal aberration rate of cells tended to be increased with increase of implanted ion dose. Compared with 60 Co γ-rays, ion implantation induced lower rate of cells with chromosome aberration. However, there was a similar inhibitory effect on mitosis between ion beam and γ-rays. The electrophoretic banding patterns of peroxidase enzymes were altered by both mutagens and varied. Frequency of the chlorophyll mutation implanted by ion beam was higher than that induced by γ-rays. Mutation frequencies of heading date and plant height were similar between ion beam implanting and γ-rays irradiation. (11 tabs., 2 figs.)

  2. Production of Endohedral Fullerenes by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  3. Techniques for the implantation of ions in microelectronics. A review

    International Nuclear Information System (INIS)

    Calleja, W.; Aceves, M.; Linares, M.; Fuentes, S.; Fuentes, I.; Landa, M.; Zuniga, C.; Remolina, J.; Peykov, P.

    1991-01-01

    The technique of ion implantation in the field of microelectronics is indispensable as tool for introducing dopant atoms in a semiconductor material surface. It is possible with sophisticated equipment for selecting and accelerating particle to control precisely the electronic behavior of devices and integrated circuits. At National Institute of Astrophysics, Optics and Electronics a process has been developed for fabrication Metal Oxide Silicon integrated circuits which utilized a medium powered ion implanter. In this work a review is given of the functions of a basic implanter which is required in making electronic devices and the technique we developed in the department of microelectronics at National Institute of Astrophysics, Optics and Electronics. (Author)

  4. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  5. Ion implantations of oxide dispersion strengthened steels

    Energy Technology Data Exchange (ETDEWEB)

    Sojak, S., E-mail: stanislav.sojak@stuba.sk; Simeg Veternikova, J.; Slugen, V.; Petriska, M.; Stacho, M.

    2015-12-15

    Highlights: • ODS steel MA 956 was studied after thermal treatment and ion implantations. • Increase of the defects size was observed after hydrogen ions implantation. • Intensity/amount of the defects did not increase after ion implantations. • Due to defects aggregation defects concentration decreased. - Abstract: This paper is focused on a study of radiation damage and thermal stability of high chromium oxide dispersion strengthened steel MA 956 (20% Cr), which belongs to the most perspective structural materials for the newest generation of nuclear reactors – Generation IV. The radiation damage was simulated by the implantation of hydrogen ions up to the depth of about 5 μm, which was performed at a linear accelerator owned by Slovak University of Technology. The ODS steel MA 956 was available for study in as-received state after different thermal treatments as well as in ions implanted state. Energy of the hydrogen ions chosen for the implantation was 800 keV and the implantation fluence of 6.24 × 10{sup 17} ions/cm{sup 2}. The investigated specimens were measured by non-destructive technique Positron Annihilation Lifetime Spectroscopy in order to study the defect behavior after different thermal treatments in the as-received state and after the hydrogen ions implantation. Although, different resistance to defect production was observed in individual specimens of MA 956 during the irradiation, all implanted specimens contain larger defects than the ones in as-received state.

  6. Modification of polyvinyl alcohol surface properties by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pukhova, I.V., E-mail: ivpuhova@mail.ru [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Kurzina, I.A. [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Savkin, K.P. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Laput, O.A. [National Research Tomsk Polytechnic University, 30 Lenin Ave, Tomsk 634050 (Russian Federation); Oks, E.M. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation)

    2017-05-15

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 10{sup 14}, 1 × 10{sup 15} and 1 × 10{sup 16} ion/cm{sup 2} and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (−C=O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  7. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  8. Mutagenic effects of ion implantation on stevia

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Chen Qiufang; Lu Ting; Shu Shizhen

    1998-01-01

    Dry seeds of Stevia were implanted by 75 keV nitrogen and carbon ions with various doses. The biological effects in M 1 and mutation in M 2 were studied. The results showed that ion beam was able to induce variation on chromosome structure in root tip cells. The rate of cells with chromosome aberration was increased with ion beam dose. The rate of cells with chromosomal aberration was lower than that induced with γ-rays. Frequency of the mutation induced by implantation of N + and C + ions were higher than those induced by γ-rays. The rate of cell with chromosome aberration and in M 2 useful mutation induced by implantation of C + ion was higher than those induced by implantation of N + ion. Mutagenic effects Feng 1 x Riyuan and Riyuan x Feng 2 by implantation of N + and C + were higher than that of Jining and Feng 2

  9. Ion beam sputter implantation method

    International Nuclear Information System (INIS)

    King, W.J.

    1978-01-01

    By means of ion beam atomizing or sputtering an integrally composed coating, the composition of which continuously changes from 100% of the substrate to 100% of the coating, can be surfaced on a substrate (e.g. molten quartz on plastic lenses). In order to do this in the facility there is directed a primary beam of accelerated noble gas ions on a target from the group of the following materials: SiO 2 , Al 2 O 3 , Corning Glass 7070, Corning Glass 7740 or borosilicate glass. The particles leaving the target are directed on the substrate by means of an acceleration potential of up to 10 KV. There may, however, be coated also metal layers (Ni, Co) on a mylar film resulting in a semireflecting metal film. (RW) [de

  10. Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc-sulphur/zinc-selenium nanocrystals, (3) metal ions liberated from metal implants and particles.

    Science.gov (United States)

    Danscher, Gorm; Stoltenberg, Meredin

    2006-01-01

    Autometallographic (AMG) silver enhancement is a potent histochemical tool for tracing a variety of metal containing nanocrystals, e.g. pure gold and silver nanoclusters and quantum dots of silver, mercury, bismuth or zinc, with sulphur and/or selenium. These nanocrystals can be created in many different ways, e.g. (1) by manufacturing colloidal gold or silver particles, (2) by treating an organism in vivo with sulphide or selenide ions, (3) as the result of a metabolic decomposition of bismuth-, mercury- or silver-containing macromolecules in cell organelles, or (4) as the end product of histochemical processing of tissue sections. Such nano-sized AMG nanocrystals can then be silver-amplified several times of magnitude by being exposed to an AMG developer, i.e. a normal photographic developer enriched with silver ions. The present monograph attempts to provide a review of the autometallographic silver amplification techniques known today and their use in biology. After achieving a stronghold in histochemistry by Timm's introduction of the "silver-sulphide staining" in 1958, the AMG technique has evolved and expanded into several different areas of research, including immunocytochemistry, tracing of enzymes at LM and EM levels, blot staining, retrograde axonal tracing of zinc-enriched (ZEN) neurons, counterstaining of semithin sections, enhancement of histochemical reaction products, marking of phagocytotic cells, staining of myelin, tracing of gold ions released from gold implants, and visualization of capillaries. General technical comments, protocols for the current AMG methods and a summary of the most significant scientific results obtained by this wide variety of AMG histochemical approaches are included in the present article.

  11. He reemission implanted in metals

    International Nuclear Information System (INIS)

    Tanabe, T.

    2014-01-01

    Highlights: • Observation of He reemission of various metals under He + implantation at wide temperature range. • Materials examined are aluminum (Al), Nickel (Ni) and molybdenum (Mo). • He reemission is quite temperature dependent and different with materials. • Three metals show similar dependence on temperature normalized with respective melting point. • He reemission is successfully correlated with He behavior in metals. - Abstract: Helium (He) reemission of Al, Ni and Mo under energetic He implantation (10–30 keV) in wide temperature range is studied to understand behavior of implanted He in correlation with structure changes. The reemission behavior is categorized into 4 different temperature ranges with the normalized temperature (T m ) to the melting point of each metal. At elevated temperatures (well above ∼0.6 T m ), interstitial He atoms and/or He-vacancy (ies) clusters can migrate remaining no structure change and showing smooth reemission without any burst. Between ∼0.25 and 0.6 T m , He reemission always accompanies significant structure modification. For ∼04–0.6 T m , implanted He coalesce to make bubbles and the bubbles can move to the surface. Bubble migration accompanies materials flow to the surface resulting in fuzz surface or columnar structure, depending on implantation flux. Slower bubble motion at ∼0.25–0.4 prohibits the material migration. Instead the bubbles coalesce to grow large and multi-layered blistering appears as periodic reemission behavior. Below ∼0.25 T m , He migration is too slow for bubbles to grow large, but bubble density increases up to a certain fluence, where neighboring bubbles start to coalesce. Accordingly, He release is mostly caused by mechanical failure or blister rapture. With increasing fluence, all defects (bubbles and dislocation loops) tangle or inter connected with neighboring defects and accordingly He migration to the surface along the tangled or connected defects is enhanced

  12. Defect characteristics by boron cluster ion implantation

    International Nuclear Information System (INIS)

    Aoki, Takaaki; Matsuo, Jiro; Takaoka, Gikan; Toyoda, Noriaki; Yamada, Isao

    2003-01-01

    Cluster ion implantation using decaborane (B 10 H 14 ) has been proposed as a shallow implantation technique for LSI devices with gate lengths of several-tens nanometers. Experiments and computer simulations of low-energy boron monomers and decaborane clusters implantation were performed. Molecular dynamics simulations of B 10 cluster implantation have shown similar implant depth but different damage density and damage structure compared to monomer (B 1 ) ion implantation with the same energy-per-atom. For monomer implantation, point-defects such as vacancy-interstitial pairs are mainly formed. On the other hand, B 10 generates large numbers of defects within a highly-amorphised region at the impact location. This difference in damage structure produced during implantation is expected to cause different annihilation processes

  13. Annealing behavior and selected applications of ion-implanted alloys

    International Nuclear Information System (INIS)

    Myers, S.M.

    Thermally activated processes cause ion-implanted metals to evolve from the initial state toward thermodynamic equilibrium. The degree of equilibration is strongly dependent upon temperature and is considered for three temperature regimes which are distinguished by the varying mobilities of interstitial and substitutional atoms. In addition, perturbations resulting from the irradiation environment are discussed. Examples are given of the use of implanted and annealed alloys in studies of diffusion, phase diagrams, and solute trapping

  14. Terahertz generation from Cu ion implantation into lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuhua, E-mail: wyh61@163.com [Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan university of Science and Technology, Wuhan 430081 (China); Wang, Ruwu; Yuan, Jie [Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan university of Science and Technology, Wuhan 430081 (China); Wang, Yumei [Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2014-03-15

    In this letter, the authors present first observation of terahertz generation from Cu implantation of lithium niobate crystal substrate. Lithium niobate single crystal is grown by Czochralski method. Metal nanoparticles synthesized by Cu ion implantation were implanted into lithium niobate single crystal using metal vapor vacuum arc (MEVVA) ion source. 1 kHz, 35 fs laser pulse centred at 800 nm was focused onto the samples. The supercontinuum spectra of the sample are obtained. Terahertz was generated via this kind of sample and investigated using the electro-optical sampling technique. The findings suggest that under the investigated implantation parameter, a strong spectral component in excess of 0.46 THz emission was found from Cu ion implantation of lithium niobate. -- Highlights: • We first observation of terahertz generation from Cu implantation of lithium niobate crystal substrate. • Lithium niobate single crystal is grown by Czochralski method. Cu nanoparticles in lithium niobate have been formed by using MEVVA ion source. • The THz bandwidth and center from this kind of sample were determined.

  15. Change of sheet resistance of high purity alumina ceramics implanted by Cu and Ti ions

    International Nuclear Information System (INIS)

    Li Dexing; Zhang Jizhong; Yu Miao; Kang Jianchang; Li Wenzhi

    2005-01-01

    High purity alumina ceramics (99% Al 2 O 3 ) was implanted by copper ion and titanium ion in a metal vapour vacuum arc (MEVVA) implanter, respectively. The influence of implantation parameters was studied varying ion fluence. The samples were implanted by 68 keV Cu ion and 82 keV Ti ion with fluences from 1 x 10 15 to 1 x 10 18 ions/cm 2 , respectively. The as-implanted samples were investigated by scanning electron microscopy (SEM), glancing X-ray diffraction (GXRD), scanning Auger microscopy (SAM), and four-probe method. Different morphologies were observed on the surfaces of the as-implanted samples and clearly related to implantation parameters. For both ion implantations, the sheet resistances of the alumina samples implanted with Cu and Ti ion fluences of 1 x 10 18 ions/cm 2 , respectively, reached the corresponding minimum values because of the surface metallization. The experimental results indicate that the high-fluence ion implantation resulted in conductive layer on the surface of the as-implanted high purity alumina ceramics

  16. Implantation of D+ ions in niobium and deuterium gas reemission

    International Nuclear Information System (INIS)

    Pisarev, A.A.; Tel'kovskij, V.G.

    1975-01-01

    This is a study of the implanting and reflex gasoisolation of D ions in niobium. It has been discovered that deutrium scope and gasoisolation are defined by several processes. An assumption is made that in ion bombarding conditions the implanting solutions are possible to exist and that deutrium can be replaced on the basis of niobium and hydrid compounds NbxDy. The portion of the particles entrained in the metal in one or another way depends on the ion energy. The dependence of the scope coefficient of n D + ions from the target temperature in the range of 290-1500 K was registered. An increase of the scope coefficient of the ions at high temperature with an increase of the ion energy was discovered

  17. Hardening of cutting tool inserts by ion implantation

    International Nuclear Information System (INIS)

    Zlobin, V.N.; Bannikov, M.G.; Draper, P.H.; Zotov, A.V.

    2001-01-01

    Surface hardening has long been recognized as an important method of increasing the integrity and life of cutting tools. In this work we report preliminary investigations of hardening of conventional hard metal tools by ion implantation Three types of mixed carbide tool inserts were treated by bombardment with 40kV ions of Al, Ti, Zr or W in an ambient of Ar or N/sub 2/, with doses of up to 13*10/sup 17/ ions/cm/sup 2/. The samples were monitored by micro-hardness measurements. Complex behaviors as a function of the implantation dose/time have been observed, and are commented on in terms of the lattice disruption caused by the bombardment. Hardness increments of up to 22 % have been obtained using an ion implanter of industrial size, and cutting tests have shown an improvement, by a factor of three, in the life of these treated tools. (author)

  18. Effect of anomalous drift during ion implantation

    International Nuclear Information System (INIS)

    Aleksandrov, P.A.; Baranova, E.K.; Beloshitskii, V.V.; Demakov, K.D.; Starostin, V.A.

    1986-01-01

    Experimental and theoretical results are presented on Tl-ion implantation into hot silicon substrates (approx. 1200 0 C). a An anomalously large (by more than an order of magnitude) displacement of the peak position of the implanted impurity distribution into the bulk of the substrate is found. b) The conclusion is drawn that the basic process responsible for this displacement of the peak is radiation-enhanced diffusion (RED) due to nonequilibrium concentration of point defects produced in the heated target directly under implantation. c) The crystalline structure of the resulting ion-implanted layer indicates that in-situ annealing of the exposed layer occurs during high-temperature implantation. d) Experimental impurity distributions confirm the possibility of producing an implanted-impurity 'buried layer' below the layer of a single crystal silicon, the 'buried layer' depth depending on the implantation regime. (author)

  19. Ion implantation into concave polymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Sakudo, N. [Kanazawa Institute of Technology, Advanced Materials R and D Center, 3-1 Yatsukaho, Matto, Hakusan, Ishikawa 924-0838 (Japan)]. E-mail: sakudo@neptune.kanazawa-it.ac.jp; Shinohara, T. [Kanazawa Institute of Technology, Advanced Materials R and D Center, 3-1 Yatsukaho, Matto, Hakusan, Ishikawa 924-0838 (Japan); Amaya, S. [Kanazawa Institute of Technology, Advanced Materials R and D Center, 3-1 Yatsukaho, Matto, Hakusan, Ishikawa 924-0838 (Japan); Endo, H. [Kanazawa Institute of Technology, Advanced Materials R and D Center, 3-1 Yatsukaho, Matto, Hakusan, Ishikawa 924-0838 (Japan); Okuji, S. [Lintec Corp., 5-14-42 Nishiki-cho, Warabi, Saitama 335-0005 (Japan); Ikenaga, N. [Japan Science and Technology Corp., Nomigun, Ishikawa 923-1121 (Japan)

    2006-01-15

    A new technique for ion implantation into concave surface of insulating materials is proposed and experimentally studied. The principle is roughly described by referring to modifying inner surface of a PET (polyethylene terephthalate) bottle. An electrode that is supplied with positive high-voltage pulses is inserted into the bottle. Both plasma formation and ion implantation are simultaneously realized by the same high-voltage pulses. Ion sheath with a certain thickness that depends on plasma parameters is formed just on the inner surface of the bottle. Since the plasma potential is very close to that of the electrode, ions from the plasma are accelerated in the sheath and implanted perpendicularly into the bottle's inner surface. Laser Raman spectroscopy shows that the inner surface of an ion-implanted PET bottle is modified into DLC (diamond-like carbon). Gas permeation measurement shows that gas-barrier property enhances due to the modification.

  20. Development of a CMOS process using high energy ion implantation

    International Nuclear Information System (INIS)

    Stolmeijer, A.

    1986-01-01

    The main interest of this thesis is the use of complementary metal oxide semiconductors (CMOS) in electronic technology. Problems in developing a CMOS process are mostly related to the isolation well of p-n junctions. It is shown that by using high energy ion implantation, it is possible to reduce lateral dimensions to obtain a rather high packing density. High energy ion implantation is also presented as a means of simplifying CMOS processing, since extended processing steps at elevated temperatures are superfluous. Process development is also simplified. (Auth.)

  1. Boron precipitates in ion implanted silicon

    International Nuclear Information System (INIS)

    Wu, W.K.; Washburn, J.

    1975-03-01

    Long rod-like defects are observed in ion implanted silicon when boron is present either as a prior dopant addition or as the implanted species. Results of recent work indicates that these defects have the characteristics of narrow extrinsic dipoles or elongated dislocation loops and that there are two different types along each of the six (110) directions. An annealing kinetics method has been used to identify the nature of these defects formed during post-implantation annealing in boron ion (100 keV) implanted silicon irradiated at room temperature to a dose of 2 x 10 14 /cm 2 . It is concluded that at least two different kinds of rod-like defects exist in boron ion implanted silicon. From the activation energy for shrinkage, it is also concluded that one type (anti A) is composed largely of boron atoms. (U.S.)

  2. N + surface doping on nanoscale polymer fabrics via ion implantation

    Science.gov (United States)

    Ho Wong, Kenneth Kar; Zinke-Allmang, Martin; Wan, Wankei

    2006-08-01

    Non-woven poly(vinyl alcohol) (PVA) fabrics composed of small diameter (∼110 nm) fibers have been spun by an electrospinning technique and then have been modified by ion implantation. 1.7 MeV N+ ion implantation with a dose of 1.2 × 1016 ions/cm2 was applied on the fabrics through a metal foil at room temperature. By using scanning electron microscopy (SEM), no surface morphology degradation has been observed on the fabric after the ion beam treatment. The diameter of the fibers has shrunk by 30% to about 74 nm. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) show that nitrogen surface doping was achieved and the formation of two new functional chemical groups (N-Cdbnd O and C-N) in the PVA is observed.

  3. Silicon technologies ion implantation and thermal treatment

    CERN Document Server

    Baudrant, Annie

    2013-01-01

    The main purpose of this book is to remind new engineers in silicon foundry, the fundamental physical and chemical rules in major Front end treatments: oxidation, epitaxy, ion implantation and impurities diffusion.

  4. Ion Implantation Processing Technologies for Telecommunications Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, T E

    2000-05-01

    The subject CRADA was a collaboration between Oak Ridge National Laboratory and Bell Laboratories, Lucent Technologies (formerly AT and T Bell Laboratories) to explore the development of ion implantation technologies for silicon integrated circuit (IC) manufacturing.

  5. The third generation multi-purpose plasma immersion ion implanter for surface modification of materials

    CERN Document Server

    Tang Bao Yin; Wang Xiao Feng; Gan Kong Yin; Wang Song Yan; Chu, P K; Huang Nian Ning; Sun Hong

    2002-01-01

    The third generation multi-purpose plasma immersion ion implantation (PIII) equipment has been successfully used for research and development of surface modification of biomedical materials, metals and their alloys in the Southwest Jiaotong University. The implanter equipped with intense current, pulsed cathodic arc metal plasma sources which have both strong coating function and gas and metal ion implantation function. Its pulse high voltage power supply can provide big output current. It can acquire very good implantation dose uniformity. The equipment can both perform ion implantation and combine ion implantation with sputtering deposition and coating to form many kinds of synthetic surface modification techniques. The main design principles, features of important components and achievement of research works in recent time have been described

  6. Magnetoreflection studies of ion implanted bismuth

    International Nuclear Information System (INIS)

    Nicolini, C.; Chieu, T.C.; Dresselhaus, M.S.; Massachusetts Inst. of Tech., Cambridge; Dresselhaus, G.

    1982-01-01

    The effect of the implantation of Sb ions on the electronic structure of the semimetal bismuth is studied by the magnetoreflection technique. The results show long electronic mean free paths and large implantation-induced increases in the band overlap and L-point band gap. These effects are opposite to those observed for Bi chemically doped with Sb. (author)

  7. Metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-06-01

    We have developed a family of metal vapor vacuum are (MEVVA) high current metal ion sources. The sources were initially developed for the production of high current beams of metal ions for heavy ion synchrotron injection for basic nuclear physics research; more recently they have also been used for metal ion implantation. A number of different embodiments of the source have been developed for these specific applications. Presently the sources operate in a pulsed mode, with pulse width of order 1 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, and since the ions produced in the vacuum arc plasma are in general multiply ionized the ion energy is up to several hundred keV. Beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Nearly all of the solid metals of the Periodic Table have been use to produce beam. A number of novel features have been incorporated into the sources, including multiple cathodes and the ability to switch between up to 18 separate cathode materials simply and quickly, and a broad beam source version as well as miniature versions. here we review the source designs and their performance. 45 refs., 7 figs

  8. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  9. Ion-implantation dense cascade data

    International Nuclear Information System (INIS)

    Winterbon, K.B.

    1983-04-01

    A tabulation is given of data useful in estimating various aspects of ion-implantation cascades in the nuclear stopping regime, particularly with respect to nonlinearity of the cascade at high energy densities. The tabulation is restricted to self-ion implantation. Besides power-cross-section cascade dimensions, various material properties are included. Scaling of derived quantities with input data is noted, so one is not limited to the values assumed by the author

  10. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A.G., E-mail: nik@opee.hcei.tsc.ru [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Yushkov, G.Yu.; Oks, E.M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Oztarhan, A. [Izmir University, Izmir 35140 (Turkey); Akpek, A.; Hames-Kocabas, E.; Urkac, E.S. [Bioengineering Department, Ege University, Bornova 35100, Izmir (Turkey); Brown, I.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94708 (United States)

    2014-08-15

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  11. Molecular ion sources for low energy semiconductor ion implantation (invited).

    Science.gov (United States)

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described.

  12. Ion implantation in semiconductors and other materials

    International Nuclear Information System (INIS)

    Guernet, G.; Bruel, M.; Gailliard, J.P.; Garcia, M.; Robic, J.Y.

    1977-01-01

    The evolution of ion implantation techniques in the field of semiconductors and its extension to various fields such as metallurgy, mechanics, superconductivity and opto-electronics are considered. As for semiconductors ion implantation is evoked as: a means of predeposition of impurities at low doping level (10 11 to 10 14 cm -2 ); a means for obtaining profiles of controlled concentration; a means of reaching high doping levels with using 'strong current' implantation machines of the second generation. Some results obtained are presented [fr

  13. Nitrogen ion implantation: Barriers to industrial acceptance and prospects for the future

    International Nuclear Information System (INIS)

    Alexander, R.B.

    1989-01-01

    Nitrogen ion implantation has been used to improve the wear and fatigue resistance of metals in industrial applications since the process was developed at the UK Harwell Laboratory in the 1970s. However, implantation service companies like Ion Surface Technology have found so far that the market for nitrogen implantation is limited. Both market and technical barriers exist to more widespread acceptance in industry. Market factors include cost, industrial conservatism, and production priorities in manufacturing. Technical factors include the size of available implanters, the line-of-sight limitation of ion implantation, sputtering, and other process limitations such as shallow penetration depth. Several recent technical developments that should greatly increase market acceptance are described: 1. large-scale nitrogen implanters, 2. the non-line-of-sight plasma source ion implantation process, and 3. ion assisted coating techniques. (orig.)

  14. Krypton ion implantation effect on selenium nanowires

    Science.gov (United States)

    Panchal, Suresh; Chauhan, R. P.

    2017-08-01

    Among the rapidly progressing interdisciplinary areas of physics, chemistry, material science etc. ion induced modifications of materials is one such evolving field. It has been realized in recent years that a material, in the form of an accelerated ion beam, embedded into a target specimen offers a most productive tool for transforming its properties in a controlled manner. In semiconductors particularly, where the transport behavior is determined by very small concentrations of certain impurities, implantation of ions may bring considerable changes. The present work is based on the study of the effect of krypton ion implantation on selenium nanowires. Selenium nanowires of diameter 80 nm were synthesized by template assisted electro deposition technique. Implantation of krypton ions was done at Inter University Accelerator Centre (IUAC), New Delhi, India. The effect of implantation on structural, electrical and optical properties of selenium nanowires was investigated. XRD analysis of pristine and implanted nanowires shows no shifting in the peak position but there is a variation in the relative intensity with fluence. UV-Visible spectroscopy shows the decrease in the optical band gap with fluence. PL spectra showed emission peak at higher wavelength. A substantial rise in the current was observed from I-V measurements, after implantation and with the increase in fluence. The increase in current conduction may be due to the increase in the current carriers.

  15. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Zhao, J.; Chu, Paul K.

    2007-01-01

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has three layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO 2 with some Mg(OH) 2 . The middle layer that is 50 nm thick comprises predominantly TiO 2 and MgO with minor contributions from MgAl 2 O 4 and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti 3 Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37±1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased β-Mg 12 Al 17 phase

  16. Failure of total hip implants: metals and metal release in 52 cases

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Lidén, Carola; Søballe, Kjeld

    2014-01-01

    Background . The pathogenesis of total joint replacement failure is multifactorial. One hypothesis suggests that corrosion and wear of alloys result in metal ion release, which may then cause sensitization and even implant failure, owing to the acquired immune reactivity. Objectives . To assess...... cobalt, nickel and chromium(VI) release from, and the metal composition of, failed metal-on-ethylene total hip replacements. Materials/methods . Implant components from 52 revision cases were evaluated with spot tests for free nickel, cobalt, and chromium (VI) ions. Implant composition was determined...... with X-ray fluorescence spectroscopy, and information on the reason for revision and complications in relation to surgery was collected from the medical charts whenpossible (72%). For 10 implants, corrosion was further characterized with scanning electron microscopy. Results . We detected cobalt release...

  17. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties

    DEFF Research Database (Denmark)

    Jantzen, Christopher; Jørgensen, Henrik L; Duus, Benn R

    2013-01-01

    Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties.......Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties....

  18. Application of ion implantation in stevia breeding

    International Nuclear Information System (INIS)

    Wang Cailian; Chen Qiufang; Jin Wei; Lu Ting; Shu Shizhen

    1999-08-01

    Dry seed of stevia were implanted with 60-100 keV nitrogen ion and 75 keV carbon ion of various doses, and the effects of the composition and yield of stevioside were studied. The results showed that ion beam could induce variation in total stevioside yield and the composition of the plant. The best treatment was 75 keV nitrogen ion with 5 x 10 14 N + /cm 2 , the stevioside yield and Rebaudioside A (R-A) content were increased by 4.74% and 14.08% respectively. The effects induced by implantation of carbon ion were higher than those induced by implantation of nitrogen ion. Effects of Feng 1 x Ri Yuan and Ri Yuan x Feng 2 are higher than those of Ji Ning and Feng 2 . Seven mutation lines were selected from the mutation progenies. The stevioside composition of these lines were previously improved. The results suggest a potential application of ion implantation in stevia breeding

  19. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  20. Cell adhesion and growth on ion-implanted polymer surface

    International Nuclear Information System (INIS)

    Lee, Jae-Suk; Kaibara, M.; Iwaki, M.; Sasabe, H.; Suzuki, Y.; Kusakabe, M.

    1992-01-01

    The adhesion and growth of endothelial cells on ion-implanted polystyrene and segmented polyurethane surface were investigated. Ions of Na + , N 2 + , O 2 + , Ar + and Kr + were implanted to the polymer surface with ion fluences between 1 x 10 15 and 3 x 10 17 ions/cm 2 at energy of 150 KeV at room temperature. Ion-implanted polymers were characterized by FT-IR-ATR an Raman spectroscopies. The adhesion and proliferation of bovine aorta endothelial cells on ion-implanted polymer surface were observed by an optical microscope. The rate of growth of BAECs on ion-implanted PSt was faster than that on non-implanted PSt. Complete cell adhesion and growth were observed on ion-implanted SPU, whereas the adhesion and growth of BAECs on the non-implanted SPU was not observed. It was attempted to control the cell culture on the ion-implanted domain fabricated using a mask. (author)

  1. Study about iron disilicide formation by high current ion implantation

    CERN Document Server

    Liu, Z Q; Li, W Z

    2002-01-01

    beta-FeSi sub 2 exhibits a strong optical absorption and luminescence peak at the energy of about 0.85 eV, which corresponds to the wavelength window preferred for optical communication systems. This property makes beta-FeSi sub 2 a promising material to be used in optoelectronic applications and it has received great research interest. In this study, the formation of beta-FeSi sub 2 by high current ion implantation using a metal vapor vacuum arc ion source was investigated. Fe atoms with dose ranging from 4x10 sup 1 sup 7 to 2x10 sup 1 sup 8 /cm sup 2 were implanted into (1 0 0)Si substrates. Pure beta-FeSi sub 2 was successfully fabricated. alpha-FeSi sub 2 with strong (1 1 1) preferred orientation was also formed when the implantation was conducted at the temperature of 580 degree sign C.

  2. [Metal ions: important co-players in aseptic loosening].

    Science.gov (United States)

    Cadosch, D; Schlett, C L; Gautschi, O P; Frei, H C; Filgueira, L

    2010-08-01

    The aims of this review were to discuss the different mechanisms of biocorrosion of orthopaedic metal implants in the human body, as well as the effects of the released metal ions on bone metabolism and the immune system in regard to their involvement in the pathophysiological mechanisms of aseptic loosening and metal hypersensitivity. Implant failure due to aseptic loosening is thought to occur in about 10-15% of cases. A review of the literature (using PubMed with the search terms: biocorrosion, metal ions and bone metabolism) was performed. Additionally, we discuss our research results in the field of aseptic loosening. Despite a great effort in developing new implants, metal devices used in orthopaedic and trauma surgery remain prone to biocorrosion by several mechanisms including the direct corrosion by osteoclasts, leading to the production of significant amounts of wear particles and metal ions. In addition to the well documented increased osteolytic activity caused by large (in the nanometer range) wear particles, increasing evidence strongly suggests that the released metal ions contribute to the pathophysiological mechanism of aseptic loosening. Metal ions stimulate both the immune system and bone metabolism through a series of direct and indirect pathways leading to an increased osteolytic activity at the bone-implant interface. To date, revision surgery remains the only option for the treatment of a failed orthopaedic implant caused by aseptic loosening. A better understanding of the complex pathophysiological mechanisms (including the effects caused by the released metal ions) of aseptic loosening may have a significant potential in developing novel implants and therapies in order to reduce the incidence of this complication. Georg Thieme Verlag KG Stuttgart, New York.

  3. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  4. High current pelletron for ion implantation

    International Nuclear Information System (INIS)

    Schroeder, J.B.

    1989-01-01

    Since 1984, when the first production MeV ion implanter (an NEC model MV-T30) went on-line, interest in versatile electrostatic accelerator systems for MeV ion implantation has grown. The systems use a negative ion source to inject a tandem megavolt accelerator. In early systems the 0.4 mA of charging current from the two Pelletron charging chains in the accelerator was sufficient for the low intensity of beams from the ion source. This 2-chain system, however, is no longer adequate for the much higher beam intensities from today's improved ion sources. A 4-chain charging system, which delivers 1.3 mA to the high voltage terminal, was developed and is in operation in new models of NEC S Series Pelletron accelerators. This paper describes the latest beam performance of 1 MV and 1.7 MW Pelletron accelerators with this new 4-chain charging system. (orig.)

  5. High current pelletron for ion implantation

    Science.gov (United States)

    Schroeder, James B.

    1989-04-01

    Since 1984, when the first production MeV ion implanter (an NEC model MV-T30) went on-line, interest in versatile electrostatic accelerator systems for MeV ion implantation has grown. The systems use a negative ion source to inject a tandem megavolt accelerator. In early systems the 0.4 mA of charging current from the two Pelletron charging chains in the accelerator was sufficient for the low intensity of beams from the ion source. This 2-chain system, however, is no longer adequate for the much higher beam intensities from today's improved ion sources. A 4-chain charging system, which delivers 1.3 mA to the high voltage terminal, was developed and is in operation in new models of NEC S Series Pelletron accelerators. This paper describes the latest beam performance of 1 MV and 1.7 MV Pelletron accelerators with this new 4-chain charging system.

  6. Additive manufacturing technologies of porous metal implants

    Directory of Open Access Journals (Sweden)

    Yang Quanzhan

    2014-06-01

    Full Text Available Biomedical metal materials with good corrosion resistance and mechanical properties are widely used in orthopedic surgery and dental implant materials, but they can easily cause stress shielding due to the significant difference in elastic modulus between the implant and human bones. The elastic modulus of porous metals is lower than that of dense metals. Therefore, it is possible to adjust the pore parameters to make the elastic modulus of porous metals match or be comparable with that of the bone tissue. At the same time, the open porous metals with pores connected to each other could provide the structural condition for bone ingrowth, which is helpful in strengthening the biological combination of bone tissue with the implants. Therefore, the preparation technologies of porous metal implants and related research have been drawing more and more attention due to the excellent features of porous metals. Selective laser melting (SLM and electron beam melting technology (EBM are important research fields of additive manufacturing. They have the advantages of directly forming arbitrarily complex shaped metal parts which are suitable for the preparation of porous metal implants with complex shape and fine structure. As new manufacturing technologies, the applications of SLM and EBM for porous metal implants have just begun. This paper aims to understand the technology status of SLM and EBM, the research progress of porous metal implants preparation by using SLM and EBM, and the biological compatibility of the materials, individual design and manufacturing requirements. The existing problems and future research directions for porous metal implants prepared by SLM and EBM methods are discussed in the last paragraph.

  7. Comparison of iron ion implantation effects in bubble garnet and YAG

    International Nuclear Information System (INIS)

    Marest, G.; Perez, A.; Gerard, P.

    1984-06-01

    Ferrimagnetic bubble garnets and YAG single crystals were implanted at room temperature with 100 keV 57 Fe + ions in the dose range 10 16 up to 10 17 ions.cm 2 . The samples were analyzed using the conversion electron Moessbauer spectroscopy technique. In both materials implanted iron is found in three states: metallic precipitates, Fe 2+ and Fe 3+ with the dominant role for Fe 3+ in bubble garnet whereas metallic precipitates constitute the main component in YAG. The existence and the different behaviour of these species as a function of implanted ion dose are discussed taking into account the nature of the elements present in the two targets

  8. Chemical characterization of 4140 steel implanted by nitrogen ions

    International Nuclear Information System (INIS)

    Nino, Ely Dannier V.; Duran, Fernando; Pinto, Jose L.C.; Dugar-Zhabon, V.; Garnica, Hernan

    2010-01-01

    AISI-SAE 4140 sample surfaces of different roughness which are implanted by nitrogen ions of 20 keV and 30 keV at a dose of 10 17 ions/cm 2 through a three dimensional ion implantation technique are studied. Crystal phases of nitrogen compositions of the implanted samples, obtained with help of an x-ray diffraction method, are confronted with the data reported by the International Centre for Diffraction Data (ICDD), PDF-2. It is observed that the implanted into the metal nitrogen atoms produce changes in orientation of crystal planes that is manifested as variations of the intensity of the refracted rays and of cell dimensions (a displacement of 2 theta of the maximum intensity position). An analysis for determining nitrogen atoms implanted by high-voltage pulsed discharges at low pressures in the crystal structure of the solid surface was carried out by X-Ray Diffraction due to this technique permits to assess the possibility of formation of new compounds. (author)

  9. Failure of total hip implants: metals and metal release in 52 cases.

    Science.gov (United States)

    Jakobsen, Stig S; Lidén, Carola; Søballe, Kjeld; Johansen, Jeanne D; Menné, Torkil; Lundgren, Lennart; Bregnbak, David; Møller, Per; Jellesen, Morten S; Thyssen, Jacob P

    2014-12-01

    The pathogenesis of total joint replacement failure is multifactorial. One hypothesis suggests that corrosion and wear of alloys result in metal ion release, which may then cause sensitization and even implant failure, owing to the acquired immune reactivity. To assess cobalt, nickel and chromium(VI) release from, and the metal composition of, failed metal-on-ethylene total hip replacements. Implant components from 52 revision cases were evaluated with spot tests for free nickel, cobalt, and chromium (VI) ions. Implant composition was determined with X-ray fluorescence spectroscopy, and information on the reason for revision and complications in relation to surgery was collected from the medical charts when possible (72%). For 10 implants, corrosion was further characterized with scanning electron microscopy. We detected cobalt release from three of 38 removed femoral heads and from one of 24 femoral stems. Nickel release was detected from one of 24 femoral stems. No chromium(VI) release was detected. We found that cobalt and nickel were released from some failed total hip arthroplasties, and corrosion was frequently observed. Metal ions and particles corroded from metal-on-polyethylene may play a role in the complex aetiopathology of implant failure. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Ion beam studies of hydrogen implanted Si wafers

    International Nuclear Information System (INIS)

    Nurmela, A.; Henttinen, K.; Suni, T.; Tolkki, A.; Suni, I.

    2004-01-01

    We have studied silicon-on-insulator (SOI) materials with two different ion beam analysis methods. The SOI samples were implanted with boron and hydrogen ions. After implantation the wafers were annealed, and some of them were bonded to thermally oxidized silicon wafers. The damage in silicon single crystal due to ion implantations has been studied by Rutherford Backscattering in the channeling mode (RBS/C). The content of the ion-implanted hydrogen has been studied by elastic recoil detection analysis (ERDA) method. The strength of the implanted region after thermal annealings were measured with the crack opening method. The boron implantation before hydrogen implantation resulted to shallower implantation depth and lower splitting temperature than in samples implanted with hydrogen only. The boron implantation after hydrogen implantation did not influence the splitting temperature and RBS spectra showed that B implantation drove the H deeper to the sample

  11. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    Energy Technology Data Exchange (ETDEWEB)

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  12. Development and experimental study of large size composite plasma immersion ion implantation device

    Science.gov (United States)

    Falun, SONG; Fei, LI; Mingdong, ZHU; Langping, WANG; Beizhen, ZHANG; Haitao, GONG; Yanqing, GAN; Xiao, JIN

    2018-01-01

    Plasma immersion ion implantation (PIII) overcomes the direct exposure limit of traditional beam-line ion implantation, and is suitable for the treatment of complex work-piece with large size. PIII technology is often used for surface modification of metal, plastics and ceramics. Based on the requirement of surface modification of large size insulating material, a composite full-directional PIII device based on RF plasma source and metal plasma source is developed in this paper. This device can not only realize gas ion implantation, but also can realize metal ion implantation, and can also realize gas ion mixing with metal ions injection. This device has two metal plasma sources and each metal source contains three cathodes. Under the condition of keeping the vacuum unchanged, the cathode can be switched freely. The volume of the vacuum chamber is about 0.94 m3, and maximum vacuum degree is about 5 × 10‑4 Pa. The density of RF plasma in homogeneous region is about 109 cm‑3, and plasma density in the ion implantation region is about 1010 cm‑3. This device can be used for large-size sample material PIII treatment, the maximum size of the sample diameter up to 400 mm. The experimental results show that the plasma discharge in the device is stable and can run for a long time. It is suitable for surface treatment of insulating materials.

