WorldWideScience

Sample records for metal ion concentrations

  1. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    Science.gov (United States)

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  2. Blood metal ion concentrations in metal-on-metal total hip arthroplasty.

    Science.gov (United States)

    Ohtsuru, Tadahiko; Morita, Yuji; Murata, Yasuaki; Shimamoto, Shuji; Munakata, Yutaro; Kato, Yoshiharu

    2017-05-01

    The hip placement with a metal-on-metal (MOM) bearing has been used for both surface replacement and total hip arthroplasty (THA). Use of MOM bearing for hip replacement reduces the wear compared to conventional bearings. We prospectively assessed 30 patients who underwent unilateral MOM THA. A control group of 30 patients who underwent metal-on-polyethylene THA using the implants as the other group, except for bearing, were accessed. Blood samples were collected preoperatively and at 3- , 6- , 9- , 12- , 15- , 18- , and 24-month intervals. Changes in mean blood metal ion concentration were compared between the MOM and metal-on-polyethylene groups. A statistically significant positive correlation was observed between blood cobalt and chromium concentrations in all of the patients. The mean blood ion concentrations of the MOM were significantly higher than those of the metal-on-polyethylene. A statistically significant negative correlation was found between maximum blood cobalt concentration and cup version angle. The maximum blood chromium concentrations in the patients who had larger cup version angles were more likely to decrease. We considered that cup version angle is one of the factors that have the greatest effect on blood metal ion concentration, and the target cup version angle that did not induce an increase in blood metal ion concentrations was approximately 20°.

  3. [Metal ion concentrations in patients with metal-metal bearings in prostheses].

    Science.gov (United States)

    Kretzer, J P; Van Der Straeten, C; Sonntag, R; Müller, U; Streit, M; Moradi, B; Jäger, S; Reinders, J

    2013-08-01

    Increased wear leads to elevated systemic and local metal ion concentrations for patients treated with metal-on-metal bearings. The local metal ion content in the close environment of the joint replacement (e.g. joint aspirate or tissue) is several times higher compared to the systemic metal content (e.g. in blood or serum). As a result of increased metal ion levels, local and systemic effects, such as osteolysis, pseudotumors, sensitization or in rare cases toxicity may occur. Although the definition of a specific threshold to define clinical problems is difficult due to a lack of sensitivity, the systemic metal concentration is frequently measured clinically. Currently a threshold for cobalt and chromium between 4 µg/l and 7 µg/l is under debate. Very high levels (≥ 20 µg/l) or a steady increase over time should be a warning sign; however, metal ion levels should not be interpreted as a single diagnostic tool but rather in the entire context of the clinical, radiological and cross-sectional imaging, metal artefact reduction sequence (MARS) magnetic resonance imaging (MRI), ultrasound and computed tomography (CT) findings.

  4. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties

    DEFF Research Database (Denmark)

    Jantzen, Christopher; Jørgensen, Henrik L; Duus, Benn R

    2013-01-01

    Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties.......Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties....

  5. Effect on the concentration and metal ion concentration for the degradation of wastewater

    Science.gov (United States)

    Chen, M. T.; He, L. F.; Yu, W. Q.; Huo, J. H.; Xu, C. H.; Li, Z. Y.; Jiang, Z. X.

    2017-11-01

    The advanced oxidation technology based on the theory of sulfate radicals has been extensively studied. In this paper, the degradation of methyl orange over the transition metal catalysts and the catalytic effect on various metal ion catalysts were investigated. The wastewater degradation experiments were judged by the degradation rate and pH under the optimal conditions. In this study, the methyl orange was used as the simulation of the printing and dyeing wastewater, and the experiment was carried out. The vary concentration of methyl orange and metal ions were carried out.. The results showed that persulfate were activated by the metal salts the cobalt metal ions exhibited the strongest performance. The resulted indicated that the methyl orange degradation of 40 mg/L was the appropriate concentration. from varied from 40 mg/L to 120 mg/L interval 20 mg/L, and the catalytic activity of 2g m/L is the best dose at six metal concentrations of 0.5 mg/L, 1 mg/L, 2 mg/L, 3 mg/L, 4 mg/L and 5 mg/L, which provided a very rational basis for the treatment of the practical wastewater.

  6. Measuring free metal ion concentrations in situ in natural waters using the Donnan Membrane Technique

    NARCIS (Netherlands)

    Kalis, E.J.J.; Weng, L.P.; Dousma, F.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2006-01-01

    Metal toxicity is not related to the total but rather to the free or labile metal ion concentration. One of the techniques that can be used to measure several free metal ion concentrations simultaneously is the Donnan Membrane Technique (DMT) in combination with the inductively coupled plasma-mass

  7. In situ NMR measurement of macromolecule-bound metal ion concentrations.

    Science.gov (United States)

    Kozlyuk, Natalia; Sengupta, Suvrajit; Lupták, Andrej; Martin, Rachel W

    2016-04-01

    Many nucleic acids and proteins require divalent metal ions such as Mg(2+) and Ca(2+) for folding and function. The lipophilic alignment media frequently used as membrane mimetics also bind these divalent metals. Here we demonstrate the use of (31)P NMR spectrum of a metal ion chelator (deoxycytidine diphosphate) to measure the bound [Mg(2+)] and [Ca(2+)] in situ for several biological model systems at relatively high divalent ion concentrations (1-10 mM). This method represents a general approach to measuring divalent metal ion binding in NMR samples where the amount and type of metal ion added to the system is known.

  8. Measuring free metal ion concentrations in multicomponent solutions using Donnan Membrane Technique

    NARCIS (Netherlands)

    Kalis, E.J.J.; Temminghoff, E.J.M.; Weng, L.P.; Riemsdijk, van W.H.

    2007-01-01

    Among speciation techniques that are able to measure free metal ion concentrations, the Donnan membrane technique (DMT) has the advantage that it can measure many different free metal ion concentrations simultaneously in a multicomponent sample. Even though the DMT has been applied to several

  9. Integrated Microanalytical System for Simultaneous Voltammetric Measurements of Free Metal Ion Concentrations in Natural Waters

    OpenAIRE

    Noël, Stéphane; Tercier-Waeber, Mary-Lou; Lin, Lin; Buffle, Jacques; Guenat, Olivier; Koudelka-Hep, Milena

    2007-01-01

    A complexing gel integrated microelectrode (CGIME) for direct measurements of free metal ion concentrations in natural waters has been developed. It is prepared by the successive deposition of microlayers of a chelating resin, an antifouling agarose gel and Hg on a 100-interconnected Ir-based microelectrode array. The trace metals of interest are in a first step accumulated on the chelating resin in proportion to their free ion concentration in solution, then released in acidic solution and d...

  10. Comparison of metal ion concentrations and implant survival after total hip arthroplasty with metal-on-metal versus metal-on-polyethylene articulations

    OpenAIRE

    Dahlstrand, Henrik; Stark, André; Wick, Marius C; Anissian, Lucas; Hailer, Nils P; Weiss, Rüdiger J

    2017-01-01

    Background and purpose Large metal-on-metal (MoM) articulations are associated with metal wear and corrosion, leading to increased metal ion concentrations and unacceptable revision rates. There are few comparative studies of 28-mm MoM articulations with conventional metal-on-polyethylene (MoP) couplings. We present a long-term follow-up of a randomized controlled trial comparing MoM versus MoP 28-mm articulations, focused on metal ions and implant survival. Patients and methods 85 patients w...

  11. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    Science.gov (United States)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 ions which is achieved in the current study through electronic continuum correction force fields. A detailed analysis of the effects of ion-pairs on the structure and dynamics of water around the hydrated ions is done through classification of water into different subspecies based on their locations around the cations or anions only or bridged between them. We have looked at the diffusion coefficients, relaxation of orientational correlation functions, and also the residence times of different subspecies of water to explore the dynamics of water in different structural environments in the solutions. The current results show that the water molecules are incorporated into fairly well-structured hydration shells of the ions, thus decreasing the single-particle diffusivities and increasing the orientational relaxation times of water with an increase in salt concentration. The different structural motifs also lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion

  12. The effect of hydrogen peroxide concentration on metal ion release from dental amalgam.

    Science.gov (United States)

    Al-Salehi, S K; Hatton, P V; McLeod, C W; Cox, A G

    2007-02-01

    The aim of this study was to investigate the effect of hydrogen peroxide (HP) concentration on metal ion release from dental amalgam. Dental amalgam discs (n=25) were prepared by packing amalgam into cylindrical plastic moulds (10 mm diameter and 2 mm height). The discs were divided into five equal groups and each group was immersed in 20 ml of either 0%, 1%, 3%, 10% or 30% HP solution for 24 h at 37 degrees C. Samples were taken for metal ion release determination (Hg, Ag, Sn and Cu) using inductively coupled plasma mass spectrometry (ICP-MS). The surface roughness of each disc was measured before and after bleaching. The differences in concentration of metal ions released after treatment with 0% (control) and each of 1%, 3%, 10% and 30% HP were statistically significant (pp>0.05). Exposure to HP bleaching agent was associated with increased metal ion released from dental amalgams compared to treatment with a control solution. Ion release was in proportion to the peroxide concentration tested, with the highest concentration associated with the greatest metal ion release for all elements investigated.

  13. The effect of hydrogen peroxide concentration on metal ion release from dental casting alloys.

    Science.gov (United States)

    Al-Salehi, S K; Hatton, P V; Johnson, A; Cox, A G; McLeod, C

    2008-04-01

    There are concerns that tooth bleaching agents may adversely affect dental materials. The aim of this study was to test the hypothesis that increasing concentrations of hydrogen peroxide (HP) are more effective than water at increasing metal ion release from two typical dental casting alloys during bleaching. Discs (n = 28 for each alloy) were prepared by casting and heat treated to simulate a typical porcelain-firing cycle. Discs (n = 7) of each alloy were immersed in either 0%, 3%, 10% or 30% (w/v) HP solutions for 24 h at 37 degrees C. Samples were taken for metal ion release determination using inductively coupled plasma-mass spectrometry and the data analysed using a two-way anova followed by a one-way anova. The surface roughness of each disc was measured using a Talysurf contact profilometer before and after bleaching and the data analysed using a paired t-test. With the exception of gold, the differences in metal ion concentration after treatment with 0% (control) and each of 3%, 10% and 30% HP (w/v) were statistically significant (P Metal ion release from the two alloys increased with increasing HP concentrations (over 3000% increase in Ni and 1400% increase in Pd ions were recorded when HP concentration increased from 0% to 30%). Surface roughness values of the samples before and after bleaching were not significantly different (P > 0.05) Exposure of the two dental casting alloys to HP solutions increased metal ion release of all the elements except gold.

  14. Serum Metal Ion Concentrations in Paediatric Patients following Total Knee Arthroplasty Using Megaprostheses

    Directory of Open Access Journals (Sweden)

    Jörg Friesenbichler

    2014-01-01

    Full Text Available The purpose of this study was to determine the concentrations of cobalt, chromium, and molybdenum in the serum of paediatric tumour patients after fixed hinge total knee arthroplasty. Further, these metal ion levels were compared with serum metal ion levels of patients with other orthopaedic devices such as hip and knee prostheses with metal-on-metal or metal-on-polyethylene articulation to find differences between anatomical locations, abrasion characteristics, and bearing surfaces. After an average follow-up of 108 months (range: 67 to 163 of 11 paediatric patients with fixed hinge total knee arthroplasty, the mean concentrations for Co and Cr were significantly increased while Mo was within the limits compared to the upper values from the reference laboratory. Furthermore, these serum concentrations were significantly higher compared to patients with a standard rotating hinge device (P=0.002 and P<0.001 and preoperative controls (P<0.001. On the other hand, the serum levels of patients following MoM THA or rotating hinge arthroplasty using megaprostheses were higher. Therefore, periodic long-term follow-ups are recommended due to the rising concerns about systemic metal ion exposure in the literature. Upon the occurrence of adverse reactions to metal debris the revision of the fixed hinge implant should be considered.

  15. Effect of metal ion concentration on the biosorption of Pb2+ and ...

    African Journals Online (AJOL)

    The influence of initial metal ion concentration of the batch sorption of Pb2+ and Cd2+ onto a low-cost biosorbent was investigated. The experimental results were analysed in terms of Langmuir and Freundlich isotherms. According to the evaluation using Langmuir equation, the monolayer sorption capacity obtained were ...

  16. Assessment of metal ion concentration in water with structured feature selection.

    Science.gov (United States)

    Naula, Pekka; Airola, Antti; Pihlasalo, Sari; Montoya Perez, Ileana; Salakoski, Tapio; Pahikkala, Tapio

    2017-10-01

    We propose a cost-effective system for the determination of metal ion concentration in water, addressing a central issue in water resources management. The system combines novel luminometric label array technology with a machine learning algorithm that selects a minimal number of array reagents (modulators) and liquid sample dilutions, such that enable accurate quantification. The algorithm is able to identify the optimal modulators and sample dilutions leading to cost reductions since less manual labour and resources are needed. Inferring the ion detector involves a unique type of a structured feature selection problem, which we formalize in this paper. We propose a novel Cartesian greedy forward feature selection algorithm for solving the problem. The novel algorithm was evaluated in the concentration assessment of five metal ions and the performance was compared to two known feature selection approaches. The results demonstrate that the proposed system can assist in lowering the costs with minimal loss in accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrations in an urban estuary.

    Science.gov (United States)

    Dong, Zhao; Lewis, Christopher G; Burgess, Robert M; Coull, Brent; Shine, James P

    2016-05-01

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limited, due to underexplored techniques for measuring multiple free metal ions simultaneously. In this work, we performed statistical analyses on a large dataset containing repeated measurements of free ion concentrations of Cu, Zn, Pb, Ni, and Cd, the most commonly measured metals in seawater, at five inshore locations in Boston Harbor, previously collected using an in-situ equilibrium-based multi-metal free ion sampler, the 'Gellyfish'. We examined correlations among these five metals by season, and evaluated effects of 10 biogeochemical variables on free ion concentrations over time and location through multivariate regressions. We also explored potential clustering among the five metals through a principal component analysis. We found significant correlations among metals, with varying patterns over season. Our regression results suggest that instead of dissolved metals, pH, salinity, temperature and rainfall were the most significant determinants of free metal ion concentrations. For example, a one-unit decrease in pH was associated with a 2.2 (Cd) to 99 (Cu) times increase in free ion concentrations. This work is among the first to reveal key contributors to spatiotemporal variations in free ion concentrations, and demonstrated the usefulness of the Gellyfish sampler in routine sampling of free ions within metal mixtures and in generating data for statistical analyses. Copyright © 2016. Published by Elsevier Ltd.

  18. Particle concentration effect: adsorption of divalent metal ions on coffee grounds.

    Science.gov (United States)

    Utomo, Handojo Djati; Hunter, Keith A

    2010-03-01

    The adsorption of divalent metal ions Cu2+, Pb2+, Zn2+, and Cd2+ on coffee grounds as a function of coffee grounds concentration was studied in which adsorption density decreased as the concentration of coffee grounds (C(s)) increased. Adsorption studies were conducted by equilibrating aqueous solutions of each metal ion at concentrations in the range 19-291 micromol L(-1) with coffee suspensions in the concentration range 0.971-8.738 g L(-1), with the initial pH adjusted to 5.0+/-0.1 using NaOH or HNO3. Metastable Equilibrium Adsorption theory did not adequately explain the adsorption phenomenon, except at low concentrations of coffee grounds and trace metal ions. Instead the results indicated that flocculation might reduce the surface availability thus reducing the adsorption density. The flocculation theory was confirmed after a further experiment adding dispersant sodium hexa-meta-phosphate (NaHMP) to the suspension. 2009 Elsevier Ltd. All rights reserved.

  19. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing--systematic review of clinical and epidemiological studies.

    Directory of Open Access Journals (Sweden)

    Albrecht Hartmann

    Full Text Available INTRODUCTION: The use of metal-on-metal (MoM total hip arthroplasty (THA increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. OBJECTIVE: To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. METHODS: Systematic review of clinical trials (RCTs and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor, patient characteristics as well as study quality characteristics (secondary explanatory factors. RESULTS: Overall, 104 studies (11 RCTs, 93 epidemiological studies totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L. Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. DISCUSSION: Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed "time out" for stemmed large-head MoM-THA and recommend a restricted

  20. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    Science.gov (United States)

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip

  1. Determination of the total concentration and speciation of metal ions in river, estuarine and seawater samples.

    Science.gov (United States)

    Alberti, Giancarla; Biesuz, Raffaela; Pesavento, Maria

    2008-12-01

    Different natural water samples were investigated to determine the total concentration and the distribution of species for Cu(II), Pb(II), Al(III) and U(VI). The proposed method, named resin titration (RT), was developed in our laboratory to investigate the distribution of species for metal ions in complex matrices. It is a competition method, in which a complexing resin competes with natural ligands present in the sample to combine with the metal ions. In the present paper, river, estuarine and seawater samples, collected during a cruise in Adriatic Sea, were investigated. For each sample, two RTs were performed, using different complexing resins: the iminodiacetic Chelex 100 and the carboxylic Amberlite CG50. In this way, it was possible to detect different class of ligands. Satisfactory results have been obtained and are commented on critically. They were summarized by principal component analysis (PCA) and the correlations with physicochemical parameters allowed one to follow the evolution of the metals along the considered transect. It should be pointed out that, according to our findings, the ligands responsible for metal ions complexation are not the major components of the water system, since they form considerably weaker complexes.

  2. Comparison of metal ion concentrations and implant survival after total hip arthroplasty with metal-on-metal versus metal-on-polyethylene articulations.

    Science.gov (United States)

    Dahlstrand, Henrik; Stark, André; Wick, Marius C; Anissian, Lucas; Hailer, Nils P; Weiss, Rüdiger J

    2017-10-01

    Background and purpose - Large metal-on-metal (MoM) articulations are associated with metal wear and corrosion, leading to increased metal ion concentrations and unacceptable revision rates. There are few comparative studies of 28-mm MoM articulations with conventional metal-on-polyethylene (MoP) couplings. We present a long-term follow-up of a randomized controlled trial comparing MoM versus MoP 28-mm articulations, focused on metal ions and implant survival. Patients and methods - 85 patients with a mean age of 65 years at surgery were randomized to a MoM (Metasul) or a MoP (Protasul) bearing. After 16 years, 38 patients had died and 4 had undergone revision surgery. 13 patients were unavailable for clinical follow-up, leaving 30 patients (n = 14 MoM and n = 16 MoP) for analysis of metal ion concentrations and clinical outcome. Results - 15-year implant survival was similar in both groups (MoM 96% [95% CI 88-100] versus MoP 97% [95% CI 91-100]). The mean serum cobalt concentration was 4-fold higher in the MoM (1.5 μg/L) compared with the MoP cohort (0.4 μg/L, p concentration was double in the MoM (2.2 μg/L) compared with the MoP cohort (1.0 μg/L, p = 0.05). Mean creatinine levels were similar in both groups (MoM 93 μmol/L versus MoP 92 μmol/L). Harris hip scores differed only marginally between the MoM and MoP cohorts. Interpretation - This is the longest follow-up of a randomized trial on 28-mm MoM articulations, and although implant survival in the 2 groups was similar, metal ion concentrations remained elevated in the MoM cohort even in the long term.

  3. The Gellyfish: An In-Situ Equilibrium-Based Sampler for Determining Multiple Free Metal Ion Concentrations in Marine Ecosystems

    Science.gov (United States)

    Dong, Zhao; Lewis, Christopher G.; Burgess, Robert M.; Shine, James P.

    2016-01-01

    Free metal ions are usually the most bioavailable and toxic metal species to aquatic organisms, but they are difficult to measure due to their extremely low concentrations in the marine environment. Many of the current methods for determining free metal ions are complicated, time-consuming, and can only measure one metal at a time. We developed a new version of the ‘Gellyfish’, an in-situ equilibrium-based sampler, with significantly reduced equilibration time and the capability of measuring multiple free metal ions simultaneously. By calibrating the Gellyfish to account for its uptake of cationic metal complexes and validating them in multi-metal competition experiments, we were able to determine free metal ion concentrations previously collected over ten months at five locations in Boston Harbor for Cu, Zn, Pb, Ni, and Cd. This work generated one of the largest free metal ion datasets and demonstrated the applicability of the Gellyfish as an easy-to-use and inexpensive tool for monitoring free ion concentrations of metal mixtures in marine ecosystems. PMID:25598362

  4. A Simplified Model to Estimate the Concentration of Inorganic Ions and Heavy Metals in Rivers

    Directory of Open Access Journals (Sweden)

    Clemêncio Nhantumbo

    2016-10-01

    Full Text Available This paper presents a model that uses only pH, alkalinity, and temperature to estimate the concentrations of major ions in rivers (Na+, K+, Mg2+, Ca2+, HCO3−, SO42−, Cl−, and NO3− together with the equilibrium concentrations of minor ions and heavy metals (Fe3+, Mn2+, Cd2+, Cu2+, Al3+, Pb2+, and Zn2+. Mining operations have been increasing, which has led to changes in the pollution loads to receiving water systems, meanwhile most developing countries cannot afford water quality monitoring. A possible solution is to implement less resource-demanding monitoring programs, supported by mathematical models that minimize the required sampling and analysis, while still being able to detect water quality changes, thereby allowing implementation of measures to protect the water resources. The present model was developed using existing theories for: (i carbonate equilibrium; (ii total alkalinity; (iii statistics of major ions; (iv solubility of minerals; and (v conductivity of salts in water. The model includes two options to estimate the concentrations of major ions: (1 a generalized method, which employs standard values from a world-wide data base; and (2 a customized method, which requires specific baseline data for the river of interest. The model was tested using data from four monitoring stations in Swedish rivers with satisfactory results.

  5. Determination of the free ion concentration of trace metals in soil solution using a soil column Donnan membrane technique

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2001-01-01

    Accurate measurement of the free metal ion is difficult, especially for trace metals present in very small concentrations (less than micromolar) in natural systems. The recently developed Donnan membrane technique can measure the concentrations in solution in the presence of inorganic and organic

  6. Clinical Results and Serum Metal Ion Concentrations following Ceramic-on-Metal Total Hip Arthroplasty at a Mean Follow-Up of 60 Months

    Science.gov (United States)

    Maurer-Ertl, W.; Pranckh-Matzke, D.; Bratschitsch, G.; Maier, M.

    2017-01-01

    Background. Increased metal ion levels following total hip arthroplasty (THA) with metal-on-metal bearings are a highly debated topic. Local soft tissue reactions with chronic pain and systemic side effects such as neuropathy are described. The aim of the current study was to determine the serum metal ion concentrations of Cobalt (Co) and Chrome (Cr) after THA with a ceramic-on-metal (CoM) bearing. Patients and Methods. Between 2008 and 2010, 20 patients underwent THA using a CoM bearing. Clinical function was evaluated by standardized scores systems (Harris Hip Score and WOMAC Score) and radiological examination included X-rays. Patient's blood samples were obtained for metal ion analysis and correlation analysis was done between these results and implant position. Results. Overall, 13 patients with 14 CoM devices were available for the current series. The mean age at time of surgery was 61 years (range, 41 to 85). The postoperative follow-up ranged from 49 to 68 months (mean, 58). Metal ion determination showed mean concentrations of 3,1 µg/L (range, 0,3–15,2 µg/L) for Co and 1,6 µg/L (range, 0,1–5,5 µg/L) for Cr, respectively. A correlation between cup anteversion and Co and Cr concentrations was shown. Conclusion. The current series showed increments for Co and Cr following CoM THA. However, these levels are lower compared to metal ion concentrations in patients with metal-on-metal bearings and the international accepted threshold for revision of MoM devices. We recommend routine follow-up including at least one obligatory evaluation of serum metal ion concentrations and an MRI once to exclude local soft tissue reactions. PMID:28373980

  7. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    International Nuclear Information System (INIS)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1997-01-01

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented

  8. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1997-12-31

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented.

  9. Water quality in Indiana: trends in concentrations of selected nutrients, metals, and ions in streams, 2000-10

    Science.gov (United States)

    Risch, Martin R.; Bunch, Aubrey R.; Vecchia, Aldo V.; Martin, Jeffrey D.; Baker, Nancy T.

    2014-01-01

    Water quality in Indiana streams generally improved during the 2000–10 study period, based on trends in selected nutrients, metals, and ions. This study combined water-quality data from the Indiana Fixed Station Monitoring Program (FSMP) with streamflow data from nearby U.S. Geological Survey streamgages. A parametric time-series model, QWTREND, was used to develop streamflow-adjusted constituent concentrations, to adjust for seasonal variance and serial correlation, and to identify trends independent of streamflow-related variability. This study examined 7,345 water samples from 57 FSMP sites for 11 years. Concentration trends were analyzed for 12 constituents—the nutrients nitrate, organic nitrogen, and phosphorus; suspended solids; the metals copper, iron, lead, and zinc; the ions chloride, and sulfate together with hardness as a measure of the calcium carbonate ion; and dissolved solids.

  10. Comparison of metal toxic impacts between aquatic and terrestrial organisms: is the free ion concentration a sufficient descriptor?

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Rosenbaum, Ralph K.; Larsen, Henrik Fred

    2011-01-01

    to be a sufficient indicator of metal toxicity for both aquatic and terrestrial species. With the aim of deriving extrapolations to predict terrestrial toxic impacts of metals from aquatic effect data, we compared copper toxicity of aquatic organisms with that of terrestrial organisms, testing the hypothesis...... of the free metal ion concentration to reflect toxicity, as the presence of protons and other cations reacting with biological binding sites has been shown to affect the toxicity of copper to D. magna. Similar patterns, albeit with smaller variations, are observed for terrestrial organisms. Up to three orders......Characterization of metal toxic impacts in comparative risk assessment and life cycle impact assessment (LCIA) should take into account metal speciation and interactions with soil/water organic constituents, because these mechanisms control metal bioavailability and may influence their toxic...

  11. A multi-metal risk assessment strategy for natural freshwater ecosystems based on the additive inhibitory free metal ion concentration index.

    Science.gov (United States)

    Alves, Cristina M; Ferreira, Carlos M H; Soares, Eduardo V; Soares, Helena M V M

    2017-04-01

    Scientifically sound risk assessment strategies and derivations of environmental quality standards for metals present in freshwater environments are currently hampered by insufficient chronic toxicity data collected from natural ecosystems, as well as inadequate information on metal speciation. Thus, the aim of the present study was to evaluate the impact of freshwater containing multiple metals (Cd, Cr, Cu, Ni, Pb and Zn) on the chronic toxicity (72h) to the alga Pseudokirchneriella subcapitata and compare the observed toxicity results to the total and free metal concentration of the samples. Based on the information obtained herein, an additive inhibitory free multi-metal ion concentration index, calculated as the sum of the equivalent toxicities to the free metal ion concentration of each sample, was developed. The proposed index was well correlated to the observed chronic toxicity results, indicating that the concentration addition, when expressed as the free-ion activity, can be considered a reliable indicator for the evaluation of ecological risk assessments for natural waters containing multiple metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Translocation of metal ions from soil to tobacco roots and their concentration in the plant parts.

    Science.gov (United States)

    da Silva, Cleber Pinto; de Almeida, Thiago E; Zittel, Rosimara; de Oliveira Stremel, Tatiana R; Domingues, Cinthia E; Kordiak, Januário; de Campos, Sandro Xavier

    2016-12-01

    This paper presents a study on the translocation factors (TFs) and bioconcentration factors (BCFs) of copper (Cu), manganese (Mn), zinc (Zn), cobalt (Co), chromium (Cr), cadmium (Cd), lead (Pb), iron (Fe), nickel (Ni), and arsenic (As) ions in roots, stems, and leaves of tobacco. The results revealed that during the tobacco growth, the roots are able to increase the sensitiveness of the physiological control, reducing the translocation of the metals Ni (0.38) and Pb (0.48) to the leaves. Cd and Zn presented factors TF and BCF >1 in the three tissues under analysis, which indicates the high potential for transportation and accumulation of these metals in all plant tissues. The TF values for Cr (0.65) and As (0.63) revealed low translocation of these ions to the aerial parts, indicating low mobility of ions from the roots. Therefore, tobacco can be considered an efficient accumulator of Ni, Cr, As and Pb in roots and Cd and Zn in all plant parts.

  13. Adverse reaction to metal debris in a consecutive series of DUROM™ hip resurfacing: pseudotumour incidence and metal ion concentration.

    Science.gov (United States)

    Hartmann, Albrecht; Kieback, Jan-Dirk; Lützner, Jörg; Günther, Klaus-Peter; Goronzy, Jens

    2017-07-25

    The aim of this study was to evaluate the incidence of adverse reactions to metal debris (ARMD) in a consecutive series of DUROM™ Hip Resurfacing Arthroplasty (HRA) at mid-term follow-up. Between October 2003 and March 2007 a total of 134 consecutive DUROM™ HRA in 121 patients were performed at our institution. Follow-up could be obtained in 101 unrevised patients (83%) at a mean time of 8.51 ± 0.97 years postoperatively and included patient-related outcome measurement, plain radiographs, MARS-MRI as well as whole blood metal ion assessment. 17 (16.5%) out of 103 hips revealed pseudotumour occurrence in MRI investigation, 1 (10.6%) with a diameter of ≥2 cm. Higher incidence of pseudotumours was found patients with femoral component size 7 μg/l. In contrast to cobalt determination, only elevated chromium values showed a positive association with pseudotumour occurrence and size. A significant proportion of patients developed pseudotumours and metal ion elevation in a consecutive cohort of DUROM™ HRA after mid-term follow-up. The incidence, however, seems not to differ from results of other well performing resurfacing brands; clinical relevance of our findings is unclear. Regarding potential local as well as systemic effects of metal particle release, close follow-up of patients is essential, even with clinically well-performing implants.

  14. Speciation of Am(III)/Eu(III) sorbed on γ-alumina. Effect of metal ion concentration

    International Nuclear Information System (INIS)

    Kumar, S.; Tomar, B.S.; Godbole, S.V.

    2013-01-01

    The present paper describes the speciation of Am(III)/Eu(III) sorbed on γ-alumina, and its evolution with changing metal ion concentration, studied using batch sorption experiment, time resolved fluorescence spectroscopy (TRFS), extended X-ray absorption fine structure (EXAFS) and surface Complexation modeling (SCM). Though numerous studies exist in the literature on the speciation of trivalent actinides and lanthanides on alumina surface, the mechanism of sorption at high metal ion concentrations is not yet fully understood. Batch sorption experiments of Am(III) on γ-alumina under varying condition of pH (3-10), ionic strength (0.005-0.1 M NaClO 4 ) and metal ion concentration (10 -7 -10 -4 M) were performed. Higher metal ion concentration was achieved by the addition of Eu(III) considering it as an analogue of Am(III). Time resolved fluorescence spectroscopy (TRFS) study of Eu(III) sorbed on γ-alumina at the metal ion concentration of 5.0 x 10 -5 M was carried out over pH 4 to 7. TRFS showed the presence of two surface species, with distinctly different fluorescence decay life times. The shorter lifetime value and its changing pattern with pH indicate the surface species corresponding to this component to be monodentate species > AlOAm 2+ and its hydrolyzed forms. The sorbed Eu 3+ species corresponding to the longer lifetime value has 2-3 water molecules in its first coordination sphere and is multidentate in its binding on alumina surface. Extended X-ray absorption fine structure (EXAFS) measurement of Eu:γ-Al 2 O 3 sorption systems at pH 6.18 and 7.15 corroborate the existence of two surface complexes. Further it suggests the edge sharing bidentate binding of Eu on AlO 6 octahedra as the co-ordination mode of the higher lifetime component. Surface Complexation Modeling (SCM) of Am(III)/Eu(III) sorption onto γ-alumina at pH ≤7 has been carried out using these two surface species. 2-pK surface complexation modeling coupled with constant capacitance model

  15. Effect of organic solvents on desorption and atomic absorption determination of heavy metal ions after ion exchange concentration

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Safronova, V.G.; Zakrevskaya, L.V.

    1986-01-01

    The effect of organic solvents (acetone, methylethylketone, dioxane, ethanol) on desorption of Cu, Mn, Co, Cd, Zn, Pb, Ni from cationite KU-23 ion exchange resin and on the detection limits of their atomic absorption determination has been examined. Cobalt and cadmium can be separated quantitatively using desorption by a mixture of HCl and acetone. Addition of an organic solvent results in a higher absorbance, mainly due to a high rate and efficiency of atomization. Acetone has proved to be the best solvent: addition of 60 vol. % of this solvent to the concentrate provides 2 times lower detection limits for the heavy metas in water

  16. Evaluation of Metal Ion Concentration in Hard Tissues of Teeth in Residents of Central Poland

    Directory of Open Access Journals (Sweden)

    Piotr Wychowanski

    2017-01-01

    Full Text Available Objectives. The aim of the study was an assessment of the content of trace elements in enamel and dentin of teeth extracted in patients residing in urban and agricultural areas of Poland. Methods. The study included 30 generally healthy patients with retained third molars. 65 samples of enamel and dentin from individuals living in urban areas and 85 samples of enamel and dentin from individuals living in agricultural areas were prepared. The content of manganese, lead, cadmium, and chromium in the studied enamel and dentin samples from retained teeth was determined by Graphite Furnace Atomic Absorption Spectrometry. In the process of statistical hypothesis testing, the level of significance was assumed at α=0.05. Results. A comparative analysis of the data showed that enamel and dentin of inhabitants of industrialized areas contain significantly higher amounts of lead and cadmium than hard tissues of teeth in residents of agricultural areas and comparable amounts of manganese and chromium. Significance. It appears that hard tissues of retained teeth may constitute valuable material for assessment of long-term environmental exposure to metal ions. The study confirms that the risk of exposure to heavy metals depends on the place of residence and environmental pollution.

  17. Evaluation of Metal Ion Concentration in Hard Tissues of Teeth in Residents of Central Poland.

    Science.gov (United States)

    Wychowanski, Piotr; Malkiewicz, Konrad

    2017-01-01

    Objectives. The aim of the study was an assessment of the content of trace elements in enamel and dentin of teeth extracted in patients residing in urban and agricultural areas of Poland. Methods. The study included 30 generally healthy patients with retained third molars. 65 samples of enamel and dentin from individuals living in urban areas and 85 samples of enamel and dentin from individuals living in agricultural areas were prepared. The content of manganese, lead, cadmium, and chromium in the studied enamel and dentin samples from retained teeth was determined by Graphite Furnace Atomic Absorption Spectrometry. In the process of statistical hypothesis testing, the level of significance was assumed at α = 0.05. Results. A comparative analysis of the data showed that enamel and dentin of inhabitants of industrialized areas contain significantly higher amounts of lead and cadmium than hard tissues of teeth in residents of agricultural areas and comparable amounts of manganese and chromium. Significance. It appears that hard tissues of retained teeth may constitute valuable material for assessment of long-term environmental exposure to metal ions. The study confirms that the risk of exposure to heavy metals depends on the place of residence and environmental pollution.

  18. Ion implantation in metals

    International Nuclear Information System (INIS)

    Vook, F.L.

    1977-02-01

    The application of ion beams to metals is rapidly emerging as a promising area of research and technology. This report briefly describes some of the recent advances in the modification and study of the basic properties of metals by ion implantation techniques. Most of the research discussed illustrates some of the new and exciting applications of ion beams to metals which are under active investigation at Sandia Laboratories, Albuquerque

  19. Metal ion adsorption characteristics of tea leaves

    OpenAIRE

    Takao, Hiromitsu; Kawahigashi, Tatsuo

    2016-01-01

    [Abstract] For effective use of tea leaves, this study experimentally evaluated metal ion adsorption by tea leaves. The experiment described herein was conducted by measuring the ionic solution at a constant density using a fluorescence X-ray device. The metallic ion concentration in the solution and the fluorescence X-ray output intensity showed good correlation. Tea leaves were put into solution adjusted with density of an already-known metallic ion. Then the decrease of the metal ion was m...

  20. Study rationale and protocol: prospective randomized comparison of metal ion concentrations in the patient's plasma after implantation of coated and uncoated total knee prostheses.

    Science.gov (United States)

    Lützner, Jörg; Dinnebier, Gerd; Hartmann, Albrecht; Günther, Klaus-Peter; Kirschner, Stephan

    2009-10-14

    Any metal placed in a biological environment undergoes corrosion. Thus, with their large metallic surfaces, TKA implants are particularly prone to corrosion with subsequent release of metal ions into the human body which may cause local and systemic toxic effects and hypersensitivity reactions, and increase cancer risk. To address this problem, a new 7-layer zirconium coating developed especially for cobalt-chrome orthopaedic implants was tested biomechanically and found to lower metal ion release. The purpose of the proposed clinical trial is to compare the metal ion concentration in patients' plasma before and after implantation of a coated or uncoated TKA implant. In this randomised controlled trial, 120 patients undergoing primary TKA will be recruited at the Department of Orthopaedic Surgery of the University Hospital in Dresden, Germany, and randomised to either the coated or uncoated prosthesis. Outcome assessments will be conducted preoperatively and at 3 months, 12 months and 5 years postoperatively. The primary clinical endpoint will be the chromium ion concentration in the patient's plasma after 1 and 5 years. Secondary outcomes include cobalt, molybdenum and nickel ion concentrations after 1 and 5 years, allergy testing for hypersensitivity against one of these metals, the Knee Society Score to assess clinical and physical function of the knee joint, the self-assessment Oxford Score and the Short Form 36 quality of live questionnaire. The metal ion concentration in the patient's plasma has been shown to increase after TKA, its eventual adverse effects being widely debated. In the light of this discussion, ways to reduce metal ion release from orthopaedic implants should be studied in detail. The results of this investigation may lead to a new method to achieve this goal. TRIALS REGISTER: Clinicaltrials registry NCT00862511.

  1. Study rationale and protocol: prospective randomized comparison of metal ion concentrations in the patient's plasma after implantation of coated and uncoated total knee prostheses

    Directory of Open Access Journals (Sweden)

    Günther Klaus-Peter

    2009-10-01

    Full Text Available Abstract Background Any metal placed in a biological environment undergoes corrosion. Thus, with their large metallic surfaces, TKA implants are particularly prone to corrosion with subsequent release of metal ions into the human body which may cause local and systemic toxic effects and hypersensitivity reactions, and increase cancer risk. To address this problem, a new 7-layer zirconium coating developed especially for cobalt-chrome orthopaedic implants was tested biomechanically and found to lower metal ion release. The purpose of the proposed clinical trial is to compare the metal ion concentration in patients' plasma before and after implantation of a coated or uncoated TKA implant. Methods/Design In this randomised controlled trial, 120 patients undergoing primary TKA will be recruited at the Department of Orthopaedic Surgery of the University Hospital in Dresden, Germany, and randomised to either the coated or uncoated prosthesis. Outcome assessments will be conducted preoperatively and at 3 months, 12 months and 5 years postoperatively. The primary clinical endpoint will be the chromium ion concentration in the patient's plasma after 1 and 5 years. Secondary outcomes include cobalt, molybdenum and nickel ion concentrations after 1 and 5 years, allergy testing for hypersensitivity against one of these metals, the Knee Society Score to assess clinical and physical function of the knee joint, the self-assessment Oxford Score and the Short Form 36 quality of live questionnaire. Discussion The metal ion concentration in the patient's plasma has been shown to increase after TKA, its eventual adverse effects being widely debated. In the light of this discussion, ways to reduce metal ion release from orthopaedic implants should be studied in detail. The results of this investigation may lead to a new method to achieve this goal. Trials register Clinicaltrials registry NCT00862511

  2. Direct Analysis of Metal Ions in Solutions with High Salt Concentrations by Total Reflection X-ray Fluorescence.

    Science.gov (United States)

    Regadío, Mercedes; Riaño, Sofía; Binnemans, Koen; Vander Hoogerstraete, Tom

    2017-04-18

    Total reflection X-ray fluorescence (TXRF) is becoming more and more popular for elemental analysis in academia and industry. However, simplification of the procedures for analyzing samples with complex compositions and residual matrix effects is still needed. In this work, the effect of an inorganic (CaCl 2 ) and an organic (tetraalkylphosphonium chloride) matrix on metals quantification by TXRF was investigated for liquid samples. The samples were spiked with up to 20 metals at concentrations ranging from 3 to 50 mg L -1 per element, including elements with spectral peaks near the peaks of the matrix elements or near the Raleigh and Compton scattering peaks of the X-ray source (molybdenum anode). The recovery rate (RR) and the relative standard deviation (RSD) were calculated to express the accuracy and the precision of the measured element concentrations. In samples with no matrix effects, good RRs are obtained regardless of the internal standard selected. However, in samples with moderate matrix content, the use of an optimum internal standard (OIS) at a concentration close to that of the analyte significantly improved the quantitative analysis. In samples with high concentrations of inorganic ions, using a Triton X-100 aqueous solution to dilute the sample during the internal standardization resulted in better RRs and lower RSDs compared to using only water. In samples with a high concentration of organic material, pure ethanol gave slightly better results than when a Triton X-100-ethanol solution was used for dilution. Compared to previous methods reported in the literature, the new sample-preparation method gave better accuracy, precision, and sensitivity for the elements tested. Sample dilution with an OIS and the surfactant Triton X-100 (inorganic media) or ethanol (organic media) is recommended for fast routine elemental determination in matrix containing samples, as it does not require special equipment, experimentally derived case-dependent mathematical

  3. Relationship between Pelvic Incidence Angle and Blood Concentration of Chromium and Cobalt Ions after Metal-on-Metal Hip Replacement: A Brief Report.

    Science.gov (United States)

    Pernaa, K; Saltychev, M; Mäkelä, K

    2018-03-01

    The wear of metal-on-metal hip implants may increase chromium or cobalt ion blood level. This phenomenon may depend among other things on the particularity of spinopelvic anatomy. The effect of pelvic incidence angle on the wear of metal-on-metal hip implants is not known. The objective of the study was to investigate whether such effect does exist. The pelvic incidence and inclination of acetabular component angles of 89 patients after unilateral metal-on-metal hip replacement were compared with blood level of chromium and cobalt ions using Pearson correlation coefficient. No significant correlations between pelvic incidence angle and the metal ion blood levels were observed. The correlation coefficients varied from -0.02 to 0.2 and all p values were >0.05. No evidence was found on the effect of pelvic incidence angle on metal wear after metal-on-metal hip replacement when measured by the blood levels of chromium and cobalt ions. It is reasonable to assume that other factors than pelvic tilt may affect the rate of implant wear.

  4. Immobilised metal-ion affinity chromatography purification of histidine-tagged recombinant proteins : a wash step with a low concentration of EDTA

    NARCIS (Netherlands)

    Westra, DF; Welling, GW; Koedijk, DGAM; Scheffer, AJ; The, TH; Welling-Wester, S

    2001-01-01

    Immobilised metal-ion affinity chromatography (IMAC) is widely used for the purification of recombinant proteins in which a poly-histidine tag is introduced. However, other proteins may also bind to IMAC columns. We describe the use of a washing buffer with a low concentration of EDTA (0.5 mM) for

  5. Blood concentrations of ions and metals in amateur and elite runners using neutron activation analyses

    International Nuclear Information System (INIS)

    Santos, Luciana Kovacs dos

    2012-01-01

    In this study Br, Ca, Cl, Fe, I, K, Mg, Na, S and Zn concentration were investigated in blood of Brazilian athletes (endurance) using Neutron Activation Analyses technique (NAA). The blood samples were collected from male amateur athletes (AR) and male and female elite athletes (ER), ranging from 18 to 36 year old. The blood samples were collected at the LABEX/UNICAMP and they were irradiated in the nuclear reactor IEA-R1 at IPEN (Sao Paulo, Brazil). The range (at rest) established for AR and ER were compared with the control group (CG), subjects of same gender and age but not involved with physical activities, and showed significant differences for Ca (51 - 439 mgL -1 for CG, 162 - 410 mgL -1 for AR and 64 - 152 mgL -1 for ER) and Br (7.4 - 30.6 mgL -1 for CG, 4.0 - 9.6 mgL -1 for AR and 1.9 - 3.5 mgL -1 for ER), suggesting that a strong dependency of these limits in function of adopted physical training exists. We also performed a systematic investigation for the AR before, during and after the exercise program. These data can be considered for the preparation of a balanced diet, for evaluating the performance of the athletes during the period of competition preparation as well as contributing for proposing new protocols of clinical evaluation not reported in the literature yet. (author)

  6. Influences of hydrological regime on heavy metal and salt ion concentrations in intertidal sediment from Chongming Dongtan, Changjiang River estuary, China

    Science.gov (United States)

    Zhao, Jiale; Gao, Xiaojiang; Yang, Jin

    2017-11-01

    The tidal flat along the Changjiang (Yangtze) River estuary has long been reclaimed for the agricultural purposes, with the prevailing hydrological conditions during such pedogenic transformations being of great importance to their successful development. In this study, samples of surface sediment from Chongming Dongtan, situated at the mouth of the Changjiang River estuary, were collected and analyzed in order to understand how hydrological management can influence the concentrations of heavy metals and salt ions in pore water, and chemical fractionation of heavy metals during the reclamation process. We performed a series of experiments that simulated three different hydrological regimes: permanent flooding (R1), alternative five-day periods of wetting and drying (R2), continuous field capacity (R3). Our results exhibited good Pearson correlations coefficients between heavy metals and salt ions in the pore water for both R1 and R2. In particular, the concentrations of salt ions in the pore water decreased in all three regimes, but showed the biggest decline in R2. With this R2 experiment, the periodic concentration patterns in the pore water varied for Fe and Mn, but not for Cr, Cu, Pb and Zn. Neither the fractionation of Ni nor the residual fractions of any metals changed significantly in any regime. In R1, the reducible fractions of heavy metals (Cr, Cu, Zn and Pb) in the sediment decreased, while the acid extractable fractions increased. In R2, the acid extractable and the reducible fractions of Cr, Cu, Zn and Pb both decreased, as did the oxidizable fraction of Cu. These data suggest that an alternating hydrological regime can reduce both salinity and the availability of heavy metals in sediments.

  7. Ion climate and radon concentration

    International Nuclear Information System (INIS)

    Busbarna, L.

    1981-01-01

    Characteristic values of radon concentration in natural ion climate and in open air were compared and the effect of artificially produced negative ion excess on the radon concentration of air was studied. The results show that the radon concentration measurable at the rise of negative ion excess is smaller than that in the case of natural equilibrium. This effect can be utilized lowering the background of the scintillation chambers, thus increasing their sensitivity. The negative ions of the artificial ion climate lower radon concentration in closed space. The question arises whether only the ion climate is responsible for the effects on the organism and on the nervous system or the radon concentration of the air also contributes to them. (author)

  8. Metal Ions Analysis with Capillary Zone Electrophoresis.

    Science.gov (United States)

    Malik, Ashok Kumar; Aulakh, Jatinder Singh; Kaur, Varinder

    2016-01-01

    Capillary electrophoresis has recently attracted considerable attention as a promising analytical technique for metal ion separations. Significant advances that open new application areas for capillary electrophoresis in the analysis of metal species occurred based on various auxiliary separation principles. These are mainly due to complexation, ion pairing, solvation, and micellization interactions between metal analytes and electrolyte additives, which alter the separation selectivity in a broad range. Likewise, many separation studies for metal ions have been concentrated on the use of preelectrophoresis derivatization methodology. Approaches suitable for manipulation of selectivity for different metal species including metal cations, metal complexes, metal oxoanions, and organometallic compounds, are discussed, with special attention paid to the related electrophoretic system variables using illustrative examples.

  9. Predicting criteria continuous concentrations of metals or metalloids for protecting marine life by use of quantitative ion characteristic-activity relationships-species sensitivity distributions (QICAR-SSD).

    Science.gov (United States)

    Qie, Yu; Chen, Cheng; Guo, Fei; Mu, Yunsong; Sun, Fuhong; Wang, Hao; Wang, Ying; Wang, Huanhua; Wu, Fengchang; Hu, Qing; Dang, Zhi; Giesy, John P

    2017-11-30

    Marine pollution by metals has been a major challenge for ecological systems; however, water quality criteria (WQC) for metals in saltwater is still lacking. Especially from a regulatory perspective, chronic effects of metals on marine organisms should receive more attention. A quantitative ion characteristic-activity relationships-species sensitivity distributions (QICAR-SSD) model, based on chronic toxicities for eight marine organisms, was established to predict the criteria continuous concentrations (CCCs) of 21 metals. The results showed that the chronic toxicities of various metals had good relationships with their physicochemical properties. Predicted CCCs of six metals (Hg 2+ , Cu 2+ , Pb 2+ , Cd 2+ , Ni 2+ and Zn 2+ ) were in accordance with the values recommended by the U.S. EPA, with prediction errors being less than an order of magnitude. The QICAR-SSD approach provides an alternative tool to empirical methods and can be useful for deriving scientifically defensible WQC for metals for marine organisms and conducting ecological risk assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Decreased Sensitivity to Changes in the Concentration of Metal Ions as the Basis for the Hyperactivity of DtxR(E175K)

    Energy Technology Data Exchange (ETDEWEB)

    D’Aquino, J. Alejandro; Denninger, Andrew R.; Moulin, Aaron G.; D’Aquino, Katharine E.; Ringe, Dagmar; (Harvard-Med); (Brandeis)

    2010-01-12

    The metal-ion-activated diphtheria toxin repressor (DtxR) is responsible for the regulation of virulence and other genes in Corynebacterium diphtheriae. A single point mutation in DtxR, DtxR(E175K), causes this mutant repressor to have a hyperactive phenotype. Mice infected with Mycobacterium tuberculosis transformed with plasmids carrying this mutant gene show reduced signs of the tuberculosis infection. Corynebacterial DtxR is able to complement mycobacterial IdeR and vice versa. To date, an explanation for the hyperactivity of DtxR(E175K) has remained elusive. In an attempt to address this issue, we have solved the first crystal structure of DtxR(E175K) and characterized this mutant using circular dichroism, isothermal titration calorimetry, and other biochemical techniques. The results show that although DtxR(E175K) and the wild type have similar secondary structures, DtxR(E175K) gains additional thermostability upon activation with metal ions, which may lead to this mutant requiring a lower concentration of metal ions to reach the same levels of thermostability as the wild-type protein. The E175K mutation causes binding site 1 to retain metal ion bound at all times, which can only be removed by incubation with an ion chelator. The crystal structure of DtxR(E175K) shows an empty binding site 2 without evidence of oxidation of Cys102. The association constant for this low-affinity binding site of DtxR(E175K) obtained from calorimetric titration with Ni(II) is K{sub a} = 7.6 {+-} 0.5 x 10{sup 4}, which is very similar to the reported value for the wild-type repressor, K{sub a} = 6.3 x 10{sup 4}. Both the wild type and DtxR(E175K) require the same amount of metal ion to produce a shift in the electrophoretic mobility shift assay, but unlike the wild type, DtxR(E175K) binding to its cognate DNA [tox promoter-operator (toxPO)] does not require metal-ion supplementation in the running buffer. In the timescale of these experiments, the Mn(II)-DtxR(E175K)-toxPO complex

  11. Decreased sensitivity to changes in the concentration of metal ions as the basis for the hyperactivity of DtxR(E175K).

    Science.gov (United States)

    D'Aquino, J Alejandro; Denninger, Andrew R; Moulin, Aaron G; D'Aquino, Katharine E; Ringe, Dagmar

    2009-07-03

    The metal-ion-activated diphtheria toxin repressor (DtxR) is responsible for the regulation of virulence and other genes in Corynebacterium diphtheriae. A single point mutation in DtxR, DtxR(E175K), causes this mutant repressor to have a hyperactive phenotype. Mice infected with Mycobacterium tuberculosis transformed with plasmids carrying this mutant gene show reduced signs of the tuberculosis infection. Corynebacterial DtxR is able to complement mycobacterial IdeR and vice versa. To date, an explanation for the hyperactivity of DtxR(E175K) has remained elusive. In an attempt to address this issue, we have solved the first crystal structure of DtxR(E175K) and characterized this mutant using circular dichroism, isothermal titration calorimetry, and other biochemical techniques. The results show that although DtxR(E175K) and the wild type have similar secondary structures, DtxR(E175K) gains additional thermostability upon activation with metal ions, which may lead to this mutant requiring a lower concentration of metal ions to reach the same levels of thermostability as the wild-type protein. The E175K mutation causes binding site 1 to retain metal ion bound at all times, which can only be removed by incubation with an ion chelator. The crystal structure of DtxR(E175K) shows an empty binding site 2 without evidence of oxidation of Cys102. The association constant for this low-affinity binding site of DtxR(E175K) obtained from calorimetric titration with Ni(II) is K(a)=7.6+/-0.5x10(4), which is very similar to the reported value for the wild-type repressor, K(a)=6.3x10(4). Both the wild type and DtxR(E175K) require the same amount of metal ion to produce a shift in the electrophoretic mobility shift assay, but unlike the wild type, DtxR(E175K) binding to its cognate DNA [tox promoter-operator (toxPO)] does not require metal-ion supplementation in the running buffer. In the timescale of these experiments, the Mn(II)-DtxR(E175K)-toxPO complex is insensitive to changes

  12. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Metal ion uptake properties of polystyrene-supported chelating polymer resins functionalized with (i) glycine, (ii) hydroxy benzoic acid, (iii) Schiff base and (iv) diethanol amine have been investigated. The effects of pH, time and initial concentration on the uptake of metal ions have been studied. The uptake of metal ion ...