  13. Dependence of the depth distribution of implanted silver ions on the temperature of irradiated glass

    CERN Document Server

    Stepanov, A L

    2001-01-01

    The peculiarities of the glass ion implantation by the silver ions in dependence on the substrate temperature within the interval of 20-100 deg C are studied. Modeling the profiles of the implanted ions distribution in depth with an account of the thermostimulated increase in the admixture diffusion mobility is carried out. It is shown, that increase in the substrate temperature leads to the diffusion wash-out of the introduced admixture ions distribution. The analysis of the modeling results indicates the necessity of strict control of the substrate temperature by the dielectrics implantation for obtaining the conditions for the metal nanoparticles synthesis

  14. Structure transformations in ion implanted anodic alumina films

    International Nuclear Information System (INIS)

    Cherenda, N.N.; Uglov, V.V.; Litvinovich, G.V.; Daniluyk, A.L.

    2002-01-01

    The effect of ion implantation on aluminium oxide has been widely studied. The change of mechanical, electrical, optical and chemical properties were investigated. Most studies were performed on a single crystal (a- or c-oriented) α-Al 2 O 3 though polycrystalline α-Al 2 O 3 or amorphous aluminium oxide films were the subject of the investigation too. Porous anodic alumina films were the object of the investigation of this work. An unique structure, low cost, controllability and ease of production allow it application in developing of microelectronic devices. Earlier it was shown that implantation of metal ions in anodic alumina films decreases its surface resistance to tens of Ωm. The aim of this work was the investigation of anodic alumina films structure changes after implantation. The implantation of Ti and Cu ions was carried out using a MEVVA source with an impulse duration of 1 ms. The applied acceleration voltage was 80 kV, the ions current density - 53 μA/cm 2 , the doses -1·10 17 ions/cm 2 and 1.5·10 18 ions/cm 2 . Implantation was carried out into two types of crystalline structure: amorphous and γ-Al 2 O 3 . The latter structure was produced by annealing at 830 deg. C. A variety of techniques were used for phase and element composition investigations: X-ray diffraction analysis, Auger electron spectroscopy, Rutherford backscattering analysis and scanning electron microscopy. It was found that implantation into amorphous film results in the formation of γ-AO 2 O 3 while implantation into γ-Al 2 O 3 film - in the formation of an amorphous structure. Implantation both to amorphous and crystalline AA films also led to the formation of θ-Al 2 O 3 phase inclusions in the film structure. The whole structure of AA films with the thickness of 200 μm undergoes these transformations. Implantation also lead to sputtering of the surface barrier layer thus resulting in the shift of the ions depth profile to the surface at higher doses. Diffusion of Ti

  15. Semiconductor applications of plasma immersion ion implantation ...

    Indian Academy of Sciences (India)

    Unknown

    549. Semiconductor applications of plasma immersion ion implantation technology. MUKESH KUMAR*, RAJKUMAR†, DINESH KUMAR and P J GEORGE. Department of Electronic Science, Kurukshetra University, Kurukshetra 136 119, India. †Semiconductor Complex Ltd., Industrial Area Phase 8, Mohali 160 059, India.

  16. Semiconductor applications of plasma immersion ion implantation ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 6. Semiconductor applications of plasma immersion ion implantation technology ... Department of Electronic Science, Kurukshetra University, Kurukshetra 136 119, India; Semiconductor Complex Ltd., Industrial Area Phase 8, Mohali 160 059, India ...

  17. Ion beam modification of metals: Compositional and microstructural changes

    Science.gov (United States)

    Was, Gary S.

    Ion implantation has become a highly developed tool for modifying the structure and properties of metals and alloys. In addition to direct implantation, a variety of other ion beam techniques such as ion beam mixing, ion beam assisted deposition and plasma source ion implantation have been used increasingly in recent years. The modifications constitute compositional and microstructural changes in the surface of the metal. This leads to alterations in physical properties (transport, optical, corrosion, oxidation), as well as mechanical properties (strength, hardness, wear resistance, fatigue resistance). The compositional changes brought about by ion bombardment are classified into recoil implantation, cascade mixing, radiation-enhanced diffusion, radiation-induced segregation, Gibbsian adsorption and sputtering which combine to produce an often complicated compositional variation within the implanted layer and often, well beyond. Microstructurally, the phases present are often altered from what is expected from equilibrium thermodynamics giving rise to order-disorder transformations, metastable (crystalline, amorphous or quasicrystalline) phase formation and growth, as well as densification, grain growth, formation of a preferred texture and the formation of a high density dislocation network. All these effects need to be understood before one can determine the effect of ion bombardment on the physical and mechanical properties of metals. This paper reviews the literature in terms of the compositional and microstructural changes induced by ion bombardment, whether by direct implantation, ion beam mixing or other forms of ion irradiation. The topics are introduced as well as reviewed, making this a more pedogogical approach as opposed to one which treats only recent developments. The aim is to provide the tools needed to understand the consequent changes in physical and mechanical properties.

  18. Production of solid deuterium targets by ion implantation

    International Nuclear Information System (INIS)

    Csikai, J.; Szegedi, S.; Olah, L.; El-Megrab, A.M.; Molla, N.I.; Rahman, M.M.; Miah, R.U.; Habbani, F.; Shaddad, I.

    1997-01-01

    Solid metal, semiconductor and metallic glass samples were irradiated with deuteron atomic ions between 60 and 180 keV incident energies. Accumulation rates of deuterons in different targets were recorded by the detection of protons and neutrons via the 2 H(d,p) and 2 H(d,n) reactions. A simple analytical expression is given to describe the kinetics of the accumulation. The dependence of the reaction rate on the deuteron energy gives information on the concentration profile in addition to the neutron flux density spectra. A varying distortion of the implanted deuteron profiles by a change in the beam energy were also observed for different targets. (orig.)

  19. Titanium and aluminium ions implanted by plasma on polyethylene

    International Nuclear Information System (INIS)

    Cruz, G.J.; Olayo, M.G.; Lopez, R.; Granda, E.; Munoz, A.; Valencia, R.; Morales, J.

    2007-01-01

    The ion implantation by plasma of titanium and aluminum on polyethylene thin films (PE) is presented. The results indicate that the polymers reacted firstly with the oxygen and/or nitrogen carrying gases, and later its received the metallic particles that formed thin films. The stainless steel and the titanium formed a single phase. The metallic layers grew in the interval of 1 to 2 nm/min, its are thin, but enough to change the hardness of the polymer that it is increased in more of 20 times. (Author)

  20. 77 FR 5813 - Cardiovascular Metallic Implants: Corrosion, Surface Characterization, and Nickel Leaching...

    Science.gov (United States)

    2012-02-06

    ... nickel-titanium alloy, in cardiovascular implants due to its superelastic properties, which are ideal for... metal alloys (e.g. stainless steel, MP35N) results in the release of nickel ions, [[Page 5815

  1. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    Science.gov (United States)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-07-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.

  2. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    International Nuclear Information System (INIS)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-01-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 10 17 ions/cm 2 . The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, Cr x C y phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties

  3. Copper nanoparticles synthesized in polymers by ion implantation

    DEFF Research Database (Denmark)

    Popok, Vladimir; Nuzhdin, Vladimir; Valeev, Valerij

    2015-01-01

    Polymethylmethacrylate (PMMA) and polyimide (PI) samples are implanted by 40 keV Cu+ ions with high fluences in order to synthesize copper nanoparticles in shallow polymer layers. The produced metal/polymer nanocomposites are studied using atomic force and scanning electron microscopies as well...... as optical transmission spectroscopy. It is found that copper nanoparticles nucleation and growth are strongly fluence dependent as well as they are affected by the polymer properties, in particular, by radiation stability yielding different nanostructures for the implanted PI and PMMA. Shallow synthesized...... nanoparticles are observed to partly tower above the sample surface due to a side effect of high-fluence irradiation leading to considerable sputtering of polymers. Implantation and particle formation significantly change optical properties of both polymers reducing transmittance in the UV-visible range due...

  4. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  5. Development of a microwave ion source for ion implantations

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N., E-mail: Nbk-Takahashi@shi.co.jp; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T. [Technology Research Center, Sumitomo Heavy Industries Ltd., Yokosuka, Kanagawa 237-8555 (Japan)

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  6. In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique.

    Science.gov (United States)

    Huang, Tao; Cheng, Yan; Zheng, Yufeng

    2016-06-01

    Pure iron has been verified as a promising biodegradable metal for absorbable cardiovascular stent usage. However, the degradation rate of pure iron is too slow. To accelerate the degradation of the surface of pure iron, silver ions were implanted into pure iron by metal vapor vacuum arc (MEVVA) source at an extracted voltage of 40keV. The implanted influence was up to 2×10(17)ions/cm(2). The composition and depth profiles, corrosion behavior and biocompatibility of Ag ion implanted pure iron were investigated. The implantation depths of Ag was around 60nm. The element Ag existed as Ag2O in the outermost layer, then gradually transited to metal atoms in zero valent state with depth increase. The implantation of Ag ions accelerated the corrosion rate of pure iron matrix, and exhibited much more uniform corrosion behavior. For cytotoxicity assessment, the implantation of Ag ions slightly decreased the viability of all kinds of cell lines used in these tests. The hemolysis rate of Ag ion implanted pure iron was lower than 2%, which was acceptable, whereas the platelet adhesion tests indicated the implantation of Ag ions might increase the risk of thrombosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Range and damage distribution in cluster ion implantation

    International Nuclear Information System (INIS)

    Yamada, I.; Matsuo, J.; Jones, E.C.; Takeuchi, D.; Aoki, T.

    1997-01-01

    Cluster ion implantation is an attractive alternative to conventional ion implantation, particularly for shallow junction formation. It is easy to obtain high current ion beams with low equivalent energy using cluster ion beams. The implanted boron distribution in 5 keV B 10 H 14 implanted Si is markedly shallower than that in 5 keV BF 2 ion implanted Si. The implanted depth is less than 0.04 μm, indicating that cluster ion implantation is capable of forming shallow junctions. The sheet resistance of 3 keV B 10 H 14 implanted samples falls below 500 Ω/sq after annealing at 1,000 C for 10s. Shallow implantation can be realized by a high energy cluster beam without space-charge problems in the incident beam. Defect formation, resulting from local energy deposition and multiple collisions, is unique for cluster ions. The thickness of the damaged layer formed by cluster ion bombardment increases with the size of the cluster, if implant energy and ion dose remain constant. This is one of the nonlinear cluster effects, which may allow some control over the implant damage distributions that accompany implanted ions, and which have been shown to have a great effect on dopant redistribution during annealing

  8. Effects of ion-implantation in magnetic garnet

    International Nuclear Information System (INIS)

    Betsui, Keiichi; Komenou, Kazunari

    1986-01-01

    Ion implantation in magnetic garnet film induces anisotropy field change, ΔH k . The primary origin of the ΔH k is the stress-induced anisotropy, but it was precisely reported that ion-implantation also induces non-magnetostrictive anisotropy change due to the growth-induced anisotropy suppression. The hydrogen ion-implantation induces a large ΔH k due to the chemical effects of the hydrogen in the implanted layer. The ΔH k in ion-implanted garnet is greatly enhanced by exposing implanted films to plasma of hydrogen or rare gases. These large anisotropy changes in hydrogen implantation and plasma exposure are attributed to the change in valence state of Fe-ions. This report reviews these recent developments on ion-implanted garnets. (author)

  9. Particle migration and gap healing around trabecular metal implants

    DEFF Research Database (Denmark)

    Rahbek, O; Kold, S; Zippor, Berit

    2005-01-01

    Bone on-growth and peri-implant migration of polyethylene particles were studied in an experimental setting using trabecular metal and solid metal implants. Cylindrical implants of trabecular tantalum metal and solid titanium alloy implants with a glass bead blasted surface were inserted either i...

  10. Operation of low-energy ion implanters for Si, N, C ion implantation into silicon and glassy carbon

    International Nuclear Information System (INIS)

    Carder, D.A.; Markwitz, A.

    2009-01-01

    This report details the operation of the low-energy ion implanters at GNS Science for C, N and Si implantations. Two implanters are presented, from a description of the components through to instructions for operation. Historically the implanters have been identified with the labels 'industrial' and 'experimental'. However, the machines only differ significantly in the species of ions available for implantation and sample temperature during implantation. Both machines have been custom designed for research purposes, with a wide range of ion species available for ion implantation and the ability to implant two ions into the same sample at the same time from two different ion sources. A fast sample transfer capability and homogenous scanning profiles are featured in both cases. Samples up to 13 mm 2 can be implanted, with the ability to implant at temperatures down to liquid nitrogen temperatures. The implanters have been used to implant 28 Si + , 14 N + and 12 C + into silicon and glassy carbon substrates. Rutherford backscattering spectroscopy has been used to analyse the implanted material. From the data a Si 30 C 61 N 9 layer was measured extending from the surface to a depth of about 77 ± 2 nm for (100) silicon implanted with 12 C + and 14 N + at multiple energies. Silicon and nitrogen ion implantation into glassy carbon produced a Si (40.5 %), C (38 %), N (19.5 %) and O (2%) layer centred around a depth of 50 ± 2 nm from the surface. (author). 8 refs., 20 figs

  11. Approaches to reducing photon dose calculation errors near metal implants

    International Nuclear Information System (INIS)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F.; Liu, Xinming; Stingo, Francesco C.

    2016-01-01

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  12. Blood metal ion concentrations in metal-on-metal total hip arthroplasty.

    Science.gov (United States)

    Ohtsuru, Tadahiko; Morita, Yuji; Murata, Yasuaki; Shimamoto, Shuji; Munakata, Yutaro; Kato, Yoshiharu

    2017-05-01

    The hip placement with a metal-on-metal (MOM) bearing has been used for both surface replacement and total hip arthroplasty (THA). Use of MOM bearing for hip replacement reduces the wear compared to conventional bearings. We prospectively assessed 30 patients who underwent unilateral MOM THA. A control group of 30 patients who underwent metal-on-polyethylene THA using the implants as the other group, except for bearing, were accessed. Blood samples were collected preoperatively and at 3- , 6- , 9- , 12- , 15- , 18- , and 24-month intervals. Changes in mean blood metal ion concentration were compared between the MOM and metal-on-polyethylene groups. A statistically significant positive correlation was observed between blood cobalt and chromium concentrations in all of the patients. The mean blood ion concentrations of the MOM were significantly higher than those of the metal-on-polyethylene. A statistically significant negative correlation was found between maximum blood cobalt concentration and cup version angle. The maximum blood chromium concentrations in the patients who had larger cup version angles were more likely to decrease. We considered that cup version angle is one of the factors that have the greatest effect on blood metal ion concentration, and the target cup version angle that did not induce an increase in blood metal ion concentrations was approximately 20°.

  13. Heavy doping of CdTe single crystals by Cr ion implantation

    Science.gov (United States)

    Popovych, Volodymyr D.; Böttger, Roman; Heller, Rene; Zhou, Shengqiang; Bester, Mariusz; Cieniek, Bogumil; Mroczka, Robert; Lopucki, Rafal; Sagan, Piotr; Kuzma, Marian

    2018-03-01

    Implantation of bulk CdTe single crystals with high fluences of 500 keV Cr+ ions was performed to achieve Cr concentration above the equilibrium solubility limit of this element in CdTe lattice. The structure and composition of the implanted samples were studied using secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) to characterize the incorporation of chromium into the host lattice and to investigate irradiation-induced damage build-up. It was found that out-diffusion of Cr atoms and sputtering of the targets alter the depth distribution and limit concentration of the projectile ions in the as-implanted samples. Appearance of crystallographically oriented, metallic α-Cr nanoparticles inside CdTe matrix was found after implantation, as well as a strong disorder at the depth far beyond the projected range of the implanted ions.

  14. [Detection of metal ions in hair after metal-metal hip arthroplasty].

    Science.gov (United States)

    Hernandez-Vaquero, D; Rodríguez de la Flor, M; Fernandez-Carreira, J M; Sariego-Muñiz, C

    2014-01-01

    There is an increase in the levels of metals in the serum and urine after the implantation of some models of metal-metal hip prosthesis. It has recently been demonstrated that there is an association between these levels and the levels found in hair. The aim of this study is to determine the presence of metals in hair, and to find out whether these change over time or with the removal of the implant. The levels of chromium, cobalt and molybdenum were determined in the hair of 45 patients at 3, 4, 5, and 6 years after a hip surface replacement. The mean age was 57.5 years, and two were female. Further surgery was required to remove the replacement and implant a new model with metal-polyethylene friction in 11 patients, 5 of them due to metallosis and a periarticular cyst. The mean levels of metals in hair were chromium 163.27 ppm, cobalt 61.98 ppm, and molybdenum 31.36 ppm, much higher than the levels found in the general population. A decrease in the levels of chromium (43.8%), molybdenum (51.1%), and cobalt (91.1%) was observed at one year in the patients who had further surgery to remove the prosthesis. High concentrations of metals in the hair are observed in hip replacements with metal-metal friction, which decrease when that implant is removed. The determination of metal ions in hair could be a good marker of the metal poisoning that occurs in these arthroplasty models. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  15. Quantum effects in ion implanted devices

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Chan, V.; Hudson, F.E.; Andresen, S.E.; Yang, C.; Hopf, T.; Hearne, S.M.; Pakes, C.I.; Prawer, S.; Gauja, E.; Yang, C.; Dzurak, A.S.; Yang, C.; Clark, R.G.; Yang, C.

    2005-01-01

    Fabrication of nanoscale devices that exploit the rules of quantum mechanics to process information presents formidable technical challenges because it will be necessary to control quantum states at the level of individual atoms, electrons or photons. We have developed a pathway to the construction of quantum devices using ion implantation and demonstrate, using charge transport analysis, that the devices exhibit single electron effects. We construct devices that employ two P donors in Si by employing the technique of ion beam induced charge (IBIC) in which single 14 keV P ions can be implanted into ultra-pure silicon by monitoring on-substrate detector electrodes. We have used IBIC with a MeV nuclear microprobe to map and measure the charge collection efficiency in the development of the electrode structure and show that 100% charge collection efficiency can be achieved leading to the fabrication of prototype devices that display quantum effects in the transport of single charge quanta between the islands of implanted donors. (author). 9 refs., 4 figs., 1 tab

  16. Lattice location of platinum ions implanted into single crystal zirconia and their annealing behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D.X. [Royal Melbourne Inst. of Tech., VIC (Australia); Sood, D.K. [Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Nuclear Research; Brown, I.G. [Lawrence Berkeley Lab., CA (United States)

    1993-12-31

    Single crystal samples of (100) oriented cubic zirconia stabilised with 9.5 mol % yttria were implanted with platinum ions, using a metal vapour vacuum arc (MEVVA) high current ion implanter, to a nominal dose of 1x10{sup 17} ions/cm{sup 2}. The implanted samples were annealed isothermally in air ambient at 1200 deg C, from 1-24 hours. Rutherford Backscattering Spectrometry and Channeling (RBSC) of 2 MeV He ions are employed to determine depth distributions of ion damage, Pt ions and substitutionality of Pt ions before and after annealing. The damage behaviour, Pt migration and lattice location are discussed in terms of metastable phase formation and solid solubility considerations. 7 refs., 3 figs.

  17. Fractal pattern growth in Ti-implanted steel with high ion flux

    International Nuclear Information System (INIS)

    Zhang Tonghe; Wu Yuguang; Liu Andong

    2002-01-01

    The author report on the formation of metal nano-metre phase and fractal patterns in steel using metal vapour vacuum arc source ion implantation with high ion flux. The dense nano-metre phases are cylindrical and well dispersed in the Ti-implanted layer with an ion flux up to 50 μA/cm 2 . The collision fractal pattern is formed in Ti-implanted steel with an ion flux of 25 μA/cm 2 and the disconnected fractal pattern is observed with an ion flux of 50μA/cm 2 . The average density of nano-metre phases decreases from 1.2 x 10 11 /cm 2 to 6.5 x 10 10 /cm 2 as the ion flux increases from 25 μA/cm 2 to 50 μA/cm 2 . Fractal pattern growth is in remarkable agreement with Sander's diffusion-limited aggregation model. The alloy clusters have diffused and aggregated in chains forming branches to grow a beautiful tree during Ti implantation with an ion flux ranging from 75 μA/cm 2 to 85 μA/cm 2 . The authors discuss the model of fractal pattern growth during ion implantation with high ion flux

  18. Paramagnetism in ion-implanted oxides

    CERN Document Server

    Mølholt, Torben Esmann; Gíslason, Hafliði Pétur; Ólafsson, Sveinn

    This thesis describes the investigation on para-magnetism in dilute ion-implanted single-crystal oxide samples studied by on- and off-line $^{57}$Fe emission Mössbauer spectroscopy. The ion-implantation of the radioactive isotopes ( $^{57}$Mn and $^{57}$Co) was performed at the ISOLDE facility at CERN in Geneva, Switzerland. The off-line measurements were performed at Aarhus University, Denmark. Mössbauer spectroscopy is a unique method, giving simultaneously local information on valence/spin state of the $^{57}$Fe probe atoms, site symmetry and magnetic properties on an atomic scale. The utilisation of emission Mössbauer spectroscopy opens up many new possibilities compared with traditional transmission Mössbauer spectroscopy. Among them is the possibility of working with a low concentration below 10$^{-4}$ –10$^{-3}$ at.%, where the implanted Mössbauer $^{57}$Fe probes are truly dilute impurities exclusively interacting with their nearest neighbours and therefore the possibility of crea...

  19. Metal ion adsorption characteristics of tea leaves

    OpenAIRE

    Takao, Hiromitsu; Kawahigashi, Tatsuo

    2016-01-01

    [Abstract] For effective use of tea leaves, this study experimentally evaluated metal ion adsorption by tea leaves. The experiment described herein was conducted by measuring the ionic solution at a constant density using a fluorescence X-ray device. The metallic ion concentration in the solution and the fluorescence X-ray output intensity showed good correlation. Tea leaves were put into solution adjusted with density of an already-known metallic ion. Then the decrease of the metal ion was m...

  20. Cesium ion bombardment of metal surfaces

    International Nuclear Information System (INIS)

    Tompa, G.S.

    1986-01-01

    The steady state cesium coverage due to cesium ion bombardment of molybdenum and tungsten was studied for the incident energy range below 500 eV. When a sample is exposed to a positive ion beam, the work function decreases until steady state is reached with a total dose of less than ≅10 16 ions/cm 2 , for both tungsten and molybdenum. A steady state minimum work function surface is produced at an incident energy of ≅100 eV for molybdenum and at an incident energy of ≅45 eV for tungsten. Increasing the incident energy results in an increase in the work function corresponding to a decrease in the surface coverage of cesium. At incident energies less than that giving the minimum work function, the work function approaches that of cesium metal. At a given bombarding energy the cesium coverage of tungsten is uniformly less than that of molybdenum. Effects of hydrogen gas coadsorption were also examined. Hydrogen coadsorption does not have a large effect on the steady state work functions. The largest shifts in the work function due to the coadsorption of hydrogen occur on the samples when there is no cesium present. A theory describing the steady-state coverage was developed is used to make predictions for other materials. A simple sticking and sputtering relationship, not including implantation, cannot account for the steady state coverage. At low concentrations, cesium coverage of a target is proportional to the ratio of (1 - β)/γ where β is the reflection coefficient and γ is the sputter yield. High coverages are produced on molybdenum due to implantation and low backscattering, because molybdenum is lighter than cesium. For tungsten the high backscattering and low implantation result in low coverages

  1. Application of micro beam PIXE to detection of titanium ion release from dental and orthopaedic implants

    International Nuclear Information System (INIS)

    Ektessabi, A.M.; Otsuka, T.; Tsuboi, Y.; Yokoyama, K.; Albrektsson, T.; Sennerby, L.; Johansson, C.

    1994-01-01

    In the past two decades the utilization of dental and orthopaedic implants in reconstructive surgery has been spread widely. Most of these implants are inserted in the corrosive environment of the human body for long periods of time. The level of dissolution, release, and transport of metal ions as a result of corrosion of these materials are not fully known at present. We report the results of application of micro ion beam PIXE spectroscopy to detect release of titanium from titanium and titanium alloy implants inserted in the tibiae of rabbits for three months. It was found that titanium ions could be detected in the surrounding tissues, with high precision, as a gradient from the implant surface and in higher amounts in the bone tissue as compared with the soft tissues. It is concluded that application of micro ion beam PIXE spectroscopy for detection of metal ion release, and distribution of the released material around the implants with high special resolution and accuracy may be used to further investigate the mechanism of metal release, and the relation between surface micromorphology and corrosion resistance of the implant materials. (author)

  2. Ion enhanced deposition by dual titanium and acetylene plasma immersion ion implantation

    Science.gov (United States)

    Zeng, Z. M.; Tian, X. B.; Chu, P. K.

    2003-01-01

    Plasma immersion ion implantation and deposition (PIII-D) offers a non-line-of-sight fabrication method for various types of thin films on steels to improve the surface properties. In this work, titanium films were first deposited on 9Cr18 (AISI440) stainless bearing steel by metal plasma immersion ion implantation and deposition (MePIII-D) using a titanium vacuum arc plasma source. Afterwards, carbon implantation and carbon film deposition were performed by acetylene (C2H2) plasma immersion ion implantation. Multiple-layered structures with superior properties were produced by conducting Ti MePIII-D + C2H2 PIII successively. The composition and structure of the films were investigated employing Auger electron spectroscopy and Raman spectroscopy. It is shown that the mixing for Ti and C atoms is much better when the target bias is higher during Ti MePIII-D. A top diamond-like carbon layer and a titanium oxycarbide layer are formed on the 9Cr18 steel surface. The wear test results indicate that this dual PIII-D method can significantly enhance the wear properties and decrease the surface friction coefficient of 9Cr18 steel.

  3. Ion enhanced deposition by dual titanium and acetylene plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Zeng, Z.M.; Tian, X.B.; Chu, P.K.

    2003-01-01

    Plasma immersion ion implantation and deposition (PIII-D) offers a non-line-of-sight fabrication method for various types of thin films on steels to improve the surface properties. In this work, titanium films were first deposited on 9Cr18 (AISI440) stainless bearing steel by metal plasma immersion ion implantation and deposition (MePIII-D) using a titanium vacuum arc plasma source. Afterwards, carbon implantation and carbon film deposition were performed by acetylene (C 2 H 2 ) plasma immersion ion implantation. Multiple-layered structures with superior properties were produced by conducting Ti MePIII-D + C 2 H 2 PIII successively. The composition and structure of the films were investigated employing Auger electron spectroscopy and Raman spectroscopy. It is shown that the mixing for Ti and C atoms is much better when the target bias is higher during Ti MePIII-D. A top diamond-like carbon layer and a titanium oxycarbide layer are formed on the 9Cr18 steel surface. The wear test results indicate that this dual PIII-D method can significantly enhance the wear properties and decrease the surface friction coefficient of 9Cr18 steel

  4. Quantum effects in ion implanted devices

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Chan, V.; Hudson, F.E.; Andresen, S.E.; Yang, C.; Hopf, T.; Hearne, S.M.; Pakes, C.I.; Prawer, S.; Gauja, E.; Dzurak, A.S.; Clark, R.G.

    2006-01-01

    Fabrication of nanoscale devices that exploit the rules of quantum mechanics to process information presents formidable technical challenges because of the need to control quantum states at the level of individual atoms, electrons or photons. We have used ion implantation to fabricate devices on the scale of 10 nm that have allowed the development and test of nanocircuitry for the control of charge transport at the level of single electrons. This fabrication method is compatible with the construction of devices that employ counted P dopants in Si by employing the technique of ion beam induced charge (IBIC) in which single 14 keV P ions can be implanted into ultra-pure silicon substrates by monitoring on-substrate detector electrodes. We have used IBIC with a MeV nuclear microprobe to map and measure the charge collection efficiency in the development of the electrode structure and show that 100% charge collection efficiency can be achieved. Prototype devices fabricated by this method have been used to investigate quantum effects in the control and transport of single electrons with potential applications to solid state quantum information processing devices

  5. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  6. Biodegradable radioactive implants for glaucoma filtering surgery produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany)]. E-mail: walter.assmann@lmu.de; Schubert, M. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany); Held, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany); Pichler, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Muenchen (Germany); Chill, A. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Kiermaier, S. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Schloesser, K. [Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Busch, H. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Schenk, K. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Streufert, D. [Acri.Tec GmbH, 16761 Hennigsdorf (Germany); Lanzl, I. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany)

    2007-04-15

    A biodegradable, {beta}-emitting implant has been developed and successfully tested which prevents fresh intraocular pressure increase after glaucoma filtering surgery. Ion implantation has been used to load the polymeric implants with the {beta}-emitter {sup 32}P. The influence of ion implantation and gamma sterilisation on degradation and {sup 32}P-fixation behavior has been studied by ion beam and chemical analysis. Irradiation effects due to the applied ion fluence (10{sup 15} ions/cm{sup 2}) and gamma dose (25 kGy) are found to be tolerable.

  7. Ion implanted GaAs microwave FET's

    Science.gov (United States)

    Gill, S. S.; Blockley, E. G.; Dawsey, J. R.; Foreman, B. J.; Woodward, J.; Ball, G.; Beard, S. J.; Gaskell, J. M.; Allenson, M. B.

    1988-06-01

    The combination of ion implantation and photolithographic patterning techniques was applied to the fabrication of GaAs microwave FETs to provide a large number of devices having consistently predictable dc and high frequency characteristics. To validate the accuracy and repeatability of the high frequency device parameters, an X-band microwave circuit was designed and realized. The performance of this circuit, a buffered amplifier, is very close to the design specification. The availability of a large number of reproducible, well-characterized transistors enabled work to commence on the development of a large signal model for FETs. Work in this area is also described.

  8. Moessbauer spectroscopy of implanted sources

    International Nuclear Information System (INIS)

    Niesen, L.

    1983-01-01

    A review is given of the field of Moessbauer spectroscopy of ion-implanted sources. After an introduction to the various aspects of the ion-implantation method, the following topics are treated: final site selection of implanted impurities; trapping of defects at implanted ions; on-line implantation; implantation in metals, semiconductors and insulators. (Auth.)

  9. Ion implantation: [fundamental factors which affect accelerator performance and their implications

    International Nuclear Information System (INIS)

    Armour, D.G.

    1987-01-01

    The use of ion implantation to modify the composition of the near surface layers of solid materials has been widely exploited in the semiconductor industry and is finding increasing application in the treatment of metals, ceramics and polymers. The bombardment of a solid with energetic ions inevitably involves the deposition of energy as well as material and this effect, which results in unwanted effects such as radiation damage in conventional implantation situations, is also being utilized to assist in the deposition of highly adherent or epitaxial layers. The increasing range of applications of ion implantation and ion assisted processing of materials has placed increasingly stringent demands on machine performance; in the present paper implantation techniques and their applications will be discussed. (author)

  10. Ion microanalysis and implantation applied to fusion surface research

    International Nuclear Information System (INIS)

    Vook, F.L.; Doyle, B.L.; Picraux, S.T.

    1978-01-01

    Ion microanalysis and implantation have been used to investigate and analyze plasma-surface interactions relevant to fusion plasma materials. Previous results for pure metals are reviewed and new results are presented for TiB 2 coatings for Tokamak surfaces. Enhanced trapping of implanted, low-energy hydrogen has been shown to occur at room temperature in W, Au, Pd, Mo, Nb, and TiB 2 for He or other ion predamage. Hydrogen depth profiles obtained using 1 H( 19 F,αγ) 16 O resonant nuclear reaction show that the H decorates the He damage profiles at traps whose concentration is proportional to the He-induced damage. For room temperature implantation in TiB 2 , H is trapped at the end of range, and isochronal annealing indicates that the H is lost by release from traps followed by rapid diffusion. For He predamaged samples, annealing at 400 0 C causes the H to be retrapped in the region of the He-induced damage at traps whose cross section is approx. = 1.8 x 10 -18 cm 2 /trap

  11. Electrochemical investigations of ion-implanted oxide films

    International Nuclear Information System (INIS)

    Schultze, J.W.; Danzfuss, B.; Meyer, O.; Stimming, U.

    1985-01-01

    Oxide films (passive films) of 40-50 nm thickness were prepared by anodic polarization of hafnium and titanium electrodes up to 20 V. Multiple-energy ion implantation of palladium, iron and xenon was used in order to obtain modified films with constant concentration profiles of the implanted ions. Rutherford backscattering, X-ray photoelectron spectroscopy measurements and electrochemical charging curves prove the presence of implanted ions, but electrochemical and photoelectrochemical measurements indicate that the dominating effect of ion implantation is the disordering of the oxide film. The capacity of hafnium electrodes increases as a result of an increase in the dielectric constant D. For titanium the Schottky-Mott analysis shows that ion implantation causes an increase in D and the donor concentration N. Additional electronic states in the band gap which are created by the implantation improve the conductivity of the semiconducting or insulating films. This is seen in the enhancement of electron transfer reactions and its disappearance during repassivation and annealing. Energy changes in the band gap are derived from photoelectrochemical measurements; the absorption edge of hafnium oxide films decreases by approximately 2 eV because of ion implantation, but it stays almost constant for titanium oxide films. All changes in electrochemical behavior caused by ion implantation show little variation with the nature of the implanted ion. Hence the dominating effect seems to be a disordering of the oxide. (Auth.)

  12. Application of ion implantation RBS to the study of electrocatalysis

    International Nuclear Information System (INIS)

    Kelly, E.J.; Vallet, C.E.; White, C.W.

    1990-01-01

    Ir-implanted titanium near-surface alloys were prepared by ion implantation, characterized (Ir concentration/depth profiles) by Rutherford backscattering (RBS), and subsequently anodically oxidized to form electrocatalytically active Ir x Ti 1-x O 2 /Ti electrodes. The electrochemical behavior of the metallic-like Ir 4 Ti 1-x O 2 /Ti electrodes in acidic chloride, sulfate, and perchlorate solutions was investigated, and the results compared with those previously obtained with similarly prepared Ru x Ti 1-x O 2 /Ti electrodes. For both electrodes, M x Ti 1-x O 2 /Ti (M equals Ir or Ru), the Tafel slope for the Cl 2 evolution reaction is 40 mV, i.e.,δE/δlog i equals 2.303 (2RT/3F). The reaction order (n) with respect to chloride ion concentration δlogi/δlog[Cl - ] + 1, where K 9 equals 54.9 dm 3 mol -1 for Ir x Ti 1-x O 2 /Ti and K 9 equals 40 dm 3 mol -1 for Ru x Ti 1-x O 2 /Ti. A modified Volmer-Heyrovsky mechanism, one in which the role of absorbed chloride ions is taken into account, is shown to be consistent with aforementioned diagnostic parameters

  13. Nonlinear optical properties of Sn+ ion-implanted silica glass

    International Nuclear Information System (INIS)

    Takeda, Y.; Hioki, T.; Motohiro, T.; Noda, S.; Kurauchi, T.

    1994-01-01

    The absolute value of the third-order nonlinear optical susceptibility, vertical stroke χ (3) vertical stroke , of Sn + ion-implanted silica glass was found to be similar 10 -6 esu. This value is as large as those reported for semiconductor-doped glasses. Silica glass substrates were implanted with Sn + ions at an acceleration energy of 400 keV to a dose of 2x10 17 ions/cm 2 at room temperature. Metallic Sn microcrystallites of 4-20 nm in diameter were found to be embedded in the silica glass matrix. The average volume fraction of the Sn microcrystallites was evaluated to be 28%. vertical stroke χ (3) vertical stroke and the imaginary part of the dielectric function, Im ε, had peaks at the same wavelength of 500 nm owing to surface plasmon resonance. The peak width of vertical stroke χ (3) vertical stroke was nearly half of that of Im ε, which can be explained by an effective medium theory. ((orig.))

  14. SIMS analysis of isotopic impurities in ion implants

    International Nuclear Information System (INIS)

    Sykes, D.E.; Blunt, R.T.

    1986-01-01

    The n-type dopant species Si and Se used for ion implantation in GaAs are multi-isotopic with the most abundant isotope not chosen because of potential interferences with residual gases. SIMS analysis of a range of 29 Si implants produced by several designs of ion implanter all showed significant 28 Si impurity with a different depth distribution from that of the deliberately implanted 29 Si isotope. This effect was observed to varying degrees with all fifteen implanters examined and in every 29 Si implant analysed to date 29 Si + , 29 Si ++ and 30 Si implants all show the same effect. In the case of Se implantation, poor mass resolution results in the implantation of all isotopes with the same implant distribution (i.e. energy), whilst implants carried out with good mass resolution show the implantation of all isotopes with the characteristic lower depth distribution of the impurity isotopes as found in the Si implants. This effect has also been observed in p-type implants into GaAs (Mg) and for Ga implanted in Si. A tentative explanation of the effect is proposed. (author)

  15. A novel method for effective sodium ion implantation into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lu Qiuyuan; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2012-07-15

    Although sodium ion implantation is useful to the surface modification of biomaterials and nano-electronic materials, it is a challenging to conduct effective sodium implantation by traditional implantation methods due to its high chemical reactivity. In this paper, we present a novel method by coupling a Na dispenser with plasma immersion ion implantation and radio frequency discharge. X-ray photoelectron spectroscopy (XPS) depth profiling reveals that sodium is effectively implanted into a silicon wafer using this apparatus. The Na 1s XPS spectra disclose Na{sub 2}O-SiO{sub 2} bonds and the implantation effects are confirmed by tapping mode atomic force microscopy. Our setup provides a feasible way to conduct sodium ion implantation effectively.

  16. Influence of Ro radiation upon ion-implanted MOS structures

    International Nuclear Information System (INIS)

    Kaschieva, S.; Djakov, A.

    1986-01-01

    The interaction of Ro radiation with defects in ion-implanted MOS structures is studied using the method of thermally stimulated charge release and C/V method. It is shown that preliminary treatment with Ro radiation decreases the temperature of thermal annealing of the radiation defects introduced by ion-implantation up to 450 0 C. (author)

  17. Backscattering of light ions from metal surfaces

    International Nuclear Information System (INIS)

    Verbeek, H.

    1975-07-01

    When a metal target is bombarded with light ions some are implanted and some are reflected from the surface or backscattered from deeper layers. This results in an energy distribution of the backscattered particles which reaches from zero to almost the primary energy. The number of the backscattered particles and their energy, angular, and charge distributions depends largely on the energy and the ion target combination. For high energies (i.e., greater than50 keV for protons) particles are backscattered in a single collision governed by the Rutherford cross section. Protons and He-ions with energies of 100 keV to several MeV are widely used for thin film analysis. For lower energies multiple collisions and the screening of the Coulomb potential have to be taken into account, which makes the theoretical treatment more difficult. This energy region is, however, of special interest in the field of nuclear fusion research. Some recent results for energies below 20 keV are discussed in some detail. (auth)

  18. Corrosion behaviour of ion implanted aluminium alloy in 0.1 M NaCl electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J.W.; Evans, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Aluminum and its alloys are widely used in industry because of their light weight, high strength and good corrosion resistance which is due to the formation of a protective oxide layer. However, under saline conditions such as those encountered in marine environments, this group of metals are vulnerable to localised degradation in the form of pitting corrosion. This type of corrosion involves the adsorption of an anion, such as chlorine, at the oxide solution interface. Ion implantation of metal ions has been shown to improve the corrosion resistance of a variety of materials. This effect occurs : when the implanted species reduces anion adsorption thereby decreasing the corrosion rate. In this paper we report on the pitting behavior of Ti implanted 2011 Al alloy in dilute sodium chloride solution. The Ti implanted surfaces exhibited an increased pitting potential and a reduced oxygen uptake. 5 refs., 3 figs.