  13. Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) model

    International Nuclear Information System (INIS)

    Mu, Yunsong; Wu, Fengchang; Chen, Cheng; Liu, Yuedan; Zhao, Xiaoli; Haiqing Liao; Giesy, John P.

    2014-01-01

    Criteria continuous concentrations (CCCs) are useful for describing chronic exposure to pollutants and setting water quality standards to protect aquatic life. However, because of financial, practical, or ethical restrictions on toxicity testing, few data are available to derive CCCs. In this study, CCCs for 34 metals or metalloids were derived using quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) and the final acute-chronic ratio (FACR) method. The results showed that chronic toxic potencies were correlated with several physico-chemical properties among eight species chosen, where the softness index was the most predictive characteristic. Predicted CCCs for most of the metals, except for Lead and Iron, were within a range of 10-fold of values recommended by the U.S. EPA. The QICAR–SSD model was superior to the FACR method for prediction of data-poor metals. This would have significance for predicting toxic potencies and criteria thresholds of more metals or metalloids. - Highlights: • We investigate relationships between σp and log-NOEC in eight species. • The QICAR–SSD model, FACR, and CMC/CCC were used to predict CCCs. • They are as a supplement to screening for toxicities, criteria and standards. - CCCs for 34 metals/metalloids were predicted by use of QICAR–SSD model and FACR method

  14. Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) model.

    Science.gov (United States)

    Mu, Yunsong; Wu, Fengchang; Chen, Cheng; Liu, Yuedan; Zhao, Xiaoli; Haiqing Liao; Giesy, John P

    2014-05-01

    Criteria continuous concentrations (CCCs) are useful for describing chronic exposure to pollutants and setting water quality standards to protect aquatic life. However, because of financial, practical, or ethical restrictions on toxicity testing, few data are available to derive CCCs. In this study, CCCs for 34 metals or metalloids were derived using quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) and the final acute-chronic ratio (FACR) method. The results showed that chronic toxic potencies were correlated with several physico-chemical properties among eight species chosen, where the softness index was the most predictive characteristic. Predicted CCCs for most of the metals, except for Lead and Iron, were within a range of 10-fold of values recommended by the U.S. EPA. The QICAR-SSD model was superior to the FACR method for prediction of data-poor metals. This would have significance for predicting toxic potencies and criteria thresholds of more metals or metalloids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Influence of Temperature and Ion Concentration on Sedimentation ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-16

    Dec 16, 2017 ... precipitates. In this research study, the effects of temperature and ion concentration on the sedimentation of ... concentrations (< 0.04M) of the metal and phosphate ions markedly influenced the initial sedimentation rates of TCP and TSP .... When particle concentration is high, Stokes' equation may not show ...

  16. Correlation between heavy metal ions (copper, zinc, lead concentrations and root length of Allium cepa L. in polluted river water

    Directory of Open Access Journals (Sweden)

    Soraya Moreno Palacio

    2005-06-01

    Full Text Available The present work was performed using the common onion (Allium cepa L. as a bioindicator of toxicity of heavy metals in river water. The test waters were collected at two sampling sites: at the beginning and the end of the Toledo River. The bulbs of A. cepa L. were grown in test water with nine concentration levels of copper, zinc and lead from 0.1 to 50 ppm. In the laboratory, the influence of these test liquids on the root growth was examined during five days. For test liquids containing below 0.03-ppm dissolved Cu the root growth was reduced by 40% However, the same reduction occurred for 1-ppm dissolved Zn. For dissolved Pb, results reveal toxicity above 0.1 and 0.6 ppm at the beginning and the end of the Toledo river water, respectively.O presente trabalho foi realizado utilizando a cebola comum (Allium cepa L. como bioindicador da toxicidade de metais pesados em água de rio. As águas de teste foram coletadas em dois locais: na nascente e na foz do rio Toledo. Os bulbos de A. cepa L. foram cultivados em água de teste com nove níveis de concentração de cobre, zinco e chumbo de 0,1 a 50 ppm. Em laboratório a influência destes líquidos de teste em crescimento de raiz foi examinada durante cinco dias. Em todos os líquidos de teste o metal dissolvido contido foi medido pela técnica TXRF. Para líquidos de teste contendo 0,1-ppm de Cu dissolvido o crescimento da raiz foi reduzido em 50%. Entretanto, ocorreu a mesma redução para 1-ppm de Zn dissolvido. Para Pb dissolvido, o método do Allium teste revela toxidade acima de 0,1 e 0,5 ppm para a nascente e a foz do rio Toledo, respectivamente.

  17. THE ROLES OF METAL IONS IN REGULATION BY RIBOSWITCHES

    OpenAIRE

    Ferré-D'Amaré, Adrian; Winkler, Wade C.

    2011-01-01

    Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation trans...

  18. Engineering of microorganisms towards recovery of rare metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Kouichi; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences

    2010-06-15

    The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/ peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved. (orig.)

  19. Metal ions as inflammatory initiators of osteolysis.

    Science.gov (United States)

    Magone, Kevin; Luckenbill, Daniel; Goswami, Tarun

    2015-05-01

    Osteolysis and aseptic loosening currently contribute 75 % of implant failures. Furthermore, with over four million joint replacements projected to be performed in the United States annually, osteolysis and aseptic loosening may continue to pose a significant morbidity. This paper reviews the osteolysis cascade leading to osteoclast activation and bone resorption at the biochemical level. Additionally, the metal ion release mechanism from metallic implants is elucidated. Even though metal ions are not the predominating initiator of osteolysis, they do increase the concentration of key inflammatory cytokines that stimulate osteoclasts and prove to be a contributor to osteolysis and aseptic loosening. Osteolysis is a competitive mechanism among a number of biological reactions, which includes debris release, macrophage and osteoclast activation, an inflammatory response as well as metal ion release. Pharmacological therapy for component loosening has also been reviewed. A non-surgical treatment of osteolysis has not been found in the literature and thus may become an area of future research. Even though this research is warranted, comprehensively understanding the immune response to orthopedic implants and their metallic ions, and thus, creating improved prostheses appears to be the most cost-effective approach to decrease the morbidity related to osteolysis and to design implants with greater longevity. The ionic forms, cytokines, toxicity, gene expression, biological effects, and hypersensitivity responses of metallic elements from metal implants are summarized as well.

  20. Pre-concentration of Toxic Metals using Electrospun Amino ...

    African Journals Online (AJOL)

    NICO

    matrice interference.1 Pre-concentration strategies are therefore needed to enhance the detectability of the metals for their deter- mination. Water samples are routinely digested with acids to release the metals into solution and also to pre-concentrate the metal ions prior to their determination. Even though the acid digestion ...

  1. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    concentration on the uptake of metal ions have been studied. The uptake of metal ion depends on pH. The resins are more selective at pH 10 for Pb(II) and Hg(II), whereas at pH 6 they are found to be Cd(II) and Cr(VI) selective. Metal ion uptake properties of resins follow Freundlich's equation. The resins are recyclable and ...

  2. Complementary experimental-simulational study of surfactant micellar phase in the extraction process of metallic ions: Effects of temperature and salt concentration

    Science.gov (United States)

    Soto-Ángeles, Alan Gustavo; Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis

    2018-02-01

    The thermoresponsive micellar phase behaviour that exhibits the Triton-X-100 micelles by temperature effect and addition of salt in the extraction process of metallic ions was explored from mesoscopic and experimental points. In the theoretical study, we analyse the formation of Triton-X-100 micelles, load and stabilization of dithizone molecules and metallic ions extraction inside the micellar core at room temperature; finally, a thermal analysis is presented. In the experimental study, the spectrophotometric outcomes confirm the solubility of the copper-dithizone complex in the micellar core, as well as the extraction of metallic ions of aqueous environment via a cloud-point at 332.2 K. The micellar solutions with salt present a low absorbance value compared with the micellar solutions without salt. The decrease in the absorbance value is attributed to a change in the size of hydrophobic region of colloidal micelles. All transitory stages of extraction process are discussed and analysed in this document.

  3. Chromatography Of Metal Ions On Wood Cellulose Impregnated ...

    African Journals Online (AJOL)

    Adsorption chromatography of some heavy metal ions on wood cellulose of saw dust (wood waste dust) modified with hydrochloric acid, urea and thiourea was studied. Atomic absorption spectrophotometry (AAS) was used to determine the initial concentration of solutions of Zn2+, Cu2+, Ni2+, Pb2+, and Fe3+ metal ions.

  4. The roles of metal ions in regulation by riboswitches.

    Science.gov (United States)

    Ferré-D'Amaré, Adrian R; Winkler, Wade C

    2011-01-01

    Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation transport or sequestration. However, these transcriptional-based regulatory strategies are not the only mechanisms by which organisms coordinate metal ions with gene expression. Intriguingly, a few classes of signal-responsive RNA elements have also been discovered to function as metalloregulatory agents. This suggests that RNA-based regulatory strategies can be precisely tuned to intracellular metal ion pools, functionally akin to metal-loregulatory proteins. In addition to these metal-sensing regulatory RNAs, there is a yet broader role for metal ions in directly assisting the structural integrity of other signal-responsive regulatory RNA elements. In this chapter, we discuss how the intimate physicochemical relationship between metal ions and nucleic acids is important for the structure and function of metal ion- and metabolite-sensing regulatory RNAs.

  5. evaluation of heavy metals concentration in groundwater around ...

    African Journals Online (AJOL)

    concentrations above the maximum limit set by W.H.O. It was recommended that a systematic treatment of heavy metals concentration in groundwater sources in the study area be carried out regularly either through; Chemical precipitation, ion exchange or Reverse osmosis. KEYWORDS: Groundwater; Heavy metals; ...

  6. Initiation of protein association in tofu formation by metal ions.

    Science.gov (United States)

    Arii, Yasuhiro; Takenaka, Yasuyuki

    2014-01-01

    Magnesium and calcium ions are important factors in making tofu. However, the molecular role of these ions remains unclear in tofu formation. We have previously shown that magnesium chloride concentration-dependent produced silken tofu-like (SP) and regular tofu-like (RP) precipitates, but was an inconsequential factor for the retention of tofu. We investigated in this present study, the effect of various metal chlorides on the metal chloride concentration-dependent changes in tofu formation. These changes occurred in a similar manner to that of the magnesium ion, in which SP formation was followed by RP formation. It is interesting that the midpoint concentration for the formation of SP and RP represented a good correlation with the stability constant of EDTA. This correlation demonstrated the possibility that metal ions would interact with the carboxyl groups of soy proteins. We consider from these results that metal ions were the initiators of protein association in tofu formation.

  7. A possible role of alkali metal ions in the synthesis of pure-silica molecular sieves

    OpenAIRE

    Goepper, Michelle; Li, Hong-Xin; Davis, Mark E.

    1992-01-01

    Pure-silica ZSM-12 is synthesized in the presence and absence of alkali metal ions; addition of alkali metal ions at constant hydroxide ion concentration increases the crystallization rate of ZSM-12, and it is suggested that alkali metal ions participate in both the nucleation and crystal growth processes.

  8. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  9. AGNES: a technique for determining the concentration of free metal ions. The case of Zn(II) in coastal Mediterranean seawater

    OpenAIRE

    Galceran i Nogués, Josep; Huidobro Redondo, César; Companys Ferran, Encarnació; Alberti, Giancarla

    2007-01-01

    Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) is a recently suggested electroanalytical technique designed for the determination of the free concentration of heavy metals (such as Zn, Cd or Pb) which is here developed and applied to seawater samples. A key improvement for the implementation of AGNES with complex matrices is the development of a new blank, called the shifted blank (presented in this work for the first time), which can be applied to the same sample where the ...

  10. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  11. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis

    Directory of Open Access Journals (Sweden)

    Roxana Ramírez-Sandoval

    2015-01-01

    Full Text Available Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO32. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis.

  12. Evaluation of some heavy metals concentration in body fluids of metal workers in Kano metropolis, Nigeria

    OpenAIRE

    Sani, Ali; Abdullahi, Ibrahim Lawal

    2017-01-01

    Metal workers in urban Kano constitute a major workforce with a considerable population. The present work was aimed at obtaining baseline data on the extent of metal ion concentration in body fluids (urine and blood) of sampled population in the area. The investigation involves interaction with sampled population as well as blood and urine sample collection for heavy metals analysis. The health problems associated with the practice identified by respondents include: metal fume fever; eye and ...

  13. Metal Ion Controlled Polymorphism of a Peptide

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Jancso, Attila; Szunyogh, Daniel

    2011-01-01

    , …) in the peptide, and the ligand and structural preferences of the metal ion (in our studies Zn2+, Cd2+, Hg2+, Cu+/2+). Simultaneously, new species such as metal ion bridged ternary complexes or even oligomers may be formed. In recent previous studies we have observed similar polymorphism of zinc finger model...

  14. Separation of metal ions from aqueous solutions

    Science.gov (United States)

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  15. Development of carbon and metallic nano particle composite materials for the determination of uranium and other heavy metal ions

    International Nuclear Information System (INIS)

    Sahoo, S.; Dey, M.K.; Satpati, A.K.; Reddy, A.V.R.

    2014-01-01

    Carbon and metallic nano particle based composite materials were developed and characterised for the determination of heavy metal ions and uranium in trace concentration levels. Composite material were electrodeposited on the substrate electrode and applied for the electrochemical determination of metal ions. Electrodeposition parameters to synthesise the composite material and the analytical parameters for determination were optimised. (author)

  16. Metal ion removal from aqueous solution using physic seed hull.

    Science.gov (United States)

    Mohammad, Masita; Maitra, Saikat; Ahmad, Naveed; Bustam, Azmi; Sen, T K; Dutta, Binay K

    2010-07-15

    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium. 2010 Elsevier B.V. All rights reserved.

  17. Adsorption of heavy metal ions by sawdust of deciduous trees.

    Science.gov (United States)

    Bozić, D; Stanković, V; Gorgievski, M; Bogdanović, G; Kovacević, R

    2009-11-15

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g(-1) of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu(2+) ions but it is very low for Fe(2+) ions, not exceeding 10%.

  18. Adsorption of heavy metal ions by sawdust of deciduous trees

    International Nuclear Information System (INIS)

    Bozic, D.; Stankovic, V.; Gorgievski, M.; Bogdanovic, G.; Kovacevic, R.

    2009-01-01

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g -1 of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu 2+ ions but it is very low for Fe 2+ ions, not exceeding 10%.

  19. Effective charge of energetic ions in metals

    International Nuclear Information System (INIS)

    Kitagawa, M.; Brandt, W.

    1983-01-01

    The effective charge of energetic ion, as derived from stopping power of metals, is calculated by use of a dielectronic-response function method. The electronic distribution in the ion is described through the variational principle in a statistical approximation. The dependences of effective charge on the ion velocity, atomic number and r/sub s/-value of metal are derived at the low-velocity region. The effective charge becomes larger than the real charge of ion due to the close collisions. We obtain the quasi-universal equation of the fractional effective electron number of ion as a function of the ratio between the ionic size and the minimum distance approach. The comparsion between theoretical and experimental results of the effective charge is performed for the cases of N ion into Au, C and Al. We also discuss the equipartition rule of partially ionized ion at the high-velocity region

  20. Effect of sulphate and chloride ions on the solvent extraction of some metal ions with liquid cation exchangers

    International Nuclear Information System (INIS)

    Shibata, Junji; Nishimura, Sanji

    1977-01-01

    The extraction of the metal ions from sulphate and chloride solutions with Versatic Acid 911 and di(2-ethyl hexyl) phosphoric acid in benzene was investigated in order to clarify the effect of sulphate and chloride ions on the extraction. Sulphate and chloride ions are not extracted into the organic phase, and they affect metal extraction only by forming the complexes with metal ions in the aqueous phase. The extent of the effect on metal extraction is determined by the kind of metal ions and anionic ligands, and the concentration of ligand ions. Therefore, the difference in extraction behaviour may be explained by the complexing ability of the various anionic ligands present in the aqueous phase. Formation constants of the complexes between metal ions and anionic ligands were computed from these distribution data. (auth.)

  1. Catalytic metal ions and enzymatic processing of DNA and RNA.

    Science.gov (United States)

    Palermo, Giulia; Cavalli, Andrea; Klein, Michael L; Alfonso-Prieto, Mercedes; Dal Peraro, Matteo; De Vivo, Marco

    2015-02-17

    the modulatory effect of metal ion concentration and metal uptake on the 2M mechanism and efficiency. These aspects all point to the emerging and intriguing role of additional adjacent ions potentially involved in the modulation of phosphoryl transfer reactions and enzymatic turnover in 2M-catalysis, as recently observed experimentally in polymerase η and homing endonuclease I-DmoI. These computational results, integrated with experimental findings, describe and reinforce the nascent concept of a functional and cooperative dynamics of the catalytic metal ions during the 2M-dependent enzymatic processing of DNA and RNA. Encouraged by the insights provided by computational approaches, we foresee further experiments that will feature the functional and joint dynamics of the catalytic metal ions for nucleic acid processing. This could impact the de novo design of artificial metallonucleases and the rational design of potent metal-chelating inhibitors of pharmaceutically relevant enzymes.

  2. AGNES: A technique for determining the concentration of free metal ions. The case of Zn(II) in coastal Mediterranean seawater.

    Science.gov (United States)

    Galceran, J; Huidobro, C; Companys, E; Alberti, G

    2007-03-15

    Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) is a recently suggested electroanalytical technique designed for the determination of the free concentration of heavy metals (such as Zn, Cd or Pb) which is here developed and applied to seawater samples. A key improvement for the implementation of AGNES with complex matrices is the development of a new blank, called the shifted blank (presented in this work for the first time), which can be applied to the same sample where the measurement is intended. The careful selection of the required parameters for the determination of the free Zn concentration (or activity) at the nanomolar level is described in detail. The methodology has been validated with a synthetic solution containing Zn and nitrilotriacetic acid (NTA) and then applied, as a first case, to two coastal seawater samples taken close to Barcelona and Tarragona (Catalonia, North-Eastern Spain) finding values in the range of 1-3nM, representing around 25% of total Zn. This technique can, in the near future, be crucial in helping to elucidate the role of the free zinc(II) concentration in natural waters.

  3. Enhancement of metal bioleaching from contaminated sediment using silver ion.

    Science.gov (United States)

    Chen, Shen-Yi; Lin, Jih-Gaw

    2009-01-30

    A silver-catalyzed bioleaching process was used to remove heavy metals from contaminated sediment in this study. The effects of silver concentration added on the performance of bioleaching process were investigated. High pH reduction rate was observed in the bioleaching process with silver ion. The silver ion added in the bioleaching process was incorporated into the lattice of the initial sulfide through a cationic interchange reaction. This resulted in the short lag phase and high metal solubilization in the bioleaching process. The maximum pH reduction rate and the ideal metal solubilization were obtained in the presence of 30 mg/L of silver ion. When the added silver ion was greater than 30 mg/L, the rates of pH reduction and metal solubilization gradually decreased. The solubilization efficiencies of heavy metals (Cu, Zn, Mn, Ni and Cr) were relatively high in the silver-enhanced bioleaching process, except Pb. No apparent effect of silver ion on the growth of sulfur-oxidizing bacteria was found in the bioleaching. These results indicate that the kinetics of metal solubilization can be enhanced by the addition of silver ion.

  4. Heavy Metal Concentrations in Maltese Potable Water

    Directory of Open Access Journals (Sweden)

    Roberta Bugeja

    2015-05-01

    Full Text Available This study evaluates the levels of aluminum (Al, cadmium (Cd, chromium (Cr, copper (Cu, iron (Fe, lead (Pb, nickel (Ni and zinc (Zn in tap water samples of forty localities from around the Maltese Islands together with their corresponding service supply reservoirs. The heavy metal concentrations obtained indicated that concentrations of the elements were generally below the maximum allowed concentration established by the Maltese legislation. In terms of the Maltese and EU water quality regulations, 17.5% of the localities sampled yielded water that failed the acceptance criteria for a single metal in drinking water. Higher concentrations of some metals were observed in samples obtained at the end of the distribution network, when compared to the concentrations at the source. The observed changes in metal concentrations between the localities’ samples and the corresponding supply reservoirs were significant. The higher metal concentrations obtained in the samples from the localities can be attributed to leaching in the distribution network.

  5. Effects of heavy metal ions on EDTA-sensitive cell contacts of Dictyostelium discoideum

    OpenAIRE

    Yoshida, Motonobu

    2000-01-01

    [Synopsis] The effects of heavy metal ions on the EDTA-sensitive cell contacts, which exist from growthphase stage of Dictyostelium discoideum, was investigated. EDTA-sensitive cell contacts of cells at the growth-phase stage were analyzed in the presence of heavy metal ions. Heavy metal ions Hg^, Cd^ and Cu^ inhibited EDTA-sensitive cell contacts at concentrations higher than 10^M, whereas Pb^ did not show any recognizable effects at the same concentration range. The possible mechanisms of a...

  6. Upgraded vacuum arc ion source for metal ion implantation

    International Nuclear Information System (INIS)

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-01-01

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  7. Metal concentrations in water column, benthic macroinvertebrates ...

    African Journals Online (AJOL)

    Concentrations of some metals in the water, benthic macroinvertebrates and the muscle tissue of the Nile tilapia from river Delimi, Nigeria were investigated from January 1998 to June 1998. Samplings were done monthly at 3 different sites. The concentrations of the metals were determined using the atomic absorption ...

  8. Metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-06-01

    We have developed a family of metal vapor vacuum are (MEVVA) high current metal ion sources. The sources were initially developed for the production of high current beams of metal ions for heavy ion synchrotron injection for basic nuclear physics research; more recently they have also been used for metal ion implantation. A number of different embodiments of the source have been developed for these specific applications. Presently the sources operate in a pulsed mode, with pulse width of order 1 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, and since the ions produced in the vacuum arc plasma are in general multiply ionized the ion energy is up to several hundred keV. Beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Nearly all of the solid metals of the Periodic Table have been use to produce beam. A number of novel features have been incorporated into the sources, including multiple cathodes and the ability to switch between up to 18 separate cathode materials simply and quickly, and a broad beam source version as well as miniature versions. here we review the source designs and their performance. 45 refs., 7 figs

  9. Effect of metal ion doping on the photocatalytic activity of ...

    Indian Academy of Sciences (India)

    The activity can be enhanced by the increasing of concentration of the doped metal ions. TiAlPO-5 (4, 8, 12 atom % of Ti) showed the highest photocatalytic activity among all the compounds and its activity was compared to that of Degussa P25 (TiO2). The activity of photocatalysts was correlated with the diffuse reflectance ...

  10. Evaluation of cationite efficiency during extraction of heavy metal ions from diluted solutions

    OpenAIRE

    Gomelya, Nikolai; Ivanova, Veronika; Galimova, Valentina; Nosachova, Julia; Shabliy, Tatiana

    2017-01-01

    Ion exchange is one of the methods that has been successfully employed in industry for extracting heavy metals from wastewater. We conducted research into ion-exchange processes of extraction of heavy metal ions on the weak- and strong-acid cationites from distilled and tap water. Heavy metal ion concentration was less than 1 mg/dm3. We established that in all cases efficiency of water treatment decreased at a decrease in the starting concentration of a metal. The process took place regardles...

  11. Concentration and separation of trace metals with an arsonic acid resin.

    Science.gov (United States)

    Fritz, J S; Moyers, E M

    1976-08-01

    Macroporeus arsonic acid resins with different pore sizes and surface areas were prepared and the properties compared. One of the resins was used for concentration of trace metal ions from dimineralized water, tap-water, and sea-water. The effect of pH and complexing agents on the recovery of metal ions was studied. A method for separation of uranium(VI) and thorium(IV) from each other and from other metal ions was developed.

  12. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  13. Cesium ion bombardment of metal surfaces

    International Nuclear Information System (INIS)

    Tompa, G.S.

    1986-01-01

    The steady state cesium coverage due to cesium ion bombardment of molybdenum and tungsten was studied for the incident energy range below 500 eV. When a sample is exposed to a positive ion beam, the work function decreases until steady state is reached with a total dose of less than ≅10 16 ions/cm 2 , for both tungsten and molybdenum. A steady state minimum work function surface is produced at an incident energy of ≅100 eV for molybdenum and at an incident energy of ≅45 eV for tungsten. Increasing the incident energy results in an increase in the work function corresponding to a decrease in the surface coverage of cesium. At incident energies less than that giving the minimum work function, the work function approaches that of cesium metal. At a given bombarding energy the cesium coverage of tungsten is uniformly less than that of molybdenum. Effects of hydrogen gas coadsorption were also examined. Hydrogen coadsorption does not have a large effect on the steady state work functions. The largest shifts in the work function due to the coadsorption of hydrogen occur on the samples when there is no cesium present. A theory describing the steady-state coverage was developed is used to make predictions for other materials. A simple sticking and sputtering relationship, not including implantation, cannot account for the steady state coverage. At low concentrations, cesium coverage of a target is proportional to the ratio of (1 - β)/γ where β is the reflection coefficient and γ is the sputter yield. High coverages are produced on molybdenum due to implantation and low backscattering, because molybdenum is lighter than cesium. For tungsten the high backscattering and low implantation result in low coverages

  14. [Detection of metal ions in hair after metal-metal hip arthroplasty].

    Science.gov (United States)

    Hernandez-Vaquero, D; Rodríguez de la Flor, M; Fernandez-Carreira, J M; Sariego-Muñiz, C

    2014-01-01

    There is an increase in the levels of metals in the serum and urine after the implantation of some models of metal-metal hip prosthesis. It has recently been demonstrated that there is an association between these levels and the levels found in hair. The aim of this study is to determine the presence of metals in hair, and to find out whether these change over time or with the removal of the implant. The levels of chromium, cobalt and molybdenum were determined in the hair of 45 patients at 3, 4, 5, and 6 years after a hip surface replacement. The mean age was 57.5 years, and two were female. Further surgery was required to remove the replacement and implant a new model with metal-polyethylene friction in 11 patients, 5 of them due to metallosis and a periarticular cyst. The mean levels of metals in hair were chromium 163.27 ppm, cobalt 61.98 ppm, and molybdenum 31.36 ppm, much higher than the levels found in the general population. A decrease in the levels of chromium (43.8%), molybdenum (51.1%), and cobalt (91.1%) was observed at one year in the patients who had further surgery to remove the prosthesis. High concentrations of metals in the hair are observed in hip replacements with metal-metal friction, which decrease when that implant is removed. The determination of metal ions in hair could be a good marker of the metal poisoning that occurs in these arthroplasty models. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  15. In vitro cytotoxicity of metallic ions released from dental alloys.

    Science.gov (United States)

    Milheiro, Ana; Nozaki, Kosuke; Kleverlaan, Cornelis J; Muris, Joris; Miura, Hiroyuki; Feilzer, Albert J

    2016-05-01

    The cytotoxicity of a dental alloy depends on, but is not limited to, the extent of its corrosion behavior. Individual ions may have effects on cell viability that are different from metals interacting within the alloy structure. We aimed to investigate the cytotoxicity of individual metal ions in concentrations similar to those reported to be released from Pd-based dental alloys on mouse fibroblast cells. Metal salts were used to prepare seven solutions (concentration range 100 ppm-1 ppb) of the transition metals, such as Ni(II), Pd(II), Cu(II), and Ag(I), and the metals, such as Ga(III), In(III), and Sn(II). Cytotoxicity on mouse fibroblasts L929 was evaluated using the MTT assay. Ni, Cu, and Ag are cytotoxic at 10 ppm, Pd and Ga at 100 ppm. Sn and In were not able to induce cytotoxicity at the tested concentrations. Transition metals were able to induce cytotoxic effects in concentrations similar to those reported to be released from Pd-based dental alloys. Ni, Cu, and Ag were the most cytotoxic followed by Pd and Ga; Sn and In were not cytotoxic. Cytotoxic reactions might be considered in the etiopathogenesis of clinically observed local adverse reactions.

  16. Endonuclease active site plasticity allows DNA cleavage with diverse alkaline Earth and transition metal ions.

    Science.gov (United States)

    Vasu, Kommireddy; Saravanan, Matheshwaran; Nagaraja, Valakunja

    2011-09-16

    A majority of enzymes show a high degree of specificity toward a particular metal ion in their catalytic reaction. However, Type II restriction endonuclease (REase) R.KpnI, which is the first member of the HNH superfamily of REases, exhibits extraordinary diversity in metal ion dependent DNA cleavage. Several alkaline earth and transition group metal ions induce high fidelity and promiscuous cleavage or inhibition depending upon their concentration. The metal ions having different ionic radii and co-ordination geometries readily replace each other from the enzyme's active site, revealing its plasticity. Ability of R.KpnI to cleave DNA with both alkaline earth and transition group metal ions having varied ionic radii could imply utilization of different catalytic site(s). However, mutation of the invariant His residue of the HNH motif caused abolition of the enzyme activity with all of the cofactors, indicating that the enzyme follows a single metal ion catalytic mechanism for DNA cleavage. Indispensability of His in nucleophile activation together with broad cofactor tolerance of the enzyme indicates electrostatic stabilization function of metal ions during catalysis. Nevertheless, a second metal ion is recruited at higher concentrations to either induce promiscuity or inhibit the DNA cleavage. Regulation of the endonuclease activity and fidelity by a second metal ion binding is a unique feature of R.KpnI among REases and HNH nucleases. The active site plasticity of R.KpnI opens up avenues for redesigning cofactor specificities and generation of mutants specific to a particular metal ion.

  17. Removal and recovery of metal ions from process and waste streams using polymer filtration

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-01-01

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described

  18. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    Science.gov (United States)

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence.

  19. Breast milk metal ion levels in a young and active patient with a metal-on-metal hip prosthesis.

    Science.gov (United States)

    Nelis, Raymond; de Waal Malefijt, Jan; Gosens, Taco

    2013-01-01

    Metal-on-metal resurfacing arthroplasty of the hip has been used increasingly over the last 10 years in younger active patients. The dissolution of the metal wear particles results in measurable increases in cobalt and chromium ions in the serum and urine of patients with a metal-on-metal bearing. We measured the cobalt, chromium, and molybdenum ion levels in urine; serum; and breast milk in a young and active patient with a metal-on-metal hip prosthesis after a pathologic fracture of the femoral neck. Metal-on-metal hip prosthesis leads to increasing levels of molybdenum in breast milk in the short-term follow-up. There are no increasing levels of chromium and cobalt ions in breast milk. Besides the already known elevated concentrations in serum of chromium and cobalt after implantation of a metal-on-metal hip prosthesis, we found no increasing levels of chromium and cobalt in urine. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. DETERMINATION OF METAL IONS RELEASED BY STAINLESS ...

    African Journals Online (AJOL)

    The amounts of cobalt, iron, manganese, nickel and chromium ions released from new and reused stainless steel arch bar used for maxillomandibular fixation was determined in Hank's solutions of different hydrogen and chloride ions concentrations, whole blood serum and phosphate buffered saline (PBS) in vitro, over a ...

  1. Metal ion mediated photolysis reactions of riboflavin: A kinetic study.

    Science.gov (United States)

    Ahmad, Iqbal; Anwar, Zubair; Ahmed, Sofia; Sheraz, Muhammad Ali; Khattak, Saif-Ur-Rehman

    2017-08-01

    The effect of metal ion complexation on the photolysis of riboflavin (RF) using various metal ions (Ag + , Ni 2+ , Co 2+ , Fe 2+ , Ca 2+ , Cd 2+ , Cu 2+ , Mn 2+ , Pb 2+ , Mg 2+ , Zn 2+ , Fe 3+ ) has been studied. Ultraviolet and visible spectral and fluorimetric evidence has been obtained to confirm the formation of metal-RF complexes. The kinetics of photolysis of RF in metal-RF complexes at pH7.0 has been evaluated. The apparent first-order rate constant (k obs ) for the photolysis of RF and the formation of lumichrome (LC) and lumiflavin (LF) (0.001M phosphate buffer) and LC, LF and cyclodehydroriboflavin (CDRF) (0.2-0.4M phosphate buffer) have been determined. The values of k obs indicate that the rate of photolysis of RF is promoted by divalent and trivalent metal ions. The second-order rate constants (k' ) for the interaction of metal ions with RF are in the order: Zn 2+ >Mg 2+ >Pb 2+ >Mn 2+ >Cu 2+ >Cd 2+ >Fe 2+ >Ca 2+ >Fe 3+ >Co 2+ >Ni 2+ >Ag + . In phosphate buffer (0.2-0.4M), an increase in the metal ion concentration leads to a decrease in the formation of LC compared to that of CDRF by different pathways. The photoproducts of RF have been identified and RF and the photoproducts have simultaneously been assayed by a multicomponent spectrometric method. The mode of photolysis of RF in metal-RF complexes has been discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Direct seawater desalination by ion concentration polarization

    Science.gov (United States)

    Kim, Sung Jae; Ko, Sung Hee; Kang, Kwan Hyoung; Han, Jongyoon

    2010-04-01

    A shortage of fresh water is one of the acute challenges facing the world today. An energy-efficient approach to converting sea water into fresh water could be of substantial benefit, but current desalination methods require high power consumption and operating costs or large-scale infrastructures, which make them difficult to implement in resource-limited settings or in disaster scenarios. Here, we report a process for converting sea water (salinity ~500 mM or ~30,000 mg l-1) to fresh water (salinity water is divided into desalted and concentrated streams by ion concentration polarization, a phenomenon that occurs when an ion current is passed through ion-selective membranes. During operation, both salts and larger particles (cells, viruses and microorganisms) are pushed away from the membrane (a nanochannel or nanoporous membrane), which significantly reduces the possibility of membrane fouling and salt accumulation, thus avoiding two problems that plague other membrane filtration methods. To implement this approach, a simple microfluidic device was fabricated and shown to be capable of continuous desalination of sea water (~99% salt rejection at 50% recovery rate) at a power consumption of less than 3.5 Wh l-1, which is comparable to current state-of-the-art systems. Rather than competing with larger desalination plants, the method could be used to make small- or medium-scale systems, with the possibility of battery-powered operation.

  3. [Metal ions restrain the elimination of 4-tert-octylphenol by delta-MnO2].

    Science.gov (United States)

    Li, Fei-Li; Mou, Hua-Qian

    2013-06-01

    The effect of metal ions on elimination of 4-t-OP by synthetic delta-MnO2 suspension at pH 4.0 was studied. Experiments indicated that the removal of 4-t-OP by delta-MnO2 achieved 100% at reaction time of 150 min. However, the removal of 4-t-OP by delta-MnO2 was restrained when metal ions were added, and the higher concentration of metal ion was, the stronger the inhibition produced. Additionally, there were apparent differences among the inhibitory effect of the tested metal ions. Firstly, Pb2+ and Mn2+ had the strongest effect at pH 4.0, followed by the transition metal ions, then the alkaline earth ions, while the alkali metal ions had little influence on the removal of 4-t-OP by delta-MnO2. Also comparing the adsorption results of metal ions by delta-MnO2, Pb2+ showed the greatest attraction with delta-MnO2, and among the other metal ions, transition metal ions were adsorbed a little more strongly on delta-MnO2 than alkaline earth metal ions. Consequences showed that the inhibitory effects of metal ions were due to their occupying reactive sites on delta-MnO2 surface, which competed with 4-t-OP. Moreover, the dissimilar suppressions were contributed by the different adsorption capacities, surface structure change of MnO2 and the difference of free metal ion percentage in solution as well as metal ions radii.

  4. Effects of Alkali-Metal Ions and Counter Ions in Sn-Beta-Catalyzed Carbohydrate Conversion.

    Science.gov (United States)

    Elliot, Samuel G; Tolborg, Søren; Madsen, Robert; Taarning, Esben; Meier, Sebastian

    2018-02-26

    Alkali-metal ions have recently been shown to strongly influence the catalytic behavior of stannosilicates in the conversion of carbohydrates. An effect of having alkali-metal ions present is a pronounced increase in selectivity towards methyl lactate. Mechanistic details of this effect have remained obscure and are herein addressed experimentally through kinetic experiments and isotope tracking. The presence of alkali-metal ions has a differential effect in competing reaction pathways and promotes the rate of carbon-carbon bond breakage of carbohydrate substrates, but decreases the rates of competing dehydration pathways. Further addition of alkali-metal ions inhibits the activity of Sn-Beta in all major reaction pathways. The alkali-metal effects on product distribution and on the rate of product formation are similar, thus pointing to a kinetic reaction control and to irreversible reaction steps in the main pathways. Additionally, an effect of the accompanying basic anions is shown, supposedly facilitating the cation exchange and eliciting a different concentration-dependent effect to that of neutral alkali-metal salts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fluorescence signalling of the transition metal ions: Design strategy ...

    Indian Academy of Sciences (India)

    on fluorescence signalling systems for the transition metal ions. It is shown that even simple fluorophore-spacer-receptor systems can display excellent off-on fluorescence signalling towards the quenching metal ions when the fluorophore ...

  6. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    Science.gov (United States)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  7. The role of metal ion-ligand interactions during divalent metal ion adsorption.

    Science.gov (United States)

    Eldridge, Daniel S; Crawford, Russell J; Harding, Ian H

    2015-09-15

    A suite of seven different divalent metal ions (Ca(II), Cd(II), Cu(II), Mg(II), Ni(II), Pb(II), Zn(II)) was adsorbed from solution onto two Fe2O3 samples, quartz SiO2 and three different amphoteric polystyrene latices (containing amine and carboxyl functional groups). For the metal oxides, a high correlation was observed between the pH at which 50% of the metal was removed from solution (pH50) and the first hydrolysis constant for the metal ion (pK1). For the polystyrene latices, a much higher correlation was observed between the pH50 and pKc (equilibrium constant describing metal-carboxyl affinity) as opposed to pK1. These observations provide evidence of a strong relationship that exists between a metal's affinity for a particular ligand in solution and for that metal ion's affinity for the same ligand present as part of an adsorbing surface. The isoelectric point of the amphoteric latex surface can be increased by decreasing the carboxyl content of the latex surface. For all 7 metal ions, this resulted in a substantial decrease, for any given pH, in adsorption. We suggest that this may be partly due to the decreased carboxyl content, but is dominantly attributable to the presence of less favorable electrostatic conditions. This, in turn, demonstrates that electrostatics play a controlling role in metal ion adsorption onto amphoteric latex surfaces and, in addition to the nature of the metal ion, also controls the pH at which adsorption takes place. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  8. Albumin as marker for susceptibility to metal ions in metal-on-metal hip prosthesis patients.

    Science.gov (United States)

    Facchin, F; Catalani, S; Bianconi, E; Pasquale, D De; Stea, S; Toni, A; Canaider, S; Beraudi, A

    2017-04-01

    Metal-on-metal (MoM) hip prostheses are known to release chromium and cobalt (Co), which negatively affect the health status, leading to prosthesis explant. Albumin (ALB) is the main serum protein-binding divalent transition metals. Its binding capacity can be affected by gene mutations or modification of the protein N-terminal region, giving the ischaemia-modified albumin (IMA). This study evaluated ALB, at gene and protein level, as marker of individual susceptibility to Co in MoM patients, to understand whether it could be responsible for the different management of this ion. Co was measured in whole blood, serum and urine of 40 MoM patients. A mutational screening of ALB was performed to detect links between mutations and metal binding. Finally, serum concentration of total ALB and IMA were measured. Serum total ALB concentration was in the normal range for all patients. None of the subjects presented mutations in the investigated gene. Whole blood, serum and urine Co did not correlate with serum total ALB or IMA, although IMA was above the normal limit in most subjects. The individual susceptibility is very important for patients' health status. Despite the limited results of this study, we provide indications on possible future investigations on the toxicological response to Co.

  9. Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO2 Mineralization

    OpenAIRE

    Jun-Hwan Bang; Seung-Woo Lee; Chiwan Jeon; Sangwon Park; Kyungsun Song; Whan Joo Jo; Soochun Chae

    2016-01-01

    Blast furnace slag (BFS) was selected as the source of Ca for CO2 mineralization purposes to store CO2 as CaCO3. BFS was dissolved using aqua regia (AR) for leaching metal ions for CO2 mineralization and rejecting metal ions that were not useful to obtain pure CaCO3 (as confirmed by XRD analysis). The AR concentration, as well as the weight of BFS in an AR solution, was varied. Increasing the AR concentration resulted in increased metal ion leaching efficiencies. An optimum concentration of 2...

  10. Metal ion interaction of an oligopeptide fragment representing the regulatory metal binding site of a CueR protein

    DEFF Research Database (Denmark)

    Jancsó, Attila; Szokolai, Hajnalka; Roszahegyi, Livia

    2013-01-01

    Metalloregulatory proteins of the MerR family are transcriptional activators that sense/control the concentration of various metal ions inside bacteria.1 The Cu+ efflux regulator CueR, similarly to other MerR proteins, possesses a short multiple Cys-containing metal binding loop close to the C......-terminus. CueR has a high selectivity for Cu+, Ag+ and Au+, but exhibits no transcriptional activity for the divalent ions Hg2+ and Zn2+.2 The two Cys- residues of the metal binding loop were shown to settle M+ ions into a linear coordination environment but other factors may also play a role in the recognition...... of cognate metal ions.2 Nevertheless, it is an interesting question whether the same sequence, when removed from the protein, shows a flexibility to adopt different coordination environments and may efficiently bind metal ions having preferences for larger coordination numbers....

  11. Ion exchangers as adsorbents for removing metals from aquatic media.

    Science.gov (United States)

    Khan, Meraj A; Bushra, Rani; Ahmad, Anees; Nabi, Syed A; Khan, Dilwar A; Akhtar, Arshia

    2014-02-01

    A polyaniline-based composite cation-exchange material was synthesized by way of sol-gel method and studied to explore its analytical and environmental applications. It was characterized by using instrumental analyses [Fourier transform infrared (spectrometer), X-ray, thermogravimetric analysis/differential thermal analysis, standard electron microscopy, and transmission electron microscopy]. Physicochemical studies, such as ion-exchange capacity, pH titrations, and chemical stability, along with effect of eluent concentration and elution, were also performed to exploit the ion-exchange capabilities. pH titration studies showed that the material presents monofunctional strong cation-exchange behavior. This nanocomposite material is semicrystalline in nature and exhibits improved thermal and chemical stability. The partition coefficient studies of different metal ions in the material were performed in demineralised water and different surfactant media, and it was found to be selective for Pb(II) and Hg(II) ions. To exploit the usefulness of the material as an adsorbent, some important quantitative binary separations of metal ions were performed on polyaniline Zr(IV) molybdophosphate columns. This composite cation exchanger can be applied for the treatment of polluted water to remove heavy metals.

  12. Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed

    Directory of Open Access Journals (Sweden)

    T.M. Zewail

    2015-03-01

    Full Text Available Spouted bed contactor is a hybrid of fixed and fluidized bed contactors, which retains the advantages of each with good hydrodynamic conditions. The aim of the present study is to investigate the performance of a batch conical air spouted vessel for heavy metal removal by strong cation exchange resins (AMBERJET 1200 Na. The effect of various parameters such as type of heavy metal ions (Ni+2 and Pb+2, contact time, superficial air velocity and initial heavy metal ion concentration on % heavy metal ion removal has been investigated. It has been found that under optimum conditions 98% and 99% removal of Ni+2 and Pb+2 were achieved respectively. Several kinetic models were used to test the experimental data and to examine the controlling mechanism of the sorption process. The present results of Ni+2 and Pb+2 well fit pseudo second order kinetic model with a high correlation coefficient. Both film diffusion and intra-particle diffusion contribute to the ion exchange process. The present study revealed that spouted bed vessel may provide an effective alternative for conducting ion exchange reactions.

  13. Metal ions potentiate microglia responsiveness to endotoxin.

    Science.gov (United States)

    Rachmawati, Dessy; Peferoen, Laura A N; Vogel, Daphne Y S; Alsalem, Inás W A; Amor, Sandra; Bontkes, Hetty J; von Blomberg, B Mary E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2016-02-15

    Oral metal exposure has been associated with diverse adverse reactions, including neurotoxicity. We showed previously that dentally applied metals activate dendritic cells (MoDC) via TLR4 (Ni, Co, Pd) and TLR3 (Au). It is still unknown whether the low levels of dental metals reaching the brain can trigger local innate cells or prime them to become more responsive. Here we tested whether dentally applied metals (Cr, Fe, Co, Ni, Cu, Zn, Au, Hg) activate primary human microglia in vitro and, as a model, monocytic THP-1-cells, in high non-toxic as well as near-physiological concentrations. In addition the effects of 'near-physiological' metal exposure on endotoxin (LPS) responsiveness of these cells were evaluated. IL-8 and IL-6 production after 24h was used as read out. In high, non-toxic concentrations all transition metals except Cr induced IL-8 and IL-6 production in microglia, with Ni and Co providing the strongest stimulation. When using near-physiological doses (up to 10× the normal plasma concentration), only Zn and Cu induced significant IL-8 production. Of note, the latter metals also markedly potentiated LPS responsiveness of microglia and THP-1 cells. In conclusion, transition metals activate microglia similar to MoDCs. In near-physiological concentrations Zn and Cu are the most effective mediators of innate immune activation. A clear synergism between innate responses to Zn/Cu and LPS was observed, shedding new light on the possible relation between oral metal exposure and neurotoxicity. Copyright © 2015. Published by Elsevier B.V.

  14. Geogenic heavy metal concentrations in German soils

    International Nuclear Information System (INIS)

    Hindel, R.; Fleige, H.

    1990-01-01

    In the area of the German Federal Republic, 6,300 soil samples of 526 soil profiles were examined for the concentrations of lead, copper, zinc, cadmium, nickel, cobalt, mercury, antimony, arsenic and lithium. The soil profiles were selected so that the prevailing loose and solid rock floors of the German Federal Republic were represented. The analysis data of these samples formed the basis for the calculation of average geogenic heavy metal concentrations in the soils of the German Federal Republic. (orig.) [de

  15. Activation of Methane by Gaseous Metal Ions

    Czech Academy of Sciences Publication Activity Database

    Schröder, Detlef

    2010-01-01

    Roč. 49, č. 5 (2010), s. 850-851 ISSN 1433-7851 Grant - others:European Research Council(XE) AdG HORIZOMS Institutional research plan: CEZ:AV0Z40550506 Keywords : C-C coupling * C-H bond activation * gas-phase reactions * metal ions * methane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.730, year: 2010

  16. IDENTIFICATION OF CATALYTIC METAL ION LIGANDS IN RIBOZYMES

    Science.gov (United States)

    Frederiksen, John K.; Piccirilli, Joseph A.

    2012-01-01

    Site-bound metal ions participate in the catalytic mechanisms of many ribozymes. Understanding these mechanisms therefore requires knowledge of the specific ligands on both substrate and ribozyme that coordinate these catalytic metal ions. A number of different structural and biochemical strategies have been developed and refined for identifying metal ion binding sites within ribozymes, and for assessing the catalytic contributions of the metal ions bound at those sites. We review these approaches and provide examples of their application, focusing in particular on metal ion rescue experiments and their roles in the construction of the transition state models for the Tetrahymena group I and RNase P ribozymes. PMID:19651216

  17. Ion-induced effects on metallic nanoparticles

    International Nuclear Information System (INIS)

    Klimmer, Andreas

    2010-01-01

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L1 0 phase. (orig.)

  18. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  19. Adsorptive Removal of Metal Ions from Water using Functionalized Biomaterials.

    Science.gov (United States)

    Deshpande, Kanchanmala

    2017-01-01

    Synthesis and modification of cost-effective sorbents for removing heavy metals from water resources is an area of significance. It had been reported that materials with biological origins, such as agricultural and animal waste, are excellent alternatives to conventional adsorbents due to their higher affinity, capacity and selectivity towards metal ions. These properties of biomaterials help to reduce or detoxify metal ions concentration in contaminated water to acceptable regulatory standards. Synthesis of novel, efficient, cost effective, eco-friendly biomaterials for heavy metal adsorption from water is still an area of challenge. In this comprehensive review, acompilation of patents as well as published articles is carried out to outline the properties of different biomaterials based on their precursors along withdetailed description of biomaterial morphology and various surface modification approaches. A detailed study of the performance of adsorbents and the role of physical and chemical modification in terms of enhancing their potential for metal adsorption from water is compiled here. The factors affecting adsorption behavior i.e., capacity and affinity of e biomaterials is also compiled. This paper presents a concise review of reported studies on the synthesis and modification of biomaterials, their use for heavy metal removal from waters and future prospects of this technology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Adsorption of heavy metal ions by activated charcoal

    International Nuclear Information System (INIS)

    Fujikawa, Mitsuo

    1978-01-01

    The adsorption effect was measured for several kinds of heavy metal ions, Pb 2+ , Cd 2+ , Cu 2+ and Zn 2+ by passing them through activated charcoal beds and changing the pH values of solutions. The test procedure is to keep the pH value of solution more than 10 at first, filter heavy metal hydroxide deposit, measure the remaining ion concentration in filtrate, and also test the influence of the addition of alkali to each kind of ions. The individual test procedure for each kind of ions is explained. As for the Cd ions, after the detailed experimental procedure is explained, the adsorption characteristic line is shown as the relation between the adsorption quantity and the equilibrium concentration of Cd 2+ . The similar test procedure and the adsorption characteristic lines are shown and evaluated about Pb 2+ , Cu 2+ and Zn 2+ . These lines are all linear, but have different adsorption quantity and inclination in relation to heavy metal ion concentration. Concerning the influence of pH to adsorption, the characteristics of pH increase are presented, when alkali is added by various quantities to Zn 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The pH of Pb 2+ increased to about 10 by adding 0.4 cc alkali and saturates, but the pH of the other ions did not saturate by adding less than 1.5 cc alkali. When the water containing heavy metals are treated, Cd 2+ , Pb 2+ , Cu 2+ and Zn 2+ are removed almost satisfactorily by passing them through active charcoal filters and keeping pH at 10. The experimental concentrations are 0.05 ppm at pH 10 in Cd, 0.86 ppm at 10.3 in Pb, 0 ppm at pH 9.6 in Cu, 0.06 ppm at pH 8.8 and 12.4 ppm at pH 9.8 in Zn. (Nakai, Y.)

  1. Transparent monolithic metal ion containing nanophase aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  2. Alkali metal ion templated transition metal formate framework materials: synthesis, crystal structures, ion migration, and magnetism.

    Science.gov (United States)

    Eikeland, Espen; Lock, Nina; Filsø, Mette; Stingaciu, Marian; Shen, Yanbin; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2014-10-06

    Four transition metal formate coordination polymers with anionic frameworks, namely, Na[Mn(HCOO)3], K[Mn(HCOO)3], Na2[Cu3(HCOO)8], and K2[Cu5(HCOO)12], were synthesized using a mild solution chemistry approach. Multitemperature single-crystal (100-300 K) and powder X-ray diffraction studies of the compounds reveal structures of large diversity ranging from cubic chiral Na-Mn formate to triclinic Na-Cu formate. The structural variety is caused by the nature of the transition metals, the alkali metal ion templation, and the versatility of the formate group, which offers metal-metal coordination through three different O-C-O bridging modes (syn-syn, syn-anti, anti-anti) in addition to metal-metal bridging via a single oxygen atom. The two manganese(II) compounds contain mononuclear, octahedrally coordinated moieties, but the three-dimensional connectivity between the manganese octahedra is very different in the two structures. The two copper frameworks, in contrast, consist of binuclear and mononuclear moieties (Na-Cu formate) and trinuclear and mononuclear moieties (K-Cu formate), respectively. Procrystal electron density analysis of the compounds indicates one-dimensional K(+)-ion conductivity in K-Mn and K-Cu, and the nature of the proposed potassium ion migration is compared with results from similar analysis on known Na(+) and K(+) ion conductors. K-Mn and Na-Mn were tested as cathode materials, but this resulted in poor reversibility due to low conductivity or structural collapse. The magnetic properties of the compounds were studied by vibrating sample magnetometric measurements, and their thermal stabilities were determined by thermogravimetric analysis and differential thermal analysis. Despite structural differences, the metal formates that contain the same transition metal have similar magnetic properties and thermal decomposition pathways, that is, the nature of the transition metal controls the compound properties.

  3. Maximum Permissible Concentrations and Negligible Concentrations for metals, taking background concentrations into account

    NARCIS (Netherlands)

    Crommentuijn T; Polder MD; Plassche EJ van de; CSR

    1997-01-01

    Maximum Permissible Concentrations (MPCs) and Negligible Concentrations (NCs) have been derived for a series of heavy metals. For some of the metals, the Ministry of Housing, Spatial Planning and the Environment (VROM) used earlier MPCs and NCs to set Environmental Quality Objectives for water,

  4. Ion Concentration Polarization by Bifurcated Current Path.

    Science.gov (United States)

    Kim, Junsuk; Cho, Inhee; Lee, Hyomin; Kim, Sung Jae

    2017-07-11

    Ion concentration polarization (ICP) is a fundamental electrokinetic process that occurs near a perm-selective membrane under dc bias. Overall process highly depends on the current transportation mechanisms such as electro-convection, surface conduction and diffusioosmosis and the fundamental characteristics can be significantly altered by external parameters, once the permselectivity was fixed. In this work, a new ICP device with a bifurcated current path as for the enhancement of the surface conduction was fabricated using a polymeric nanoporous material. It was protruded to the middle of a microchannel, while the material was exactly aligned at the interface between two microchannels in a conventional ICP device. Rigorous experiments revealed out that the propagation of ICP layer was initiated from the different locations of the protruded membrane according to the dominant current path which was determined by a bulk electrolyte concentration. Since the enhancement of surface conduction maintained the stability of ICP process, a strong electrokinetic flow associated with the amplified electric field inside ICP layer was significantly suppressed over the protruded membrane even at condensed limit. As a practical example of utilizing the protruded device, we successfully demonstrated a non-destructive micro/nanofluidic preconcentrator of fragile cellular species (i.e. red blood cells).

  5. Effects of ion concentration on the hydrogen bonded structure of ...

    Indian Academy of Sciences (India)

    Molecular dynamics simulations of dilute and concentrated aqueous NaCl solutions are carried out to investigate the changes of the hydrogen bonded structures in the vicinity of ions for different ion concentrations. An analysis of the hydrogen bond population in the first and second solvation shells of the ions and in the bulk ...

  6. Evaluation of some heavy metals concentration in body fluids of metal workers in Kano metropolis, Nigeria

    Directory of Open Access Journals (Sweden)

    Ali Sani

    Full Text Available Metal workers in urban Kano constitute a major workforce with a considerable population. The present work was aimed at obtaining baseline data on the extent of metal ion concentration in body fluids (urine and blood of sampled population in the area. The investigation involves interaction with sampled population as well as blood and urine sample collection for heavy metals analysis. The health problems associated with the practice identified by respondents include: metal fume fever; eye and skin irritation; dizziness and respiratory problems; lack of or inadequate protective devices during activity were also reported. Laboratory investigation of urine samples by Atomic absorption spectrophotometry indicated higher concentrations for Manganese (Mn, Lead (Pb and Nickel (Ni; in blood samples, there were higher concentrations of Manganese (Mn, Lead (Pb, Chromium (Cr and Nickel (Ni. Metal workers of urban Kano are at risk because of the concentration of Mn and Pb in particular. There is the need to monitor occupational activities that are responsible for pollution and with serious health risk. Keywords: Heavy metals, Welders, Biomonitoring, Blood, Urine

  7. Ions in water: The microscopic structure of concentrated hydroxide solutions

    Science.gov (United States)

    Imberti, S.; Botti, A.; Bruni, F.; Cappa, G.; Ricci, M. A.; Soper, A. K.

    2005-05-01

    Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45° from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.

  8. Use of a Silver Ion Selective Electrode for the Determination of Stability Constants of Metal Complexes

    OpenAIRE

    Akio, Yuchi; Hiroko, Wada; Genkichi, Nakagawa

    1985-01-01

    The potential response of a sulfide-based silver ion selective electrode was examined in various metal buffer solutions. In every system tested, the potential response of the electrode was rapid and the electrode potential correctly reflected the free silver ion concentration in the solution. The stability constants of silver complexes with seven ligands were determined. This electrode was used also to measure the free cyanide ion concentration in the solutions containing silver, cyanide and ...

  9. An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions.

    Science.gov (United States)

    Xu, Wang; Ren, Changliang; Teoh, Chai Lean; Peng, Juanjuan; Gadre, Shubhankar Haribhau; Rhee, Hyun-Woo; Lee, Chi-Lik Ken; Chang, Young-Tae

    2014-09-02

    Herein, a small-molecule fluorescent sensor array for rapid identification of seven heavy metal ions was designed and synthesized, with its sensing mechanism mimicking that of a tongue. The photoinduced electron transfer and intramolecular charge transfer mechanism result in combinatorial interactions between sensor array and heavy metal ions, which lead to diversified fluorescence wavelength shifts and emission intensity changes. Upon principle component analysis (PCA), this result renders clear identification of each heavy metal ion on a 3D spatial dispersion graph. Further exploration provides a concentration-dependent pattern, allowing both qualitative and quantitative measurements of heavy metal ions. On the basis of this information, a "safe-zone" concept was proposed, which provides rapid exclusion of versatile hazardous species from clean water samples based on toxicity characteristic leaching procedure standards. This type of small-molecule fluorescent sensor array could open a new avenue for multiple heavy metal ion detection and simplified water quality analysis.

  10. Polymer filtration systems for dilute metal ion recovery

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1998-12-01

    Scientists at Los Alamos National Laboratory have developed a metal recovery system that meets the global treatment demands for all kinds of industrial and metal-processing streams. The Polymer Filtration (PF) System--a process that is easily operated and robust--offers metal-finishing businesses a convenient and inexpensive way to recover and recycle metal ions in-house, thus reducing materials costs, waste removal costs, and industrial liability. As a valuable economic and environmental asset, the PF System has been named a winner of a 1995 R and D 100 Award. These awards are presented annually by R and D Magazine to the one hundred most significant technical innovations of the year. The PF System is based on the use of water-soluble metal-binding polymers and on advanced ultrafiltration membranes. Customers for this technology will receive new soluble polymers, especially formulated for their waste stream, and the complete PF processing unit: a reaction reservoir, pumps, plumbing, controls, and the advanced ultrafiltration membranes, all in a skid mounted frame. Metal-bearing waste water is treated in the reaction reservoir, where the polymer binds with the metal ions under balanced acid/base conditions. The reservoir fluid is then pumped through the ultrafiltration system--a cartridge packed with ultrafiltration membranes shaped in hollow fibers. As the fluid travels inside the fiber, water and other small molecules--simple salts such as calcium and sodium, for example--pass through the porous membrane walls of the fibers and are discharged through the outlet as permeate. The polymer-bound metal, which is too large to pass through the pores, is both purified and concentrated inside the hollow fibers and is returned to the fluid reservoir for further waste water treatment.

  11. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    at pH 6 they are found to be Cd(II) and Cr(VI) selective. Metal ion uptake properties of resins follow Freundlich's equation. The resins are recyclable and are therefore employed for the removal of heavy metal pollutants from industrial waste water. Keywords. Uptake properties; heavy metal ion; selectivity; recyclability. 1.

  12. Cementation of silver ions on metallic copper

    International Nuclear Information System (INIS)

    Jaskula, M.

    2009-01-01

    The silver cementation on metallic copper was investigated in the presence or absence of oxygen. The influence of sulphuric acid and copper sulphate concentration on the silver cement morphology was studied in details, and results were linked with the previously determined kinetics data of the process. The morpgology of silver depopsit was found to be independent of the prosence of oxygen in the system in as well as the sulphuric acide concentration. Contrary, the concentration of copper sulphate strongly influenced the morphology of silver deposite. Two-stage mechanism of cementation was proposed. (authors).

  13. Adsorption of Cd(II) Metal Ion on Adsorbent beads from Biomass Saccharomycess cereviceae - Chitosan

    Science.gov (United States)

    Hasri; Mudasir

    2018-01-01

    The adsorbent beads that was preparation from Saccharomycess cereviceae culture strain FN CC 3012 and shrimp shells waste and its application for adsorption of Cd (II) metal ion has been studied. The study start with combination of Saccharomycess cereviceae biomass to chitosan (Sc-Chi), contact time, pH of solution and initial concentration of cations. Total Cd(II) metal ion adsorbed was calculated from the difference of metal ion concentration before and after adsorption by AAS. The results showed that optimum condition for adsorption of Cd(II) ions by Sc-Chi beads was achieved with solution pH of 4, contact time of 60 minutes and initial concentration adsorption 100mg/L. The hydroxyl (-OH) and amino (-NH2) functional groups were believed to be responsible for the adsorption of Cd(II) ions.

  14. Investigating the Concentration of Heavy Metals in Bottled Water and Comparing with its Standard: Case Study

    Directory of Open Access Journals (Sweden)

    Mohammad Hossien Salmani

    2017-09-01

    Results: Brand No. 1, the concentration of zinc ion was larger in Brand 2 while in Brand No. 2 had larger copper, nickel, and aluminum ions. The results indicated that the concentration of the measured metal ions were below the allowable limit of drinking water standard across all of the studied samples. Conclusion: Based on the obtained results from the investigated parameters, it can be concluded that the bottled water of both brands poses no health issue and is drinkable. Considering the changes in the concentration of ions and the increasing trend of consumption of bottled waters, their monitoring and qualitative control of pollutants are very crucial in terms of public health.

  15. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    Science.gov (United States)

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-08-01

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  16. The Interchangeability of Plasma and Whole Blood Metal Ion Measurement in the Monitoring of Metal on Metal Hips

    Directory of Open Access Journals (Sweden)

    Ibrahim A. Malek

    2015-01-01

    Full Text Available One hundred and twenty six paired samples of plasma and whole blood were measured with inductively coupled plasma mass spectrometry technique for metal ions analysis to determine a relationship between them. There was a significant difference between the mean plasma and whole blood concentrations of both cobalt (Co and chromium (Cr (p<0.0001 for both Co and Cr. The mean ratio between plasma and whole blood Cr and Co was 1.56 (range: 0.39–3.85 and 1.54 (range: 0.64–18.26, respectively, but Bland and Altman analysis illustrated that this relationship was not universal throughout the range of concentrations. There was higher variability at high concentrations for both ions. We conclude that both these concentrations should not be used interchangeably and conversion factors are unreliable due to concentration dependent variability.

  17. Biosorption of metal ions from aqueous solution and tannery effluent by Bacillus sp. FM1.

    Science.gov (United States)

    Masood, Farhana; Malik, Abdul

    2011-01-01

    The metal binding capacity of Bacillus sp. FM1 isolated from soil irrigated with tannery effluent was assessed using synthetic metal solutions and tannery wastewater. Biosorption of Cr(VI) and Cu(II) ions from aqueous solutions using Bacillus was investigated as a function of pH, initial metal ion concentration and contact time. The optimum adsorption pH value observed for Cr(VI) and Cu(II) ions was 2 and 5, respectively. Metal ion uptake increased with increasing initial metal concentration but no significant difference was observed by increasing the time after 60 min. Maximum uptake capacity of chromium was estimated as 64.102 mg g(-1), and of copper to 78.125 mg g(-1). Equilibrium data were well described by the Langmuir and Freundlich adsorption relations. The presence of functional groups on the cell wall surface of the biomass that may interact with the metal ion was confirmed by Fourier Transform Infrared (FTIR) spectroscopy. The application of Bacillus to remove Cr(VI) and Cu(II) in tannery effluent revealed that the biomass was capable of removing both the metal ions. However, the biosorption performance was slightly lower compared to that of synthetic metal solutions. Several factors may be responsible for this difference. However, the most important factor appears to be the presence of other contaminants such as anions, organics, and other trace metals in the effluent.

  18. Extraction of metal ions by neutral β-diphosphoramides

    International Nuclear Information System (INIS)

    Madic, C.

    1990-01-01

    The extracting ability of β-diphosphoramides of the type R-N[P(O)(NMe 2 ) 2 ] 2 with R=-CH 3 (NIPA), -C 12 H 25 (ODIPA), or -C 16 H 33 (OHDIPA) for metal ions such as lanthanides, uranyl, and the transuranium elements Am(III) and Pu(IV) has been studied. Extraction yields depend on the nature of the ligand, the organic diluent (nitromethane, kerosene, tert-butylbenzene), the concentration of nitric acid in the aqueous phase, and the ligand-to-metal ratio, Q. The results show that the bidentate phosphoramides are very efficient extractants for all of the metals studied, even at low ratios Q. The presence of nitric acid generally enhances the extraction yields. On the other hand, selectivity is rather poor with these ligands. A particular effort has been made to determine the nature of extracted species by NMR spectroscopy

  19. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  20. Evaluation of some heavy metals concentration in body fluids of metal workers in Kano metropolis, Nigeria.

    Science.gov (United States)

    Sani, Ali; Abdullahi, Ibrahim Lawal

    2017-01-01

    Metal workers in urban Kano constitute a major workforce with a considerable population. The present work was aimed at obtaining baseline data on the extent of metal ion concentration in body fluids (urine and blood) of sampled population in the area. The investigation involves interaction with sampled population as well as blood and urine sample collection for heavy metals analysis. The health problems associated with the practice identified by respondents include: metal fume fever; eye and skin irritation; dizziness and respiratory problems; lack of or inadequate protective devices during activity were also reported. Laboratory investigation of urine samples by Atomic absorption spectrophotometry indicated higher concentrations for Manganese (Mn), Lead (Pb) and Nickel (Ni); in blood samples, there were higher concentrations of Manganese (Mn), Lead (Pb), Chromium (Cr) and Nickel (Ni). Metal workers of urban Kano are at risk because of the concentration of Mn and Pb in particular. There is the need to monitor occupational activities that are responsible for pollution and with serious health risk.

  1. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya

    2015-01-01

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu 2+ , Fe 2+ , Ni 2+ and Zn 2+ in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu 2+ , Fe 2+ and Ni 2+ caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe 2+ , Cu 2+ , Ni 2+ and Zn 2+ . • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions

  2. Superhydrogels of nanotubes capable of capturing heavy-metal ions.

    Science.gov (United States)

    Song, Shasha; Wang, Haiqiao; Song, Aixin; Hao, Jingcheng

    2014-01-01

    Self-assembly regulated by hydrogen bonds was successfully achieved in the system of lithocholic acid (LCA) mixed with three organic amines, ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA), in aqueous solutions. The mixtures of DEA/LCA exhibit supergelation capability and the hydrogels consist of plenty of network nanotubes with uniform diameters of about 60 nm determined by cryogenic TEM. Interestingly, the sample with the same concentration in a system of EA and LCA is a birefringent solution, in which spherical vesicles and can be transformed into nanotubes as the amount of LCA increases. The formation of hydrogels could be driven by the delicate balance of diverse noncovalent interactions, including electrostatic interactions, hydrophobic interactions, steric effects, van der Waals forces, and mainly hydrogen bonds. The mechanism of self-assembly from spherical bilayer vesicles into nanotubes was proposed. The dried hydrogels with nanotubes were explored to exhibit the excellent capability for capturing heavy-metal ions, for example, Cu(2+), Co(2+), Ni(2+), Pb(2+), and Hg(2+). The superhydrogels of nanotubes from the self-assembly of low-molecular-weight gelators mainly regulated by hydrogen bonds used for the removal of heavy-metal ions is simple, green, and high efficiency, and provide a strategic approach to removing heavy-metal ions from industrial sewage. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sorption of metal ions on synthetic organo-inorganic ion exchanger polyacrylonitrile-Ti(IV) tungstophosphate

    International Nuclear Information System (INIS)

    Haidary, A.; Ahmadi, S. J.; Asadi, M. R.; Asgharizadeh, F.; Ashtari, P.

    2010-01-01

    In this study two Polyacrylonitrile-Ti(IV) tungstophosphate organo-inorganic ion exchangers with different molar ratios have been synthesized. These ion exchangers have been characterized by fourier transform-IR, X- ray diffraction, thermal gravimetric, scanning electron microscopy and CHNSO techniques and their cation exchange capacity bas been measured by continuous method. Distribution coefficients (K d ) for metal ions and radionuclides were determined by batch method and with these ion exchangers, separation of metal ions was achieved on a glass column.

  4. Metal ion effects on enolase activity

    International Nuclear Information System (INIS)

    Lee, M.E.; Nowak, T.

    1986-01-01

    Most metal binding studies with yeast enolase suggest that two metals per monomer are required for catalytic activity. The functions of metal I and metal II have not been unequivocally defined. In a series of kinetic experiments where the concentration of MgII is kept constant at subsaturating levels (1mM), the addition of MnII or of ZnII gives a hyperbolic decrease in activity. The final velocity of these mixed metal systems is the same velocity obtained with either only MnII or ZnII respectively. The concentration of MnII (40 μM) or of Zn (2μM) which gives half maximal effect in the presence of (1mM) MgII is approximately the same as the Km' value for MnII (9μM) or ZnII (3μM) respectively. Direct binding of MnII to enolase in the absence and presence of MgII shows that MnII and MgII compete for the same metal site on enolase. In the presence of 2-phosphoglycerate (2-PGA) and MgII, only a single site is occupied by MnII. Results suggest MnII at site I and MgII at site II. PRR and high resolution 1 H and 31 P NMR studies of enzyme-ligand complexes containing MnII and MgII and MnII are consistent with this model. 31 P measurements allow a measure of the equilibrium constant (0.36) for enolase. Saturation transfer measurements yield net rate constants (k/sub f/ = 0.49s -1 ; k/sub r/ = 1.3s -1 ) for the overall reaction. These values are smaller than k/sub cat/ (38s -1 ) measured under analogous conditions. The cation at site I appears to determine catalytic activity

  5. Plasma immersion ion implantation for reducing metal ion release

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  6. Effect of surface modification of microfiltration membrane on capture of toxic heavy metal ions.

    Science.gov (United States)

    Madaeni, Sayed Siavash; Heidary, Farhad

    2012-01-01

    A novel complexing membrane containing 8-hydroxyquinoline groups was used for the removal of heavy metal ions (Cd2+ and Ni2+) from aqueous solution. The functionalized membranes were characterized by FTIR-ATR, SEM and EDAX for the presence of functional groups, the physical structure of the membranes and the analysis of the particles deposited on the membrane, respectively. The influence of 8-hydroxyquinoline concentration, feed concentration, pH and temperature of the solution on capture capability was studied. The modified membrane showed a higher affinity to Cd2+ cations than to Ni2+. The metal ion rejection was increased with an increase in concentration of 8-hydroxyquinoline from 0.5 to 2.0 wt%. However at a ligand concentration higher than 2.0 wt%, no significant change was observed in the metal rejection. The experimental results revealed that the metal rejection was decreased with an increase in metal ion concentration in the feed. Moreover the rejection depended on feed pH and is higher for elevated pH. By changing the temperature in the range of 23-28 degrees C, no considerable effect on metal rejection was observed. However, a higher temperature resulted in a decline in metal rejection. For filtration of a mixture of the two metal ions, the retention was similar to that of the single cations, i.e. Cd > Ni but with smaller absolute rejections.

  7. Virulence modulation of Candida albicans biofilms by metal ions commonly released from orthodontic devices.

    Science.gov (United States)

    Ronsani, Maiara Medeiros; Mores Rymovicz, Alinne Ulbrich; Meira, Thiago Martins; Trindade Grégio, Ana Maria; Guariza Filho, Odilon; Tanaka, Orlando Motohiro; Ribeiro Rosa, Edvaldo Antonio

    2011-12-01

    The installation of metal devices leads to an increase in the salivary concentration of metal ions and in the growth of salivary Candida spp. However, the relationship between released metal ions and Candida virulence has not been previously examined. The objective of this study was to evaluate whether metal ions affect fungal virulence. We prepared culture media containing Ni(2+), Fe(3+), Cr(3+), Co(2+) or a mixture of these metal ions at concentrations similar to those released in saliva of orthodontic patients. Biofilms of Candida albicans SC5314 were grown for 72 h and their biomasses were determined. The supernatants were analyzed for secretory aspartyl protease (SAP) and hemolysin activities. To verify changes in virulence following treatment with metals, proteolytic and hemolytic activities were converted into specific activities. The results revealed that all ions, except Co(2+), caused increases in biofilm biomass. In addition, Ni(2+) caused an increase in SAP activity and Fe(3+) reduced hemolytic activity. However, the SAP and hemolysin activities in the presence of the mixture of ions did not differ from those of control. These results indicate that metal ions released during the degradation of orthodontic appliances can modulate virulence factors in C. albicans biofilms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Backscattering of light ions from metal surfaces

    International Nuclear Information System (INIS)

    Verbeek, H.

    1975-07-01

    When a metal target is bombarded with light ions some are implanted and some are reflected from the surface or backscattered from deeper layers. This results in an energy distribution of the backscattered particles which reaches from zero to almost the primary energy. The number of the backscattered particles and their energy, angular, and charge distributions depends largely on the energy and the ion target combination. For high energies (i.e., greater than50 keV for protons) particles are backscattered in a single collision governed by the Rutherford cross section. Protons and He-ions with energies of 100 keV to several MeV are widely used for thin film analysis. For lower energies multiple collisions and the screening of the Coulomb potential have to be taken into account, which makes the theoretical treatment more difficult. This energy region is, however, of special interest in the field of nuclear fusion research. Some recent results for energies below 20 keV are discussed in some detail. (auth)

  9. Study of concentrated metal-ammonia solutions: magnetic properties and non metal-metal transition

    International Nuclear Information System (INIS)

    Lelieur, Jean-Pierre

    1972-01-01

    The magnetic susceptibility of alkali metal-liquid ammonia solutions has been measured in the concentration range where the solutions show a progressive passage toward the metallic state. The Knight shift of the metal nuclei and the nitrogen nucleus have been determined as a function of concentration and temperature, in Na-NH 3 and Cs-NH 3 solutions. A phenomenological analysis of the transport properties of metal-ammonia solutions is also presented. This analysis permits the presentation of a model for the mechanism of the transition to the metallic state. (author) [fr

  10. In-situ measurement of chloride ion concentration in concrete

    NARCIS (Netherlands)

    Abbas, Yawar

    2015-01-01

    Chloride ions are one of the major contributors to degradation of reinforcement-concrete. The presence of these ions initiate pitting corrosion in the reinforcement steel and ultimately results in the failure of the construction. Thus, the chloride ion concentration inside concrete is a crucial

  11. PHENOL OXIDATION USING NATURAL ZEOLITE SUPPORTED METAL ION CATALYST

    Directory of Open Access Journals (Sweden)

    Sri Wardhani

    2010-06-01

    Full Text Available Phenol which contained in waste water has to be reduced and it could be done by oxygen oxidation.  In order to increase the rate of reaction it was needed a catalyst. In this research the capability of various catalysts, namely zeolite-Zn(II, zeolite-Cu(II and zeolite-Co(IIin oxidation of phenol has been investigated. The aim of this research was to study the type of metal ion catalyst towards the percentage of oxidated phenol. The oxidation process were carried out in an aqueous phenol of 100 ppm with oxygen flow rate of 200 mL/min. in the presence of catalysts with 0.2M of initial impregnation concentration. The capabilities of catalysts were performed by calculating the activation energy and it was done at two different temperatures, i.e. 70 and 90 oC. The percentage of oxidated phenol was determinated by measuring its concentration using UV-VIS spectrophotometer. In addition, the impregnated metal was calculated by measuring the ion concentration remains in the filtrate solution and it was determined using Atomic Absorption Spectrophotometer. The results showed that metal ion types affected the catalytic activity. The order of phenol oxidationactivity decreased as Co(II > Cu(II > Zn(II. The surface characteristics of catalysts were supported by pore volume and pore diameter i.e 0.009 cm3/g and 16.59 Å for Zn(II whereas specific surface area was 10.32 m2/g for Zn(II, 0.004 cm3/g and 24.37 Å for Cu(II whereas specific surface area was 3.57 m2/g for Cu(II, 0.001 cm3/g and 19.63 Å for Co(II whereas specific surface area was 10.26m2/g for Co(II.   Keywords: phenol,natural zeolite, catalyst, oxidation

  12. The emission spectroscopy for evaluation of concentration of the metal vapor concentration in tokamak plasma

    International Nuclear Information System (INIS)

    Sarakovskis, A.; Gromuls, I.; Tale, I.

    2004-01-01

    Full text: Evaluation of the absolute concentration of the impurity metal vapors in plasma using emission spectroscopy requires development of the principles and procedure of in situ calibration of equipment. Several approaches can be used for calibration of the equipment. In the case the emission rate of single metal atom under ionizing conditions is known, the calibration of the spectroscopic equipment reduces to the calibration in radiometric units (irradiance). For unknown emission rate the routine calibration procedure involves use of the set of etalons of material under investigation with known concentration of impurity metal. For evaluation of impurity concentration in plasma it is necessary to develop a corresponding plasma source having certain plasma parameters - temperature and concentration of electrons and metal vapors in concentration, which can be measured independent procedure. Present report deals with problems of estimation of Ga impurity concentration in ISSTOK ( Portugal) tokamak plasma using decay data of atom emission lines. Emission spectra of Ga atoms show that collisions with hydrogen electrons and ions results in ionization of Ga followed by multi step radiative recombination. The main emission lines corresponds to the capture of electron to the 4s 2 5p (639 nm), transition 4s 2 5p - 4s 2 5s (1,211 μm ); and transition to the ground state 4s 2 5s - 4s 2 4p (403 nm). Some of the excited state lifetimes obtained from decay kinetics are reported. Analysis of emission line intensity ratios together with lifetime data will allow elaborate the procedure for evaluation of Ga impurity concentration in the tokamak plasma

  13. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  14. Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites.

    Science.gov (United States)

    Khaydarov, Rashid A; Khaydarov, Renat R; Gapurova, Olga

    2010-03-01

    The paper deals with a novel method of obtaining nanocarbon-conjugated polymer nanocomposites (NCPC) using nanocarbon colloids (NCC) and polyethylenimine (PEI) for water purification from metal ions. Size of NCC, process of NCPC synthesis, its chemical characteristics, ratio of NCC and PEI in NCPC, speed of coagulation of NCPC, mechanism of interaction of metal ions with NCPC, ability of removing metal ions from water by NCPC against pH have been studied. NCPC has a bonding capacity of 4.0-5.7mmol/g at pH 6 for most of the divalent metal ions. Percent of sorption of Zn(2+), Cd(2+), Cu(2+), Hg(2+), Ni(2+), Cr(6+) ions is higher than 99%. Lifetime of NCPC before coagulation in the treated water is 1s-1000min and depends on the ratio of polymeric molecules and carbon nanoparticle concentrations. Results of laboratory tests of the method are described. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Studies on the dryolysis reactions of metal ions

    International Nuclear Information System (INIS)

    Baes, C.F. Jr.

    1977-01-01

    Research is reported on metallic ions produced in solutions at low concentrations as mononuclear hydrolysis products. The method for studying the mononuclear species is to measure the solubility of the oxide or hydroxide solid phase that is stable under the conditions of interest. Column solubility measurements of Al(OH) 3 (Gibbsite) in NaCl solution as a function of pH, temperature, and ionic strength are being conducted in order to better establish the stability of the intermediate species Al(OH) 2 + and Al(OH) 3 (aq)

  16. A biosystem for removal of metal ions from water

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II.

    1990-01-01

    The presence of heavy metal ions in ground and surface waters constitutes a potential health risk and is an environmental concern. Moreover, processes for the recovery of valuable metal ions are of interest. Bioaccumulation or biosorption is not only a factor in assessing the environmental risk posed by metal ions; it can also be used as a means of decontamination. A biological system for the removal and recovery of metal ions from contaminated water is reported here. Exopolysaccharide-producing microorganisms, including a methanotrophic culture, are demonstrated to have superior metal binding ability, compared with other microbial cultures. This paper describes a biosorption process in which dried biomass obtained from exopolysaccharide-producing microorganisms is encapsulated in porous plastic beads and is used for metal ion binding and recovery. 22 refs., 13 figs.

  17. Porous Poly(Ionic Liquid) Membranes as Efficient and Recyclable Absorbents for Heavy Metal Ions.

    Science.gov (United States)

    Ren, Yongyuan; Zhang, Jiandong; Guo, Jiangna; Chen, Fei; Yan, Feng

    2017-07-01

    Heavy metal ion pollution has become a serious environmental problem. Herein, this study reports the synthesis of poly(ionic liquid) (PIL) membranes via in situ photo-crosslinking of vinyl imidazole with both hydrophilic and hydrophobic ionic liquid monomers. The resultant amphiphilic polymer membranes are porous and exhibit high absorption capacity of metal ions (including Hg 2+ , Pb 2+ , Cu 2+ , Cd 2+ , and Zn 2+ ) in both high (1000 mg L -1 ) and low (10 mg L -1 ) concentration metal ion solutions. These metal ionic absorption membranes are easily regenerated in acid solution and can be reused without significant decreases of absorption capacity after many cycles. These PIL membranes may have potential applications as eco-friendly and safe heavy metal ion removal materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evaluation of a novel method for measurement of intracellular calcium ion concentration in fission yeast.

    Science.gov (United States)

    Ogata, Fumihiko; Satoh, Ryosuke; Kita, Ayako; Sugiura, Reiko; Kawasaki, Naohito

    2017-01-01

    The distribution of metal and metalloid species in each of the cell compartments is termed as "metallome". It is important to elucidate the molecular mechanism underlying the beneficial or toxic effects exerted by a given metal or metalloid on human health. Therefore, we developed a method to measure intracellular metal ion concentration (particularly, intracellular calcium ion) in fission yeast. We evaluated the effects of nitric acid (HNO 3 ), zymolyase, and westase treatment on cytolysis in fission yeast. Moreover, we evaluated the changes in the intracellular calcium ion concentration in fission yeast in response to treatment with/without micafungin. The fission yeast undergoes lysis when treated with 60% HNO 3 , which is simpler and cheaper compared to the other treatments. Additionally, the intracellular calcium ion concentration in 60% HNO 3 -treated fission yeast was determined by inductively coupled plasma atomic emission spectrometry. This study yields significant information pertaining to measurement of the intracellular calcium ion concentration in fission yeast, which is useful for elucidating the physiological or pathological functions of calcium ion in the biological systems. This study is the first step to obtain perspective view on the effect of the metallome in biological systems.

  19. Heavy metal ions adsorption from mine waters by sawdust

    Directory of Open Access Journals (Sweden)

    G. Bogdanović

    2009-10-01

    Full Text Available In this work the results on the batch and column adsorption of copper and some associated ions by employing linden and poplar sawdust as a low-cost adsorbent are presented. The mine water from a local abandoned copper mine, as well as synthetic solutions of those ions which are the main constituents of the mine water were both used as a model-system in this study. The adsorption ability of the chosen sawdust to adsorb heavy metal ions is considered as a function of the initial pH of the solution and kind of metal ions. At lower pH of solutions the adsorption percentage (AD % decreases leading to a zero AD % at pH < 1.1. Maximum AD % is achieved at 3.5 < pH < 5. It was found that poplar and linden sawdust have both almost equal adsorption capacities against copper ions. The highest AD % ( ≈80% was achieved for Cu2+, while for Fe2+ it was slightly above 10%. The other considered ions (Zn2+ and Mn2+ were within this interval. The results obtained in the batch mode were verified through the column test by using the real mine water originating from an acid mine drainage (AMD of the copper mine „Cerovo“, RTB Bor. The breakthrough curves are presented as a function of the aqueous phase volume passed through the column allowing having an insight into the column adsorption features. Breakthrough points were determined for copper, manganese and zinc ions. A very high adsorption degree – higher than 99% was achieved in these experiments for all mentioned ions. After completing the adsorption, instead of desorption, the loaded sawdust was drained, dried and burned; the copper bearing ash was then leached with a controlled volume of sulphuric acid solution to concentrate copper therein. The obtained leach solution had the concentration of copper higher than 15 g dm-3 and the amount of H2SO4 high enough to serve as a supporting electrolyte suitable to be treated by the electrowinning for recovery of copper. The technology process based on the column

  20. Influence of temperature and ion concentration on sedimentation ...

    African Journals Online (AJOL)

    TSP sedimentation order also ranged between 0.58 and 1.31 at constant phosphate ions concentration and between 1.55 and 1.81 at constant strontium ions concentration. ... Data may be employed as additional design information for modeling physiochemical phosphate removal in water treatment technology. Keywords: ...

  1. Study of the Interactions Between Transition Metal Ions and Peptides by CALIFORNIUM-252 Plasma Desorption Mass Spectrometry

    Science.gov (United States)

    Hu, Zhaohong

    This dissertation focuses on the study of interactions between transition metal ions (Cu(II), Zn(II), Pd(II), Pt(II)) and peptides (bradykinins and angiotensins). Chapter I provides an overview on the fundamental issues related to and techniques used for studying transition metal ion -peptide/protein complexes. It also reviews different mass spectroscopic techniques used for metal ion-peptide studies. Chapter II delineates the principle of ^{252 }Cf-PDMS instrumentation and the sample preparation methods utilized for this dissertation research. In order to study metal ion-peptide complexes with PDMS, it is essential to define the relationship between complex structures identified from PD mass spectra and complexes formed in solution phase. Chapter III includes the studies of the effects of solution conditions on the detection of metal ion-peptide complexes in PDMS. Solution pH is the most important factor for determining the formation of a complex. Reaction time, reactant concentration, and reaction temperature all display distinct influences on PDMS results. It demonstrates that the PDMS results are closely correlated with the complexes pre-formed in aqueous solution. Chapter IV provides ample spectroscopic data on peptides and their metal ion complexes. The metal ion -containing molecular ions observed provide information on numbers of metal ion-binding sites in a peptide and metal ion-affinity of the peptide. By analyzing fragmentation patterns, amino acid residues and functional groups involved in metal ion binding in a peptide can be identified.

  2. ANALYSIS OF VARIOUS METAL IONS IN SOME MEDICINAL PLANTS USING ATOMIC ABSORPTION SPECTROPHOTOMETER

    OpenAIRE

    Y.L. Ramachandra*, C. Ashajyothi and Padmalatha S. Rai

    2012-01-01

    Metal ions such as iron , lead, copper, nickel, cadmium , chromium and zinc were investigated in medicinally important plants Alstonia scholaris, Tabernaemontana coronariae, Asparagus racemosus, Mimosa pudica, Leucas aspera and Adhatoda vasica applying atomic absorption spectrophotometer techniques. The purpose of this study was to standardize various metal ion Contamination in indigenous medicinal plants. Maximum concentration of lead was present in Leucas aspera and Adhatoda vasica follo...

  3. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  4. Sensitive metal ions (II) determination with resonance Raman method

    Science.gov (United States)

    Yu, Zhi; Bracero, Lucas A.; Chen, Lei; Song, Wei; Wang, Xu; Zhao, Bing

    2013-03-01

    In this paper, a new proposal for the quantitative evaluation of divalent metal ions (M2+) is developed by the use of the competitive resonance Raman (RR)-based method. Upon excitation with light of the appropriate wavelength (532 nm), a strong electric field is generated that couples with the resonance of the complex (zincon-M2+), increasing the character signals of these complexes, resulting in sensitive detection. Herein, the RR probe, zincon-M2+ complex that the RR intensity gets lower with the decreasing of the M2+ concentration, which leads to the transformation of the Raman information. As a result, by using the proposed RR-based method, we could find the liner calibration curves of Cu2+ and Ni2+, which show the potential in quantitative evaluation of an unknown sample. In addition, the abundant fingerprint information shows that RR leads to the successful analysis of a blended solution, which contains two ions: Cu2+ and Ni2+.

  5. Coordination of cassava starch to metal ions and thermolysis of ...

    African Journals Online (AJOL)

    Cassava starch formed Werner-type complexes with ions of metals from the transition groups. This was proven by conductivity and electron paramagnetic resonance measurements. The coordination of starch to central metal ions influenced the thermal decomposition of starch. As a rule complexes started to decompose at ...

  6. COORDINATION OF CASSAVA STARCH TO METAL IONS AND ...

    African Journals Online (AJOL)

    a

    ABSTRACT. Cassava starch formed Werner-type complexes with ions of metals from the transition groups. This was proven by conductivity and electron paramagnetic resonance measurements. The coordination of starch to central metal ions influenced the thermal decomposition of starch. As a rule complexes started to ...

  7. Metal ion binding with dehydroannulenes – Plausible two ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. Theoretical investigations have been carried out at B3LYP/6-311++G** level of theory to study the binding interaction of various metal ions, Li+, Na+ and K+ with dehydroannulene systems. The present study reveals that alkali metal ions bind strongly to dehydroannulenes and the passage through the central.

  8. Metal ion sequestration: An exciting dimension for molecularly ...

    African Journals Online (AJOL)

    Metal ion sequestration: An exciting dimension for molecularly imprinted polymer technology. DMS Mosha, LL Mkayula. Abstract. The use of a tight binding macrocyclic ligand to complex a metal ion so that this serves as receptee on the Molecularly Imprinted Polymer (MIP) receptor as described here affords a sequestration ...

  9. Interaction of Hydroxyproline with Bivalent Metal Ions in Chemical ...

    African Journals Online (AJOL)

    NICO

    The stability constants of the ML and ML2 complex species of some metal ions, namely beryllium(II) and cobalt(II), with hydroxyproline were ... metal ions have several significant applications in biological systems.3–20 Beryllium is one ... 1 filter paper for chromatography was used for the purpose of electrophoresis. An Elico ...

  10. In vitro cytotoxicity of metallic ions released from dental alloys

    NARCIS (Netherlands)

    Milheiro, A.; Nozaki, K.; Kleverlaan, C.J.; Muris, J.; Miura, H.; Feilzer, A.J.

    2016-01-01

    The cytotoxicity of a dental alloy depends on, but is not limited to, the extent of its corrosion behavior. Individual ions may have effects on cell viability that are different from metals interacting within the alloy structure. We aimed to investigate the cytotoxicity of individual metal ions in

  11. Fluorescence signalling of the transition metal ions: Design strategy ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Transition metal ions are notorious for their fluorescence quenching abilities. In this paper, we discuss the design strategies for the development of efficient off-on fluorescence signalling systems for the transition metal ions. It is shown that even simple fluorophore-spacer-receptor systems can display excellent.

  12. Peptides having antimicrobial activity and their complexes with transition metal ions.

    Science.gov (United States)

    Jeżowska-Bojczuk, Małgorzata; Stokowa-Sołtys, Kamila

    2018-01-01

    Peptide antibiotics are produced by bacterial, mammalian, insect or plant organisms in defense against invasive microbial pathogens. Therefore, they are gaining importance as anti-infective agents. There are a number of antibiotics that require metal ions to function properly. Metal ions play a key role in their action and are involved in specific interactions with proteins, nucleic acids and other biomolecules. On the other hand, it is well known that some antimicrobial agents possess functional groups that enable them interacting with metal ions present in physiological fluids. Some findings support a hypothesis that they may alter the serum metal ions concentration in humans. Complexes usually have a higher positive charge than uncomplexed compounds. This means that they might interact more tightly with polyanionic DNA and RNA molecules. It has been shown that several metal ion complexes with antibiotics promote degradation of DNA. Some of them, such as bleomycin, form stable complexes with redox metal ions and split the nucleic acids chain via the free radicals mechanism. However, this is not a rule. For example blasticidin does not cause DNA damage. This indicates that some peptide antibiotics can be considered as ligands that effectively lower the oxidative activity of transition metal ions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    Okumura, Minoru; Kitano, Yasushi

    1986-01-01

    The coprecipitation of alkali metal ions Li + , Na + , K + and Rb + with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na + which has approximately the same ionic radius as Ca 2+ . (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca 2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca 2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li + , Na + , K + and Rb + ) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li + , K + and Rb + ) into the aragonite. (author)

  14. BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions.

    Science.gov (United States)

    Niu, Li-Ya; Li, Hui; Feng, Liang; Guan, Ying-Shi; Chen, Yu-Zhe; Duan, Chun-Feng; Wu, Li-Zhu; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-05-02

    A BODIPY(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-based fluorometric sensor array has been developed for the highly sensitive detection of eight heavy-metal ions at micromolar concentration. The di-2-picolyamine (DPA) derivatives combine high affinities for a variety of heavy-metal ions with the capacity to perturb the fluorescence properties of BODIPY, making them perfectly suitable for the design of fluorometric sensor arrays for heavy-metal ions. 12 cross-reactive BODIPY fluorescent indicators provide facile identification of the heavy-metal ions using a standard chemometric approach (hierarchical clustering analysis); no misclassifications were found over 45 trials. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative interpolation of the heavy-metal concentration is obtained by comparing the total Euclidean distance of the measurement with a set of known concentrations in the library. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Which metal or ion? Identification of metals and ions in protein structures

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan

    2014-01-01

    Roč. 70, Supplement /August/ (2014), C1484 ISSN 0108-7673. [Congress and General Assembly of the International Union of Crystallography /23./ - IUCr 2014. 05.08.2014-12.08.2014, Montreal] R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : metal s * ions * structure validation Subject RIV: CE - Biochemistry

  16. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    International Nuclear Information System (INIS)

    Lu, Yi

    2003-01-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize

  17. Investigation of the complexation of metal-ions by strong ligands in fresh and marine water.

    Science.gov (United States)

    Pesavento, Maria; Biesuz, Raffaela; Profumo, Antonella; Soldi, Teresa

    2003-01-01

    The detection and investigation of metal ions bound in strong complexes in natural waters is a difficult task, due to low concentration of the metal ions themselves, and also of the strong ligands, which, moreover, are often not of a well-defined composition. Here, a method is proposed for the investigation of the speciation of metal ions in natural waters. It is based on the sorption of metal ions on strongly sorbing ion exchange resins, i.e. complexing resins. For this reason the method is called Resin Titration. It has been shown in previous investigations that the concentration of metal ion totally sorbed by a particular resin, and its reaction coefficient in the solution phase in the presence of the resin, can be determined from the sorption data using a simple relationship. Here, a data treatment (the Ruzic linearization method) is proposed for also determining the concentration of the ligands responsible for the complex in equilibrium with the resin. The method was applied to data obtained by Resin Titration of a freshwater and a seawater. Copper(II) and aluminium(III) were considered, using Chelex 100 as a titrant, due to its strong sorbing properties towards these metal ions. The results were: the total metal concentration in equilibrium with the resin, the side reaction coefficients, and the concentration of ligands. In all these cases the ligands forming very strong complexes were found to be at concentration lower than that of the metals. The Ruzic linearization method allows the determination of the concentration of the ligands forming very strong complexes in equilibrium with Chelex 100. The reaction coefficient was better determined by the calculation method previously proposed for RT. The ligands responsible for the strong complexes were found to be at low concentration, often lower than that of the metal ions considered. The metal in the original sample is partly bound to these ligands, since the complexes are very strong. Only a part of the metal

  18. Elevated concentrations of trace elements in soil do not necessarily reflect metals available to plants.

    Science.gov (United States)

    Antonious, George F; Silitonga, Maifan R; Tsegaye, Teferi D; Unrine, Jason M; Coolong, Timothy; Snyder, John C

    2013-01-01

    Bioaccumulation and entry of trace elements from soil into the food chain have made trace-elements major environmental pollutants. The main objective of this investigation was to study the impact of mixing native agricultural soil with municipal sewage sludge (SS) or SS mixed with yard waste (SS+YW) compost on total concentration of trace elements in soil, metals available to plants, and mobility of metals from soil into peppers and melon fruits. Regardless of soil treatment, the average concentrations of Ni, Cd, Pb, Cr, Cu, Zn, and Mo in melon fruits were 5.2, 0.7, 3.9, 0.9, 34.3, 96.1, and 3.5μg g(-1), respectively. Overall concentrations of Ni, Cd, Pb, and Zn in melon fruits were significantly greater (P fruits. No significant differences were found in Cr, Cu, and Mo concentrations between pepper and melon fruits at harvest time. Total metal concentrations and metal ions in soil available to melon and pepper plants were also determined. Total concentration of each metal in the soil was significantly greater than concentration of metal ions available to plants. Elevated Ni and Mo bioaccumulation factor (BAF > 1) of melon fruits of plants grown in SS+YW mixed soil is a characteristic that would be less favorable when plants grown on sites having high concentrations of these metals.

  19. Metal ion transport in eukaryotic microorganisms: insights from Saccharomyces cerevisiae.

    Science.gov (United States)

    Eide, D J

    2000-01-01

    Metal ions such as iron, copper, manganese, and zinc are essential nutrients for all eukaryotic microorganisms. Therefore, these organisms possess efficient uptake mechanisms to obtain these nutrients from their extracellular environment. Metal ions must also be transported into intracellular organelles where they function as catalytic and structural cofactors for compartmentalized enzymes. Thus, intracellular transport mechanisms are also present. When present in high levels, metal ions can also be toxic, so their uptake and intracellular transport is tightly regulated at both transcriptional and post-transcriptional levels to limit metal ion overaccumulation and facilitate storage and sequestration. Remarkable molecular insight into these processes has come from recent studies of the yeast Saccharomyces cerevisiae. This organism, which is the primary subject of this chapter, serves as a useful paradigm to understand metal ion metabolism in other eukaryotic microbes.

  20. DNA as sensors and imaging agents for metal ions.

    Science.gov (United States)

    Xiang, Yu; Lu, Yi

    2014-02-17

    Increasing interest in detecting metal ions in many chemical and biomedical fields has created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal-ion-dependent DNAzymes and metal-ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attachment of these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detection. These sensors are highly sensitive (with a detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of "dipstick tests", portable fluorometers, computer-readable disks, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal-ion sensing and imaging in many fields of applications.

  1. Metal ion binding with dehydroannulenes – Plausible two ...

    Indian Academy of Sciences (India)

    WINTEC

    has highest interaction energy of –50∙6 kcal/mol at. B3LYP/6-311++G** level and is 128∙0 kcal/mol more than 1′-K+ complex. Understandably, the binding energy of metal complexes decreases with increase in the size of the metal ion, in accordance with ear- lier results.16,21. Placement of the metal ions at the centroid of ...

  2. Blood concentrations of ions and metals in amateur and elite runners using neutron activation analyses; Concentracoes de ions e metais em sangue de atletas amadores e de elite usando analise por ativacao neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luciana Kovacs dos

    2012-07-01

    In this study Br, Ca, Cl, Fe, I, K, Mg, Na, S and Zn concentration were investigated in blood of Brazilian athletes (endurance) using Neutron Activation Analyses technique (NAA). The blood samples were collected from male amateur athletes (AR) and male and female elite athletes (ER), ranging from 18 to 36 year old. The blood samples were collected at the LABEX/UNICAMP and they were irradiated in the nuclear reactor IEA-R1 at IPEN (Sao Paulo, Brazil). The range (at rest) established for AR and ER were compared with the control group (CG), subjects of same gender and age but not involved with physical activities, and showed significant differences for Ca (51 - 439 mgL{sup -1} for CG, 162 - 410 mgL{sup -1} for AR and 64 - 152 mgL{sup -1} for ER) and Br (7.4 - 30.6 mgL{sup -1} for CG, 4.0 - 9.6 mgL{sup -1} for AR and 1.9 - 3.5 mgL{sup -1} for ER), suggesting that a strong dependency of these limits in function of adopted physical training exists. We also performed a systematic investigation for the AR before, during and after the exercise program. These data can be considered for the preparation of a balanced diet, for evaluating the performance of the athletes during the period of competition preparation as well as contributing for proposing new protocols of clinical evaluation not reported in the literature yet. (author)

  3. Alkali metal ion battery with bimetallic electrode

    Science.gov (United States)

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  4. Coordination ability determined transition metal ions substitution of Tb in Tb-Asp fluorescent nanocrystals and a facile ions-detection approach.

    Science.gov (United States)

    Duan, Jiazhi; Ma, Baojin; Liu, Feng; Zhang, Shan; Wang, Shicai; Kong, Ying; Du, Min; Han, Lin; Wang, Jianjun; Sang, Yuanhua; Liu, Hong

    2018-04-11

    Although the synthesis and fluorescent properties of lanthanide-amino acid complex nanostructures have been investigated extensively, limited studies have been reported on metal ions' substitution ability for the lanthanide ions in the complex and their effect on the fluorescent property. In this study, taking biocompatible Tb-aspartic acid (Tb-Asp) complex nanocrystals as a model, the substitution mechanism of metal ions, particularly transition metals, for Tb ions in Tb-Asp nanocrystals and the change in the fluorescent property of the Tb-Asp nanocrystals after substitution were systematically investigated. The experimental results illustrated that metal ions with higher electronegativity, higher valence, and smaller radius possess stronger ability for Tb ions' substitution in Tb-Asp nanocrystals. Based on the effect of substituting ions' concentration on the fluorescent property of Tb-Asp, a facile method for copper ions detection with high sensitivity was proposed by measuring the fluorescent intensity of Tb-Asp nanocrystals' suspensions containing different concentrations of copper ions. The good biocompatibility, great convenience of synthesis and sensitive detection ability make Tb-Asp nanocrystals a very low cost and effective material for metal ions detection, which also opens a new door for practical applications of metal-Asp coordinated nanocrystals.

  5. Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites

    Science.gov (United States)

    Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.

    2018-03-01

    Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.

  6. Validation of Transfer Functions Predicting Cd and Pb Free Metal Ion Activity in Soil Solution as a Function of Soil Characteristics and Reactive Metal Content

    NARCIS (Netherlands)

    Pampura, T.; Groenenberg, J.E.; Lofts, S.; Priputina, I.

    2007-01-01

    According to recent insight, the toxicity of metals in soils is better related to the free metal ion (FMI) activity in the soil solution than to the total metal concentration in soil. However, the determination of FMI activities in soil solution is a difficult and time-consuming task. An alternative

  7. Label-free histamine detection with nanofluidic diodes through metal ion displacement mechanism.

    Science.gov (United States)

    Ali, Mubarak; Ramirez, Patricio; Duznovic, Ivana; Nasir, Saima; Mafe, Salvador; Ensinger, Wolfgang

    2017-02-01

    We design and characterize a nanofluidic device for the label-free specific detection of histamine neurotransmitter based on a metal ion displacement mechanism. The sensor consists of an asymmetric polymer nanopore fabricated via ion track-etching technique. The nanopore sensor surface having metal-nitrilotriacetic (NTA-Ni 2+ ) chelates is obtained by covalent coupling of native carboxylic acid groups with N α ,N α -bis(carboxymethyl)-l-lysine (BCML), followed by exposure to Ni 2+ ion solution. The BCML immobilization and subsequent Ni 2+ ion complexation with NTA moieties change the surface charge concentration, which has a significant impact on the current-voltage (I-V) curve after chemical modification of the nanopore. The sensing mechanism is based on the displacement of the metal ion from the NTA-Ni 2+ chelates. When the modified pore is exposed to histamine solution, the Ni 2+ ion in NTA-Ni 2+ chelate recognizes histamine through a metal ion coordination displacement process and formation of stable Ni-histamine complexes, leading to the regeneration of metal-free NTA groups on the pore surface, as shown in the current-voltage characteristics. Nanomolar concentrations of the histamine in the working electrolyte can be detected. On the contrary, other neurotransmitters such as glycine, serotonin, gamma-aminobutyric acid, and dopamine do not provoke significant changes in the nanopore electronic signal due to their inability to displace the metal ion and form a stable complex with Ni 2+ ion. The nanofluidic sensor exhibits high sensitivity, specificity and reusability towards histamine detection and can then be used to monitor the concentration of biological important neurotransmitters. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Heavy metal ion removal by adsorption on to biological materials

    International Nuclear Information System (INIS)

    Jansson-Charrier, M.; Guibal, E.; Le Cloirec, P.; Surjous, R.

    1994-01-01

    The development of regulations constraints in the industrial waste-waters management leads to the study of new treatment processes, using raw or functionalized biological materials. These processes show competitive performances in metal ion sorption efficiency for the low metal content effluents. Uptake capacities of Uranium as high as 400 mg.g -1 chitosan, equivalent to the double of the uptake capacity of fungal origin biomass, can be reached. The application of these processes to real mine wastewaters gives efficiency coefficient upper to 90%, the residual concentrations are compatible to a direct injection into the environment. The grafting of functional groups onto the chitosan scales up the sorption performances to uptake capacity upper than 600 mg.g -1 polymer. pH, metal concentration are cited as major parameters, particle size influences both uptake kinetics and sorption equilibrium, in the case of the uranium accumulation by chitosan. The desorption of uranium from the sorbent allows the valorization of uranium and the re-use of the sorbent. (authors). 21 refs., 10 figs

  9. Biosensor and chemical sensor probes for calcium and other metal ions

    Science.gov (United States)

    Vo-Dinh, Tuan; Viallet, Pierre

    1996-01-01

    The present invention relates to chemical sensor and biosensor probes for measuring low concentration of metals and metal ions in complex samples such as biological fluids, living cells, and environmental samples. More particularly the present invention relates to a gel-based Indo-1 and Fura-2 chemical sensor probes for the measurement of low concentrations of calcium, cadmium, magnesium and the like. Also disclosed is a detector device using the sensors of the present invention.

  10. [Concentrations and Speciation of Dissolved Heavy Metal in Rainwater in Guiyang, China].

    Science.gov (United States)

    Zhu, Zhao-zhou; Li, Jun; Wang, Zhi-ru

    2015-06-01

    In order to understand the pollution situation, as well as seasonal changes in characteristics and speciation of dissolved heavy metals in acid rain control zone, the concentrations of dissolved heavy metals in rainwater collected at Guiyang were measured using inductively coupled plasma mass spectrometry (ICP-MS). And the speciation of dissolved heavy metals was further simulated by PHREEQC model. The results showed that the dissolved Co, Ni, Cu, Zn and Cd concentrations were low and not higher than the national standards for drinking water quality in China. The dissolved Pd concentrations were high in fall and winter and higher than the national standards for drinking water quality in China. The Co and Ni in rainwater mainly came from the crust and there was almost no human impact. The Cu, Zn, Cd and Pd pollutions in rainwater were affected by human activity with different levels. The degrees of contamination in autumn and winter were more serious than those in spring and summer. The free metal ion species was the dominant form of dissolved heavy metal, accounting for 47.27%-95.28% of the dissolved metal in rainwater from Guiyang city. The free metal ion species was followed in abundance by Metal-Oxalate and Metal-sulfate complexes that accounted for 0.72% -51.87% and 0.50%-7.66%, respectively. The acidity of rainwater, acid type as well as content of ligand more likely controlled the distribution of dissolved heavy metal in precipitation.