  19. A review of recent developments in ion implantation for metallurgical application

    International Nuclear Information System (INIS)

    Hutchings, Ron

    1994-01-01

    Ion implantation emerged during the 1970s as a possible tool for improving the wear and corrosion resistance of metals and alloys. This emergence led to a period of intense activity in the early 1980s, aimed at identifying opportunities for the industrial application of ion implantation. This paper reviews the progress which has been made towards establishing ion implantation as an effective and reliable technique for improving the wear resistance of engineering materials. Particular emphasis is placed on the implantation of nitrogen. It is shown how detailed metallurgical studies have elucidated the role played by the implanted nitrogen in enhancing the resistance to wear of a broad range of alloys. These studies have highlighted the fact that the thin nature of the implanted layer has been a prime factor in restricting the industrial usage of ion implantation to a narrow range of specialized applications. This has resulted in a shift to the development of duplex treatments involving two-stage processes or, more recently, new techniques which allow simultaneous implantation and thermochemical treatment. The capabilities of, and future prospects for, such techniques are discussed. ((orig.))

  20. Ion implantation induced blistering of rutile single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bing-Xi [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Jiao, Yang [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250100 (China); Guan, Jing [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Wang, Lei [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China)

    2015-07-01

    The rutile single crystals were implanted by 200 keV He{sup +} ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He{sup +} ion implantation with appropriate fluence and the following thermal annealing.

  1. Metallic implants and exposure to radiofrequency radiation

    International Nuclear Information System (INIS)

    Joyner, K.H.; Fleming, A.H.F.; MacFarlane, I.P.; Hocking, B.

    1988-01-01

    There is increasing use of radiofrequency radiation (RFR) in industry for communications, welding, security, radio, medicine, navigation etc. It has been recognised for some years that RFR may interact with cardiac pacemakers and steps have been taken to prevent this interference. It is less well recognised that other metallic implants may also act as antennas in an RFR field and possibly cause adverse health effects by heating local tissues. There are a large and increasing number of implants having metal components which may be found in RFR workers. These implants include artificial joints, rods and plates used in orthopaedics, rings in heart valves, wires in sutures, bionic ears, subcutaneous infusion systems and (external) transdermal drug delivery patches 1 . The physician concerned with job placement of such persons requires information on the likelihood of an implant interacting with RFR so as to impair health. The following outlines the approach developed in Telecom Australia, beginning with the general principles and then presenting a specific example discussion of a specific example

  2. Biomimetic Composite-Metal Hip Resurfacing Implant

    Directory of Open Access Journals (Sweden)

    Habiba Bougherara

    2008-01-01

    Full Text Available Hip resurfacing technique is a conservative arthroplasty used in the young patient in which the femoral head is reshaped to accept metal cap with small guide stem. In the present investigation, a hybrid composite-metal resurfacing implant is proposed. The cup is made of carbon fiber/polyamide 12 (CF/PA12 covered with a thin layer of cobalt chrome (Co-Cr. Finite element (FE method was applied to analyze and compare the biomechanical performances of the hybrid hip resurfacing (HHR and the conventional Birmingham (BHR. Results of the finite element analysis showed that the composite implant leads to an increase in stresses in the cancellous bone by more than 15% than BHR, indicating a lower potential for stress shielding and bone fracture and higher potential for bone apposition with the HHR.

  3. Hip Implant Systems

    Science.gov (United States)

    ... Orthopaedic Surgeons Information about Soft Tissue Imaging and Metal Ion Testing Information for All Health Care Professionals who Provide Treatment to Patients with a Metal-on-Metal Hip Implant Metal-on-Metal Hip ...

  4. Fractal pattern growth in Ti-implanted steel with high ion flux

    CERN Document Server

    Zhang Ton Ghe; Liu An Dong

    2002-01-01

    The author report on the formation of metal nano-metre phase and fractal patterns in steel using metal vapour vacuum arc source ion implantation with high ion flux. The dense nano-metre phases are cylindrical and well dispersed in the Ti-implanted layer with an ion flux up to 50 mu A/cm sup 2. The collision fractal pattern is formed in Ti-implanted steel with an ion flux of 25 mu A/cm sup 2 and the disconnected fractal pattern is observed with an ion flux of 50 mu A/cm sup 2. The average density of nano-metre phases decreases from 1.2 x 10 sup 1 sup 1 /cm sup 2 to 6.5 x 10 sup 1 sup 0 /cm sup 2 as the ion flux increases from 25 mu A/cm sup 2 to 50 mu A/cm sup 2. Fractal pattern growth is in remarkable agreement with Sander's diffusion-limited aggregation model. The alloy clusters have diffused and aggregated in chains forming branches to grow a beautiful tree during Ti implantation with an ion flux ranging from 75 mu A/cm sup 2 to 85 mu A/cm sup 2. The authors discuss the model of fractal pattern growth durin...

  5. The effect of MEVVA ion implantation on the tribological properties of PVD-TiN films

    International Nuclear Information System (INIS)

    Manory, R.; Mollica, S.

    1998-01-01

    The present work is the first study in which the effects of metal evaporation vacuum (MEVVA) implantation are studied on TiN of the PVD type which is commercially available in Australia. The MEVVA ion implanter differs from the 'conventional' type of ion implanter in the fact that it has a high throughput of metal ions which are not mass analysed and therefore has more potential for industrial non-electronic applications. TiN-coated steel samples have been implanted with two types of species - one light and one heavy - C + and W + respectively. The samples were analysed by Rutherford backscattering (RBS) and x-ray diffraction (XRD). The tribological performance was assessed by pin-on-disc and microhardness. The results show that carbon implantation was very effective in improving the friction coefficient by the formation of a carbonaceous layer on the surface. XRD also shows formation of TiC in the near surface region. W implantation does not improve the friction coefficient but improves the lifetime of the coating. Unimplanted films fail in the pin-on-disk test after 7000 cycles, whereas implanted films are still well adhered after 18000 cycles

  6. Industrial plasma immersion ion implanter and its applications

    CERN Document Server

    Tong Hong Hui; Huo Yan Feng; Wang Ke; Mu Li Lan; Feng Tie Min; Zhao Jun; Yan Bing; Geng Man

    2002-01-01

    A new generation industrial plasma immersion ion implanter was developed recently in South-western Institute of Physics and some experimental results are reported. The vacuum chamber with 900 mm in diameter and 1050 mm in height stands vertically. The pumping system includes turbo -pump and mechanical pump and it can be automatically controlled by PLC. The background pressure is less than 4 x 10 sup - sup 4 Pa. The plasma in the chamber can be generated by hot-filament discharge and three high-efficiency magnetic filter metal plasma sources, so that the plasma immersion ion implantation and enhanced deposition can be done. The maximum pulse voltage output is 80 kV, maximum pulse current is 60 A, repetition frequency is 50-500 Hz, and the pulse rise time is less than 2 mu s. The power modulator can operate in the pulse bunching mode if necessary. In general, the plasma density is 10 sup 8 -10 sup 1 sup 0 cm sup - sup 3 , the film deposition rate is 0.1-0.5 nm/s

  7. Enhancement of electrical conductivity of ion-implanted polymer films

    International Nuclear Information System (INIS)

    Brock, S.

    1985-01-01

    The electrical conductivity of ion-implanted films of Nylon 66, Polypropylene (PP), Poly(tetrafluoroethylene) (Teflon) and mainly Poly (ethylene terephthalate) (PET) was determined by DC measurements at voltages up to 4500 V and compared with the corresponding values of pristine films. Measurements were made at 21 0 C +/- 1 0 C and 65 +/- 2% RH. The electrical conductivity of PET films implanted with F + , Ar + , or As + ions at energies of 50 keV increases by seven orders of magnitude as the fluence increases from 1 x 10 18 to 1 x 10 20 ions/m 2 . The conductivity of films implanted with As + was approximately one order greater than those implanted with Ar + , which in turn was approximately one-half order greater than those implanted with F + . The conductivity of the most conductive film ∼1 S/m) was almost 14 orders of magnitude greater than the pristine PET film. Except for the three PET samples implanted at fluences near 1 x 10 20 ions/m 2 with F + , Ar + , and As + ions, all implanted films were ohmic up to an electric field strength of 600 kV/m. The temperature dependence of the conductivity of the three PET films implanted near a fluence of 1 x 10 20 ions/m 2 was measured over the range of 80 K < T < 300 K

  8. Cytological effect of nitrogen ion implantation into Stevia

    International Nuclear Information System (INIS)

    Shen Mei; Wang Cailian; Chen Qiufang; Lu Ting; Shu Shizhen

    1997-01-01

    Dry seeds of Stevia were implanted by 35∼150 keV nitrogen ion with various doses. The cytological effect on M 1 was studied. The results showed that nitrogen ion beam was able to induce variation on chromosome structure in root tip cells. The rate of cells with chromosome aberration was increased with the increased with the increase of ion beam energy and dose. However, there was no significant linear regression relationship between ion dose and aberration rate. The cytological effect of nitrogen ion implantation was lower than that of γ-rays

  9. Modification of the hydriding of uranium using ion implantation

    International Nuclear Information System (INIS)

    Musket, R.G.; Robinson-Weis, G.; Patterson, R.G.

    1983-01-01

    The hydriding of depleted uranium at 76 Torr hydrogen and 130 0 C has been significantly reduced by implantation of oxygen ions. The high-dose implanted specimens had incubation times for the initiation of the reaction after exposure to hydrogen that exceeded those of the nonimplanted specimens by more than a factor of eight. Furthermore, the nonimplanted specimens consumed enough hydrogen to cause macroscopic flaking of essentially the entire surface in times much less than the incubation time for the high-dose implanted specimens. In contrast, the ion-implanted specimens reacted only at isolated spots with the major fraction of the surface area unaffected by the hydrogen exposure

  10. Formation of optical properties of intermetallic nanoclusters formed by sequential ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zuhr, R.A. [Oak Ridge National Lab., TN (United States). Solid State Div.; Magruder, R.H. III; Anderson, T.S. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Applied and Engineering Sciences

    1997-09-01

    Recent demonstrations that large third order nonlinear responses can be achieved in metal nanocluster glass composites are of significant interest because of their potential for use in all optical switching networks. These composite materials exhibit picosecond switching and relaxation times, thermal and chemical stability, high laser damage thresholds, and low two photon absorption. Ion implantation has been shown to be a useful fabrication method to form these nanoclusters in silica because of its ability to produce thin films in waveguide configurations containing a high volume fraction (> 1%) of metal colloids with well defined vertical and horizontal dimensional control. Using sequential ion implantation of more than one element the authors can modify the composition and microstructure of the composites by forming intermetallic metal colloids. In this work the authors report on the improved optical response of metallic nanocluster composites formed by sequential implantation of Cd and Ag and Sb and Ag. Characterization of the samples by transmission electron microscopy (TEM) reveals that approximately spherical metallic colloids are formed for all implanted species during the implantation process. Selected area diffraction patterns indicate that the colloids formed are intermetallic in composition. Linear optical absorption measurements made at room temperature in air from 900 to 200 nm show significant changes in both the magnitude and wavelength of the surface plasmon resonance. The formation of intermetallic nanoclusters results in changes in both the linear and nonlinear optical properties of the composite material that are not possible with single element colloids alone. The results are explained in terms of effective medium theory.

  11. Metallic artifact in MRI after removal of orthopedic implants

    International Nuclear Information System (INIS)

    Bagheri, Mohammad Hadi; Hosseini, Mehrdad Mohammad; Emami, Mohammad Jafar; Foroughi, Amin Aiboulhassani

    2012-01-01

    Objective: The aim of the present study was to evaluate the metallic artifacts in MRI of the orthopedic patients after removal of metallic implants. Subjects and methods: From March to August 2009, 40 orthopedic patients operated for removal of orthopedic metallic implants were studied by post-operative MRI from the site of removal of implants. A grading scale of 0–3 was assigned for artifact in MR images whereby 0 was considered no artifact; and I–III were considered mild, moderate, and severe metallic artifacts, respectively. These grading records were correlated with other variables including the type, size, number, and composition of metallic devices; and the site and duration of orthopedic devices stay in the body. Results: Metallic susceptibly artifacts were detected in MRI of 18 of 40 cases (45%). Screws and pins in removed hardware were the most important factors for causing artifacts in MRI. The artifacts were found more frequently in the patients who had more screws and pins in the removed implants. Gender, age, site of implantation of the device, length of the hardware, composition of the metallic implants (stainless steel versus titanium), and duration of implantation of the hardware exerted no effect in producing metallic artifacts after removal of implants. Short TE sequences of MRI (such as T1 weighted) showed fewer artifacts. Conclusion: Susceptibility of metallic artifacts is a frequent phenomenon in MRI of patients upon removal of metallic orthopedic implants.

  12. Plasma source ion implantation research at southwestern institute of physics

    International Nuclear Information System (INIS)

    Shang Zhenkui; Geng Man; Tong Honghui

    1997-10-01

    The PSII-EX device and PSII-IM device for research and development of plasma source ion implantation (PSII) technology are described briefly. The functions, main technical specifications and properties of the devices are also discussed. After ion implantation by PSII, the improvements of the surface-mechanical properties (such as microhardness, wear-resistance, friction factor, biological compatibility, etc) for some materials, microanalysis and numerical simulation of modified layers of materials, the technical developments for the practical workpiece treatments and the preliminary experiments for plasma source ion implantation-enhanced deposition are introduced too. As last, the future work about PSII have been proposed

  13. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  14. Structure, morphology and melting hysteresis of ion-implanted nanocrystals

    International Nuclear Information System (INIS)

    Andersen, H.H.; Johnson, E.

    1995-01-01

    Investigations of nanosized metal and semimetal inclusions produced by ion implantation in aluminium are reviewed. The inclusions are from 1 nm to 15 nm in size and contain from 80 to 100,000 atoms. Embedded crystallites, which are topotactically aligned with the surrounding matrix, may not be produced in this size range by any other method. The inclusions offer unique possibilities for study of the influence of interfaces on the crystal structure of the inclusions as well as on their melting and solidification behaviour. Studies are made with transmission electron microscopy (TEM), electron- and x-ray diffraction and in situ RBS- channeling measurements. Bi, Cd, In, Pb and Tl inclusions all show a substantial melting/solidification temperature hysteresis, which, in all cases except for Bi, is placed around the bulk melting temperature, while bismuth melts below that temperature. (au) 46 refs

  15. Diagnosis and management of patients with allergy to metal implants.

    Science.gov (United States)

    Thomas, Peter; Summer, Burkhard

    2015-04-01

    Cutaneous allergic reactions to implanted metal devices, for example, orthopedic, are well reported in the literature. Also, extracutaneous complications resulting from peri-implant inflammation have been observed in association with metal allergy. Nickel, cobalt, and chromium are the three most common triggers of both cutaneous and extracutaneous allergy-related complications. However, the diagnosis of metal implant allergy remains a challenge, that is, the synopsis of excluding differential diagnoses and the combination of different allergy diagnostic tools is needed. Thus, the management of metal implant allergy is also hampered by clinical uncertainty and unresolved scientific questions.

  16. Pd-based alloy nanoclusters in ion-implanted silica: Formation and stability under thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Battaglin, G.; Cattaruzza, E.; De Marchi, G.; Gonella, F.; Mattei, G. E-mail: mattei@padova.infm.it; Maurizio, C.; Mazzoldi, P.; Parolin, M.; Sada, C.; Calliari, I

    2002-05-01

    In this work we report on the formation and stability under thermal annealing of Pd-Cu and Pd-Ag alloy nanoclusters obtained by sequential ion implantation in silica. The role of the annealing atmosphere on the alloy cluster formation and stability is investigated. A comparison is made with similar alloy-based systems obtained by sequential ion implantation in silica of Au-Ag or Au-Cu followed by annealing under similar conditions, in order to evidence the peculiar effect of the various metals in controlling the alloy evolution and/or decomposition.

  17. Study on surface modification of M2 steel induced by Cu ions and Al ions implantation

    International Nuclear Information System (INIS)

    Wang Chao; Liu Zhengmin

    2001-01-01

    Changes of surface hardness and wear resistances in M2 type steel implanted by Cu Al ions were reported. The dependence of surface strengthening on ion species and dose was studied by X-ray diffraction (XRD) and Rutherford Backscattering Spectroscopy (RBS) for microhardness and wear resistances measurement. It is shown that both hardness and wear resistance increases apparently after ion implantation. XRD analysis indicates that different phases formed after Al Cu ions implanted. It is also suggested that Cu, Al ions have different role in surface strengthening

  18. Metal Ion Controlled Polymorphism of a Peptide

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Jancso, Attila; Szunyogh, Daniel

    2011-01-01

    , …) in the peptide, and the ligand and structural preferences of the metal ion (in our studies Zn2+, Cd2+, Hg2+, Cu+/2+). Simultaneously, new species such as metal ion bridged ternary complexes or even oligomers may be formed. In recent previous studies we have observed similar polymorphism of zinc finger model...

  19. Metal Ions Analysis with Capillary Zone Electrophoresis.

    Science.gov (United States)

    Malik, Ashok Kumar; Aulakh, Jatinder Singh; Kaur, Varinder

    2016-01-01

    Capillary electrophoresis has recently attracted considerable attention as a promising analytical technique for metal ion separations. Significant advances that open new application areas for capillary electrophoresis in the analysis of metal species occurred based on various auxiliary separation principles. These are mainly due to complexation, ion pairing, solvation, and micellization interactions between metal analytes and electrolyte additives, which alter the separation selectivity in a broad range. Likewise, many separation studies for metal ions have been concentrated on the use of preelectrophoresis derivatization methodology. Approaches suitable for manipulation of selectivity for different metal species including metal cations, metal complexes, metal oxoanions, and organometallic compounds, are discussed, with special attention paid to the related electrophoretic system variables using illustrative examples.

  20. Separation of metal ions from aqueous solutions

    Science.gov (United States)

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  1. Effects of ion implantation on the microstructure and residual stress of filter arc CrN films

    International Nuclear Information System (INIS)

    Weng, K.-W.; Chen, Y.-C.; Han Sheng; Hsu, C.-S.; Chen, Y.-L.; Wang, D.-Y.

    2008-01-01

    Chromium nitride coatings were deposited using a hybrid physical vapor deposition (PVD) system containing a filter arc deposition (FAD) and a metal plasma ion implantation source (MPII). Exactly how surface residual stress affects film characteristics is investigated using glancing incident X-ray diffraction (GIXRD) and pole figure analyses. Compared with unimplanted CrN, implanted carbon typically increases compressive residual stress and hardness. Wear resistance was also improved by implanted carbon

  2. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  3. Ion implantation induced nanotopography on titanium and bone cell adhesion

    International Nuclear Information System (INIS)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; Maeztu, Miguel Ángel de

    2014-01-01

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm 2 ) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  4. Structural, electrical and catalytic properties of ion-implanted oxides

    NARCIS (Netherlands)

    van Hassel, B.A.; Burggraaf, A.J.

    1989-01-01

    The potential application of ion implantation to modify the surfaces of ceramic materials is discussed. Changes in the chemical composition and microstructure result in important variations of the electrical and catalytic properties of oxides.

  5. Structural and electronic properties of ion-implanted superconductors

    International Nuclear Information System (INIS)

    Bernas, H.; Nedellec, P.

    1980-01-01

    Recent work on ion implanted superconductors is reviewed. In situ x-ray, channeling, resistivity, and electron tunneling experiments now approach the relation between lattice order (or disorder) and superconductivity

  6. Modelling of ion implantation in SiC crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chakarov, Ivan [SILVACO International, 4701 Patrick Henry Drive, Building 2, Santa Clara, CA 95054 (United States)]. E-mail: ivan.chakarov@silvaco.com; Temkin, Misha [SILVACO International, 4701 Patrick Henry Drive, Building 2, Santa Clara, CA 95054 (United States)

    2006-01-15

    An advanced electronic stopping model for ion implantation in SiC has been implemented within the binary collision approximation. The model has been thoroughly tested and validated for Al implantation into 4H-, 6H-SiC under different initial implant conditions. A very good agreement between calculated and experimental profiles has been achieved. The model has been integrated in an industrial technology CAD process simulator.

  7. Modelling of ion implantation in SiC crystals

    International Nuclear Information System (INIS)

    Chakarov, Ivan; Temkin, Misha

    2006-01-01

    An advanced electronic stopping model for ion implantation in SiC has been implemented within the binary collision approximation. The model has been thoroughly tested and validated for Al implantation into 4H-, 6H-SiC under different initial implant conditions. A very good agreement between calculated and experimental profiles has been achieved. The model has been integrated in an industrial technology CAD process simulator

  8. Modification of polyethyleneterephtalate by implantation of nitrogen ions

    International Nuclear Information System (INIS)

    Svorcik, V.; Endrst, R.; Rybka, V.; Hnatowicz, V.; Cerny, F.

    1994-01-01

    The implantation of 90 keV N + ions into polyethyleneterephtalate (PET) to fluences of 1 x 10 14 --1 x 10 17 cm -2 was studied. The changes in electrical sheet conductivity and polarity of ion-exposed PET were observed and the structural changes were examined using IR spectroscopy. One degradation process is a chain fission according to the Norrish II reaction. The sheet conductivity due to conjugated double bonds was increased by ten orders of magnitude as a result of ion implantation. The surface polarity of the PET samples increases slightly with increasing ion fluence

  9. Residual stress in ion implanted titanium nitride studied by parallel beam glancing incidence x-ray diffraction

    International Nuclear Information System (INIS)

    Geist, D.E.; Perry, A.J.; Treglio, J.R.; Valvoda, V.; Rafaja, D.

    1995-01-01

    Ion implantation is known to increase the lifetime of cutting tools. Current theories are the increase in lifetime is caused by an increase in the residual stress, or by work hardening of the surface associated with the implantation. In this work the effect of ion implantation on the residual stress in titanium nitride coatings made by the standard industrial methods of chemical and physical vapor deposition (CVD and PVD) is studied. It is found in the as-received condition (unimplanted), the residual stress levels are near zero for CVD materials and highly compressive, of the order of 6 GPa, for PVD materials. Ion implantation has no effect on the residual stress in the coatings made by CVD. Nitrogen does increase the compressive residual stress by some 10% in the near surface regions of PVD coatings, while nickel-titanium dual metal ion implantation does not have any effect. It appears that the lifetime increase is not associated with residual stress effects

  10. SIMPLANT: analytic calculation of ion implantation within the Tadpance system

    International Nuclear Information System (INIS)

    Fawcett, R.J.

    1988-04-01

    An analytic method for calculating the concentration distribution of dopant atoms introduced into a multilayer semiconductor device by ion beam implantation is explained. Computer software written to apply the method is described. The operation of the software within a semiconductor process and device modelling package is outlined. Implantation distributions generated by the software are illustrated. (author)

  11. Breast milk metal ion levels in a young and active patient with a metal-on-metal hip prosthesis.

    Science.gov (United States)

    Nelis, Raymond; de Waal Malefijt, Jan; Gosens, Taco

    2013-01-01

    Metal-on-metal resurfacing arthroplasty of the hip has been used increasingly over the last 10 years in younger active patients. The dissolution of the metal wear particles results in measurable increases in cobalt and chromium ions in the serum and urine of patients with a metal-on-metal bearing. We measured the cobalt, chromium, and molybdenum ion levels in urine; serum; and breast milk in a young and active patient with a metal-on-metal hip prosthesis after a pathologic fracture of the femoral neck. Metal-on-metal hip prosthesis leads to increasing levels of molybdenum in breast milk in the short-term follow-up. There are no increasing levels of chromium and cobalt ions in breast milk. Besides the already known elevated concentrations in serum of chromium and cobalt after implantation of a metal-on-metal hip prosthesis, we found no increasing levels of chromium and cobalt in urine. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Artifacts Quantification of Metal Implants in MRI

    Science.gov (United States)

    Vrachnis, I. N.; Vlachopoulos, G. F.; Maris, T. G.; Costaridou, L. I.

    2017-11-01

    The presence of materials with different magnetic properties, such as metal implants, causes distortion of the magnetic field locally, resulting in signal voids and pile ups, i.e. susceptibility artifacts in MRI. Quantitative and unbiased measurement of the artifact is prerequisite for optimization of acquisition parameters. In this study an image gradient based segmentation method is proposed for susceptibility artifact quantification. The method captures abrupt signal alterations by calculation of the image gradient. Then the artifact is quantified in terms of its extent by an automated cross entropy thresholding method as image area percentage. The proposed method for artifact quantification was tested in phantoms containing two orthopedic implants with significantly different magnetic permeabilities. The method was compared against a method proposed in the literature, considered as a reference, demonstrating moderate to good correlation (Spearman’s rho = 0.62 and 0.802 in case of titanium and stainless steel implants). The automated character of the proposed quantification method seems promising towards MRI acquisition parameter optimization.

  13. First results from the Los Alamos plasma source ion implantation experiment

    International Nuclear Information System (INIS)

    Rej, D.J.; Faehl, R.J.; Gribble, R.J.; Henins, I.; Kodali, P.; Nastasi, M.; Reass, W.A.; Tesmer, J.; Walter, K.C.; Wood, B.P.; Conrad, J.R.; Horswill, N.; Shamim, M.; Sridharan, K.

    1993-01-01

    A new facility is operational at Los Alamos to examine plasma source ion implantation on a large scale. Large workpieces can be treated in a 1.5-m-diameter, 4.6-m-long plasma vacuum chamber. Primary emphasis is directed towards improving tribological properties of metal surfaces. First experiments have been performed at 40 kV with nitrogen plasmas. Both coupons and manufactured components, with surface areas up to 4 m 2 , have been processed. Composition and surface hardness of implanted materials are evaluated. Implant conformality and dose uniformity into practical geometries are estimated with multidimensional particle-in-cell computations of plasma electron and ion dynamics, and Monte Carlo simulations of ion transport in solids

  14. Channel waveguides formed by ion implantation of PECVD grown silica

    International Nuclear Information System (INIS)

    Leech, P.W.; Faith, M.F.; Johnson, C.M.; Ridgway, M.C.; Bazylenko, M.

    1997-01-01

    Low loss channel waveguides have been formed in silica-on-silicon by implantation with 5 MeV Si and Ge ions. In these experiments, the substrate was comprised of an undoped layer of silica (30 μm thick) which was grown by plasma enhanced chemical vapour deposition (PECVD). The optical loss characteristics of the waveguides, as measured at both λ 1300 and 1550 nm, were independent of the implanted ion species. A minimum in the attenuation loss (α) of ∼0.10-0.20 dB/cm was obtained following both a pre-implant (1050 o C) and a post-implant (400-500 o C) anneal of the waveguides. The ability to produce a minimum in α by pre-implant annealing has been attributed to the thermally induced relaxation of the densified structure in the as-grown layer. Only a comparatively small degree of compaction was measured for Si-implanted samples which did not receive a pre-implant anneal. In contrast, the much larger degree of compaction in the pre-implant annealed samples was similar in magnitiude to that observed in fused silica. These are the first reported examples of ion-implanted waveguides using a substrate of silica grown by PECVD. (author)

  15. Conduction in ion implanted single crystal diamond

    International Nuclear Information System (INIS)

    Hunn, J.D.; Parikh, N.R.; Swanson, M.L.

    1992-01-01

    We have implanted sodium, phosphorus and arsenic into single crystal type IIa diamond as possible n-type dopants. Particular emphasis was applied to the implantation of sodium at different temperatures and doses; combined implantation energies of 55,80 and 120 keV were used to provide a uniformly doped layer over approximately 100 nm depth. The implanted layers exhibited semiconducting behavior with a single exponential activation energy between 0.40 and 0.48 eV, as determined by temperature dependent resistance measurements. A sample implanted to a concentration of 5.10 19 Na + /cm 3 at 550 degrees C exhibited a single activation energy of 0.415 eV over a temperature range from 25 to 500 degrees C. Thermal annealing above 900 degrees C was found to remove implantation damage as measured by optical absorption and RBS/channeling. However, concomitant increases in the resistance and the activation energy were observed. Implantation of 22 Ne was used to introduce a damage density equivalent to the 23 Na implant, while not introducing an electrically active species. The activation energy and electrical resistance were similar but higher than those produced by implantation with sodium. We conclude that the electrical properties of the Na-implanted samples were at least partly due to electrically active Na, but that residual implantation damage was still important

  16. Bioactive calcium phosphate coatings on metallic implants

    Science.gov (United States)

    Sedelnikova, M. B.; Komarova, E. G.; Sharkeev, Yu. P.; Tolkacheva, T. V.; Khlusov, I. A.; Sheikin, V. V.

    2017-09-01

    Biocomposites based on bioinert metals or alloys and bioactive calcium phosphate coatings are a promising tendency of the new-generation implants development. In recent years, the approach of regenerative medicine based on the use of biodegradable biomaterials has been priority direction. Such materials are capable of initiating the bone tissue regeneration and replaced by the newly formed bone. The microarc oxidation (MAO) method allows obtaining the bioactive coatings with a porous structure, special functional properties, and modified by the essential elements. During the last decade, the investigations in the field of the nanostructured biocomposites based on bioinert Ti, Zr, Nb and their alloys with a calcium phosphate coatings deposited by the MAO method have been studied in the Institute of Strength Physics and Materials Science SB RAS, Tomsk. In this article the possibility to produce the bioactive coatings with high antibacterial and osseoconductive properties due to the introduction in the coatings of Zn, Cu, Ag, La, Si elements and wollastonite CaSiO3 was shown. The high hydrophilic and bioresorbed coatings stimulate the processes of osseointegration of the implant into the bone tissue. A promising direction in the field of the medical material science is a development of the metallic implants with good biomechanical compatibility to the bone, such as Ti-Nb alloys with a low elastic modulus that can be classified as biomaterials of the second generation. Zr and its alloys are promising materials for the dentistry and orthopedic surgery due to their high strength and corrosion resistance. Biodegradable Mg alloys are biomaterials of third generation. Such materials can dissolve with a certain speed in human body and excreted from the body thereby excluding the need for reoperation. This article presents the analysis of the study results of bioactive MAO coatings on Ti, Ti-Nb, Zr-Nb and Mg alloys and their promising medical application.

  17. Quartz modification by Zn ion implantation and swift Xe ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Privezentsev, Vladimir [Institute of Physics and Technology, Russian Academy of Sciences, Moscow (Russian Federation); Kulikauskas, Vaclav [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University (Russian Federation); Didyk, Alexander; Skuratov, Vladimir [Joint Institute of Nuclear Research, Dubna (Russian Federation); Steinman, Edward; Tereshchenko, Alexey; Kolesnikov, Nikolay [Institute of Solid-State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation); Trifonov, Alexey; Sakharov, Oleg [National Research University ' ' MIET' ' , Zelenograd, Moscow (Russian Federation); Ksenich, Sergey [National University of Science and Technology ' ' MISiS' ' , Moscow (Russian Federation)

    2017-07-15

    The quartz slides were implanted by {sup 64}Zn{sup +} ions with dose of 5 x 10{sup 16}/cm{sup 2} and energy of 100 keV. After implantation, the amorphous metallic Zn nanoparticles with an average radius of 3.5 nm were created. The sample surface becomes nonuniform, its roughness is increased and its values rise up to 6 nm compared to virgin state, and the roughness maximum is at a value of about 0.8 nm. The surface is made up of valleys and hillocks which have a round shape with an average diameter about 200 nm. At the center of these hillocks are pores with a depth up to 6 nm and a diameter of about 20 nm. After implantation in UV-vis diapason, the optical transmission decreases while PL peak (apparently due to oxygen deficient centers) at wavelength of 400 nm increases. Then the samples were subjected to swift Xe ion irradiation with the fluences of 1 x 10{sup 12}-7.5 x 10{sup 14}/cm{sup 2} and energy of 167 MeV. After Xe irradiation, the sample surface roughness shat down to values of 0.5 nm and the roughness maximum is at a value of about 0.1 nm. Optical transmission in UV-vis diapason increases. The PL peak at wavelength of 400 nm is decreased while a PL peak at wavelength of 660 nm is raised. This peak is presumably due to non-bridging oxygen hole centers or/and NPs with structure Si(core)/SiO{sub 2}(shell). HRTEM image of Zn-implanted quartz subsurface layer. One can see the Zn amorphous nanoparticles, which confirms the electron diffraction pattern (insert). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Effective implantation of light emitting centers by plasma immersion ion implantation and focused ion beam methods into nanosized diamond

    International Nuclear Information System (INIS)

    Himics, L.; Tóth, S.; Veres, M.; Tóth, A.; Koós, M.

    2015-01-01

    Highlights: • Characteristics of nitrogen implantation of nanodiamond using two low ion energy ion implantation methods were compared. • Formation of complex nitrogen-related defect centers was promoted by subsequent helium implantation and heat treatments. • Depth profiles of the implanted ions and the generated vacancies were determined using SRIM calculations. • The presence of nitrogen impurity was demonstrated by Fourier-transform infrared spectroscopic measurements. • A new nitrogen related band was detected in the photoluminescence spectrum of the implanted samples that was attributed to the N3 color center in nanodiamond. - Abstract: Two different implantation techniques, plasma immersion ion implantation and focused ion beam, were used to introduce nitrogen ions into detonation nanodiamond crystals with the aim to create nitrogen-vacancy related optically active centers of light emission in near UV region. Previously samples were subjected to a defect creation process by helium irradiation in both cases. Heat treatments at different temperatures (750 °C, 450 °C) were applied in order to initiate the formation of nitrogen-vacancy related complex centers and to decrease the sp 2 carbon content formed under different treatments. As a result, a relatively narrow and intensive emission band with fine structure at 2.98, 2.83 and 2.71 eV photon energies was observed in the light emission spectrum. It was assigned to the N3 complex defect center. The formation of this defect center can be expected by taking into account the relatively high dose of implanted nitrogen ions and the overlapped depth distribution of vacancies and nitrogen. The calculated depth profiles distribution for both implanted nitrogen and helium by SRIM simulation support this expectation

  19. A collisional model for plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Vahedi, V.; Lieberman, M.A.; Alves, M.V.; Verboncoeur, J.P.; Birdsall, C.K.

    1990-01-01

    In plasma immersion ion implantation, a target is immersed in a plasma and a series of negative short pulses are applied to it to implant the ions. A new analytical model is being developed for the high pressure regimes in which the motion of the ions is highly collisional. The model provides values for ion flux, average ion velocity at the target, and sheath edge motion as a function of time. These values are being compared with those obtained from simulation and show good agreement. A review is also given (for comparison) of the earlier work done at low pressures, where the motion of ions in the sheath is collisionless, also showing good agreement between analysis and simulation. The simulation code is PDP1 which utilizes particle-in-cell techniques plus Monte-Carlo simulation of electron-neutral (elastic, excitation and ionization) and ion-neutral (scattering and charge-exchange) collisions

  20. Thermal stress resistance of ion implanted sapphire crystals

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Jamieson, D.N.; Szymanski, R.; Orlov, A.V.; Williams, J.S.; Conway, M.

    1999-01-01

    Monocrystals of sapphire have been subjected to ion implantation with 86 keV Si - and 80 keV Cr - ions to doses in the range of 5x10 14 -5x10 16 cm -2 prior to thermal stress testing in a pulsed plasma. Above a certain critical dose ion implantation is shown to modify the near-surface structure of samples by introducing damage, which makes crack nucleation easier under the applied stress. The effect of ion dose on the stress resistance is investigated and the critical doses which produce a noticeable change in the stress resistance are determined. The critical dose for Si ions is shown to be much lower than that for Cr - ions. However, for doses exceeding 2x10 16 cm -2 the stress resistance parameter decreases to approximately the same value for both implants. The size of the implantation-induced crack nucleating centers and the density of the implantation-induced defects are considered to be the major factors determining the stress resistance of sapphire crystals irradiated with Si - and Cr - ions

  1. Focused ion beam lithography for rapid prototyping of metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Osswald, Patrick; Kiermaier, Josef; Becherer, Markus; Schmitt-Landsiedel, Doris [Lehrstuhl fuer Technische Elektronik, TU Muenchen, Munich (Germany)

    2010-07-01

    We present FIB-lithography methods for rapid and cost-effective prototyping of metal structures covering the deep-submicron- to the millimeter-range in a single lithography cycle. Focused ion beam (FIB) systems are widely used in semiconductor industry and research facilities for both analytical testing and prototyping. A typical application is to apply electrical contact to micron-sized sensors/particles by FIB induced metal deposition. However, as for E-beam lithography, patterning times for large area bonding pads are unacceptably long, resulting in cost-intensive prototyping. In this work, we optimized FIB lithography processing for negative and positive imaging mode to form metallic structures for large-areas down do the sub-100 nm range. For negative lithography features are defined by implanting Ga{sup +}-ions into a commercial photo resist, without affecting the underlying structures by impinging ions. The structures are highly suitable for following lift-off processing due to the undercut of the resist.Metallic feature size of down to 150 nm are achievable. For positive lithography a PMMA resist is exposed in FIB irradiation. Due to the very low dose (3.10{sup 12} ions/cm{sup 2}) the writing time for an e.g. 100 {mu}m x 100 {mu}m square is approx. 15 seconds. The developed resist is used for subsequent wet chemical etching, obtaining a 100 nm resolution in metal layers.

  2. Nitrogen ion implantation effect on friction coefficient of tool steel

    International Nuclear Information System (INIS)

    Velichko, N.I.; Udovenko, V.F.; Markus, A.M.; Presnyakova, G.N.; Gamulya, G.D.

    1988-01-01

    Effect of nitrogen molecular ion implantation into KhVSG steel on the friction coefficient in the air and vacuum is investigated. Irradiation is carried out by the N 2 + beam with energy 120 keV and flux density 5 μ/cm 2 at room temperature in vacuum 5x10 -4 Pa. The integral dose of irradiation is 10 17 particle/cm 2 . Nitrogen ion implantation is shown to provide the formation of the modified layer changing friction properties of steel. The friction coefficient can either increase or decrease depending on implantation and test conditions. 4 refs.; 2 figs

  3. Surface energy absorbing layers produced by ion implantation

    International Nuclear Information System (INIS)

    Gurarie, V.N.

    1997-01-01

    Single crystals of magnesia have been ion implanted with 80 keV Si and Cr ions at variable doses and then subjected to testing in a shock plasma. The peak surface temperature has been calibrated by measuring the size and temperature deformation of the fragments formed by multiple microcracking during thermal shock. the crack density curves for MgO crystals demonstrate that in a wide range of thermal shock intensity the ion implanted crystals develop a system of microcracks of a considerably higher density than the unimplanted ones. The high density of cracks nucleated in the ion implanted samples results in the formation of a surface energy absorbing layer which effectively absorbs elastic strain energy induced by thermal shock. As a consequence the depth of crack penetration in the layer and hence the degree of fracture damage are decreased. the results indicate that a Si implant decreases the temperature threshold of cracking and simultaneously increases the crack density in MgO crystals. However, in MgO crystals implanted with Cr a substantial increase in the crack density is achieved without a noticeable decrease in the temperature threshold of fracture. This effect is interpreted in terms of different Cr and Si implantation conditions and damage. The mechanical properties of the energy-absorbing layer and the relation to implantation-induced lattice damage are discussed. 11 refs., 4 figs

  4. Positron annihilation study on defects in ion-implanted Si

    International Nuclear Information System (INIS)

    Akahane, T.; Fujinami, M.; Sawada, T.

    2003-01-01

    Two-detector coincidence measurements of the Doppler broadened annihilation spectra with a variable energy positron beam are carried out for the study of the annealing behavior of Si implanted with As, P, Cu and H ions. In P-implanted Si, growth of the defect complexes are observed in coincidence Doppler broadening spectra up to 400degC. In Cu-implanted Si, the formation of defect-Cu complexes is indicated. In H-implanted Si, the passivation effect of hydrogen on positron traps are observed in the low temperature region up to 400degC. (author)

  5. Cutaneous and systemic hypersensitivity reactions to metallic implants

    DEFF Research Database (Denmark)

    Basko-Plluska, Juliana L; Thyssen, Jacob P; Schalock, Peter C

    2011-01-01

    Cutaneous reactions to metal implants, orthopedic or otherwise, are well documented in the literature. The first case of a dermatitis reaction over a stainless steel fracture plate was described in 1966. Most skin reactions are eczematous and allergic in nature, although urticarial, bullous......) following the insertion of intravascular stents, dental implants, cardiac pacemakers, or implanted gynecologic devices. Despite repeated attempts by researchers and clinicians to further understand this difficult area of medicine, the association between metal sensitivity and cutaneous allergic reactions...