  11. Evaluation of the concentration of toxic metals in cosmetic products ...

    African Journals Online (AJOL)

    The concentration of the heavy metals in the samples ranged from 0.006 to 0.207 ppm. It is obvious from the present study that the use of some cosmetic products exposes users to low concentrations of toxic heavy metals which could constitute potential health risk to users since it has been known that heavy metals can ...

  12. Effects of ion concentration on the hydrogen bonded structure of ...

    Indian Academy of Sciences (India)

    WINTEC

    Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions. A NAG. 1. , D CHAKRABORTY and A CHANDRA*. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016. 1. Present address: Department of Chemistry and Chemical Engineering,.

  13. Neutralizing mutations of carboxylates that bind metal 2 in T5 flap endonuclease result in an enzyme that still requires two metal ions.

    Science.gov (United States)

    Tomlinson, Christopher G; Syson, Karl; Sengerová, Blanka; Atack, John M; Sayers, Jon R; Swanson, Linda; Tainer, John A; Williams, Nicholas H; Grasby, Jane A

    2011-09-02

    Flap endonucleases (FENs) are divalent metal ion-dependent phosphodiesterases. Metallonucleases are often assigned a "two-metal ion mechanism" where both metals contact the scissile phosphate diester. The spacing of the two metal ions observed in T5FEN structures appears to preclude this mechanism. However, the overall reaction catalyzed by wild type (WT) T5FEN requires three Mg(2+) ions, implying that a third ion is needed during catalysis, and so a two-metal ion mechanism remains possible. To investigate the positions of the ions required for chemistry, a mutant T5FEN was studied where metal 2 (M2) ligands are altered to eliminate this binding site. In contrast to WT T5FEN, the overall reaction catalyzed by D201I/D204S required two ions, but over the concentration range of Mg(2+) tested, maximal rate data were fitted to a single binding isotherm. Calcium ions do not support FEN catalysis and inhibit the reactions supported by viable metal cofactors. To establish participation of ions in stabilization of enzyme-substrate complexes, dissociation constants of WT and D201I/D204S-substrate complexes were studied as a function of [Ca(2+)]. At pH 9.3 (maximal rate conditions), Ca(2+) substantially stabilized both complexes. Inhibition of viable cofactor supported reactions of WT, and D201I/D204S T5FENs was biphasic with respect to Ca(2+) and ultimately dependent on 1/[Ca(2+)](2). By varying the concentration of viable metal cofactor, Ca(2+) ions were shown to inhibit competitively displacing two catalytic ions. Combined analyses imply that M2 is not involved in chemical catalysis but plays a role in substrate binding, and thus a two-metal ion mechanism is plausible.

  14. Neutralizing Mutations of Carboxylates That Bind Metal 2 in T5 Flap Endonuclease Result in an Enzyme That Still Requires Two Metal Ions*

    Science.gov (United States)

    Tomlinson, Christopher G.; Syson, Karl; Sengerová, Blanka; Atack, John M.; Sayers, Jon R.; Swanson, Linda; Tainer, John A.; Williams, Nicholas H.; Grasby, Jane A.

    2011-01-01

    Flap endonucleases (FENs) are divalent metal ion-dependent phosphodiesterases. Metallonucleases are often assigned a “two-metal ion mechanism” where both metals contact the scissile phosphate diester. The spacing of the two metal ions observed in T5FEN structures appears to preclude this mechanism. However, the overall reaction catalyzed by wild type (WT) T5FEN requires three Mg2+ ions, implying that a third ion is needed during catalysis, and so a two-metal ion mechanism remains possible. To investigate the positions of the ions required for chemistry, a mutant T5FEN was studied where metal 2 (M2) ligands are altered to eliminate this binding site. In contrast to WT T5FEN, the overall reaction catalyzed by D201I/D204S required two ions, but over the concentration range of Mg2+ tested, maximal rate data were fitted to a single binding isotherm. Calcium ions do not support FEN catalysis and inhibit the reactions supported by viable metal cofactors. To establish participation of ions in stabilization of enzyme-substrate complexes, dissociation constants of WT and D201I/D204S-substrate complexes were studied as a function of [Ca2+]. At pH 9.3 (maximal rate conditions), Ca2+ substantially stabilized both complexes. Inhibition of viable cofactor supported reactions of WT, and D201I/D204S T5FENs was biphasic with respect to Ca2+ and ultimately dependent on 1/[Ca2+]2. By varying the concentration of viable metal cofactor, Ca2+ ions were shown to inhibit competitively displacing two catalytic ions. Combined analyses imply that M2 is not involved in chemical catalysis but plays a role in substrate binding, and thus a two-metal ion mechanism is plausible. PMID:21734257

  15. Catalysis using hydrous metal oxide ion exchanges

    Science.gov (United States)

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  16. Comparison of metal ion release from different bracket archwire combinations: an in vitro study.

    Science.gov (United States)

    Karnam, Srinivas Kumar; Reddy, A Naveen; Manjith, C M

    2012-05-01

    The metal ion released from the orthodontic appliance may cause allergic reactions particularly nickel and chromium ions. Hence, this study was undertaken to determine the amount of nickel, chromium, copper, cobalt and iron ions released from simulated orthodontic appliance made of new archwires and brackets. Sixty sets of new archwire, band material, brackets and ligature wires were prepared simulating fixed orthodontic appliance. These sets were divided into four groups of fifteen samples each. Group 1: Stainless steel rectangular archwires. Group 2: Rectangular NiTi archwires. Group 3: Rectangular copper NiTi archwires. Group 4: Rectangular elgiloy archwires. These appliances were immersed in 50 ml of artificial saliva solution and stored in polypropylene bottles in the incubator to simulate oral conditions. After 90 days the solution were tested for nickel, chromium, copper, cobalt and iron ions using atomic absorption spectrophotometer. Results showed that high levels of nickel ions were released from all four groups, compared to all other ions, followed by release of iron ion levels. There is no significant difference in the levels of all metal ions released in the different groups. The study confirms that the use of newer brackets and newer archwires confirms the negligible release of metal ions from the orthodontic appliance. The measurable amount of metals, released from orthodontic appliances in artificial saliva, was significantly below the average dietary intake and did not reach toxic concentrations.

  17. Synthesis and Ion-Exchange Properties of Graphene Th(IV) Phosphate Composite Cation Exchanger: Its Applications in the Selective Separation of Lead Metal Ions

    OpenAIRE

    Rangreez, Tauseef Ahmad; Inamuddin,; Asiri, Abdullah M.; Alhogbi, Basma G.; Naushad, Mu.

    2017-01-01

    In this study, graphene Th(IV) phosphate was prepared by sol?gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy ...

  18. Prostate cancer outcome and tissue levels of metal ions

    Science.gov (United States)

    Sarafanov, A.G.; Todorov, T.I.; Centeno, J.A.; MacIas, V.; Gao, W.; Liang, W.-M.; Beam, C.; Gray, Marion A.; Kajdacsy-Balla, A.

    2011-01-01

    BACKGROUNDThere are several studies examining prostate cancer and exposure to cadmium, iron, selenium, and zinc. Less data are available on the possible influence of these metal ions on prostate cancer outcome. This study measured levels of these ions in prostatectomy samples in order to examine possible associations between metal concentrations and disease outcome.METHODSWe obtained formalin fixed paraffin embedded tissue blocks of prostatectomy samples of 40 patients with PSA recurrence, matched 1:1 (for year of surgery, race, age, Gleason grading, and pathology TNM classification) with tissue blocks from 40 patients without recurrence (n = 80). Case–control pairs were compared for the levels of metals in areas adjacent to tumors. Inductively coupled plasma-mass spectrometry (ICP-MS) was used for quantification of Cd, Fe, Zn, and Se.RESULTSPatients with biochemical (PSA) recurrence of disease had 12% lower median iron (95 µg/g vs. 111 µg/g; P = 0.04) and 21% lower zinc (279 µg/g vs. 346 µg/g; P = 0.04) concentrations in the normal-appearing tissue immediately adjacent to cancer areas. Differences in cadmium (0.489 µg/g vs. 0.439 µg/g; 4% higher) and selenium (1.68 µg/g vs. 1.58 µg/g; 5% higher) levels were not statistically significant in recurrence cases, when compared to non-recurrences (P = 0.40 and 0.21, respectively).CONCLUSIONSThere is an association between low zinc and low iron prostate tissue levels and biochemical recurrence in prostate cancer. Whether these novel findings are a cause or effect of more aggressive tumors, or whether low zinc and iron prostatic levels raise implications for therapy, remains to be investigated. 

  19. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue

    2014-10-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  20. [The impact of four metal ions on the phase behavior of phosphatidylcholine at the air/water interface].

    Science.gov (United States)

    Li, Yang; Lin, Zhicun

    2011-04-01

    The impact of metal ions on the phase behavior of phosphatidylcholine (PC) was investigated at the air/water interface by surface pressure-area (pi-A) isotherm measurements. The analysis of the pi-A isotherms showed that with the metal ionic radius decreasing, the concentration of the metal ions C increasing, and the valence of metal ions Q increasing, the amount of the corresponding curves of A0 decreases, the phase transition point would change more apparently, the collapse pressure would become larger subsequently, and the curve would be extended outside. The phenomenon could be approached when the metal ion concentration C became great enough. These experiments were identified with the rules on Langmuir films, by a variety of properties of metal ions (ion radius, ion concentration, ion valence, etc.). Among all the factors, the ionic valence showed the greatest impact on the phase changes, followed by the ion concentration, while the ionic radius influences were less on the phase-change characteristics.

  1. Progress in metal ion separation and preconcentration : an overview.

    Energy Technology Data Exchange (ETDEWEB)

    Bond, A. H.

    1998-05-19

    A brief historical perspective covering the most mature chemically-based metal ion separation methods is presented, as is a summary of the recommendations made in the 1987 National Research Council (NRC) report entitled ''Separation and Purification: Critical Needs and Opportunities''. A review of Progress in Metal Ion Separation and Preconcentration shows that advances are occurring in each area of need cited by the NRC. Following an explanation of the objectives and general organization of this book, the contents of each chapter are briefly summarized and some future research opportunities in metal ion separations are presented.

  2. Progress in metal ion separation and preconcentration: an overview

    International Nuclear Information System (INIS)

    Bond, A. H.

    1998-01-01

    A brief historical perspective covering the most mature chemically-based metal ion separation methods is presented, as is a summary of the recommendations made in the 1987 National Research Council (NRC) report entitled ''Separation and Purification: Critical Needs and Opportunities''. A review of Progress in Metal Ion Separation and Preconcentration shows that advances are occurring in each area of need cited by the NRC. Following an explanation of the objectives and general organization of this book, the contents of each chapter are briefly summarized and some future research opportunities in metal ion separations are presented

  3. Heavy metal ions are potent inhibitors of protein folding.

    Science.gov (United States)

    Sharma, Sandeep K; Goloubinoff, Pierre; Christen, Philipp

    2008-07-25

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd2+, Hg2+ and Pb2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC(50) in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.

  4. Theory Meets Experiment: Metal Ion Effects in HCV Genomic RNA Kissing Complex Formation.

    Science.gov (United States)

    Sun, Li-Zhen; Heng, Xiao; Chen, Shi-Jie

    2017-01-01

    The long-range base pairing between the 5BSL3. 2 and 3'X domains in hepatitis C virus (HCV) genomic RNA is essential for viral replication. Experimental evidence points to the critical role of metal ions, especially Mg 2+ ions, in the formation of the 5BSL3.2:3'X kissing complex. Furthermore, NMR studies suggested an important ion-dependent conformational switch in the kissing process. However, for a long time, mechanistic understanding of the ion effects for the process has been unclear. Recently, computational modeling based on the Vfold RNA folding model and the partial charge-based tightly bound ion (PCTBI) model, in combination with the NMR data, revealed novel physical insights into the role of metal ions in the 5BSL3.2-3'X system. The use of the PCTBI model, which accounts for the ion correlation and fluctuation, gives reliable predictions for the ion-dependent electrostatic free energy landscape and ion-induced population shift of the 5BSL3.2:3'X kissing complex. Furthermore, the predicted ion binding sites offer insights about how ion-RNA interactions shift the conformational equilibrium. The integrated theory-experiment study shows that Mg 2+ ions may be essential for HCV viral replication. Moreover, the observed Mg 2+ -dependent conformational equilibrium may be an adaptive property of the HCV genomic RNA such that the equilibrium is optimized to the intracellular Mg 2+ concentration in liver cells for efficient viral replication.

  5. Ion-dipole interactions in concentrated organic electrolytes.

    Science.gov (United States)

    Chagnes, Alexandre; Nicolis, Stamatios; Carré, Bernard; Willmann, Patrick; Lemordant, Daniel

    2003-06-16

    An algorithm is proposed for calculating the energy of ion-dipole interactions in concentrated organic electrolytes. The ion-dipole interactions increase with increasing salt concentration and must be taken into account when the activation energy for the conductivity is calculated. In this case, the contribution of ion-dipole interactions to the activation energy for this transport process is of the same order of magnitude as the contribution of ion-ion interactions. The ion-dipole interaction energy was calculated for a cell of eight ions, alternatingly anions and cations, placed on the vertices of an expanded cubic lattice whose parameter is related to the mean interionic distance (pseudolattice theory). The solvent dipoles were introduced randomly into the cell by assuming a randomness compacity of 0.58. The energy of the dipole assembly in the cell was minimized by using a Newton-Raphson numerical method. The dielectric field gradient around ions was taken into account by a distance parameter and a dielectric constant of epsilon = 3 at the surfaces of the ions. A fair agreement between experimental and calculated activation energy has been found for systems composed of gamma-butyrolactone (BL) as solvent and lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate (LiAsF6), and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) as salts.

  6. Surface enhanced Raman spectroscopy as a new spectral technique for quantitative detection of metal ions.

    Science.gov (United States)

    Temiz, Havva Tumay; Boyaci, Ismail Hakki; Grabchev, Ivo; Tamer, Ugur

    2013-12-01

    Four newly synthesized poly (propylene amine) dendrimers from first and second generation modified with 1,8-naphthalimide units in the dendrimer periphery have been investigated as ligands for the detection of heavy metal ions (Al(3+), Sb(2+), As(2+), Cd(2+) and Pb(2+)) by surface-enhanced Raman spectroscopy. Calibration curves were established for all metal ions between the concentration ranges of 1 x 10(-6) to 5 x 10(-4) M. It has been shown that these dendrimers can be coordinated, especially with different metal ions. Using dendrimer molecules and silver colloids at the same time allowed us to obtain an SERS signal from the abovementioned metal ions at very low concentrations. Principle component analysis (PCA) analysis was also applied to the collected SERS data. Four different PCA models were developed to accomplish the discrimination of five metal ions, which interacted with each of the four dendrimer molecules, separately. A detailed investigation was performed in the present study to provide the basis of a new approach for heavy metal detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Designer ligands: The search for metal ion selectivity

    Directory of Open Access Journals (Sweden)

    Perry T. Kaye

    2011-03-01

    Full Text Available The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-selective molecular imprinted polymers.

  8. On-site preconcentration and trace metal ions determination in the Okavango Delta water system, Botswana.

    Science.gov (United States)

    Sawula, G M

    2004-09-08

    Microcolumns containing 8-hydroxyquinoline azo-immobilized on controlled pore glass were incorporated in a field sampler for on-site collection, isolation and preconcentration of trace metal ions in waters of the Okavango Delta, Botswana. Sequestered trace metal ions were recovered by elution with 0.5ml of 1.5M nitric acid, and determined by graphite furnace atomic absorption spectrometry (GFAAS). This sampling and enrichment method minimizes sample contamination, and collection of large volumes of water samples for transporting, over long distances, to analytical laboratories is avoided. Data reported comprise one of the initial surveys on trace metal ion concentrations in waters of the Okavango Delta, Botswana. In waters with more efficient mixing, dissolved metal ion concentrations found were generally low with slightly elevated levels of manganese (7-19mugl(-1)), zinc (2.7-4.8mugl(-1)), nickel (0.2-2.5mugl(-1)) and copper (0.3-2.1mugl(-1)). For each trace metal ion, concentration levels seem to reflect zones of varying water conveyance, and show no obvious temporal and spatial variations apart from a slight increment from the inlet in the upper Delta to the outlets in the lower Delta.

  9. Metal ions accelerated phytosterol thermal degradation on Ring A & Ring B of steroid nucleus in oils.

    Science.gov (United States)

    Hu, Yinzhou; Huang, Weisu; Li, Maiquan; Wang, Mengmeng; Zhao, Yajing; Xu, Tao; Zhang, Liuquan; Lu, Baiyi; He, Yan

    2017-10-01

    This study aimed to investigate the effect of metal ions on the degradation of phytosterols in oils. The oil was heated at 180°C for 1h with/without addition of Fe 3+ , Fe 2+ , Cu 2+ , Mn 2+ , Zn 2+ , Na + , Al 3+ and Mg 2+ . Variations of β-sitosterol, stigmasterol, campesterol, brassicasterol and their degradation products were confirmed by the GC-MS analysis. In general, the increase of the metal ion concentration resulted in more phytosterol degradation, and the ability of metal ions following decreasing order: Fe 3+ >Fe 2+ >Mn 2+ ≥Cu 2+ ≥Zn 2+ >Na + ≥Mg 2+ >Al 3+ . Metal ions significantly induced phytosterol autoxidation on C5, C6 and C7 on Ring B of steroid nucleus at even a low concentration, and induced dehydration on the C3 hydroxyl to form dienes and trienes at high concentration. The metal ions in oils are accounted for increasing phytosterol degradation, which decreases food nutritional quality and gives rise to the formation of undesirable compounds. Copyright © 2017. Published by Elsevier Ltd.

  10. COMPARATIVE STUDY ON METAL IONS ADSORPTION ON A LOW COST CARBONACEOUS ADSORBENT KINETIC EQUILIBRIUM AND MECHANISTIC STUDIES

    OpenAIRE

    S. Arivoli, M. Hema, C. Barathiraja

    2008-01-01

    A carbonaceous adsorbent prepared from an indigenous waste and treated by acid was tested for its efficiency in removing metal ions of Fe(II), Co(II) and Ni(II). The process parameters studied included agitation time, initial metal ion concentration, carbon dosage, pH, other ions and temperature. The kinetics of adsorption followed first order reaction equation and the rate was mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibriu...

  11. Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal.

    Science.gov (United States)

    Song, Jooyoung; Oh, Hyuntaek; Kong, Hyeyoung; Jang, Jyongsik

    2011-03-15

    Polyrhodanine was immobilized onto the inner surface of anodic aluminum oxide (AAO) membrane via vapor deposition polymerization method. The polyrhodanine modified membrane was applied to remove heavy metal ions from aqueous solution because polyrhodanine could be coordinated with specific metal ions. Several parameters such as initial metal concentration, contact time and metal species were evaluated systematically for uptake efficiencies of the fabricated membrane under continuous flow condition. Adsorption isotherms of Hg(II) ion on the AAO-polyrhodanine membrane were analyzed with Langmuir and Freundlich isotherm models. The adsorption rate of Hg(II) ion on the membrane was obeyed by a pseudo-second order equation, indicating the chemical adsorption. The maximum removal capacity of Hg(II) ion onto the fabricated membrane was measured to be 4.2 mmol/g polymer. The AAO-polyrhodanine membrane had also remarkable uptake performance toward Ag(I) and Pb(II) ions. Furthermore, the polyrhodanine modified membrane could be recycled after recovery process. These results demonstrated that the polyrhodanine modified AAO membrane provided potential applications for removing the hazardous heavy metal ions from wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Extraction of complexes of metal ions with pyridine oxyazo compounds

    International Nuclear Information System (INIS)

    Lobanov, F.I.; Nurtaeva, G.K.; Ergozhin, E.E.

    1983-01-01

    Modern state and prospects of the development of investigas tions in the field of extraction of complexes of metal ions (V, In, Cd, Nb, REE, RU, Ta, U, Zr and others) with pyridine oxyazo compoUnds are analyzed. Application of pyridine oxyazo compounds as extraction-photometric reagents is described. Basic methods of oxyazo compounds preparation are considered along with reagent properties and physical-chemical characteristics. Flow diagrams of ion extraction are presented for the above metals. Mechanisms of complexing reactions for metal ions with pyridine oxyazo compounds and stability of forming complexes are considered in detail. Concrete methods of extraction-photometric separation and element determination permitting to find simultaneously several metal ions with similar properties in the case of their joint presence are described

  13. Determination of Heavy Metal Ions in Tobacco and Tobacco Additives

    African Journals Online (AJOL)

    NJD

    aminophenyl)-porphyrin, heavy metal ions. 1. Introduction ..... Application. This method was applied to the determination of Co, Ni, Sn,. Hg, Pb and Cd in the glycerol, tobacco leaf, tobacco sauce and cigarette samples. The samples were prepared ...

  14. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    International Nuclear Information System (INIS)

    Palza, Humberto; Escobar, Blanca; Bejarano, Julian; Bravo, Denisse; Diaz-Dosque, Mario; Perez, Javier

    2013-01-01

    Bioactive glasses (SiO 2 –P 2 O 5 –CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials

  15. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Palza, Humberto, E-mail: hpalza@ing.uchile.cl [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Escobar, Blanca; Bejarano, Julian [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Bravo, Denisse [Departamento de Patología, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Diaz-Dosque, Mario [Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Perez, Javier [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile)

    2013-10-15

    Bioactive glasses (SiO{sub 2}–P{sub 2}O{sub 5}–CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials.

  16. Adhesive, abrasive and oxidative wear in ion-implanted metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1985-01-01

    Ion implantation is increasingly being used to provide wear resistance in metals and cemented tungsten carbides. Field trials and laboratory tests indicate that the best performance is achieved in mild abrasive wear. This can be understood in terms of the classification of wear modes (adhesive, abrasive, oxidative etc.) introduced by Burwell. Surface hardening and work hardenability are the major properties to be enhanced by ion implantation. The implantation of nitrogen or dual implants of metallic and interstitial species are effective. Recently developed techniques of ion-beam-enhanced deposition of coatings can further improve wear resistance by lessening adhesion and oxidation. In order to support such hard coatings, ion implantation of nitrogen can be used as a preliminary treatment. There is thus emerging a versatile group of related hard vacuum treatments involving intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (Auth.)

  17. Metal Ion Selectivity of Kojate Complexes: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Sarita Singh

    2013-01-01

    Full Text Available Density functional calculations have been performed on four-coordinate kojate complexes of selected divalent metal ions in order to determine the affinity of the metal ions for the kojate ion. The complexation reactions are characterized by high energies, showing that they are highly exothermic. It is found that Ni(II exhibits the highest affinity for the kojate ion, and this is attributed to the largest amount of charge transfer from the ligand to the metal ion. The Ni(II complex has distorted square planar structure. The HOMOs and LUMOs of the complexes are also discussed. All complexes display a strong band at ~1500 cm−1 corresponding to the stretching frequency of the weakened carbonyl bond. Comparison of the complexation energies for the two steps shows that most of the complexation energy is realized in the first step. The energy released in the second step is about one-third that of the first step.

  18. Metal ion separations using reactive membranes

    International Nuclear Information System (INIS)

    Way, J.D.

    1993-01-01

    A membrane is a barrier between two phases. If one component of a mixture moves through the membrane faster than another mixture component, a separation can be accomplished. Membranes are used commercially for many applications including gas separations, water purification, particle filtration, and macromolecule separations (Abelson). There are two points to note concerning this definition. First, a membrane is defined based on its function, not the material used to make the membrane. Secondly, a membrane separation is a rate process. The separation is accomplished by a driving force, not by equilibrium between phases. Liquids that are immiscible with the feed and product streams can also be used as membrane materials. Different solutes will have different solubilities and diffusion coefficients in a liquid. The product of the diffusivity and the solubility is known as the permeability coefficient, which is proportional to the solute flux. Differences in permeability coefficient will produce a separation between solutes at constant driving force. Because the diffusion coefficients in liquids are typically orders of magnitude higher than in polymers, a larger flux can be obtained. Further enhancements can be accomplished by adding a nonvolatile complexation agent to the liquid membrane. One can then have either coupled or facilitated transport of metal ions through a liquid membrane. The author describes two implementations of this concept, one involving a liquid membrane supported on a microporous membrane, and the other an emulsion liquid membrane, where separation occurs to internal receiving phases. Applications and costing studies for this technology are reviewed, and a brief summary of some of the problems with liquid membranes is presented

  19. Towards metals analysis using corona discharge ionization ion mobility spectrometry.

    Science.gov (United States)

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2016-02-25

    For the first time, the capability of corona discharge ionization ion mobility spectrometry (CD-IMS) in the determination of metal complex was evaluated. The extreme simplicity of dispersive liquid-liquid microextraction (DLLME) coupled to the high sensitivity of CD-IMS measurement could make this combination really useful for simple, rapid, and sensitive determination of metals in different samples. In this regard, mercury, as a model metal, was complexed with diethyldithiocarbamate (DEDTC), and then extracted into the carbon tetrachloride using DLLME. Some parameters affecting the extraction efficiency, including the type and volume of the extraction solvent, the type and volume of the disperser solvent, the concentration of the chelating agent, salt addition and, pH were exhaustively investigated. Under the optimized condition, the enrichment factor was obtained to be 142. The linear range of 0.035-10.0 μg mL(-1) with r(2) = 0.997 and the detection limit of 0.010 μg mL(-1) were obtained. The relative standard deviation values were calculated to be lower than 4% and 8% for intra-day and inter-day, respectively. Finally, the developed method was successfully applied for the extraction and determination of mercury in various real samples. The satisfactory results revealed the capability of the proposed method in trace analysis without tedious derivatization or hydride generation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya, E-mail: divya@chem.unipune.ac.in

    2015-05-15

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu{sup 2+}, Fe{sup 2+}, Ni{sup 2+} and Zn{sup 2+} in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu{sup 2+}, Fe{sup 2+} and Ni{sup 2+} caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe{sup 2+}, Cu{sup 2+}, Ni{sup 2+} and Zn{sup 2+}. • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions.

  1. The Interchangeability of Plasma and Whole Blood Metal Ion Measurement in the Monitoring of Metal on Metal Hips

    OpenAIRE

    Malek, Ibrahim A.; Rogers, Joanne; King, Amanda Christina; Clutton, Juliet; Winson, Daniel; John, Alun

    2015-01-01

    One hundred and twenty six paired samples of plasma and whole blood were measured with inductively coupled plasma mass spectrometry technique for metal ions analysis to determine a relationship between them. There was a significant difference between the mean plasma and whole blood concentrations of both cobalt (Co) and chromium (Cr) (p < 0.0001 for both Co and Cr). The mean ratio between plasma and whole blood Cr and Co was 1.56 (range: 0.39?3.85) and 1.54 (range: 0.64?18.26), respectively, ...

  2. Fluorescence quenching dynamics and mechanism of cry1ab toxin from bacillus thuringiensis by different metal ions

    International Nuclear Information System (INIS)

    Zhou, X.; Zhang, J.

    2016-01-01

    The reaction dynamics of Cry1Ab toxin from Bacillus thuringiensis with sodium, calcium and lead ions was studied by fluorescence quenching technique. Gradual quenching was observed by titration of Cry1Ab toxin with metal ions (Na+, Ca/sup 2+/ or Pb/sup 2+/). The quenched strength of these ions in the descending order was: lead ion > calcium ion > sodium ion. The quenching equilibrium of Cry1Ab toxin by metal ions reached within 60 min, and the quenching dynamics of Cry1Ab toxin could be expressed by the Elovich model. The toxin concentration, pH and temperature had influence on the quenching dynamics. The interaction between Cry1Ab toxin and metal ions is based on static quenching mechanism. (author)

  3. A versatile MOF-based trap for heavy metal ion capture and dispersion

    OpenAIRE

    Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli

    2018-01-01

    Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, ...

  4. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  5. Liquid metal field-emission ion sources and their applications

    International Nuclear Information System (INIS)

    Prewett, P.D.; Jefferies, D.K.

    1980-01-01

    The study of ion emission from liquid metal surfaces under the action of high electric fields has led to the development of ion sources of exceptionally high brightness. The design and operating characteristics of commercially manufactured sources of gallium and gold ions are described. Preliminary focusing and scanning experiments have produced spots estimated to be approximately 0.5 μm diameter at currents approximately 0.2 nA using an electrostatic ion optical system. A focused Ga + beam has been used as an ion microprobe for imaging and for elemental mapping of surfaces by SIMS. (author)

  6. THE IMPACT OF HEAVY METAL CONCENTRATION ON

    African Journals Online (AJOL)

    Temitope

    metals could be anemia, kidney damage, brain damage, cancer and ultimately death. Key words: Water, contamination degree, geochemical factors, public health, heavy metal. ..... J. Nig. Assoc. Hydro-geol. 21:38-56. Bouwer H (2002). Artificial Recharge of Groundwater. Hydrol. Eng. Hydro-geol. J. 10(1):121-142. Brown DL ...

  7. Atmospheric trace metal concentrations in Suspended Particulate ...

    African Journals Online (AJOL)

    The correlation matrix analysis showed a strong positive correlation between the kitchen, living room and outdoor sites, suggesting identical sources of the trace metals. Principal component analysis (PCA) identified two fundamental sources of the metals, whichwas further confirmed by the hierarchical cluster analysis.

  8. Sorption of toxic metal ions in aqueous environment using ...

    African Journals Online (AJOL)

    carbodithioate and imidazole-1-carbodithioate were employed as sorbents for heavy metals from aqueous environments. The equilibrating time, initial metal concentrations and sorbent mass for optimal adsorption were 40 min, 5 mg/ℓ and 8 mg, ...

  9. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  10. Chemical Speciation of Some metal ions in Groundwaters of Yola ...

    African Journals Online (AJOL)

    Chemical speciation of some metal ions in groundwaters of Yola area using geochemical model were carried out to determine the water quality of the area using the PHREEQC speciation model. The study findings based on model calculations indicated that free Na+, Ca2+, Mg2+ and K+ ions are present and the ...

  11. Electrical properties of polymer modified by metal ion implantation

    International Nuclear Information System (INIS)

    Wu Yuguang; Zhang Tonghe; Zhang Huixing; Zhang Xiaoji; Deng Zhiwei; Zhou Gu

    2000-01-01

    Polyethylene terephthalate (PET) has been modified by Ag, Cr, Cu and Si ion implantation with a dose range from 1x10 16 to 2x10 17 ions cm -2 using a metal vapor vacuum arc (MEVVA) source. The electrical properties of PET have been changed after metal ion implantation. The resistivity of implanted PET decreased obviously with an increase of ion dose. When metal ion dose of 2x10 17 cm -2 was selected, the resistivity of PET could be less than 10 Ω cm, but when Si ions are implanted, the resistivity of PET would be up to several hundred Ω cm. The results show that the conductive behavior of a metal ion implanted sample is obviously different from Si implantation one. The changes of the structure and composition have been observed with transmission electron microscope (TEM) and X-ray diffraction (XRD). The surface structure is varying after ion implantation and it is believed that the change would cause the improvement of the conductive properties. The mechanism of electrical conduction will be discussed

  12. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    that the surface roughness increases after ion beam irradiation. Keywords. Composite materials; ion beam irradiation; dielectric properties; X-ray diffraction. 1. Introduction. Various metal fillers were incorporated in polymers to pro- duce novel functionalized composites, which have found extensive applications, such as ...

  13. The kinetics and thermodynamics of adsorption of heavy metal ions ...

    African Journals Online (AJOL)

    Titanium-Pillared and Un-Pillared bentonite clays were studied in order to evaluate the thermodynamics and kinetics of heavy metal ion removal from aqueous solutions. The results showed that the maximum sorption of Cu, Cd, Hg and Pb ions occurred within 30 minutes. A pseudo-second order kinetic model was used to ...

  14. Sorption of toxic metal ions in aqueous environment using ...

    African Journals Online (AJOL)

    2012-03-08

    Mar 8, 2012 ... efficient sorbents for divalent heavy metal ions in aqueous environments as their efficiencies exceeded those of chitosan microspheres, ion-imprinted composites, ..... field strength of 1.67 kV/cm. Under these optimised condi- ..... extraction on modified multiwalled carbon nanotubes. Cent. Eur. J. Chem.

  15. Quantum ion-acoustic wave oscillations in metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  16. Effects of metal ions on growth, β-oxidation system, and thioesterase activity of Lactococcus lactis.

    Science.gov (United States)

    Li, Liang; Ma, Ying

    2014-10-01

    The effects of divalent metal ions (Ca(2+), Mg(2+), Fe(2+), and Cu(2+)) on the growth, β-oxidation system, and thioesterase activity of Lactococcus lactis were investigated. Different metal ions significantly influenced the growth of L. lactis: Ca(2+) and Fe(2+) accelerated growth, whereas Cu(2+) inhibited growth. Furthermore, Mg(2+) inhibited growth of L. lactis at a low concentration but stimulated growth of L. lactis at a high concentration. The divalent metal ions had significant effects on activity of the 4 key enzymes of the β-oxidation system (acyl-CoA dehydrogenase, enoyl-CoA hydratase, L-3-hydroxyacyl-CoA dehydrogenase, and thiolase) and thioesterase of L. lactis. The activity of acyl-CoA dehydrogenases increased markedly in the presence of Ca(2+) and Mg(2+), whereas it decreased with 1 mmol/L Fe(2+) or 12 mmol/L Mg(2+). All the metal ions could induce activity of enoyl-CoA hydratase. In addition, 12 mmol/L Mg(2+) significantly stimulated activity of L-3-hydroxyacyl-CoA dehydrogenase, and all metal ions could induce activity of thiolase, although thiolase activity decreased significantly when 0.05 mmol/L Cu(2+) was added into M17 broth. Inhibition of thioesterase activity by all 4 metal ions could be reversed by 2 mmol/L Ca(2+). These results help us understand the effect of metal ions on the β-oxidation system and thioesterase activity of Lactococcus lactis. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Seasonal variation in heavy metal concentration in mangrove foliage

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Wafar, S.; Bhosle, N.B.

    Seasonal variation in the concentration of some heavy metals in the leaves of seven species of mangrove vegetation from Goa, revealed that maximum concentration of iron and manganese occurs during the monsoon season without any significant toxic...

  18. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi; Kawata, Satoshi

    2006-02-01

    We developed techniques for fabricating three-dimensional metallic microstructures using two-photon-induced metal-ion reduction. In this process, ions in a metal-ion aqueous solution were directly reduced by a tightly focused femtosecond pulsed laser to fabricate arbitrary three-dimensional structures. A self-standing metallic microstructure with high electrical conductivity was demonstrated.

  19. Heavy metal concentration in selected fish species from Eleyele ...

    African Journals Online (AJOL)

    ADIJAT SORINMADE

    made up to mark. The element digest was used to read for the level of the trace metals on the Atomic Absorption Spectrophotometer at a wavelength and allow cathode lamp related to each trace metal. RESULTS AND DISCUSSION. Table 1 shows heavy metal concentration (mg/l) in fish species sampled from Eleyele Lake, ...

  20. Seasonal variations of heavy metal concentrations in Qua Iboe River ...

    African Journals Online (AJOL)

    ... correlated positively with its observed high metal concentrations. The environmental implications of these metals are discussed with reference to existing water quality of the river. KEY WORDS: Heavy metals, water sample, pollution, Qua Iboe River. Global Jnl of Pure and Applied Sciences Vol.10(4) 2004: 611-617 ...

  1. Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.

    Science.gov (United States)

    Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun

    2016-01-01

    In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Surface-Functionalized Electrospun Titania Nanofibers for the Scavenging and Recycling of Precious Metal Ions.

    Science.gov (United States)

    Dai, Yunqian; Formo, Eric; Li, Haoxuan; Xue, Jiajia; Xia, Younan

    2016-10-20

    Precious metals are widely used as catalysts in industry. It is of critical importance to keep the precious metal ions leached from catalysts at a level below one part per million (ppm) in the final products and to recycle the expensive precious metals. Here we demonstrate a simple and effective method for scavenging precious metal ions from an aqueous solution and thereby reduce their concentrations down to the parts per billion (ppb) level. The key component is a filtration membrane comprised of titania (TiO 2 ) nanofibers whose surface has been functionalized with a silane bearing amino or thiol group. When operated under continuous flow at a rate of 1 mL min -1 and at room temperature, up to 99.95 % of the Pd 2+ ions could be removed from a stock solution with an initial concentration of 100 ppm. This work offers a viable strategy not only for the removal of precious metal ions but also for recovering and further recycling them for use as catalysts. For example, the captured Pd 2+ ions could be converted to nanoparticles and used as catalysts for organic reactions such as Suzuki coupling in a continuous flow reactor. This system can be potentially applied to pharmaceutical industry and waste stream treatment. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fluorescence array-based sensing of metal ions using conjugated polyelectrolytes.

    Science.gov (United States)

    Wu, Yi; Tan, Ying; Wu, Jiatao; Chen, Shangying; Chen, Yu Zong; Zhou, Xinwen; Jiang, Yuyang; Tan, Chunyan

    2015-04-01

    Array-based sensing offers several advantages for detecting a series of analytes with common structures or properties. In this study, four anionic conjugated polyelectrolytes (CPEs) with a common poly(p-pheynylene ethynylene) (PPE) backbone and varying pendant ionic side chains were designed. The conjugation length, repeat unit pattern, and ionic side chain composition were the main factors affecting the fluorescence patterns of CPE polymers in response to the addition of different metal ions. Eight metal ions, including Pb(2+), Hg(2+), Fe(3+), Cr(3+), Cu(2+), Mn(2+), Ni(2+), and Co(2+), categorized as water contaminants by the Environmental Protection Agency, were selected as analytes in this study. Fluorescence intensity response patterns of the four-PPE sensor array toward each of the metal ions were recorded, analyzed, and transformed into canonical scores using linear discrimination analysis (LDA), which permitted clear differentiation between metal ions using both two-dimensional and three-dimensional graphs. In particular, the array could readily differentiate between eight toxic metal ions in separate aqueous solutions at 100 nM. Our four-PPE sensor array also provides a practical application to quantify Pb(2+) and Hg(2+) concentrations in blind samples within a specific concentration range.

  4. Metal Ions Removal Using Nano Oxide Pyrolox™ Material

    Science.gov (United States)

    Gładysz-Płaska, A.; Skwarek, E.; Budnyak, T. M.; Kołodyńska, D.

    2017-02-01

    The paper presents the use of Pyrolox™ containing manganese nano oxides used for the removal of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions. Their concentrations were analyzed using the atomic absorption spectrometer SpectrAA 240 FS (Varian) as well as UV-vis method. For this purpose the static kinetic and equilibrium studies were carried out using the batch technique. The effect of solution pH, shaking time, initial metal ion concentrations, sorbent dosage, and temperature was investigated. The equilibrium data were analyzed using the sorption isotherm models proposed by Freundlich, Langmuir-Freundlich, Temkin, and Dubinin-Radushkevich. The kinetic results showed that the pseudo second order kinetic model was found to correlate the experimental data well. The results indicate that adsorption of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions is strongly dependent on pH. The value of pH 4-7 was optimal adsorption. The time to reach the equilibrium was found to be 24 h, and after this time, the sorption percentage reached about 70%. Kinetics of Cu(II), Zn(II), Cd(II), Pb(II), and U(VI) adsorption on the adsorbent can be described by the pseudo second order rate equation. Nitrogen adsorption/desorption, infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) measurements for adsorbent characterization were performed. Characteristic points of the double layer determined for the studied Pyrolox™ sample in 0.001 mol/dm3 NaCl solution are pHPZC = 4 and pHIEP < 2.

  5. [Metal ions: important co-players in aseptic loosening].

    Science.gov (United States)

    Cadosch, D; Schlett, C L; Gautschi, O P; Frei, H C; Filgueira, L

    2010-08-01

    The aims of this review were to discuss the different mechanisms of biocorrosion of orthopaedic metal implants in the human body, as well as the effects of the released metal ions on bone metabolism and the immune system in regard to their involvement in the pathophysiological mechanisms of aseptic loosening and metal hypersensitivity. Implant failure due to aseptic loosening is thought to occur in about 10-15% of cases. A review of the literature (using PubMed with the search terms: biocorrosion, metal ions and bone metabolism) was performed. Additionally, we discuss our research results in the field of aseptic loosening. Despite a great effort in developing new implants, metal devices used in orthopaedic and trauma surgery remain prone to biocorrosion by several mechanisms including the direct corrosion by osteoclasts, leading to the production of significant amounts of wear particles and metal ions. In addition to the well documented increased osteolytic activity caused by large (in the nanometer range) wear particles, increasing evidence strongly suggests that the released metal ions contribute to the pathophysiological mechanism of aseptic loosening. Metal ions stimulate both the immune system and bone metabolism through a series of direct and indirect pathways leading to an increased osteolytic activity at the bone-implant interface. To date, revision surgery remains the only option for the treatment of a failed orthopaedic implant caused by aseptic loosening. A better understanding of the complex pathophysiological mechanisms (including the effects caused by the released metal ions) of aseptic loosening may have a significant potential in developing novel implants and therapies in order to reduce the incidence of this complication. Georg Thieme Verlag KG Stuttgart, New York.

  6. Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions.

    Science.gov (United States)

    Ye, Bao-Fen; Zhao, Yuan-Jin; Cheng, Yao; Li, Ting-Ting; Xie, Zhuo-Ying; Zhao, Xiang-Wei; Gu, Zhong-Ze

    2012-09-28

    We have developed a robust method for the visual detection of heavy metal ions (such as Hg(2+) and Pb(2+)) by using aptamer-functionalized colloidal photonic crystal hydrogel (CPCH) films. The CPCHs were derived from a colloidal crystal array of monodisperse silica nanoparticles, which were polymerized within the polyacrylamide hydrogel. The heavy metal ion-responsive aptamers were then cross-linked in the hydrogel network. During detection, the specific binding of heavy metal ions and cross-linked single-stranded aptamers in the hydrogel network caused the hydrogel to shrink, which was detected as a corresponding blue shift in the Bragg diffraction peak position of the CPCHs. The shift value could be used to estimate, quantitatively, the amount of the target ion. It was demonstrated that our CPCH aptasensor could screen a wide concentration range of heavy metal ions with high selectivity and reversibility. In addition, these aptasensors could be rehydrated from dried gels for storage and aptamer protection. It is anticipated that our technology may also be used in the screening of a broad range of metal ions in food, drugs and the environment.

  7. Heavy metal ions in wines: meta-analysis of target hazard quotients reveal health risks

    Directory of Open Access Journals (Sweden)

    Petróczi Andrea

    2008-10-01

    Full Text Available Abstract Background Metal ions such as iron and copper are among the key nutrients that must be provided by dietary sources. Numerous foodstuffs have been evaluated for their contributions to the recommended daily allowance both to guide for satisfactory intake and also to prevent over exposure. In the case of heavy metal ions, the focus is often on exposure to potentially toxic levels of ions such as lead and mercury. The aim of this study is to determine target hazard quotients (THQ from literature reports giving empirical levels of metal ions in table wines using the reference upper safe limit value. Contributions to the THQ value were calculated for seven metal ions along with total values for each wine. Results The THQ values were determined as ranges from previously reported ranges of metal ion concentrations and were frequently concerningly high. Apart from the wines selected from Italy, Brazil and Argentina, all other wines exhibited THQ values significantly greater than one indicating levels of risk. The levels of vanadium, copper and manganese had the highest impact on THQ measures. Typical potential maximum THQ values ranged from 50 to 200 with Hungarian and Slovakian wines reaching 300. THQ values for a sample of red and white wines were high for both having values ranging from 30 to 80 for females based on a 250 mL glass per day. Conclusion The THQ values calculated are concerning in that they are mainly above the safe level of THQ

  8. Decreased fluidity of cell membranes causes a metal ion deficiency in recombinant Saccharomyces cerevisiae producing carotenoids.

    Science.gov (United States)

    Liu, Peitong; Sun, Liang; Sun, Yuxia; Shang, Fei; Yan, Guoliang

    2016-04-01

    The genome-wide transcriptional responses of S. cerevisiae to heterologous carotenoid biosynthesis were investigated using DNA microarray analysis. The results show that the genes involved in metal ion transport were specifically up-regulated in the recombinant strain, and metal ions, including Cu(2+), Fe(2+), Mn(2+), and Mg(2+), were deficient in the recombinant strain compared to the ion content of the parent strain. The decrease in metal ions was ascribed to a decrease in cell membrane (CM) fluidity caused by lower levels of unsaturated fatty acids and ergosterol. This was confirmed by the observation that metal ion levels were restored when CM fluidity was increased by supplying linoleic acid. In addition, a 24.3 % increase in the β-carotene concentration was observed. Collectively, our results suggest that heterologous production of carotenoids in S. cerevisiae can induce cellular stress by rigidifying the CM, which can lead to a deficiency in metal ions. Due to the importance of CM fluidity in cellular physiology, maintaining normal CM fluidity might be a potential approach to improving carotenoid production in genetically engineered S. cerevisiae.

  9. Structural Metals in the Group I Intron: A Ribozyme with a Multiple Metal Ion Core

    Energy Technology Data Exchange (ETDEWEB)

    Stahley,M.; Adams, P.; Wang, J.; Strobel, S.

    2007-01-01

    Metal ions play key roles in the folding and function for many structured RNAs, including group I introns. We determined the X-ray crystal structure of the Azoarcus bacterial group I intron in complex with its 5' and 3' exons. In addition to 222 nucleotides of RNA, the model includes 18 Mg2+ and K+ ions. Five of the metals bind within 12 Angstroms of the scissile phosphate and coordinate the majority of the oxygen atoms biochemically implicated in conserved metal-RNA interactions. The metals are buried deep within the structure and form a multiple metal ion core that is critical to group I intron structure and function. Eight metal ions bind in other conserved regions of the intron structure, and the remaining five interact with peripheral structural elements. Each of the 18 metals mediates tertiary interactions, facilitates local bends in the sugar-phosphate backbone or binds in the major groove of helices. The group I intron has a rich history of biochemical efforts aimed to identify RNA-metal ion interactions. The structural data are correlated to the biochemical results to further understand the role of metal ions in group I intron structure and function.

  10. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    International Nuclear Information System (INIS)

    Zink, Peter A.; Jue, Jan-Fong; Serrano, Brenda E.; Fredrickson, Guy L.; Cowan, Ben F.; Herrmann, Steven D.; Li, Shelly X.

    2010-01-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-β(double p rime)-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-β(double p rime)-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in

  11. Assessment of the Concentration of Metals in a Sewage Treatment ...

    African Journals Online (AJOL)

    Metal concentration of the water in the sewage treatment pond of the Ahmadu Bello University Zaria, Nigeria, was studied between April and September 2007 using Energy Dispersive X-Ray Fluorescence (ED-XRF) Analysis. The mean concentrations of ten (10) heavy metals observed during the study were as follows: ...

  12. Assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    The concentration of all the metals were considerably found to be below the limit permitted by WHO's drinking water guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit ...

  13. A novel metal ion source for preparing hard coatings

    International Nuclear Information System (INIS)

    Feng, Y.C.; Wong, S.P.

    1999-01-01

    A novel metal ion source, Electron Beam Evaporation Metal Ion Source, has been developed for material modifications. This ion source is based on the electron beam evaporation technology. It can provide gaseous, solid or gaseous and solid mixed intense ion beams for preparing a variety of thin films. In this ion source, a focusing electron beam is used to bombard and vaporize the metal or other solid element within same chamber where the metal or solid atoms are ionized and plasma medium from which ions are extracted is formed by arc discharge. A small aperture diameter extraction system is used for extracting the ion beam from this source. Ion beams of a series of elements, which include C, W, Ta, Mo, Cr, Ti, B, Cu, Ni, Al, Ar, N, C+N, Ti+N, Cr+N, etc., have been extracted. The source has a 3.6 cm extraction diameter. The beam energy ranges from 0.3 to 4 keV for single charge state ions, and the maximum beam current extractable is over 90 mA. The source has been used for preparing hard coatings. The films of carbon nitride and titanium nitride have been synthesized by direct deposition with C+N and Ti+N mixed ion beams. The results have shown to exhibit very high hardness value for carbon nitride films. The microhardness is up to HK 5800 kgf/mm 2 . In comparison with other methods, it is also to exhibit higher hardness value for titanium nitride coating. The highest hardness value obtained for titanium nitride is about 3000 kgf/mm 2 . The AES profile shows that there is a good intermixture between coating and substrate for both films. The principle, structure and performance of this ion source will be described. The preliminary results for forming hard coatings are also presented in this article

  14. Adsorption of heavy metal ions on molybdenum and molybdenum trioxide from dilute aqueous solution

    International Nuclear Information System (INIS)

    Utsunomiya, Taizo; Hoshino, Yoshio; Sakabe, Ken-ichi

    1984-01-01

    The adsorption of heavy metal ions such as Co(II), Cu(II) and Pb(II) on molybdenum powder has been investigated by the batch technique as a function of soaking time, concentration of heavy metal ions and coexisting salts, pH etc. Molybdenum trioxide was also used as an adsorbent for a comparison to discuss the adsorption mechanism. The amount of these heavy metal ions adsorbed was highly pH and coexisting salts dependent. These adsorbents have features of selective adsorption for Pb(II) and large adsorption rate. The adsorption of heavy metal ions on these adsorbents proceeds independently or concurrently by following complex mechanism; (1) cation exchange reaction by hydroxyl radical on the surface of Mo and MoO 3 is predominant for most of heavy metal ions except Pb(II) [Co(II), Mn(II), Fe(III), Ni(II), Zn(II), Cd(II) and Sr(II)], (2) reduction (electron exchange reaction) to low ionic or metallic state after cation exchange reaction [Cu(II) and Ag(I) on Mo] and (3) formation of a compound [Pb(II) on both Mo and MoO 3 ]. (author)

  15. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol-gel method.

    Science.gov (United States)

    Palza, Humberto; Escobar, Blanca; Bejarano, Julian; Bravo, Denisse; Diaz-Dosque, Mario; Perez, Javier

    2013-10-01

    Bioactive glasses (SiO2-P2O5-CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol-gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Effect of Nanoemitters on Suppressing the Formation of Metal Adduct Ions in Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Hu, Jun; Guan, Qi-Yuan; Wang, Jiang; Jiang, Xiao-Xiao; Wu, Zeng-Qiang; Xia, Xing-Hua; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-02-07

    In the work, we showed that the use of nanoemitters (tip dimension metal adduction to peptide or protein ions as well as improve the matrix tolerance of electrospray ionization mass spectrometry (ESI-MS). The proton-enriched smaller initial droplets are supposed to have played a significant role in suppressing the formation of metal adduct ions in nanoemitters. The proton-enrichment effect in the nanoemitters is related to both the exclusion-enrichment effect (EEE) and the ion concentration polarization effect (ICP effect), which permit the molecular ions to be regulated to protonated ones. Smaller initial charged droplets generated from nanoemitters need less fission steps to release the gas-phase ions; thus, the enrichment effect of salt was not as significant as that of microemitters (tip dimension >1 μm), resulting in the disappearing of salt cluster peaks in high mass-to-charge (m/z) region. The use of nanoemitters demonstrates a novel method for tuning the distribution of the metal-adducted ions to be in a controlled manner. This method is also characterized by ease of use and high efficiency in eliminating the formation of adduct ions, and no pretreatment such as desalting is needed even in the presence of salt at millimole concentration.

  17. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  18. Investigation of metal ions sorption of brown peat moss powder

    Science.gov (United States)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  19. Surface-enhanced Raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: effect of metal ions.

    Science.gov (United States)

    Chen, Li-Miao; Liu, You-Nian

    2011-08-01

    Silver/carbon (Ag/C) core-shell nanospheres synthesized by a hydrothermal method were used as templates for fabricating silver nanoparticle-decorated Ag/C (Ag/C/AgNps) nanospheres. The particle size of Ag nanoparticles can be tuned by varying the concentration of Ag precursor. Detection of melamine molecules at concentrations as low as 5.0×10(-8) M shows that the Ag/C/AgNps nanosphere is a good SERS-active substrate. The effect of heavy metal ions on the detection of melamine is also investigated. It was found that the SERS spectrum profile of melamine is very sensitive to the presence of heavy metal ions: the peak positions of the SERS bands exhibit some apparent change with the kind of metal ion, showing a blue or red shift compared with those in the SERS spectrum of melamine; the SERS signal intensity decrease with increasing the concentration of metal ion.