  6. Cutaneous and systemic hypersensitivity reactions to metallic implants

    DEFF Research Database (Denmark)

    Basko-Plluska, Juliana L; Thyssen, Jacob P; Schalock, Peter C

    2011-01-01

    , and vasculitic eruptions may occur. Also, more complex immune reactions may develop around the implants, resulting in pain, inflammation, and loosening. Nickel, cobalt, and chromium are the three most common metals that elicit both cutaneous and extracutaneous allergic reactions from chronic internal exposure......) following the insertion of intravascular stents, dental implants, cardiac pacemakers, or implanted gynecologic devices. Despite repeated attempts by researchers and clinicians to further understand this difficult area of medicine, the association between metal sensitivity and cutaneous allergic reactions...

  7. Characterization of diamond amorphized by ion implantation

    International Nuclear Information System (INIS)

    Allen, W.R.; Lee, E.H.

    1992-01-01

    Single crystal diamond has been implanted at 1 MeV with 2 x 10 20 Ar/m 2 . Rutherford backscattering spectrometry in a channeled geometry revealed a broad amorphized region underlying a thin, partially crystalline layer. Raman spectroscopy disclosed modifications in the bonding characteristic of the appearance of non-diamond carbon. The complementary nature of the two analysis techniques is demonstrated. The Knoop hardness of the implanted diamond was reduced by implantation

  8. Silicon carbide layer structure recovery after ion implantation

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Demakov, K.D.; Kal'nin, A.A.; Nojbert, F.; Potapov, E.N.; Tairov, Yu.M.

    1984-01-01

    The process of recovery of polytype structure of SiC surface layers in the course of thermal annealing (TA) and laser annealing (LA) upon boron and aluminium implantation is studied. The 6H polytype silicon carbide C face (0001) has been exposed to ion radiation. The ion energies ranged from 80 to 100 keV, doses varied from 5x10 14 to 5x10 16 cm -2 . TA was performed in the 800-2000 K temperature range. It is shown that the recovery of the structure of silicon carbide layers after ion implantation takes place in several stages. Considerable effect on the structure of the annealed layers is exerted by the implantation dose and the type of implanted impurity. The recovery of polytype structure is possible only under the effect of laser pulses with duration not less than the time for the ordering of the polytype in question

  9. Fe doped Magnetic Nanodiamonds made by Ion Implantation

    Science.gov (United States)

    Chen, Chienhsu; Cho, I. C.; Jian, Hui-Shan; Niu, H.

    2017-02-01

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications.

  10. Statistical 3D damage accumulation model for ion implant simulators

    International Nuclear Information System (INIS)

    Hernandez-Mangas, J.M.; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M.

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided

  11. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  12. Surface sputtering in high-dose Fe ion implanted Si

    International Nuclear Information System (INIS)

    Ishimaru, Manabu

    2007-01-01

    Microstructures and elemental distributions in high-dose Fe ion implanted Si were characterized by means of transmission electron microscopy and Rutherford backscattering spectroscopy. Single crystalline Si(0 0 1) substrates were implanted at 350 deg. C with 120 keV Fe ions to fluences ranging from 0.1 x 10 17 to 4.0 x 10 17 /cm 2 . Extensive damage induced by ion implantation was observed inside the substrate below 1.0 x 10 17 /cm 2 , while a continuous iron silicide layer was formed at 4.0 x 10 17 /cm 2 . It was found that the spatial distribution of Fe projectiles drastically changes at the fluence between 1.0 x 10 17 and 4.0 x 10 17 /cm 2 due to surface sputtering during implantation

  13. Surface disorder production during plasma immersion implantation and high energy ion implantation

    NARCIS (Netherlands)

    El-sherbiny, M.A.; Khanh, N.Q.; Wormeester, Herbert; Fried, M.; Fried, M.; Lohner, T.; Lohner, T.; Pinter, I.; Gyulai, J.

    1996-01-01

    High-depth-resolution Rutherford Backscattering Spectrometry (RBS) combined with channeling technique was used to analyze the surface layer formed during plasma immersion ion implantation (PIII) of single crystal silicon substrates. Single wavelength multiple angle of incidence ellipsometry (MAIE)

  14. Study of ion implantation in grown layers of multilayer coatings under ion-plasma vacuum deposition

    International Nuclear Information System (INIS)

    Voevodin, A.A.; Erokhin, A.L.

    1993-01-01

    The model of ion implantation into growing layers of a multilayer coating produced with vacuum ion-plasma deposition was developed. The model takes into account a possibility for ions to pass through the growing layer and alloys to find the distribution of implanted atoms over the coating thickness. The experimental vitrification of the model was carried out on deposition of Ti and TiN coatings

  15. Effective charge of energetic ions in metals

    International Nuclear Information System (INIS)

    Kitagawa, M.; Brandt, W.

    1983-01-01

    The effective charge of energetic ion, as derived from stopping power of metals, is calculated by use of a dielectronic-response function method. The electronic distribution in the ion is described through the variational principle in a statistical approximation. The dependences of effective charge on the ion velocity, atomic number and r/sub s/-value of metal are derived at the low-velocity region. The effective charge becomes larger than the real charge of ion due to the close collisions. We obtain the quasi-universal equation of the fractional effective electron number of ion as a function of the ratio between the ionic size and the minimum distance approach. The comparsion between theoretical and experimental results of the effective charge is performed for the cases of N ion into Au, C and Al. We also discuss the equipartition rule of partially ionized ion at the high-velocity region

  16. Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films

    Science.gov (United States)

    Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha

    2018-03-01

    Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.

  17. Ion implantation induced martensite nucleation in SUS301 steel

    International Nuclear Information System (INIS)

    Kinoshita, Hiroshi; Takahashi, Heishichiro; Gustiono, Dwi; Sakaguchi, Norihito; Shibayama, Tamaki; Watanabe, Seiichi

    2007-01-01

    Phase transformation behaviors of the austenitic 301 stainless steel was studied under Fe + , Ti + and Ar + ions implantation at room temperature with 100, 200 and 300 keV up to fluence of 1x10 21 ions/m 2 and the microstructures were observed by means of transmission electron microscopy (TEM). The plane and cross-sectional observations of the implanted specimen showed that the induced-phases due to implantation from the γ matrix phase were identified as α' martensite phases with the orientation relationship of (11-bar0) α parallel (111-bar) γ and [111] α parallel [011] γ close to the Kurdjumov-Sachs (K-S). The ion implantation induced phases nucleated near the surface region and the depth position of the nucleation changed depending on the ion accelerating energy and ion species. It was also found that the induced marten sites phases nucleate under the influence of the stress distribution, which is introduced due to the concentration of implanted ions, especially due to the stress gradient caused by the corresponding concentration gradient. (author)

  18. Battlefield Acquired Immunogenicity to Metals Affects Orthopaedic Implant Outcome

    Science.gov (United States)

    2014-10-01

    unknown, especially to metals such as shrapnel. Previous studies have link exposure to metal with increased immune responses ( allergy ). Thus...to metal debris have increased immune system reactivity to metals (such as metal allergy or immune hypersensitivity alterations). We will compare the...reactivity to metals and will thus be at greater risk of poor orthopedic implant outcome (e.g. Aluminum, Chromium, Cobalt Iron, Molybdenum, Nickel

  19. Electrical conductivity enhancement of polyethersulfone (PES) by ion implantation

    International Nuclear Information System (INIS)

    Bridwell, L.B.; Giedd, R.E.; Wang Yongqiang; Mohite, S.S.; Jahnke, T.; Brown, I.M.

    1991-01-01

    Amorphous polyethersulfone (PES) films have been implanted with a variety of ions (He, B, C, N and As) at a bombarding energy of 50 keV in the dose range 10 16 -10 17 ions/cm 2 . Surface resistance as a function of dose indicates a saturation effect with a significant difference between He and the other ions used. ESR line shapes in the He implanted samples changed from a mixed Gaussian/Lorentzian to a pure Lorentzian and narrowed with increasing dose. Temperature dependent resistivity indicates an electron hopping mechanism for conduction. Infrared results indicate cross-linking or self-cyclization occurred for all implanted ions with further destruction in the case of As. (orig.)

  20. Modification of electrical properties of polymer membranes by ion implantation

    International Nuclear Information System (INIS)

    Dworecki, K.; Hasegawa, T.; Sudlitz, K.; Wasik, S.

    2000-01-01

    This paper presents an experimental study of the electrical properties of polymer ion irradiated polyethylene terephthalate (PET) membranes. The polymer samples have been implanted with a variety of ions (O 5+ , N 4+ , Kr 9+ ) by the energy of 10 keV/q up to doses of 10 15 ions/cm 2 and then they were polarized in an electric field of 4.16x10 6 V/m at non-isothermal conditions. The electrical properties and the changes in the chemical structure of implanted membrane were measured by conductivity and discharge currents and FTIR spectra. Electrical conductivity of the membranes PET increases to 1-3 orders of magnitude after implantation and is determined by the charge transport caused by free space charge and by thermal detrapping of charge carriers. The spectra of thermally induced discharge current (TDC) shows that ion irradiated PET membranes are characterized by high ability to accumulate charge

  1. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.J.; Sood, D.K.; Manory, R.R. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  2. Ion spectra of the metal vapor vacuum arc ion source with compound and alloy cathodes

    Science.gov (United States)

    Sasaki, Jun; Brown, Ian G.

    1990-01-01

    In metal vapor vacuum arc (MEVVA) ion sources, vacuum arc plasma with cathodes of single, pure elements has been utilized for the production of metal ions. In this study, we have investigated the charge state distributions of ions produced in vacuum arc plasmas in a MEVVA ion source for the case when the cathode is an alloy or a compound material. The ion charge state spectra were analyzed by means of a time-of-flight apparatus. We have compared the ion spectra for a cathode of an alloy or a compound material with its constituent elements: TiC/TiN/TiO2/Ti/C, SiC/Si/C, WC/W/C U/UN/(UN-ZrC)/Zr/C, and brass/Zn/Cu. We find that the MEVVA produces ions of all constituent elements in the compound and the alloy cathodes. The charge state distribution of each element differs, however, from the charge state distribution obtained in the vacuum arc with a cathode made of the pure, single constituent element. Fractional values of the total ion numbers of each constituent element in the extracted beam depart from the stoichiometry of the elements in the cathode material. In an operation with a TiC cathode, we irradiated a 304 stainless-steel plate with the extracted beam. Results from glow-discharge spectroscopy (GDS) of the surface show that both titanium and carbon are implanted in the substrate after the irradiation.

  3. Surface modification of austenitic stainless steel by titanium ion implantation

    International Nuclear Information System (INIS)

    Evans, P.J.; Hyvarinen, J.; Samandi, M.

    1995-01-01

    The wear properties of AISI 316 austenitic stainless steel implanted with Ti were investigated for ion doses in the range (2.3-5.4)x10 16 ionscm -2 and average ion energies of 60 and 90keV. The implanted layer was examined by Rutherford backscattering, from which the retained doses were determined, and glow discharge optical emission spectroscopy. Following implantation, the surface microhardness was observed to increase with the greatest change occurring at higher ion energy. Pin-on-disc wear tests and associated friction measurements were also performed under both dry and lubricated conditions using applied loads of 2N and 10N. In the absence of lubrication, breakthrough of the implanted layer occurred after a short sliding time; only for a dose of 5.1x10 16 ionscm -2 implanted at an average energy of 90keV was the onset of breakthrough appreciably delayed. In contrast, the results of tests with lubrication showed a more gradual variation, with the extent of wear decreasing with implant dose at both 2N and 10N loads. Finally, the influence of Ti implantation on possible wear mechanisms is discussed in the light of information provided by several surface characterization techniques. ((orig.))

  4. Compression of self-ion implanted iron micropillars

    International Nuclear Information System (INIS)

    Grieveson, E.M.; Armstrong, D.E.J.; Xu, S.; Roberts, S.G.

    2012-01-01

    Highlights: ► Self-ion implantation used to cause cascade damage in pure iron. ► Increase in hardness measured in implanted region using nanoindentation. ► Micropillars manufactured and tested in both implanted and unimplanted material. ► Marked difference in deformation mechanisms in each set of pillars seen using scanning electron microscopy. ► No difference in yield stress seen, suggesting it is difficult to use micro-compression to understand bulk properties. - Abstract: Ion implantation causes displacement damage in materials, leading to the formation of small dislocation loops and can cause changes to the material’s mechanical properties. Samples of pure Fe were subjected to Fe + implantation at 275 °C, producing damage of ∼6 dpa to ∼1 μm depth. Nanoindentation into implanted material shows an increase in hardness compared to unimplanted material. Micropillars were manufactured in cross-section specimens of implanted and unimplanted material and compressed using a nanoindenter. The implanted pillars have a deformation mode which differs markedly from the unimplanted pillars but show no change in yield-stress. This suggests that the controlling mechanism for deformation is different between nanoindentation and micropillar compression and that care is needed if using micropillar compression to extract bulk properties of irradiated materials.

  5. Modification of ion implanted or irradiated single crystal sapphire

    International Nuclear Information System (INIS)

    Song Yin; Zhang Chonghong; Wang Zhiguang; Zhao Zhiming; Yao Cunfeng; Zhou Lihong; Jin Yunfan

    2006-01-01

    Single crystal sapphire (Al 2 O 3 ) samples were implanted at 600 K by He, Ne and Ar ions with energy of 110 keV to doses ranging from 5 x 10 16 to 2 x 10 17 ion/cm 2 or irradiated at 320 K by 208 Pb 27+ ion with energy of 1.1 MeV/u to the fluences ranging from 1 x 10 12 to 5 x 10 14 ion/cm 2 . The modification of structure and optical properties induced by ion implantation or irradiation were analyzed by using photoluminescence (PL) and Fourier transformation infrared spectrum (FTIR) spectra and transmission electron microscopy (TEM) measurements. The PL measurements showed that absorption peaks located at 375, 413 and 450 nm appeared in all the implanted or irradiated samples, the PL intensities reached up to the maximum for the 5 x 10 16 ion/cm 2 implanted samples. After Pb-ion irradiation, a new peak located at 390 nm formed. TEM analyses showed that small size voids (1-2 nm) with high density were formed in the region from the surface till to about 100 nm in depth and also large size Ne-bubble formed in the Ne-doped region. Form the obtained FTIR spectra, it was found that Pb-ion irradiation induced broadening of the absorption band in 460-510 cm -1 and position shift of the absorption band in 1000-1300 cm -1 towards to high wavenumber. The possible damage mechanism in single crystal sapphire induced by energetic ion implantation or irradiation was briefly discussed. (authors)

  6. Surface properties of W-implanted TiN coatings post-treated by low temperature ion sulfurization

    International Nuclear Information System (INIS)

    Tian, Bin; Yue, Wen; Wang, Chengbiao; Liu, Jiajun

    2015-01-01

    Highlights: • PVD TiN coatings are implanted with W ions at dose of 9 × 10 17 ions/cm 2 . • Low temperature ion sulfurization (LTIS) is adopted on W-implanted TiN coatings. • W content and depth in the W-implanted coatings reduce after LTIS. • LTIS cannot well improve friction and wear of W-implanted TiN under dry sliding. - Abstract: TiN coatings were implanted with W ions by metal vapor vacuum arc (MEVVA) source at dose of 9 × 10 17 ions/cm 2 , and then they were post-treated by low temperature ion sulfurization (LTIS) at 160 °C. The W-implanted TiN samples were characterized before and after post-treatment of LTIS, using Scanning Electron Microscopy (SEM), Scanning Auger Microprobe (SAM), X-ray diffraction (XRD), and Nano Indenter System. Friction and wear properties were evaluated using a ball-on-disc tribometer under dry sliding in air. After post-treatment of LTIS, XRD results showed no diffraction peaks of tungsten sulfides on surfaces of W-implanted TiN coatings; W-implanted TiN coatings were sputtered by the sulfur plasma with about 36% reducing of W depth. Further, the nano-hardness decreased mainly due to the amount decreasing of Ti 2 N and the formation of more metal oxides on surfaces of W-implanted TiN coatings after LTIS. As a result, LTIS treatment could not well improve tribological properties of W-implanted TiN coatings.

  7. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    Science.gov (United States)

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  8. Ion implantation and ion beam analysis of lithium niobate

    International Nuclear Information System (INIS)

    Arnold, G.W.

    1989-01-01

    This paper reports on implantations of He and Ti made into LiNbO 3 and the H and Li profiles determined by elastic recoil detection (ERD) techniques. The loss of Li and gain of H depends upon the supply of surface H (surface contaminants or ambient atmosphere). For 50 KeV He implants into LiNbO 3 through a 200 Angstrom Al film, the small Li loss is governed by the interface H. This is also the case for He implants into uncoated LiNbO 3 in a beam line with low hydrocarbon surface contamination; similar implants under conditions of greater hydrocarbon deposition result in proportionally larger Li loss and H gain in the implant damage region. The exchange is possible only for those He energies, i.e., 50 keV, where the damage profile intersects the surface. For Ti implants Li is lost with little H gain. For this case the Li loss is believed to result from radiation-enhanced diffusion. Where He implantation is used to establish waveguiding in LiNbO 3 , the presence or absence of H in the implanted region is crucial with regard to refractive index stability, due to the replacement of H by Li from the bulk

  9. Tungsten ion implantation into copper by use of metal arc-plasma electro-magnetically accelerated to several km s-1

    International Nuclear Information System (INIS)

    Okada, A.; Aso, Y.; Hosoya, H.; Kiritani, M.

    2003-01-01

    A coaxial plasma gun was designed for the injection of W into Cu, by employment of the high speed of W ions attained by electro-magnetic acceleration. Under acceleration at 5 kV, W atoms could be injected into a Cu substrate at depths up to about 30 μm, whereas under acceleration at 4 kV no injection was observed. The injected W was observed to have nonuniform spatial distribution provably forming clusters or small groups of particles. Under acceleration at 5 kV, the first plasma to arrive at the substrate has a velocity of 10 km s -1 , which is much higher than that of initial plasma under acceleration at 4 kV. Immediately after the initial plasma, the relationship between the velocities of the respective plasmas reverses, so that average velocity at 5 kV is lower than that at 4 kV. Maximum plasma velocity plays a major role in the injection of W; i.e. the depth of W injection may depend on the velocity of initially generated plasma. The subsequent plasma forms a W layer on the surface of the substrate

  10. DETERMINATION OF METAL IONS RELEASED BY STAINLESS ...

    African Journals Online (AJOL)

    Preferred Customer

    Also taking into account the fact that, in body conditions implant corrosion products are disseminated and eventually eliminated. The result that SS arch bar used in orthodontic appliances corrode in bio-fluids over an extended time interval is of great clinical significance in evaluating their bio-compatibility, the levels of metal.

  11. Interaction of power pulses of laser radiation with glasses containing implanted metal nanoparticles

    CERN Document Server

    Stepanov, A L; Hole, D E; Bukharaev, A A

    2001-01-01

    The sodium-calcium silicate glasses, implanted by the Ag sup + ions with the energy of 60 keV and the dose of 7 x 10 sup 1 sup 6 cm sup - sup 2 by the ion current flux density of 10 mu A/cm sup 2 , are studied. The ion implantation makes it possible to synthesize in the near-the-surface glass area the composite layer, including the silver nanoparticles. The effect of the powerful pulse excimer laser on the obtained composite layer is investigated. It is established that the laser radiation leads to decrease in the silver nanoparticles size in the implanted layer. However nonuniform distribution of particles by size remains though not so wide as before the irradiation. The experimental results are explained by the effect of glass and metallic particles melting in the nanosecond period of time

  12. Application of Coaxial Ion Gun for Film Generation and Ion Implantation

    Science.gov (United States)

    Takatsu, Mikio; Asai, Tomohiko; Kurumi, Satoshi; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    A magnetized coaxial plasma gun (MCPG) is here utilized for deposition on high-melting-point metals. MCPGs have hitherto been studied mostly in the context of nuclear fusion research, for particle and magnetic helicity injection and spheromak formation. During spheromak formation, the electrode materials are ionized and mixed into the plasmoid. In this study, this ablation process by gun-current sputtering is enhanced for metallic thin-film generation. In the proposed system geometry, only ionized materials are electromagnetically accelerated by the self-Lorentz force, with ionized operating gas as a magnetized thermal plasmoid, contributing to the thin-film deposition. This reduces the impurity and non-uniformity of the deposited thin-film. Furthermore, as the ions are accelerated in a parallel direction to the injection axis, vertical implantation of the ions into the substrate surface is achieved. To test a potential application of the developed system, experiments were conducted involving the formation of a buffer layer on hard ceramics, for use in dental materials.

  13. Magnetic patterning by means of ion irradiation and implantation

    International Nuclear Information System (INIS)

    Fassbender, J.; McCord, J.

    2008-01-01

    A pure magnetic patterning by means of ion irradiation which relies on a local modification of the magnetic anisotropy of a magnetic multilayer structure has been first demonstrated in 1998. Since then also other magnetic properties like the interlayer exchange coupling, the exchange bias effect, the magnetic damping behavior and the saturation magnetization to name a few have also been demonstrated to be affected by ion irradiation or ion implantation. Consequently, all these effects can be used if combined with a masking technique or employing direct focused ion beam writing for a magnetic patterning and thus an imprinting of an artificial magnetic domain structure, which subsequently modifies the integral magnetization reversal behavior or the magnetization dynamics of the film investigated. The present review will summarize how ion irradiation and implantation can affect the magnetic properties by means of structural modifications. The main part will cover the present status with respect to the pure magnetic patterning of micro- and nano structures

  14. Ion implantation for manufacturing bent and periodically bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo, E-mail: guidi@fe.infn.it; Mazzolari, Andrea; Paternò, Gianfranco [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara, Italy and INFN, Section of Ferrara (Italy); Mattei, Giovanni, E-mail: giovanni.mattei@unipd.it; Scian, Carlo [Department of Physics and Astronomy Galileo Galilei, University of Padova, Via Marzolo 8, 35131 Padova (Italy); Lanzoni, Luca [Dipertimento di Economia e Tecnologia, Università degli Studi della Repubblica di San Marino, Salita alla Rocca, 44, 47890 San Marino Città (San Marino)

    2015-08-10

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to produce X-ray beams.

  15. Ion implantation of graphene-toward IC compatible technologies.

    Science.gov (United States)

    Bangert, U; Pierce, W; Kepaptsoglou, D M; Ramasse, Q; Zan, R; Gass, M H; Van den Berg, J A; Boothroyd, C B; Amani, J; Hofsäss, H

    2013-10-09

    Doping of graphene via low energy ion implantation could open possibilities for fabrication of nanometer-scale patterned graphene-based devices as well as for graphene functionalization compatible with large-scale integrated semiconductor technology. Using advanced electron microscopy/spectroscopy methods, we show for the first time directly that graphene can be doped with B and N via ion implantation and that the retention is in good agreement with predictions from calculation-based literature values. Atomic resolution high-angle dark field imaging (HAADF) combined with single-atom electron energy loss (EEL) spectroscopy reveals that for sufficiently low implantation energies ions are predominantly substitutionally incorporated into the graphene lattice with a very small fraction residing in defect-related sites.

  16. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry.

    Science.gov (United States)

    Park, Jin-Woo; Jang, Je-Hee; Lee, Chong Soo; Hanawa, Takao

    2009-07-01

    This study investigated the surface characteristics and bone response of titanium implants produced by hydrothermal treatment using H(3)PO(4), and compared them with those of implants produced by commercial surface treatment methods - machining, acid etching, grit blasting, grit blasting/acid etching or spark anodization. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, contact angle measurement and stylus profilometry. The osteoconductivity of experimental implants was evaluated by removal torque testing and histomorphometric analysis after 6 weeks of implantation in rabbit tibiae. Hydrothermal treatment with H(3)PO(4) and subsequent heat treatment produced a crystalline phosphate ion-incorporated oxide (titanium oxide phosphate hydrate, Ti(2)O(PO(4))(2)(H(2)O)(2); TiP) surface approximately 5microm in thickness, which had needle-like surface microstructures and superior wettability compared with the control surfaces. Significant increases in removal torque forces and bone-to-implant contact values were observed for TiP implants compared with those of the control implants (p<0.001). After thorough cleaning of the implants removed during the removal torque testing, a considerable quantity of attached bone was observed on the surfaces of the TiP implants.

  17. Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?

    NARCIS (Netherlands)

    Wellenberg, Ruud H. H.; Donders, Johanna C. E.; Kloen, Peter; Beenen, Ludo F. M.; Kleipool, Roeland P.; Maas, Mario; Streekstra, Geert J.

    2017-01-01

    To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans. Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel

  18. Yttrium ion implantation on the surface properties of magnesium

    International Nuclear Information System (INIS)

    Wang, X.M.; Zeng, X.Q.; Wu, G.S.; Yao, S.S.

    2006-01-01

    Owing to their excellent physical and mechanical properties, magnesium and its alloys are receiving more attention. However, their application has been limited to the high reactivity and the poor corrosion resistance. The aim of the study was to investigate the beneficial effects of ion-implanted yttrium using a MEVVA ion implanter on the surface properties of pure magnesium. Isothermal oxidation tests in pure O 2 at 673 and 773 K up to 90 min indicated that the oxidation resistance of magnesium had been significantly improved. Surface morphology of the oxide scale was analyzed using scanning electron microscope (SEM). Auger electron spectroscopy (AES) and X-ray diffraction (XRD) analyses indicated that the implanted layer was mainly composed of MgO and Y 2 O 3 , and the implanted layer with a duplex structure could decrease the inward diffusion of oxygen and reduce the outward diffusion of Mg 2+ , which led to improving the oxidation resistance of magnesium. Potentiodynamic polarization curves were used to evaluate the corrosion resistance of the implanted magnesium. The results show yttrium implantation could enhance the corrosion resistance of implanted magnesium compared with that of pure magnesium

  19. The recrystallization of ion-implanted silicon layers

    International Nuclear Information System (INIS)

    Christodoulides, C.E.; Baragiola, R.A.; Chivers, D.; Grant, W.A.; Williams, J.S.

    1978-01-01

    Rutherford backscattering and channeling (RBS) has been employed to investigate the annealing characteristics of ion-bombarded silicon for a wide range of implant species. The general recrystallization behaviour is that high levels of remnant disorder are observed for high-dose (typically > 10 15 ions cm -2 ) implants of all species investigated, and transmission electron microscopy indicates the presence of a polycrystalline reordered layer in such cases. The magnitude of the remnant disorder (misorientation of grains with respect to the underlying bulk substrate) is observed to increase with both implant dose and original amorphous-layer thickness and to exhibit a slight implant-mass dependence. Although the recrystallization behaviour is qualitatively similar for all species studied, certain species (mainly those soluble in silicon) are found to influence the regrowth process at low implant concentrations. It is suggested that stress/strain effects, attributed to high implanted concentrations, play a major role in the inhibition of epitaxial silicon recrystallization but that species effects can become dominant at lower implant concentrations. (author)

  20. Growth of DySi sub 2 layers on Si surface by high-current Dy-ion implantation

    CERN Document Server

    Cheng, X Q

    2003-01-01

    We report, in this paper, the synthesis of DySi sub 2 layers on Si surfaces by high-current Dy-ion implantation in Si wafers using a metal vapor vacuum arc ion source. It was found that the continuous DySi sub 2 layers could grow at a relatively low formation temperature of 190degC and that the surface morphology varied with the variation of the implantation parameters. The formation mechanism of the equilibrium DySi sub 2 phase as well as the continuous DySi sub 2 layer on Si surface is proposed in terms of ion beam heating and the effect of ion dose on the Dy-ion implantation process. (author)

  1. Liquid metal alloy ion sources—An alternative for focussed ion beam technology

    International Nuclear Information System (INIS)

    Bischoff, Lothar; Mazarov, Paul; Bruchhaus, Lars; Gierak, Jacques

    2016-01-01

    Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionally into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.

  2. Experimental and numerical optical characterization of plasmonic copper nanoparticles embedded in ZnO fabricated by ion implantation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Le, Khai Q. [Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh City (Viet Nam); Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia); Nguyen, Hieu P.T. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ 07102 (United States); Ngo, Quang Minh [Institute of Material Sciences, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Canimoglu, Adil [Nigde University, Faculty of Arts and Sciences, Physics Department, Nigde (Turkey); Can, Nurdogan, E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia)

    2016-06-05

    Here we describe the successfully fabrication of metal nanoparticle crystals by implanting copper (Cu) ions into single zinc oxide (ZnO) crystals with ion energy of 400 keV at ion doses of 1 × 10{sup 16} to 1 × 10{sup 17} ions/cm{sup 2}. After implantation and post-annealing treatment, the Cu implanted ZnO produces a broad range of luminescence emissions, ranging from green to yellow. A green luminescence peak at 550 nm could be ascribed to the isolated Cu ions. The changes in luminescence emission bands between the initial implant and annealed suggest that the implants give rise to clustering Cu nanoparticles in the host matrix but that the annealing process dissociates these. Numerical modelling of the Cu nanoparticles was employed to simulate their optical properties including the extinction cross section, electron energy loss spectroscopy and cathodoluminescence. We demonstrate that the clustering of nanoparticles generates Fano resonances corresponding to the generation of multiple resonances, while the isolation of nanoparticles results in intensity amplification. - Highlights: • We present the fabrication of metal nanoparticle crystals by implanting Cu into ZnO. • The luminescence properties were studied at different annealing temperature. • Numerical modelling of the Cu nanoparticles was employed. • We demonstrate that the clustering of nanoparticles generates Fano resonances.

  3. Effect of ion implantation on thin hard coatings

    International Nuclear Information System (INIS)

    Auner, G.; Hsieh, Y.F.; Padmanabhan, K.R.; Chevallier, J.; Soerensen, G.

    1983-01-01

    The surface mechanical properties of thin hard coatings of carbides, nitrides and borides deposited by r.f. sputtering were improved after deposition by ion implantation. The thickness and the stoichiometry of the films were measured by Rutherford backscattering spectrometry and nuclear reaction analysis before and after ion bombardment. The post ion bombardment was achieved with heavy inert ions such as Kr + and Xe + with an energy sufficient to penetrate the film and to reach the substrate. Both the film adhesion and the microhardness were consistently improved. In order to achieve a more detailed understanding, Rb + and Ni + ions were also used as projectiles, and it was found that these ions were more effective than the inert gas ions. (Auth.)

  4. Metals for bone implants. Part 1. Powder metallurgy and implant rendering.

    Science.gov (United States)

    Andani, Mohsen Taheri; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael J; Elahinia, Mohammad

    2014-10-01

    New metal alloys and metal fabrication strategies are likely to benefit future skeletal implant strategies. These metals and fabrication strategies were looked at from the point of view of standard-of-care implants for the mandible. These implants are used as part of the treatment for segmental resection due to oropharyngeal cancer, injury or correction of deformity due to pathology or congenital defect. The focus of this two-part review is the issues associated with the failure of existing mandibular implants that are due to mismatched material properties. Potential directions for future research are also studied. To mitigate these issues, the use of low-stiffness metallic alloys has been highlighted. To this end, the development, processing and biocompatibility of superelastic NiTi as well as resorbable magnesium-based alloys are discussed. Additionally, engineered porosity is reviewed as it can be an effective way of matching the stiffness of an implant with the surrounding tissue. These porosities and the overall geometry of the implant can be optimized for strain transduction and with a tailored stiffness profile. Rendering patient-specific, site-specific, morphology-specific and function-specific implants can now be achieved using these and other metals with bone-like material properties by additive manufacturing. The biocompatibility of implants prepared from superelastic and resorbable alloys is also reviewed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. No Evidence of Genotoxic Damage in a Group of Patients with Titanium Dental Implants and Different Metal Restorations in the Oral Cavity.

    Science.gov (United States)

    Camacho-Alonso, Fabio; Sánchez-Siles, Mariano; Gilbel-del Águila, Osmundo

    2015-08-01

    Titanium is the most widely used metal in implant dentistry. In spite of its biocompatibility, when it is released into the oral environment, it can have local negative biological effects. The aims of this study were to detect the concentration of metal ions in patients with dental implants, to evaluate whether or not their release might be influenced by the presence of other metals, and to assay whether these ions might provoke genotoxic damage in oral mucosa cells. One hundred five patients with a total of 180 dental implants were included. The sample was divided into seven groups (n = 15 per group). Group 1 consisted of patients with metal-porcelain fixed crowns on dental implants; Group 2, patients with metal-porcelain fixed crowns on teeth; Group 3, patients with dental amalgams; Group 4, patients with metal-porcelain fixed crowns on dental implants and metal-porcelain fixed crowns on teeth; Group 5, patients with metal-porcelain fixed crowns on dental implants and dental amalgams; and Group 6, patients with metal-porcelain fixed crowns on dental implants, metal-porcelain fixed crowns on teeth, and dental amalgams. Group 7 was the control group, without any dental treatment. The concentration of metal ions was detected using inductively coupled plasma mass spectrometry; genotoxicity was measured using the buccal micronucleus cytome assay protocol. Group 5 displayed the highest concentration of metal ions in parts per billion (Ti, Co, Ni, Zn, Pd, Sn, and Pb). Group 6 was characterized by the highest presence of Hg. No signs of genotoxic damage were found in any of the study groups. Patients with titanium dental implants combined with other metal restorations presented higher concentrations of metal ions, but no genotoxic damage was observed in oral mucosal epithelial cells. © 2013 Wiley Periodicals, Inc.

  6. Prospective analysis of human leukocyte functional tests reveals metal sensitivity in patients with hip implant

    Science.gov (United States)

    2013-01-01

    Background The aim of the study was to examine the reactivity of peripheral human leukocytes to various metal ions prior and following hip replacement in order to investigate implant-induced metal sensitivity. Methods Three patient groups were set up: (1) individuals without implants and no history of metal allergy (7 cases), (2) individuals without implants and known history of metal allergy (7 cases), and (3) patients undergoing cementless hip replacement (40 cases). Blood samples were taken in groups 1 and 2 at three different occasions; in group 3, prior and 3, 6, 12, 24, and 36 months after surgery. Peripheral leukocytes were separated and left either untreated or challenged with Ti, NiCl2, CoCl2, CrCl3, and phytohemagglutinin. Cell proliferation, cytokine release, and leukocyte migration inhibition assays were performed. Metal-induced reactivity was considered when all three assays showed significant change. Skin patch tests were also carried out. Results Both skin patch tests and leukocyte functional tests were negative in group 1, and both were positive in group 2. In group 3, after 6 months, 12% of the patients showed reactivity to the tested metals except for NiCl2. Following the 36-month period, 18% of group three became sensitive to metals (including all the earlier 12%). In contrast, patch tests were negative at each time point in group 3. Conclusions Orthopedic implant material may induce metal reactivity after implantation in a manner where susceptibility is yet to be elucidated. Leukocyte triple assay technique might be a useful tool to test implant material-related sensitivity. PMID:23680415

  7. Application of TXRF for ion implanter dose matching experiments

    Science.gov (United States)

    Frost, M. R.; French, M.; Harris, W.

    2004-06-01

    Secondary ion mass spectrometry (SIMS) has been utilized for many years to measure the dose of ion implants in silicon for the purpose of verifying the ability of ion implantation equipment to accurately and reproducibly implant the desired species at the target dose. The development of statistically and instrumentally rigorous protocols has lead to high confidence levels, particularly with regard to accuracy and short-term repeatability. For example, high-dose, high-energy B implant dosimetry can be targeted to within ±1%. However, performing dose determination experiments using SIMS does have undesirable aspects, such as being highly labor intensive and sample destructive. Modern total reflection X-ray fluorescence (TXRF) instruments are equipped with capabilities for full 300 mm wafer handling, automated data acquisition software and intense X-ray sources. These attributes enable the technique to overcome the SIMS disadvantages listed above, as well as provide unique strengths that make it potentially highly amenable to implanter dose matching. In this paper, we report on data collected to date that provides confidence that TXRF is an effective and economical method to perform these measurements within certain limitations. We have investigated a number of ion implanted species that are within the "envelope" of TXRF application. This envelope is defined by a few important parameters. Species: For the anode materials used in the more common X-ray sources on the market, each has its own set of elements that can be detected. We have investigated W and Mo X-ray sources, which are the most common in use in commercial instrumentation. Implant energy: In general, if the energy of the implanted species is too high (or more specifically, the distribution of the implanted species is too deep), the amount of dopant not detected by TXRF may be significant, increasing the error of the measurement. Therefore, for each species investigated, the implant energy cannot exceed a

  8. Amorphous GaP produced by ion implantation

    International Nuclear Information System (INIS)

    Shimada, T.; Kato, Y.; Shiraki, Y.; Komatsubara, K.F.

    1976-01-01

    Two types of non-crystalline states ('disordered' and 'amorphous') of GaP were produced by using ion implantation and post annealing. A structural-phase-transition-like annealing behaviour from the 'disordered' state to the 'amorphous' state was observed. The ion dose dependence and the annealing behaviour of the atomic structure of GaP implanted with 200 keV -N + ions were studied by using electron diffraction, backscattering and volume change measurements. The electronic structure was also investigated by measuring optical absorption and electrical conductivity. The implanted layer gradually loses the crystalline order with the increase of the nitrogen dose. The optical absorption coefficient α and electric conductivity sigma of GaP crystals implanted with 200 keV -N + ions of 1 x 10 16 cm -2 were expressed as αhν = C(hν - E 0 )sup(n) and log sigma = A -BTsup(-1/4), respectively. Moreover, the volume of the implanted layer increased about three percent and the electron diffraction pattern was diffused halo whose intensity monotonically decreases along the radial direction. These results indicate that the as-implanted layer has neither a long range order or short range order ('disordered state'). In the sample implanted at 1 x 10 16 cm -2 , a structural phase-transition-like annealing stage was observed at around 400 0 C. That is, the optical absorption coefficient abruptly fell off from 6 x 10 4 to 7 x 10 3 cm -1 and the volume of the implanted layer decreased about 2% within an increase of less than 10 degrees in the anneal temperature. Moreover, the short range order of the lattice structure appeared in the electron diffraction pattern. According to the backscattering experiment, the heavily implanted GaP was still in the non-crystalline state even after annealing. These facts suggest that heavily implanted GaP, followed by annealing at around 400 0 C, is in the 'amorphous' state, although as-implanted GaP is not in the 'amorphous' state but in the

  9. Characterization of duplex hard coatings with additional ion implantation

    Directory of Open Access Journals (Sweden)

    B. Škorić

    2012-01-01

    Full Text Available In this paper, we present the results of a study of TiN thin fi lms which are deposited by a Physical Vapour Deposition (PVD and Ion Beam Assisted Deposition (IBAD. In the present investigation the subsequent ion implantation was provided with N+2 ions. The ion implantation was applied to enhance the mechanical properties of surface. The thin film deposition process exerts a number of eff ects such as crystallographic orientation, morphology, topography, densifi cation of the fi lms. The evolution of the microstructure from porous and columnar grains to densel packed grains is accompanied by changes in mechanical and physical properties. A variety of analytic techniques were used for characterization, such as scratch test, calo test, Scanning electron microscopy (SEM, Atomic Force Microscope (AFM, X-ray diff raction (XRD and Energy Dispersive X-ray analysis (EDAX.

  10. Study of defects, radiation damage and implanted gases in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.; Amano, J.; Wagner, A.

    1980-10-01

    The ability of the field-ion microscope to image individual atoms has been applied, at Cornell University, to the study of fundamental properties of point defects in irradiated or quenched metals. The capability of the atom probe field-ion microscope to determine the chemistry - that is, the mass-to-charge ratio - of a single ion has been used to investigate the behavior of different implanted species in metals. A brief review is presented of: (1) the basic physical principles of the field-ion and atom-probe microscopes; (2) the many applications of these instruments to the study of defects and radiation damage in solids; and (3) the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interests in detail

  11. Semiconductor applications of plasma immersion ion implantation ...

    Indian Academy of Sciences (India)

    Unknown

    implantation technology. MUKESH KUMAR*, RAJKUMAR†, DINESH KUMAR and P J GEORGE. Department of Electronic Science, Kurukshetra University, Kurukshetra 136 119, India. †Semiconductor Complex Ltd., Industrial Area Phase 8, Mohali 160 059, India. Abstract. Many semiconductor integrated circuit ...