  20. Determination of levels of fluoride and trace metal ions in drinking ...

    African Journals Online (AJOL)

    While the concentrations of other metal ions (Mn, Cd, Co, Ni, Pb, Fe, Zn and Cu) were estimated by flame atomic absorption spectrophotometer. Statistical parameters and multiple correlations between paired water samples were also calculated. For the purification of water, adsorption technique was adopted using Al2O3 ...

  1. Energy band gap and optical transition of metal ion modified double crossover DNA lattices.

    Science.gov (United States)

    Dugasani, Sreekantha Reddy; Ha, Taewoo; Gnapareddy, Bramaramba; Choi, Kyujin; Lee, Junwye; Kim, Byeonghoon; Kim, Jae Hoon; Park, Sung Ha

    2014-10-22

    We report on the energy band gap and optical transition of a series of divalent metal ion (Cu(2+), Ni(2+), Zn(2+), and Co(2+)) modified DNA (M-DNA) double crossover (DX) lattices fabricated on fused silica by the substrate-assisted growth (SAG) method. We demonstrate how the degree of coverage of the DX lattices is influenced by the DX monomer concentration and also analyze the band gaps of the M-DNA lattices. The energy band gap of the M-DNA, between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), ranges from 4.67 to 4.98 eV as judged by optical transitions. Relative to the band gap of a pristine DNA molecule (4.69 eV), the band gap of the M-DNA lattices increases with metal ion doping up to a critical concentration and then decreases with further doping. Interestingly, except for the case of Ni(2+), the onset of the second absorption band shifts to a lower energy until a critical concentration and then shifts to a higher energy with further increasing the metal ion concentration, which is consistent with the evolution of electrical transport characteristics. Our results show that controllable metal ion doping is an effective method to tune the band gap energy of DNA-based nanostructures.

  2. Accumulation of some metal ions on Bacillus licheniformis

    International Nuclear Information System (INIS)

    Hafez, M.B.; El-Desouky, W.; Fouad, A.

    2001-01-01

    Pure species of Bacillus licheniformis was used to remove ions from aqueous and simulated waste solutions. Metal ion accumulation on B. licheniformis was fast. Maximum uptake occurred at pH 4± 0.5 and at 25 ± 3 deg C. One gram of dry B. licheniformis was found to accumulate 115 mg cerium, 34 mg copper and 11 mg cobalt from aqueous solutions. The presence of certain foreign ions such as calcium, sodium and potassium decreased the uptake of ions by B. licheniformis, while citrate and EDTA prevent the uptake. Electron microscopic investigations showed that cerium (III), copper (II) and cobalt (II) accumulated extracellulary around the surface wall of B. licheniformis cells. A bio-adsorption mechanism between the metal ions and B. licheniformis cell wall was proposed. (author)

  3. A Selective Bioreduction of Toxic Heavy Metal Ions from Aquatic Environment by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    A. M. Rahatgaonkar

    2008-01-01

    Full Text Available The need to remove or recover metal ions from industrial wastewater has been established in financial as well as environmental terms. This need has been proved financially in terms of cost saving through metal reuse or sale and environmentally as heavy metal toxicity can affect organisms throughout the food chain, including humans. Bioremediation of heavy metal pollution remains a major challenge in environmental biotechnology. Current removal strategies are mainly based on bioreduction of Co++, Ni++, Cu++ and Cd++ to their metallic forms by Saccharomyces cerevisiae in buffered aqueous solution. The rate of biotransformation was significantly influenced by pH of aqueous solution, concentration of biomass and hardness of water. All reaction conditions were optimized and maximum reduction of Co++, Cd++, Ni++ and Cu++ were observed as 80%, 63%, 50%, and 44% respectively. Unreacted Co++, Cd++, Ni++metal ions were extracted by 8-hydroxyquinoline and Cu++ by diethylthio carbamate in CHCl3 at different pH. Furthermore, the concentrations of unreacted metal ions were established spectrophotometrically.

  4. Synthesis and Ion-Exchange Properties of Graphene Th(IV) Phosphate Composite Cation Exchanger: Its Applications in the Selective Separation of Lead Metal Ions.

    Science.gov (United States)

    Rangreez, Tauseef Ahmad; Asiri, Abdullah M; Alhogbi, Basma G; Naushad, Mu

    2017-07-24

    In this study, graphene Th(IV) phosphate was prepared by sol-gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were also carried out. The material possessed an IEC of 1.56 meq·dry·g -1 of the exchanger and was found to be nano-composite. The selectivity studies showed that the material is selective towards Pb(II) ions. The selectivity of this cation-exchanger was demonstrated in the binary separation of Pb(II) ions from mixture with other metal ions. The recovery was found to be both quantitative and reproducible.

  5. THE IMPACT OF HEAVY METAL CONCENTRATION ON

    African Journals Online (AJOL)

    Temitope

    Key words: Water, contamination degree, geochemical factors, public health, heavy metal. INTRODUCTION ... problems the public faces is contamination of drinking water. There are many industries that may or have contributed to the contamination of waterways by ... most often to human poisoning are lead (Pb), mercury.

  6. Studies on regularities of metal ion sorption from seawater by clinoptilolytes of different origin

    International Nuclear Information System (INIS)

    Khamizov, R.Kh.; Butenko, T.Yu.; Bronov, L.V.; Skovyra, V.V.; Novikova, V.A.; AN SSSR, Vladivostok

    1988-01-01

    The regularities of metal ion sorption from sea water by different clinoptilolyte (CP) samples are studied with the purpose of choosing the most prospective sorbents to extract strontium and rubidium. It is shown that the internal diffusion is the sorption rate determining stage. The dependence of effective coefficients of internal diffusion on the exchange level is determined. The distribution coefficients and those of single metal ion separation are determined, the series of sorption selectivity are determined. All CP studied can be used for initial Rb concentration from sea water, and to extract strontium it is advisable to use zeolites of Dzegvi and Tedzami deposits

  7. Competitive removal of heavy metal ions from squid oil under isothermal condition by CR11 chelate ion exchanger.

    Science.gov (United States)

    Tavakoli, Omid; Goodarzi, Vahabodin; Saeb, Mohammad Reza; Mahmoodi, Niyaz Mohammad; Borja, Rafael

    2017-07-15

    Heavy metal ions (HMIs) are serious threats to the environment. Sub-critical water treatment was used to mimic contamination of squid oil in aqueous, metal-soap and oil phases. Isothermal adsorption of HMIs (Cu 2+ , Pb 2+ , Cd 2+ and Zn 2+ ) was studied from aqueous phase to oil phase (493, 523, 548, and 573K) for solutions with different initial concentration of HMIs was studied. Decomposition of glycerides into fatty acids was favored at high subcritical temperatures, with metal-soap phase showing the highest chelation ability toward Cu 2+ (96%, isotherm 573K). The removal-ability of HMIs from contaminated oil was performed by CR11 chelate ion exchanger, showing facilitated removal from metal-soap and oil phases at low temperatures compared to general-purpose PEI-chitosan bead and PEI-chitosan fiber sorbents. The chelation behavior of Pb 2+ and Cd 2+ was the same in the OIL, with maximum values of 5.7×10 -3 (mol/l) and 5.0×10 -3 (mol/l) at 573K, respectively. By contrast, concentration of Zn 2+ ion showed a slight increase with increasing temperature due to electrostatic forces between Zn 2+ and active sites of glycerides in oil phase. For oil solution, the selectivity of adsorption for CR11, especially for Zn 2+ , was at least five-fold larger compared to PEI-chitosan bead and PEI-chitosan fiber adsorbents. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Complexation ion-exchange chromatography of some metal ions on papers impregnated with Ti(IV)-based inorganic ion exchangers.

    Science.gov (United States)

    Sharma, S D; Gupta, R

    2000-02-01

    The chromatographic behavior of 40 metal ions is studied on titanium (IV) arsenate, titanium (IV) phosphate-, titanium (IV) molybdate-, titanium(IV) tungstate-, and titanium(IV) selenite-impregnated papers in 0.1M oxalic, citric, and tartaric acid as mobile phases. Similar studies are carried out on Whatman No. 1 papers for comparison. The ion-exchange capacity of these papers is determined, and their selectivity for different cations is discussed. The mechanism of migration is explained in terms of ion-exchange, precipitation, and adsorption. The prediction of elution sequence from RF values is also checked. The average Ri is found to be almost linearly dependent on the charge of the metal ions. The effect of the pKa of complexing acids on average RF values of 3d series metal ions is explained. A number of binary and ternary separations are achieved.

  9. Metal ion coupled protein folding and allosteric motions

    Science.gov (United States)

    Wang, Wei

    2014-03-01

    Many proteins need the help of cofactors for their successful folding and functioning. Metal ions, i.e., Zn2+, Ca2+, and Mg2+ etc., are typical biological cofactors. Binding of metal ions can reshape the energy landscapes of proteins, thereby modifying the folding and allosteric motions. For example, such binding may make the intrinsically disordered proteins have funneled energy landscapes, consequently, ensures their spontaneous folding. In addition, the binding may activate certain biological processes by inducing related conformational changes of regulation proteins. However, how the local interactions involving the metal ion binding can induce the global conformational motions of proteins remains elusive. Investigating such question requires multiple models with different details, including quantum mechanics, atomistic models, and coarse grained models. In our recent work, we have been developing such multiscale methods which can reasonably model the metal ion binding induced charge transfer, protonation/deprotonation, and large conformational motions of proteins. With such multiscale model, we elucidated the zinc-binding induced folding mechanism of classical zinc finger and the calcium-binding induced dynamic symmetry breaking in the allosteric motions of calmodulin. In addition, we studied the coupling of folding, calcium binding and allosteric motions of calmodulin domains. In this talk, I will introduce the above progresses on the metal ion coupled protein folding and allosteric motions. We thank the finacial support from NSFC and the 973 project.

  10. Electrodiffusive model for astrocytic and neuronal ion concentration dynamics.

    Directory of Open Access Journals (Sweden)

    Geir Halnes

    Full Text Available The cable equation is a proper framework for modeling electrical neural signalling that takes place at a timescale at which the ionic concentrations vary little. However, in neural tissue there are also key dynamic processes that occur at longer timescales. For example, endured periods of intense neural signaling may cause the local extracellular K(+-concentration to increase by several millimolars. The clearance of this excess K(+ depends partly on diffusion in the extracellular space, partly on local uptake by astrocytes, and partly on intracellular transport (spatial buffering within astrocytes. These processes, that take place at the time scale of seconds, demand a mathematical description able to account for the spatiotemporal variations in ion concentrations as well as the subsequent effects of these variations on the membrane potential. Here, we present a general electrodiffusive formalism for modeling of ion concentration dynamics in a one-dimensional geometry, including both the intra- and extracellular domains. Based on the Nernst-Planck equations, this formalism ensures that the membrane potential and ion concentrations are in consistency, it ensures global particle/charge conservation and it accounts for diffusion and concentration dependent variations in resistivity. We apply the formalism to a model of astrocytes exchanging ions with the extracellular space. The simulations show that K(+-removal from high-concentration regions is driven by a local depolarization of the astrocyte membrane, which concertedly (i increases the local astrocytic uptake of K(+, (ii suppresses extracellular transport of K(+, (iii increases axial transport of K(+ within astrocytes, and (iv facilitates astrocytic relase of K(+ in regions where the extracellular concentration is low. Together, these mechanisms seem to provide a robust regulatory scheme for shielding the extracellular space from excess K(+.

  11. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    N. S. Lovenduski; M. C. Long; K. Lindsay

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical...

  12. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and ...

  13. Ion conducting fluoropolymer carbonates for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Balsara, Nitash P.; Thelen, Jacob; Devaux, Didier

    2017-09-05

    Liquid or solid electrolyte compositions are described that comprise a homogeneous solvent system and an alkali metal salt dissolved in said solvent system. The solvent system may comprise a fluoropolymer, having one or two terminal carbonate groups covalently coupled thereto. Batteries containing such electrolyte compositions are also described.

  14. Separation of some metal ions using coupled transport supported liquid membranes

    International Nuclear Information System (INIS)

    Chaudhary, M.A.

    1993-01-01

    Liquid membrane extraction processes has become very popular due to their superiority in many ways over other separation techniques. In coupled transport membranes the metal ions can be transported across the membrane against their concentration gradient under the influence of chemical potential difference. Liquid membranes consisting of a carrier-cum-diluent, supported in microporous polymeric hydrophobic films have been studied for transport of metal ions like U(VI), Cr(VI), Be(II), V(V), Ti(IV), Zn(II), Cd(II), Hf(IV), W(VI), and Co(II). The present paper presents basic data with respect to flux and permeabilities of these metal ions across membranes based on experimental results and theoretical equations, using different carriers and diluents and provides a brief reference to possibility of such membranes for large scale applications. (author)

  15. Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae.

    Science.gov (United States)

    Begg, Stephanie L; Eijkelkamp, Bart A; Luo, Zhenyao; Couñago, Rafael M; Morey, Jacqueline R; Maher, Megan J; Ong, Cheryl-Lynn Y; McEwan, Alastair G; Kobe, Bostjan; O'Mara, Megan L; Paton, James C; McDevitt, Christopher A

    2015-03-03

    Cadmium is a transition metal ion that is highly toxic in biological systems. Although relatively rare in the Earth's crust, anthropogenic release of cadmium since industrialization has increased biogeochemical cycling and the abundance of the ion in the biosphere. Despite this, the molecular basis of its toxicity remains unclear. Here we combine metal-accumulation assays, high-resolution structural data and biochemical analyses to show that cadmium toxicity, in Streptococcus pneumoniae, occurs via perturbation of first row transition metal ion homeostasis. We show that cadmium uptake reduces the millimolar cellular accumulation of manganese and zinc, and thereby increases sensitivity to oxidative stress. Despite this, high cellular concentrations of cadmium (~17 mM) are tolerated, with negligible impact on growth or sensitivity to oxidative stress, when manganese and glutathione are abundant. Collectively, this work provides insight into the molecular basis of cadmium toxicity in prokaryotes, and the connection between cadmium accumulation and oxidative stress.

  16. Ion exchange of some transition metal cations on hydrated titanium dioxide in aqueous ammonia solutions

    International Nuclear Information System (INIS)

    Bilewicz, A.; Narbutt, J.; Dybczynski, R.

    1992-01-01

    The adsorption of transition metal cations on hydrated titanium dioxide in complexing ammonia and amine solutions has been studied as a function of ammonia (amine) concentration. The relationships between the distribution coefficients and ammonia concentration as well as the effects of various amines on sorption of transition metals indicate that a coordinate bond is formed between the metal ions and the hydroxy groups of the sorbent. The distribution coefficients of silver(I) and cobalt(II), which form strong ammonia complexes in aqueous solutions, decrease with increasing concentration of ammonia already at concentrations exceeding 10 -3 *mol*dm -3 . Cations of zinc, manganese and mercury which form much weaker ammonia complexes do not exhibit any effect of ammonia concentration in the whole range investigated. In the case of sorption of macroamounts of ammonia or amine complexes of silver, the molecular sieve effect plays an important role. The differences in the affinity of hydrated titanium dioxide for ammonia solvates of various transition metal ions can serve as a tool for effective separation of these ions in ammonia solutions. (author) 10 refs.; 4 figs.; 1 tab

  17. Metallic ion release after knee prosthesis implantation: a prospective study.

    Science.gov (United States)

    Lons, Adrien; Putman, Sophie; Pasquier, Gilles; Migaud, Henri; Drumez, Elodie; Girard, Julien

    2017-12-01

    Metal-on-metal (MoM) hip replacement bearings produce metallic ions that can cause health complications. Metallic release also occurs with other materials, but data on metallic ion levels after knee arthroplasty are sparse. We postulate that knee replacement generates elevating metallic ions (chromium (Cr), cobalt (Co) and titanium (Ti)) during the first year after implantation. This ongoing prospective study included all patients who underwent the same type of knee arthroplasty between May and December 2013. Cr, Co and Ti levels were measured in whole blood at pre-operation and one-year follow-up (6 and 12 months). Clinical and radiographic data (range of motion, Oxford, International Knee Society (IKS) and satisfaction scores) were recorded. In 90 patients, preoperative Cr, Co and Ti metallic ion levels were respectively 0.45 μg/l, 0.22 μg/l, 2.94 μg/l and increased to 1.27 μg/l, 1.41 μg/l, 4.08 μg/l (p < 0.0001) at last one-year follow-up. Mean Oxford and IKS scores rose, respectively, from 45.9 (30-58) and 24.9 (12-52) to 88.3 (0-168) and 160.8 (93-200) (p < 0.001). After the implantation of knee arthroplasty, we found significant blood elevation of Cr, Co and Ti levels one year after implantation exceeding the normal values. This metallic ion release could lead to numerous effects: allergy, hypersensitivity, etc.

  18. METAL CONCENTRATION OF LIQUID EFFLUENTS AND ...

    African Journals Online (AJOL)

    a

    The pharmaceutical industry comprises of those companies that produce drugs and ... of heavy metal contamination in the industrial area of Kattedan, India. ..... 4.0. Intensive. 4.81. Intensive. Cr. 2.50. Intensive. 1.92. Intensive. Cd. 1.16. Intensive. 2.40. Intensive. Ti. 3.0. Intensive. 4.81. Intensive. Ca. 1.25. Intensive. 1.09.

  19. Effect Of Metal Ions On Triphenylmethane Dye Decolorization By Laccase From Trametes Versicolor

    Directory of Open Access Journals (Sweden)

    Chmelová Daniela

    2015-12-01

    Full Text Available The aim of this study was investigate the influence of different metal ions on laccase activity and triphenylmethane dye decolorization by laccase from white-rot fungus Trametes versicolor. Laccase activity was inhibited by monovalent ions (Li+, Na+, K+ and Ag+ but the presence of divalent ions increased laccase activity at the concentration of 10 mmol/l. The effect of metal ions on decolorization of triphenylmethane dyes with different structures namely Bromochlorophenol Blue, Bromophenol Blue, Bromocresol Blue and Phenol Red was tested. The presence of metal ions (Na+, K+, Mg2+, Ca2+, Ba2+, Mn2+, Zn2+ slightly decreased triphenylmethane dye decolorization by laccase from T. versicolor except Na+ and Mg2+, which caused the increase of decolorization for all tested dyes. Decolorization of selected dyes showed that the presence of low-molecular-weight compounds is necessary for effective decolorization. Hydroxybenzotriazole (HBT is the most frequently used. Although HBT belongs to most frequently used redox mediator and generally increase decolorization efficiency, so its presence decreased decolorization percentage of Bromophenol Blue and Bromochlorophenol Blue, the influence of metal ions to dye decolorization by laccase has the similar course with or without presence of redox mediator HBT.

  20. [In vitro analysis of the impact of metal ions on human lymphocyte cultures].

    Science.gov (United States)

    Hagmann, S; Kirsch, J; Kretzer, J P; Moradi, B

    2013-08-01

    The use of metal implants has become increasingly more frequent in all fields of medicine throughout the past decades. Numerous studies have demonstrated that metal ions released from these implants can be detected in body fluids remote from the implants. Although diseases directly linked to the release of these ions seem to be rare, the general public is unsettled. In this study we aimed to analyze the impact of molybdenum(V), cobalt(II), chromium(III) and nickel(II) ions on cell surface markers (CD25, CD38, CD69, CD95) and viability (7-AAD/AnnexinV) of human CD4+ T-lymphocytes in vitro. Cobalt(II) ions at a concentration of 1000 μg/l led to a significant suppression of lymphocyte activation markers while nickel(II), chromium(III) and molybdenum(V) did not show any significant impact on these lymphocyte activation markers. Cell viability was significantly reduced by all metal ions, whereas cobalt(II) led to the highest increase of apoptotic cells and was the only metal ion to significantly increase the necrosis rate. While the pathophysiological significance of these findings remains unclear, they are in favour of further research in this field.

  1. Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins.

    Science.gov (United States)

    Maret, Wolfgang

    2011-06-01

    Homeostatic control maintains essential transition metal ions at characteristic cellular concentrations to support their physiological functions and to avoid adverse effects. Zinc is especially widely used as a catalytic or structural cofactor in about 3000 human zinc proteins. In addition, the homeostatic control of zinc in eukaryotic cells permits functions of zinc(II) ions in regulation and in paracrine and intracrine signaling. Zinc ions are released from proteins through ligand-centered reactions in zinc/thiolate coordination environments, and from stores in cellular organelles, where zinc transporters participate in zinc loading and release. Muffling reactions allow zinc ions to serve as signaling ions (second messengers) in the cytosol that is buffered to picomolar zinc ion concentrations at steady-state. Muffling includes zinc ion binding to metallothioneins, cellular translocations of metallothioneins, delivery of zinc ions to transporter proteins, and zinc ion fluxes through cellular membranes with the result of removing the additional zinc ions from the cytosol and restoring the steady-state. Targets of regulatory zinc ions are proteins with sites for transient zinc binding, such as membrane receptors, enzymes, protein-protein interactions, and sensor proteins that control gene expression. The generation, transmission, targets, and termination of zinc ion signals involve proteins that use coordination dynamics in the inner and outer ligand spheres to control metal ion association and dissociation. These new findings establish critically important functions of zinc ions and zinc metalloproteins in cellular control.

  2. Ion beam modification of metals: Compositional and microstructural changes

    Science.gov (United States)

    Was, Gary S.

    Ion implantation has become a highly developed tool for modifying the structure and properties of metals and alloys. In addition to direct implantation, a variety of other ion beam techniques such as ion beam mixing, ion beam assisted deposition and plasma source ion implantation have been used increasingly in recent years. The modifications constitute compositional and microstructural changes in the surface of the metal. This leads to alterations in physical properties (transport, optical, corrosion, oxidation), as well as mechanical properties (strength, hardness, wear resistance, fatigue resistance). The compositional changes brought about by ion bombardment are classified into recoil implantation, cascade mixing, radiation-enhanced diffusion, radiation-induced segregation, Gibbsian adsorption and sputtering which combine to produce an often complicated compositional variation within the implanted layer and often, well beyond. Microstructurally, the phases present are often altered from what is expected from equilibrium thermodynamics giving rise to order-disorder transformations, metastable (crystalline, amorphous or quasicrystalline) phase formation and growth, as well as densification, grain growth, formation of a preferred texture and the formation of a high density dislocation network. All these effects need to be understood before one can determine the effect of ion bombardment on the physical and mechanical properties of metals. This paper reviews the literature in terms of the compositional and microstructural changes induced by ion bombardment, whether by direct implantation, ion beam mixing or other forms of ion irradiation. The topics are introduced as well as reviewed, making this a more pedogogical approach as opposed to one which treats only recent developments. The aim is to provide the tools needed to understand the consequent changes in physical and mechanical properties.

  3. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils

    International Nuclear Information System (INIS)

    Li Yongtao; Becquer, Thierry; Dai Jun; Quantin, Cecile; Benedetti, Marc F.

    2009-01-01

    The oxidative dissolution of mine wastes gives rise to acidic, metal-enriched mine drainage (AMD) and has typically posed an additional risk to the environment. The poly-metallic mine Dabaoshan in South China is an excellent test site to understand the processes affecting the surrounding polluted agricultural fields. Our objectives were firstly to investigate metal ion activity in soil solution, distribution in solid constituents, and spatial distribution in samples, secondly to determine dominant environment factors controlling metal activity in the long-term AMD-polluted subtropical soils. Soil Column Donnan Membrane Technology (SC-DMT) combined with sequential extraction shows that unusually large proportion of the metal ions are present as free ion in the soil solutions. The narrow range of low pH values prevents any pH effects during the binding onto oxides or organic matter. The differences in speciation of the soil solutions may explain the different soil degradation observed between paddy and non-paddy soils. - First evidence of the real free metal ion concentrations in acid mine drainage context in tropical systems

  4. Complementary metal ion specificity of the metal-citrate transporters CitM and CitH of Bacillus subtilis

    NARCIS (Netherlands)

    Krom, BP; Warner, JB; Konings, WN; Lolkema, JS; Warner, Jessica B.

    2000-01-01

    Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologous B, subtilis secondary citrate

  5. COMPARATIVE STUDY ON METAL IONS ADSORPTION ON A LOW COST CARBONACEOUS ADSORBENT KINETIC EQUILIBRIUM AND MECHANISTIC STUDIES

    Directory of Open Access Journals (Sweden)

    S. Arivoli, M. Hema, C. Barathiraja

    2008-01-01

    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste and treated by acid was tested for its efficiency in removing metal ions of Fe(II, Co(II and Ni(II. The process parameters studied included agitation time, initial metal ion concentration, carbon dosage, pH, other ions and temperature. The kinetics of adsorption followed first order reaction equation and the rate was mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity obtained from the Langmuir isotherm plots was found around 28mg/g for all selected metal ions at an initial pH of 6. The temperature variation study showed that the metal ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying pH of the metal ion solutions. The type I and II isotherms obtained, positive H0 values, pH dependent results and desorption of metal ions in mineral acid suggests that the adsorption of metal ions on this type of adsorbent involves both chemisorption and physical adsorption mechanisms.

  6. The use of new chemically modified cellulose for heavy metal ion adsorption.

    Science.gov (United States)

    Fakhre, Nabil A; Ibrahim, Bnar M

    2018-02-05

    We have developed a simple one-step method to synthesize novel supramolecular polysaccharide composite from cellulose (CEL) and dibenzo-18-crown 6 using ceric ammonium nitrate as initiator. The [CEL+DB18C6] composites obtained retain properties of their components, namely superior mechanical strength (from CEL), excellent adsorption capability for heavy metal ions from DB18C6. More importantly, the [CEL+DB18C6] composites exhibit truly supramolecular properties. By itself CEL and DB18C6 can adsorb heavy metals. However, adsorption capability of the composite was substantially and synergistically enhanced by adding DB18C6 to CEL. That is, the removal percentage value for Cd 2+ , Zn 2+ , Ni 2+ , Pb 2+ and Cu 2+ by [CEL+DB18C6] composites are much higher than removal percentage values of individual CEL and DB18C6 composites. It seems that DB18C6 synergistically interact with CEL to form more stable complexes with heavy metals, and as a consequence, the [CEL+DB18C6] composite can adsorb relatively larger amount heavy metals. The adsorption parameters, such as pH, adsorbent dose, contact time, initial metal ion concentration and temperature were optimized. Desorption studies revealed that the regeneration of modified cellulose saturated with these metallic ions depends on the type and concentration of the regenerating solution (NH 4 Cl, HNO 3 , NaCl and CaCl 2 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Metal ion effects on different types of cell line, metal ion incorporation into L929 and MC3T3-E1 cells, and activation of macrophage-like J774.1 cells.

    Science.gov (United States)

    Okazaki, Yoshimitsu; Gotoh, Emiko

    2013-05-01

    V ions showed high cytotoxicity for mouse fibroblast L929, osteoblastic MC3T3-E1, and macrophage-like J774.1 cells compared with Pb, Cu, Ni, Co, Zn, and Mo ions. The quantities of metal ions incorporated into the L929 and MC3T3-E1 cells increased with increasing metal concentration in the medium, depending on the metal ion type. In particular, the quantities of V incorporated into the cells were markedly higher than those of other metals. It was suggested that the cytotoxicity of a metal ion changes with the quantity of the metal ion incorporated into cells. It was also considered that V ions are incorporated into cells through xanthine derived from fetal bovine serum by high-performance liquid chromatography (HPLC). The strong interaction of Co, Ni and Mo with amino acids was analyzed by HPLC. The rate of increase of nitric oxide (NO) concentration released with the activation of the mouse macrophage-like J774.1 cells increased at a concentration of V ions ten times lower than that of Ni ions. The release of the cytokine tumor necrosis factor-α (TNF-α) from the J774.1 cells started at approximately 0.5 ppm V; interleukin-6 (IL-6) and transforming growth factor-β (TGF-β) showed a marked increase in the rate of increase at more than 1 ppm V. No increase in the concentration of IL-1α, IL-8, IL-15 or granulocyte macrophage-colony stimulating factor (GM-CSF) was observed for V and Ni ions. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods.

    Science.gov (United States)

    Baker, Hutaf M; Massadeh, Adnan M; Younes, Hammad A

    2009-10-01

    The adsorption behavior of natural Jordanian zeolites with respect to Cd(2 + ), Cu(2 + ), Pb(2 + ), and Zn(2 + ) was studied in order to consider its application to purity metal finishing drinking and waste water samples under different conditions such as zeolite particle size, ionic strength and initial metal ion concentration. In the present work, a new method was developed to remove the heavy metal by using a glass column as the one that used in column chromatography and to make a comparative between the batch experiment and column experiment by using natural Jordanian zeolite as adsorbent and some heavy metals as adsorbate. The column method was used using different metal ions concentrations ranged from 5 to 20 mg/L with average particle size of zeolite ranged between 90 and 350 mum, and ionic strength ranged from 0.01 to 0.05. Atomic absorption spectrometry was used for analysis of these heavy metal ions, the results obtained in this study indicated that zeolitic tuff is an efficient ion exchanger for removing heavy metals, in particular the fine particle sizes of zeolite at pH 6, whereas, no clear effect of low ionic strength values is noticed on the removal process. Equilibrium modeling of the removal showed that the adsorption of Cd(2 + ), Cu(2 + ), Pb(2 + ), and Zn(2 + ) were fitted to Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR). The sorption energy E determined in the DKR equation (9.129, 10.000, 10.541, and 11.180 kJ/mol for Zn(2 + ), Cu(2 + ), Cd(2 + ) and Pb(2 + ) respectively) which revealed the nature of the ion-exchange mechanism.

  9. Radiation hardening of metals irradiated by heavy ions

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Skuratov, V.A.; Mikhajlova, N.Yu.; Regel', V.R.

    1988-01-01

    The damage dose dependence in the 10 -4 -10 -2 dpa region of radiation hardening of Al, V, Ni, Cu irradiated by xenon ions with 124 MeV energy is investigated using the microhardness technique and transmission electron microscope. It is shown that the pure metals radiation hardening is stimulated for defects clusters with the typical size less than 5 nm, as in the case of neutron and the light charge ion irradiation

  10. A versatile MOF-based trap for heavy metal ion capture and dispersion.

    Science.gov (United States)

    Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli

    2018-01-15

    Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, or in breakthrough processes. The material can also serve as a host for metal ion loading with arbitrary selections of metal ion amounts/types with a controllable uptake ratio to prepare well-dispersed single or multiple metal catalysts. This is supported by the excellent performance of the prepared Pd 2+ -loaded composite toward the Suzuki coupling reaction. This work proposes a versatile heavy metal ion trap that may find applications in the fields of separation and catalysis.

  11. Crystal structures of Dronpa complexed with quenchable metal ions provide insight into metal biosensor development.

    Science.gov (United States)

    Kim, In Jung; Kim, Sangsoo; Park, Jeahyun; Eom, Intae; Kim, Sunam; Kim, Jin-Hong; Ha, Sung Chul; Kim, Yeon Gil; Hwang, Kwang Yeon; Nam, Ki Hyun

    2016-09-01

    Many fluorescent proteins (FPs) show fluorescence quenching by specific metal ions, which can be applied towards metal biosensor development. In this study, we investigated the significant fluorescence quenching of Dronpa by Co(2+) and Cu(2+) ions. Crystal structures of Co(2+) -, Ni(2+) - and Cu(2+) -bound Dronpa revealed previously unseen, unique, metal-binding sites for fluorescence quenching. These metal ions commonly interact with surface-exposed histidine residues (His194-His210 and His210-His212), and interact indirectly with chromophores. Structural analysis of the Co(2+) - and Cu(2+) - binding sites of Dronpa provides insight into FP-based metal biosensor engineering. © 2016 Federation of European Biochemical Societies.

  12. Coordination of thiocyanate ions to rare earth ions in concentrated aqueous rare earth thiocyanate solutions

    International Nuclear Information System (INIS)

    Yoshimura, Y.; Kanno, H.; Oikawa, T.; Suzuki, Y.

    1998-01-01

    Full text: In the previous Raman spectroscopic and DTA study of aqueous rare earth thiocyanate [Ln(SCN) 3 ; Ln=La 3+ ∼ Lu 3+ ] solutions at R=20 (R is moles of water per moles of salt), it was shown that a thiocyanate ion binds to a rare earth ion only at the N end and the coordination number change takes place in the middle of the series. As an extension of the previous work, Raman spectroscopic measurements were carried out for aqueous Ln(SCN) 3 solutions (R=10-50) at room temperature to investigate the concentration dependence of the formation of the thiocyanate- rare earth complex ions and determine the average numbers of the thiocyanate ions coordinating to a rare earth ion. Although the Raman band area ratio (υ lb /υ lf ) (υ lb ; the Raman band due to the coordinated thiocyanate ions, υ lf ; the one due to the solvated free thiocyanate ions) of the C-S stretching vibrational bands increases with decreasing ionic radius, the quantitative intensity analysis of the Raman bands was made by following the internal intensity method reported by Irish et al. and showed that the average number of thiocyanate ions bound to a rare earth ion is almost the same throughout the series (about 2.7 at R=20) within the experimental uncertainty. This finding indicates that the coordination number change in the middle of the series takes place by ejecting one water molecule from the inner-coordination sphere

  13. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-01-01

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl− = 2.03[10−9m2s−1]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D− − D+)/(D− + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis). PMID:27158057

  14. Functionalization of protein crystals with metal ions, complexes and nanoparticles.

    Science.gov (United States)

    Abe, Satoshi; Maity, Basudev; Ueno, Takafumi

    2018-04-01

    Self-assembled proteins have specific functions in biology. With inspiration provided by natural protein systems, several artificial protein assemblies have been constructed via site-specific mutations or metal coordination, which have important applications in catalysis, material and bio-supramolecular chemistry. Similar to natural protein assemblies, protein crystals have been recognized as protein assemblies formed of densely-packed monomeric proteins. Protein crystals can be functionalized with metal ions, metal complexes or nanoparticles via soaking, co-crystallization, creating new metal binding sites by site-specific mutations. The field of protein crystal engineering with metal coordination is relatively new and has gained considerable attention for developing solid biomaterials as well as structural investigations of enzymatic reactions, growth of nanoparticles and catalysis. This review highlights recent and significant research on functionalization of protein crystals with metal coordination and future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Focused ion beam lithography for rapid prototyping of metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Osswald, Patrick; Kiermaier, Josef; Becherer, Markus; Schmitt-Landsiedel, Doris [Lehrstuhl fuer Technische Elektronik, TU Muenchen, Munich (Germany)

    2010-07-01

    We present FIB-lithography methods for rapid and cost-effective prototyping of metal structures covering the deep-submicron- to the millimeter-range in a single lithography cycle. Focused ion beam (FIB) systems are widely used in semiconductor industry and research facilities for both analytical testing and prototyping. A typical application is to apply electrical contact to micron-sized sensors/particles by FIB induced metal deposition. However, as for E-beam lithography, patterning times for large area bonding pads are unacceptably long, resulting in cost-intensive prototyping. In this work, we optimized FIB lithography processing for negative and positive imaging mode to form metallic structures for large-areas down do the sub-100 nm range. For negative lithography features are defined by implanting Ga{sup +}-ions into a commercial photo resist, without affecting the underlying structures by impinging ions. The structures are highly suitable for following lift-off processing due to the undercut of the resist.Metallic feature size of down to 150 nm are achievable. For positive lithography a PMMA resist is exposed in FIB irradiation. Due to the very low dose (3.10{sup 12} ions/cm{sup 2}) the writing time for an e.g. 100 {mu}m x 100 {mu}m square is approx. 15 seconds. The developed resist is used for subsequent wet chemical etching, obtaining a 100 nm resolution in metal layers.

  16. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.

    Science.gov (United States)

    Gao, Wenfang; Liu, Chenming; Cao, Hongbin; Zheng, Xiaohong; Lin, Xiao; Wang, Haijuan; Zhang, Yi; Sun, Zhi

    2018-02-16

    Recovery of metals from spent lithium-ion batteries (LIBs) has attracted worldwide attention because of issues from both environmental impacts and resource supply. Leaching, for instance using an acidic solution, is a critical step for effective recovery of metals from spent LIBs. To achieve both high leaching efficiency and selectivity of the targeted metals, improved understanding on the interactive features of the materials and leaching solutions is highly required. However, such understanding is still limited at least caused by the variation on physiochemical properties of different leaching solutions. In this research, a comprehensive investigation and evaluation on the leaching process using acidic solutions to recycle spent LIBs is carried out. Through analyzing two important parameters, i.e. leaching speed and recovery rate of the corresponding metals, the effects of hydrogen ion concentration, acid species and concentration on these two parameters were evaluated. It was found that a leachant with organic acids may leach Co and Li from the cathode scrap and leave Al foil as metallic form with high leaching selectivity, while that with inorganic acids typically leach all metals into the solution. Inconsistency between the leaching selectivity and efficiency during spent LIBs recycling is frequently noticed. In order to achieve an optimal status with both high leaching selectivity and efficiency (especially at high solid-to-liquid ratios), it is important to manipulate the average leaching speed and recovery rate of metals to optimize the leaching conditions. Subsequently, it is found that the leaching speed is significantly dependent on the hydrogen ion concentration and the capability of releasing hydrogen ions of the acidic leachant during leaching. With this research, it is expected to improve understanding on controlling the physiochemical properties of a leaching solution and to potentially design processes for spent LIBs recycling with high industrial

  17. Smart responsive microcapsules capable of recognizing heavy metal ions.

    Science.gov (United States)

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Evaluation of some heavy metals concentration in municipal waste ...

    African Journals Online (AJOL)

    A study was conducted in Delta State, a major Niger Delta region of Nigeria. The aim was to evaluate some heavy metals concentration in municipal wastes dumpsites that are presently used for intensive horticultural crops production. The heavy metals studied were; Iron (Fe); Lead (Pb); Mercury (Hg); Cromium (Cr); Nickel ...

  19. Heavy metal concentrations in soils and accumulation in plants ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... The extent of contamination of soil by heavy metals and their accumulation in plants around the abandoned slag was studied. Plants and the surrounding soils were sampled from different directions at increasing distance from the vicinity of the waste pile and their concentrations of heavy metals were ...

  20. CONCENTRATION LEVELS OF TRACE METALS IN FISH AND ...

    African Journals Online (AJOL)

    The concentrations of six trace metals (Pb, Zn, Cu, Cr, Ni and Cd) in fish and sediment samples from Kubanni River located in Zaria, Northern Nigeria, were investigated. The river receives agricultural runoff and municipal wastewaters, and is utilized for drinking, fishing and irrigation. Fractionation of trace metals in the river ...

  1. The effects of heavy metals concentration on some commercial fish ...

    African Journals Online (AJOL)

    A study was conducted on commercially important fish species of heavy metals in water bodies. The primary objectives were to find out the amount of heavy metals concentration in the fish species, sediments and water samples at the deep and shallow part of the river, to determine the toxicity and relationship between the ...

  2. Environmental implication of metal concentrations in soil, plant foods ...

    African Journals Online (AJOL)

    ... respectively, while Cd was not at detectable range of atomic absorption spectrophotometer. Most metals from the soil were more highly concentrated than the corresponding values in the plant foods harvested in the same soil; samples showed evidence of bioaccumulation. Metal values of the plant foods harvested in the ...

  3. Concentration of heavy metals from traffic emissions on plant ...

    African Journals Online (AJOL)

    In recent years, emission and combustion of fossils and fuels have been identified as primary sources of atmospheric metallic burden. Detailed information about this is not readily available in Nigeria. This study was therefore carried out to determine the concentration of heavy metals (e.g. lead, mercury and cadmium} ...

  4. Metal concentrations in selected organs and tissues of five Red ...

    African Journals Online (AJOL)

    ... existed between coots of the reference site (Steynsrus farm dams) and those from the other four localities. It is concluded that the impact of metal-containing diets on the tissue concentrations of these metals in birds plays a far more significant role compared to the migratory habits or short-range movements of the coots.

  5. Feeding habits and trace metal concentrations in the muscle of ...

    African Journals Online (AJOL)

    Diet composition and trace metal concentration in the muscle of the lapping minnow Garra quadrimaculata (Rüppell, 1835) was investigated to study the trophic status of the species as well as to assess the level of bioaccumulation of heavy metals in the body of the fish. The study was conducted based on 328 gut samples ...

  6. Trend of Heavy Metal Concentrations in Lagos Lagoon Ecosystem

    African Journals Online (AJOL)

    komla

    The distribution and occurrence of heavy metals in the sediment, water and benthic animals of the Lagos lagoon ... sediment, water and animal samples collected from zones 1-3 of the lagoon that received most of the industrial effluents ..... drainage channels and streams continued increasing concentrations of heavy metals.

  7. Heavy metal concentrations in, and human health risk assessment ...

    African Journals Online (AJOL)

    Water, sediment and fish samples were collected for six months and heavy metals were determined using an Atomic Absorption Spectrometer. Fe ranked highest in water and sediment, with concentrations of 2.74 mg l−1 and 61.60 mg kg−1, respectively. Metals followed the magnitude of Fe > Mn > Ni > V > Pb in the water ...

  8. Heavy metals concentration in various tissues of two freshwater ...

    African Journals Online (AJOL)

    Heavy metals like cadmium, zinc, copper, chromium, lead and mercury were measured in the various tissues of Labeo rohita and Channa striatus and in the water samples collected from ... The values of heavy metals concentration in the present study are within the maximum permissible levels for drinking water and fish.

  9. assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    userpc

    guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit of WHO. Keywords: Atomic Absorption Spectrophotometers, Heavy Metals, Water, Kauru Local. Government Area.

  10. Concentration levels of metals in commercially available Ethiopian ...

    African Journals Online (AJOL)

    The concentrations of nine essential metals (K, Mg, Ca, Na, Mn, Fe, Cu, Zn, Co) and two non-essential (Pb, Cd) metals were determined in three brands of commercially available roasted Ethiopian coffee powders (Abyssinia, Alem and Pride) obtained from local markets and their infusions using flame atomic absorption ...

  11. Metal concentration in some seaweeds of Goa (India)

    Digital Repository Service at National Institute of Oceanography (India)

    Agadi, V.V.; Bhosle, N.B.; Untawale, A.G.

    Seventeen species of marine algae collected from five localities of Goa, were analysed for Co, Cu, Fe, Mn, Ni, Pb and Zn, using atomic absorption spectrophotometer. All the seven metals showed considerable variations in their concentration. The role...

  12. Adsorption of Metallic Ions onto Chitosan : Equilibrium and Kinetic Studies

    OpenAIRE

    Benavente, Martha

    2008-01-01

    Equilibrium isotherms and the adsorption kinetics of heavy metals onto chitosan were studied experimentally. Chitosan, a biopolymer produced from crustacean shells, has applications in various areas, particularly in drinking water and wastewater treatment due to its ability to remove metallic ions from solutions. The adsorption capacity of chitosan depends on a number of parameters: deacetylation degree, molecular weight, particle size and crystallinity. The purpose of this work was to study ...

  13. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    Polymethyl methacrylate (PMMA) was prepared by solution polymerization method. Different concentrations (10, 20 and 40%) of Ni powder were dispersed in PMMA and the composite films were prepared by casting method. These films were irradiated with 120 MeV Ni 10 + ions at a fluence of 5 × 1012 ions/cm2. Electrical ...

  14. Metal ion binding to iron oxides

    NARCIS (Netherlands)

    Hiemstra, T.; Riemsdijk, van W.H.; Benedetti, M.F.; Ponthieu, M.

    2006-01-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to

  15. DETERMINATION OF METAL IONS RELEASED BY STAINLESS ...

    African Journals Online (AJOL)

    Preferred Customer

    Also taking into account the fact that, in body conditions implant corrosion products are disseminated and eventually eliminated. The result that SS arch bar used in orthodontic appliances corrode in bio-fluids over an extended time interval is of great clinical significance in evaluating their bio-compatibility, the levels of metal.

  16. Data mining of metal ion environments present in protein structures.

    Science.gov (United States)

    Zheng, Heping; Chruszcz, Maksymilian; Lasota, Piotr; Lebioda, Lukasz; Minor, Wladek

    2008-09-01

    Analysis of metal-protein interaction distances, coordination numbers, B-factors (displacement parameters), and occupancies of metal-binding sites in protein structures determined by X-ray crystallography and deposited in the PDB shows many unusual values and unexpected correlations. By measuring the frequency of each amino acid in metal ion-binding sites, the positive or negative preferences of each residue for each type of cation were identified. Our approach may be used for fast identification of metal-binding structural motifs that cannot be identified on the basis of sequence similarity alone. The analysis compares data derived separately from high and medium-resolution structures from the PDB with those from very high-resolution small-molecule structures in the Cambridge Structural Database (CSD). For high-resolution protein structures, the distribution of metal-protein or metal-water interaction distances agrees quite well with data from CSD, but the distribution is unrealistically wide for medium (2.0-2.5A) resolution data. Our analysis of cation B-factors versus average B-factors of atoms in the cation environment reveals substantial numbers of structures contain either an incorrect metal ion assignment or an unusual coordination pattern. Correlation between data resolution and completeness of the metal coordination spheres is also found.

  17. Isolation of transplutonium elements on ion exchangers from solutions of high salt concentration

    International Nuclear Information System (INIS)

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1985-01-01

    The behaviour of transplutonium elements (TPE) on cation and anion exchangers in aqueous alcoholic solutions of chlorides and nitrates of some alkali and alkaline earth metals depending on different factors: salt concentration, content of alcohol and of acid in the solution as well as the nature of a cation was studied. The data obtained were used to determine the optimal conditions of concentration of TPE on ion exchangers from solutions containing great quantities of salts. The advantages of the use of aqueous alcoholic solutions of nitric acid in the isolation of TPE are shown. (author)

  18. Theory Meets Experiment: Metal Ion Effects in HCV Genomic RNA Kissing Complex Formation

    Directory of Open Access Journals (Sweden)

    Li-Zhen Sun

    2017-12-01

    Full Text Available The long-range base pairing between the 5BSL3. 2 and 3′X domains in hepatitis C virus (HCV genomic RNA is essential for viral replication. Experimental evidence points to the critical role of metal ions, especially Mg2+ ions, in the formation of the 5BSL3.2:3′X kissing complex. Furthermore, NMR studies suggested an important ion-dependent conformational switch in the kissing process. However, for a long time, mechanistic understanding of the ion effects for the process has been unclear. Recently, computational modeling based on the Vfold RNA folding model and the partial charge-based tightly bound ion (PCTBI model, in combination with the NMR data, revealed novel physical insights into the role of metal ions in the 5BSL3.2-3′X system. The use of the PCTBI model, which accounts for the ion correlation and fluctuation, gives reliable predictions for the ion-dependent electrostatic free energy landscape and ion-induced population shift of the 5BSL3.2:3′X kissing complex. Furthermore, the predicted ion binding sites offer insights about how ion-RNA interactions shift the conformational equilibrium. The integrated theory-experiment study shows that Mg2+ ions may be essential for HCV viral replication. Moreover, the observed Mg2+-dependent conformational equilibrium may be an adaptive property of the HCV genomic RNA such that the equilibrium is optimized to the intracellular Mg2+ concentration in liver cells for efficient viral replication.

  19. Using Metal Complex Ion-Molecule Reactions in a Miniature Rectilinear Ion Trap Mass Spectrometer to Detect Chemical Warfare Agents

    Science.gov (United States)

    Graichen, Adam M.; Vachet, Richard W.

    2013-06-01

    The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n]y+ complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWAs. Results show that upon entering the vacuum system via a poly(dimethylsiloxane) (PDMS) membrane introduction, low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), can react with metal complex ions generated by electrospray ionization (ESI), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n]2+ complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below reported exposure limits for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations.

  20. Sorption of heavy metal ions on new metal-ligand complexes chemically derived from Lycopodium clavatum

    Energy Technology Data Exchange (ETDEWEB)

    Pehlivan, E.; Ersoz, M.; Yildiz, S. [Univ. of Selcuk, Konya (Turkey); Duncan, H.J. [Univ. of Glasgow, Scotland (United Kingdom)

    1994-08-01

    Sorption of heavy metal ions from aqueous solution has been investigated as a function of pH using a novel exchanger system whereby Lycopodium clavatum is functionalized with carboxylate and glyoxime metal-ligand complexes. The new ligand exchangers were prepared using a reaction of diaminosporopollenin with various metal-ligand complexes of glyoxime and monocarboxylic acid. The sorptive behavior of these metal-ligand exchangers and the possibilities to remove and to recover selectively heavy metal cations using these systems are discussed on the basis of their chemical natures and their complexing properties.

  1. Silica Nanoparticle-Enhanced Fluorescent Sensor Array for Heavy Metal Ions Detection in Colloid Solution.

    Science.gov (United States)

    Peng, Juanjuan; Li, Junyao; Xu, Wang; Wang, Lu; Su, Dongdong; Teoh, Chai Lean; Chang, Young-Tae

    2018-02-06

    Sensitivity and detection limit are two vital factors that affect fluorophores-based sensing and imaging system. However, it remains a challenge to improve the sensitivity and detection limit of fluorophores, largely due to their limited response and photophysical properties. In this study, we report for the first time, a novel approach to enhance the sensitivity and detection limit of probes using silica nanoparticles, also known as silica nanoparticles-enhanced fluorescence (SiEF). SiEF can drastically improve the fluorescence intensities and detection limit of fluorophores. A SiEF-improved fluorescent sensor array for rapid and sensitive identification of different heavy metal ions is achieved, and a 3D spatial dispersion graph is obtained based on the SiEF-improved fluorescent sensor array, which provides a lower concentration dependent pattern than fluorophores alone, allowing qualitative, quantitative, and sensitive detection of heavy metal ions. Furthermore, with UV lamp irradiation of the sensor-metal ion mixtures, the output signals enable direct visual of heavy metal ions with low concentration. Thus, the SiEF approach provides a simple and practical strategy for fluorescent probes to improve their sensitivity and detection limit in analytes sensing.

  2. Spontaneous Phase Transfer-Mediated Selective Removal of Heavy Metal Ions Using Biocompatible Oleic Acid.

    Science.gov (United States)

    Chang, Jeehan; Yoo, Sooyeon; Lee, Wooju; Kim, Dongchoul; Kang, Taewook

    2017-12-01

    Here, we propose an environmentally benign removal technique for heavy metal ions based on selective and spontaneous transfer to oleic acid. The ions can be removed via (1) the selective and rapid complexation with the carboxylic end of oleic acid at an oleic acid/water interface, and (2) the diffusion of such complex into the oleic acid layer. A wide variety of heavy metal ions such as Cu 2+ , Pb 2+ , Zn 2+ , and Ni 2+ can be selectively removed over K + and Na + . For example, the concentration of Cu 2+ is reduced to below 1.3 ppm within 24 h, which corresponds to the level of Cu 2+ permitted by the Environmental Protection Agency. The addition of ethylenediamine ligand to the metal ion solutions is also shown to enhance the phase transfer. The removal efficiency is increased by up to 6 times when compared with that in the absence of the ligand and follows the order, Cu 2+ (99%) > Pb 2+ (96%) > Zn 2+ (95%) > Ni 2+ (65%). Moreover, the removal time can be shortened from 24 h to 1 h. The effect of an emulsion induced by a mechanical agitation on the removal of heavy metal ion is also studied.

  3. Immobilization of Metal Hexacyanoferrate Ion-Exchangers for the Synthesis of Metal Ion Sorbents—A Mini-Review

    Directory of Open Access Journals (Sweden)

    Thierry Vincent

    2015-11-01

    Full Text Available Metal hexacyanoferrates are very efficient sorbents for the recovery of alkali and base metal ions (including radionuclides such as Cs. Generally produced by the direct reaction of metal salts with potassium hexacyanoferrate (the precursors, they are characterized by ion-exchange and structural properties that make then particularly selective for Cs(I, Rb(I and Tl(I recovery (based on their hydrated ionic radius consistent with the size of the ion-exchanger cage, though they can bind also base metals. The major drawback of these materials is associated to their nanometer or micrometer size that makes them difficult to recover in large-size continuous systems. For this reason many techniques have been designed for immobilizing these ion-exchangers in suitable matrices that can be organic (mainly polymers and biopolymers or inorganic (mineral supports, carbon-based matrices. This immobilization may proceed by in situ synthesis or by entrapment/encapsulation. This mini-review reports some examples of hybrid materials synthesized for the immobilization of metal hexacyanoferrate, the different conditionings of these composite materials and, briefly, the parameters to take into account for their optimal design and facilitated use.

  4. Withania somnifera improves semen quality by combating oxidative stress and cell death and improving essential metal concentrations.