  12. Operations manual for the plasma source ion implantation economics program

    International Nuclear Information System (INIS)

    Bibeault, M.L.; Thayer, G.R.

    1995-10-01

    Plasma Source Ion Implantation (PSII) is a surface modification technique for metal. PSIICOSTMODEL95 is an EXCEL-based program that estimates the cost for implementing a PSII system in a manufacturing setting where the number of parts to be processed is over 5,000 parts per day and the shape of each part does not change from day to day. Overall, the manufacturing process must be very well defined and should not change. This document is a self-contained manual for PSIICOSTMODEL95. It assumes the reader has some general knowledge of the technical requirements for PSII. Configuration of the PSII process versus design is used as the methodology in PSIICOSTMODEL95. The reason behind this is twofold. First, the design process cannot be programmed into a computer when the relationships between design variables are not understood. Second, the configuration methodology reduces the number of assumptions that must be programmed into our software. Misuse of results are less likely to occur if the user has fewer assumptions to understand

  13. Large area buried nanopatterning by broad ion implantation without any mask or direct writing

    OpenAIRE

    Karmakar, Prasanta; Satpati, Biswarup

    2013-01-01

    We have introduced here a simple, single step and cost effective broad ion beam technique for preparation of nanoscale electronic, magnetic, optical and mechanical devices without the need of resist, mask, or focused electron and ion beams. In this approach, broad beam ion implantation of desired atom on a prefabricated ion beam patterned surface promotes site selective deposition by adjusting the local angle of ion implantation. We show that implantation of Fe ions on an O+ induced pre fabri...

  14. Chemical effects induced by ion implantation in molecular solids

    Energy Technology Data Exchange (ETDEWEB)

    Foti, G.; Calcagno, L. (Catania Univ. (Italy). Ist. di Struttura della Materia); Puglisi, O. (Catania Univ. (Italy). Ist. Dipartimentale di Chimica e di Chimica Industriale)

    1983-05-01

    Ion implantation in molecular solids as ice, frozen noble gases, benzene and polymers produces a large amount of new molecules compared to the starting materials. Mass and energy analysis of ejected molecules together with the erosion yield, are discussed for several ion-target combinations at low temperature. The observed phenomena are analyzed in terms of deposited energy in electronic and nuclear collisions, for incoming beams, as helium or argon, in the range 10-2000 keV.

  15. Materials science issues of plasma source ion implantation

    International Nuclear Information System (INIS)

    Nastasi, M.; Faehl, R.J.; Elmoursi, A.A.

    1996-01-01

    Ion beam processing, including ion implantation and ion beam assisted deposition (IBAD), are established surface modification techniques which have been used successfully to synthesize materials for a wide variety of tribological applications. In spite of the flexibility and promise of the technique, ion beam processing has been considered too expensive for mass production applications. However, an emerging technology, Plasma Source Ion Implantation (PSII), has the potential of overcoming these limitations to become an economically viable tool for mass industrial applications. In PSII, targets are placed directly in a plasma and then pulsed-biased to produce a non-line-of-sight process for intricate target geometries without complicated fixturing. If the bias is a relatively high negative potential (20--100 kV) ion implantation will result. At lower voltages (50--1,200 V), deposition occurs. Potential applications for PSII are in low-value-added products such as tools used in manufacturing, orthopedic devices, and the production of wear coatings for hard disk media. This paper will focus on the technology and materials science associated with PSII

  16. Single track regime in ion implanted polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Licciardello, A.; Puglisi, O.; Calcagno, L.; Foti, G.

    1988-05-01

    The molecular weight distribution (MWD) of nearly monodisperse polystyrene thin films is heavily affected by ion bombardment. The main effect is an increase of the MW and is detectable at fluences as low as 10/sup 11/ ions cm/sup -2/ for 400 keV Ar/sup +/ bombardment. A statistical model, here outlined for the first time, allows us the predict the size distribution of these high MW components. From the analysis of the MWD curves one can extract useful information concerning the lateral dimensions of the ion tracks.

  17. Damage and in-situ annealing during ion implantation

    International Nuclear Information System (INIS)

    Sadana, D.K.; Washburn, J.; Byrne, P.F.; Cheung, N.W.

    1982-11-01

    Formation of amorphous (α) layers in Si during ion implantation in the energy range 100 keV-11 MeV and temperature range liquid nitrogen (LN)-100 0 C has been investigated. Cross-sectional transmission electron microscopy (XTEM) shows that buried amorphous layers can be created for both room temperature (RT) and LN temperature implants, with a wider 100 percent amorphous region for the LN cooled case. The relative narrowing of the α layer during RT implantation is attributed to in-situ annealing. Implantation to the same fluence at temperatures above 100 0 C does not produce α layers. To further investigate in situ annealing effects, specimens already containing buried α layers were further irradiated with ion beams in the temperature range RT-400 0 C. It was found that isolated small α zones (less than or equal to 50 diameter) embedded in the crystalline matrix near the two α/c interfaces dissolved into the crystal but the thickness of the 100 percent α layer was not appreciably affected by further implantation at 200 0 C. A model for in situ annealing during implantation is presented

  18. Biological effect of nitrogen ion implantation on stevia

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Chen Qiufang; Shu Shizhen

    1997-10-01

    Dry seed of stevia were implanted by 35∼150 keV nitrogen ions with various doses. The biological effect in M 1 was studied. The results showed that nitrogen ion beam was able to induce variation on chromosome structure in root tip cells. The rate of cells with chromosome aberration was increased with ion beam energy and dose added, but there was on significant linear regression relationship between ion dose and aberration rate. The results indicated the seedling height reduced with the increasing of dose for ion beam. The biological effect of nitrogen ion beam on M 1 stevia was lower than that of γ-rays. (6 refs., 1 fig., 4 tabs.)

  19. Techniques and equipment for non-semiconductor applications of ion implantation

    Science.gov (United States)

    Dearnaley, G.; Goode, P. D.

    1981-10-01

    Ion implantation is now being applied successfully to the treatment of engineering tools and components in order to improve their resistance to wear, fatique and oxidation. Examples are given to show the effectiveness of the process in steels, chromium, cemented carbides and titanium alloys. These applications have led to the development of a new range of equipment to provide the necessary high beam currents and versatile work-handling facilities. The process of bombardment-diffused coating (BDC), by which a thin metallic coating is caused to diffuse into the substrate under ion bombardment, is providing new possibilities for tailoring the surface properties of materials to meet arduous conditions.

  20. Ion Implantation Studies of Titanium Metal Surfaces.

    Science.gov (United States)

    1981-01-01

    this peak for both titanium and vanadium . It cannot be associated with an inter-band excitation of any of the oxygen states since it appears in the...Half inch diameter polycrystalline rods of titanium monoxide (TiO), titanium dioxide (TiO 2 and titanium sesquioxide (Ti2 03 ) were obtained from

  1. Quantum Hall samples prepared by helium-ion implantation

    International Nuclear Information System (INIS)

    Bruus, H.; Lindelof, P.E.; Veje, E.

    1990-01-01

    We have produced GaAs/GaAlAs heterostructure based quantum Hall samples with a wide range of electron mobilities using ion implantation. The purpose has been to optimize the samples for use in metrology. We have in particular studied the critical current and the non-ohmic behavior of our samples in the vicinity of a quantum Hall plateau. (orig.)

  2. Lattice sites of ion-implanted Li in diamond

    NARCIS (Netherlands)

    Restle, M.; Bharuth-Ram, K.; Quintel, H.; Ronning, C. R.; Hofsäss, H. C.; Jahn, S. G.; Wahl, U.

    1995-01-01

    Published in: Appl. Phys. Lett. 66 (1995) 2733-2735 citations recorded in [Science Citation Index] Abstract: Radioactive Li ions were implanted into natural IIa diamonds at temperatures between 100 K and 900 K. Emission channelling patterns of a-particles emitted in the nuclear decay of 8Li (t1/2 =

  3. Extreme Precipitation Strengthening in Ion-Implanted Nickel

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Knapp, J.A.; Myers, S.M.; Petersen, G.A.

    1999-01-01

    Precipitation strengthening of nickel was investigated using ion-implantation alloying and nanoindentation testing for particle separations in the nanometer range and volume fractions extending above 10O/O. Ion implantation of either oxygen alone or oxygen plus aluminum at room temperature was shown to produce substantial strengthening in the ion-treated layer, with yield strengths near 5 GPa in both cases. After annealing to 550''C the oxygen-alone layer loses much of the benefit, with its yield strength reduced to 1.2 GP but the dual ion-implanted layer retains a substantially enhanced yield strength of over 4 GPa. Examination by transmission electron f microscopy showed very fine dispersions of 1-5 nm diameter NiO and y-A1203 precipitates in the implanted layers before annealing. The heat treatment at 550''C induced ripening of the NiO particles to sizes ranging from 7 to 20 nm, whereas the more stable -A1203 precipitates were little changed. The extreme strengthening we observe is in semiquantitative agreement with predictions based on the application of dispersion-hardening theory to these microstructure

  4. Raman microprobe measurements of stress in ion implanted materials

    International Nuclear Information System (INIS)

    Nugent, K.W.; Prawer, S.; Weiser, P.S.; Dooley, S.P.

    1993-01-01

    Raman microprobe measurements of ion implanted diamond and silicon have shown significant shifts in the Raman line due to stresses in the materials. The Raman line shifts to higher energy if the stress is compressive and to lower energy for tensile stress 1 . The silicon sample was implanted in a 60 μm square with 2.56 x 10 17 ions per square centimeter of 2 MeV Helium. This led to the formation of raised squares with the top 370mm above the original surface. In Raman studies of silicon using visible light, the depth of penetration of the laser beam into the sample is much less than one micron. It was found that the Raman line is due to the silicon overlying the damage region. The diamond sample was implanted with 2 x 10 15 ions per square centimeter of 2.8 MeV carbon. It was concluded that the Raman spectrum could provide information concerning both the magnitude and the direction of stress in an ion implanted sample. It was possible in some cases to determine whether the stress direction is parallel or perpendicular to the sample surface. 1 refs., 2 figs

  5. Surface ion implantation induced by laser-generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Giuffrida, L.; Torrisi, L.; Gammino, S.; Wolowski, J.; Ullschmied, Jiří

    2010-01-01

    Roč. 165, 6-10 (2010), s. 534-542 ISSN 1042-0150. [International Workshop on Pulsed Plasma Laser Ablation (PPLA)/4./. Monte Pieta, Messina, 18.06.2009-20.06.2009] Institutional support: RVO:61389021 Keywords : laser ablation * laser plasma * ion implantation * RBS analysis Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.660, year: 2010

  6. Plasma effects for heavy ions in implanted silicon detectors

    International Nuclear Information System (INIS)

    Aiello, S.; Anzalone, A.; Campisi, M.G.; Cardella, G.; Cavallaro, Sl.; Filippo, E. De; Geraci, E.; Geraci, M.; Guazzoni, P.; Manno, M.C. Iacono; Lanzalone, G.; Lanzano, G.; Nigro, S. Lo; Pagano, A.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Sambataro, S.; Sperduto, M.L.; Sutera, C.; Zetta, L.

    1999-01-01

    Plasma effects for heavy ions in implanted silicon detectors have been investigated for different detector characteristics as a function of type and energy of the detected particles. A new approach is presented and used to reproduce the effect of the plasma delay in the timing performances. The results are in good agreement with the present data and with previous measurements found in the literature

  7. Raman microprobe measurements of stress in ion implanted materials

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K.W.; Prawer, S.; Weiser, P.S.; Dooley, S.P. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    Raman microprobe measurements of ion implanted diamond and silicon have shown significant shifts in the Raman line due to stresses in the materials. The Raman line shifts to higher energy if the stress is compressive and to lower energy for tensile stress{sup 1}. The silicon sample was implanted in a 60 {mu}m square with 2.56 x 10{sup 17} ions per square centimeter of 2 MeV Helium. This led to the formation of raised squares with the top 370mm above the original surface. In Raman studies of silicon using visible light, the depth of penetration of the laser beam into the sample is much less than one micron. It was found that the Raman line is due to the silicon overlying the damage region. The diamond sample was implanted with 2 x 10{sup 15} ions per square centimeter of 2.8 MeV carbon. It was concluded that the Raman spectrum could provide information concerning both the magnitude and the direction of stress in an ion implanted sample. It was possible in some cases to determine whether the stress direction is parallel or perpendicular to the sample surface. 1 refs., 2 figs.

  8. Ion implantation planar in targets with semi-cylindrical grooves

    International Nuclear Information System (INIS)

    Filiz, Y.; Demokan, O.

    2002-01-01

    The experimental and numerical investigations suggest that the ion-matrix phase of the sheath evolution plays a crucial role in determining the ion flux to the target surfaces . It can easily be realized that conformal mapping of the target's surface by the sheath is questionable, or even inapplicable in the case of surfaces with fine irregularities or this continuities. The theoretical analysis of such cases is evidently quite complicated. On the other hand, most actual targets fall into this category, and hence, the understanding of the corresponding sheath behavior remains vital for accomplishing uniform implantation. The ion- matrix sheaths have been treated analytically by Conrad for planar, cylindrical and spherical targets successfully. Similar y, Sheridan and Zang et al. have investigated the ion matrix sheath in cylindrical bores, without and with axial electrodes, respectively. All these works assumed targets with infinite areas or length, Zeng et al. and Kwok et al. have started studying implantation into grooves, by carrying out simulations for the inner and outer races of bearings, which are modeled as semi- cylinders of infinite length. Finally, Demokan has presented the first analytic treatment of on matrix sheaths in two- dimensions, by considering targets with rectangular grooves of infinite length, representing a broad range of industrial items. In this work, ion-matrix sheath near infinite length are theoretically analysed. Understanding the sheath formation near such targets is essential for achieving successful ion implantation on the surfaces of a broad range of industrial products, including all types of bearings. The potential profiles both inside and outside the groove are derived and the consequent ion velocity higher plasma densities may improve the uniformity of implantation on the surfaces of such grooves. Furthermore, the sheath edge deformation due to the grooves, the variation of the angle of incidence on the surface of the groove

  9. Substitutionality of Ge atoms in ion implanted AlSb

    International Nuclear Information System (INIS)

    Yu, K.M.; Moll, A.J.; Chan, N.; Walukiewicz, W.; Becla, P.

    1995-01-01

    The substitution of Ge atoms into ion implanted AlSb is investigated by extended x-ray absorption fine structure spectroscopy. Our results reveal that in the as-implanted material, the implanted Ge atoms are equally distributed between two specific sites, one surrounded by Al atoms and the other surrounded by Sb atoms. After annealing at 750 degree C for 5 s, the coordination number of the Ge atoms increases from ∼3 to ∼4 indicating solid phase regrowth of the implantation induced amorphous surface layer. Moreover, in the annealed AlSb, the substitution of Ge atoms into the Al sublattice dominates with an estimated Ge Al :[Ge Sb ]∼0.8:0.2. These results suggest that Ge atoms act preferentially as donor species in AlSb

  10. Patch testers' opinions regarding diagnostic criteria for metal hypersensitivity reactions to metallic implants

    DEFF Research Database (Denmark)

    Schalock, Peter C; Thyssen, Jacob P

    2013-01-01

    Metal hypersensitivity reactions to implanted devices remain a challenging and controversial topic. Diagnostic criteria and methods are not well delineated.......Metal hypersensitivity reactions to implanted devices remain a challenging and controversial topic. Diagnostic criteria and methods are not well delineated....

  11. Negative-ion current density dependence of the surface potential of insulated electrode during negative-ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.

    1994-01-01

    Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)

  12. Characterization of PEEK, PET and PI implanted with Mn ions and sub-sequently annealed

    International Nuclear Information System (INIS)

    Mackova, A.; Malinsky, P.; Miksova, R.; Pupikova, H.; Khaibullin, R.I.; Slepicka, P.; Gombitová, A.; Kovacik, L.; Svorcik, V.; Matousek, J.

    2014-01-01

    Polyimide (PI), polyetheretherketone (PEEK) and polyethylene terephthalate (PET) foils were implanted with 80 keV Mn + ions at room temperature at fluencies of 1.0 × 10 15 –1.0 × 10 16 cm −2 . Mn depth profiles determined by RBS were compared to SRIM 2012 and TRIDYN simulations. The processes taking place in implanted polymers under the annealing procedure were followed. The measured projected ranges R P differ slightly from the SRIM and TRIDYN simulation and the depth profiles are significantly broader (up to 2.4 times) than those simulated by SRIM, while TRIDYN simulations were in a reasonable agreement up to the fluence 0.5 × 10 16 in PEEK. Oxygen and hydrogen escape from the implanted layer was examined using RBS and ERDA techniques. PET, PEEK and PI polymers exhibit oxygen depletion up to about 40% of its content in virgin polymers. The compositional changes induced by implantation to particular ion fluence are similar for all polymers examined. After annealing no significant changes of Mn depth distribution was observed even the further oxygen and hydrogen desorption from modified layers appeared. The surface morphology of implanted polymers was characterized using AFM. The most significant change in the surface roughness was observed on PEEK. Implanted Mn atoms tend to dissipate in the polymer matrix, but the Mn nanoparticles are too small to be observed on TEM micrographs. The electrical, optical and structural properties of the implanted and sub-sequently annealed polymers were investigated by sheet resistance measurement and UV–Vis spectroscopy. With increasing ion fluence, the sheet resistance decreases and UV–Vis absorbance increases simultaneously with the decline of optical band gap E g . The most pronounced change in the resistance was found on PEEK. XPS spectroscopy shows that Mn appears as a mixture of Mn oxides. Mn metal component is not present. All results were discussed in comparison with implantation experiment using the various ion

  13. Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor involved in hypoxia, and is a potent coping mechanism for cells to rapidly respond to changing metabolic demands. We measured signature hypoxia associated responses (i.e. HIF-1α, VEGF and TNF-α to Cobalt-alloy implant debris both in vitro (using a human THP-1 macrophage cell line and primary human monocytes/macrophages and in vivo. HIF-1α in peri-implant tissues of failed metal-on-metal implants were compared to similar tissues from people with metal-on-polymer hip arthroplasties, immunohistochemically. Increasing concentrations of cobalt ions significantly up-regulated HIF-1α with a maximal response at 0.3 mM. Cobalt-alloy particles (1 um-diameter, 10 particles/cell induced significantly elevated HIF-1α, VEGF, TNF-α and ROS expression in human primary macrophages whereas Titanium-alloy particles did not. Elevated expression of HIF-1α was found in peri-implant tissues and synovial fluid of people with failing Metal-on-Metal hips (n = 5 compared to failed Metal-on-Polymer articulating hip arthroplasties (n = 10. This evidence suggests that Cobalt-alloy, more than other metal implant debris (e.g. Titanium alloy, can elicit hypoxia-like responses that if unchecked can lead to unusual peri-implant pathologies, such as lymphocyte infiltration, necrosis and excessive fibrous tissue growths.

  14. Cutaneous and systemic hypersensitivity reactions to metallic implants

    DEFF Research Database (Denmark)

    Basko-Plluska, Juliana L; Thyssen, Jacob P; Schalock, Peter C

    2011-01-01

    ) following the insertion of intravascular stents, dental implants, cardiac pacemakers, or implanted gynecologic devices. Despite repeated attempts by researchers and clinicians to further understand this difficult area of medicine, the association between metal sensitivity and cutaneous allergic reactions......Cutaneous reactions to metal implants, orthopedic or otherwise, are well documented in the literature. The first case of a dermatitis reaction over a stainless steel fracture plate was described in 1966. Most skin reactions are eczematous and allergic in nature, although urticarial, bullous......, and vasculitic eruptions may occur. Also, more complex immune reactions may develop around the implants, resulting in pain, inflammation, and loosening. Nickel, cobalt, and chromium are the three most common metals that elicit both cutaneous and extracutaneous allergic reactions from chronic internal exposure...

  15. Preventing Bacterial Infections using Metal Oxides Nanocoatings on Bone Implant

    Science.gov (United States)

    Duceac, L. D.; Straticiuc, S.; Hanganu, E.; Stafie, L.; Calin, G.; Gavrilescu, S. L.

    2017-06-01

    Nowadays bone implant removal is caused by infection that occurs around it possibly acquired after surgery or during hospitalization. The purpose of this study was to reveal some metal oxides applied as coatings on bone implant thus limiting the usual antibiotics-resistant bacteria colonization. Therefore ZnO, TiO2 and CuO were synthesized and structurally and morphologically analized in order to use them as an alternative antimicrobial agents deposited on bone implant. XRD, SEM, and FTIR characterization techniques were used to identify structure and texture of these nanoscaled metal oxides. These metal oxides nanocoatings on implant surface play a big role in preventing bacterial infection and reducing surgical complications.

  16. Charging of dielectric substrate materials during plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tian Xiubo; Fu, Ricky K.Y.; Chen Junying; Chu, Paul K.; Brown, Ian G.

    2002-01-01

    We have investigated the electrostatic charging effects of dielectric substrate materials during plasma immersion ion implantation. The results demonstrate that the time-dependent surface potential (negative) may be reduced in magnitude due to the charging effect of the dielectric surface, leading in turn to a reduction in the energy of the incident ions and a broadening of the implanted ion energy spectrum. The charging effect is greater during the plasma immersion bias pulse rise-time, and the electrostatic potential charging may be as large as 75% of the total applied (pulse) potential. This is due to abundant charge movement both of ions and secondary electrons, and has been confirmed by computer simulation. The plasma sheath capacitance has a small influence on the surface potential, via the bias pulse rise-time. Processing parameters, for example voltage, pulse duration, plasma density, and pulse rise-time, have a critical influence on the charging effects. Short pulse duration, high pulse frequency and low plasma density are beneficial from the viewpoint of maximizing the implantation ion energy

  17. Coloration of natural beryl by iron ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Khaibullin, R.I. E-mail: rik@kfti.knc.ru; Lopatin, O.N.; Vagizov, F.G.; Bazarov, V.V.; Bakhtin, A.I.; Khaibullin, I.B.; Aktas, B

    2003-05-01

    Natural colorless crystals of Ural beryl were implanted at room temperature with 40 keV Fe{sup +} ions with fluences in the range of 0.5-1.5 x 10{sup 17} ion/cm{sup 2}. As-implanted samples show dark-grey tone due to radiation damage of beryl crystal. Subsequent thermal annealing of irradiated crystals in oxygen at 600 deg. C for 30 min results in the color change, to yellowish or yellow-orange tones with golden luster, depending on value of iron fluence. The nature of beryl coloration was studied by optical absorption, Moessbauer and Rutherford backscattering (RBS) spectroscopes. It was established that the thermal treatment of iron-irradiated beryl lead to inward diffusive redistribution of iron ions. An appearance of optical absorption bands connected with charge-transfers O{sup 2-} {yields} Fe{sub VI}{sup 3+} and O{sup 2-} {yields} Fe{sub IV}{sup 2+}, Fe{sub IV}{sup 3+} determine the yellow tone in colored beryls. Most of implanted iron ions are founded in both tetrahedral Fe{sub IV}{sup 2+} and octahedral Fe{sub VI}{sup 3+} sites where they may substitute beryllium and aluminum host ions by isomorphic way.

  18. The use of an ion-beam source to alter the surface morphology of biological implant materials

    Science.gov (United States)

    Weigand, A. J.

    1978-01-01

    An electron-bombardment ion-thruster was used as a neutralized-ion-beam sputtering source to texture the surfaces of biological implant materials. The materials investigated included 316 stainless steel; titanium-6% aluminum, 4% vanadium; cobalt-20% chromium, 15% tungsten; cobalt-35% nickel, 20% chromium, 10% molybdenum; polytetrafluoroethylene; polyoxymethylene; silicone and polyurethane copolymer; 32%-carbon-impregnated polyolefin; segmented polyurethane; silicone rubber; and alumina. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion-texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion-textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion-textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane have been obtained.

  19. Allergy to orthopedic metal implants - a prospective study.

    Science.gov (United States)

    Kręcisz, Beata; Kieć-Świerczyńska, Marta; Chomiczewska-Skóra, Dorota

    2012-09-01

    Evaluation of the allergenic properties of the metal knee or hip joint implants 24 months post surgery and assessment of the relation between allergy to metals and metal implants failure. The study was conducted in two stages. Stage I (pre-implantation) - 60 patients scheduled for arthroplasty surgery. Personal interview, dermatological examination and patch testing with 0.5% potassium dichromate, 1.0% cobalt chloride, 5.0% nickel sulfate, 2.0% copper sulfate, 2.0% palladium chloride, 100% aluminum, 1% vanadium chloride, 5% vanadium, 10% titanium oxide, 5% molybdenum and 1% ammonium molybdate tetrahydrate were performed. Stage II (post-surgery) - 48 subjects participated in the same procedures as those conducted in Stage I. Stage I - symptoms of "metal dermatitis" were found in 21.7% of the subjects: 27.9% of the females, 5.9% of the males. Positive patch test results were found in 21.7% of the participants, namely to: nickel (20.0%); palladium (13.3%); cobalt (10.0%); and chromium (5.9%). The allergy to metals was confirmed by patch testing in 84.6% of the subjects with a history of metal dermatitis. Stage II - 10.4% of the participants complained about implant intolerance, 4.2% of the examined persons reported skin lesions. Contact allergy to metals was found in 25.0% of the patients: nickel 20.8%, palladium 10.4%, cobalt 16.7%, chromium 8.3%, vanadium 2.1% Positive post-surgery patch tests results were observed in 10.4% of the patients. The statistical analysis of the pre- and post-surgery patch tests results showed that chromium and cobalt can be allergenic in implants. Metal orthopedic implants may be the primary cause of allergies. that may lead to implant failure. Patch tests screening should be obligatory prior to providing implants to patients reporting symptoms of metal dermatitis. People with confirmed allergies to metals should be provided with implants free from allergenic metals.

  20. Modification of the Properties of Vanadium Oxide Thin Films by Plasma-Immersion Ion Implantation

    Directory of Open Access Journals (Sweden)

    Sergey Burdyukh

    2018-01-01

    Full Text Available The paper describes the effect of doping with hydrogen and tungsten by means of plasma-immersion ion implantation (PIII on the properties of vanadium dioxide and hydrated vanadium pentoxide films. It is shown that the parameters of the metal-insulator phase transition in VO2 thin films depend on the hydrogen implantation dose. Next, we explore the effect of PIII on composition, optical properties, and the internal electrochromic effect (IECE in V2O5·nH2O films. The variations in the composition and structure caused by the hydrogen insertion, as well as those caused by the electrochromic effect, are studied by nuclear magnetic resonance, thermogravimetry, Raman spectroscopy, and X-ray structural analysis. It is shown that the ion implantation-induced hydrogenation can substantially enhance the manifestation and performance of the IECE in V2O5 xerogel films. Finally, the effect of PIII-assisted doping with W on the parameters of electrical switching in Au/V2O5·nH2O/Au sandwich structures is examined. It is shown that implanting small tungsten doses improves the switching parameters after forming. When implanting large doses, switching is observed without electroforming, and if electroforming is applied, the switching effect, on the contrary, disappears.

  1. Sequential multiple-step europium ion implantation and annealing of GaN

    KAUST Repository

    Miranda, S. M C

    2014-01-20

    Sequential multiple Eu ion implantations at low fluence (1×1013 cm-2 at 300 keV) and subsequent rapid thermal annealing (RTA) steps (30 s at 1000 °C or 1100 °C) were performed on high quality nominally undoped GaN films grown by metal organic chemical vapour deposition (MOCVD) and medium quality GaN:Mg grown by hydride vapour phase epitaxy (HVPE). Compared to samples implanted in a single step, multiple implantation/annealing shows only marginal structural improvement for the MOCVD samples, but a significant improvement of crystal quality and optical activation of Eu was achieved in the HVPE films. This improvement is attributed to the lower crystalline quality of the starting material, which probably enhances the diffusion of defects and acts to facilitate the annealing of implantation damage and the effective incorporation of the Eu ions in the crystal structure. Optical activation of Eu3+ ions in the HVPE samples was further improved by high temperature and high pressure annealing (HTHP) up to 1400 °C. After HTHP annealing the main room temperature cathodo- and photoluminescence line in Mg-doped samples lies at ∼ 619 nm, characteristic of a known Mg-related Eu3+ centre, while after RTA treatment the dominant line lies at ∼ 622 nm, typical for undoped GaN:Eu. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sequential multiple-step europium ion implantation and annealing of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, S.M.C. [Instituto Superior Tecnico, Campus Tecnologico e Nuclear, Estrada Nacional 10, 2695-066 Bobadela LRS (Portugal); Instituut voor Kern- en Stralingsfysica, KU Leuven, 3001 Leuven (Belgium); Edwards, P.R.; O' Donnell, K.P. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland (United Kingdom); Bockowski, M. [Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw (Poland); Alves, E.; Lorenz, K. [Instituto Superior Tecnico, Campus Tecnologico e Nuclear, Estrada Nacional 10, 2695-066 Bobadela LRS (Portugal); Roqan, I.S. [King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal 23955-6900 (Saudi Arabia); Vantomme, A. [Instituut voor Kern- en Stralingsfysica, KU Leuven, 3001 Leuven (Belgium)

    2014-02-15

    Sequential multiple Eu ion implantations at low fluence (1 x 10{sup 13} cm{sup -2} at 300 keV) and subsequent rapid thermal annealing (RTA) steps (30 s at 1000 C or 1100 C) were performed on high quality nominally undoped GaN films grown by metal organic chemical vapour deposition (MOCVD) and medium quality GaN:Mg grown by hydride vapour phase epitaxy (HVPE). Compared to samples implanted in a single step, multiple implantation/annealing shows only marginal structural improvement for the MOCVD samples, but a significant improvement of crystal quality and optical activation of Eu was achieved in the HVPE films. This improvement is attributed to the lower crystalline quality of the starting material, which probably enhances the diffusion of defects and acts to facilitate the annealing of implantation damage and the effective incorporation of the Eu ions in the crystal structure. Optical activation of Eu{sup 3+} ions in the HVPE samples was further improved by high temperature and high pressure annealing (HTHP) up to 1400 C. After HTHP annealing the main room temperature cathodo- and photoluminescence line in Mg-doped samples lies at ∝ 619 nm, characteristic of a known Mg-related Eu{sup 3+} centre, while after RTA treatment the dominant line lies at ∝ 622 nm, typical for undoped GaN:Eu. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. The ion implanter of the Institute of Nuclear Physics and its application in the ion engineering; Implantator jonow IFJ i jego wykorzystanie w inzynierii jonowej

    Energy Technology Data Exchange (ETDEWEB)

    Drwiega, M.; Lipinska, E.; Lazarski, S.; Wierba, M.

    1993-09-01

    The device used for ion implantation is described in detail. It is built with the use of electromagnetic ion separator and consists of: ion source, ion beam system, ion mass analyzer and target chamber. The device parameters are also given. 14 refs, 5 figs, 2 tabs.

  4. Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance.

    Science.gov (United States)

    Hou, Xinggang; Ma, Huiyan; Liu, Feng; Deng, Jianhua; Ai, Yukai; Zhao, Xinlei; Mao, Dong; Li, Dejun; Liao, Bin

    2015-12-15

    TiO2 thin films were deposited by spin coating method. Silver ions were implanted into the films using a Metal Vapor Vacuum Arc implanter. The antibacterial ability of implanted films was tested using Escherichia coli removal under fluorescent irradiation and in the dark. The concentration of E. coli was evaluated by plating technique. The photocatalytic efficiency of the implanted films was studied by degradation of methyl orange under fluorescent illumination. The surface free energy of the implanted TiO2 films was calculated by contact angle testing. Vitamin C was used as radical scavengers to explore the antibacterial mechanism of the films. The results supported the model that both generation of reactive oxygen species and release of silver ions played critical roles in the toxic effect of implanted films against E. coli. XPS experimental results demonstrated that a portion of the Ag(Ag(3+)) ions were doped into the crystalline lattice of TiO2. As demonstrated by density functional theory calculations, the impurity energy level of subtitutional Ag was responsible for enhanced absorption of visible light. Ag ion-implanted TiO2 films with excellent antibacterial efficiency against bacteria and decomposed ability against organic pollutants could be potent bactericidal surface in moist environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. [In vitro analysis of the impact of metal ions on human lymphocyte cultures].

    Science.gov (United States)

    Hagmann, S; Kirsch, J; Kretzer, J P; Moradi, B

    2013-08-01

    The use of metal implants has become increasingly more frequent in all fields of medicine throughout the past decades. Numerous studies have demonstrated that metal ions released from these implants can be detected in body fluids remote from the implants. Although diseases directly linked to the release of these ions seem to be rare, the general public is unsettled. In this study we aimed to analyze the impact of molybdenum(V), cobalt(II), chromium(III) and nickel(II) ions on cell surface markers (CD25, CD38, CD69, CD95) and viability (7-AAD/AnnexinV) of human CD4+ T-lymphocytes in vitro. Cobalt(II) ions at a concentration of 1000 μg/l led to a significant suppression of lymphocyte activation markers while nickel(II), chromium(III) and molybdenum(V) did not show any significant impact on these lymphocyte activation markers. Cell viability was significantly reduced by all metal ions, whereas cobalt(II) led to the highest increase of apoptotic cells and was the only metal ion to significantly increase the necrosis rate. While the pathophysiological significance of these findings remains unclear, they are in favour of further research in this field.

  6. Production and characterization of thin 7Li targets fabricated by ion implantation

    International Nuclear Information System (INIS)

    Cruz, J.; Fonseca, M.; Luis, H.; Mateus, R.; Marques, H.; Jesus, A.P.; Ribeiro, J.P.; Teodoro, O.M.N.D.; Rolfs, C.

    2009-01-01

    Very high fluence implantation of 7 Li + ions was used to promote the formation of a thin and high density 7 Li target in the surface region of Al samples. The implanted volume was characterized by particle induced gamma-ray emission, Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and nuclear reaction analysis, revealing that the implanted surface is a combination of Li 2 CO 3 , metallic lithium, LiOH and C, with almost no Al present. Radiation damage effects by proton beams were studied by observing the evolution of the 7 Li(p, α) 4 He nuclear reaction yield with the accumulated charge, at different proton energies, revealing high stability of the produced Li target.

  7. Detection and reduction of tungsten contamination in ion implantation processes

    International Nuclear Information System (INIS)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D.

    2016-01-01

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10 10 cm -2 ). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Detection and reduction of tungsten contamination in ion implantation processes

    Energy Technology Data Exchange (ETDEWEB)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D. [STMicroelectronics, Agrate Brianza (Italy)

    2016-12-15

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10{sup 10} cm{sup -2}). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. N and Cr ion implantation of natural ruby surfaces and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013 (India); Magudapathy, P.; Panigrahi, B.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Nayak, B.B.; Mishra, B.K. [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013 (India)

    2016-04-15

    Highlights: • Cr and N ion implantation on natural rubies of low aesthetic quality. • Cr-ion implantation improves colour tone from red to deep red (pigeon eye red). • N-ion implantation at fluence of 3 × 10{sup 17} causes blue coloration on surface. • Certain extent of amorphization is observed in the case of N-ion implantation. - Abstract: Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV–Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 10{sup 17} N-ions/cm{sup 2} fluence, formation of colour centres (F{sup +}, F{sub 2}, F{sub 2}{sup +} and F{sub 2}{sup 2+}) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  10. The compaction of fused silica resulting from ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.M.; Ridgway, M.C. [Australian National Univ., Canberra, ACT (Australia); Leech, P.L. [Telstra Research Laboratories, Clayton, Victoria (Australia)

    1996-12-31

    Ion implantation of fused silica results in compaction and consequently an increase in refractive index. This method of modifying the near-surface region has been shown as a potential means for fabricating single mode channel waveguides. This study has measured the compaction of the implanted regions for Si implantations as a function of dose (2x10{sup 12} - 6x10{sup l6} ions/cm{sup 2}), energy (1-9 MeV) and post-implantation annealing temperature (200-900 degree C). For a given energy, a dose-dependence of the step height (depth of compacted region) is observed for doses less than {approx}10{sup 15} ions/cm{sup 2}. At higher doses the step height saturates. For a given dose, a linear trend is evident for the step height as a function of energy suggesting that the major mechanism for this compaction is electronic stopping. As the annealing temperature increases, the step height gradually decreases from {approx}0.1-0.2 {mu} to -10-20% of the original value. From the annealing data, it is possible to extract an activation energy of 0.08 eV associated with the thermal removal of the compacted region. 4 refs., 4 figs.

  11. Clinical usefulness of blood metal measurements to assess the failure of metal-on-metal hip implants

    Science.gov (United States)

    Sampson, Barry; Hart, Alister

    2012-01-01

    In April 2010, a Medicines and Healthcare Products Regulatory Agency safety alert concerning all metal-on-metal (MOM) hip replacements recommended measuring chromium and cobalt concentrations when managing patients with painful prostheses. The need for this review is illustrated by the recent surge in requests for these blood tests from orthopaedic surgeons following this alert. The aim is to provide guidance to laboratories in assessing these requests and advising clinicians on interpretation. First, we summarize the basic terminology regarding the types of hip replacements, with emphasis on the MOM type. Second, we describe the clinical concerns over implant-derived wear debris in the local tissues and distant sites. Analytical aspects of the measurement of the relevant metal ions and what factors affect the levels measured are discussed. The application of inductively coupled plasma mass spectrometry techniques to the measurement of these metals is considered in detail. The biological effects of metal wear products are summarized with local toxicity and systemic biological effects considered, including carcinogenicity, genotoxicity and systemic toxicity. Clinical cases are used to illustrate pertinent points. PMID:22155921

  12. Industrial hygiene and control technology assessment of ion implantation operations

    International Nuclear Information System (INIS)

    Ungers, L.J.; Jones, J.H.

    1986-01-01

    Ion implantation is a process used to create the functional units (pn junctions) of integrated circuits, photovoltaic (solar) cells and other semiconductor devices. During the process, ions of an impurity or a dopant material are created, accelerated and imbedded in wafers of silicon. Workers responsible for implantation equipment are believed to be at risk from exposure to both chemical (dopant compounds) and physical (ionizing radiation) agents. In an effort to characterize the chemical exposures, monitoring for chemical hazards was conducted near eleven ion implanters at three integrated circuit facilities, while ionizing radiation was monitored near four of these units at two of the facilities. The workplace monitoring suggests that ion implantation operators routinely are exposed to low-level concentrations of dopants. Although the exact nature of dopant compounds released to the work environment was not determined, area and personal samples taken during normal operating activities found concentrations of arsenic, boron and phosphorous below OSHA Permissible Exposure Limits (PELs) for related compounds; area samples collected during implanter maintenance activities suggest that a potential exists for more serious exposures. The results of badge dosimetry monitoring for ionizing radiation indicate that serious exposures are unlikely to occur while engineering controls remain intact. All emissions were detected at levels unlikely to result in exposures above the OSHA standard for the whole body (1.25 rems per calendar quarter). The success of existing controls in preventing worker exposures is discussed. Particular emphasis is given to the differential exposures likely to be experienced by operators and maintenance personnel.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Formation of Schottky junctions in silicon by ion implantation

    International Nuclear Information System (INIS)

    Bollmann, J.; Klose, H.; Mertens, A.