    Science.gov (United States)

    Shukla, Kamla Kant; Mahdi, Abbas Ali; Mishra, Vivek; Rajender, Singh; Sankhwar, Satya Narain; Patel, Devender; Das, Mukul

    2011-05-01

    This study investigated the effect of a 3-month treatment with Withania somnifera on apoptosis and intracellular reactive oxygen species (ROS) concentration of spermatozoa and the metal ions copper, zinc, iron and gold in seminal plasma from infertile men (normozoospermic, n=25; oligozoospermic, n=25; and asthenozoospermic, n=25). The apoptotic and necrotic cell distribution were analysed by annexin-V binding and propidium iodide uptake using flow cytometry. ROS generation was measured by fluorescence intensity and metal ions were analysed by atomic absorption spectrophotometry. The results demonstrated that, prior to treatment, sperm apoptosis and intracellular ROS concentrations were significantly higher in all groups of infertile men compared with controls (Pseminal plasma were lower. Treatment with W. somnifera significantly reduced apoptosis in normozoospermic and oligozoospermic men and ROS concentrations in oligozoospermic and asthenozoospermic men (all Piron, and gold in seminal plasma were measured. The apoptotic and necrotic cell distribution were analysed by annexin-V binding and propidium iodide uptake using flow cytometry. ROS generation was measured by fluorescence intensity and metal ions were analysed by atomic absorption spectrophotometry. The results demonstrated that prior, to treatment, apoptosis and intracellular ROS concentrations were significantly higher in all groups of infertile men compared with controls. Similarly, the concentrations of the essential metal ions Cu(2+), Zn(2+), Fe(2+) and Au(2+) in seminal plasma were lower. Treatment with W. somnifera significantly reduced apoptosis and ROS concentrations and improved metal ion concentrations in infertile subjects. It is concluded that W. somnifera improves semen quality by reducing oxidative stress and cell death and improving essential metal ion concentrations. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Pathogens and Heavy Metals Concentration in Green Leafy Vegetables

    OpenAIRE

    Abida Begum; S. Harikrishna

    2010-01-01

    Presence of heavy metal and bacterial pathogen in randomly collected samples of green leafy from various stations of Bengaluru city was detected. Heavy metals (cadmium, zinc, copper, iron, chromium, nickel and lead) were analyzed by tri-acid digestion method. The presence of heavy metals in general was in the order of Cd>Zn>Cu>Fe>Cr>Pb. Trace metal concentration in all green leafy vegetables of stations 1-5 were within permissible limit and it has been exceeded in station 6-10. This indicat...

  6. Heavy metal concentrations in forest litter - indicators of pollutant depositions

    International Nuclear Information System (INIS)

    Angehrn-Bettinazzi, C.; Hertz, J.

    1990-01-01

    By means of a comparison of the heavy metal concentrations in organic litter from different sites it was examined to what extent the heavy metal concentrations correlate with the atmospheric pollution situation. It follows from the variance analyses: The atmospheric pollution situation is the dominating factor for the heavy metal concentration in L litter. The elements Cd and Zn show a pH-sensitivity at the same time. The lead concentration in the L n and L v horizons reflects the atmospheric pollution situation of the corresponding site. Specific pollution patterns, e.g. in the case of hillside sites, are neither detected through the gravitational deposition (open land) nor through the airborne dust concentration; these can be recognized by the monitor 'litter'. Only horizons in the intercrown area with identical tree vegetation, which are characterized in detail, must be used for monitoring. (orig.) [de

  7. Adsorption of heavy metals ions on portulaca oleracea plants

    International Nuclear Information System (INIS)

    Naqvi, R.R.

    2005-01-01

    The aim of this study is to report the ability of portulaca oleracea (Fershi in Urdu) biomass grown in uncontaminated soils to adsorb or uptake lead, cadmium, arsenic, cobalt and copper from aqueous solutions. In order to help understand the metal binding mechanism, laboratory experiments performance to determine optimal binding, and binding capacity for each of the above mentioned metals. These experiments were carried out for the mass of crushed portulaca stems. Portulaca is a plant that grows abundantly in temperature climate in the area of Quetta Balochistan. It has reddish stem and thick succulent leaves. This plant has been found to be good adsorbent for heavy metals ions. (author)

  8. Interaction of Different Divalent Metal Ions with Lipid Bilayer: Impact on the Encapsulation of Doxorubicin by Lipid Bilayer and Lipoplex Mediated Deintercalation.

    Science.gov (United States)

    Das, Anupam; Adhikari, Chandan; Chakraborty, Anjan

    2017-03-02

    In this article, we investigate the influence of different metal ions (Ca 2+ , Mg 2+ , and Zn 2+ ) on binding of an anticancer drug doxorubicin (DOX) to DMPC bilayer and lipoplex mediated deintercalation of DOX from DOX-DNA complex. Our study reveals that lipid bilayer in the presence of different metal ions displays much higher binding affinity toward DOX than bare lipid bilayer does. Further, this affinity for a particular metal ion increases linearly with metal ion concentration. The steady state and time-resolved fluorescence studies reveal that binding of DOX with lipid bilayer in the presence of different metal ions varies in the order of Ca 2+ > Mg 2+ > Zn 2+ . The rotational relaxation of DOX in the presence of different metal ions takes place in the same order. We explain these phenomena in the light of alteration of the physical properties brought about by metal ions. Moreover, we find that binding pattern of metal ions with lipid head groups influences the intake of DOX in lipid bilayer. We exploit the binding of DOX with bilayer to study the deintercalation of DOX from DOX-DNA complex. We observe that with increase in metal ion concentration the deintercalation increases. Among all metal ions, Ca 2+ appears to be most effective in deintercalation compared to other metal ions. The time-resolved fluorescence anisotropy and circular dichroism measurements indicate that in the presence of Ca 2+ , lipid bilayer offer strongest interaction with DNA while the same is weakest for Zn 2+ . This explains the highest percentage of deintercalation of DOX from drug-DNA complex in the presence of Ca 2+ . Overall the present study demonstrates a new strategy that binding of drug molecules with lipid bilayer and deintercalation of the same from drug-DNA complex can be tuned by modulation of lipid bilayer with different metal ions and their concentration.

  9. Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent.

    Science.gov (United States)

    Dong, Cuihua; Zhang, Fulong; Pang, Zhiqiang; Yang, Guihua

    2016-10-20

    Contamination of heavy metal in wastewater has caused great concerns on human life and health. Developing an efficient material to eliminate the heavy metal ions has been a popular topic in recent years. In this work, sulfonated cellulose (SC) was explored as efficient adsorbent for metal ions in solution. Thermo gravimetric analyzer (TGA), X-ray diffraction (XRD) and Fourier-transform infrared spectrometer (FTIR) first analyzed the characterizations of SC. Subsequently, effects of solution pH, adsorbent loading, temperature and initial metal ion concentration on adsorption performance were investigated. The results showed that sulfonated modification of cellulose could decrease the crystallinity and thermostability of cellulose. Due to its excellent performance of adsorption to metal ions, SC could reach adsorption equilibrium status within as short as 2min. In multi-component solution, SC can orderly removes Fe(3+), Pb(2+) and Cu(2+) with excellent selectivity and high efficiency. In addition, SC is a kind of green and renewable adsorbent because it can be easily regenerated by treatment with acid or chelating liquors. The mechanism study shows that the sulfonic group play a major role in the adsorption process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Neutralization by metal ions of the toxicity of sodium selenide.

    Directory of Open Access Journals (Sweden)

    Marc Dauplais

    Full Text Available Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺, (ii metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co²⁺ and Ni²⁺ and, finally, (iii metal ions which do not afford protection and do not interact (Ca²⁺, Mg²⁺, Mn²⁺ or weakly interact (Fe²⁺ with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB, the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds.

  11. Host Materials for Transition-Metal Ions

    Science.gov (United States)

    1989-09-01

    Phys. 5cr. 25 (1982), 924. J4. L. DiSiplo, E. Tondello, G. De~ichelis, and L. Oleari , Slater-Condon Parameters for Atoms and Ions of the Second...Bnm* Frequently, the point-charge crystal-field components, Anm, indicate the correct phase relations and are used to determine the phases reported in...745. 5. W. L. Bond, Measurement of the Refractive Indices of Several Crystals, J. Appl. Phys. 36 (1965), 1674. 6. G. Burns, E. A. Geiss, B. A

  12. Methylammonium Lead Bromide Perovskite Battery Anodes Reversibly Host High Li-Ion Concentrations.

    Science.gov (United States)

    Vicente, Nuria; Garcia-Belmonte, Germà

    2017-04-06

    Ions migrate through the hybrid halide perovskite lattice, allowing for a variety of electrochemical applications as perovskite-based electrodes for batteries. It is still unknown how extrinsic defects such as lithium ions interact with the hybrid perovskite structure during the charging process. It is shown here that Li + intake/release proceeds by topotactic insertion into the hybrid perovskite host, without drastic structural alterations or rearrangement. Even the perovskite electronic band structure remains basically unaltered upon cycling. The occurrence of conversion or alloying reactions producing metallic lead is discarded. Stable specific capacity ∼200 mA h g -1 is delivered, which entails outstanding Li-ion molar concentration, x in Li x CH 3 NH 3 PbBr 3 , approaching 3. Slight distortions of the perovskite lattice upon cycling explain the highly reversible Li + intercalation reaction that also exhibits an excellent rate capability.

  13. Interaction of Hydroxyproline with Bivalent Metal Ions in Chemical ...

    African Journals Online (AJOL)

    Arecent technique involving the use of paper electrophoresis is described for the study of equilibria in binary complex systems in solution. The stability constants of the ML and ML2 complex species of some metal ions, namely beryllium(II) and cobalt(II), with hydroxyproline were determined in 0.1 mol L–1 perchloric acid ...

  14. Speciation and stability of methylene blue-metal-thiocyanate ion ...

    African Journals Online (AJOL)

    The relative stabilities indicate that cobalt is preferred to other two metals in the speciation of ternary complexes comparable with similar complexes in biosystems. This study also provides a method for the spectrophotometric determination of Co(II) and Zn(II) ions at nanogram levels at 25 oC and an ionic strength of 0.15 M.

  15. Dimeric Complexes of Tryptophan with M2+ Metal Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.

    2009-01-01

    IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and

  16. Synthesis, photophysical and metal ion signalling behaviour of mono

    Indian Academy of Sciences (India)

    Unknown

    Fluorescence decay behaviour of the systems suggests a through-space nature of PET. The systems exhi- bit off–on fluorescence signalling in the aprotic media in the presence of several metal ions, some of which are well known for their fluorescence quenching abilities. Diazacrown derivative, II, appears to be a somewhat ...

  17. Utilization of Plant Refuses as Component of Heavy Metal Ion ...

    African Journals Online (AJOL)

    The ability of the fabricated sensors to detect the presence of heavy metals was analyzed using electrochemical methods like cyclic voltammetry and differential pulse anodic stripping voltammetry. Results showed that the fabricated electrode were able to detect the presence of mercury and lead ions in aqueous solutions ...

  18. Removal of metal ions using dead-end filtration

    African Journals Online (AJOL)

    2005-07-03

    Jul 3, 2005 ... Surfactants due to their high selectivity properties have been used in enhancing membrane filtration for the removal of metal ions in aqueous solutions. Natural surfactants are preferred to synthetic surfactants because the synthetic surfactants have the disadvantage of introducing secondary pollutants into ...

  19. Equilibrium and kinetics studies of metal ion adsorption on dyed ...

    African Journals Online (AJOL)

    Batch equilibration studies were conducted to determine the nature of adsorption of Zn (II) and Cu (II) onto dyed coconut pollens. The nature of adsorption of metal ions was explained using the Langmuir equation. The calculated values of equilibrium parameter indicated favourable adsorption by the adsorbents. Also the ...

  20. Equilibrium and kinetics studies of metal ion adsorption on dyed ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... Batch equilibration studies were conducted to determine the nature of adsorption of Zn (II) and Cu (II) onto dyed coconut pollens. The nature of adsorption of metal ions was explained using the Langmuir equation. The calculated values of equilibrium parameter indicated favourable adsorption by the.

  1. Broad-beam, high current, metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the 'seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs

  2. Do soft drinks affect metal ions release from orthodontic appliances?

    Science.gov (United States)

    Mikulewicz, Marcin; Wołowiec, Paulina; Loster, Bartłomiej W; Chojnacka, Katarzyna

    2015-01-01

    The effect of orange juice and Coca Cola(®) on the release of metal ions from fixed orthodontic appliances. A continuous flow system designed for in vitro testing of orthodontic appliances was used. Orange juice/Coca Cola(®) was flowing through the system alternately with artificial saliva for 5.5 and 18.5h, respectively. The collected samples underwent a multielemental ICP-OES analysis in order to determine the metal ions release pattern in time. The total mass of ions released from the appliance into orange juice and Coca Cola(®) (respectively) during the experiment was calculated (μg): Ni (15.33; 37.75), Cr (3.604; 1.052), Fe (48.42; ≥ 156.1), Cu (57.87, 32.91), Mn (9.164; 41.16), Mo (9.999; 30.12), and Cd (0.5967; 2.173). It was found that orange juice did not intensify the release of metal ions from orthodontic appliances, whereas Coca Cola(®) caused increased release of Ni ions. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions

    International Nuclear Information System (INIS)

    Yang, Hongyu; Tang, Zhenghua; Wang, Likai; Zhou, Weijia; Li, Ligui; Zhang, Yongqing; Chen, Shaowei

    2016-01-01

    Highlights: • Apparent color change upon the addition of Hg 2+ or As 3+ ions into A3-AuNPs solution. • Distinct color change of A3-AgNPs solution only in the presence of Hg 2+ ions. • The Hg 2+ concentration limit of A3-AgNPs about 40 times lower than A3-AuNPs. • Based on the DLS, TEM and XPS results, two reaction mechanisms have been proposed. - Abstract: Peptide A3-capped gold and silver nanoparticles were prepared by chemical reduction of metal salt precursors. The nanoparticles exhibited apparent but distinctly different color changes upon the addition of selected heavy metal ions. For gold nanoparticles, the solution color was found to change from red to blue in the presence of Hg 2+ or As 3+ ions, accompanied with broadening and a red-shift of the surface plasmon resonance peak. In contrast, silver nanoparticles showed an apparent color change from yellow to colorless only in the presence of Hg 2+ , along with a blue-shift and diminishment of the surface plasmon resonance peak. The Hg 2+ reaction concentration limit of silver nanoparticle was about 40 times lower than that of gold nanoparticle. Based on the dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopic results, the reaction mechanism has been proposed. Such a sensitive variation of the nanoparticle optical properties to selective ions might be exploited for ion detection for potential applications.

  4. Very broad beam metal ion source for large area ion implantation application

    International Nuclear Information System (INIS)

    Brown, I.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Yao, X.

    1993-01-01

    The authors have made and operated a very broad beam version of vacuum arc ion source and used it to carry out high energy metal ion implantation of a particularly large substrate. A multiple-cathode vacuum arc plasma source was coupled to a 50 cm diameter beam extractor (multiple aperture, accel-decel configuration) operated at a net extraction voltage of up to 50 kV. The metal ion species chosen were Ni and Ta. The mean ion charge state for Ni and Ta vacuum arc plasmas is 1.8 and 2.9, respectively, and so the mean ion energies were up to about 90 and 145 keV, respectively. The ion source was operated in a repetitively pulsed mode with pulse length 250 μs and repetition rate several pulses per second. The extracted beam had a gaussian profile with FWHM about 35 cm, giving a nominal beam area of about 1,000 cm 2 . The current of Ni or Ta metal ions in the beam was up to several amperes. The targets for the ion implantation were a number of 24-inch long, highly polished Cu rails from an electromagnetic rail gun. The rails were located about 80 cm away from the ion source extractor grids, and were moved across a diameter of the vessel in such a way as to maximize the uniformity of the implant along the rail. The saturation retained dose for Ta was limited to about 4 x 10 16 cm -2 because of the rather severe sputtering, in accordance with the theoretical expectations for these implantation conditions. Here they describe the ion source, the implantation procedure, and the kinds of implants that can be produced in this way

  5. Concentrations of metals in river sediment and wetland vegetations ...

    African Journals Online (AJOL)

    Concentrations of metals in river sediment and wetland vegetations in mining, Lake Victoria basin, Tanzania. ... Mercury concentrations in sugarcane juice were below the limit of detection (0.01mg/l) in all samples even those that were harvested closest to the gold ore-washing site at Samina. It is concluded that small-scale ...

  6. Heavy metal concentrations in water, sediment and periwinkle ...

    African Journals Online (AJOL)

    Heavy metal concentration in water, sediment and Periwinkle samples from three locations (Itu-River, Abuloma River and Oron River) in the Niger Delta Region of Nigeria were evaluated using atomic absorption flame photometry. Result showed that cadmium (Cd) concentration was highest in water samples from Abuloma ...

  7. Metal concentration at surface water using multivariate analysis and ...

    African Journals Online (AJOL)

    This study defined the concentration of metals in Kerteh and Paka River water and their potential health risk towards human. 54 water samples were collected and analyzed using ICP-OES. Results revealed that most of the stations in Kerteh River gave the higher concentration of Cd, Cu, Zn, Co, Ni, As, Cr and Pb compared ...

  8. Determination of some heavy metals concentration in the tissues of ...

    African Journals Online (AJOL)

    Lead (Pb), Cobalt (Co), and Copper (Cu) concentrations were determined in bone, muscle and gill of two fish species (tilapia fish and cat-fish) collected from Tiga dam Kano, Nigeria during October, 2010. The mean concentrations of the heavy metals varied depending on the type of the tissue and fish species. Generally ...

  9. Pre-concentration of Toxic Metals using Electrospun Amino ...

    African Journals Online (AJOL)

    order kinetics. The highest pre-concentration achieved using the sorbent was 41.99 (Ni in treated wastewater). The capacity of the sorbent to pre-concentrate the toxic metals was compared with those of aqua regia and HNO3 + H2O2 digestions.

  10. Development of sensitive holographic devices for physiological metal ion detection

    Science.gov (United States)

    Sabad-e.-Gul; Martin, Suzanne; Cassidy, John; Naydenova, Izabela

    2017-08-01

    The development of selective alkali metal ions sensors in particular is a subject of significant interest. In this respect, the level of blood electrolytes, particularly H+, Na+, K+ and Cl- , is widely used to monitor aberrant physiologies associated with pulmonary emphysema, acute and chronic renal failure, heart failure, diabetes. The sensors reported in this paper are created by holographic recording of surface relief structures in a self-processing photopolymer material. The structures are functionalized by ionophores dibenzo-18-crown-6 (DC) and tetraethyl 4-tert-butylcalix[4]arene (TBC) in plasticised polyvinyl chloride (PVC) matrix. Interrogation of these structures by light allows indirect measurements of chemical analytes' concentration in real time. We present results on the optimisation and testing of the holographic sensor. A self-processing acrylamide-based photopolymer was used to fabricate the required photonic structures. The performance of the sensors for detection of K+ and Na+ was investigated. It was observed that the functionalisation with DC provides a selective response of the devices to K+ over Na+ and TBC coated surface structures are selectively sensitive to Na+. The sensor responds to Na+ within the physiological ranges. Normal levels of Na+ and K+ in human serum lie within the ranges 135-148mM and 3.5-5.3 mM respectively.

  11. Modification of medical metals by ion implantation of copper

    Science.gov (United States)

    Wan, Y. Z.; Xiong, G. Y.; Liang, H.; Raman, S.; He, F.; Huang, Y.

    2007-10-01

    The effect of copper ion implantation on the antibacterial activity, wear performance and corrosion resistance of medical metals including 317 L of stainless steels, pure titanium, and Ti-Al-Nb alloy was studied in this work. The specimens were implanted with copper ions using a MEVVA source ion implanter with ion doses ranging from 0.5 × 10 17 to 4 × 10 17 ions/cm 2 at an energy of 80 keV. The antibacterial effect, wear rate, and inflexion potential were measured as a function of ion dose. The results obtained indicate that copper ion implantation improves the antibacterial effect and wear behaviour for all the three medical materials studied. However, corrosion resistance decreases after ion implantation of copper. Experimental results indicate that the antibacterial property and corrosion resistance should be balanced for medical titanium materials. The marked deteriorated corrosion resistance of 317 L suggests that copper implantation may not be an effective method of improving its antibacterial activity.

  12. Method for removing metal ions from solution with titanate sorbents

    Science.gov (United States)

    Lundquist, Susan H.; White, Lloyd R.

    1999-01-01

    A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.

  13. Preparation of polyelectrolyte-modified membranes for heavy metal ions removal.

    Science.gov (United States)

    Mokhter, M A; Lakard, S; Magnenet, C; Euvrard, M; Lakard, B

    2017-10-01

    Polyethersulfone membranes were modified by polyelectrolyte (PE) multilayers, made of poly(allylamine hydrochloride) with poly(styrene sulfonate), to remove Cu 2+ , Zn 2+ and Ni 2+ heavy metal cations from aqueous solutions in a wide range of metal concentration (50-1200 ppm). After characterization of the modified membranes, the efficiency of the process was estimated for single heavy metal ions solution leading to high rejection rates (>90% for 50 ppm) and good adsorption capacities (7.0-8.5 mg cm -2 ) whatever the metal ion tested. The stability in time of the modified membranes was proved by repeating successive filtrations with the same membrane. The filtration process was also used with mixed solutions composed of Cu 2+ , Zn 2+ and Ni 2+ ions. The rejection rates obtained for these ternary systems were very similar to the ones obtained for the single metal solutions, showing that the filtration process is still efficient for mixed solutions and can be applied for the decontamination of complex solutions. The long-term stability of the modified membranes was also demonstrated for mixed solutions. The high efficiency of the filtration process and the good adsorption capacities of the modified membranes are due to the ability of the PEs used to complex all the metallic dications tested in this study.

  14. Determination of molybdenum (VI) in sea water with preliminary concentration by the method of ion flotation

    International Nuclear Information System (INIS)

    Andreeva, I. Yu.; Drapchinskaya, O.L.; Lebedeva, L.I.

    1985-01-01

    The purpose of this paper is to assess the feasibility of using the method of ion flotation for the concentration of microamounts of molybdenum (VI) during determination in sea water. The ion flotation method is used for the purification of industrial sewage from the ions of nonferrous metals, including molybdenum (VI) with its content of up to 50 mg/liter. A 1.10 -4 M solution of sodium molybdate in 0.1M NaOH was used. The effect of different factors on the ion flotation process of molybdenum (VI) was investigated: pH of the solution, flotation times, concentrations of surface-active substances (SAS), molybdenum (IV), extraneous salts. Data presented show that the ion flotation method in conjunction with the photometric method of determining molybdenum with brompyrogallol red (BPR) and cetylpridinium chloride (CP) (limit of detection 0.02 micrograms/liter) allows the content of molybdenum (VI) in sea water to be established with sufficient reliability and reproducibility

  15. Interaction of beta-amyloid(1-40) peptide with pairs of metal ions: An electrospray ion trap mass spectrometric model study.

    Science.gov (United States)

    Drochioiu, Gabi; Manea, Marilena; Dragusanu, Mihaela; Murariu, Manuela; Dragan, Ecaterina Stela; Petre, Brandusa Alina; Mezo, Gabor; Przybylski, Michael

    2009-09-01

    The stoichiometries and the affinity toward simple and paired metal ions of synthetic amyloid-beta(1-40) peptide (Abeta1-40) were investigated by electrospray ion trap mass spectrometry (ESI-MS), circular dichroism (CD), and atomic force microscopy (AFM). The results lead to the working hypothesis that pH-dependent metal binding to Abeta1-40 may induce conformational changes, which affect the affinity toward other metals. A significant copper and zinc binding to Abeta1-40 peptide at pH 5.5 was found, whereas nickel ions commonly bind to each molecule of beta-amyloid peptide. Some complexes of Abeta1-40 with more than one nickel ion were identified by ESI-MS. In addition, nickel ions proved to enhance Abeta oligomerization. On increasing pH, up to 12 ions of zinc may bind to a single Abeta molecule. Under the same pH and concentration conditions, the binding pattern of the independent copper and silver ions to Abeta1-40 was different from that of the equimolecular mixture of the two metal ions. One might assume that some conformational changes due to water loss altered the capacity of Abeta peptide to bind certain heavy metal ions. As a consequence, copper-silver interaction with the binding process to Abeta1-40 became highly complex. A competition between silver and nickel ions for Abeta1-40 binding sites at high pH was also observed. New strategies were proposed to identify the characteristic signals for some important metal ion-peptide complexes in the spectra recorded at high pH or high concentrations of metal ions. To explain the formation of such a large number of high metal ion-Abeta complexes, we took into consideration the participation of both histidine residues and free amino groups as well as carboxylate ones in the binding process. Finally, CD and AFM studies supported the mass spectrometric data.

  16. The investigation of metal concentrations in street dust samples in Aqaba city, Jordan.

    Science.gov (United States)

    Al-Khashman, Omar Ali

    2007-06-01

    The concentrations of metals (Fe, Zn, Cu, Cr, Pb, Cd, Ni, Mn and Co) in 140 street dust samples were collected from Aqaba city, Jordan. These samples were determined using flame atomic absorption spectrophotometry after digestion with aqua regia. The highest levels of metal concentrations were found in the samples from heavy traffic. While the lowest levels of metal ions were noted in the street dust samples from hospital and health centers and school gardens. The results of this study were compared with several cities around the world. The levels of the metal concentrations found were generally below the mean world-wide values of street dust samples. Metal values in urban street dust samples were several times higher than the control levels. The statistical analyses were applied to the data matrix to determine the analytical results and to identify the possible source of pollution in the studied area. Correlations between the metal concentrations of the street dust samples were obtained. Factor analysis showed that the area was mainly influenced by three sources, namely lithogenic, traffic, and industrial.

  17. Ion spectra of the metal vapor vacuum arc ion source with compound and alloy cathodes

    Science.gov (United States)

    Sasaki, Jun; Brown, Ian G.

    1990-01-01

    In metal vapor vacuum arc (MEVVA) ion sources, vacuum arc plasma with cathodes of single, pure elements has been utilized for the production of metal ions. In this study, we have investigated the charge state distributions of ions produced in vacuum arc plasmas in a MEVVA ion source for the case when the cathode is an alloy or a compound material. The ion charge state spectra were analyzed by means of a time-of-flight apparatus. We have compared the ion spectra for a cathode of an alloy or a compound material with its constituent elements: TiC/TiN/TiO2/Ti/C, SiC/Si/C, WC/W/C U/UN/(UN-ZrC)/Zr/C, and brass/Zn/Cu. We find that the MEVVA produces ions of all constituent elements in the compound and the alloy cathodes. The charge state distribution of each element differs, however, from the charge state distribution obtained in the vacuum arc with a cathode made of the pure, single constituent element. Fractional values of the total ion numbers of each constituent element in the extracted beam depart from the stoichiometry of the elements in the cathode material. In an operation with a TiC cathode, we irradiated a 304 stainless-steel plate with the extracted beam. Results from glow-discharge spectroscopy (GDS) of the surface show that both titanium and carbon are implanted in the substrate after the irradiation.

  18. Metal ion levels and lymphocyte counts

    DEFF Research Database (Denmark)

    Penny, Jeannette Ø; Varmarken, Jens-Erik; Ovesen, Ole

    2013-01-01

    . RESULTS: The T-lymphocyte counts for both implant types declined over the 2-year period. This decline was statistically significant for CD3(+)CD8(+) in the THA group, with a regression coefficient of -0.04 × 10(9)cells/year (95% CI: -0.08 to -0.01). Regression analysis indicated a depressive effect...... of cobalt ions in particular on T-cells with 2-year whole-blood cobalt regression coefficients for CD3+ of -0.10 (95% CI: -0.16 to -0.04) × 10(9) cells/parts per billion (ppb), for CD3+CD4+ of -0.06 (-0.09 to -0.03) × 10(9) cells/ppb, and for CD3(+)CD8(+) of -0.02 (-0.03 to -0.00) × 10(9) cells...

  19. Characterization of surface enhancement of carbon ion-implanted TiN coatings by metal vapor vacuum arc ion implantation

    CERN Document Server

    Chang, C L

    2002-01-01

    The modification of the surfaces of energetic carbon-implanted TiN films using metal vapor vacuum arc (MEVVA) ion implantation was investigated, by varying ion energy and dose. The microhardness, microstructure and chemical states of carbon, implanted on the surface layer of TiN films, were examined, as functions of ion energy and dose, by nanoindenter, transmission electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Results revealed that the microhardness increased from 16.8 up to 25.3 GPa and the friction coefficient decreased to approximately 0.2, depending on the implanted ion energy and dose. The result is attributed to the new microcrystalline phases of TiCN and TiC formed, and carbon concentration saturation of the implanted matrix can enhance the partial mechanical property of TiN films after MEVVA treatment. The concentration distribution, implantation depth and chemical states of carbon-implanted TiN coatings depended strongly on the ion dose and...

  20. Short-Term Metal Ion Trends Following Removal of Recalled Modular Neck Femoral Stems.

    Science.gov (United States)

    Barlow, Brian T; Assini, Joseph; Boles, John; Lee, Yuo-Yu; Westrich, Geoffrey H

    2015-07-01

    Elevated serum metal ions have been well documented with the Rejuvenate modular neck femoral stem (Stryker, Mahwah, NJ); however, the rate at which ion levels decline following revision is less clear. This study included fifty-nine consecutive revisions of Rejuvenate stems for symptomatic ALTR. Blood tests prior to revision and postoperatively at 6weeks, 3months, 6months, and 1year measured serum cobalt and chromium concentrations, ESR, and CRP. At six weeks following revision of a unilateral Rejuvenate, cobalt and chromium levels dropped from preoperative levels by 67% and 42%, respectively. At three months, cobalt levels declined to 19% of preoperative values, but chromium levels remained stable. With this information, surgeons can set realistic expectations for serum metal ion levels following Rejuvenate stem revision. Published by Elsevier Inc.

  1. Development of a four-zone carousel process packed with metal ion-imprinted polymer for continuous separation of copper ions from manganese ions, cobalt ions, and the constituent metal ions of the buffer solution used as eluent.

    Science.gov (United States)

    Jo, Se-Hee; Park, Chanhun; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2011-08-19

    A three-zone carousel process, in which Cu(II)-imprinted polymer (Cu-MIP) and a buffer solution were employed as adsorbent and eluent respectively, has been developed previously for continuous separation of Cu²⁺ (product) from Mn²⁺ and Co²⁺ (impurities). Although this process was reported to be successful in the aforementioned separation task, the way of using a buffer solution as eluent made it inevitable that the product stream included the buffer-related metal ions (i.e., the constituent metal ions of the buffer solution) as well as copper ions. For a more perfect recovery of copper ions, it would be necessary to improve the previous carousel process such that it can remove the buffer-related metal ions from copper ions while maintaining the previous function of separating copper ions from the other 2 impure heavy-metal ions. This improvement was made in this study by proposing a four-zone carousel process based on the following strategy: (1) the addition of one more zone for performing the two-step re-equilibration tasks and (2) the use of water as the eluent of the washing step in the separation zone. The operating conditions of such a proposed process were determined on the basis of the data from a series of single-column experiments. Under the determined operating conditions, 3 runs of carousel experiments were carried out. The results of these experiments revealed that the feed-loading time was a key parameter affecting the performance of the proposed process. Consequently, the continuous separation of copper ions from both the impure heavy-metal ions and the buffer-related metal ions could be achieved with a purity of 91.9% and a yield of 92.8% by using the proposed carousel process based on a properly chosen feed-loading time. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. pH and metal concentration of synovial fluid of osteoarthritic joints and joints with metal replacements.

    Science.gov (United States)

    Milošev, Ingrid; Levašič, Vesna; Vidmar, Janja; Kovač, Simon; Trebše, Rihard

    2017-11-01

    Due to degradation and metal dissolution during articulation of metal joint replacements the chemical periprosthetic environment may change. The aim was to establish whether metal replacements cause the local changes in pH and elevated metal concentrations. pH was measured on samples from 167 patients: native hip and knee osteoarthritic joints, joints with hip and knee replacements revised for aseptic or septic reasons. pH of synovial fluid and periprosthetic tissue was measured perioperatively using a microelectrode and pH indicator papers for removed metal components. Metal concentrations were measured in 21 samples using inductively coupled plasma mass spectrometry. The mean pH value of synovial fluid at native osteoarthritic joints (n = 101) was 7.78 ± 0.38. The mean pH value of synovial fluid at revision aseptic operation (n = 58) was 7.60 ± 0.31, with statistically significant difference (p = 0.002) compared to native osteoarthritic joints. The mean pH value of synovial fluid at revision septic operation (n = 8) was 7.55 ± 0.25, with statistically significant difference (p = 0.038) compared to native osteoarthritic joints. Measurements in tissue and at stems were not reliable. In the majority of samples taken at revision increased levels of cobalt and chromium were measured. A small but statistically significant difference was observed in the pH of synovial fluid between natural joints with degenerative diseases and joints treated with metal replacements. Based on the increased metal levels we expected the value of pH to be lower, but the influence of metal ions is counteracted by the buffering capacity of human body. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2507-2515, 2017. © 2016 Wiley Periodicals, Inc.

  3. Interaction of Metal Ions with Biomolecular Ligands: How Accurate Are Calculated Free Energies Associated with Metal Ion Complexation?

    Czech Academy of Sciences Publication Activity Database

    Gutten, Ondrej; Beššeová, Ivana; Rulíšek, Lubomír

    2011-01-01

    Roč. 115, č. 41 (2011), s. 11394-11402 ISSN 1089-5639 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : metal-ion selectivity * theoretical calculations * stability constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  4. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  5. Storage mediums affect metal concentration in woodlice (Isopoda)

    International Nuclear Information System (INIS)

    Hendrickx, Frederik; Maelfait, J.-P.; Mayer, Ann de; Tack, F.M.G.; Verloo, M.G.

    2003-01-01

    Pitfall traps containing formaldehyde influence dry weights and consequently metal concentrations in woodlice. - Terrestrial invertebrates are becoming widely established as tools to assess heavy metal pollution at contaminated sites. A practical and time saving method to sample terrestrial invertebrates consist of pitfall traps, often filled with a 4% formaldehyde solution and some detergent. The reliability of metal concentrations based on organisms captured and stored in this solution might however be questioned and we therefore tested the effect of formaldehyde on Zn, Cu, Cd and Pb concentration experimentally in three isopod species. Our results showed that in many cases, significant decreases in Cu concentrations compared to animals stored in a freezer were observed that could be as high as 40%, while Zn, Cd and Pb concentrations increased. A regression analysis of individual dry weight on individual size revealed that formaldehyde decreases the dry weight substantially and in that way causes increased measurements of Zn, Cd and Pb concentrations. We conclude that pitfall traps with formaldehyde should better not be used to collect animals in which concentrations of heavy metals or other toxic substances will be determined

  6. Liquid metal alloy ion sources—An alternative for focussed ion beam technology

    International Nuclear Information System (INIS)

    Bischoff, Lothar; Mazarov, Paul; Bruchhaus, Lars; Gierak, Jacques

    2016-01-01

    Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionally into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.

  7. Fabrication of porous zeolite/chitosan monoliths and their applications for drug release and metal ions adsorption.

    Science.gov (United States)

    Zhang, Yongli; Yan, Weiwei; Sun, Zhiming; Pan, Cheng; Mi, Xue; Zhao, Gang; Gao, Jianping

    2015-03-06

    Ordered porous zeolite/chitosan (Zel/Chi) monoliths were prepared by a unidirectional freeze-drying method, and their properties and structures were characterized by various instrumental methods. The metal ion adsorption and the drug release performance of the porous Zel/Chi monoliths were also studied. The release rate of cefalexin from drug-loaded Zel/Chi monoliths depended on the composition and porous structure of the monoliths. The metal ion adsorption capacity of the Zel/Chi monoliths was related to the concentration of the metal ions, the adsorption time and the Zel/Chi ratio. An experimentally maximum adsorption of 89 mg/g was achieved for Cu(2+) ions. The Zel/Chi monoliths with adsorbed Cu(2+) ions effectively catalyzed the reduction of 4-nitrophenol to 4-aminophenol and had good recyclability. They were easily recovered by simply removing them from the reaction system and rinsing them with water. Copyright © 2014. Published by Elsevier Ltd.

  8. Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: a critical review.

    Science.gov (United States)

    Muya, Francis Ntumba; Sunday, Christopher Edoze; Baker, Priscilla; Iwuoha, Emmanuel

    2016-01-01

    Heavy metal ions such as Cd(2+), Pb(2+), Cu(2+), Mg(2+), and Hg(2+) from industrial waste water constitute a major cause of pollution for ground water sources. These ions are toxic to man and aquatic life as well, and should be removed from wastewater before disposal. Various treatment technologies have been reported to remediate the potential toxic elements from aqueous media, such as adsorption, precipitation and coagulation. Most of these technologies are associated with some shortcomings, and challenges in terms of applicability, effectiveness and cost. However, adsorption techniques have the capability of effectively removing heavy metals at very low concentration (1-100 mg/L). Various adsorbents have been reported in the literature for this purpose, including, to a lesser extent, the use of hydrogel adsorbents for heavy metal removal in aqueous phase. Here, we provide an in-depth perspective on the design, application and efficiency of hydrogel systems as adsorbents.

  9. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions

    International Nuclear Information System (INIS)

    Dimkpa, Christian O.; Calder, Alyssa; Britt, David W.; McLean, Joan E.; Anderson, Anne J.

    2011-01-01

    The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells' periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes. - Highlights: → Toxicity of metallic nanoparticles (NPs) was evaluated in a beneficial bacterium, Pseudomonas chlororaphis O6 (PcO6). → Aggregated commercial CuO and ZnO NPs released Cu and Zn ions and changed bacterial surface charge, depending on pH. → The NPs were toxic to PcO6 through NP-specific, but also ion release mechanisms. → Reactive oxygen species were produced by CuO NP and Cu ion at lethal concentrations, but bacterial EPS protected against Cu. → The periplasmic marker, alkaline phosphate, activity was increased by the NPs and ions. - Aggregated CuO and ZnO nanoparticles release ions and cause different toxicities in a beneficial soil bacterium.

  10. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C.J. [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  11. [Applications of metal ions and their complexes in medicine I].

    Science.gov (United States)

    Nagy, László; Csintalan, Gabriella; Kálmán, Eszter; Sipos, Pál; Szvetnik, Attila

    2003-01-01

    The "inorganic medical chemistry" is a rapidly developing field with enormous potential for applications, which offers new possibilities to the pharmaceutical industry. For example, the titanocene dichloride is already in clinical use, and antimetastatic activity of a range of Ru(III) complexes is also well established. There are ways to minimize the toxicity of Gd(III) complexes and therefore they can be safely injected as MRI contrast agents. The so called "ligand design" allows paramagnetic ions to be targeted to specific organs. Such designed ligands also enable the targeting of radiodiagnostic (99mTc) and radiotherapeutic (186Re) isotopes. There is a significant progress in understanding the coordination chemistry and biochemistry of metal ion(s) containing complexes such as Au antiarthritic and Bi antiulcer drugs. Further, currently developing areas include Mn (SOD mimics), V (insulin mimics), Ru (NO scavengers), Ln-based photosensitizers, metal-targeted organic agents and the Fe overload. The expanding knowledge of the role of metals in biochemistry is expected to provide scope for the design of new drugs in many other areas too, for example neuropharmaceutical and antiaffective agents. Progress in coordination chemistry is strongly dependent on understanding not only the thermodynamics of reactions, but also the kinetics of metal complexes under biologically relevant conditions.

  12. The sorption of metal ions on nanoscale zero-valent iron

    Directory of Open Access Journals (Sweden)

    Suponik Tomasz

    2017-01-01

    Full Text Available The injection of the colloidal suspensions of nano-iron (nZVI into an aquifer is a novel method of removing metal ions from acidic water. In the batch tests, the equilibrium study of the sorption of metal ions, Cu(II and Zn(II, on Green Tea nanoscale Zero-Valent Ion (GT-nZVI was carried out. The sorption of metal ions on this reactive material was described using the Langmuir, Freundlich and Sips models. This last model described in a better way the sorption equilibrium in the tested range of concentrations and temperature. The value of determination coefficient (R2 for the Sips model, for copper and zinc, was 0.9735 to 0.9995, respectively. GT-nZVI has very good properties in removing Cu(II and Zn(II from acidic water. The high values of qmaxS, the maximum adsorption capacity in the Sips model, amounting to 348.0 and 267.3 mg/g for Cu(II and Zn(II, indicate the high adsorption capacity of GT-nZVI. The analyzed metals have good or very good affinity with GT-nZVI.

  13. Release of metal ions from fixed orthodontic appliance: an in vitro study in continuous flow system.

    Science.gov (United States)

    Mikulewicz, Marcin; Chojnacka, Katarzyna; Wołowiec, Paulina

    2014-01-01

    To evaluate the release of metal ions from fixed orthodontic appliances. A new system for in vitro testing of dental materials was constructed and consisted of a thermostatic glass reactor that enabled immersion of the studied material. Experimental conditions reflected the human oral cavity, with a temperature of 37°C and a saliva flow rate of 0.5mL/min. The simulated fixed orthodontic appliance made of stainless steel was evaluated. Sampling was performed at several time points during the 28-day study, and the metal ion concentration was determined by inductively coupled plasma optical emission spectrometry. The total mass of released metal ions from the appliance during 4 weeks of the experiment was as follows nickel 18.7 μg, chromium 5.47 μg, copper 31.3 μg. The estimated doses of nickel, chromium, and copper determined by extrapolation of experimental data released during the treatment period were far below the toxic dose to humans. This shows that orthodontic treatment might not be a significant source of exposure to these metal ions.

  14. Biosorption of Heavy Metal Ions from Aqueous Solutions Using a Biomaterial

    Directory of Open Access Journals (Sweden)

    Innocent OBOH

    2009-07-01

    Full Text Available An increase in population initiating rapid industrialization was found to consequently increase the effluents and domestic wastewater into the aquatic ecosystem. Heavy metals are major toxicants found in industrial wastewaters; they may adversely affect the biological treatment of wastewater. Conventional methods for the removal of heavy metals from waste waters are often cost prohibitive hence, there is a need for cheap methods for effluent treatment. The residual metallic ion concentrations were determined using an Atomic Absorption Spectrophotometer (AAS. The results obtained after contacting for 120 minutes showed that Neem leaves achieved the percent removal of 76.8, 67.5, 58.4 and 41.45 for Cu2+, Ni2+, Zn2+ and Pb2+ ions respectively. The percent removal of Ni2+ ions was 68.75 with an effective dose of 1.0 g of Neem leaves (bioadsorbent. The ability of Neem leaves to absorb metal ions as shown from the results can be used for the development of an efficient, clean and cheap technology for effluent treatment.

  15. Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors

    DEFF Research Database (Denmark)

    Holst, Birgitte; Elling, Christian E; Schwartz, Thue W

    2002-01-01

    all MC receptors, are parts of the site. It is concluded that the function of the MC1 and MC4 receptors can be positively modulated by metal ions acting both as partial agonists and as potentiators for other agonists, including the endogenous peptide ligand alpha-MSH at Zn(II) concentrations......An endogenous metal-ion site in the melanocortin MC1 and MC4 receptors was characterized mainly in transiently transfected COS-7 cells. ZnCl(2) alone stimulated signaling through the Gs pathway with a potency of 11 and 13 microm and an efficacy of 50 and 20% of that of alpha...... of the metal ion appeared to be additive, because the maximal cAMP response for alpha-MSH in the presence of Zn(II) was 60% above the maximal response for the peptide alone. The affinity of Zn(II) could be increased through binding of the metal ion in complex with small hydrophobic chelators. The binding...

  16. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes.

    Science.gov (United States)

    Iannazzo, Daniela; Pistone, Alessandro; Ziccarelli, Ida; Espro, Claudia; Galvagno, Signorino; Giofré, Salvatore V; Romeo, Roberto; Cicero, Nicola; Bua, Giuseppe D; Lanza, Giuseppe; Legnani, Laura; Chiacchio, Maria A

    2017-06-01

    Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb 2+ , Hg 2+ , and Ni 2+ and the harmless Ca 2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg 2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.

  17. Heavy metal concentration of settled surface dust in residential building

    International Nuclear Information System (INIS)

    Nor Aimi abdul Wahab; Fairus Muhamad Darus; Norain Isa; Siti Mariam Sumari; Nur Fatihah Muhamad Hanafi

    2012-01-01

    The concentrations of heavy metals (Cu, Ni, Pb and Zn) in settled surface dust were collected from nine residential buildings in different areas in Seberang Prai Tengah District, Pulau Pinang. The samples of settled surface dust were collected in 1 m 2 area by using a polyethylene brush and placed in the dust pan by sweeping the living room floor most accessible to the occupants. Heavy metals concentrations were determined by using inductively coupled plasma optical emission spectrometer (ICP-OES) after digestion with nitric acid and sulphuric acid. The results show that the range of heavy metals observed in residential buildings at Seberang Prai Tengah were in the range of 2.20-14.00 mg/ kg, 1.50-32.70 mg/ kg, 1.50-76.80 mg/ kg and 14.60-54.40 mg/ kg for Cu, Ni, Pb and Zn respectively. The heavy metal concentration in the investigated areas followed the order: Pb > Zn > Ni > Cu. Statistical analysis indicates significant correlation between all the possible pairs of heavy metal. The results suggest a likely common source for the heavy metal contamination, which could be traced most probably to vehicular emissions, street dust and other related activities. (author)

  18. Electron emission during multicharged ion-metal surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  19. Wear properties of metal ion implanted 4140 steel

    International Nuclear Information System (INIS)

    Evans, P.J.; Paoloni, F.J.

    1994-01-01

    AISI type 4140 (high tensile) steel has been implanted with tungsten and titanium using a metal vapour vacuum arc ion source. Doses in the range (1-5)x10 16 ionscm -2 were implanted to a depth of approximately 30nm. The relative wear resistance between non-implanted and implanted specimens has been estimated using pin-on-disc and abrasive wear tests. Implantation of titanium decreased the area of wear tracks by a factor of 5 over unimplanted steel. In some cases the steel was also hardened by a liquid carburization treatment before implantation. Abrasion tests revealed a further improvement in wear resistance on this material following ion irradiation. ((orig.))

  20. Effect of metal ions on the growth and metabolites production of ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... important function in cell growth and metabolism. Some .... peptone, 10; glucose, 60; KH2PO4·H2O, 1.5; Vitamin B1, 0.01;concentration of metal ion :25, 50, 75, 100, 150 and 200 ppm; temperature: 30°C; rotates: 150 r/min; ..... Links between morphology and physiology of Ganoderma lucidum in submerged ...

  1. Clean and efficient extraction of copper ions and deposition as metal

    OpenAIRE

    Elsentriecy, Hassan H.; Jalbout, Abraham F.; Gervasio, Dominic F.

    2015-01-01

    A simple, clean and efficient one-pot process is offered as an alternative to the conventional complex processing presently used to extract copper ions from copper containing materials, like copper concentrate or slag, and to form copper metal. The alternative process uses a eutectic molten salt of potassium chloride, sodium chloride and zinc chloride as the reaction fluid which is recyclable, low in cost, environmentally benign, low melting (melting point 204°), high boiling (vapor pressure ...

  2. Metal ion toxins and brain aquaporin-4 expression: an overview

    Directory of Open Access Journals (Sweden)

    Adriana eXimenes-Da-Silva

    2016-06-01

    Full Text Available Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS results in changes in blood-brain barrier (BBB permeability, as well as triggering microglia activation and astrocyte reactivity and changing water transport through the cells, which could result in brain swelling. Aquaporin-4 is the main water channel in the CNS, is expressed in astrocyte foot processes in brain capillaries and along the circumventricular epithelium in the ventricles, and has important physiological functions in maintaining brain osmotic homeostasis and supporting brain excitability through regulation of the extracellular space. Some evidence has pointed to a role of AQP4 during metal intoxication in the brain, where it may act in a dual form as a neuroprotector or a mediator of the development of oxidative stress in neurons and astrocytes, resulting in brain swelling and neuronal damage. This mini-review presents the way some metal ions affect changes in AQP4 expression in the CNS and discuss the ways in which water transport in brain cells can be involved in brain damage.

  3. Formation of Negative Metal Ions in a Field-Free Plasma

    International Nuclear Information System (INIS)

    Larsson, E.

    1969-02-01

    A field-free and homogeneous plasma of a large volume is formed by neutron irradiation of 3 He at a density corresponding to NTP and at gas temperatures in the range 300-1600 deg K. The accuracy and ease by which the source density of free electrons can be varied and controlled offers special possibilities to study recombination and attachment phenomena in the absence of diffusion. These possibilities are described and utilized for the study of the effects of mixing the helium gas with metal vapours. Attachment of electrons to neutral metal atoms is found to be the dominant cause of electron removal for metal concentrations above certain limits. Negative metal ions are formed and the rate of their formation was determined to be about 10 -13 cm 3 /s. Evidence is also presented, that for such conditions where formation of negative metal ions does not occur, the electrons are lost in electron-ion recombinations, in which the third body is not an electron. No molecular helium spectrum is observed from the plasma when it is very close to spectroscopic purity. Instead, between 3,000-7,000 A only one atomic helium line at 5875 A is observed. The recombination of He + 2 may therefore be dissociative. A difference in recombination behaviour between 3 He and 4 He at high pressures may therefore exist considering results from previous work on 4 He

  4. Comparative evaluation of metal ions release from titanium and Ti-6Al-7Nb into bio-fluids

    Directory of Open Access Journals (Sweden)

    Lori A Joseph

    2009-01-01

    Full Text Available Background: The study was designed to investigate the effects of pH, chloride ions and nature of some bio-fluids on the amount of metal ions released from titanium and TiAl 6 Nb 7 plates following incubation in actual and simulated bio-fluids over time. Methods: The amounts of released metal ions from commercially pure titanium (CpTi and TiAl 6 Nb 7 of surgical grade on immersion in 20 mL Hank′s solution of pH 4.0 or 7.0, Hank′s solution of high chloride ions concentration, Whole Blood Serum (WBS and Phosphate Buffered Saline (PBS at 37° C were determined over an incubation time of 20 weeks using atomic absorption spectrophotometry. The levels of released metal ions were compared by two-way ANOVA and Duncan′s post-hoc tests. The amounts of titanium ions released by the samples were analyzed by Pearson′s correlation. Results: TiAl 6 Nb 7 plate showed no release of Ti ions into the test solutions until after 12 weeks of incubation, while Ti ions were released from the CpTi plate from the 1 day immersion time. The re-lease of measurable amount of Al ions from TiAl 6 Nb 7 was after 12 weeks of incubation. The rate of release of Ti and Al ions from the samples increased initially with incubation time and then stabilized due to adsorption-desorption equilibrium. Conclusion: The results showed that variations in pH and chloride ions of the test media has a sig-nificant effect on the amounts of Ti ions released, while increase in chloride ions concentration sig-nificantly elevates the release of Al ions into the bio-fluids.

  5. The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum

    Science.gov (United States)

    Danford, M. D.

    1993-01-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  6. Removal of some heavy metals from industrial waste water using polyacrylamide ferric antimonate as new ion exchange material

    International Nuclear Information System (INIS)

    El-Aryan, Y.F.A.

    2011-01-01

    Composite ion exchangers consist of one or more ion exchangers combined with another material, which can be inorganic or organic and may it be an ion exchanger. The reason for manufacturing a composite material is to produce a granular material, with sufficient strength for column use, from ion exchangers that do not form, or only form weak, granules themselves. Attempts in this study are focused to prepare composite ion exchangers for treatment of wastewater. Heavy metals when present in water in concentrations exceeding the permitted limits are injurious to the health. Hence, it is very important to treat such waters to remove the metal ions present before it is supplied for any useful purpose. Therefore, many investigations have studied to develop more effective process to treat such waste stream. Ion-exchange has been widely adopted in heavy metal containing wastewater and most of the ion-exchangers (i.e. ion-exchange media) currently being used are commercially mass-produced organic resins.Therefore, the main aim of this work is directed to find the optimum conditions for removal of some heavy metals from industrial waste water.1-Preparation of polyacrylamide ferric antimonate composite.2-Characterization of the prepared exchanger using IR spectra, X-ray diffraction pattern, DTA and TG analyses.3-Chemical stability, capacity and equilibrium measurements will be determined on the materials using at different conditions (ph heating temperature and reaction temperature).4-Kinetic studies of some heavy metals.5-Ion exchange isotherm.6-Breakthrough curves for removal of the investigated metal ions on the prepared exchanger under certain condition.

  7. Selective extraction of metal ions with polymeric extractants by ion exchange/redox

    Science.gov (United States)

    Alexandratos, Spiro D.

    1987-01-01

    The specification discloses a method for the extraction of metal ions having a reduction potential of above about +0.3 from an aqueous solution. The method includes contacting the aqueous solution with a polymeric extractant having primary phosphinic acid groups, secondary phosphine oxide groups, or both phosphinic acid and phosphine oxide groups.

  8. Kinetic modeling of metal ion transport for desorption of Pb(II) ion ...

    African Journals Online (AJOL)

    The kinetics of desorption of lead (II) ion from metal loaded adsorbent of mercaptoacetic acid modified and unmodified oil palm (Elaeis guineensis) fruit fiber was studied using different solutions, at different contact times. At the end of 25 minutes, 79.19%, 75.99%, 57.14%, 50.56% and 32.72% of Pb2+ were desorbed using ...