    1986-01-01

    In order to study the direct formation of a rectifying contact with Schottky junction properties low-energy high-dose silver ion implantations (E = 10 keV, D = 6 x 10 16 cm -2 ) were carried out in Czochralski-grown n- and p-type silicon (0.01 to 15 Ωcm) at 77 and 300 K, respectively. After the implantation an Al or Ag film was vacuum deposited in the same target chamber. The process-induced deep defect centers as well as their depth distribution and annealing behaviour were investigated by measuring electrical characteristics and deep level transient spectra

  14. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Science.gov (United States)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  15. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    International Nuclear Information System (INIS)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-01-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO 2 implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10 16 cm −2 (Ti + ) and 1 × 10 17 cm −2 (O + ) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10 15 cm −2 (Ti + ) and 1 × 10 16 cm −2 (O + ). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO 2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  16. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H., E-mail: helmut.karl@physik.uni-augsburg.de

    2015-12-15

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO{sub 2} implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10{sup 16} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 17} cm{sup −2} (O{sup +}) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10{sup 15} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 16} cm{sup −2} (O{sup +}). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO{sub 2} inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  17. Fluorescence signalling of the transition metal ions: Design strategy ...

    Indian Academy of Sciences (India)

    on fluorescence signalling systems for the transition metal ions. It is shown that even simple fluorophore-spacer-receptor systems can display excellent off-on fluorescence signalling towards the quenching metal ions when the fluorophore ...

  18. 4-rod RFQ linac for ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Hiroshi; Hamamoto, Nariaki; Inouchi, Yutaka [Nisshin Electric Co. Ltd., Kyoto (Japan)

    1997-03-01

    A 34 MHz 4-rod RFQ linac system has been upgraded in both its rf power efficiency and beam intensity. The linac is able to accelerate in cw operation 0.83 mA of a B{sup +} ion beam from 0.03 to 0.91 MeV with transmission of 61 %. The rf power fed to the RFQ is 29 kW. The unloaded Q-value of the RFQ has been improved approximately 61 % to 5400 by copper-plating stainless steel cooling pipes in the RFQ cavity. (author)

  19. Ion Implantation of Wide Bandgap Semiconductors.

    Science.gov (United States)

    1978-05-01

    u s i n g nomina l l v • S’~ xi lane in UHP argon and r o u g h ly eq u i va l e n t system cond it ions. We probably obtained a h o t t i t ’ of...dilute silane that is more c o nce n t rat e d han t he nomina l 1 .5Z reques ted . Both Auger ana l vs is and Rut her f o rd b ackscu t t er ing

  20. Investigations to problems of the implantation metallurgy

    International Nuclear Information System (INIS)

    Rauschenbach, B.

    1987-01-01

    Basing on processes and effects caused ion implantation of metals a review is given about the problems of the implantation metallurgy. Techniques of high-fluence ion implantation and ion beam mixing are generally confined. These techniques change the structure and the chemical composition in the near of the surface of metals. The application of these methods is demonstrated on series of examples. (author)

  1. Surface modification technique of structural ceramics: ion implantation-assisted multi-arc ion plating

    International Nuclear Information System (INIS)

    Peng Zhijian; Miao Hezhuo; Si Wenjie; Qi Longhao; Li Wenzhi

    2003-01-01

    Through reviewing the advantages and disadvantages of the existed surface modification techniques, a new technique, ion implantation-assisted multi-arc ion plating, was proposed. Using the proposed technique, the surfaces of silicon nitride ceramics were modified by Ti ion implantation, and then three kinds of ternary coatings, (Ti,Al)N, (Ti,Zr)N and (Ti,Cr)N, were deposited on the as-implanted ceramics. The coatings prepared by this technique are of high-hardness and well adhesive to the ceramic substrates. The maximal hardness measured by nanoindentation tests is more than 40 GPa. The maximal critical load by nanoscratch tests is more than 60 mN. The cutting tools prepared by this technique with the presented coatings are of excellent performance in industrial applications. The technique may be promising for the surface modification of structural ceramics. (orig.)

  2. The role of metal ion-ligand interactions during divalent metal ion adsorption.

    Science.gov (United States)

    Eldridge, Daniel S; Crawford, Russell J; Harding, Ian H

    2015-09-15

    A suite of seven different divalent metal ions (Ca(II), Cd(II), Cu(II), Mg(II), Ni(II), Pb(II), Zn(II)) was adsorbed from solution onto two Fe2O3 samples, quartz SiO2 and three different amphoteric polystyrene latices (containing amine and carboxyl functional groups). For the metal oxides, a high correlation was observed between the pH at which 50% of the metal was removed from solution (pH50) and the first hydrolysis constant for the metal ion (pK1). For the polystyrene latices, a much higher correlation was observed between the pH50 and pKc (equilibrium constant describing metal-carboxyl affinity) as opposed to pK1. These observations provide evidence of a strong relationship that exists between a metal's affinity for a particular ligand in solution and for that metal ion's affinity for the same ligand present as part of an adsorbing surface. The isoelectric point of the amphoteric latex surface can be increased by decreasing the carboxyl content of the latex surface. For all 7 metal ions, this resulted in a substantial decrease, for any given pH, in adsorption. We suggest that this may be partly due to the decreased carboxyl content, but is dominantly attributable to the presence of less favorable electrostatic conditions. This, in turn, demonstrates that electrostatics play a controlling role in metal ion adsorption onto amphoteric latex surfaces and, in addition to the nature of the metal ion, also controls the pH at which adsorption takes place. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  3. Long-wavelength germanium photodetectors by ion implantation

    International Nuclear Information System (INIS)

    Wu, I.C.; Beeman, J.W.; Luke, P.N.; Hansen, W.L.; Haller, E.E.

    1990-11-01

    Extrinsic far-infrared photoconductivity in thin high-purity germanium wafers implanted with multiple-energy boron ions has been investigated. Initial results from Fourier transform spectrometer(FTS) measurements have demonstrated that photodetectors fabricated from this material have an extended long-wavelength threshold near 192μm. Due to the high-purity substrate, the ability to block the hopping conduction in the implanted IR-active layer yields dark currents of less than 100 electrons/sec at temperatures below 1.3 K under an operating bias of up to 70 mV. Optimum peak responsivity and noise equivalent power (NEP) for these sensitive detectors are 0.9 A/W and 5 x 10 -16 W/Hz 1/2 at 99 μm, respectively. The dependence of the performance of devices on the residual donor concentration in the implanted layer will be discussed. 12 refs., 4 figs

  4. Structural and phonon properties of InN synthesized by ion implantation in SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Graine, R. [Laboratoire LPR, Département de Physique, Faculté des Sciences, Université de Annaba, BP 12, Annaba 23000 (Algeria); Centre de Développement des Technologies Avancées, Unité de Recherche en Photonique et Optique (CDTA,URPO), Sétif 19000 (Algeria); Chemam, R., E-mail: che_raf@yahoo.fr [Laboratoire LPR, Département de Physique, Faculté des Sciences, Université de Annaba, BP 12, Annaba 23000 (Algeria); Gasmi, F.Z. [Laboratoire LPR, Département de Physique, Faculté des Sciences, Université de Annaba, BP 12, Annaba 23000 (Algeria); Muller, D. [ICube, Université de Strasbourg UdS and CNRS (UMR7357), 23 rue du Loess, 67037 Strasbourg (France); Schmerber, G. [Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 du CNRS, Université de Strasbourg UdS-ECPM, 23 Rue du Loess, 67034 Strasbourg (France)

    2015-11-30

    Ion-implantation is a powerful technique for the formation of compound semiconductor nanocrystal precipitates in a host medium. The aim is to elaborate quantum dots for device technology purposes. High dose (5.2 × 10{sup 16} ions/cm{sup 2}) implantations of Indium (In) and Nitrogen (N) ions have been performed in a 206 nm thick SiO{sub 2} layer thermally grown on < 111 > silicon. The implantation energies have been chosen from 12 to 180 keV to produce 5–10 at.% profiles overlapping at a mean depth of about 100 nm. Thermal treatments between 500 °C and 900 °C for different annealing times lead to the formation of InN nanometric precipitates and to cure the oxide defects. In addition, the In{sub 2}O{sub 3} and metallic indium phases have been observed. Their sizes, crystalline structures and depth distributions have been studied as a function of annealing temperature using grazing incidence X-ray diffraction, transmission electron microscopy, Rutherford back scattering spectrometry and Raman spectroscopy. - Highlights: • InN nanocrystals were formed by sequential ion implantation of In and N in SiO{sub 2}. • The In{sub 2}O{sub 3} and metallic indium phases have been found. • Redistribution of In occurs during post-implantation thermal annealing. • Three different InN family sizes were observed in the SiO{sub 2} layer.

  5. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Science.gov (United States)

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  6. Retention of ion-implanted deuterium in tungsten pre-irradiated with carbon ions

    International Nuclear Information System (INIS)

    Alimov, V.Kh.; Ertl, K.; Roth, J.; Schmid, K.

    2000-01-01

    Deuterium (D) ion implantation and retention at room temperature was studied in pure and carbon (C) implanted tungsten single crystals. Pre-implantation with C was done at 40 keV and D implantation at 10 keV with the range confined in the carbon modified layer and at 100 keV with the range exceeding the carbon modified layer. The range distributions were investigated in situ using 1 MeV 3 He ions analysing the energy distributions of α particles from the D( 3 He,p)α reaction while the total amount of retained D was obtained from the p-integral. The range distribution of carbon was obtained from the backscattered 3 He energy distribution. C pre-impantation influences the D retention only if the range of the D ions is confined within the carbon modified surface layer. In this case, D diffusion beyond the ion range distribution does not occur and the retained D amount is smaller than in the pure W crystal. At D energies exceeding the carbon modified layer the retention occurs in the dislocation zone up to 1 μm and the total retained amount is the same for carbon implanted and pure W samples

  7. Rapid Thermal annealing of silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    Hasenack, C.M.

    1986-01-01

    The recrystallization behavior and the supression mechanisms of the residual defects of silicon layers amorphized by ion implantation, were investigated. The samples were annealed with the aid of a rapid thermal annealing (RTA) system at temperature range from 850 to 1200 0 C, and annealing time up to 120 s. Random and aligned Rutherford backscattering spectroscopy were used to analyse the samples. Similarities in the recrystallization behavior for layers implanted with ions of the same chemical groups such as As or Sb; Ge, Sn or Pb, In or Ga, are observed. The results show that the effective supression of resisual defects of the recrystallired layers is vinculated to the redistribution of impurities via thermal diffusion. (author) [pt

  8. Radio-frequency linear accelerators for commercial ion implanters

    International Nuclear Information System (INIS)

    Glavish, H.F.

    1987-01-01

    There is now a demand for production-type ion implanters capable of delivering high beam current at energies in the MeV range. Hitherto, this application has been fulfilled only with dc machines of somewhat limited beam current. A recently developed radio-frequency linear accelerator has produced much higher beam currents yet is just as flexible as a dc machine in the sense that within seconds it can be programmed to accelerate any particle in the range of boron to antimony, to any selected final energy. Included in this review is a discussion of the general principles of rf acceleration including factors which determine the accelerating voltage gradient, energy spread, space charge limits, radial focusing, and the flexibility derived from independent rf phase control of individual rf accelerating cells. Various structures such as the 'two gap' resonator and the rf quadrupole are considered in relation to ion implantation applications. (orig.)

  9. Mechanical properties of ion-beam-textured surgical implant alloys

    Science.gov (United States)

    Weigand, A. J.

    1977-01-01

    An electron-bombardment Hg ion thruster was used as an ion source to texture surfaces of materials used to make orthopedic and/or dental prostheses or implants. The materials textured include 316 stainless steel, titanium-6% aluminum, 4% vanadium, and cobalt-20% chromium, 15% tungsten. To determine the effect of ion texturing on the ultimate strength and yield strength, stainless steel and Co-Cr-W alloy samples were tensile tested to failure. Three types of samples of both materials were tested. One type was ion-textured (the process also heats each sample to 300 C), another type was simply heated to 300 C in an oven, and the third type was untreated. Stress-strain diagrams, 0.2% offset yield strength data, total elongation data, and area reduction data are presented. Fatigue specimens of ion textured and untextured 316 stainless steel and Ti-6% Al-4% V were tested. Included as an ion textured sample is a Ti-6% Al-4% V sample which was ion machined by means of Ni screen mask so as to produce an array of 140 mu m x 140 mu m x 60 mu m deep pits. Scanning electron microscopy was used to characterize the ion textured surfaces.

  10. An industrial application of 100 KeV ion beam accelerator: studies on N ion implanted stainless steel with respect to wear resistance to mild abrasion

    International Nuclear Information System (INIS)

    Park, Jae Won; Lee, Jae Hyung; Lee, Jae Sang; Sohn, Chang Won; Kil, Jae Geun

    2003-01-01

    We have built a 100 keV and 20 mA ion beam accelerator to apply for prolonged lifetime of metal parts subjected to mild abrasive environment. Studies were conducted on stainless steel which is often used for cutting blades. 70keV N ions of > 5x 10 16 /cm 2 were implanted into the surface polished stainless steel (SS420) with average surface roughness (Ra) of 0.04 μm. Then, wear resistance of N ion implanted specimen at the mild abrasive condition was investigated. When the beam incidence was 45 .deg. with respect to the specimen surfaces, the concentration of nitrogen in the near surface of the specimen was about 5 at% and detected up to at least 300 nm from the surface as measured with Auger electron spectroscopy. X-ray photoelectron spectroscopy analysis showed that the implanted N formed mostly Cr 2 N without post irradiation annealing. Hardness profiles of the specimens were obtained with nano-indentation technique as a function of distance from the surface before and after ion implantations. The peak hardness of 14 Gpa formed at approx. 50 nm depth from the N ion implanted surface was about at least 2 times higher than non-irradiated specimen. Along with the hardness measurement, ball-on-disc wear resistance test was conducted. With 500 gf alumina ball, the wear track to the onset point of abrupt increase in the frictional coefficient was about 5 m for the N implanted specimen, while wear took place for the pristine as soon as the test started. On the other hand, when 1000 gf ball was used for the wear test, the difference in the wear track between the pristine and N implanted specimen was smaller than 500 gf ball, implying that the ion implantation is not suited to severe abrasive condition. After the ion beam irradiation, the surface roughness was reduced to Ra=0.02 μm. We found the ion implantation prolonged the lifetime of the metal parts subjected to mild abrasive environment like hair clipper blades

  11. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Metal ion uptake properties of polystyrene-supported chelating polymer resins functionalized with (i) glycine, (ii) hydroxy benzoic acid, (iii) Schiff base and (iv) diethanol amine have been investigated. The effects of pH, time and initial concentration on the uptake of metal ions have been studied. The uptake of metal ion ...

  12. Radioactive ion implantation as a tool for wear measurements

    International Nuclear Information System (INIS)

    Bagger, C.; Soerensen, G.

    1979-01-01

    The present paper deals with ion implantation of radioactive krypton ions in surfaces with aim of measuring wear of different magnetic materials in sound-heads. The technique is especially suited for a relatively fast comparison of wear-characteristics of materials of varying composition in small inaccessible areas. In the present case utilisation of a 60 KeV accelerator allows determination of a total wear as small as 0.05 μm with an accuracy of 10%. Further the technique yields information of the time dependence of the wear process with an accuracy less than 0.001 μm. (author)

  13. [Should metal alloy discs be used for patch testing in suspected metal implant intolerance reaction?].

    Science.gov (United States)

    Thomas, P; Geier, J; Dickel, H; Diepgen, T; Hillen, U; Kreft, B; Schnuch, A; Szliska, C; Mahler, V

    2015-11-01

    Intolerance reactions to metal implants may be caused by metal allergy. However, prior to implantation, patch testing should not be done in a prophylactic-prophetic approach. Pre-implant patch testing should only be performed to verify or exclude metal allergy in patients with a reported respective history. In the case of implant-in particular arthroplasty-related complications like, for example, pain, effusion, skin changes, reduced range of motion, or loosening, orthopedic-surgical differential diagnostics should be performed first. Allergological workup of suspected metal implant allergy should be done with the DKG baseline series which contains nickel-, cobalt- and chromium-preparations. Various studies assessing the usefulness of metal alloy discs for patch testing proved that this approach does not give reliable information about metal allergy. Positive patch test reactions to the discs cannot be assigned to a specific metal within the disc alloy components. Furthermore, availability of such metal discs might be an invitation to uncritical testing. Accordingly, due to lack of benefit in comparison to patch testing with standardized metal salt preparations, we do not recommend patch testing with metal alloy discs.

  14. Engineering of microorganisms towards recovery of rare metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Kouichi; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences

    2010-06-15

    The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/ peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved. (orig.)

  15. Synthesis of dilute magnetic semiconductors by ion implantation

    International Nuclear Information System (INIS)

    Braunstein, G.H.; Dresselhaus, G.; Withrow, S.P.

    1986-01-01

    We have synthesized layers of CdMnTe by implantation of Mn into CdTe. Samples of CdTe have been implanted with Mn ions of 60 keV energy to fluences in the range 1 x 10 13 cm -2 to 2 x 10 16 cm -2 resulting in local concentrations of up to 10% at the maximum of the Mn distribution. Rutherford backscattering-channeling analysis has been used to study the radiation damage after implantation and after subsequent rapid thermal annealing (RTA). These experiments reveal that RTA for 15 sec at a temperature T greater than or equal to 700 0 C results in the complete recovery of the lattice order, without affecting the stoichiometry of CdTe. Photoluminescence (PL) measurements of a sample showing complete annealing reveal an increase in the band gap corresponding to the synthesis of very dilute (x approx. = 0.004) Cd/sub 1-x/Mn/sub x/Te. A shift of the excitonic PL peak to lower energies is observed when a magnetic field H less than or equal to 1T is applied. These measurements provide clear evidence for the synthesis of a DMS by ion implantation of Mn into CdTe

  16. Study by nuclear techniques of the impurity-defect interaction in implanted metals

    International Nuclear Information System (INIS)

    Thome, Lionel.

    1978-01-01

    The properties of out equilibrium alloys formed by impurity implantation are strongly influenced by radiation damage created during implantation. This work presents a study, via hyperfine interaction and lattice location experiments, of the impurity-defect interaction in ion implanted metals. When the impurity and defect concentrations in the implanted layer are small, i.e. when impurities are uniformly recoil implanted in the whole crystal volume following a nuclear reaction (Aq In experiments), the impurity interacts with its own damage cascade. In this case, a vacancy is found to be trapped by a fraction of impurities during an athermal process. The value of this fraction does not seem to depend critically on impurity and host. When the impurity and defect concentrations are such that defect cascades interact, i.e. when impurities are implanted with an isotope separator (Fe Yb experiments), the observed impurity-vacancy (or vacancy cluster) interactions depend then strongly on the nature of impurity and host. An empirical relation, which indicates the importance of elastic effects, has been found between the proportion of impurities interacting with defects and the difference between impurity and host atom radii. At implantation temperature such that vacancies are mobile, the impurity-defect interaction depends essentially on vacancy migration. A model based on chemical kinetics has been developed to account for the variation with temperature of measured quantities [fr

  17. Relationship between Pelvic Incidence Angle and Blood Concentration of Chromium and Cobalt Ions after Metal-on-Metal Hip Replacement: A Brief Report.

    Science.gov (United States)

    Pernaa, K; Saltychev, M; Mäkelä, K

    2018-03-01

    The wear of metal-on-metal hip implants may increase chromium or cobalt ion blood level. This phenomenon may depend among other things on the particularity of spinopelvic anatomy. The effect of pelvic incidence angle on the wear of metal-on-metal hip implants is not known. The objective of the study was to investigate whether such effect does exist. The pelvic incidence and inclination of acetabular component angles of 89 patients after unilateral metal-on-metal hip replacement were compared with blood level of chromium and cobalt ions using Pearson correlation coefficient. No significant correlations between pelvic incidence angle and the metal ion blood levels were observed. The correlation coefficients varied from -0.02 to 0.2 and all p values were >0.05. No evidence was found on the effect of pelvic incidence angle on metal wear after metal-on-metal hip replacement when measured by the blood levels of chromium and cobalt ions. It is reasonable to assume that other factors than pelvic tilt may affect the rate of implant wear.

  18. Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.

    Science.gov (United States)

    1982-07-01

    a pre- liminary study using silicon solar cells. This work was undertaken in cooperation with Dr. J. Eguren of the Instituto De Energia Solar , Madrid...device fabrication has been attempted. To date, resistors, capacitors, diodes, bipolar transistors, MOSFEs, and solar cells have been fabricated with...34 " 48 *Si Solar Cells Ruby PL P+ Ion-Implanted 49 Ruby PL Pulsed Diffused 50 :C

  19. Erbium ion implantation into different crystallographic cuts of lithium niobate

    Czech Academy of Sciences Publication Activity Database

    Nekvindová, P.; Švecová, B.; Cajzl, J.; Macková, Anna; Malinský, Petr; Oswald, Jiří; Kolitsch, A.; Špirková, J.

    2012-01-01

    Roč. 34, č. 4 (2012), s. 652-659 ISSN 0925-3467 R&D Projects: GA MŠk(CZ) LC06041; GA ČR GA106/09/0125; GA ČR(CZ) GAP106/10/1477 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100521 Keywords : Lithium niobate * Erbium * Ion implantation * Luminescence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.918, year: 2012

  20. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Energy Technology Data Exchange (ETDEWEB)

    Delle Side, D., E-mail: domenico.delleside@le.infn.it [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Nassisi, V.; Giuffreda, E.; Velardi, L. [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Alifano, P.; Talà, A.; Tredici, S.M. [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy)

    2014-07-15

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  1. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Science.gov (United States)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-07-01

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  2. Plasma source ion implantation of ammonia into electroplated chromium

    International Nuclear Information System (INIS)

    Scheuer, J.T.; Walter, K.C.; Rej, D.J.; Nastasi, M.; Blanchard, J.P.

    1995-01-01

    Ammonia gas (NH 3 ) has been used as a nitrogen source for plasma source ion implantation processing of electroplated chromium. No evidence was found of increased hydrogen concentrations in the bulk material, implying that ammonia can be used without risking hydrogen embrittlement. The retained nitrogen dose of 2.1 x 10 17 N-at/cm 2 is sufficient to increase the surface hardness of electroplated Cr by 24% and decrease the wear rate by a factor of 4

  3. Er+ medium energy ion implantation into lithium niobate

    Czech Academy of Sciences Publication Activity Database

    Švecová, B.; Nekvindová, P.; Macková, Anna; Oswald, Jiří; Vacík, Jiří; Grotzschel, R.; Spirkova, J.

    2009-01-01

    Roč. 267, 8-9 (2009), s. 1332-1335 ISSN 0168-583X R&D Projects: GA MŠk(CZ) LC06041; GA AV ČR IAA200480702 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100521 Keywords : lithium niobate * erbium * ion implantation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.156, year: 2009

  4. Doping of silicon carbide by ion implantation; Dopage du carbure de silicium par implantation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Gimbert, J

    1999-03-04

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  5. Co+ -ion implantation induced doping of nanocrystalline CdS thin films: structural, optical, and vibrational properties

    International Nuclear Information System (INIS)

    Chandramohan, S.; Sarangi, S.N.; Majumder, S.; Som, T.; Kanjilal, A.; Sathyamoorthy, R.

    2009-01-01

    Full text: Transition metal (Mn, Fe, Co and Ni) doped CdS nanostructures and nanocrystalline thin films have attracted much attention due to their anticipated applications in magneto-optical, non-volatile memory and future spintronics devices. Introduction of impurities in substitutional positions is highly desirable for such applications. Ion implantation is known to provide many advantages over conventional methods for efficient doping and possibility of its seamless integration with device processing steps. It is not governed by equilibrium thermodynamics and offers the advantages of high spatial selectivity and to overcome the solubility limits. In this communication, we report on modifications of structural morphological, optical, and vibrational properties of 90 keV Co + -ion implanted CdS thin films grown by thermal evaporation. Co + -ion implantation was performed in the fluence range of 0.1-3.6x10 16 ions cm -2 These fluences correspond to Co concentration in the range of 0.34-10.8 at % at the peak position of profile. Implantation was done at an elevated temperature of 573 K in order to avoid amorphization and to enhance the solubility of Co ions in the CdS lattice. Films were characterized by glancing angle X-ray diffraction (GAXRD), atomic force microscopy (AFM), optical absorption, and micro-Raman spectroscopy. Implantation does not lead to any secondary phase formation either in the form of impurity or the metallic clusters. However, implantation improves the crystalline quality of the samples and leads to supersaturation of Co ions in the CdS lattice. Thus, nanocrystalline CdS thin films can be considered as a good radiation- resistant material, which can be employed for prolonged use in solar cells for space applications. The optical band gap is found to decrease systematically with increasing ion fluence from 2.39 to 2.28 eV. Implantation leads to agglomeration of grains and a systematic increase in the surface roughness. Both GAXRD and micro

  6. Nanoscale patterns produced by self-sputtering of solid surfaces: The effect of ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R. Mark [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States); Hofsäss, Hans [II. Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2016-08-21

    A theory of the effect that ion implantation has on the patterns produced by ion bombardment of solid surfaces is introduced. For simplicity, the case of self-sputtering of an elemental material is studied. We find that implantation of self-ions has a destabilizing effect along the projected beam direction for angles of incidence θ that exceed a critical value. In the transverse direction, ion implantation has a stabilizing influence for all θ.

  7. Target-ion source unit ionization efficiency measurement by method of stable ion beam implantation

    CERN Document Server

    Panteleev, V.N; Fedorov, D.V; Moroz, F.V; Orlov, S.Yu; Volkov, Yu.M

    The ionization efficiency is one of the most important parameters of an on-line used target-ion source system exploited for production of exotic radioactive beams. The ionization efficiency value determination as a characteristic of a target-ion source unit in the stage of its normalizing before on-line use is a very important step in the course of the preparation for an on-line experiment. At the IRIS facility (Petersburg Nuclear Physics Institute, Gatchina) a reliable and rather precise method of the target-ion source unit ionization efficiency measurement by the method of stable beam implantation has been developed. The method worked out exploits an off-line mass-separator for the implantation of the ion beams of selected stable isotopes of different elements into a tantalum foil placed inside the Faraday cup in the focal plane of the mass-separator. The amount of implanted ions has been measured with a high accuracy by the current integrator connected to the Faraday cup. After the implantation of needed a...

  8. Architecture and control of a high current ion implanter system

    International Nuclear Information System (INIS)

    Bayer, E.H.; Paul, L.F.; Kranik, J.R.

    1979-01-01

    The design of an ion implant system for use in production requires that special attention be given to areas of design which normally are not emphasized on research or development type ion implanters. Manually operated, local controls are replaced by remote controls, automatic sequencing, and digital displays. For ease of maintenance and replication the individual components are designed as simply as possible and are contained in modules of separate identities, joined only by the beam line and electrical interconnections. A production environment also imposes requirements for the control of contamination and maintainability of clean room integrity. For that reason the major portion of the hardware is separated from the clean operator area and is housed in a maintenance core area. The controls of a production system should also be such that relatively unskilled technicians are able to operate the system with optimum repeatability and minimum operator intervention. An extensive interlock system is required. Most important, for use in production the ion implant system has to have a relatively high rate of throughput. Since the rate of throughput at a given dose is a function of beam current, pumpdown time and wafer handling capacity, design of components affecting these parameters has been optimized. Details of the system are given. (U.K.)

  9. Homojunction silicon solar cells doping by ion implantation

    Science.gov (United States)

    Milési, Frédéric; Coig, Marianne; Lerat, Jean-François; Desrues, Thibaut; Le Perchec, Jérôme; Lanterne, Adeline; Lachal, Laurent; Mazen, Frédéric

    2017-10-01

    Production costs and energy efficiency are the main priorities for the photovoltaic (PV) industry (COP21 conclusions). To lower costs and increase efficiency, we are proposing to reduce the number of processing steps involved in the manufacture of N-type Passivated Rear Totally Diffused (PERT) silicon solar cells. Replacing the conventional thermal diffusion doping steps by ion implantation followed by thermal annealing allows reducing the number of steps from 7 to 3 while maintaining similar efficiency. This alternative approach was investigated in the present work. Beamline and plasma immersion ion implantation (BLII and PIII) methods were used to insert n-(phosphorus) and p-type (boron) dopants into the Si substrate. With higher throughput and lower costs, PIII is a better candidate for the photovoltaic industry, compared to BL. However, the optimization of the plasma conditions is demanding and more complex than the beamline approach. Subsequent annealing was performed on selected samples to activate the dopants on both sides of the solar cell. Two annealing methods were investigated: soak and spike thermal annealing. Best performing solar cells, showing a PV efficiency of about 20%, was obtained using spike annealing with adapted ion implantation conditions.

  10. Allergy to metals as a cause of orthopedic implant failure.

    Science.gov (United States)

    Krecisz, Beata; Kieć-Swierczyńska, Marta; Bakowicz-Mitura, Katarzyna

    2006-01-01

    A constantly growing social demand for orthopedic implants has been observed in Poland. It is estimated that about 5% of patients experience post-operation complications. It is suspected that in this group of patients an allergic reaction contributes to rejection of metal implants. The aim of our study was to assess contact allergy to metals in 14 people (9 women and 5 men) suffering from poor implant tolerance. In some of them, recurrent skin eruptions, generalized or nearby implants, have occurred and in 3 patients skin fistula was observed. These complaints appeared one year after operation. The patients underwent patch tests with allergens from the Chemotechnique Diagnostics (Malmö, Sweden), including nickel, chromium, cobalt, palladium, copper, aluminum. In addition, allergens, such as titanium, vanadium and molybdenum prepared by chemical laboratory in the Nofer Institute of Occupational Medicine, Lódiź, Poland, were introduced. Of the 14 patients, 8 persons (5 women and 3 men) were sensitized to at least one metal, mostly to nickel (7/14) and chromium (6/14). Of the 8 sensitized patients, 3 were reoperated. Owing to the exchange of prosthesis the complaints subsided, including healing up skin fibulas. These facts weight in favor of the primeval sensitizing effect of metal prosthesis and the relation between allergy and clinical symptoms of poor tolerance to orthopedic implants.

  11. Temperature behavior of damage in sapphire implanted with light ions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, E. [Ion Beam Laboratory, Instituto Tecnologico e Nuclear, Sacavem 2686-953 (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Lisbon (Portugal)], E-mail: ealves@itn.pt; Marques, C. [Ion Beam Laboratory, Instituto Tecnologico e Nuclear, Sacavem 2686-953 (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Lisbon (Portugal); Safran, G. [Research Institute for Technical Physics and Materials Science, H-1525 Budapest (Hungary); McHargue, Carl J. [University of Tennessee, Knoxville, TN 37996-0750 (United States)

    2009-05-01

    In this study, we compare and discuss the defect behavior of sapphire single crystals implanted with different fluences (1 x 10{sup 16}-1 x 10{sup 17} cm{sup -2}) of carbon and nitrogen with 150 keV. The implantation temperatures were RT, 500 deg. C and 1000 deg. C to study the influence of temperature on the defect structures. For all the ions the Rutherford backscattering-channeling (RBS-C) results indicate a surface region with low residual disorder in the Al-sublattice. Near the end of range the channeled spectrum almost reaches the random indicating a high damage level for fluences of 1 x 10{sup 17} cm{sup -2}. The transmission electron microscopy (TEM) photographs show a layered contrast feature for the C implanted sample where a buried amorphous region is present. For the N implanted sample the Electron Energy Loss Spectroscopy (EELS) elemental mapping give evidence for the presence of a buried damage layer decorated with bubbles. Samples implanted at high temperatures (500 deg. C and 1000 deg. C) show a strong contrast fluctuation indicating a defective crystalline structure of sapphire.

  12. Low energy ion implantation and high energy heavy ion irradiation in C60 films

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Dharmarasu, N.; Kojima, N.; Kanjilal, D.

    2001-01-01

    C 60 films have been bombarded with low energy boron ions and high energy swift heavy ions (SHI) of silver and oxygen at different doses. Raman scattering and Fourier transform infrared (FTIR) studies were carried out on the virgin and irradiated films and the results are in good agreement with each other. The films subject to low energy boron ion implantation showed destruction of the bukky balls whereas the films subject to high energy ion irradiation did not show appreciable effects on their structure. These results indicate that C 60 films are more prone to defects by elastic collision and subsequent implantation at lower energy. Irradiation at higher energy was less effective in creating appreciable defects through electronic excitation by inelastic collisions at similar energy density

  13. Activation of Methane by Gaseous Metal Ions

    Czech Academy of Sciences Publication Activity Database

    Schröder, Detlef

    2010-01-01

    Roč. 49, č. 5 (2010), s. 850-851 ISSN 1433-7851 Grant - others:European Research Council(XE) AdG HORIZOMS Institutional research plan: CEZ:AV0Z40550506 Keywords : C-C coupling * C-H bond activation * gas-phase reactions * metal ions * methane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.730, year: 2010

  14. p-Type Quasi-Mono Silicon Solar Cell Fabricated by Ion Implantation

    Directory of Open Access Journals (Sweden)

    Chien-Ming Lee

    2013-01-01

    Full Text Available The p-type quasi-mono wafer is a novel type of silicon material that is processed using a seed directional solidification technique. This material is a promising alternative to traditional high-cost Czochralski (CZ and float-zone (FZ material. Here, we evaluate the application of an advanced solar cell process featuring a novel method of ion implantation on p-type quasi-mono silicon wafer. The ion implantation process has simplified the normal industrial process flow by eliminating two process steps: the removal of phosphosilicate glass (PSG and the junction isolation process that is required after the conventional thermal POCl3 diffusion process. Moreover, the good passivation performance of the ion implantation process improves Voc. Our results show that, after metallization and cofiring, an average cell efficiency of 18.55% can be achieved using 156 × 156 mm p-type quasi-mono silicon wafer. Furthermore, the absolute cell efficiency obtained using this method is 0.47% higher than that for the traditional POCl3 diffusion process.

  15. IDENTIFICATION OF CATALYTIC METAL ION LIGANDS IN RIBOZYMES

    Science.gov (United States)

    Frederiksen, John K.; Piccirilli, Joseph A.

    2012-01-01

    Site-bound metal ions participate in the catalytic mechanisms of many ribozymes. Understanding these mechanisms therefore requires knowledge of the specific ligands on both substrate and ribozyme that coordinate these catalytic metal ions. A number of different structural and biochemical strategies have been developed and refined for identifying metal ion binding sites within ribozymes, and for assessing the catalytic contributions of the metal ions bound at those sites. We review these approaches and provide examples of their application, focusing in particular on metal ion rescue experiments and their roles in the construction of the transition state models for the Tetrahymena group I and RNase P ribozymes. PMID:19651216

  16. Si-nanoparticle synthesis using ion implantation and MeV ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chulapakorn, T.; Wolff, M.; Primetzhofer, D.; Possnert, G. [Uppsala University, Department of Physics and Astronomy, P.O. Box 516, 751 20 Uppsala (Sweden); Sychugov, I.; Suvanam, S.S.; Linnros, J. [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box Electrum 229, 164 40 Kista (Sweden); Hallen, A. [Uppsala University, Department of Physics and Astronomy, P.O. Box 516, 751 20 Uppsala (Sweden); Royal Institute of Technology, School of Information and Communication Technology, P.O. Box Electrum 229, 164 40 Kista (Sweden)

    2015-12-15

    A dielectric matrix with embedded Si-nanoparticles may show strong luminescence depending on nanoparticles size, surface properties, Si-excess concentration and matrix type. Ion implantation of Si ions with energies of a few tens to hundreds of keV in a SiO{sub 2} matrix followed by thermal annealing was identified as a powerful method to form such nanoparticles. The aim of the present work is to optimize the synthesis of Si-nanoparticles produced by ion implantation in SiO{sub 2} by employing MeV ion irradiation as an additional annealing process. The luminescence properties are measured by spectrally resolved photoluminescence including PL lifetime measurement, while X-ray reflectometry, atomic force microscopy and ion beam analysis are used to characterize the nanoparticle formation process. The results show that the samples implanted at 20%-Si excess atomic concentration display the highest luminescence and that irradiation of 36 MeV {sup 127}I ions affects the luminosity in terms of wavelength and intensity. It is also demonstrated that the nanoparticle luminescence lifetime decreases as a function of irradiation fluence. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Ion-induced effects on metallic nanoparticles

    International Nuclear Information System (INIS)

    Klimmer, Andreas

    2010-01-01

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L1 0 phase. (orig.)

  18. Synthesis of Ag ion-implanted TiO{sub 2} thin films for antibacterial application and photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xinggang, E-mail: hou226@mail.tjnu.edu.cn [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Ma, Huiyan; Liu, Feng; Deng, Jianhua; Ai, Yukai; Zhao, Xinlei; Mao, Dong; Li, Dejun [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Liao, Bin [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China)

    2015-12-15

    Highlights: • Implanted TiO{sub 2} films with excellent antibacterial and photocatalytic ability was prepared. • Bactericidal effect of released Ag ions was confirmed using VC as radical scavenger. • Excitation of TiO{sub 2} to visible region is attributed to subtitutional Ag. • Synergetic effect of Ag{sup 3+} and Ag{sup +} accounts for the enhanced ability of TiO{sub 2}. - Abstract: TiO{sub 2} thin films were deposited by spin coating method. Silver ions were implanted into the films using a Metal Vapor Vacuum Arc implanter. The antibacterial ability of implanted films was tested using Escherichia coli removal under fluorescent irradiation and in the dark. The concentration of E. coli was evaluated by plating technique. The photocatalytic efficiency of the implanted films was studied by degradation of methyl orange under fluorescent illumination. The surface free energy of the implanted TiO{sub 2} films was calculated by contact angle testing. Vitamin C was used as radical scavengers to explore the antibacterial mechanism of the films. The results supported the model that both generation of reactive oxygen species and release of silver ions played critical roles in the toxic effect of implanted films against E. coli. XPS experimental results demonstrated that a portion of the Ag(Ag{sup 3+}) ions were doped into the crystalline lattice of TiO{sub 2}. As demonstrated by density functional theory calculations, the impurity energy level of subtitutional Ag was responsible for enhanced absorption of visible light. Ag ion-implanted TiO{sub 2} films with excellent antibacterial efficiency against bacteria and decomposed ability against organic pollutants could be potent bactericidal surface in moist environment.

  19. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  20. Effects of ion-implanted C on the microstructure and surface mechanical properties of Fe alloys implanted with Ti

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Knapp, J.A.; Pope, L.E.; Yost, F.G.; Picraux, S.T.

    1984-01-01

    The microstructural and tribological effects of ion implanting C into Ti-implanted, Fe-based alloys are examined and compared to the influence of C introduced by vacuum carburization during Ti implantation alone. The amorphous surface alloy formed by Ti implantation of pure Fe increases in thickness when additional C is implanted at depths containing Ti but beyond the range of carburization. Pin-on-disc tests of 15-5 PH stainless steel show that implantation of both Ti and C reduces friction significantly under conditions where no reduction is obtained by Ti implantation alone; wear depths are also less when C is implanted. All available experimental results can be accounted for by consideration of the thickness and Ti concentration of the amorphous Fe-Ti-C alloy. The thicker amorphous layer on samples implanted with additional C extends tribological benefits to more severe wear regimes

  1. Transparent monolithic metal ion containing nanophase aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  2. Peripheral white blood cells profile of biodegradable metal implant in mice animal model

    Energy Technology Data Exchange (ETDEWEB)

    Paramitha, Devi; Noviana, Deni, E-mail: deni@ipb.ac.id; Estuningsih, Sri [Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor (Indonesia); Ulum, Mokhamad Fakhrul [Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor (Indonesia); Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru (Malaysia); Nasution, Ahmad Kafrawi [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru (Malaysia); Faculty of Engineering, Muhammadiyah University of Riau (UMRI), Pekanbaru (Indonesia); Hermawan, Hendra [Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University (ULaval) (Canada)

    2015-09-30

    Biocompatibility or safety of the medical device is considered important. It can be determined by blood profile examination. The aim of this study was to assess the biocompatibility of biodegradable metal implant through peripheral white blood cells (WBCs) profile approach. Forty eight male ddy mice were divided into four groups according to the materials implanted: iron wire (Fe), magnesium rod (Mg), stainless steel surgical wire (SS316L) and control with sham (K). Implants were inserted and attached onto the right femoral bone on latero-medial region. In this study, peripheral white blood cells and leukocyte differentiation were the parameters examined. The result showed that the WBCs value of all groups were decreased at the first day after implantation, increased at the 10th day and continued increasing at the 30th day of observation, except Mg group which has decreased. Neutrophil, as an inflammatory cells, was increased at the early weeks and decreased at the day-30 after surgery in all groups. Despite, these values during the observation were still within the normal range. As a conclus ion, biodegradable metal implants lead to an inflammatory reaction, with no adverse effect on WBC value found.

  3. Alkali metal ion templated transition metal formate framework materials: synthesis, crystal structures, ion migration, and magnetism.

    Science.gov (United States)

    Eikeland, Espen; Lock, Nina; Filsø, Mette; Stingaciu, Marian; Shen, Yanbin; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2014-10-06

    Four transition metal formate coordination polymers with anionic frameworks, namely, Na[Mn(HCOO)3], K[Mn(HCOO)3], Na2[Cu3(HCOO)8], and K2[Cu5(HCOO)12], were synthesized using a mild solution chemistry approach. Multitemperature single-crystal (100-300 K) and powder X-ray diffraction studies of the compounds reveal structures of large diversity ranging from cubic chiral Na-Mn formate to triclinic Na-Cu formate. The structural variety is caused by the nature of the transition metals, the alkali metal ion templation, and the versatility of the formate group, which offers metal-metal coordination through three different O-C-O bridging modes (syn-syn, syn-anti, anti-anti) in addition to metal-metal bridging via a single oxygen atom. The two manganese(II) compounds contain mononuclear, octahedrally coordinated moieties, but the three-dimensional connectivity between the manganese octahedra is very different in the two structures. The two copper frameworks, in contrast, consist of binuclear and mononuclear moieties (Na-Cu formate) and trinuclear and mononuclear moieties (K-Cu formate), respectively. Procrystal electron density analysis of the compounds indicates one-dimensional K(+)-ion conductivity in K-Mn and K-Cu, and the nature of the proposed potassium ion migration is compared with results from similar analysis on known Na(+) and K(+) ion conductors. K-Mn and Na-Mn were tested as cathode materials, but this resulted in poor reversibility due to low conductivity or structural collapse. The magnetic properties of the compounds were studied by vibrating sample magnetometric measurements, and their thermal stabilities were determined by thermogravimetric analysis and differential thermal analysis. Despite structural differences, the metal formates that contain the same transition metal have similar magnetic properties and thermal decomposition pathways, that is, the nature of the transition metal controls the compound properties.

  4. Study of Cu+, Ag+ and Au+ ion implantation into silicate glasses

    Czech Academy of Sciences Publication Activity Database

    Švecová, B.; Nekvindová, P.; Macková, Anna; Malinský, Petr; Kolitsch, A.; Machovič, V.; Stara, S.; Míka, M.; Špirková, J.

    2010-01-01

    Roč. 356, 44-49 (2010), s. 2468-2472 ISSN 0022-3093. [XII International Conference on the Physics of Non-Crystalline Solids. Foz do Iguaçu, PR, Brazil, 06.09.-09.09.2009] R&D Projects: GA MŠk(CZ) LC06041; GA ČR GA106/09/0125 Institutional research plan: CEZ:AV0Z10480505 Keywords : Ion implantation * Silicate glass es * Metal nanoparticles * RBS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.483, year: 2010

  5. THE ROLES OF METAL IONS IN REGULATION BY RIBOSWITCHES

    OpenAIRE

    Ferré-D'Amaré, Adrian; Winkler, Wade C.

    2011-01-01

    Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation trans...

  6. Procedure for the ion implantation of semiconductor wafers coated with insulating layers

    International Nuclear Information System (INIS)

    Baumann, K.; Tunnat, K.

    1987-01-01

    This invention is directed to the ion implantation of semiconductor wafers coated with insulating layers. The aim is to limit the spark puncturing by the ion beam due to electric charge and thus to protect the component structures. A conductive contact between semiconductor wafer and wafer carrier of the ion implantation facility is established by the partial removal of the insulating layer. 4 figs

  7. Multispectral diffusion-weighted imaging near metal implants.

    Science.gov (United States)

    Koch, Kevin M; Bhave, Sampada; Gaddipati, Ajeet; Hargreaves, Brian A; Gui, Dawei; Peters, Robert; Bedi, Meena; Mannem, Rajeev; Kaushik, S Sivaram

    2018-02-01

    The need for diffusion-weighted-imaging (DWI) near metallic implants is becoming increasingly relevant for a variety of clinical diagnostic applications. Conventional DWI methods are significantly hindered by metal-induced image artifacts. A novel approach relying on multispectral susceptibility artifact reduction techniques is presented to address this unmet need. DWI near metal implants is achieved through a combination of several advanced MRI acquisition technologies. Previously described approaches to Carr-Purcell-Meiboom-Gill spin-echo train DWI sequences using the periodically rotated overlapping parallel lines with enhanced reconstruction are combined with multispectral-imaging metal artifact reduction principles to provide DWI with substantially reduced artifact levels. The presented methods are applied to limited sets of slices over areas of sarcoma risk near six implanted devices. Using the presented methods, DWI assessment without bulk image distortions is demonstrated in the immediate vicinity of metallic interfaces. In one subject, the apparent diffusion coefficient was reduced in a region of suspected sarcoma directly adjacent to fixation hardware. An initial demonstration of minimal-artifact multispectral DWI in the near vicinity of metallic hardware is described and successfully demonstrated on clinical subjects. Magn Reson Med 79:987-993, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  9. Bimodal distribution of damage morphology generated by ion implantation

    International Nuclear Information System (INIS)

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Srinivasan, M.P.; Benistant, F.

    2005-01-01

    A nucleation and evolution model of damage based on amorphous pockets (APs) has recently been developed and implemented in an atomistic kinetic Monte Carlo simulator. In the model, APs are disordered structures (I n V m ), which are agglomerates of interstitials (I) and vacancies (V). This model has been used to study the composition and size distribution of APs during different ion implantations. Depending strongly on the dose rate, ion mass and implant temperature, the APs can evolve to a defect population where the agglomerates have a similar number of I and V (n ∼ m), or to a defect population with pure I (m ∼ 0) and pure V (n ∼ 0) clusters, or a mixture of APs and clusters. This behaviour corresponds to a bimodal (APs/clusters) distribution of damage. As the AP have different thermal stability compared to the I and V clusters, the same damage concentration obtained through different implant conditions has a different damage morphology and, consequently, exhibit a different resistance to subsequent thermal treatments

  10. Modeling of interstitial diffusion of ion-implanted boron

    International Nuclear Information System (INIS)

    Velichko, O.I.; Knyazheva, N.V.

    2009-01-01

    A model of the interstitial diffusion of ion-implanted boron during rapid thermal annealing of silicon layers previously amorphized by implantation of germanium has been proposed. It is supposed that the boron interstitials are created continuously during annealing due to generation, dissolution, or rearrangement of the clusters of impurity atoms which are formed in the ion-implanted layers with impurity concentration above the solubility limit. The local elastic stresses arising due to the difference of boron atomic radius and atomic radius of silicon also contribute to the generation of boron interstitials. A simulation of boron redistribution during thermal annealing for 60 s at a temperature of 850 C has been carried out. The calculated profile agrees well with the experimental data. A number of the parameters of interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 12 nm. It was also obtained that approximately 1.94% of boron atoms were converted to the interstitial sites, participated in the fast interstitial migration, and then became immobile again transferring into a substitutional position or forming the electrically inactive complexes with crystal lattice defects. (authors)

  11. Au{sup 3+} ion implantation on FTO coated glasses: Effect on structural, electrical, optical and phonon properties

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Bindu; Dey, Ranajit; Bajpai, P.K., E-mail: bajpai.pk1@gmail.com

    2017-06-01

    Highlights: • Effects of 11.00 MeV Au{sup 3+} ions implanted in FTO coated (thickness ≈300 nm) silicate glasses at varying fluence. • Metal clustering near the surface and subsurface region below glass-FTO interface changes electrical and optical properties significantly. • Ion implantation does not affect the crystalline structure of the coated films; however, the tetragonal distortion increases with increasing ion fluence. • Significant surface reconstruction takes place with ion beam fluence; The average roughness also decreases with increasing fluence. • The sheet resistivity increases with increasing fluence. • Raman analysis also corroborates the re-crystallization process inducing due to ion implantation. • Optical properties of the implanted surfaces changes significantly. - Abstract: Effects of 11.00 MeV Au{sup 3+} ions implanted in FTO coated (thickness ≈300 nm) silicate glasses on structural, electrical optical and phonon behavior have been explored. It has been observed that metal clustering near the surface and sub-surface region below glass-FTO interface changes electrical and optical properties significantly. Ion implantation does not affect the crystalline structure of the coated films; however, the unit cell volume decreases with increase in fluence and the tetragonal distortion (c/a ratio) also decreases systematically in the implanted samples. The sheet resistivity of the films increases from 11 × 10{sup −5} ohm-cm (in pristine) to 7.5 × 10{sup −4} ohm-cm for highest ion beam fluence ≈10{sup 15} ions/cm{sup 2}. The optical absorption decreases with increasing fluence whereas, the optical transmittance as well as reflectance increases with increasing fluence. The Raman spectra are observed at ∼530 cm{sup −1} and ∼1103 cm{sup −1} in pristine sample. The broad band at 530 cm{sup −1} shifts towards higher wave number in the irradiated samples. This may be correlated with increased disorder and strain relaxation in

  12. Cutaneous and systemic hypersensitivity reactions to metallic implants

    DEFF Research Database (Denmark)

    Basko-Plluska, Juliana L; Thyssen, Jacob P; Schalock, Peter C

    2011-01-01

    , and vasculitic eruptions may occur. Also, more complex immune reactions may develop around the implants, resulting in pain, inflammation, and loosening. Nickel, cobalt, and chromium are the three most common metals that elicit both cutaneous and extracutaneous allergic reactions from chronic internal exposure...

  13. Defect structures of ion-implanted α-tin

    International Nuclear Information System (INIS)

    Petersen, J.W.; Weyer, G.; Damgaard, S.; Nielsen, H.L.

    1980-01-01

    Single crystalline and polycrystalline α-tin has been implanted at the room temperature 80-keV ions of radioactive sup(119m)Sn, 119 Sb, and sup(119m)Te. The radioactive nuclei decay to the Moessbauer level of 119 Sn. Moessbauer spectra of the emitted 24-keV γ radiation have been measured for different source temperatures by resonance counting techniques. Five individual lines in the spectra are characterized mainly by their isomer shifts and Debye temperatures. From these parameters the radiogenic 119 Sn atoms are concluded to be located in regular substitutional and interstitial lattice sites and in defect complexes. Simple models for the defects are proposed: A Sn-vacancy pair consists of Sn atoms on (nearly) substitutional sites with a dangling bond into an adjacent vacancy. In a complex oxygen-containing defect the Sn atoms have approximately a 5s 2 configuration with p-bonds to two nearest neighbour atoms. Sn atoms, having an atomic 5s 2 5p 2 configuration and large vibrational amplitudes, are concluded to be in non-bonding regular interstitial sites. For special implantation conditions minor fractions of SnO 2 molecules are formed in the bulk, The interstitial 119 Sn and the 119 Sn-vacancy pairs are proposed to represent elementary point defects in α-tin. Conclusions are also drawn concerning the lattice location and the defects created in the implantation process by the implanted parent isotopes. (orig.)

  14. Implantation and Stability of Metallic Fiducials Within Pulmonary Lesions

    International Nuclear Information System (INIS)

    Kupelian, Patrick A.; Forbes, Alan; Willoughby, Twyla R. M.S.; Wallace, Karen; Manon, Rafael R.; Meeks, Sanford L.; Herrera, Luis; Johnston, Alan; Herran, Juan J.

    2007-01-01

    Purpose: To report and describe implantation techniques and stability of metallic fiducials in lung lesions to be treated with external beam radiotherapy. Methods and Materials: Patients undergoing radiation therapy for small early-stage lung cancer underwent implantation with small metallic markers. Implantation was either transcutaneous under computed tomographic (CT) or fluoroscopic guidance or transbronchial with the superDimension/Bronchus system (radiofrequency signal-based bronchoscopy guidance related to CT images). Results: Implantation was performed transcutaneously in 15 patients and transbronchially in 8 patients. Pneumothorax occurred with eight of the 15 transcutaneous implants, six of which required chest tube placement. None of the patients who underwent transbronchial implantation developed pneumothorax. Successfully inserted markers were all usable during gated image-guided radiotherapy. Marker stability was determined by observing the variation in gross target volume (GTV) centroid relative to the marker on repeated CT scans. Average three-dimensional variation in the GTV center relative to the marker was 2.6 ± 1.3 (SD) mm, and the largest variation along any anatomic axis for any patient was <5 mm. Average GTV volume decrease during the observation period was 34% ± 23%. Gross tumor volumes do not appear to shrink uniformly about the center of the tumor, but rather the tumor shapes deform substantially throughout treatment. Conclusions: Transbronchial marker placement is less invasive than transcutaneous placement, which is associated with high pneumothorax rates. Although marker geometry can be affected by tumor shrinkage, implanted markers are stable within tumors throughout the treatment duration regardless of implantation method

  15. Synthesis of optical waveguides in SiO2 by silver ion implantation

    Science.gov (United States)

    Márquez, H.; Salazar, D.; Rangel-Rojo, R.; Angel-Valenzuela, J. L.; Vázquez, G. V.; Flores-Romero, E.; Rodríguez-Fernández, L.; Oliver, A.

    2013-03-01

    Optical waveguides have been obtained by silver ion implantation on fused silica substrates. Silver ion implantation profiles were calculated in a SiO2 matrix with different energies of implantation from 125 keV to 10 MeV. Refractive index change (Δn) of the ion implanted waveguides was calculated as a function of their chemical composition. Optical absorption spectra of waveguides obtained by 9 MeV silver ion implantation, at a dose of 5 × 1016 ions/cm2, exhibit the typical absorption band associated to the surface plasmon resonance of silver nanoparticles. Effective refractive indices of the propagation modes and waveguide propagation losses of silver ion implanted waveguides are also presented.

  16. Planar transistors and impatt diodes with ion implantation

    International Nuclear Information System (INIS)

    Dorendorf, H.; Glawischnig, H.; Grasser, L.; Hammerschmitt, J.

    1975-03-01

    Low frequency planar npn and pnp transistors have been developed in which the base and emitter have been fabricated using ion implantation of boron and phosphorus by a drive-in diffusion. Electrical parameters of the transistors are comparable with conventionally produced transistors; the noise figure was improved and production tolerances were significantly reduced. Silicon-impatt diodes for the microwave range were also fabricated with implanted pn junctions and tested for their high frequency characteristics. These diodes, made in an improved upside down technology, delivered output power up to 40 mW (burn out power) at 30 GHz. Reverse leakage current and current carrying capability of these diodes were comparable to diffused structures. (orig.) 891 ORU 892 MB [de

  17. Scanning probe microscopy of single Au ion implants in Si

    International Nuclear Information System (INIS)

    Vines, L.; Monakhov, E.; Maknys, K.; Svensson, B.G.; Jensen, J.; Hallen, A.; Kuznetsov, A. Yu.

    2006-01-01

    We have studied 5 MeV Au 2+ ion implantation with fluences between 7 x 10 7 and 2 x 10 8 cm -2 in Si by deep level transient spectroscopy (DLTS) and scanning capacitance microscopy (SCM). The DLTS measurements show formation of electrically active defects such as the two negative charge states of the divacancy (V 2 (=/-) and V 2 (-/0)) and the vacancy-oxygen (VO) center. It is observed that the intensity of the V 2 (=/-) peak is lower compared to that of V 2 (-/0) by a factor of 5. This has been attributed to a highly localized distribution of the defects along the ion tracks, which results in trapping of the carriers at V 2 (-/0) and incomplete occupancy of V 2 (=/-). The SCM measurements obtained in a plan view show a random pattern of regions with a reduced SCM signal for the samples implanted with fluence above 2 x 10 8 cm -2 . The reduced SCM signal is attributed to extra charges associated with acceptor states, such as V 2 (-/0), formed along the ion tracks in the bulk Si. Indeed, the electron emission rate from the V 2 (-/0) state is in the range of 10 kHz at room temperature, which is well below the probing frequency of the SCM measurements, resulting in 'freezing' of electrons at V 2 (-/0)

  18. Action of age-hardening on the copper single crystals after ion implantation

    International Nuclear Information System (INIS)

    Kul'ment'eva, O.P.; Kul'ment'ev, A.I.

    2007-01-01

    High-dose implantation (up to (1-5)·10 17 cm -2 ) of tantalum ions into a copper single crystal of (100), (110) and (111) orientation has been investigated. Modified properties just after ion implantation and subsequent age-hardening during ten years were studied. It was shown that ion implantation and subsequent masstransfer process results in sufficient long-term stable changes of the microhardness. (authors)

  19. Metal ion levels and lymphocyte counts

    DEFF Research Database (Denmark)

    Penny, Jeannette Ø; Varmarken, Jens-Erik; Ovesen, Ole

    2013-01-01

    . RESULTS: The T-lymphocyte counts for both implant types declined over the 2-year period. This decline was statistically significant for CD3(+)CD8(+) in the THA group, with a regression coefficient of -0.04 × 10(9)cells/year (95% CI: -0.08 to -0.01). Regression analysis indicated a depressive effect...... of cobalt ions in particular on T-cells with 2-year whole-blood cobalt regression coefficients for CD3+ of -0.10 (95% CI: -0.16 to -0.04) × 10(9) cells/parts per billion (ppb), for CD3+CD4+ of -0.06 (-0.09 to -0.03) × 10(9) cells/ppb, and for CD3(+)CD8(+) of -0.02 (-0.03 to -0.00) × 10(9) cells...

  20. Structure and tribological performance by nitrogen and oxygen plasma based ion implantation on Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Feng Xingguo; Sun Mingren; Ma Xinxin; Tang Guangze

    2011-01-01

    Ti6Al4V alloy was implanted with nitrogen-oxygen mixture by using plasma based ion implantation (PBII) at pulsed voltage -10, -30 and -50 kV. The implantation was up to 6 x 10 17 ions/cm 2 fluence. The changes in chemical composition, structure and hardness of the modified surfaces were studied by XPS and nanoindentation measurements. According to XPS, it was found that the modified layer was predominantly TiO 2 , but contained small amounts of TiO, Ti 2 O 3 , TiN and Al 2 O 3 between the outmost layer and metallic substrate. Surface hardness and wear resistance of the samples increased significantly after PBII treatment, the wear rate of the sample implanted N 2 -O 2 mixture at -50 kV decreased eight times than the untreated one. The sample implanted N 2 -O 2 mixture showed better wear resistance than that of the sample only implanted oxygen at - 50 kV. The wear mechanism of untreated sample was abrasive-dominated and adhesive, and the wear scar of the sample implanted at -50 kV was characterized by abrasive wear-type ploughing.

  1. Productivity Improvement for the SHX--SEN's Single-Wafer High-Current Ion Implanter

    International Nuclear Information System (INIS)

    Ninomiya, Shiro; Ochi, Akihiro; Kimura, Yasuhiko; Yumiyama, Toshio; Kudo, Tetsuya; Kurose, Takeshi; Kariya, Hiroyuki; Tsukihara, Mitsukuni; Ishikawa, Koji; Ueno, Kazuyoshi

    2011-01-01

    Equipment productivity is a critical issue for device fabrication. For ion implantation, productivity is determined both by ion current at the wafer and by utilization efficiency of the ion beam. Such improvements not only result in higher fabrication efficiency but also reduce consumption of both electrical power and process gases. For high-current ion implanters, reduction of implant area is a key factor to increase efficiency. SEN has developed the SAVING system (Scanning Area Variation Implantation with Narrower Geometrical pattern) to address this opportunity. In this paper, three variations of the SAVING system are introduced along with discussion of their effects on fab productivity.

  2. Measurement of Adhesion Strength of DLC Film Prepared by Utilizing Plasma-Based Ion Implantation

    Science.gov (United States)

    Oka, Yoshihiro; Yatsuzuka, Mitsuyasu

    High-adhesion diamond-like carbon (DLC) film was prepared by a hybrid process of plasma-based ion implantation and deposition using superimposed RF and high-voltage pulses. The adhesion strength of DLC film on a stainless steel (SUS304) was enhanced by the carbon ion implantation to the substrate. Furthermore, ion implantation of mixed carbon and silicon led to considerable enhancement of adhesion strength above the resin glue strength. The adhesion strength of DLC film on the aluminum alloy (A-5052) was improved above the resin glue strength only by the carbon ion implantation to the substrate.

  3. Development of EL element by ion implanting into aluminium film

    Energy Technology Data Exchange (ETDEWEB)

    Maeno, Tomokazu; Tanizaki, Yoshiyuki [Tokyo Metropolitan Industrial Technology Research Inst. (Japan); Morisaki; Shigeki

    1999-01-01

    Rare earth elements were added to a barrier type anodized aluminium film by an ion implantation method, and then the film was reoxidized with direct current. EL characteristic properties by adding elements were observed by reoxidation. Red, blue and green were shown by adding Eu, Tm and Tb, respectively. The EL characteristics of barrier type film were affected by the surface pretreatment. The film treated with degreasing showed that the EL intensity increased much more from lower reanodizing voltage than that of film treated with electropolishing. The film with some elements showed each peculiar color without interference. So that we can see the mixed colors of them. (S.Y.)

  4. Simulation and visualization of ion-implantation in diamond

    International Nuclear Information System (INIS)

    Adler, Joan; Silverman, Amihai; Ierushalmi, Niv; Sorkin, Anastassia; Kalish, Rafi

    2014-01-01

    We have explored aspects of ion implantation in diamonds with molecular dynamics and tightbinding atomistic simulations. Relevant experiments and their potential applications as well as our computer models and computational approaches are described. Our simulations have been designed to answer questions proposed by experimental researchers concerning optimal laboratory schedules for the preparation of samples with potential applications to diamond membranes and NV centers for quantum computers. Simulation and visualization of results enable us to peek inside samples where experimental techniques cannot tread. In order to provide the requisite Brazilian component a new connection between these models and bootstrap percolation is made

  5. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  6. Raman scattering in silicon disordered by gold ion implantation

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Vorlíček, Vladimír; Voseček, Václav

    2010-01-01

    Roč. 247, č. 8 (2010), s. 2022-2026 ISSN 0370-1972. [8th International Conference on Optics of Surfaces and Interfaces (OSI-VIII). Ischia, 07.09.2009-11.09.2009] R&D Projects: GA AV ČR IAA200480702; GA AV ČR IAA400100701; GA AV ČR(CZ) KAN400480701; GA ČR GA106/09/1264 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100520 Keywords : ion implantation * Raman spectra * Rutherford backscattering spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.344, year: 2010

  7. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    at pH 6 they are found to be Cd(II) and Cr(VI) selective. Metal ion uptake properties of resins follow Freundlich's equation. The resins are recyclable and are therefore employed for the removal of heavy metal pollutants from industrial waste water. Keywords. Uptake properties; heavy metal ion; selectivity; recyclability. 1.

  8. Elementary characterization of Ti metal alloys used in implant dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Catarina A. M. P.; Paschuk, Sergei A.; Rocha, Anna S. S.; Corrêa, Janine Nicolosi [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Deniak, Valeriy [Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR (Brazil); Camargo, Liliane [Universidade Paranaense, Umuarama, PR (Brazil); Assis, J.T, E-mail: cata-montenegro@bol.com.br, E-mail: spaschuk@gmail.com, E-mail: denyak@gmail.com, E-mail: lili_camargo2@hotmail.com, E-mail: joaquim@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil)

    2017-07-01

    The main goal of present work is analytical characterization of standard dental implants broadly used by Brazilian dentists. An ideal biological alloy for dental implants must have very high biocompatibility, which means that such material should not provoke any serious adverse tissue response. Dental implants are generally marketed as commercially pure titanium (TiCP) due to their excellent mechanical and physical properties. However, sometimes other alloys are employed and consequently it is essential to study the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of elements. For alloy characterization and identification of elements it was used EDXRF technique. This method allows to perform the qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- ray tubes, Mini X model with Ag and Au targets and X-123SDD detector (AMPTEK) and a 0.5 mm Cu collimator, developed due to specific sample geometrical and topography characteristics. Obtained results showed that implant alloys are not exactly TiCP but were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The presence of such metals as Al and V in all studied samples shows very clear that studied implants were not manufactured from TiCP alloy. Moreover, according to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP. (author)

  9. Elementary characterization of Ti metal alloys used in implant dentistry

    International Nuclear Information System (INIS)

    Torres, Catarina A. M. P.; Paschuk, Sergei A.; Rocha, Anna S. S.; Corrêa, Janine Nicolosi; Deniak, Valeriy; Camargo, Liliane; Assis, J.T

    2017-01-01

    The main goal of present work is analytical characterization of standard dental implants broadly used by Brazilian dentists. An ideal biological alloy for dental implants must have very high biocompatibility, which means that such material should not provoke any serious adverse tissue response. Dental implants are generally marketed as commercially pure titanium (TiCP) due to their excellent mechanical and physical properties. However, sometimes other alloys are employed and consequently it is essential to study the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of elements. For alloy characterization and identification of elements it was used EDXRF technique. This method allows to perform the qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- ray tubes, Mini X model with Ag and Au targets and X-123SDD detector (AMPTEK) and a 0.5 mm Cu collimator, developed due to specific sample geometrical and topography characteristics. Obtained results showed that implant alloys are not exactly TiCP but were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The presence of such metals as Al and V in all studied samples shows very clear that studied implants were not manufactured from TiCP alloy. Moreover, according to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP. (author)

  10. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    Science.gov (United States)

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-08-01

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  11. Amorphization and recrystallization in MeV ion implanted InP crystals

    International Nuclear Information System (INIS)

    Xiong, F.; Nieh, C.W.; Jamieson, D.N.; Vreeland, T. Jr.; Tombrello, T.A.

    1988-01-01

    A comprehensive study of MeV- 15 N-ion-implanted InP by a variety of analytical techniques has revealed the physical processes involved in MeV ion implantation into III-V compound semiconductors as well as the influence of post-implantation annealing. It provides a coherent picture of implant distribution, structural transition, crystalline damage, and lattice strain in InP crystals induced by ion implantation and thermal annealing. The experimental results from the different measurements are summarized in this report. Mechanisms of amorphization by implantation and recrystallization through annealing in MeV-ion-implanted InP are proposed and discussed in light of the results obtained

  12. Study of the effects of focused high-energy boron ion implantation in diamond

    Science.gov (United States)

    Ynsa, M. D.; Agulló-Rueda, F.; Gordillo, N.; Maira, A.; Moreno-Cerrada, D.; Ramos, M. A.

    2017-08-01

    Boron-doped diamond is a material with a great technological and industrial interest because of its exceptional chemical, physical and structural properties. At modest boron concentrations, insulating diamond becomes a p-type semiconductor and at higher concentrations a superconducting metal at low temperature. The most conventional preparation method used so far, has been the homogeneous incorporation of boron doping during the diamond synthesis carried out either with high-pressure sintering of crystals or by chemical vapour deposition (CVD) of films. With these methods, high boron concentration can be included without distorting significantly the diamond crystalline lattice. However, it is complicated to manufacture boron-doped microstructures. A promising alternative to produce such microstructures could be the implantation of focused high-energy boron ions, although boron fluences are limited by the damage produced in diamond. In this work, the effect of focused high-energy boron ion implantation in single crystals of diamond is studied under different irradiation fluences and conditions. Micro-Raman spectra of the sample were measured before and after annealing at 1000 °C as a function of irradiation fluence, for both superficial and buried boron implantation, to assess the changes in the diamond lattice by the creation of vacancies and defects and their degree of recovery after annealing.

  13. [Metal ion concentrations in patients with metal-metal bearings in prostheses].

    Science.gov (United States)

    Kretzer, J P; Van Der Straeten, C; Sonntag, R; Müller, U; Streit, M; Moradi, B; Jäger, S; Reinders, J

    2013-08-01

    Increased wear leads to elevated systemic and local metal ion concentrations for patients treated with metal-on-metal bearings. The local metal ion content in the close environment of the joint replacement (e.g. joint aspirate or tissue) is several times higher compared to the systemic metal content (e.g. in blood or serum). As a result of increased metal ion levels, local and systemic effects, such as osteolysis, pseudotumors, sensitization or in rare cases toxicity may occur. Although the definition of a specific threshold to define clinical problems is difficult due to a lack of sensitivity, the systemic metal concentration is frequently measured clinically. Currently a threshold for cobalt and chromium between 4 µg/l and 7 µg/l is under debate. Very high levels (≥ 20 µg/l) or a steady increase over time should be a warning sign; however, metal ion levels should not be interpreted as a single diagnostic tool but rather in the entire context of the clinical, radiological and cross-sectional imaging, metal artefact reduction sequence (MARS) magnetic resonance imaging (MRI), ultrasound and computed tomography (CT) findings.

  14. The effect of ion implantation on the fatigue properties of polycrystalline copper

    International Nuclear Information System (INIS)

    Kujore, A.; Chakrabortty, S.B.; Starke, E.A. Jr.; Legg, K.O.

    1981-01-01

    The effect of ion implantation (aluminium, boron or chromium) on the tensile and strain or stress controlled fatigue behavior of polycrystalline copper has been studied. The monotonic and cyclic stress-strain relationships, cyclic strain-life and stress-life relationships, cyclic deformation characteristics and crack nucleation behavior of implanted copper are compared with unimplanted copper. Monotonic and cyclic flow stresses are reduced by ion implantation. Life under strain controlled fatigue is improved by ion implantation. Aluminium implantation has the greatest effect on both flow-stress reduction and life improvement. Life under stress controlled fatigue may or may not be improved by implantation. Aluminium and chromium implantation produces a significant improvement whereas boron implantation causes a reduction in the resistance to stress-cycling. (orig.)

  15. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  16. The roles of metal ions in regulation by riboswitches.

    Science.gov (United States)

    Ferré-D'Amaré, Adrian R; Winkler, Wade C

    2011-01-01

    Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation transport or sequestration. However, these transcriptional-based regulatory strategies are not the only mechanisms by which organisms coordinate metal ions with gene expression. Intriguingly, a few classes of signal-responsive RNA elements have also been discovered to function as metalloregulatory agents. This suggests that RNA-based regulatory strategies can be precisely tuned to intracellular metal ion pools, functionally akin to metal-loregulatory proteins. In addition to these metal-sensing regulatory RNAs, there is a yet broader role for metal ions in directly assisting the structural integrity of other signal-responsive regulatory RNA elements. In this chapter, we discuss how the intimate physicochemical relationship between metal ions and nucleic acids is important for the structure and function of metal ion- and metabolite-sensing regulatory RNAs.

  17. Dual ions implantation of zirconium and nitrogen into magnesium alloys for enhanced corrosion resistance, antimicrobial activity and biocompatibility.

    Science.gov (United States)

    Cheng, Mengqi; Qiao, Yuqin; Wang, Qi; Qin, Hui; Zhang, Xianlong; Liu, Xuanyong

    2016-12-01

    Biodegradable magnesium-based alloys have shown great potential for medical applications due to their superior biological performances and mechanical properties. However, on one hand, some side effects including inferior biocompatibility, a local high-alkaline environment and gas cavities caused by a rapid corrosion rate, hinder their clinical application. On the other hand, it is also necessary to endow Mg alloys with antibacterial properties, which are crucial for clinic orthopedic applications. In this study, Zr and N ions are simultaneously implanted into AZ91 Mg alloys by plasma immersion ion implantation (PIII). A modified layer with a thickness of approximately 80nm is formed on the surface of AZ91 Mg alloys, and the hydrophobicity and roughness of these AZ91 Mg alloys obviously increase after Zr and N implantation. The in vitro evaluations including corrosion resistance tests, antimicrobial tests and cytocompatibility and alkaline phosphatase (ALP) activity tests, revealed that the dual ions implantation of Zr and N not only enhanced the corrosion resistance of the AZ91 Mg alloy but also provided better antimicrobial properties in vitro. Furthermore, the formation of biocompatible metal nitrides and metal oxides layer in the near surface of the Zr-N-implanted AZ91 Mg alloy provided a favorable implantation surface for cell adhesion and growth, which in return further promoted the bone formation in vivo. These promising results suggest that the Zr-N-implanted AZ91 Mg alloy shows potential for future application in the orthopedic field. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Controlled fabrication of Si nanocrystal delta-layers in thin SiO{sub 2} layers by plasma immersion ion implantation for nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M. [CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse Cedex 04 (France); Spiegel, Y.; Torregrosa, F. [IBS, Rue G Imbert Prolongée, ZI Peynier-Rousset, 13790 Peynier (France); Normand, P.; Dimitrakis, P.; Kapetanakis, E. [NCSRD, Terma Patriarchou Gregoriou, 15310 Aghia Paraskevi (Greece); Sahu, B. S.; Slaoui, A. [ICube, 23 Rue du Loess, 67037 Strasbourg Cedex 2 (France)

    2013-12-16

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO{sub 2} films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories.

  19. Controlled fabrication of Si nanocrystal delta-layers in thin SiO2 layers by plasma immersion ion implantation for nonvolatile memories

    International Nuclear Information System (INIS)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M.; Spiegel, Y.; Torregrosa, F.; Normand, P.; Dimitrakis, P.; Kapetanakis, E.; Sahu, B. S.; Slaoui, A.

    2013-01-01

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO 2 films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories

  20. Application of nitrogen plasma immersion ion implantation to titanium nasal implants with nanonetwork surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui; Yang, Wei-En [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Zhu, Hongqin [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Lan, Ming-Ying [Division of Rhinology, Department of Otolaryngology Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan and School of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Sheng-Wei [Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung 407, Taiwan (China); Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China)

    2016-07-15

    In nasal reconstruction, the response of cells to titanium (Ti) implants is mainly determined by surface features of the implant. In a pilot study, the authors applied electrochemical anodization to Ti surfaces in an alkaline solution to create a network of nanoscale surface structures. This nanonetwork was intended to enhance the responses of primary human nasal epithelial cell (HNEpC) to the Ti surface. In this study, the authors then treated the anodized, nanonetwork-structured Ti surface using nitrogen plasma immersion ion implantation (NPIII) in order to further improve the HNEpC response to the Ti surface. Subsequently, surface characterization was performed to elucidate morphology, roughness, wettability, and chemistry of specimens. Cytotoxicity, blood, and HNEpC responses were also evaluated. Our results demonstrate that NPIII treatment led to the formation of a noncytotoxic TiN-containing thin film (thickness <100 nm) on the electrochemically anodized Ti surface with a nanonetwork-structure. NPIII treatment was shown to improve blood clotting and the adhesion of platelets to the anodized Ti surface as well as the adhesion and proliferation of hNEpC. This research spreads our understanding of the fact that a TiN-containing thin film, produced using NPIII treatment, could be used to improve blood and HNEpC responses to anodized, nanonetwork-structured Ti surfaces in nasal implant applications.

  1. Development of a simple, low cost, indirect ion beam fluence measurement system for ion implanters, accelerators

    Science.gov (United States)

    Suresh, K.; Balaji, S.; Saravanan, K.; Navas, J.; David, C.; Panigrahi, B. K.

    2018-02-01

    We developed a simple, low cost user-friendly automated indirect ion beam fluence measurement system for ion irradiation and analysis experiments requiring indirect beam fluence measurements unperturbed by sample conditions like low temperature, high temperature, sample biasing as well as in regular ion implantation experiments in the ion implanters and electrostatic accelerators with continuous beam. The system, which uses simple, low cost, off-the-shelf components/systems and two distinct layers of in-house built softwarenot only eliminates the need for costly data acquisition systems but also overcomes difficulties in using properietry software. The hardware of the system is centered around a personal computer, a PIC16F887 based embedded system, a Faraday cup drive cum monitor circuit, a pair of Faraday Cups and a beam current integrator and the in-house developed software include C based microcontroller firmware and LABVIEW based virtual instrument automation software. The automatic fluence measurement involves two important phases, a current sampling phase lasting over 20-30 seconds during which the ion beam current is continuously measured by intercepting the ion beam and the averaged beam current value is computed. A subsequent charge computation phase lasting 700-900 seconds is executed making the ion beam to irradiate the samples and the incremental fluence received by the sampleis estimated usingthe latest averaged beam current value from the ion beam current sampling phase. The cycle of current sampling-charge computation is repeated till the required fluence is reached. Besides simplicity and cost-effectiveness, other important advantages of the developed system include easy reconfiguration of the system to suit customisation of experiments, scalability, easy debug and maintenance of the hardware/software, ability to work as a standalone system. The system was tested with different set of samples and ion fluences and the results were verified using

  2. Modification of magnetic properties of polyethyleneterephthalate by iron ion implantation

    International Nuclear Information System (INIS)

    Lukashevich, M.G.; Batlle, X.; Labarta, A.; Popok, V.N.; Zhikharev, V.A.; Khaibullin, R.I.; Odzhaev, V.B.

    2007-01-01

    Fe + ions (40 keV) were implanted into polyethyleneterephthalate (PET) films with fluences of (0.25-1.5) x 10 17 cm -2 . Magnetic properties of the synthesised Fe:PET composites were studied using superconducting quantum interference device (SQUID) technique in temperature range of 2-300 K. For range of fluences (0.5-0.75) x 10 17 cm -2 the samples reveal superparamagnetic behaviour at room temperature. At fluences above 0.75 x 10 17 cm -2 the strong increase of magnetisation and transition to ferromagnetic properties are registered. Analysis of the magnetic hysteresis loops suggests an easy plane magnetic anisotropy similar to that found for thin magnetic films. Zero-field-cooled (ZFC) and field-cooled (FC) temperature measurements of magnetisation are found to be in agreement with earlier observed formation of Fe nanoparticles (NPs) in the implanted layers. The growth and agglomeration of the NPs forming the quasi-continuous labyrinth-like structure in the polymer film at the highest implantation fluence of 1.5 x 10 17 cm -2 is an origin for the transition to the ferromagnetic properties

  3. Impregnated-electrode-type liquid metal ion source (IV): Extraction of Si, Ge, Sb by using eutectic alloy

    International Nuclear Information System (INIS)

    Chen, G.; Gotoh, Y.; Tsuji, H.; Ishikawa, J.; Takagi, T.

    1985-01-01

    An impregnated-electrode-type liquid metal ion source has been developed in which a sintered porous tungsten tip is used. There has been an increasing interest in liquid metal ion source to obtain focused ion beams. The focused ion beam can perform three useful process steps: direct-write ion implantation to semiconductor, ion sputtering to make thin films and ion exposure to define resist. It is necessary to extract various ions for this purpose. It is possible to extract ions of Ga, Au, and Ag with impregnated-electrode-type liquid metal ion source. For micro-electronic application, ions of Si, Ge and Sb are desirable for doping, but their high melting points or high vapour pressures prohibit their use in elemental form. The purpose of the present investigation is to fabricate eutectic alloys which can be used in impregnated-electrode-type liquid metal ion source. The authors have been successful to obtain ions of Si, Ge and Sb, and revealed relevant basic ion source parameters such as current-voltage characteristics, mass spectra and life time

  4. Peripheral nerve regeneration through a silicone chamber implanted with negative carbon ions: Possibility to clinical application

    Science.gov (United States)

    Ikeguchi, Ryosuke; Kakinoki, Ryosuke; Tsuji, Hiroshi; Yasuda, Tadashi; Matsuda, Shuichi

    2014-08-01

    We investigated whether a tube with its inner surface implanted with negative-charged carbon ions (C- ions) would enable axons to extend over a distance greater than 10 mm. The tube was found to support nerves regenerating across a 15-mm-long inter-stump gap. We also investigated whether a C- ion-implanted tube pretreated with basic fibroblast growth factor (bFGF) promotes peripheral nerve regeneration. The C- ion implanted tube accelerated nerve regeneration, and this effect was enhanced by bFGF. Silicone treated with C- ions showed increased hydrophilic properties and cellular affinity, and axon regeneration was promoted with this increased biocompatibility.