  9. Heavy metals in human primary teeth: some factors influencing the metal concentrations.

    Science.gov (United States)

    Tvinnereim, H M; Eide, R; Riise, T

    2000-06-08

    Human primary teeth have been used as indicators of heavy metal exposure for several decades, but the knowledge about the influence of factors such as tooth type and the presence of caries and roots on metal concentrations is limited. Samples of tooth powder from more than 1200 Norwegian primary teeth without fillings have been analyzed for lead, zinc and cadmium content, and 554 of them for mercury. The material represents all groups of tooth types (incisors, canines and molars), carious and non-carious teeth, and teeth with and without roots. Here we investigate how tooth group and the presence of caries and roots are related to metal concentrations in the teeth. We find that carious teeth have higher metal concentrations than non-carious teeth; the difference was statistically significant for lead, mercury and zinc. Teeth with roots have higher lead and zinc concentrations than teeth without roots. We find differences in metal concentrations between the tooth groups for lead, mercury and zinc. Significant, positive correlations are found between lead and the three other metals and between mercury and zinc. We conclude that metal concentrations in primary teeth are affected by the presence of caries and roots and by tooth group.

  10. Vortex chain formation in regions of ion concentration polarization.

    Science.gov (United States)

    Hanasoge, Srinivas; Diez, Francisco J

    2015-09-07

    The local vortical flow generated inside an ion concentration polarization (ICP) region is evaluated experimentally. The ICP is induced by a patterned nanoporous self-assembling membrane integrated inside a single microchannel. A bottom-view image of the depletion region near the membrane revealed a primary vortex which results from the electric field amplification. A unique perspective of the flow is obtained by imaging the microchannel from its side. This visualization shows for the first time the formation of a chain of three vortices all rotating in the same direction in the depletion region. While observation of multiple vortices has been previously reported, it was in reference to counter rotating vortex pairs and not to the same direction of rotating vortex chain formation. A physical model is proposed which considers a two dimensionally varying concentration profile in the depletion region to account for the formation of multiple vortices rotating in the same direction. The fast rotating primary vortex changes the local concentration in regions adjacent to it, as the advection time scale is much higher than the diffusion time scale. Near the membrane, it moves the low concentration electrolyte from the bottom wall upwards into a higher concentration region. Away from the membrane, it moves the high concentration electrolyte from the middle of the channel downwards into a low concentration region. These local changes in the wall concentration result in a varying slip velocity capable of inducing a secondary vortex. Similarly, this secondary vortex can induce a tertiary one. A numerical simulation is performed using the proposed varying slip velocity model which showed excellent agreement with the experimental observations.

  11. The solvent extraction of alkali metal ions with β-diketones

    International Nuclear Information System (INIS)

    Munakata, Megumu; Niina, Syozo; Shimoji, Noboru

    1974-01-01

    This work was undertaken to investigate effects of solvent and chelating-agent on the solvent extraction of alkali metal ions by seven β-diketones, acetylacetone (Acac), benzoylacetone (BzA), dipivaloylmethane (DPM), dibenzoylmethane (DBM), thenoyltrifluoloacetone (TTA), benzoyltrifluoroacetone (BFA) and hexafluoroacetylacetone (HFA), and to separate lithium from alkali metals. The extraction of alkali metals increase with increasing donor power of the solvent: i.e., benzene Na>K>Rb>Cs, which is also the order in which the adduct formation of these β-diketone chelates with donor solvents increase. The adduct formations between β-diketone chelates of alkali metals and donor solvents markedly enhance the solubilities of the chelates in solvents and, consequently, the extractabilities of alkali metals with β-diketones. Lithium was extracted with TTA in ether at such a low base concentration that sodium, potassium, rubidium and cesium were hardly extracted, and this enabled to separate lithium from other metals by the use of rubidium hydroxide (0.02 M). An attempt has been made to isolate alkali metal β-diketone chelates and some chelates have been obtained as crystals. The infrared absorption bands arising from C=O and C.=C of TTA shift to lower frequencies in the alkali metal chelates with TTA, and consequently, β-diketones is suggested to coordinate to alkali metal as a bidentate ligand. (JPN)

  12. Concentrations of ions in blood or athletes using NAA

    International Nuclear Information System (INIS)

    Kovacs, Luciana; Zamboni, Cibele B.; Loureno, Thiago F.; Nunes, Lazaro A.S.; Macedo, Denise V.

    2011-01-01

    Sodium (Na), chlorine (Cl) and potassium (K) are widely distributed in the body and are the mainly of body fluids electrolytes. K is the major intracellular ion. Na and Cl are the major extracellular ions. Therefore, Na and Cl can be regarded as the most important osmotically active electrolytes. The concentrations of these ions in body fluids are very tightly controlled. These electrolytes play central roles in electrolytic balances and current, in osmotic control, in the transport of organic metabolites by cells, and stabilization of poly electrolytes in cells. In this study Na, Cl and K levels were investigated in blood of athletes submitted to physical exercise at Laboratorio de Bioquimica do Exercicio (LABEX/UNICAMP - Brazil) using Neutron Activation Analyses (NAA) technique. The blood samples were collected from six male athletes, ranging from 18 to 26 years old, before and after the physical training. These results were compared with the rest condition (before start the physical exercise), as well as with the control group (subjects of same age but not involved with physical activities), for checking the performance of the athletes during and after the exercise. The nuclear procedure adopted as NAA, it can be an alternative procedure to perform biochemistry analyses in blood, mainly when the biological material is scarce. (author)

  13. Chromatography of metal ions with a triazine chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.N.

    1979-05-01

    The synthesis, characterization, and some analytical applications of a new triazine resin are described. Separation of group IB, IIB, VIB, and VIIB metal ions from group VIII metal ions is achieved by this PDT-4 resin. Calcium(II) and magnesium(II) are taken up at pH = 6, 0.1 M acetate and are eluted at pH = 6, 0.1 M sodium nitrate. Copper(II) is retained at pH = 6, 0.1 M acetate and pH = 1 hydrochloric acid and is eluted subsequently by 5 M perchloric acid. Molybdenum(VI) is sorbed selectively from 0.1 N sulfuric acid or hydrochloric acid and is eluted in a tight band by 0.1 N sodium hydroxide. Numerous rapid column chromatographic separations are reported using this new resin, including analysis of NBS standard samples.

  14. Chromatography of metal ions with a triazine chelating resin

    International Nuclear Information System (INIS)

    Wang, W.N.

    1979-05-01

    The synthesis, characterization, and some analytical applications of a new triazine resin are described. Separation of group IB, IIB, VIB, and VIIB metal ions from group VIII metal ions is achieved by this PDT-4 resin. Calcium(II) and magnesium(II) are taken up at pH = 6, 0.1 M acetate and are eluted at pH = 6, 0.1 M sodium nitrate. Copper(II) is retained at pH = 6, 0.1 M acetate and pH = 1 hydrochloric acid and is eluted subsequently by 5 M perchloric acid. Molybdenum(VI) is sorbed selectively from 0.1 N sulfuric acid or hydrochloric acid and is eluted in a tight band by 0.1 N sodium hydroxide. Numerous rapid column chromatographic separations are reported using this new resin, including analysis of NBS standard samples

  15. Multiply charged metal ions in high current pulsed vacuum arcs

    Science.gov (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Frolova, V. P.; Oks, E. M.; Rousskikh, A. G.; Zhigalin, A. S.

    2017-12-01

    We show that vacuum arc plasma discharges with a current of several kiloamperes and duration of a few microseconds can generate multiply charged metal ions with charge states greater than 10+. The physical mechanism behind this is discussed, suggesting an optimum arc current for higher charge states depending on the pulse duration and cathode material. Measurements of ion mass-to-charge ratio and images taken with nanosecond resolution suggest that, higher charge state ions are produced at characteristic distances of ˜10 mm from the cathode as the arc current peaks, and the process responsible for their generation is additional ionization as the discharge is pinched by its self-magnetic field. The maximum and mean ion charge states reveal a considerable increase for the all cathode materials studied: magnesium, aluminum, zirconium, tin, tantalum, gold, lead, and bismuth. For bismuth ions, the maximum charge state reaches a record-breaking value of 17+ and the mean of the charge state distribution is 12.6+. The results obtained are of interest for vacuum arc discharge physics and for ion beam technologies.

  16. Lithium metal doped electrodes for lithium-ion rechargeable chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Battaglia, Vince; Wang, Lei

    2016-09-13

    An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

  17. Gas porosity in metals and alloys irradiated by helium ions

    International Nuclear Information System (INIS)

    Kalin, B.A.; Korshunov, S.N.; Chernov, I.I.

    1987-01-01

    Experimental studies of the development of gas porosity in metals and alloys during irradiation with helium ions up to high doses and during post-irradiation annealings, are reviewed. The main theoretical problems of the mechanisms of bubble formation and growth, the regularities and peculiarities of bubble development in a thin near-the surface layer during the introduction of helium with the energy of tens of kiloelectron volt, are considered

  18. Metal ion dependence of DNA cleavage by SepMI and EhoI restriction endonucleases.

    Science.gov (United States)

    Belkebir, Abdelkarim; Azeddoug, Houssine

    2013-02-22

    Most of type II restriction endonucleases show an absolute requirement for divalent metal ions as cofactors for DNA cleavage. While Mg(2+) is the natural cofactor other metal ions can substitute it and mediate the catalysis, however Ca(2+) (alone) only supports DNA binding. To investigate the role of Mg(2+) in DNA cleavage by restriction endonucleases, we have studied the Mg(2+) and Mn(2+) concentration dependence of DNA cleavage by SepMI and EhoI. Digestion reactions were carried out at different Mg(2+) and Mn(2+) concentrations at constant ionic strength. These enzymes showed different behavior regarding the ions requirement, SepMI reached near maximal level of activity between 10 and 20mM while no activity was detected in the presence of Mn(2+) and in the presence of Ca(2+) cleavage activity was significantly decreased. However, EhoI was more highly active in the presence of Mn(2+) than in the presence of Mg(2+) and can be activated by Ca(2+). Our results propose the two-metal ion mechanism for EhoI and the one-metal ion mechanism for SepMI restriction endonuclease. The analysis of the kinetic parameters under steady state conditions showed that SepMI had a K(m) value for pTrcHisB DNA of 6.15 nM and a V(max) of 1.79×10(-2)nM min(-1), while EhoI had a K(m) for pUC19 plasmid of 8.66 nM and a V(max) of 2×10(-2)nM min(-1). Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Towards the role of metal ions in the structural variability of proteins: CdII speciation of a metal ion binding loop motif

    DEFF Research Database (Denmark)

    Jancsó, Attila; Szunyogh, Dániel; Gyurcsik, Béla

    2011-01-01

    A de novo designed dodecapeptide (HS), inspired by the metal binding loops of metal-responsive transcriptional activators, was synthesized. The aim was to create a model system for structurally promiscuous and intrinsically unstructured proteins, and explore the effect of metal ions on their stru...... the peptide is exchanging between a number of structures also in its metal ion bound state(s), as indicated by NMR and PAC data. © 2011 The Royal Society of Chemistry....

  20. Normal concentrations of heavy metals in autistic spectrum disorders.

    Science.gov (United States)

    Albizzati, A; Morè, L; Di Candia, D; Saccani, M; Lenti, C

    2012-02-01

    Autism is a neurological-psychiatric disease. In the last 20 years we witnessed a strong increase of autism diagnoses. To explain this increase, some scientists put forward the hypothesis that heavy metal intoxication may be one of the causes of autism. The origin of such an intoxication was hypothesised to be vaccines containing thimerosal as antimicrobic preservative. This preservative is mainly made up of mercury. The aim of our research was to investigate the correlation between autism and high biological concentrations of heavy metals. Seventeen autistic patients, between 6 and 16 years old (average: 11.52 DS: 3.20) (15 males and 2 females), were investigated, as well as 20 non autistic subjects from neuropsychiatric service between 6 and 16 years (average: 10.41 DS: 3.20) (15 males and 2 females). In both groups blood, urine and hair samples were analysed trough means of a semiquantitative analysis of heavy metal dosing. The metals analysed were Lead, mercury, cadmium and aluminium, since their build-up may give both neurological and psychiatric symptoms. The comparison of the mean values of the concentrations between the groups, performed with ANOVA test, has shown no statistically relevant differences. There wasn't correlation between autism and heavy metal concentration.

  1. Heavy Metal Concentrations In A West African Sahel Reservoir ...

    African Journals Online (AJOL)

    Heavy metal concentrations were investigated over a period of 12 months in five stations in Alau reservoir, Maiduguri, in the North – east sahel zone of Nigeria. The mean concentrations of zinc, copper, lead, iron and manganese were 0.17 + 0.02 mg/l (range 0.14+ 0.03 - 0.19+ 0.02 mg/l), 0.56 + 0.06 mg/l (range 0.52+ 0.01 - ...

  2. Spectrophotometric determination of some metal ions using hydrazones

    International Nuclear Information System (INIS)

    Mohammed, M. S.

    2000-05-01

    In this research many starting materials were prepared, like methyl salicylate and salicylic acid hydrazide from which different derivatives of hydrazones were synthesized by coupling with carbonyl compounds like benzil monoxime and benzil mono hydrazone which are prepared and others like salicylaldehyde and benzoin. The hydrazones that were synthesized are salicylaldehyde salicylic acid hydrazone, benzoin salicylic acid hydrazone, benzil mono hydrazone salicylic acid hydrazone and benzil monoxime salicylic acid hydrazone. These reagents were determined by different methods, IR spectrophotometric determination, the nitrogen content method and melting point determination. These hydrazones act as ligands for determination of some metal ions by making different coloured complexes that were prepared for eight hydrazones with eight metal ions U (VI), Fe (II), Fe (III), Co (II), V (II), Mo (VI), Ni (II) and Cu (II). These complexes were determined by ultraviolet and visible spectrophotometer (UV/VIS) to detect their absorbance and wavelengths (λ max). The two hydrazones salicylaldehyde salicylic acid-hydrazone and benzoin salicylic acid hydrazone, were selected for determination of five metal ions (Fe (II), Fe (III), U (VI), Ni (II) and Cu (II)), using two micelles sodium n-dodecyl sulphate and pyridinium hexa decyl bromide mono hydrate. Their absorbance and wavelengths were detected using UV/VIS spectrophotometer. (Author)

  3. Adhesive and abrasive wear mechanisms in ion implanted metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1985-01-01

    The distinction between adhesive and abrasive wear processes was introduced originally by Burwell during the nineteen-fifties, though some authors prefer to classify wear according to whether it is mild or severe. It is argued here that, on the basis of the performance of a variety of ion implanted metal surfaces, exposed to different modes of wear, the Burwell distinction is a valid one which, moreover, enables us to predict under which circumstances a given treatment will perform well. It is shown that, because wear rates under abrasive conditions are very sensitive to the ratio of the hardness of the surface to that of the abrasive particles, large increases in working life are attainable as a result of ion implantation. Under adhesive wear conditions, the wear rate appears to fall inversely as the hardness increases, and it is advantageous to implant species which will create and retain a hard surface oxide or other continuous film in order to reduce metal-metal contact. By the appropriate combination of physico-chemical changes in an implanted layer it has been possible to reduce wear rates by up to three orders of magnitude. Such rates compensate for the shallow depths achievable by ion implantation. (orig.)

  4. Spectrophotometric study of some metal ions using some Schiff's bases

    International Nuclear Information System (INIS)

    Elnager, Nawal Mohomed Ibrahim

    2000-05-01

    In this work two schiff bases namely N,N Bis(benzoyl acetone)-o-phenylene diamine (NNBBPD) and N,N Bis(benzoyl acetone)-isopropylene diamine (NNBBAID) were prepared by direct coupling of benzoyl acetone with o-phenylene and isopropylene diamine respectively. The two reagents were identified by IR spectra, thin layer chromatography (TLC) and determination of the percentage of nitrogen contents (N%). It is found that the two reagents form coloured chelates with Fe (II), Fe (III), Cu (II), U (VI), Ni (II) and Co (II). The two reagents were used for the determination of Fe (II), Fe (III) and U (VI). The formulate of these metal ion complexes were obtained using continuous variations, mole ratio and slope ratio methods. Effect of two micelles, namely sodium n-dodecyl sulphate (SDS) and hexadecyl pyridinum broinide monohydrate (HPB) on metal ion complexes were studied. It is found that both of them increase the solubility and the absorbances of the metal ion complexes with variable effects of the absorption maxima. Calibration curves for Fe (II), Fe (II) and U (VI) were obtained in optimum conditions of pH and micelles solutions. (Author)

  5. Application of INAA in the study of metallic ions related to toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Rogero, Sizue O.; Amaral, Renata H.; Costa, Isolda; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); E-mails: sorogero@ipen.br; rhamaral@ipen.br; icosta@ipen.br; mitiko@ipen.br

    2007-07-01

    The 316L stainless steel which is commonly used as biomaterial in metallic implants has shown toxic effect in cytotoxicity in vitro assay by neutral red uptake methodology. Instrumental neutron activation analysis was applied to evaluate metal composition in the steel and in the extract composed by cell culture medium (MEM) where the sample remained immersed during 10 days at 37 deg C. The aim of this study was to determine the level and identify the elements related to cytotoxicity, in solutions containing metallic ions with different associations and concentrations. The results showed Co, Cr and Ni elements in the extract which are metallic elements previously associated to toxicity. The association of Cr and Ni resulted in toxicity although these elements when individually present in the medium did not show any toxicity effect. On the other hand, the association of Co to Cr + Ni reduced the cytotoxic effect. (author)

  6. The effect of carbamide peroxide treatment on metal ion release from dental amalgam.

    Science.gov (United States)

    Al-Salehi, S K; Hatton, P V; Miller, C A; Mcleod, C; Joiner, A

    2006-10-01

    There is concern that hydrogen peroxide generated by tooth bleaching agents may cause enhanced metal ion release (including mercury) from dental amalgam following contact. The aim of this in vitro study was therefore to investigate the effect of a carbamide peroxide (CP) based tooth bleaching gel on metal ion release from dental amalgam. Dental amalgam discs were prepared according to the manufacturers' instructions. These were treated with either a 10% carbamide peroxide (CP) gel or a 0% CP gel for 24h. Discs were carefully wiped with cotton wool before immersion in distilled water (20 ml) for 24h at 37 degrees C. Following immersion, water samples were taken for metal ion release determination (Ag, Cu, Hg and Sn) using inductively coupled plasma mass spectrometry methods. The specimens were further evaluated for surface changes using scanning electron microscopy (SEM) and Talysurf surface roughness measurements. The differences in concentration of metal ions released after treatment with the 10% CP gel and a placebo gel treatment were not statistically significant (p>0.05). For example, mercury release following treatment with the 10% CP gel and the 0% CP gel was found to be 1.17(0.5) and 0.57(0.1)microgcm(-2), respectively. Roughness measurements for samples treated with the 10% CP gel and 0% CP gel were 2.23(0.47) and 1.74(0.16)microm, respectively, again showing no significant difference between groups (p>0.05). SEM images of the amalgam surfaces showed no apparent differences between treatments. Treatment with a 10% CP gel did not significantly enhance subsequent metal ion release from dental amalgams compared to a control gel, contradicting previously published studies.

  7. Enrichment of rare earth metal ions by the highly selective adsorption of phytate intercalated layered double hydroxide.

    Science.gov (United States)

    Jin, Cheng; Liu, Huimin; Kong, Xianggui; Yan, Hong; Lei, Xiaodong

    2018-02-27

    Phytate intercalated MgAl layered double hydroxide (MgAl-LDH) was prepared by an anion exchange method with the precursor NO 3 - containing MgAl-LDH. The final as-synthesized product [Mg 0.69 Al 0.31 (OH) 2 ] (phytateNa 6 ) 0.05 (NO 3 ) 0.01 ·mH 2 O (phytate-LDH) has highly selective adsorption ability for some metal ions and can be used to enrich rare earth metal ions in mixed solution, such as Pr 3+ and Ce 3+ from a mixed solution of them with Pb 2+ and Co 2+ . At first, phytate-LDH has good adsorption performance for these ions in single metal ion solutions. At low concentration (below 10 mg L -1 ), all the capture rates of the four metal ions were more than 97%, for highly toxic Pb 2+ it was even up to nearly 100%, and a high capture rate (99.87%) was maintained for Pb 2+ at a high concentration (100 mg L -1 ). When all the four metal ions are co-existing in aqueous solution, the selectivity order is Pb 2+ ≫ Pr 3+ ≈ Ce 3+ > Co 2+ . In a solution containing mixtures of the three metal ions of Pr 3+ , Ce 3+ , and Co 2+ , the selectivity order is Pr 3+ ≈ Ce 3+ ≫ Co 2+ , and in a solution containing mixtures of Pr 3+ with Co 2+ and Ce 3+ with Co 2+ , the selectivity orders are Pr 3+ ≫ Co 2+ and Ce 3+ ≫ Co 2+ , respectively. The high selectivity and adsorption capacities for Pb 2+ , Co 2+ , Pr 3+ , and Ce 3+ result in the efficient removal of Pb 2+ and enrichment of the rare earth metal ions Pr 3+ and Ce 3+ by phytate-LDH. Based on the elemental analysis, it is found that the difference of the adsorption capacities is mainly due to the different coordination number of them with phytate-LDH. With molecular simulation, we believe that the adsorption selectivity is due to the difference of the binding energy between the metal ion and phytate-LDH. Therefore, the phytate-LDH is promising for the enrichment and/or purification of the rare earth metal ions and removal of toxic metal ions from waste water.

  8. Occurrence of metal ions in rice produced in Uruguay

    Directory of Open Access Journals (Sweden)

    Mario Rivero

    2011-04-01

    Full Text Available The United Nations General Assembly declared the year 2004 the International Year of Rice under the concept "Rice is Life". The largest nutritional problems occurring globally are protein-energy malnutrition, Ca, Fe, I, Zn and vitamin A deficiencies. Being rice the staple food more consumed worldwide, outstanding care is taken on its composition levels.Uruguay has emerged as medium-size rice producer and Latin America's major rice exporter, and is now amongst the world's top ten. Thus, the knowledge of toxic as well as micronutrient elements is very important. Here is reported the determination in forty nine samples of rice (Oryza sativa L. of As, Cd, Cr, and Pb by ET AAS in samples digested by dry ashing, and Ca, Co, Cu, Fe, K, Mg, Mo, Mn, Na, Ni and Zn by FAAS and Hg by CV AAS using microwave-assisted decomposition.The amount of all the metal ions studied in this work fall within the range typical of rice around the world. All the rice samples tested showed lower levels of As, Cd, Hg and Pb than the maximum limit permitted by governmental and international organizations.Potassium was the most abundant mineral followed by Mg and Ca and amongst microelements the presence of Cu, Fe, Mo, Mn, Na and Zn was outstanding.The milling process highly affects the contents of K, Mg, Mn, Na and Zn while little influence has on Ca, Co, Cu and Fe concentrations.Unexpected loss of Ca, Fe and Mn during parboiling process was detected. 

  9. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Science.gov (United States)

    2010-04-01

    ... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen ion concentration (pH) analyzer is a device that consists of a catheter-tip pH electrode and that is... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood hydrogen ion concentration (pH...

  10. Impact Of Municipal Solid Waste On Trace Metal Concentrations In ...

    African Journals Online (AJOL)

    The impact of municipal solid waste on the levels of cadmium, copper, nickel, lead and zinc in herbage and soil samples within Abuja municipality was studied. The flame atomic absorption spectrophotometry was used in the determination of the metals. The average concentration of Cd, Cu, Ni, Pb and Zn in the herbage ...

  11. Heavy metal concentrations in Bottom Sediments of Ikpoba River ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    2014-06-23

    Jun 23, 2014 ... March 2014. Vol. 18 (1) 27-32. Full-text Available Online at www.ajol.info and www.bioline.org.br/ja. Heavy metal concentrations in Bottom Sediments of Ikpoba River, Edo State, Nigeria. *1 ... Introduction: Bottom sediment is an integral part of the abiotic ... bank of this station includes bamboo trees, grasses.

  12. Heavy Metal Concentrations around a Hospital Incinerator and a ...

    African Journals Online (AJOL)

    Studies to determine the concentrations of heavy metals in the surrounding soils and bottom ash of a hospital incinerator and a municipal dumpsite were carried out in Ibadan City, South-West Nigeria from November 2010 to January 2011. Samples were analyzed for Pb, Fe, Cu, Zn, Cr and Ni using Flame Atomic Absorption ...

  13. Concentration of heavy metals in a Niger Delta Mangrove Creek ...

    African Journals Online (AJOL)

    The concentration of some heavy metals, Ca, Mg, Fe, Zn, Pb, Cd, Cr, Ni, Hg, and total hydrocarbon content (THC) were assessed in the surface waters of a Niger Delta mangrove creek (Buguma Creek). Samples were collected between November 2004 and October 2006 from five stations. The minimum and maximum ...

  14. Growth pattern, condition factor and heavy metal concentration in ...

    African Journals Online (AJOL)

    The growth pattern, condition factor and heavy metals concentrations in tissues of Sarotherodon melanotheron from Lagos Lagoon were investigated from April to July 2013. The Lagos Lagoon has been under intensified pollution, which affects fish and poses a public health risk. The size of the 55 specimens of S.

  15. Metal concentrations in urban riparian sediments along an urbanization gradient

    Science.gov (United States)

    Daniel J. Bain; Ian D. Yesilonis; Richard V. Pouyat

    2012-01-01

    Urbanization impacts fluvial systems via a combination of changes in sediment chemistry and basin hydrology. While chemical changes in urban soils have been well characterized, similar surveys of riparian sediments in urbanized areas are rare. Metal concentrations were measured in sediments collected from riparian areas across the urbanization gradient in Baltimore, MD...

  16. Seasonal Variations of Heavy Metals Concentration in Abattoir ...

    African Journals Online (AJOL)

    Soil samples (0–15cm) collected during the 2007/2008 rainy and dry seasons were treated and digested using microwave acid digestion methods. The heavy metal concentrations were determined with Atomic Absorption spectrophotometer (AAS). The mean levels range of Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were 13.2 ...

  17. Heavy metal concentrations in water, sediment and periwinkle ...

    African Journals Online (AJOL)

    User

    2013-05-08

    May 8, 2013 ... sea foods like periwinkle may breed lots of health problems. Heavy metal concentration in water, sediment and ... areas of mangrove swamp forest. However, this region, with its complex ecological ... reported to exert negative effect on biological processes in general and may influence the nutritional and ...

  18. Assessment of Heavy Metals Concentrations in the Surface Water of ...

    African Journals Online (AJOL)

    The digested samples were analyzed for Fe, Cr, Cu, Zn and Pb using Atomic Absorption Spectrophotometer (Model IL250). The seasonal sequence of heavy metals concentrations showed Zn>Fe>Cr>Cu>Pb and Fe>Zn>Cr>Cu>Pb in dry and wet seasons respectively, while that of annual was Cr>Fe>Zn>Cu>Pb. The results ...

  19. Soil Heavy Metal Concentration Patterns at Two Speed Zones along ...

    African Journals Online (AJOL)

    Soil Heavy Metal Concentration Patterns at Two Speed Zones along the Gaborone- Tlokweng Border Post Highway, Southeast Botswana. ... Since 1988 Botswana has been experiencing an unprecedented increase in vehicular traffic which is suspected to be having contamination effects on soils along heavily used roads ...

  20. Assessment of heavy metals concentration in soils around oil filling ...

    African Journals Online (AJOL)

    GREG

    Technology. Full Length Research Paper. Assessment of heavy metals concentration in soils around oil filling and service stations in the Tamale. Metropolis, Ghana ... anthropogenic source such as the oil filling activities, brake wear, tyres wear and corroded vehicles ... biologically essential and are introduced into aquatic.

  1. Heavy metal concentrations in whole soft tissues of Anodonta ...

    African Journals Online (AJOL)

    The whole soft tissues of forty sampled Anodonta implicata of different mean weight range (15.0±0.7-100±0.1 g) from a major industrial discharge point of Kaduna River were analyzed for four heavy metals by use of Atomic Absorption Spectrophotometer. The mean concentrations (ppm) of lead, zinc, copper and cadmium ...

  2. Assessment of heavy metal concentration in water around the ...

    African Journals Online (AJOL)

    Effective verification for compliance with water quality standards in uranium mining in Tanzania requires data sensitive to monitor heavy metal concentration in water around the Mkuju River Uranium Project before mining commences. The area susceptible for pollution by the project was estimated using AERMOD ...

  3. assessment of heavy metal concentration in water around the ...

    African Journals Online (AJOL)

    nb

    ABSTRACT. Effective verification for compliance with water quality standards in uranium mining in Tanzania requires data sensitive to monitor heavy metal concentration in water around the Mkuju River. Uranium Project before mining commences. The area susceptible for pollution by the project was estimated using ...

  4. Selected mineral and heavy metal concentrations in blood and ...

    African Journals Online (AJOL)

    Unknown

    of the food chain), may accumulate and concentrate heavy metals in their tissues and thus serve as more sensitive indicators of the level of environmental contamination (Guitart et al., 1994). It would be undesirable and impractical to kill adult vultures for this purpose, but nestlings represent ideal subjects for routine blood ...

  5. Selected mineral and heavy metal concentrations in blood and ...

    African Journals Online (AJOL)

    Concentrations of eight essential elements (Ca, Co, Cr, Cu, Fe, Mn, Ni and Zn) and three toxic metals (Al, Pb and Sr) were measured in various tissue samples from African whitebacked (Pseudogyps africanus), Cape griffon (Gyps coprotheres) and Lappetfaced (Torgos tracheliotos) vultures in different regions of South ...

  6. Concentration of Trace Metals in Boreholes in the Ankobra Basin ...

    African Journals Online (AJOL)

    Fiifi Baidoo

    acceptable limit for drinking water. The concentration of mercury was higher than 1.0 µg l-1 (WHO maximum acceptable limit) in 60% of the boreholes during the rainy season but below detection limit in the dry season, suggesting anthropogenic origin for mercury in the groundwater. Other trace metals that occurred, but in ...

  7. Seasonal variations in heavy metal concentrations in soil and some ...

    African Journals Online (AJOL)

    In this study, the seasonal variations in concentrations of the heavy metals - As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn - in soil and crops from a farm near the refuse dump site of Obafemi Awolowo University, Ile-Ife, Nigeria were investigated during the two major seasons of Nigeria. This was done to assess the pollution ...

  8. Assessment of heavy metals concentration in water, soil sediment ...

    African Journals Online (AJOL)

    22.81 ppb) and rivers to Lake Nakuru (1129±107 ppb) had the highest mean ± SD lead concentration. Arsenic, cadmium, chromium and lead were also observed in bird tissues. Metals in the Lesser Flamingo tissues were below the toxicological ...

  9. Determination of some heavy metals concentration in the tissues of ...

    African Journals Online (AJOL)

    Jen

    2011 Nigerian Society for Experimental Biology. Printed in Nigeria ... ABSTRACT: Lead (Pb), Cobalt (Co), and Copper (Cu) concentrations were determined in bone, muscle and gill of two fish species ... showed the highest level of Pb (7.60 ± 2.33 mg/L) and Cu (0.506 ± 0.4 mg/L) metals in the bone and muscle tissues.

  10. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  11. Metal negative ion production by a planar magnetron sputter type radio frequency ion source

    Science.gov (United States)

    Yoshioka, K.; Kanda, S.; Kasuya, T.; Wada, M.

    2017-08-01

    A planar magnetron sputter type ion source has been operated to investigate metal negative ion production. Radio frequency power at 13.56 MHz was directly supplied to the planar target made of 2 mm thick Cu disk to maintain plasma discharge and induce DC self-bias to the target for sputtering. Beam profile was obtained and the peak of negative ion beam profile was shifted to 6 mm as the beam traversed the 32 mT magnetic field in the region of the plasma grid. Extraction of Cu- beam was performed and the Cu- beam current was found consisted of two components: Cu-(surface) and Cu-(volume). Negative ion spectra were observed to measure the ratio of the surface component to the volume component. The surface component of Cu- occupied 67% of the total beam at the maximum, while it decreased the fraction down to about 50% as the source pressure was increased.

  12. Anion analysis in uranium more concentrates by ion chromatography

    International Nuclear Information System (INIS)

    Badaut, V.

    2009-01-01

    In the present exploratory study, the applicability of anionic impurities or attributing nuclear material to a certain chemical process or origin has been investigated. Anions (e.g., nitrate, sulphate, fluoride, chloride) originate from acids or salt solutions that are used for processing of solutions containing uranium or plutonium. The study focuses on uranium ore concentrates ('yellow cakes') originating from different mines. Uranium is mined from different types of ore body and depending on the type of rock, different chemical processes for leaching, dissolving and precipitating the uranium need to be applied. Consequently, the anionic patterns observed in he products of these processes (the 'ore concentrates') are different. The concentrations of different anionic species were measured by ion chromatography using conductivity detection. The results show clear differences of anion concentrations and patterns between samples from different uranium mines. Besides this, differences between sampling campaigns n a same mine were also observed indicating that the uranium ore is not homogeneous in a mine. These within-mine variations, however, were smaller than the between-mine variations. (author)

  13. Structures and physical properties of gaseous metal cationized biological ions.

    Science.gov (United States)

    Burt, Michael B; Fridgen, Travis D

    2012-01-01

    Metal chelation can alter the activity of free biomolecules by modifying their structures or stabilizing higher energy tautomers. In recent years, mass spectrometric techniques have been used to investigate the effects of metal complexation with proteins, nucleobases and nucleotides, where small conformational changes can have significant physiological consequences. In particular, infrared multiple photon dissociation spectroscopy has emerged as an important tool for determining the structure and reactivity of gas-phase ions. Unlike other mass spectrometric approaches, this method is able to directly resolve structural isomers using characteristic vibrational signatures. Other activation and dissociation methods, such as blackbody infrared radiative dissociation or collision-induced dissociation can also reveal information about the thermochemistry and dissociative pathways of these biological ions. This information can then be used to provide information about the structures of the ionic complexes under study. In this article, we review the use of gas-phase techniques in characterizing metal-bound biomolecules. Particular attention will be given to our own contributions, which detail the ability of metal cations to disrupt nucleobase pairs, direct the self-assembly of nucleobase clusters and stabilize non-canonical isomers of amino acids.

  14. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals.

    Science.gov (United States)

    Rungrodnimitchai, Supitcha

    2014-01-01

    This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g) and shorter reaction time (1.5-5.0 min) than the phosphorylation by oil bath heating. Adsorption experiments towards Pb²⁺, Cd²⁺, and Cr³⁺ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L). The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax). As a result of Pb²⁺ sorption test, the modified rice straw (RH-NaOH 450W) removed Pb²⁺ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin) took 90 min for the same removal efficiency.

  15. Rapid Preparation of Biosorbents with High Ion Exchange Capacity from Rice Straw and Bagasse for Removal of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Supitcha Rungrodnimitchai

    2014-01-01

    Full Text Available This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g and shorter reaction time (1.5–5.0 min than the phosphorylation by oil bath heating. Adsorption experiments towards Pb2+, Cd2+, and Cr3+ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L. The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax. As a result of Pb2+ sorption test, the modified rice straw (RH-NaOH 450W removed Pb2+ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin took 90 min for the same removal efficiency.

  16. Removal Process of Heavy Metal Ions from Squid Gut Wastes with Dilute Suluric Acid Leaching and Electrowinning Methods

    OpenAIRE

    嶋影, 和宜; 平井, 伸治; 戸田, 茂雄; 山本, 浩

    2003-01-01

    In order to remove heavy metal ions contained in organic squid gut waste, a novel process has been developed with both dilute suluric acid leaching and electrowinning methods. This process was consisted of three procedures, which are the elimination of greasy component in squid gut wastes, the dissolution of heavy metal ions and the electro-deposition of heavy metal ions. Heavy metal ions contained in organic squid gut wastes are zinc, cadmium and copper ions. Heavy metal ions are leached eas...

  17. Investigation of heavy metal removal from motorway stormwater using inorganic ion exchange

    International Nuclear Information System (INIS)

    Pitcher, Sarah

    2002-01-01

    Stormwater runoff from motorway surfaces contains toxic heavy metals that are not sufficiently removed by current treatment systems. This research has investigated the potential use of inorganic ion exchange materials to further reduce the levels of dissolved heavy metals. Candidate materials (synthetic/natural zeolites, clay/modified clay, hydrotalcite, lignite) were tested by a shaking procedure (mixed 5 mg dm -3 of each heavy metals, shaken for 10 min) and analysed by atomic absorption spectrometry. The synthetic zeolites MAP and Y showed 100% heavy metal removal and were investigated further by a series of batch experiments. The zeolites exhibited a selectivity sequence Pb > Cu > Cd ∼ Zn. Zeolite MAP has a high capacity for heavy metal uptake (4.5 meq g -1 ), but is not practical for use in a treatment facility owing to its low particle size (3 μm). However, large zeolite pellets (∼ 2 mm) were found to have a low heavy metal uptake (∼ 44 %) due to diffusion limitations. Selected materials (zeolites MAP, Y, mordenite, and carbon-based lignite) were tested in actual and spiked motorway stormwater. The synthetic zeolites effectively remove heavy metals (∼ 100 %) but change the environmental chemistry of the stormwater by releasing high concentrations of sodium, removing calcium ions and increasing the solution pH. The presence of other dissolved contaminants in motorway stormwater inhibited the uptake of heavy metals by the natural zeolite mordenite (34 % less removal). Alkali/alkaline-earth metals (Na, Ca) in solution compete for exchange sites in lignite and mordenite, reducing the heavy metal uptake. Chloride in solution forms complexes with cadmium, severely reducing its uptake by zeolite Y. The presence of dissolved road salt is a potentially serious concern as it causes previously exchanged heavy metals to be re-eluted, especially zinc and cadmium. Zeolite MAP as an exchanger is relatively unaffected by road salt. There is potential for the use of

  18. Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface

    Directory of Open Access Journals (Sweden)

    Panit Sherdshoopongse

    2005-09-01

    Full Text Available Titanium dioxide was prepared from titanium tetrachloride and diluted ammonia solution at low temperature. The product obtained was characterized by XRD, EDXRF, TGA, DSC, and FT-IR techniques. It was found that the product was in the form of hydrated amorphous titanium dioxide, TiO2·1.6H2O (ha- TiO2. Ha-TiO2 exhibits high BET surface area at 449 m2/g. Adsorptions of metal ions onto the ha-TiO2 surface were investigated in the batch equilibrium experiments, using Mn(II, Fe(III, Cu(II, and Pb(II solutions. The concentrations of metal ions were determined by atomic absorption spectrometer. The adsorption isotherms of all metal ions were studied at pH 7. The adsorption of Mn(II, Cu(II, and Pb(II ions on ha-TiO2 conformed to the Langmuir isotherm while that of Fe(III fit equally well to both Langmuir and Freundlich isotherms.

  19. Phytoremediation and absorption isotherms of heavy metal ions by Convolvulus tricolor (CTC).

    Science.gov (United States)

    Valizadeh, Rezvan; Mahdavian, Leila

    2016-01-01

    In recent years, use of plants for remediation of contaminated soils, especially removal of heavy metals, is considered. The current study tends to investigate the removal of lead and nickel ions by the Convolvulus tricolor (CTC), was grown for 30 days in different concentrations of lead and nickel ions. Then concentration of them in soil and different organs of the plant was measured by atomic absorption spectrometry. The highest absorbed of them occurred in concentration 0.001N, which highest Pb(2+) accumulation is in the aerial parts of the plant: leaf > stem > root and for Ni(2)+: root > stem > leaf. No ion was observed into the flowers and nickel ion absorption is more of lead ion in different plant organs of CTC. The experimental isotherm data were investigated using isotherms of Langmuir, Freundlich, BET, Temkin and Dubinin-Radushkevich (DRK). The correlation coefficient for all of them is calculated that show the best correlation coefficient for Ni(2+) adsorption is obtained BET model, whereas for Pb(2+) adsorption in root is Freundlich model but for its leaf and stem is BET model. The results show, CTC is suitable for Pb(2+) and Ni(2+) and this technique is in-situ method, simple, and low cost.

  20. Heavy metals concentrations in groundwater used for irrigation.

    Science.gov (United States)

    Taghipour, Hassan; Mosaferi, Mohammad; Pourakbar, Mojtaba; Armanfar, Feridoun

    2012-01-01

    The main objective of this study was characterization of selected heavy metals concentrations (Lead, cadmium, copper, zinc, nickel and chromium) in groundwater used for ir-rigation in Tabriz City's countryside. After consulting with the experts of agriculture department and site survey, 38 irriga-tion water samples were taken from different farms (34 wells) without primary coordination with farm owners. All of samples were acidified to achieve pH≈2 and then were concentrated from 10 to 1 volume. The concentrations of Cd, Pb, Cu, Cr, Ni, and Zn in the samples (totally 228) were determined with a flame atomic absorption spectrophotometer. In none of 38 farms, irrigation with surface runoff and industrial wastewater was ob-served. The average concentrations of Cd, Pb, Cu, Cr, Ni, and Zn in the irrigated water were de¬termined 6.55, 0.79, 16.23, 3.41, 4.49, and 49.33µg/L, respectively. The average and even maxi¬mum concentrations of heavy metals in the irrigation water at the studied area were less than toxicity threshold limits of agricultural water. Currently, not using of surface runoff and industrial wastewater as irrigation water by farmers indicates that the controlling efforts by authorities have been effective in the area. Water used for irrigation of the farms and groundwater of the studied area are not polluted with heavy metals and there is no risk from this viewpoint in the region.

  1. Handheld colorimeter for determination of heavy metal concentrations

    International Nuclear Information System (INIS)

    Lopez Ruiz, N; Martinez Olmos, A; Palma, A J; Ariza, M; Capitan-Vallvey, L F; Vukovic, J

    2011-01-01

    A portable instrument that measures heavy metal concentration from a colorimetric sensor array is presented. The use of eight sensing membranes, placed on a plastic support, allows to obtain the hue component of the HSV colour space of each one in order to determinate the concentration of metals present in a solution. The developed microcontroller-based system captures, in an ambient light environment, an image of the sensor array using an integrated micro-camera and shows the picture in a touch micro-LCD screen which acts as user interface. After image-processing of the regions of interest selected by the user, colour and concentration information are displayed on the screen.

  2. Concentrations and potential health risks of metals in lip products.

    Science.gov (United States)

    Liu, Sa; Hammond, S Katharine; Rojas-Cheatham, Ann

    2013-06-01

    Metal content in lip products has been an issue of concern. We measured lead and eight other metals in a convenience sample of 32 lip products used by young Asian women in Oakland, California, and assessed potential health risks related to estimated intakes of these metals. We analyzed lip products by inductively coupled plasma optical emission spectrometry and used previous estimates of lip product usage rates to determine daily oral intakes. We derived acceptable daily intakes (ADIs) based on information used to determine public health goals for exposure, and compared ADIs with estimated intakes to assess potential risks. Most of the tested lip products contained high concentrations of titanium and aluminum. All examined products had detectable manganese. Lead was detected in 24 products (75%), with an average concentration of 0.36 ± 0.39 ppm, including one sample with 1.32 ppm. When used at the estimated average daily rate, estimated intakes were > 20% of ADIs derived for aluminum, cadmium, chromium, and manganese. In addition, average daily use of 10 products tested would result in chromium intake exceeding our estimated ADI for chromium. For high rates of product use (above the 95th percentile), the percentages of samples with estimated metal intakes exceeding ADIs were 3% for aluminum, 68% for chromium, and 22% for manganese. Estimated intakes of lead were exposures with health-based standards. In addition to lead, metals such as aluminum, cadmium, chromium, and manganese require further investigation.

  3. Determination of metal ions released by stainless steel arch bar into bio-fluids

    Directory of Open Access Journals (Sweden)

    Lori A. Joseph

    2009-04-01

    Full Text Available The amounts of cobalt, iron, manganese, nickel and chromium ions released from new and reused stainless steel arch bar used for maxillomandibular fixation was determined in Hank’s solutions of different hydrogen and chloride ions concentrations, whole blood serum and phosphate buffered saline (PBS in vitro, over a six-week immersion time at 37 oC, by atomic absorption spectrophotometry. The corrosion levels of the wires due to effects of media and incubation times in the bio-fluids were compared by Duncan’s two-way ANOVA (P less than 0.05. Pearson’s correlation was used in establishing relationship in the amounts of metal ions released by new and reused arch bars. The study indicated that the reused wires released more ions than new ones at all time points. The variation of pH and chloride ions of the bio-fluids had a significant effect on the amount of Ni, Mn and Cr ions released. Ageing prior use of arch bars significantly increased Ni ions released into the bio-fluids.

  4. Investigation of metal ion extraction and aggregate formation combining acidic and neutral organophosphorous reagents

    Energy Technology Data Exchange (ETDEWEB)

    Braatz, A.D.; Nilsson, M. [Department of Chemical Engineering and Materials Science, 916 Engineering Tower, University of California-Irvine, Irvine, CA 92697-2575 (United States); Ellis, R.; Antonio, M. [Chemical Science and Engineering Division, Argonne National Laboratory, Building 200 9700 South Cass Ave, Argonne, IL 60439-4831 (United States)

    2013-07-01

    In the present study, we investigate how varying mixtures of tri-n-butyl phosphate (TBP) and dibutyl phosphate (HDBP) results in enhanced extraction of lanthanum(III), La{sup 3+}, and dysprosium(III), Dy{sup 3+}. Water and metal ion extraction were carefully monitored as a function of TBP:HDBP mole ratio.In addition to these techniques, EXAFS was used to determine the coordination environment of the metal ion in this system. To produce the necessary signal, a concentration of 1.25*10{sup -3} M La{sup 3+} and Dy{sup 3+} was used. Although previous studies of synergistic extraction of metal cations using combinations of neutral and acidic reagents explain the enhanced extraction by increased dehydration of the metal ion and the formation of mixed extractant complexes, our evidence for the increased water extraction coupled with the aggregate formation suggests a reverse micellar aspect to synergism in the system containing TBP and HDBP. It is quite possible that both of these phenomena contribute to our system behavior. The EXAFS data shows that, based on coordination numbers alone, several possible structures may exist. From this study, we cannot provide a definitive answer as to the nature of extraction in this system or the exact complex formed during extraction.

  5. Magnetic nanoparticle based solid-phase extraction of heavy metal ions: A review on recent advances.

    Science.gov (United States)

    Hemmati, Maryam; Rajabi, Maryam; Asghari, Alireza

    2018-02-06

    This review (with 151 refs) focuses on recent progress that has been made in magnetic nanoparticle-based solid phase extraction (SPE), pre-concentration and speciation of heavy metal ions. In addition, it discusses applications to complex real samples such as environmental, food, and biological matrices. The introduction addresses current obstacles and limitations associated with established SPE approaches and discusses the present state of the art in different formats of off-line and on-line SPE. The next section covers magnetized inorganic nanomaterials for use in SPE, with subsections on magnetic silica, magnetic alumina and titania, and on magnetic layered double oxides. A further section treats magnetized carbonaceous nanomaterials for use in SPE, with subsections on magnetic graphene and/or graphene oxides, magnetic carbon nanotubes and magnetic carbon nitrides. We then discuss the progress made in SPE based on the use of magnetized organic polymers (mainly non-imprinted and ion-imprinted polymer). This is followed by shorter sections on the use of magnetized metal organic frameworks, magnetized ionic liquids and magnetized biosorbents. All sections include discussions of the nanomaterials in terms of selectivity, sorption capacity, mechanisms of sorption and common routes for material synthesis. A concluding section addresses actual challenges and discusses perspective routes towards further improvements. Graphical abstract An overview on booster nanomaterials (ionic liquids, inorganic, organic and biological materials, and metal-organic frameworks) for use in magnetic nanoparticle-based solid-phase extraction of heavy metal ions.

  6. Migration of metallic ions from screwposts into dentin and surrounding tissues

    International Nuclear Information System (INIS)

    Arvidson, K.; Wroblewski, R.

    1978-01-01

    Previous investigations have shown that corrosion and other electrochemical processes occur when different alloys or metals are found together in the same mouth. In the present report, when teeth were restored using non-noble metallic posts, the metals diffused out to surrounding hard and soft connective tissues. The material consisted of extracted teeth with screwposts and surrounding discolored connective tissues. The screwposts had been cemented to the teeth 3-10 years earlier. The distribution of metal ion was determined by means of energy-dispersive X-ray microanalysis. Copper and zinc were found in both hard and soft tissues. Relatively high concentrations of copper ions were identified in areas of the teeth with blue-green discolorations. Zinc ions were detected in the dentin; they most probably originated from the screwposts and the cement, but zinc is also found in normal human dentin. Copper, zinc, silver and iron were found in the dark discolorations of the gingiva adjacent to the extracted teeth. (author)

  7. Poly(vinyl chloride) membrane alkali metal ion-selective electrodes based on crystalline synthetic zeolite of the Faujasite type

    International Nuclear Information System (INIS)

    Aghai, H.; Giahi, M.; Arvand Barmehi, M.

    2002-01-01

    Potentiometric electrodes based on the incorporation of zeolite particle in to poly (vinyl chloride) (pvc) membranes are described. The electrodes characteristics are evaluated regarding the response towards alkali ions. Pvc membranes plasticised with dibutyl phthalate and without lipophilic additives (co-exchanger) were used throughout this study. The electrode exhibits a Nernst ion response over the alkali metal cations concentration a range of 1.0x10 - 4 - 1.0 x 10 1 M with a slop of 57.0 ± 0.9 mV per decade of concentration a working ph range (3.0- 9.0) and a fast response time (≤15 c). The selective coefficients for cesium ion as test species with respect to alkaline earth, ammonium and some heavy metal ions were determined. Zeolite-PVC electrodes were applied to the determination of ionic surfactant

  8. Ionic-Liquid-Based Acidic Aqueous Biphasic Systems for Simultaneous Leaching and Extraction of Metallic Ions.

    Science.gov (United States)

    Gras, Matthieu; Papaiconomou, Nicolas; Schaeffer, Nicolas; Chainet, Eric; Tedjar, Farouk; Coutinho, Joao A P; Billard, Isabelle

    2018-02-05

    The first instance of an acidic aqueous biphasic system (AcABS) based on tributyltetradecyl phosphonium chloride ([P 44414 ][Cl]) and an acid is here reported. This AcABS exhibits pronounced thermomorphic behavior and is shown to be applicable to the extraction of metal ions from concentrated acidic solutions. Metal ions such as cobalt(II), iron(III), platinum(IV) and nickel(II) are found to partition preferentially to one of the phases of the acidic aqueous biphasic system and it is here shown that it successfully allows the difficult separation of Co II from Ni II , here studied at 24 and 50 °C. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biological removal of metal ions from aqueous process streams

    International Nuclear Information System (INIS)

    Shumate, S.E. II; Strandberg, G.W.; Parrott, J.R. Jr.

    1978-01-01

    Aqueous waste streams from nuclear fuel processing operations may contain trace quantities of heavy metals such as uranium. Conventional chemical and physical treatment may be ineffective or very expensive when uranium concentrations in the range of 10 to 100 g/m 3 must be reduced to 1 g/m 3 or less. The ability of some microorganisms to adsorb or complex dissolved heavy metals offers an alternative treatment method. Uranium uptake by Saccharomyces cerevisiae NRRL Y-2574 and a strain of Pseudomonas aeruginosa was examined to identify factors which might affect a process for the removal of uranium from wastewater streams. At uranium concentrations in the range of 10 to 500 g/m 3 , where the binding capacity of the biomass was not exceeded, temperature, pH, and initial uranium concentration were found to influence the rate of uranium uptake, but not the soluble uranium concentration at equilibrium. 6 figs

  10. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    Duesterhoeft, H.; Pippig, R.

    1986-01-01

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  11. Promotion of activity and thermal stability of chloroperoxidase by trace amount of metal ions (M2+/M3+).

    Science.gov (United States)

    Li, Haiyun; Gao, Jinwei; Wang, Limin; Li, Xiaohong; Jiang, Yucheng; Hu, Mancheng; Li, Shuni; Zhai, Quanguo

    2014-03-01

    The effect of M(2+) (Zn(2+), Cu(2+), Cd(2+), Mn(2+), Pb(2+)) and M(3+) (Cr(3+), La(3+), Fe(3+), Ce(3+), Y(3+), Al(3+)) metal ions on the activity and thermal stability of chloroperoxidase (CPO) was investigated in this work. It was found that the lower concentration of metal ions was favorable to CPO activity whereas the higher concentration reversed the results. CPO activity could be increased to 116.4-127.1% in the presence of a trace amount of these M(2+)/M(3+) metal ions at a concentration range of 0-25 μmol L(-1) after 2 h of incubation at 25 °C. The activating effect of M(3+) is better than that of M(2+), and Cr(3+) was mostly efficient. The thermal stability of the enzyme was also improved significantly. Only 30.3% of CPO activity was retained at 50 °C whereas 82.6% of CPO activity was maintained in the presence of Cr(3+) after 2 h of incubation at the same temperature. The activation of CPO by metal ions at their low concentration was studied through intrinsic fluorescence, circular dichroism (CD), and UV-Vis spectra assay. A favorable environment around the active site was achieved in the presence of metal ions. Intrinsic fluorescence and CD spectra indicated that the α-helix structure of CPO was strengthened in metal ion-contained media. More exposure of the heme ring was achieved for easy access of the substrate, which was suggested by UV-Vis spectrum analysis. This strategy for enhancing CPO activity is very simple and useful. It will be favorable to the practical application of this enzyme.