  5. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    concentration on the uptake of metal ions have been studied. The uptake of metal ion depends on pH. The resins are more selective at pH 10 for Pb(II) and Hg(II), whereas at pH 6 they are found to be Cd(II) and Cr(VI) selective. Metal ion uptake properties of resins follow Freundlich's equation. The resins are recyclable and ...

  6. Platelet adhesion and plasma protein adsorption control of collagen surfaces by He+ ion implantation

    International Nuclear Information System (INIS)

    Kurotobi, K.; Suzuki, Y.; Nakajima, H.; Suzuki, H.; Iwaki, M.

    2003-01-01

    He + ion implanted collagen-coated tubes with a fluence of 1 x 10 14 ions/cm 2 were exhibited antithrombogenicity. To investigate the mechanisms of antithrombogenicity of these samples, plasma protein adsorption assay and platelet adhesion experiments were performed. The adsorption of fibrinogen (Fg) and von Willebrand factor (vWf) was minimum on the He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 . Platelet adhesion (using platelet rich plasma) was inhibited on the He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and was accelerated on the untreated collagen and ion implanted collagen with fluences of 1 x 10 13 , 1 x 10 15 and 1 x 10 16 ions/cm 2 . Platelet activation with washed platelets was observed on untreated collagen and He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and was inhibited with fluences of 1 x 10 13 , 1 x 10 15 and 1 x 10 16 ions/cm 2 . Generally, platelets can react with a specific ligand inside the collagen (GFOGER sequence). The results of platelets adhesion experiments using washed platelets indicated that there were no ligands such as GFOGER on the He + ion implanted collagen over a fluence of 1 x 10 13 ions/cm 2 . On the 1 x 10 14 ions/cm 2 implanted collagen, no platelet activation was observed due to the influence of plasma proteins. >From the above, it is concluded that the decrease of adsorbed Fg and vWf caused the antithrombogenicity of He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and that plasma protein adsorption took an important role repairing the graft surface

  7. Comprehensive modeling of ion-implant amorphization in silicon

    International Nuclear Information System (INIS)

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Srinivasan, M.P.; Benistant, F.

    2005-01-01

    A physically based model has been developed to simulate the ion-implant induced damage accumulation up to amorphization in silicon. Based on damage structures known as amorphous pockets (AP), which are three-dimensional, irregularly shaped agglomerates of interstitials (I) and vacancies (V) surrounded by crystalline silicon, the model is able to reproduce a wide range of experimental observations of damage accumulation and amorphization with interdependent implantation parameters. Instead of recrystallizing the I's and V's instantaneously, the recrystallization rate of an AP containing nI and mV is a function of its effective size, defined as min(n, m), irrespective of its internal spatial configuration. The parameters used in the model were calibrated using the experimental silicon amorphous-crystalline transition temperature as a function of dose rate for C, Si, and Ge. The model is able to show the superlinear damage build-up with dose, the extent of amorphous layer and the superadditivity effect of polyatomic ions

  8. Ion-implantation and analysis for doped silicon slot waveguides

    Directory of Open Access Journals (Sweden)

    McCallum J. C.

    2012-10-01

    Full Text Available We have utilised ion implantation to fabricate silicon nanocrystal sensitised erbium-doped slot waveguide structures in a Si/SiO2/Si layered configuration and photoluminescence (PL and Rutherford backscattering spectrometry (RBS to analyse these structures. Slot waveguide structures in which light is confined to a nanometre-scale low-index region between two high-index regions potentially offer significant advantages for realisation of electrically-pumped Si devices with optical gain and possibly quantum optical devices. We are currently investigating an alternative pathway in which high quality thermal oxides are grown on silicon and ion implantation is used to introduce the Er and Si-ncs into the SiO2 layer. This approach provides considerable control over the Er and Si-nc concentrations and depth profiles which is important for exploring the available parameter space and developing optimised structures. RBS is well-suited to compositional analysis of these layered structures. To improve the depth sensitivity we have used a 1 MeV α beam and results indicate that a layered silicon-Er:SiO2/silicon structure has been fabricated as desired. In this paper structural results will be compared to Er photoluminescence profiles for samples processed under a range of conditions.

  9. Sorption of metal ions on synthetic organo-inorganic ion exchanger polyacrylonitrile-Ti(IV) tungstophosphate

    International Nuclear Information System (INIS)

    Haidary, A.; Ahmadi, S. J.; Asadi, M. R.; Asgharizadeh, F.; Ashtari, P.

    2010-01-01

    In this study two Polyacrylonitrile-Ti(IV) tungstophosphate organo-inorganic ion exchangers with different molar ratios have been synthesized. These ion exchangers have been characterized by fourier transform-IR, X- ray diffraction, thermal gravimetric, scanning electron microscopy and CHNSO techniques and their cation exchange capacity bas been measured by continuous method. Distribution coefficients (K d ) for metal ions and radionuclides were determined by batch method and with these ion exchangers, separation of metal ions was achieved on a glass column.

  10. Metal concentrations in the blood and tissues after implantation of titanium growth guidance sliding instrumentation.

    Science.gov (United States)

    Lukina, Elena; Laka, Aleksandr; Kollerov, Mikhail; Sampiev, Mykhamad; Mason, Peter; Wagstaff, Paul; Noordeen, Hilali; Yoon, Wai Weng; Blunn, Gordon

    2016-03-01

    Growth guidance sliding treatment devices, such as Shilla (Medtronic, Minneapolis, MN USA) or LSZ-4D (CONMET, Moscow, Russia), used for the treatment of scoliosis in children who have high growth potential have unlocked fixtures that allow rods to slide during growth of the spine, which avoids periodical extensions. However, the probability of clinical complications associated with metallosis after implantation of such devices is poorly understood. The content of metal ions in the blood and tissues of pediatric patients treated for scoliosis using fusionless growth guidance sliding instrumentation has not yet been investigated. The aim of the present study was to measure the content of metal ions in the blood and tissues surrounding the implanted growth guidance sliding LSZ-4D devices made of titanium alloy (Ti6Al4V), and to identify the incidence of metallosis-associated clinical complications in some patients with these devices. This is a one-center, case-control retrospective study. The study group included 25 patients with high growth potential (22 females, 3 males; average age at primary surgery for scoliosis treatment is 11.4±1.2 years old) who had sliding growth guidance instrumentation LSZ-4D (CONMET) implanted on 13 (range: 10-16) spine levels for 6±2 years. The LSZ-4D device was made from titanium alloy Ti6Al4V and consisted of two rectangular section rods and fixture elements. Locked fixtures were used on one spinal level, whereas the others were unlocked (sliding). The control group consisted of 13 patients (12 females and 1 male; 11±1.2 years old) without any implanted devices. The content of Ti, Al, and V metal ions in the whole blood and tissues around the implanted device was measured. The incidences of metallosis-associated complications in the study group were recorded. Metal ion content was measured by the inductively coupled mass spectrometry method on quadrupolar NexION 300D (PerkinElmer Inc, Shelton, CT, USA). Five of 25 patients in the

  11. Measurement of electron emission due to energetic ion bombardment in plasma source ion implantation

    Science.gov (United States)

    Shamim, M. M.; Scheuer, J. T.; Fetherston, R. P.; Conrad, J. R.

    1991-11-01

    An experimental procedure has been developed to measure electron emission due to energetic ion bombardment during plasma source ion implantation. Spherical targets of copper, stainless steel, graphite, titanium alloy, and aluminum alloy were biased negatively to 20, 30, and 40 kV in argon and nitrogen plasmas. A Langmuir probe was used to detect the propagating sheath edge and a Rogowski transformer was used to measure the current to the target. The measurements of electron emission coefficients compare well with those measured under similar conditions.

  12. Stoichiometric carbon nitride synthesized by ion beam sputtering and post nitrogen ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Valizadeh, R.; Colligon, J.S. [Salford Univ. (United Kingdom). DMM Institute; Katardiev, I.V. [Uppsala Univ. (Sweden). Angstrom Laboratory; Faunce, C.A.; Donnelly, S.E. [Salford Univ. (United Kingdom). Science Institute

    1998-06-01

    Full text: Carbon nitride films have been deposited on Si (100) by ion beam sputtering a vitreous graphite target with nitrogen and argon ions with and without concurrent N2 ion bombardment at room temperature. The sputtering beam energy was 1000 eV and the assisted beam energy was 300 eV with ion / atom arrival ratio ranging from 0.5 to 5. The carbon nitride films were deposited both as single layer directly on silicon substrate and as multilayer between two layers of stoichiometric amorphous silicon nitride and polycrystalline titanium nitride. The deposited films were implanted ex-situ with 30 keV nitrogen ions with various doses ranging from 1E17 to 4E17 ions.cm{sup -2} and 2 GeV xenon ion with a dose of 1E12 ions.cm{sup -2} . The nitrogen concentration of the films was measured with Rutherford Backscattering (RBS), Secondary Neutral Mass Spectrometry (SNMS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The nitrogen concentration for as deposited sample was 34 at% and stoichiometric carbon nitride C{sub 3}N{sub 4} was achieved by post nitrogen implantation of the multi-layered films. Post bombardment of single layer carbon nitride films lead to reduction in the total nitrogen concentration. Carbon K edge structure obtained from PEELS analysis suggested that the amorphous C{sub 3}N{sub 4} matrix was predominantly sp{sup 2} bonded. This was confirmed by Fourier Transforrn Infra-Red Spectroscopy (FTIR) analysis of the single CN layer which showed the nitrogen was mostly bonded with carbon in nitrile (C{identical_to}N) and imine (C=N) groups. The microstructure of the film was determined by Transmission Electron Microscopy (TEM) which indicated that the films were amorphous.

  13. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    International Nuclear Information System (INIS)

    Weis, Christoph D.

    2011-01-01

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  14. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  15. Interaction of mobile phones with superficial passive metallic implants

    International Nuclear Information System (INIS)

    Virtanen, H; Huttunen, J; Toropainen, A; Lappalainen, R

    2005-01-01

    The dosimetry of exposure to radiofrequency (RF) electromagnetic (EM) fields of mobile phones is generally based on the specific absorption rate (SAR, W kg -1 ), which is the electromagnetic energy absorbed in the tissues per unit mass and time. In this study, numerical methods and modelling were used to estimate the effect of a passive, metallic (conducting) superficial implant on a mobile phone EM field and especially its absorption in tissues in the near field. Two basic implant models were studied: metallic pins and rings in the surface layers of the human body near the mobile phone. The aim was to find out 'the worst case scenario' with respect to energy absorption by varying different parameters such as implant location, orientation, size and adjacent tissues. Modelling and electromagnetic field calculations were carried out using commercial SEMCAD software based on the FDTD (finite difference time domain) method. The mobile phone was a 900 MHz or 1800 MHz generic phone with a quarter wave monopole antenna. A cylindrical tissue phantom models different curved sections of the human body such as limbs or a head. All the parameters studied (implant size, orientation, location, adjacent tissues and signal frequency) had a major effect on the SAR distribution and in certain cases high local EM fields arose near the implant. The SAR values increased most when the implant was on the skin and had a resonance length or diameter, i.e. about a third of the wavelength in tissues. The local peak SAR values increased even by a factor of 400-700 due to a pin or a ring. These highest values were reached in a limited volume close to the implant surface in almost all the studied cases. In contrast, without the implant the highest SAR values were generally reached on the skin surface. Mass averaged SAR 1g and SAR 10g values increased due to the implant even by a factor of 3 and 2, respectively. However, at typical power levels of mobile phones the enhancement is unlikely to be

  16. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell

    International Nuclear Information System (INIS)

    Kim, Beom-Su; Kim, Jin Seong; Park, Young Min; Choi, Bo-Young; Lee, Jun

    2013-01-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3 × 10 16 ions/cm 2 was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity. - Highlights: ► Mg ion was coated onto surface of SLA treated titanium via vacuum arc source ion implantation method. ► The morphological characteristics did not change after Mg ion implantation. ► Mg ion implanted SLA Ti is highly cytocompatible. ► Initial cell adhesion of MSCs is improved by Mg ion implantation. ► Mg ion implantation improved

  17. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom-Su; Kim, Jin Seong [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-ro, Seo-gu, Daejeon 302-830 (Korea, Republic of); Park, Young Min [DIO Corporation, 66, Centum seo-ro, Haeundae-gu, Busan (Korea, Republic of); Choi, Bo-Young [Department of Oral and maxillofacial Surgery, Wonkwang University Daejeon Dental Hospital, Daejeon 302-830 (Korea, Republic of); Lee, Jun, E-mail: omslee@wku.ac.kr [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-ro, Seo-gu, Daejeon 302-830 (Korea, Republic of)

    2013-04-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3 × 10{sup 16} ions/cm{sup 2} was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity. - Highlights: ► Mg ion was coated onto surface of SLA treated titanium via vacuum arc source ion implantation method. ► The morphological characteristics did not change after Mg ion implantation. ► Mg ion implanted SLA Ti is highly cytocompatible. ► Initial cell adhesion of MSCs is improved by Mg ion implantation. ► Mg ion implantation

  18. Effect of disorder and defects in ion-implanted semiconductors electrical and physiochemical characterization

    CERN Document Server

    Willardson, Robert K; Christofides, Constantinos; Ghibaudo, Gerard

    2014-01-01

    Defects in ion-implanted semiconductors are important and will likely gain increased importance in the future as annealing temperatures are reduced with successive IC generations. Novel implant approaches, such as MdV implantation, create new types of defects whose origin and annealing characteristics will need to be addressed. Publications in this field mainly focus on the effects of ion implantation on the material and the modification in the implanted layer afterhigh temperature annealing.Electrical and Physicochemical Characterization focuses on the physics of the annealing kine

  19. The influence of incidence angle on disorder production in Cl and Ar ion implanted Si

    International Nuclear Information System (INIS)

    Sukirno; Carter, G.

    1989-01-01

    Cl and Ar ions have been implanted, at 30 keV and at various incidence angles, into Si substrates maintained at room temperature during implantation. Implantation induced Si disorder was measured using Rutherford backscattering channelling. The effects upon disorder of various incidence angles were studied over a fluence range of 10 12 -6·10 15 ions·cm -2 . The results show that, at low fluences Cl and Ar ion implantations generate a bimodal disorder-depth profile, whilst at higher fluences measurements of amorphised layer thickness as a function of ion incidence angle allow values of the standard deviation of the disorder profile parallel and transverse to the ion beam direction for each ion to be obtained in good agreement with theoretical predictions. The disorder-fluence behaviour under these conditions is ion species independent. (author)

  20. Wear of nitrogen ion implanted copper with tribological Cu-Mo-S coatings

    Science.gov (United States)

    Zharkov, Stanislav Yu.; Sergeev, Victor P.; Sungatulin, Alfred R.; Kalashnikov, Mark P.

    2017-12-01

    The paper studies the effect of nitrogen ion implantation in copper samples before depositing a solid lubricant Cu-Mo-S coating on their wear resistance during wear testing in pairs with a copper counterface in the argon atmosphere. It was found that wear resistance of samples with Cu-Mo-S coating decreased with the increase in fluence of nitrogen ion implantation.

  1. Multi-dimensional microanalysis of masklessly implanted atoms using focused heavy ion beam

    International Nuclear Information System (INIS)

    Mokuno, Yoshiaki; Iiorino, Yuji; Chayahara, Akiyoshi; Kiuchi, Masato; Fujii, Kanenaga; Satou, Mamoru

    1992-01-01

    Multi-dimensional structure fabricated by maskless MeV gold implantation in silicon wafer was analyzed by 3 MeV carbon ion microprobe using a microbeam line developed at GIRIO. The minimum line width of the implanted region was estimated to be about 5 μm. The advantages of heavy ions for microanalysis were demonstrated. (author)

  2. Effects on cuytoskeleton system in pollen tube of pinus thunbergii induced by ion beam implantation

    International Nuclear Information System (INIS)

    Huang Qunce; Liang Qiuxia; Li Guopin

    2008-01-01

    The damage of the cytoskeleton system in the pollen and the pollen tube of Pinus thunbergii induced by ion beam implantation were researched. The results showed that the disorganization of the micro-tubules in the pollen tube was produced by N + implantation. The abnormal states of the pollen tube in morphology were very correlative with the abnormality of the cytoskeleton system. N + implantation was responsible for morphological abnormalities in the pollen tubes. There was a distinct correlation between the damage effects and the ion implantation dose. The add of dose caused more obvious damage effects. Furthermore, the state of the cytoskeleton system in the pollen tube was influenced by the ion implantation. The impact grade depended also on the ion implantation dose. (authors)

  3. A biosystem for removal of metal ions from water

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II.

    1990-01-01

    The presence of heavy metal ions in ground and surface waters constitutes a potential health risk and is an environmental concern. Moreover, processes for the recovery of valuable metal ions are of interest. Bioaccumulation or biosorption is not only a factor in assessing the environmental risk posed by metal ions; it can also be used as a means of decontamination. A biological system for the removal and recovery of metal ions from contaminated water is reported here. Exopolysaccharide-producing microorganisms, including a methanotrophic culture, are demonstrated to have superior metal binding ability, compared with other microbial cultures. This paper describes a biosorption process in which dried biomass obtained from exopolysaccharide-producing microorganisms is encapsulated in porous plastic beads and is used for metal ion binding and recovery. 22 refs., 13 figs.

  4. Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?

    Science.gov (United States)

    Wellenberg, Ruud H H; Donders, Johanna C E; Kloen, Peter; Beenen, Ludo F M; Kleipool, Roeland P; Maas, Mario; Streekstra, Geert J

    2017-08-25

    To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans. Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel tibia plate and a titanium intramedullary nail respectively. Virtual monochromatic images were analyzed from 70 to 190 keV. Region-of-interest (ROI), used to determine fluctuations and inaccuracies in CT numbers of soft tissues and bone, were placed in muscle, fat, cortical bone and intramedullary tibia canal. The stainless-steel implant resulted in more pronounced metal artifacts compared to both titanium implants. CT number inaccuracies in 70 keV reference images were minimized at 130, 180 and 190 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Noise, measured as the standard deviation of pixels within a ROI, was minimized at 130, 150 and 140 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Tailoring dual-energy CT protocols using implant specific virtual monochromatic images minimizes fluctuations and inaccuracies in CT numbers in bone and soft tissues compared to non-metal reference scans.

  5. Ion implantation in compound semiconductors for high-performance electronic devices

    International Nuclear Information System (INIS)

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-01-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb

  6. Ion implantation reinforcement of the protective efficiency of nickel in artificial sea-water

    CERN Document Server

    Leroy, L; Grosseau-Poussard, J L; Dinhut, J F

    2002-01-01

    Ni bulk specimens have been implanted with Cr, Cu and Ar ions (4x10 sup 1 sup 6 ions/cm sup 2 , 60 keV) in order to distinguish between chemical and radiation damage effects on protection corrosion. The corrosion behaviour in artificial sea-water of ion-implanted and pure Ni has been studied at room temperature by electrochemical impedance spectroscopy (EIS) technique. EIS spectra of ion-implanted Ni exhibit one capacitance loop while in pure Ni two distinct loops are observed. Moreover an important increase in the polarisation resistance is noticed for all implanted ions. Theses changes in EIS behaviour with implantation is related to the increase of the superficial layer density resulting in a decrease of heterogeneity of the passive layer. Equivalent circuits are proposed to fit the impedance spectra and corresponding electrochemical parameters are deduced.

  7. Ion implantation reinforcement of the protective efficiency of nickel in artificial sea-water

    International Nuclear Information System (INIS)

    Leroy, L.; Girault, P.; Grosseau-Poussard, J.L.; Dinhut, J.F.

    2002-01-01

    Ni bulk specimens have been implanted with Cr, Cu and Ar ions (4x10 16 ions/cm 2 , 60 keV) in order to distinguish between chemical and radiation damage effects on protection corrosion. The corrosion behaviour in artificial sea-water of ion-implanted and pure Ni has been studied at room temperature by electrochemical impedance spectroscopy (EIS) technique. EIS spectra of ion-implanted Ni exhibit one capacitance loop while in pure Ni two distinct loops are observed. Moreover an important increase in the polarisation resistance is noticed for all implanted ions. Theses changes in EIS behaviour with implantation is related to the increase of the superficial layer density resulting in a decrease of heterogeneity of the passive layer. Equivalent circuits are proposed to fit the impedance spectra and corresponding electrochemical parameters are deduced

  8. Anticorrosion ion implantation of fragments of zirconium fuel can specimens

    International Nuclear Information System (INIS)

    Kalin, B.A.; Osipov, V.V.; Volkov, N.V.; Khernov, V.Yu.

    2001-01-01

    Aimed at the study of specific features of oxide film formation in the initial stage of Eh110 and Eh635 alloy fuel can oxidation the modification of tubular specimen surfaces is performed using an ion mixing technique, and the structure of oxide films produced in a steam-water environment is investigated. Using the method of vacuum vapor deposition the outer surface of specimens is coated with alloying element films irradiated by a polyenergetic Ar + ion beam with a 10 keV mean energy up to radiation doses of (7-10) x 10 17 ion/cm 2 . Monatomic (Al, Fe, Cu, Cr, Mo, Sn) or diatomic (Al-Fe, Al-Mo, Al-Sn, Fe-Cu, Fe-Mo, Fe-Sn, Cr-Mo, Cr-Sn) implantation into a zirconium cladding occurs under irradiation effect. The positive influence of combined intrusion of Al and other elements is revealed. The presence of Al atoms enhances the oxide film structure. The least ZeO 2 film thickness is observed when alloying with molybdenum, Al-Fe, Al-Mo and Al-Sn [ru

  9. Large area diamond-like carbon coatings by ion implantation

    International Nuclear Information System (INIS)

    McCabe, A.R.; Proctor, G.; Jones, A.M.; Bull, S.J.; Chivers, D.J.

    1993-01-01

    Diamond-like Carbon (DLC) coatings have been deposited onto large geometry components in the Harwell Blue Tank ion implantation facility. To modify the substrate surface and to crack the low vapour pressure oil which is evaporated and condensed onto the surface, a 40 Kev nitrogen ion bucket ion source is used. The coating of areas up to 1 metre in diameter is common and with component manipulation larger areas may be coated. Since the component temperature never exceeds 80 o C during the process, a wide range of materials may be coated including specialist tool steels and even certain high density polymers. In order to produce hard wear resistant coatings with extremely low coefficients of friction (0.02-0.15) and a range of mechanical and electrical properties, various oil precursors have been investigated. The production and assessment of such coatings, including measurements of their tribiological performance, is presented. Applications for wear resistance, corrosion protection and electrically conducting coatings are discussed with examples drawn from engineering, electronics and biomedicine. (7 figures, 13 references). (UK)

  10. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  11. The effect of patch testing on surgical practices and outcomes in orthopedic patients with metal implants.

    Science.gov (United States)

    Atanaskova Mesinkovska, Natasha; Tellez, Alejandra; Molina, Luciana; Honari, Golara; Sood, Apra; Barsoum, Wael; Taylor, James S

    2012-06-01

    To determine the effect of patch testing on surgical decision making and outcomes in patients evaluated for suspected metal hypersensitivity related to implants in bones or joints. Medical chart review. Tertiary care academic medical center. All patients who had patch testing for allergic contact dermatitis related to orthopedic implants. Patch testing. The surgeon's preoperative choice of metal implant alloy compared with patch testing results and the presence of hypersensitivity complications related to the metal implant on postsurgical follow-up. Patients with potential metal hypersensitivity from implanted devices (N = 72) were divided into 2 groups depending on timing of their patch testing: preimplantation (n = 31) and postimplantation (n = 41). History of hypersensitivity to metals was a predictor of positive patch test results to metals in both groups. Positive patch test results indicating metal hypersensitivity influenced the decision-making process of the referring surgeon in all preimplantation cases (n = 21). Patients with metal hypersensitivity who received an allergen-free implant had surgical outcomes free of hypersensitivity complications (n = 21). In patients who had positive patch test results to a metal in their implant after implantation, removal of the device led to resolution of associated symptoms (6 of 10 patients). The findings of this study support a role for patch testing in patients with a clinical history of metal hypersensitivity before prosthetic device implantation. The decision on whether to remove an implanted device after positive patch test results should be made on a case-by-case basis, as decided by the surgeon and patient.

  12. Introduction to several solid state techniques for the study of ion implanted materials

    International Nuclear Information System (INIS)

    Borders, J.A.

    1978-01-01

    The study of ion implanted materials requires methods which are sensitive to the local structure and chemistry of the implanted atoms. Optical spectroscopy and transmission electron microscopy are among the most useful solid state methods. Study of materials implanted to very high fluences and the use of surface analysis methods provide some unique information. The characteristics of these methods will be reviewed and examples presented which show how the techniques can be used to analyze implanted materials

  13. Ion beam sputter modification of the surface morphology of biological implants

    Science.gov (United States)

    Weigand, A. J.; Banks, B. A.

    1976-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.

  14. Electrical conduction in 100 keV Kr+ ion implanted poly (ethylene terephthalate)

    Science.gov (United States)

    Goyal, P. K.; Kumar, V.; Gupta, Renu; Mahendia, S.; Anita, Kumar, S.

    2012-06-01

    Polyethylene terephthalate (PET) samples have been implanted to 100 keV Kr+ ions at the fluences 1×1015-- 1×1016 cm-2. From I-V characteristics, the conduction mechanism was found to be shifted from ohmic to space charge limited conduction (SCLC) after implantation. The surface conductivity of these implanted samples was found to increase with increasing implantation dose. The structural alterations in the Raman spectra of implanted PET samples indicate that such an increase in the conductivity may be attributed to the formation of conjugated double bonded carbonaceous structure in the implanted layer of PET.

  15. Fabrication and modification of metal nanocluster composites using ion and laser beams

    International Nuclear Information System (INIS)

    Haglund, R.F. Jr.; Osborne, D.H. Jr.; Magruder, R.H. III; White, C.W.; Zuhr, R.A.; Townsend, P.D.; Hole, D.E.; Leuchtner, R.E.

    1994-12-01

    Metal nanocluster composites have attractive properties for applications in nonlinear optics. However, traditional fabrication techniques -- using melt-glass substrates -- are severely constrained by equilibrium thermodynamics and kinetics. This paper describes the fabrication of metal nanoclusters in both crystalline and glassy hosts by ion implantation and pulsed laser deposition. The size and size distribution of the metal nanoclusters can be modified by controlling substrate temperature during implantation, by subsequent thermal annealing, or by laser irradiation. The authors have characterized the optical response of the composites by absorption and third-order nonlinear-optical spectroscopies; electron and scanning-probe microscopies have been used to benchmark the physical characteristics of the composites. The outlook for controlling the structure and nonlinear optical response properties of these nanophase materials appears increasingly promising

  16. A simple ion implanter for material modifications in agriculture and gemmology

    Energy Technology Data Exchange (ETDEWEB)

    Singkarat, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Wijaikhum, A. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Intarasiri, S. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Bootkul, D. [Department of General Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Phanchaisri, B.; Techarung, J. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Rhodes, M.W.; Suwankosum, R.; Rattanarin, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X–Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  17. A simple ion implanter for material modifications in agriculture and gemmology

    Science.gov (United States)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M. W.; Suwankosum, R.; Rattanarin, S.; Yu, L. D.

    2015-12-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X-Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  18. A simple ion implanter for material modifications in agriculture and gemmology

    International Nuclear Information System (INIS)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M.W.; Suwankosum, R.; Rattanarin, S.; Yu, L.D.

    2015-01-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X–Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  19. Coordination of cassava starch to metal ions and thermolysis of ...

    African Journals Online (AJOL)

    Cassava starch formed Werner-type complexes with ions of metals from the transition groups. This was proven by conductivity and electron paramagnetic resonance measurements. The coordination of starch to central metal ions influenced the thermal decomposition of starch. As a rule complexes started to decompose at ...

  20. COORDINATION OF CASSAVA STARCH TO METAL IONS AND ...

    African Journals Online (AJOL)

    a

    ABSTRACT. Cassava starch formed Werner-type complexes with ions of metals from the transition groups. This was proven by conductivity and electron paramagnetic resonance measurements. The coordination of starch to central metal ions influenced the thermal decomposition of starch. As a rule complexes started to ...

  1. Metal ion binding with dehydroannulenes – Plausible two ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. Theoretical investigations have been carried out at B3LYP/6-311++G** level of theory to study the binding interaction of various metal ions, Li+, Na+ and K+ with dehydroannulene systems. The present study reveals that alkali metal ions bind strongly to dehydroannulenes and the passage through the central.

  2. Metal ion sequestration: An exciting dimension for molecularly ...

    African Journals Online (AJOL)

    Metal ion sequestration: An exciting dimension for molecularly imprinted polymer technology. DMS Mosha, LL Mkayula. Abstract. The use of a tight binding macrocyclic ligand to complex a metal ion so that this serves as receptee on the Molecularly Imprinted Polymer (MIP) receptor as described here affords a sequestration ...

  3. Interaction of Hydroxyproline with Bivalent Metal Ions in Chemical ...

    African Journals Online (AJOL)

    NICO

    The stability constants of the ML and ML2 complex species of some metal ions, namely beryllium(II) and cobalt(II), with hydroxyproline were ... metal ions have several significant applications in biological systems.3–20 Beryllium is one ... 1 filter paper for chromatography was used for the purpose of electrophoresis. An Elico ...

  4. Chromatography Of Metal Ions On Wood Cellulose Impregnated ...

    African Journals Online (AJOL)

    Adsorption chromatography of some heavy metal ions on wood cellulose of saw dust (wood waste dust) modified with hydrochloric acid, urea and thiourea was studied. Atomic absorption spectrophotometry (AAS) was used to determine the initial concentration of solutions of Zn2+, Cu2+, Ni2+, Pb2+, and Fe3+ metal ions.

  5. In vitro cytotoxicity of metallic ions released from dental alloys

    NARCIS (Netherlands)

    Milheiro, A.; Nozaki, K.; Kleverlaan, C.J.; Muris, J.; Miura, H.; Feilzer, A.J.

    2016-01-01

    The cytotoxicity of a dental alloy depends on, but is not limited to, the extent of its corrosion behavior. Individual ions may have effects on cell viability that are different from metals interacting within the alloy structure. We aimed to investigate the cytotoxicity of individual metal ions in

  6. Fluorescence signalling of the transition metal ions: Design strategy ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Transition metal ions are notorious for their fluorescence quenching abilities. In this paper, we discuss the design strategies for the development of efficient off-on fluorescence signalling systems for the transition metal ions. It is shown that even simple fluorophore-spacer-receptor systems can display excellent.

  7. Thermoluminescence of ion-implanted SiO2

    International Nuclear Information System (INIS)

    Arnold, G.W.

    1976-01-01

    Thermoluminescence (TL) has been measured from room temperature to 500 0 C for ion-implanted fused silica glasses, crystalline synthetic quartz and rf-sputtered SiO 2 films. Measurements of the TL spectra for widely varying values of electronic and atomic energy depositions, along with the known impurity concentrations of the various systems, has allowed some of the TL features to be identified. In particular, (1) a TL peak at 150 0 C in fused silica has been identified with defects formed by structural modification, (2) a 330 0 C peak in crystalline quartz and relatively impure fused silica is tentatively assigned to a center involving Al, (3) a 100 0 C peak, common to all silicas may be related to oxygen vacancies, and (4) an approximately 200 0 C peak may be the analog of the 245 nm impurity absorption band seen in some fused silica glasses

  8. Focussed MeV ion beam implanted waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Von Bibra, M.L.; Roberts, A.; Nugent, K.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Single mode buried optical waveguides have been fabricated in fused silica by MeV proton implantation using a focussed hydrogen ion beam. The technique has the potential to direct write waveguide devices and produce multi-layered structures, without the need for intermediate steps such as mask fabrication or layered depositions. A micron resolution Confocal Raman Spectrometer has been used to map the distribution of atomic vacancies that forms the waveguiding region. The results are compared with theoretical calculations. Losses of 3 dB cm{sup -1} have been measured in unannealed samples, which decreases to less than 0.5 dB cm{sup -1} after annealing at 500 degrees Celsius. We describe methods for determining the refractive index distribution of single mode buried waveguides from their output intensity distributions via an inversion of the scalar wave equation. (authors). 5 figs.

  9. Development of a keV single-ion-implanter for nanofabrication

    International Nuclear Information System (INIS)

    Yang, C.; Jamieson, D.N.; Hopf, T.; Tamanyan, G.; Spizziri, P.; Pakes, C.; Andresen, S.E.; Hudson, F.; Gauja, E.; Dzurak, A.; Clark, R.G.

    2005-01-01

    Traditional methods of doping semiconductors have a difficulty meeting the demand for high precision doping due to large statistical fluctuations in the numbers of dopant atoms introduced in the ever shrinking volume in micro- and nano-electronics devices, especially when the fabrication process approaches the nanometre scale. The statistical fluctuations in doping semiconductors for the fabrication of devices with a very small feature size may lead to inconsistent and unreliable performance. This paper describes the adaptation of a commercial ion implanter into a single-ion-implantation system for the accurate delivery of dopants into a nanometre or micrometre area in a silicon substrate. All the implanted ions can be accurately counted with near 100% certainty through online detection using the silicon substrate itself as an ion detector. A variety of ion species including B + , N + , P + at the energy range of 10-15 keV can be delivered in the single ion implantation system. (author). 6 refs., 6 figs

  10. Characterization of Nitride Layers Formed by Nitrogen Ion Implantation into Surface Region of Iron

    International Nuclear Information System (INIS)

    Sudjatmoko; Subki, M. Iyos R.

    2000-01-01

    Ion implantation is a convenient means of modifying the physical and chemical properties of the near-surface region of materials. The nitrogen implantation into pure iron has been performed at room temperature with ion dose of 1.310 17 to 1.310 18 ions/cm 2 and ion energy of 20 to 100 keV. The optimum dose of nitrogen ions implanted into pure iron was around 2.2310 17 ions/cm 2 in order to get the maximum wear resistant. SEM micrographs and EDX show that the nitride layers were found on the surface of substrate. The nitrogen concentration profile was measured using EDX in combination with spot technique, and it can be shown that the depth profile of nitrogen implanted into substrate was nearly Gaussian. (author)

  11. The effect of incidence angle on disorder production in ion implanted Si

    International Nuclear Information System (INIS)

    Sukirno; Carter, G.

    1989-01-01

    Ne, Ar, Sb, and Xe ions have been implanted, at 30 keV or 80 keV and at various incidence angles, into Si substrates maintained at room temperature during implantation. Implantation-induced Si disorder was measured using Rutherford backscattering channelling. The effects upon disorder of various incidence angles were studied over a fluence range of 10 12 -10 16 ions·cm -2 . The results show that, at low fluences the lighter (Ne) and slightly heavier (Ar) ion implantations generate a bimodal disorder-depth profile, whilst at higher fluences measurements of amorphised layer thickness as a function of ion incidence angle allow values of the standard deviation of the disorder profile parallel and transverse to the ion beam direction for each ion to be obtained with good agreement to theoretical predictions. (author)

  12. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    Okumura, Minoru; Kitano, Yasushi

    1986-01-01

    The coprecipitation of alkali metal ions Li + , Na + , K + and Rb + with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na + which has approximately the same ionic radius as Ca 2+ . (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca 2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca 2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li + , Na + , K + and Rb + ) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li + , K + and Rb + ) into the aragonite. (author)

  13. Which metal or ion? Identification of metals and ions in protein structures

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan

    2014-01-01

    Roč. 70, Supplement /August/ (2014), C1484 ISSN 0108-7673. [Congress and General Assembly of the International Union of Crystallography /23./ - IUCr 2014. 05.08.2014-12.08.2014, Montreal] R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : metal s * ions * structure validation Subject RIV: CE - Biochemistry

  14. N and Cr ion implantation of natural ruby surfaces and their characterization

    Science.gov (United States)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan; Magudapathy, P.; Panigrahi, B. K.; Nayak, B. B.; Mishra, B. K.

    2016-04-01

    Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV-Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 1017 N-ions/cm2 fluence, formation of colour centres (F+, F2, F2+ and F22+) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  15. Ion implantation artifacts observed in depth profiling boron in silicon by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Chi, P.; Simons, D.S.

    1987-01-01

    A comparison study of depth profiling by secondary ion mass spectrometry (SIMS) and neutron depth profiling (NDP) was recently conducted. The specimens were portions of 5 cm diameter single crystal silicon slices in which B-10 had been implanted at various fluences and energies. NDP measurements were made on a 13 mm diameter area at the center of the wafers. SIMS measurements were taken from a 60 μm diameter area approximately 16 mm from the center of the wafer. One observation that emerged from this work was an apparent discrepancy between the profiles of B-10 measured by DNP and SIMS. The peaks of the SIMS profiles were typically deeper than those of NDP by as much as 30 nm, which is 10% of the projected range for a 70 keV implant. Moreover, the profiles could not be made to coincide by either a constant shift or a proportional change of one depth scale with respect to the other. The lateral inhomogeneity of boron that these experiments have demonstrated arises from the variable contribution of ion channeling during implantation

  16. Retrospective evaluation of patch testing before or after metal device implantation.

    Science.gov (United States)

    Reed, Kurtis B; Davis, Mark D P; Nakamura, Krystal; Hanson, Linda; Richardson, Donna M

    2008-08-01

    To review the results of patch testing before or after metal device implantation. Retrospective medical chart review. Tertiary care academic medical center. All patients who underwent patch testing before or after metal device implantation. Patch testing. From January 1999 through March 2006, 44 patients underwent patch testing in conjunction with metal device implantation, 22 preoperatively and 22 postoperatively. The reason for preoperative patch testing was a history of allergy to metals. Five patients had positive results for a component of the proposed device. The reasons for postoperative patch testing were unexplained skin eruptions at the implantation site (13 patients), chronic joint pain (8 patients), and joint loosening (1 patient). None of the patients had positive patch test results to a component of the previously implanted device. Although the numbers of patients in this study were small, patch testing performed before metal device implantation was helpful in guiding the choice of device selected. Patch testing after implantation was of limited value.

  17. Metal ion transport in eukaryotic microorganisms: insights from Saccharomyces cerevisiae.

    Science.gov (United States)

    Eide, D J

    2000-01-01

    Metal ions such as iron, copper, manganese, and zinc are essential nutrients for all eukaryotic microorganisms. Therefore, these organisms possess efficient uptake mechanisms to obtain these nutrients from their extracellular environment. Metal ions must also be transported into intracellular organelles where they function as catalytic and structural cofactors for compartmentalized enzymes. Thus, intracellular transport mechanisms are also present. When present in high levels, metal ions can also be toxic, so their uptake and intracellular transport is tightly regulated at both transcriptional and post-transcriptional levels to limit metal ion overaccumulation and facilitate storage and sequestration. Remarkable molecular insight into these processes has come from recent studies of the yeast Saccharomyces cerevisiae. This organism, which is the primary subject of this chapter, serves as a useful paradigm to understand metal ion metabolism in other eukaryotic microbes.

  18. Titanium and aluminium ions implanted by plasma on polyethylene; lones de titanio y aluminio implantados por plasma sobre polietileno

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, G.J.; Olayo, M.G.; Lopez, R.; Granda, E.; Munoz, A.; Valencia, R. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Morales, J. [UAM-I, Apdo. Postal 5534, Iztapalapa, D.F. (Mexico)]. e-mail: gcc@nuclear.inin.mx

    2007-07-01

    The ion implantation by plasma of titanium and aluminum on polyethylene thin films (PE) is presented. The results indicate that the polymers reacted firstly with the oxygen and/or nitrogen carrying gases, and later its received the metallic particles that formed thin films. The stainless steel and the titanium formed a single phase. The metallic layers grew in the interval of 1 to 2 nm/min, its are thin, but enough to change the hardness of the polymer that it is increased in more of 20 times. (Author)