  12. Heavy Metal Concentration in Black Tea in Iran

    Directory of Open Access Journals (Sweden)

    Nafiseh Yousefi

    2017-03-01

    Full Text Available Background & Aims of the Study: Tea is one of the most important beverages that consumes in several parts of the world including Iran. Tea plant can be contaminated during manufacturing processes and growth period by pollutants such as heavy metals. In this study, the concentration of some heavy metals in different brands of both Iranian and imported black tea to Iran was investigated to survey the human exposure to such pollutants. Materials & Methods: The study was carried out on different brands of black tea that most widely consume in Iran. The samples were collected from available supermarkets in Tehran city and concentrations of Mn, Cd and Cu were determined in black tea, using ICP-OES. Finally obtained results, by one way ANOVA analysis, compared to maximum contaminant concentration which is determined by WHO. Results: Results showed that concentrations of measured heavy metals in sampled black tea were different according to the brand of tea. The mean of Mn, Cu and Cd elements in all tea samples were 664.78, 26.15 and 0.194 µg/g, respectively. Generally, Cu content in studied samples was not significantly above WHO but Cd content, in some cases, was significantly higher than WHO. The guideline value is not given by WHO for Mn content of tea. Conclusions: According to the obtained results, Cd content is exceeding than WHO standards, therefore, control of Cd, as a toxic element that can accumulate in living systems, is necessary.

  13. Hydration to the poly(oxyethylene) derivative complexes of alkali metal ions and barium ion in 1,2-dichloroethane

    International Nuclear Information System (INIS)

    Kikuchi, Yoichi; Kubota, Mitsuru; Suzuki, Toshio; Sawada, Kiyoshi.

    1994-01-01

    A series of poly(oxyethylene) derivatives (POE compound) complexes of alkali metal and barium ions were extracted into 1,2-dichloroethane (1,2-DCE) by forming ion-pairs with picrate ion. Water molecules were coextracted into 1,2-DCE with the ion-pairs. The mean number of water molecules bound to the POE compound, X H2O,S , and its complex, X H2O,comp , in water saturated with 1,2-DCE was determined by means of aquametry. The X H2O,S value increases with the increase in the number of the oxyethylene units (EO unit) of the POE compound. The X H2O,comp value decreases in the order Li + >Na + >K + ≅Rb + ≅Cs + in any POE compound systems, and increases with the number of EO units of the POE compounds for a given metal ion. These results are interpreted by the hypothesis that the water molecules bound to the complex are those hydrated to the central metal ion, and the hydrated metal ion is surrounded by the EO chain with a helical conformation in the complex. The large number of water molecules are coordinating to the lithium ion complexes and bring about a serious distortion in the helical structure of the complexes. Because of the ion-pair formation with two picrate ions, the X H2O,comp values of barium ion complexes are smaller than those of potassium ion complexes. (author)

  14. Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1-Membrane Interactions.

    Science.gov (United States)

    Katti, Sachin; Nyenhuis, Sarah B; Her, Bin; Srivastava, Atul K; Taylor, Alexander B; Hart, P John; Cafiso, David S; Igumenova, Tatyana I

    2017-06-27

    C2 domains are independently folded modules that often target their host proteins to anionic membranes in a Ca 2+ -dependent manner. In these cases, membrane association is triggered by Ca 2+ binding to the negatively charged loop region of the C2 domain. Here, we used a non-native metal ion, Cd 2+ , in lieu of Ca 2+ to gain insight into the contributions made by long-range Coulombic interactions and direct metal ion-lipid bridging to membrane binding. Using X-ray crystallography, NMR, Förster resonance energy transfer, and vesicle cosedimentation assays, we demonstrate that, although Cd 2+ binds to the loop region of C2A/B domains of synaptotagmin 1 with high affinity, long-range Coulombic interactions are too weak to support membrane binding of individual domains. We attribute this behavior to two factors: the stoichiometry of Cd 2+ binding to the loop regions of the C2A and C2B domains and the impaired ability of Cd 2+ to directly coordinate the lipids. In contrast, electron paramagnetic resonance experiments revealed that Cd 2+ does support membrane binding of the C2 domains in full-length synaptotagmin 1, where the high local lipid concentrations that result from membrane tethering can partially compensate for lack of a full complement of divalent metal ions and specific lipid coordination in Cd 2+ -complexed C2A/B domains. Our data suggest that long-range Coulombic interactions alone can drive the initial association of C2A/B with anionic membranes and that Ca 2+ further augments membrane binding by the formation of metal ion-lipid coordination bonds and additional Ca 2+ ion binding to the C2 domain loop regions.

  15. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    In aqueous solutions, the alkali metals ions are associated with a number of H2O molecules. A distinction is made between a primary solvent shell, (or inner solvation shell), consisting of H2O molecules directly coordinated to the metal ion, and a secondary (or outer) solvation shell, consisting....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...

  16. Heavy metal ions adsorption by suspended particle and sediment of ...

    African Journals Online (AJOL)

    GREGORY

    2012-01-10

    Jan 10, 2012 ... 7000, and 11000 mg/l, increased the samples of river water; and then they are mixed in JAR TEST apparatus twice for one and ... Key words: Chalus River, adsorption, heavy metal, suspended particle, sediment. INTRODUCTION .... concentrations using the conventional method of flame atomic absorption ...

  17. pH-Dependent metal ion toxicity influences the antibacterial activity of two natural mineral mixtures.

    Directory of Open Access Journals (Sweden)

    Tanya M Cunningham

    2010-03-01

    Full Text Available Recent studies have demonstrated that several mineral products sold for medicinal purposes demonstrate antimicrobial activity, but little is known about the physicochemical properties involved in antibacterial activity.Using in vitro mineral suspension testing, we have identified two natural mineral mixtures, arbitrarily designated BY07 and CB07, with antibacterial activity against a broad-spectrum of bacterial pathogens. Mineral-derived aqueous leachates also exhibited antibacterial activity, revealing that chemical, not physical, mineral characteristics were responsible for the observed activity. The chemical properties essential for bactericidal activity against Escherichia coli were probed by testing antibacterial activity in the presence of metal chelators, the hydroxyl radical scavenger, thiourea, and varying pH levels. Chelation of the BY07 minerals with EDTA or desferrioxamine eliminated or reduced BY07 toxicity, respectively, suggesting a role of an acid-soluble metal species, particularly Fe(3+ or other sequestered metal cations, in mineral toxicity. This conclusion was supported by NMR relaxation data, which indicated that BY07 and CB07 leachates contained higher concentrations of chemically accessible metal ions than leachates from non-bactericidal mineral samples.We conclude that the acidic environment of the hydrated minerals significantly contributes to antibacterial activity by increasing the availability and toxicity of metal ions. These findings provide impetus for further investigation of the physiological effects of mineral products and their applications in complementary antibacterial therapies.

  18. Three-phase metal kinetics in terrestrial invertebrates exposed to high metal concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Laskowski, Ryszard, E-mail: ryszard.laskowski@uj.edu.pl [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Bednarska, Agnieszka J. [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Spurgeon, David; Svendsen, Claus [Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon, OX10 8BB (United Kingdom); Gestel, Cornelis A.M. van [Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2010-08-15

    Models of metal toxicokinetics are critically evaluated using both newly generated data in the NoMiracle project as well as those originating from older studies. The analysis showed that the most frequently used one-compartment two-phase toxicokinetic model, with one assimilation and one elimination rate constant, does not describe correctly certain data sets pertaining particularly to the pattern of assimilation of trace elements. Using nickel toxicokinetics in carabid beetles and earthworms as examples, we showed that Ni in fact exhibits a three-phase kinetics with a short phase of fast metal accumulation immediately after exposure, followed by partial elimination to an equilibrium concentration at a later stage of a metal exposure phase, and by final elimination upon transfer to an uncontaminated food/soil. A similar phenomenon was also found for data on cadmium kinetics in ground beetles and copper kinetics in earthworms in data already published in the literature that was not accounted for in the earlier analysis of the data. The three-phase model suggests that the physiology of controlling body metal concentrations can change shortly after exposure, at least in some cases, by increasing the elimination rate and/or decreasing metal assimilation. Hence, the three-phase model, that allows for different assimilation and/or elimination rates in different phases of exposure to a toxicant, may provide insight into temporal changes in the physiology of metal handling. Consequently, this alternative model should always be tested when describing metal toxicokinetics when temporal patterns of internal metal concentration exhibit an initial 'overshoot' in body metal concentrations.

  19. Three-phase metal kinetics in terrestrial invertebrates exposed to high metal concentrations

    International Nuclear Information System (INIS)

    Laskowski, Ryszard; Bednarska, Agnieszka J.; Spurgeon, David; Svendsen, Claus; Gestel, Cornelis A.M. van

    2010-01-01

    Models of metal toxicokinetics are critically evaluated using both newly generated data in the NoMiracle project as well as those originating from older studies. The analysis showed that the most frequently used one-compartment two-phase toxicokinetic model, with one assimilation and one elimination rate constant, does not describe correctly certain data sets pertaining particularly to the pattern of assimilation of trace elements. Using nickel toxicokinetics in carabid beetles and earthworms as examples, we showed that Ni in fact exhibits a three-phase kinetics with a short phase of fast metal accumulation immediately after exposure, followed by partial elimination to an equilibrium concentration at a later stage of a metal exposure phase, and by final elimination upon transfer to an uncontaminated food/soil. A similar phenomenon was also found for data on cadmium kinetics in ground beetles and copper kinetics in earthworms in data already published in the literature that was not accounted for in the earlier analysis of the data. The three-phase model suggests that the physiology of controlling body metal concentrations can change shortly after exposure, at least in some cases, by increasing the elimination rate and/or decreasing metal assimilation. Hence, the three-phase model, that allows for different assimilation and/or elimination rates in different phases of exposure to a toxicant, may provide insight into temporal changes in the physiology of metal handling. Consequently, this alternative model should always be tested when describing metal toxicokinetics when temporal patterns of internal metal concentration exhibit an initial 'overshoot' in body metal concentrations.

  20. Measurement of the Cupric Ion Concentration Variation near Electrodes in the Copper Electroplating System

    International Nuclear Information System (INIS)

    Moon, Je Young; Chung, Bum Jin

    2016-01-01

    The heat fluxes to the side wall imposed at the upper metallic layer, are known to increase with the reduction of layer height. This 'Focusing effect' is varied by cooling condition of upper boundary and height of the metallic layer. The heat transfer experiments were replaced by mass transfer experiments based on the heat and mass transfer analogy concept. When the electroplating system is adopted as the mass transfer system, in order to simulate the different temperature conditions of top and side walls, an electrical resistance was attached to the top wall so that it is mimics hotter wall condition. Because the quantitative temperature conditions according to the electrical resistance were unknown, the methodology development is necessary. The electrical resistance was adopted to the top plate. But the quantitative temperature conditions depending on the electrical resistance were unknown. In order to overcome the limitations of mass transfer, this work tried to measure the cupric ion concentration. The methods of concentration measurement are RGB, Brightness, ICP, PIV, and Interferometry. The key of RGB, Brightness and PIV method is the clear images of the concentration boundary layer corresponding the thermal boundary layer of heat transfer. The results for ICP method can be got by taking the trace sample of a solution, accurately. The formation of patterns in the interferometry is very important. The characteristics of the interference pattern depend on the nature of the light source, the precise orientation of the mirrors, etc. The methodology of concentration measurement is still under development stage.

  1. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    Science.gov (United States)

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  2. Encapsulation of Metal Cations by the PhePhe Ligand: A Cation-pi Ion Cage

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Oomens, J.

    2011-01-01

    Structures and binding thermochemistry are investigated for protonated PhePhe and for complexes of PhePhe with the alkaline-earth ions Ba2+ and Ca2+, the alkali-metal ions Li+, Na+, K+, and Cs+, and the transition-metal ion Ag+. The two neighboring aromatic side chains open the possibility of a

  3. Chirality-induced conformational preferences in peptide-metal ion binding revealed by IR spectroscopy

    NARCIS (Netherlands)

    Dunbar, R.C.; Steill, J.D.; Oomens, J.

    2011-01-01

    Chirality reversal of a residue in a peptide can change its mode of binding to a metal ion, as shown here experimentally by gas-phase IR spectroscopy of peptide−metal ion complexes. The binding conformations of Li+, Na+, and H+ with the ll and dl stereoisomers of PhePhe were compared through IR ion

  4. Chirality-Induced Conformational Preferences in Peptide-Metal Ion Binding Revealed by IR Spectroscopy

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Oomens, J.

    2011-01-01

    Chirality reversal of a residue in a peptide can change its mode of binding to a metal ion, as shown here experimentally by gas-phase IR spectroscopy of peptide metal ion complexes. The binding conformations of Li+, Na+, and H+ with the LL and DL stereoisomers of PhePhe were compared through IR ion

  5. Encapsulation of metal cations by the PhePhe ligand: a cation-pi ion cage

    NARCIS (Netherlands)

    Dunbar, R.C.; Steill, J.D.; Oomens, J.

    2011-01-01

    Structures and binding thermochemistry are investigated for protonated PhePhe and for complexes of PhePhe with the alkaline-earth ions Ba2+ and Ca2+, the alkali-metal ions Li+, Na+, K+, and Cs+, and the transition-metal ion Ag+. The two neighboring aromatic side chains open the possibility of a

  6. Antimicrobial Efficacy and Synergy of Metal Ions against Enterococcus faecium, Klebsiella pneumoniae and Acinetobacter baumannii in Planktonic and Biofilm Phenotypes.

    Science.gov (United States)

    Vaidya, Misha Y; McBain, Andrew J; Butler, Jonathan A; Banks, Craig E; Whitehead, Kathryn A

    2017-07-19

    The effects of metal ion solutions (silver, copper, platinum, gold and palladium) were determined individually and in combination against Enterococcus faecium, Acinetobacter baumannii and Klebsiella pneumoniae. Platinum, gold and palladium showed the greatest antimicrobial efficacy in zone of inhibition (ZoI) assays. When tested in combinations using ZoI assays, gold/platinum, gold/palladium and platinum/palladium were indicative of synergy. Microbial inhibitory concentration demonstrated platinum and gold against Enterococcus faecium, platinum against Klebsiella pneumoniae and platinum and silver against Acinetobacter baumannii were optimal. Minimal bactericidal concentrations determined the greatest bactericidal activity was again platinum gold and palladium against all three bacteria. Fractional Inhibitory Concentration (FIC) studies demonstrated that the silver/platinum combination against Enterococcus faecium, and silver/copper combination against Acinetobacter baumannii demonstrated antimicrobial synergy. Following crystal violet biofilm assays for single metal ion solutions, antimicrobial efficacies were demonstrated for all the metals against all the bacteria Synergistic assays against biofilms demonstrated gold/palladium, gold/platinumand platinum/palladium resulted in the greatest antimicrobial efficacy. Overall, platinum, palladium and gold metal ion solutions in individual use or combination demonstrated the greatest antimicrobial efficacies against planktonic or biofilm bacteria. This work demonstrates the potential for using a range of metal ions, as biocidal formulations against both planktonic or biofilm bacteria.

  7. Binding of monovalent alkali metal ions with negatively charged phospholipid membranes.

    Science.gov (United States)

    Maity, Pabitra; Saha, Baishakhi; Kumar, Gopinatha Suresh; Karmakar, Sanat

    2016-04-01

    We have systematically investigated the effect of various alkali metal ions with negatively charged phospholipid membranes. Size distributions of large unilamellar vesicles have been confirmed using dynamic light scattering. Zeta potential and effective charges per vesicle in the presence of various alkali metal ions have been estimated from the measured electrophoretic mobility. We have determined the intrinsic binding constant from the zeta potential using electrostatic double layer theory. The reasonable and consistent value of the intrinsic binding constant of Na(+), found at moderate NaCl concentration (10-100 mM), indicates that the Gouy-Chapman theory cannot be applied for very high (> 100mM) and very low (concentrations. The isothermal titration calorimetry study has revealed that the net binding heat of interaction of the negatively charged vesicles with monovalent alkali metal ions is small and comparable to those obtained from neutral phosphatidylcholine vesicles. The overall endothermic response of binding heat suggests that interaction is primarily entropy driven. The entropy gain might arise due to the release of water molecules from the hydration layer vicinity of the membranes. Therefore, the partition model which does not include the electrostatic contribution suffices to describe the interaction. The binding constant of Na(+) (2.4 ± 0.1 M(-1)), obtained from the ITC, is in agreement with that estimated from the zeta potential (-2.0 M(-1)) at moderate salt concentrations. Our results suggest that hydration dynamics may play a vital role in the membrane solution interface which strongly affects the ion-membrane interaction. Copyright © 2016 Elsevier B.V. All rights reserved

  8. SEPARATION OF Ca AND Fe METAL ION IN SOURCE WATER BY ADSORPTION COLUMN TECHNIC WITH LOCAL ZEOLITE AND ACTIVE CARBON

    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta

    2016-04-01

    Full Text Available This research aims are to separate of Ca and Fe metal ion in source water, with local zeolite and active carbon by adsorption column technic. Efficiency of separation are control by adsorption time and size of zeolite. Method that used was column adsorption with a flow system in which sample is applied to the filtration tube containing zeolite and active carbon. Initial and final concentrations of the samples were analyzed using Atomic Adsorption Spectrophotometer instrument. The results obtained shows that ability adsorption of zeolite to Ca and Fe metal ion are a good. Zeolite 1 (10 mesh can reduce iron concentration until 93.98 % and zeolite 2 (5mesh until 98.88% for 1 – 4 week range time. Whereas reducing of calcium concentration is not good, until 2 week period time adsorption of calcium ion is about 50%.   Keywords: adsorption, zeolite, source water

  9. Identification and Quantification of Heavy Metals Concentrations in Pistacia

    Directory of Open Access Journals (Sweden)

    Gholamhossein DAVARYNEJAD

    2013-12-01

    Full Text Available The levels of heavy metals are very important in pistachio nuts, because the edible nuts have an important and increasing role in human nutrition. Pistachio is one of the native nuts of Iran which contains high genetic resources, but there is insufficient information regarding nutritional properties and other elements like heavy metals. The objective of the present study was to investigate and compare heavy metals contents in the kernels of various pistachio samples including; ‘Daneshmandi’, ‘Sephid’, ‘Garmeh’, ‘Momtaz’, ‘Ahmad Aghaei’, ‘Badami Zarand’, Pistacia atlantica Desf. (‘Baneh’, Pistacia vera ‘Sarakhs’ and chance seedling as ‘Non-grafted 1’, ‘Non-grafted 2’ and ‘Non-grafted 3’. Inductively coupled plasma emission spectrophotometer (ICP was used for the determination of aluminium, chromium, nickel, copper, strontium, arsenic, cadmium and cobalt concentrations in pistachio kernels. This study showed that there were significant differences among the samples in all measured heavy metals except the arsenic, cadmium and cobalt. The content of aluminium varied from 3.22 to 9.59 (mg kg-1 of dry matter and chromium concentration from 0.60 to 1.86 (mg kg-1 of dry matter. The nickel content of examined pistachio samples was found between 0.43 and 3.63 (mg kg-1 of dry matter and copper ranged from 3.20 to 12.33 (mg kg-1 of dry matter. The strontium content was observed between 4.96 and 24.93 (mg kg-1 of dry matter. The contents of arsenic, cadmium and cobalt not reported, because their amounts were lower than the detection limit of the applied measuring method (ICP. These data demonstrated that the concentrations of heavy metals in pistachios varied by cultivar.

  10. Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Jianxian [College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China) and College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)], E-mail: zengjianxian@163.com; Ye Hongqi [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Hu Zhongyu [College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China)

    2009-01-30

    Complexation-ultrafiltration process was investigated for mercury and cadmium removal from aqueous solutions by using poly(acrylic acid) sodium salt (PAASS) as a complexing agent. The kinetics of complexation reactions of PAASS with the metal ions were studied under a large excess PAASS and pH 5.5. It takes 25 and 50 min for mercury and cadmium to get the complexation equilibrium, respectively, and the reaction kinetics can be described by a pseudo-first-order equation. Effects of various operating parameters such as loading ratios, pH values, etc. on metal rejection coefficients (R) were investigated. In the process of concentration, membrane fluxes decline slowly and R values are about 1. The concentrated retentates were used further for the decomplexation. The decomplexation ratio of mercury-PAASS complex is about 30%, whereas that of cadmium-PAASS complex reaches 93.5%. After the decomplexation, diafiltration experiments were carried out at pH 2.5. Cadmium can be diafiltrated satisfactorily from the retentate, but for mercury it is the contrary. Selective separation of the both metal ions was studied from a binary solution at pH 5. When mercury, cadmium and PAASS concentrations are 30, 30 and 40 mg L{sup -1}, respectively, mercury is retained by ultrafiltration while almost all cadmium passes through the membrane.

  11. Variation of boron concentration in metallic glass ribbons

    International Nuclear Information System (INIS)

    Nagy, A.Z.; Vasvari, B.; Duwez, P.; Bakos, L.; Seres, Z.; Bogancs, J.; Nazarov, V.M.

    1979-12-01

    The surface boron concentration of Fe 40 Ni 40 P 14 B 6 , Fe 32 Ni 36 Cr 14 P 12 B 6 and Fe 40 Ni 40 B 20 metallic glasses was measured by neutron activation analysis on both sides of the ribbon samples. It was found that the boron concentration is always higher at the bright side of the ribbon than that at the dull side which is in contact with the cold surface of the wheel during the rapid quenching from the melt. A possible explanation is given in terms of the solid-liquid interface moving rapidly from the cooled surface to the free surface when preparing the samples. Range values of alpha-particles for some characteristic compositions of metallic glasses are tabulated. A mathematical technique for the deconvolution of experimental data is described and the listing of the Fortran program is enclosed. (author)

  12. Concentration of metals adjacent to Tiete river border avenues

    International Nuclear Information System (INIS)

    Silva, Natalia C. e; Figueiredo, Ana M.G.; Ribeiro, Andreza P.; Nammoura Neto, Georges M.; Camargo, Sonia P.; Ticianelli, Regina B.

    2009-01-01

    This work analysed different 5 cm depth fragments soils, with distinct characteristic s, collected at 8 points of the Tiete river marginal avenue at the Sao Paulo metropolitan region. The technique used for the analysis was the instrumental neutron activation analysis (INAA). Together with samples, metal concentration were measured in three reference materials BEN (IWG-GIT), GS-N (IWG-GIT) and Soil-7 (IAEA) for quality control of the results. These metals were analysed: arsenic (As), barium (Ba), chromium (Cr), cobalt (Co), antimony (Sb) e zinc (Zn); the obtained concentrations were compared with intervention limit values stipulated by the Companhia de Tecnologia de Saneamento Ambiental (CETESB). Those values indicate the soil quality for different use

  13. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Science.gov (United States)

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  14. Formation of negative ions on a metal surface

    International Nuclear Information System (INIS)

    Amersfoort, P.W. van.

    1987-01-01

    In this thesis a fundamental study of the charge exchange process of positive ions on the converter surface is presented. Beams of hydrogen ad cesium ions are scattered from a thoroughly cleaned W(110) surface, under ultra-high vacuum conditions. The cesium coverage of the surface is a controlled parameter. Ch. 2 deals with the negative-ion formation probability for hydrogen atoms. The influence of coabsorption of hydrogen is studied in Ch. 3. These measurements are important for understanding the formation process in plasma sources, because the converter surface is expected to be strongly contaminated with hydrogen. The charge state of scattered cesium particles is investigated in Ch. 4. Knowledge of this parameter is essential for Ch. 5, in which a model study of adsorption of cesium on a metal surface in contact with a plasma is presented. Finally, the negative-ion formation process in a plasma environment is studied in Ch. 6. Measurements done on a hollow-cathode discharge equipped with a novel type of converter, a porous tungsten button, are discussed. Liquid cesium diffuses through this button towards the side in contact with the plasma. (Auth.)

  15. Metal-organic frameworks for lithium ion batteries and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang, E-mail: hdeng@whu.edu.cn

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.

  16. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongyu [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Tang, Zhenghua, E-mail: zhht@scut.edu.cn [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Wang, Likai; Zhou, Weijia; Li, Ligui [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Zhang, Yongqing [Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Chen, Shaowei, E-mail: shaowei@ucsc.edu [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2016-08-15

    Highlights: • Apparent color change upon the addition of Hg{sup 2+} or As{sup 3+} ions into A3-AuNPs solution. • Distinct color change of A3-AgNPs solution only in the presence of Hg{sup 2+} ions. • The Hg{sup 2+} concentration limit of A3-AgNPs about 40 times lower than A3-AuNPs. • Based on the DLS, TEM and XPS results, two reaction mechanisms have been proposed. - Abstract: Peptide A3-capped gold and silver nanoparticles were prepared by chemical reduction of metal salt precursors. The nanoparticles exhibited apparent but distinctly different color changes upon the addition of selected heavy metal ions. For gold nanoparticles, the solution color was found to change from red to blue in the presence of Hg{sup 2+} or As{sup 3+} ions, accompanied with broadening and a red-shift of the surface plasmon resonance peak. In contrast, silver nanoparticles showed an apparent color change from yellow to colorless only in the presence of Hg{sup 2+}, along with a blue-shift and diminishment of the surface plasmon resonance peak. The Hg{sup 2+} reaction concentration limit of silver nanoparticle was about 40 times lower than that of gold nanoparticle. Based on the dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopic results, the reaction mechanism has been proposed. Such a sensitive variation of the nanoparticle optical properties to selective ions might be exploited for ion detection for potential applications.

  17. Low jitter metal vapor vacuum arc ion source for electron beam ion trap injections

    International Nuclear Information System (INIS)

    Holland, Glenn E.; Boyer, Craig N.; Seely, John F.; Tan, J.N.; Pomeroy, J.M.; Gillaspy, J.D.

    2005-01-01

    We describe a metal vapor vacuum arc (MeVVA) ion source containing eight different cathodes that are individually selectable via the control electronics which does not require moving components in vacuum. Inside the vacuum assembly, the arc plasma is produced by means of a 30 μs pulse (26 kV,125 A) delivering 2.4 mC of charge to the cathode sample material. The trigger jitter is minimized ( 9 ions/cm 2 , measured by an unbiased Faraday cup positioned 20 cm from the extractor grid, at discharge rates up to 5 Hz. The electronic triggering of the discharge is via a fiber optic interface. We present the design, fabrication details, and performance of this MeVVA, recently installed on the National Institute of Standards and Technology electron beam ion trap (EBIT)

  18. Heavy Metals Concentrations in Groundwater Used for Irrigation

    OpenAIRE

    Taghipour, Hassan; Mosaferi, Mohammad; Pourakbar, Mojtaba; Armanfar, Feridoun

    2012-01-01

    Background: The main objective of this study was characterization of selected heavy metals concentrations (Lead, cadmium, copper, zinc, nickel and chromium) in groundwater used for ir-rigation in Tabriz City's countryside.Methods: After consulting with the experts of agriculture department and site survey, 38 irriga-tion water samples were taken from different farms (34 wells) without primary coordination with farm owners. All of samples were acidified to achieve pH≈2 and then were concentrat...

  19. Heavy metals concentrations in coal and sediments from River ...

    African Journals Online (AJOL)

    The levels of some heavy metals such as; Mn, Cr, Cd, As, Ni, and Pb were analysed in coal and sediment samples from River Ekulu in Enugu, Coal City using Atomic Absorption Spectrophotometer (AAS) model Spectra-AA-10 variant. Mean concentrations of Mn (0.256-0.389mg/kg) and Cr (0.214-0.267 mg/kg) are high ...

  20. Correlation studies of heavy metals concentration with sediment ...

    African Journals Online (AJOL)

    The sediments at the bottom of waters play a role in the study of pollution in the rivers. Upstream of Odo-Iyaalaro River (Point 1) receives the largest volume of effluents and showed the highest level of heavy metals in sediments with concentrations of 108.3mg/l for Pb, 805mg/l for Zn, 94.5mg/l for Cu, 31mg/l for Cr and 42.1 ...

  1. Variation of boron concentration in metallic glass ribbons

    International Nuclear Information System (INIS)

    Nagy, A.Z.; Vasvari, B.; Bakos, L.; Duwez, P.; Bogancs, J.; Nazarov, V.M.

    1980-01-01

    The boron concentration of Fe 40 Ni 40 P 14 B 6 , Fe 32 Ni 36 Cr 14 P 12 B 6 and Fe 40 Ni 40 B 20 metallic glasses is measured by neutron activation analysis on both surfaces of the ribbon samples. It is found that the boron concentration is always higher on the bright side of the ribbon than that on the dull side which is in contact with the cold surface of the wheel during the rapid quenching from the melt. A possible explanation is given in terms of the solid-liquid interface moving rapidly from the cooled surface to the free surface when preparing the samples. (author)

  2. Controls on Transition Metal Concentrations in Crustal Brines

    Science.gov (United States)

    Yardley, B. W.

    2004-12-01

    Experimental studies of mineral solubilities have systematically explored the effects of pH and other parameters on metal concentrations over relatively narrow temperature ranges. This study has compiled a data base of brine analyses, ranging from low temperature shield and formation brines to magmatic brines, including geothermal and metamorphic brine analyses. The data includes both analyses of samples from drilling, and fluid inclusion analyses, and there is a span of over an order of magnitude in chloride concentration. Concentrations of Fe, Mn, Zn and Pb vary systematically across the entire data set, and the principal controls on their concentrations are salinity and temperature. In each suite of analyses in the data set, metal concentrations increase linearly with Cl over the entire salinity range, with a slope of between 1 and 1.5 in log mol units. For Fe and Mn in all the data sets, Me/Cl remains nearly constant over a wide range of salinities at constant temperature, but there is almost 6 orders of magnitude variation in Me/Cl between low-T formation brines and magmatic brines. Larger scatter in the Fe data may be attributed to variations in redox, and correlates with Mn/Fe. The slope of the data array on a Zn-Cl plot may be somewhat higher for formation waters than for magmatic fluids, indicating a possible change in complexing with temperature, but at no temperature is there evidence for a change in complexing with Cl concentration. Pb data is sparse but shows similar trends, though with less dependence on temperature. The continuity in crustal brine chemistry from sedimentary to metamorphic and magmatic fluids demonstrates the importance of wall rock buffering for the control of crustal fluid composition, and shows that the variation in pH, fS2 and redox environment between different lithologies is not sufficiently large for variation in these parameters to dominate the variation in metal contents of fluids. In contrast, temperature and salinity emerge

  3. Local coordination of polyvalent metal ions in molten halide mixtures

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1989-07-01

    Ample experimental evidence is available in the literature on the geometry and the stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides. Recent schemes for classifying this evidence are discussed. Dissociation of tetrahedral halocomplexes in good ionic systems can be viewed as a classical Mott problem of bound-state stability in a conducting matrix. More generally, structural coordinates can be constructed from properties of the component elements, to separate out systems with long-lived fourfold or sixfold coordination and to distinguish between these. (author). 11 refs, 1 fig

  4. [The effect of hydrogen peroxide on the electrochemical corrosion properties and metal ions release of nickel-chromium dental alloys].

    Science.gov (United States)

    Wang, Jue; Qiao, Guang-yan

    2013-04-01

    To investigate the effect of hydrogen peroxide on the electrochemical corrosion and metal ions release of nickel-chromium dental alloys. The corrosion resistance of nickel-chromium dental alloys was compared by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PD) methods in artificial saliva after immersed in different concentrations of hydrogen peroxide for 112 h. The metal ions released from nickel-chromium dental alloys to the artificial saliva were detected after electrochemical measurements using inductively coupled plasma mass spectrometry (ICP-MS). The data was statistically analyzed by analysis of variance (ANOVA) using SPSS 13.0 software package. The electrochemical experiment showed that the sequence of polarization resistance in equivalent circuit (Rct), corrosion potential (Ecorr), pitting breakdown potential (Eb), and the difference between Ecorr and Eb representing the "pseudo-passivation" (δE) of nickel-chromium alloys in artificial saliva was 30% alloys to the artificial saliva, and the order of the concentrations of metal ions was 0% corrosion resistance of nickel-chromium dental alloys decrease after immersed in different concentrations of hydrogen peroxide for 112 h. Nickel-chromium dental alloys are more prone to corrosion in the artificial saliva with the concentration of hydrogen peroxide increased, and more metal ions are released in the artificial saliva.

  5. Microfluidic Paper-Based Sample Concentration Using Ion Concentration Polarization with Smartphone Detection

    Directory of Open Access Journals (Sweden)

    Xue Li

    2016-11-01

    Full Text Available A simple method for microfluidic paper-based sample concentration using ion concentration polarization (ICP with smartphone detection is developed. The concise and low-cost microfluidic paper-based ICP analytical device, which consists of a black backing layer, a nitrocellulose membrane, and two absorbent pads, is fabricated with the simple lamination method which is widely used for lateral flow strips. Sample concentration on the nitrocellulose membrane is monitored in real time by a smartphone whose camera is used to collect the fluorescence images from the ICP device. A custom image processing algorithm running on the smartphone is used to track the concentrated sample and obtain its fluorescence signal intensity for quantitative analysis. Two different methods for Nafion coating are evaluated and their performances are compared. The characteristics of the ICP analytical device especially with intentionally adjusted physical properties are fully evaluated to optimize its performance as well as to extend its potential applications. Experimental results show that significant concentration enhancement with fluorescence dye sample is obtained with the developed ICP device when a fast depletion of fluorescent dye is observed. The platform based on the simply laminated ICP device with smartphone detection is desired for point-of-care testing in settings with poor resources.

  6. Determination of a various ions such as alkali metals in leaves, stems, roots and seeds of the radish and their distribution

    International Nuclear Information System (INIS)

    Fujino, Osamu; Matsui, Masakazu.

    1995-01-01

    Determination, uptake and distribution of various ions such as alkali metals in three different parts (leaf, stem and root) and seeds of radish (Kaiware daikon) were examined using flame emission spectrometry and ICP-AES. In order to examine the influence of concentration alkali metal ion concentration in the radish culture solution on the uptake and distribution of these metals, the radish was grown at pH 5.6 in solutions containing alkali metal chloride at concentrations ranging from 10 -5 to 10 -1 mol dm -3 . When the radish were grown in culture solution with alkali metal ions of low concentrations (10 -5 and 10 -4 mol dm -3 ), Na, K, Rb and trace Li were detected in leaves, stems and roots while Cs was scarcely detected. However, the contents of Na, K, Li in these organs were the same as those in radish cultivated in pure water. An increase of Rb uptake was observed with an increased Rb concentration. In the case of high concentrations (10 -3 and 10 -2 mol dm -3 ) of alkali metals in culture solution, the all alkali ions uptake of all alkali ions suddenly accelerated. Moreover, at concentrations higher than 0.1 mol dm -3 , the radish germinated poorly and did not completely mature. (author)

  7. Quantifying metal ions binding onto dissolved organic matter using log-transformed absorbance spectra.

    Science.gov (United States)

    Yan, Mingquan; Wang, Dongsheng; Korshin, Gregory V; Benedetti, Marc F

    2013-05-01

    This study introduces the concept of consistent examination of changes of log-transformed absorbance spectra of dissolved organic matter (DOM) at incrementally increasing concentrations of heavy metal cations such as copper, cadmium, and aluminum at environmentally relevant concentrations. The approach is designed to highlight contributions of low-intensity absorbance features that appear to be especially sensitive to DOM reactions. In accord with this approach, log-transformed absorbance spectra of fractions of DOM from the Suwannee River were acquired at varying pHs and concentrations of copper, cadmium, and aluminum. These log-transformed spectra were processed using the differential approach and used to examine the nature of the observed changes of DOM absorbance and correlate them with the extent of Me-DOM complexation. Two alternative parameters, namely the change of the spectral slope in the range of wavelengths 325-375 nm (DSlope325-375) and differential logarithm of DOM absorbance at 350 nm (DLnA350) were introduced to quantify Cu(II), Cd(II), and Al(III) binding onto DOMs. DLnA350 and DSlope325-375 datasets were compared with the amount of DOM-bound Cu(II), Cd(II), and Al(III) estimated based on NICA-Donnan model calculations. This examination showed that the DLnA350 and DSlope325-375 acquired at various pH values, metal ions concentrations, and DOM types were strongly and unambiguously correlated with the concentration of DOM-bound metal ions. The obtained experimental results and their interpretation indicate that the introduced DSlope325-375 and DLnA35 parameters are predictive of and can be used to quantify in situ metal ions interactions with DOMs. The presented approach can be used to gain more information about DOM-metal interactions and for further optimization of existing formal models of metal-DOM complexation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A new method of in vitro prescreening evaluation of the relationship between toxic and common metal ions.

    Science.gov (United States)

    Bara, M; Guiet-Bara, A; Durlach, J

    1992-05-01

    The human amniotic membrane, an asymmetrical and nonexcitable epithelium with sites differently situated on the fetal and maternal sides, may be considered a model for investigating the relationship between toxic and common metal ions. The method is based on the observation of the ionic transfer across the amnion, estimated by measuring the total ionic conductance Gt from the mother to the fetus and from the fetus to the mother. It is important to note that opposite effects between two ions are not necessarily correlated with antagonism; indeed, pollutants decrease ionic conductance Gt and Mg increases it, but Mg is not an antagonist of all pollutants. To define antagonism between two ions, the Dixon curves theory should be applied. These curves represent the variation of Gt when the concentration of common metal increases (1 mM, 3 mM), while the concentration of toxic metal is maintained constant (3 concentrations of toxic metal are used). The straight lines obtained are either parallel to each other (noncompetitive inhibition), parallel to the x axis (no interaction between common and toxic metals), or the 3 lines intersect at a common point equal to the inhibition constant. At pharmacological doses, there is competitive inhibition (specific antagonism) between Mg and Cd, Zn and Cd, Ca and Cd, and Mg and Pb, and noncompetitive inhibition between Mg and Hg. This method may rapidly indicate a membrane interaction between common and toxic metals.

  9. New Insight into Metal Ion-Driven Catalysis of Nucleic Acids by Influenza PA-Nter.

    Science.gov (United States)

    Kotlarek, Daria; Worch, Remigiusz

    2016-01-01

    PA subunit of influenza RNA-dependent RNA polymerase deserves constantly increasing attention due to its essential role in influenza life cycle. N-terminal domain of PA (PA-Nter) harbors endonuclease activity, which is indispensable in viral transcription and replication. Interestingly, existing literature reports on in vitro ion preferences of the enzyme are contradictory. Some show PA-Nter activity exclusively with Mn2+, whereas others report Mg2+ as a natural cofactor. To clarify it, we performed a series of experiments with varied ion concentrations and substrate type. We observed cleavage in the presence of both ions, with a slight preference for manganese, however PA-Nter activity highly depended on the amount of residual, co-purified ions. Furthermore, to quantify cleavage reaction rate, we applied fluorescence cross-correlation spectroscopy (FCCS), providing highly sensitive and real-time monitoring of single molecules. Using nanomolar ssDNA in the regime of enzyme excess, we estimated the maximum reaction rate at 0.81± 0.38 and 1.38± 0.34 nM/min for Mg2+ and Mn2+, respectively. However, our calculations of PA-Nter ion occupancy, based on thermodynamic data, suggest Mg2+ to be a canonical metal in PA-Nter processing of RNA in vivo. Presented studies constitute a step toward better understanding of PA-Nter ion-dependent activity, which will possibly contribute to new successful inhibitor design in the future.

  10. New Insight into Metal Ion-Driven Catalysis of Nucleic Acids by Influenza PA-Nter.

    Directory of Open Access Journals (Sweden)

    Daria Kotlarek

    Full Text Available PA subunit of influenza RNA-dependent RNA polymerase deserves constantly increasing attention due to its essential role in influenza life cycle. N-terminal domain of PA (PA-Nter harbors endonuclease activity, which is indispensable in viral transcription and replication. Interestingly, existing literature reports on in vitro ion preferences of the enzyme are contradictory. Some show PA-Nter activity exclusively with Mn2+, whereas others report Mg2+ as a natural cofactor. To clarify it, we performed a series of experiments with varied ion concentrations and substrate type. We observed cleavage in the presence of both ions, with a slight preference for manganese, however PA-Nter activity highly depended on the amount of residual, co-purified ions. Furthermore, to quantify cleavage reaction rate, we applied fluorescence cross-correlation spectroscopy (FCCS, providing highly sensitive and real-time monitoring of single molecules. Using nanomolar ssDNA in the regime of enzyme excess, we estimated the maximum reaction rate at 0.81± 0.38 and 1.38± 0.34 nM/min for Mg2+ and Mn2+, respectively. However, our calculations of PA-Nter ion occupancy, based on thermodynamic data, suggest Mg2+ to be a canonical metal in PA-Nter processing of RNA in vivo. Presented studies constitute a step toward better understanding of PA-Nter ion-dependent activity, which will possibly contribute to new successful inhibitor design in the future.

  11. The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel

    Science.gov (United States)

    Mende, Mandy; Schwarz, Dana; Steinbach, Christine; Schwarz, Simona

    2018-01-01

    The biodegradable polysaccharide chitosan possesses protonated and natural amino groups at medium pH values and has therefore been used as an adsorbing material for nickel salts in water treatment. Nickel is a problematic heavy metal ion which can cause various diseases and disorders in living organisms. Here, we show the influence of oxyanions (e.g., nitrate and sulfate) to the adsorption of nickel ions. Hence, simultaneously we are addressing the increasing global problem of nitrate and sulfate ion pollution in groundwater and surface water. A series of adsorption experiments was carried out in order to determine (i) the adsorption equilibrium, (ii) the adsorption capacity in dependence on the initial nickel ion concentration, and (iii) the influence of the anion presented in solution for the adsorption capacity. Surface morphology of chitosan flakes before and after the adsorption process has been studied with SEM-EDX analysis. The chitosan flakes exhibited promising adsorption capacities of 81.9 mg·g−1 and 21.2 mg·g−1 for nickel (sulfate) and nickel (nitrate), respectively. The calculated values of Gibbs free energy change ΔG0 confirm the higher adsorption of nickel ions in presence of sulfate ions. Hence, higher anion valence leads to a higher adsorption capacity. PMID:29510485

  12. The Equilibrium Between Titanium Ions and Titanium Metal in NaCl-KCl Equimolar Molten Salt

    Science.gov (United States)

    Wang, Qiuyu; Song, Jianxun; Hu, Guojing; Zhu, Xiaobo; Hou, Jungang; Jiao, Shuqiang; Zhu, Hongmin

    2013-08-01

    The equilibrium between metallic titanium and titanium ions, 3Ti2+ ⇌ 2Ti3+ + Ti, in NaCl-KCl equimolar molten salt was reevaluated. At a fixed temperature and an initial concentration of titanium chloride, the equilibrium was achieved by adding an excess amount of sponge titanium in assistant with bubbling of argon into the molten salt. The significance of this work is that the accurate concentrations of titanium ions have been obtained based on a reliable approach for taking samples. Furthermore, the equilibrium constant {{K}}_{{C}} = (x_{{{{Ti}}^{{ 3 { + }}} }}^{{eql}} )3 /(x_{{{{Ti}}^{{ 2 { + }}} }}^{{eql}} )2 was calculated through the best-fitting method under the consideration of the TiOCl dissolution. Indeed, the final results have disclosed that the stable value of KC could be achieved based on all modifications.

  13. Development of ion-exchange properties of bamboo charcoal modified with concentrated nitric acid

    Science.gov (United States)

    Khandaker, S.; Kuba, T.; Toyohara, Y.; Kamida, S.; Uchikawa, Y.

    2017-08-01

    The surface chemistry and the structural properties of activated carbon can be altered by the acidic modification. The objective of this study is to investigate the changes occurring in bamboo charcoal (BC) during activation with concentrated nitric acid. Low temperature (500°C) carbonized BC has been prepared and oxidized with 70% concentrated boiling nitric acid (BC-AC). The porous properties of the BC are analyzed with nitrogen adsorption isotherm at 77 K. The surface structure is observed by Field emission scanning electronic microscope (FESEM) and the surface functional groups are examined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and the pH of the point of zero charge (pHPZC). The results reveal that severe oxidation with HNO3 considerably decreases the surface area of BC with enhanced pore widening and FESEM observation demonstrates the erosive effect of oxidation. The FTIR analysis detects that some absorption bands are assigned for carboxyl, aldehyde and ketone groups on BC-AC. The XPS analysis also clearly shows that the ratio of oxygen and acidic functional groups has been enriched significantly on the BC-AC. The low pHPZC value of BC-AC confirms that the surface is highly acidic for the fixation of acidic functional groups on surface. In general, the existence of the abundant amount of acidic functional groups on adsorbents enhances the sorption of heavy metals ions in aqueous solution. Therefore, it is strongly expected that the modified BC, activated under the proposed conditions would be a promising ion exchanger in aqueous solution and can be applied for the adsorption of different heavy metal ions and radioactive materials from effluent.

  14. Heavy Metals Concentrations in Groundwater Used for Irrigation

    Directory of Open Access Journals (Sweden)

    Hassan Taghipour

    2012-12-01

    Full Text Available Background: The main objective of this study was characterization of selected heavy metals concentrations (Lead, cadmium, copper, zinc, nickel and chromium in groundwater used for ir-rigation in Tabriz City's countryside.Methods: After consulting with the experts of agriculture department and site survey, 38 irriga-tion water samples were taken from different farms (34 wells without primary coordination with farm owners. All of samples were acidified to achieve pH≈2 and then were concentrated from 10 to 1 volume. The concentrations of Cd, Pb, Cu, Cr, Ni, and Zn in the samples (totally 228 were determined with a flame atomic absorption spectrophotometer.Results: In none of 38 farms, irrigation with surface runoff and industrial wastewater was ob-served. The average concentrations of Cd, Pb, Cu, Cr, Ni, and Zn in the irrigated water were de-termined 6.55, 0.79, 16.23, 3.41, 4.49, and 49.33μg/L, respectively. The average and even maxi-mum concentrations of heavy metals in the irrigation water at the studied area were less than toxicity threshold limits of agricultural water.Conclusion: Currently, not using of surface runoff and industrial wastewater as irrigation water by farmers indicates that the controlling efforts by authorities have been effective in the area. Water used for irrigation of the farms and groundwater of the studied area are not polluted with heavy metals and there is no risk from this viewpoint in the region.

  15. Acetabular bone density and metal ions after metal-on-metal versus metal-on-polyethylene total hip arthroplasty; short-term results

    NARCIS (Netherlands)

    Zijlstra, Wierd P.; van der Veen, Hugo C.; van den Akker-Scheek, Inge; Zee, Mark J. M.; Bulstra, Sjoerd K.; van Raay, Jos J. A. M.

    Information on periprosthetic acetabular bone density is lacking for metal-on-metal total hip arthroplasties. These bearings use cobalt-chromium instead of titanium acetabular components, which could lead to stress shielding and hence periprosthetic bone loss. Cobalt and chromium ions have

  16. Effect of oxide ion concentration on the electrochemical oxidation of carbon in molten LiCl

    International Nuclear Information System (INIS)

    Yun, J. W.; Choi, I. K.; Park, Y. S.; Kim, W. H.

    2001-01-01

    The continuous measurement of lithium oxide concentration was required in DOR (Direct Oxide Reduction) process, which converts spent nuclear fuel to metal form, for the reactivity monitor and effective control of the process. The concentration of lithium oxide was measured by the electrochemical method, which was based on the phenomenon that carbon atoms of glassy carbon electrode electrochemically react with oxygen ions of lithium oxide in molten LiCl medium. From the results of electrode polarization experiments, the trend of oxidation rate of carbon atoms was classified into two different regions, which were proportional and non-proportional ones, dependent on the amount of lithium oxide. Below about 2.5 wt % Li 2 O, as the carbon atom ionization rate was fast enough for reacting with diffusing lithium oxide to the surface of carbon electrode. In this concentration range, the oxidation rate of carbon atoms was controlled by the diffusion of lithium oxide, and the concentration of lithium oxide could be measured by electrochemical method. But, above 2.5 wt % Li 2 O, the oxidation rate of carbon atoms was controlled by the applied electrochemical potential, because the carbon atom ionization rate was suppressed by the huge amounts of diffusing Li 2 O. Above this concentration, the electrochemical method was not applicable to determine the concentration of lithium oxide

  17. [The relationship between PMI and concentration of potassium ion and sodium ion in swine aqueous humor after death].

    Science.gov (United States)

    Han, Ju; Yu, Guang-biao; Dong, Ye-qiang; Fang, Chao; Jing, Hua-lan; Luo, Si-min

    2010-04-01

    To explored the relationship between the concentration of potassium ion as well as sodium ion in the aqueous humor and post-mortem interval (PMI). The concentrations of potassium ion and sodium ion in the aqueous humor of swine within 48 h after death at 4 degrees C and 28 degrees C were detected using Z-500 atomic absorption spectrophotometer. The concentrations of potassium ion and sodium ion in aqueous humor of isolated swine eyeballs within 48 h after death when the environmental temperature was 4 degrees C were significantly related to PMI. The relationship between PMI and the concentration of potassium ion was PMI = -0.178[K+]2 + 49.978 (R2 = 0.995). The relationship between PMI and the rate of sodium ion and potassium ion was PMI = 120.987/[Na+/K+]-28.834 (R2 = 0.905). The concentration of potassium in aqueous humor of isolated swine eyeballs may be one of the reference indicators to estimate PMI of the corpses at lower temperatures.

  18. SEPARATION OF Fe (III, Cr(III, Cu(II, Ni(II, Co(II, AND Pb(II METAL IONS USING POLY(EUGENYL OXYACETIC ACID AS AN ION CARRIER BY A LIQUID MEMBRANE TRANSPORT METHOD

    Directory of Open Access Journals (Sweden)

    La Harimu

    2010-06-01

    Full Text Available Fe (III, Cr(III, Cu(II, Ni(II, Co(II, and Pb(II  metal ions had been separated using poly(eugenyl oxyacetic acid as an ion carrier by bulk liquid membrane transport method. The effect of pH, polyeugenyl oxyacetic acid ion carrier concentration, nitric acid concentration in the stripping solution, transport time, and metal concentration were optimized. The result showed that the optimum condition for transport of metal ions was at pH 4 for ion Fe(III and at pH 5 for Cr(III, Cu(II, Ni(II, Co(II, and Pb(II ions. The carrier volumes were optimum with concentration of 1 x 10-3 M at 7.5 mL for Cr(III, Cu (II,  Ni(II, Co(II ions and at 8.5 mL for Fe(III and Pb(II ions. The concentration of HNO3 in stripping phase was optimum at 2 M for Fe(III and Cu(II ions, 1 M for Cr(III, Ni(II and Co(II ions, and 0.5 M for Pb(II ion. The optimum transport times were 36 h for Fe(III and Co(II ions, and 48 h for Cr(III, Cu (II, Ni(II, and Pb(II ions. The concentration of metal ions accurately transported were 2.5 x 10-4 M for Fe(III and Cr(III ions, and 1 M for Cu (II, Ni(II, Co(II, and Pb(II ions. Compared to other metal ions the transport of Fe(III was the highest with selectivity order of Fe(III > Cr(III > Pb(II > Cu(II > Ni(II > Co(II. At optimum condition, Fe(III ion was transported through the membrane at 46.46%.   Keywords: poly(eugenyl oxyacetic acid, transport, liquid membrane, Fe (III, Cr(III, Cu(II, Ni(II, Co(II, and Pb(II ions

  19. Major Ion Concentrations in 2004 South Pole Ice Core, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — A 180 m ice core drilled at South Pole in 2004/2005 was analyzed for concentrations of major ions at a depth resolution of approximately 2 cm. Measured ions are...

  20. Comparison of some preconcentration methods for certain metal ions in human milk and yogurts

    Directory of Open Access Journals (Sweden)

    E. Ibitoye

    2003-06-01

    Full Text Available Five samples each of yogurts and human milk were separately collected, deproteinized, pre-concentrated differently with 1% 8-hydroxyquinoline, 1% ammonium pyrrolidine-dithiocarbamate (APDC and extracted with methyl-isobutylketone (MIBK. Activated carbon powder in HNO3 was also used. The extracts obtained were analyzed using atomic absorption spectrometry for some metal ions. In yogurts, the powdered activated carbon in HNO3 exhibited the highest complexing ability with values of 0.04–0.17, 335–476, 1.52–3.82, 0.08–0.27, 0.09–0.28, 1.31–8.78 and 888–12693 mg/L concentration for Zn2+, Mg2+, Mn2+, Cr3+, Cu2+, Fe3+ and Ca2+, respectively. The concentrations of Zn2+, Mg2+, Mn2+, Cr3+, Cu2+, Fe3+ and Ca2+ ions were determined to be in the range of 0.02–0.03, 1.10–9.47, 0.05–0.11, 0.02–3.08, 0.01–0.87, 0.47–18.08, <0.01–278 mg/L, respectively, for APDC/MIBK extraction method. The complexing ability of APDC/MIBK appeared to be the lowest. The Co3+ and Cd2+ ions were only detected by activated carbon pre-concentration method. A more or less similar trend was obtained for human milk samples. For all samples, the complexing ability of each of the complexing agents varied from one metal ion to another.